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(ABSTRACT)

This research analyzes the Iong—lived public good/bad. The public good/bad is defined to ’llve

long' ln the sense that the extemal effects of an action persist beyond the decision horlzon

of the actor. Thus, a very simple overlapping generations economy ls modeled in which the

agent lives for two perlods while the public durable good/bad lasts lndeflnltely with

deterloration/amelloratlon. Pareto optimallty, the Llndahl equlllbrlum, and the theory of vol-

untary provlslon for this overlapplng generatlons model are contrasted with those of the

atemporal model.
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CHAPTER 1
A

INTRODUCTION

An activity by some economic agents often affects other economic

agents not directly engaged in the activity. The effects occur inside

or outside the normal market process. Externalities are said to exist

when the effects occur outside the normal market processf

Externalities are classified as external economies or external

diseconomies depending on whether the effects are beneficial or

harmful. Externalities are also classified as consumption

externalities, production externalitäes or consumption-production

externalities depending on whether the effects enter the utility

function only, the production function only or both.

A special case, and indeed a logical extreme, of consumptive

external economies is traditionally referred to as the public good.

Some goods have the property that when one person consumes them, then

all other people can physically consume them too. In other words

benefits cannot be withheld costlessly by the provider. This property

is called nonexcludability. Some goods have the property that "each

individual's consumption of such a good leads to no subtraction from

any other individual's consumption"[Samuelson(1954,p387)]. This

property is called nonrivalry. The pure public good is characterized

by nonexcludable and nonrival external economy.

Most public goods are durable in nature. Many public goods, once

provided, yield services over multiple periods of time. There might be

some goods whose benefits persist beyond the lifetime, or, in general,

1
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the decision horizon, of the economic agents; that is what Mishan(1981)

descriptively called the property of being "long-lived".

The public durable good is, then, characterized by nonexcludable,

nonrival and long—lived external economy. Even though the public

durable good is an abstract construct, close examples of such goods are

abundant; defense, light houses, bridges, dams, national parks,

knowledge, and so on[Sandler/Smith(1976,pp154—157)].

The other case is the public durable bad, the mirror image of the

public durable good. The public durable bad is characterized by

nonexcludable, nonrival and long-lived external diseconomy. Nuclear

waste dumps and toxic wastes are good examples of the public durable

bad.

Most of the models in the theoretical works on public goods, with

the exception of very few [Sandler/Smith(1976), Mishan(1981), Sandler

(1982) and Yoshida(1986)], are atemporal. We can reinterpret these

models as dealing with the case where temporal spillovers span over a

time period shorter than or, at most, equal to the decision horizon of

every economic agent involved? But it seems necessary to also study

explicitly the remaining (opposite) case in which intertemporal or

intergenerational spillover persist longer than the lifetime (decision

horizon) of economic agents. We build a model where we can discuss the

public durable good/bad explicitly. This model is based on the

overlapping generations model. In the model the public durable

good/bad lasts forever with deterioration/amelioration, while the

agents live for two periods. After specifying the model, we obtain the

steady—state Pareto optimal level of, the steday·state level of the
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stationary Lindahl equilibrium, and the noncooperative equilibrium

level of the public durable good/bad and compare these levels.

A Public Durable Bad Theory We start our research with the case of

reciprocal externalities. The reciprocality means that there are no

nonnegativity constraints on values of decision variables. It makes

the problem simpler and the implication clearer and provides us good

guidelines for the public durable good case where values of decisions

are restricted to be nonnegative. We find that the steady—state Pareto

optimal level is less than the steady-state level of the stationary

Lindahl equilibrium which is less than the steady—state level of any

(stationary) noncooperative equilibrium level of the public durable

bad.

Public Durable Goods : Pareto Optimality and the Lindahl Equilibrium

We obtain the steady—state Pareto optimal level of the public durable

good. This level is positively related to durability. Meanwhile, in

Appendix B, the intergenerational version of the Samuelson public good

optimality condition is obtained in the more gemeral setting and

compared with the (intertemporal) Sandler/Sm1th(1976) version of the

condition in light of Mishan(1981). We also discuss the justification

for our simplifying assumptions. Next we obtain the steady—state level

of the stationary Lindahl equilibrium of the public durable good. It

turns out that the stationary Lindahl equilibrium is not Pareto optimal

contrary to the atemporal result and that inefficiency may increase as

durability increases.

Voluntary Provision Theory for Public Durable Goods After reviewing

the atemporal voluntary provision theory very briefly, we ask what the
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voluntary provision level of the public durable good would be. We can

expect that the young agent might provide more of the publid durable

good than he would of the nondurable public good. However the young

agent, knowing that the next generation will provide the public durable

good anyway, might act the same way as he would when the public good is

not durable. We obtain some noncooperative equilibrium results. These

results depend upon the parameters of the model. In some cases, there

exist an equilibrium where the agent acts as if the durability did not

matter. In the other cases, the durability disqualifies this behavior

as an equilibrium one. Not surprisingly, every subgame-perfect

equilibrium we have found confirms the inefficiency of the voluntary

provision.

Finally, we conclude this research and suggest issues for future

research.



CHAPTER 2

A Public Durable Bad Theory

We build an overlapping generations economy model where we can

discuss the public durable bad explicitly. After specifying the model,

we obtain the steady—state Pareto optimal level, the steady-state level

of the stationay Lindahl equilibirum, and the steady-state level of any

(stationary) noncooperative equilibrium of the public durable bad. We

do comparative steady-state analyses and compare these levels.

2.1 The Model

Time Is discrete and elapses period by period. All actions

occur within a period and will be Indexed by the subscript t which

takes on integer values. Agents are born at the beginning of each

period and live for two periods. Each generation consists of only one

agent. There are always two agents In each period; one young and one

old. We can Interpret this as that each generation is aggregated Into

one representative agent. [See Wallce(1978).]

An activity of an economic agent brings him not onlyßpriyateq

Bondurable^benefI;g_put also produces harmful by-products, say toxic

wastes, to the entire economy as a public durablg_bad. It Is analogous

to the one-Input-two-output technolggy„ The relation between the

beneficial activity, x, and Its by—products, b, are described by :

b = 8•x

S
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where x is assumed to be in R. It means that we have a case of the

reciprocal externality. B is also assumed to be positive. This

by·product last forever once produced. Fortunately, mother nature has

the capability of purifying the public durable bad at the rate (1 - k)

per period where k 6 (0,1). Denote as Bt the total accumulated public

durable bad in period t and as bt the newly produced public durable bad

in period t. Then the state equation for the public durable bad, Bt, ·

is given by :

Bt
-

kßtll + bt.

Agents are assumed to be identical except for their periods of

birth. The utility functions of the agents are the same and depend on

the level of the activity and the total level of the public durable

bad. The utility of an agent in generation t is given by :

Ut
"

Ut (xYt ,Bt ,Xot+1,Bt+]_)

= xYt - u(Bt) + d·[x°t+1 — u(Bt+1)]

where xYt denotes the level of the activity the agent t in period t

(when the agent is young), Xot+1 the level of the activity of agent t

in period t + 1 (when the agent is old), and d the time preference rate

of agents. It is assumed that d 6 (0,1). Note that (1) the utility

function is additively (intertemporally) separable, that (2) the time

_preference rate is identical for every agent of every generation, and

”f
that (3) the periodwise utility function is quasi-linear? The
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following assumptions on
u(•) are maintained throughout :

u(B) = 0 for all B < 0

u' > 0 : u'(O) < 1 ; u'(¤) = ¤
. }forallB>0.

u" > 0

Note that these assumptions implies that Bt > 0 for all t.

We can view u(B) as the disutility of the public durable bad in

the economy in terms of the private nondurable numeraire. Additive

separability and quasi—linearity assumptions are crucial for our

overlapping generations economy (infinite horizon) model and seem to be

difficult to relax for our study. [See Basar/Olsder(1982).]

Each agent is endowed with the following constraint that

IxYtI < wY and lx°tl < w°.

It is assumed that the agent's endowments are bounded but sufficient

enough to allow any desired level of the activity. Our assumptions on

utility functions and endowments ensure the interiority of any chosen

activity value.

At this point we need to distinguish stationarity from

steady-stateness. We simply use 'stationary' when referring to

additional production of the public durable bad and 'steady-state' when

referring to the total level of the public durable bad. Let < bt > be

the sequence of the additional production of the public durable bad in

each period and < Bt > be the associated sequence of the total level of

the public durable bad. The sequence < bt > is stationary if bt = bt+1

and the sequence < Bt > is steady-state if Bt = Bt+1.
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2.2 The Steady—state Pareto Optimal Level

Let Xt = x°t + xYt be the total activity level in period t. A

sequence < Xt > will be Pareto optimal if < Xt > solves the following

program :

max Xt — 2u(kBt-1 + ßXt)
< Xt > 2

(1) + d'lX;+1 · 2¤(k Bt;-1 + kßxt + 8}%+1)]
+

d2°[Xt+2
" 2U(k3Bt_1 + +++

•••• ”

Before we obtain the first-order condition, we need to show the program

(1) is well—defined. Invoking our assumptions on endowments, wY and w°

are bounded, say, by W. Then W + kW + k2W + ·•· = W/(1 — k) is

bounded. Hence W — 2u[W/(1 — k)] is bounded, say, by M. Then M + dM +

d2M + ··· = M/(1 - d) is bounded. Therefore the above program is

well·defined.

The first-order conditions are :

(Za) Xt : 2u'(kBt...1 + 3xt)ß

+ kd2u'(k2Bt-1 + kßxt + 5Xt+1)3

+ k2d22u'(k3Bt-1 + k2ßXt + kßXt+1 + 3xt+2)3

+
••• 5 1

(2b) xt+1 : d2u'(k2Bt-1 +kßXt+

kd22¤'<k’ßt-; + kzßxt + ksxm + BXt+z)B
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+ k2d32¤'(k‘*ß„-1 + kaßxt + k26xt+1 + kßXt+2 + ßXt+3)ß
+

••• g d

(2c) kzgxt
ksgxt + k26xt+1 + kßXt+2 + ßXt+3)ß

+
.•• g dz

and so on for Xt+3, •••. We obtain (3a) from (2a) and (2b), (3b) from

(2b) and (2c) :

(3a) 2u'(kBt-1 + ßXt)ß
-

1 - kd.

(3b) 2u'(k2Bt-1 + kßxt + ßXt+1)ß -
1 — kd.

and similarly for (3c), ···.

Hence given kBt-1 a sequence < Xt > is Pareto optimal if its

associated sequence < Bt > equals < BP > such that :

1 - kd
BP • v[——-———]

28

where v = [u']'1• We have the following proposition :

PROPOSITION 2.1 : In this overlapping generations economy the

steady—state Pareto optimal level of the public durable bad is :

(1 - kd)
BP = v[-------—].

28

Remark : < BP > is not a Pareto optimal sequence among the

steady-state sequences but the only Pareto optimal sequence.
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Note that BP decreases as k increases from 0+ to 1-, since v is

monotonically increasing. Similarly BP decreases as d increases from

0+ to 1-. Aso note that BP decreases as B increases.

If the number of the agents in each period is n, then the

steady—state Pareto optimal level, BP(n), of the public durable bad is

1 (1 - kd)
¤P(-1)

- V1-- --------1.
n 23

BP(n) decreases as n increases. _

2.3 The Steady-state Level of the Stationary Lindahl Equilibriu

Lindahl(1958)'s original discussion on public goods was atempotal.

It is not easy to guess what would be the proper version of the Lindahl

equilibrium for our model according to the spirit of Lindahl, even

though the public (durable) bad is the mirror image of the public

(durable) good.

The Lindahl equilibrium for the public good is the result of a

thought experiment where we design a tax scheme under which an economic

agent solves his own utility maximization problem as a tax share taker.

The tax scheme requires balanced budget and unanimity. Balanced budget

means that costs must be covered by tax revenues. Unanimity means that

each agent's demand for the public good given his individual tax share

is identical across agents. This tax scheme then achieves two things :

optimality and linkage. It provides for a Pareto optimal output of the

public good and links agent's taxes to the benefit he recieves.
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Linkage is "partly a matter of common sense and partly a matter of

justice" [Feldman(1980,p11S), see also Wicksell(1958)].

In our model unanimity must mean that x°t = xYt since the

currently alive cannot agree with the future generations yet to be born

and the past generations already passed away.

Suppose that somehow Xt is chosen unanimously as the total level '

of the activity in period t and, thus, ßXt as the new production level

of the public durable bad in period t. Then the consumption of Xt has

to be shared between the old agent and the young agent. Thus we can

define r°t and rYt as the benefit shares such that r°tXt goes to the

old agent and rYtXt to the young agent in period t. Balanced budget

simply means that r°t + rYt = 1 for all t.

The real difficulty lies in the linkage issue. Linkage requires

that agents have to compensate whole series of external diseconomies

caused by him to all others. This linkage issue lmplies there that

must be some kind of intergenerational transfer mechanism that enables

transfers from past generations to future generations. That is, the

currently old generation, as the representative of all past generations

who have have produced the public durable bad, has to pay to the

currently young generation, as the representative of all future

generations who will suffer. Finding such an intergenerational scheme

which achieves Pareto optimality and linkage along with balanced budget

and unanimity is a very hard problem which we will leave to future

research. l

One simple way of approaching this problem is to regard the public

durable bad from the previous period as burdensome endowments of the
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public durable bad to the populace. Agents cannot do anything about

it. Then we can have a following version of the Lindahl equilibrium

concept.

DEFINITION 2.1 : An intergenerational Lindahl equilibrium for the

public bad is a sequence < (r°t,rYt,bt*) > of benefit share (1 · tax

share) vectors (r°t,rYt) and a level of new production schedule bt* of

the public durable bad such that r°t + rYt = 1 for all t and the

individually chosen production level of the public durable bad equals

bt* for all t.

A (intergenerational) Lindahl equilibrium for the public

durable bad is stationary if r°t = r°t+1 = r°, rYt = rYt+1 = rY, and

bt* = bt+1* = b*(g) where g denotes the value of the state, i.e., the

leftover of the public durable bad from the previous period.

We are looking for the stationary Lindahl equilibrium for this

economy. The stationarity constraint can be justified in the sense

that equals are treated equally. lrrespective of generation we treat

the young and old respectively equal.

The old agent's problem is :

max r°x° - u(g + ßx°).
xo

From the first-order condition, we obtain :

r° = ¤'(g + 8x°)ß ;
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ro
x°(g;r°) = [v(·—) ·· g]/B-

B

The young agent's problem is :

max rYxY — u(g + 8xY) + d•F(kg + kßxY;r°)
xY

where P(g;r°) = r°x°(g;r°) - u[g + ßx°(g;r°)]• From the first-order

condition we obtain :

rY — kdr° -
v(g + ßxY)ß

rY — kdr°
xY(g;r°„rV) = v(·——··—·——)/B-

B

In order to line up the production schedules together, we need :

rY - kdr° r°
v(·····—··—) = v(—··)

B B

<=> rY — kdr° = r°

since v is strictly monotonic• From rY + r° = 1 and rY · kdr°
-

r°, we

obtain :

1 1 + kd
r° = -——·—- and rY = ------.

2 + kd 2 + kd

The unanimously chosen production level of the public durable bad is :
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.
*

1 1
b(g)·v[ ·————-——-1-g or g+b*(g)=v[-----—-——1.

(2 + kd)6 (2 + kd)ß

Whatever the level of g is, g + b*(g) is constant. So we define

BL = v[1/(2 + kd)ß] as the steady-state level of the stationary Lindahl
4

equilibrlum of the public durable bad. we have the following

proposition :

PROPOSITION 2.2 : In this overlapping generations economy the

steady-state level of the stationary Lindahl equilibrium of the public

durable bad is not Pareto optimal. That is,

1 - kd 1
BP = v(-——---) < BL = v(----—-—-—).

28 (2 + kd)B

Note that BL decreases as k increases from 0+ to 1-. Similarly BL

decreases as d increases from 0+ to 1-. Also note that BL decreases as

B increases.

PROPOSITION 2.3 : If u" is nondecreasing, then BL - BP increases as k

increases.

If the extra marginal disutility from an extra unit of the public

durable bad is nondecreasing, then the inefficiency lncreases as the

durability increases.

If the number of the agents in each period is n, then :
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1 1 + kd
ry(n) , -. ......

n 2 + kd

1 1
r°(n) = —·

——----
n 2 + kd

since (r° + rY)n = 1 and rY - kdr° = r°. Accordingly BL(n) ie :

1 1
BL(n) = v[—' ——·-————·]•

n (2 + kd)B

PIOPOSITION 2.4 : lf u"(x)/x is monotonically decreasing/increasing,

then BL(n) - BP(n) increases/decreases as n increases.

If the average of the extra marginal disutility from an extra unit of

the public durable bad is decreasing/increasing, then inefficiency

increases/decreases as the number of agents increases.

2.4 The Steady—state Level of Amy Ioncooperative Equilibrium

Agent t chooses xYt units of the activity when he is young and

Xot+1 units when old. Given the initial leftover of the public durable

bad from the previous period, Bg, we then have the following state

equation for the public durable bad :

Bt
-

kBt-1 + ßx°t + 8xYt ; B0 being given
(4) } c > 1.

Ix°tI < w° and IxYtl < wY
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We shall denote by < (x°t,xYt) > a feasible infinite sequence of the

activities and by Q the set of all feasible sequences of < (x°t,xYt) >

which satisfy (4). Thus under a sequence < (x°t,xYt) > e Q, the

lifetime utility of agent t will be :

UO = x¤1 — u(kBg + ßx°1 + BxY1) c = 0

(5) ut = xYt - u(kBt-1 + ßx°t + ßxYt)

+ d'lx°t+1 · ¤(kB; + Bx°;+1 + BxY;+1)
t > 1.

As we see in (5), ut depends not only on his own activity but also

on others' activities. This situation, therefore, is a game situation.

Considering the sequential nature of the model, one of the most

natural restrlctions is that the decisions are made period by period.

In each period the old agent and the young agent make their moves

simultaneously. Thus the problem which the old agent faces is very

different from the one which the young agent faces. The old agent's

problem in period t is :

Xot

In general how the old agent will choose x°t depends on (1) the initial

state of the current period, kBt-1, (2) his expectations of what other

agents would choose, (3) the general history of what all the previous

players have chosen, and so on.

For the young agent, he has to take into consideration that he ls

to make one more decision when he becomes old. Since decisions are
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made period by period, the young players problem has a character of

dynamic programming. The young agent's problem in period t is :

max xYt - u(kBt-1 + ßx°t + ßxYt)
xYt
+ d•[max x°t+1 - u(k(kBt-1 + ßx°t + ßxYt) + ßx°t+1 + ßxYt+1)]

X°t+1 °

Here we assume subgame perfection between the old and young versions of

the same person. The young agent has to choose xYt provided that he

will 'do his best in the next period when he becomes old'. Therefore

the young player has to solve first the decision problem as if he were

the old agent in the next period in order to derive a decision rule

which describes what the young agent would do when old. Only then,

given this derived rule, the young agent's problem arrives to the very

same dimension in which his contemporary old agent's problem lies.

There will be two basic premises in approaching this overlapping

generations (dynamic) game. One is that in each period one agent's

decision is not affected by his contemporary's decision. This

underlying assumption is of Cournot. The other is of Markov type. No

matter what has happened in the previous period, the current decision

depends only on the value of the state. Under these two premises, the

activity depends on nothing but the state variable. Abusing formal

expressions, we denote decision rules, which associate activity levels

with values of the state, by x°t = Ot(kBt-1) and xYt = Yt(kBt-1). [See

Maskin/Tirole(1982,1985).]

Due to our assumption on activity constraints, we simply assume

that the agents', young or old, strategy sets are given by :
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S = { f : f is a function from R+ to R }.

Thus S is the largest set which is relevant. Note that we do not

impose any mathematical structures on it.

We only consider the subgame-perfect equilibrium concept for this

overlapping generations game. [See Se1ten(1975) and van Damme(1983).]

DEFINITION 2.2 : A sequence of strategies < (Ot(•),Yt(•)) > is a

subgame-perfect equilibrium if it satisfies the following inequalities

simultaneously, for all t > 1 and for all B0 6 [0,¤) :

for all x°t 6 R

and

+ d•Ft+1(k(kBt-1 + ßOt(kBt-1) + ßYt(kBt-1))

+ d•Ft+1[k(kBt-1 + ßOt(kBt-1) + ßxYt)]

for all xYt 6 R

where Ft+1(g) = Ot+;(g) • u[g + B0;+1(g) + 8Y;+1(g)]·

A subgame-perfect equilibrium is stationary if, for all t > 1,

Ot(•) = 0t+1(•) and Yt(') = Yt+1(•).

Note that the above inequalities have to hold for all BQ 6 [O,¤). We
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might consider t = 0 as the beginning of the biological time and set

B0 = 0. [See Leininger (1985) and Bernheim/Ray(1987).]

Obtaining a stationary subgame—perfect equilibrium is finding a

pair of functions (O(g),Y(g)) such that for all g 6 [0,8) :

O(g) solves max x° — u[g + 8x° + 8Y(g)]
xo

and

Y(g) solves max xY — u[g + 80(g) + 8xY]
xy

+ d·rlk<g + 60<g> + 6x>'>1

where F(g) = O(g) - u[g + 80(g) + 8Y(g)]. Note that Y(g) again

appears as a part of the problem.

·
Let < (0(g),Y(g) > be a stationary subgame-perfect equilibrium.

The first—order condition of the old agent's problem is :

1= Bu'[g + Bx° + ßY(g)]-

Since O(g) belongs to a stationary subgame—perfect equilibrium, we

have :

(6) 1 = 8u'[g + 80(g) + 8Y(g)] for all g > O.

The first-order condition of the young agent's problem is :

1 ·= Bu'[g + B0(g) + Bx>'] — kBd·[0'[k(g + B0(g) + ßxY)]

- ¤'{k(g + 6o(g> + 6xY) + ß0[k(g + 60(g) + 6xY)l
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+ BY[k(g + 80(g) + BxY)]}'{l + ßO'[k(g + 80(g) + ßxY)]

+ 8Y'[k(g + B0(g) + BxY)]}]•

Since Y(g) belongs to a stationary subgame-perfect equilibrium, we

obtain :

1 = ßu'[g + B0(g) + ßY(g)] — kßd·[0'[k(g + ßO(g) + ßY(g))l

— B¤'{k(g + ß0(g) + 6Y<g)> + solk<g + ßo<g> + 6Y<g>>1
(7) + 6Ylk<g + 6o<g> + 6Y<g>)1}·{1/6

+ 0'[k(g + BO(g) + BY(g))] + Y'[k(g + BO(g) + ßY(g))]}]

for all g > 0.

(6) and (7) imply :

(8) Y'[kv(l/8)] = · 1/B-

Note that (8) is true irrespective of k and v( )• Hence we have :

Y(g) = - g/ß + const V

0(g) = v(1/B)/B — const

g + ßY(g) + ßO(g) = v(1/ß) for all g > 0.

That g + ßO(g) + BY(g) = v(1/B) for all g > O also comes directly

from the fact that any pair of subgame-perfect equilibrium strategies

in a certain period must be such that the old player cannot benefit

from changing his activity level unilaterally„ Whatever g is,
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B + 6ot<g) + BYt(g> = v(1/B)

for any subgame-perfect equilibrium. So we define BN = v(1/B) as the

steady—state level of any (stationary) subgame-perfect equilibrium of

the public durable bad. We have the following proposition :

PROPOSITION 2.5 : In this overlapping generations economy, the

steady-state level of any subgame—perfect equilibrium of the public

durable bad 1s not Pareto optimal. That 1s,

1 — kd 1
BP = v(------) < BN

-
v(—) (BP < BL < BN).

28 B

This again confirms the usual Pigouvian conclusion that if there 1s an

externality, then socially optimal level differs from the individually

optimal level [P1ogu(1920)].

Note that BN 1s constant with respect to k. This means that as k

increases inefficiency increases. Also note that BN decreses as B

increases.

PRDPOSITION 2.6 : BN — BP increases as k increases.

Now suppose that the number of the agents 1n each period is n and

0i(g) denotes the equilibrium strategy of the old agent 1 and Yi(g)

that of the young agent 1, 1 =
1,·••,n. From the first-order condition

of the old agent 1, we have :
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1 = u'[g + Y 0i(g) + ä
Yi(g)] for all g > 0.

i=1 i 1

Hence whatever the level of g is, g + ig10i(g) + ig1Yi(g) is constant

regardless of n and is v(1/ß).

PROPOSITION 2.7 : BN(n) - BP(n) increases as n increases.



CHAPTER 3

PUBLIC DUBABLE GOODS :
PARET0 OPTIHALITY AND TH LINDAHL EQUILIBRIUH

In this chapter, we deal with a public durable good. The model

itself is similar to the one for the public durable bad except that

agents' actions are restricted to take on only nonnegative values. The

discussions here follow those in Sections 2.3 and 2.4. We obtain the

steady·state Pareto optimal level of the public durable good. A brief

review on the 'atemporal' and 'intertemporal' Samuelson public good

optimality condition and the derivation of and comparison with the

'intergenerational' Samuelson public good optimality condition appear

in Appendix B. We introduce a Lindahl tax scheme for our model. It

turns out that the steady·state level of the stationary Lindahl

equilibrium is not Pareto optimal. We also show the unique existence

of the stationary Lindahl equilibrium in Appendix C. Last, we discuss

the issue of restoring Pareto optimality and linkage through Pigouvian

externality—corrective tax/subsidy in addition to Lindahl tax.

3.1 The Hodel

Time is discrete and elapses period by period. All actions occur

within a period and will be indexed by t which takes on integer values.

Agents are born at the beginning of each period and live for two

periods. Each generation consists of only one agent. So there are

always 2 agents in each period, one young agent and one old agent.

The model differs from the usual overlapping generations models in

·
23
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two ways. First, there exists technology for converting private goods

into public durable goods. Second, the public durable good lasts

forever once provided in a certain point of time. This situation is

very similar to the overlapping generations model with storage

technology except that the only way we can store the private good is to

convert it into the public durable good [Compare with Koda(1984)].

Usually goods are distinguished by their physical characteristics,

their spatial locations, and their temporal locations. In the above

model, goods are distinguished by their physical characteristics and

their temporal locations. Besides the temporal distinction, goods are

identical: so there are two goods in the economy;-pne~priyate«gopd"and

one«publicwdurable good.

The private good is nondurable. Its lifetime is only one period

long. It plays the role of the numeraire good in each period and can

be interpreted as leisure (negative of labor). The private good will

be indexed by t.

There is a technology for converting private goods into public

durable goods. This technology is described by a cost function, c,

from R+ to R+. The cost of producing z units of the public durable

good is c(z) units of the private good. In other words, c(z) units of

the private good have to be forgone to obtain z units of the public

durable good. The following assumption on c(·) is maintained

throughout :

c(z)
-

z for z > O.
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Notice that the technology is period—insensitive, that is, free of

indices meaning, in particular, being free of any technological

progress. This assumption can be easily relaxed in the discussion of

Pareto optimality.

Here the public durable good lasts forever with depreciation. The

newly provided public durable good is, thus, indexed by the period of

provision. The depreciation rate is (1 — k), where 0 < k < 1, and can

be described as wearing down or detraction in the good's services due

to ageing. If one unit of the public durable good is provided in some

period, say period t, then without any additional provision of the

public durable good there will be k units of the public durable good in

the next period, period t+1, and kz units of the public durable good in

the following next period, period t+2, and so on. The total level of

the public durable good in period t can be expressed by the following

state equation :

Z1: ‘ kzt-1 "' Zt

where Zt denotes the total (service) level of the public durable good

in period t and zt denotes the level of the public durable good newly

provided in period t. The total level of the public durable good is

the sum of the leftover from the previous period and the newly provided

public durable good. Recall that z takes on only nonnegative values.

Agents are considered to be identical except for their periods of

birth. The preferences of each agent are the same and are represented

by a utility function. The utility of agent t depends on consumption
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of the private good and the public durable good :

Ut

"’ xy: + d[“(Zc+1) + X°c+1]

where xYt denotes the level of the private good consumed by agent t in

period t (when the agent is young), x°t+1 the level of the private good

consumed by agent t in period t+1 (when the agent is old), Zt the total

(service) level of the public durable good in period t and d the time

preference rate (0 < d < 1). The additively separable and periodwise

quasi—linear assumption of utility function is crucial for our entire

research and it seems to be very difficult to relax this assumption.

The underlying reason can be found in Section 3 of Appendix B. The

following assumptions on u(·) are maintained throughout :

u(Z) is defined over Z > 0

u' > O ; limZ+g u'(Z) > 1 ; limZ+„ u'(Z) = O

u" < 0.

We can view u(Z) as the willingness-to-pay for the level of the public

durable good, Z, in terms of the private numeraire good.

Each agent is endowed with the private good in both periods ; wYt

units when young and w°t+1 units when old. lt is assumed :

The agent's per period endowment of the private
good is bounded above and sufficient to finance
any desired level of the public durable good.
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Our assumption on endowments makes the feasibility constraints

redundant and, along with assumptions on preferences, insures the

interiority of solutions. We leave the case where the boundaries are

binding to future study.

Preferences and technology are sufficiently simple enough to allow

for tractable results. The drawback is that some results might hold

only in these simplifications. [See Section 3.B of Appendix B.]

3.2 The Steady-state Pareto Optimal Level

l
With the discussion of Appendix B in mind, we derive the

steady—state Pareto optimal level for our model. Note that in our

model there is a nice feature that the planner faces the same problem

no matter what his reference point of time is?

Given kZt-1, the planner has to solve the following problem :

IDBX Zt) ' Zt

< Zt > > 0 2+ dl 2¤(k Zt-, + kzt + - zw; 1

+ d2[ 2u(k3Zt-1 + kzzt + kzt+1 + zt+2) - zt+2 ]

+
••••

The maximand in (9) can be interpreted as the "aggregate net benefits"

from the sequence of provisions of the public durable good, < zt >, in

terms of the private good in period t.

Again we need to show that the above maximization problem is

well-defined, before obtaining the first—order condition. Invoking our
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assumption on endowments, wY and w° are bounded above, say, by B. Then

B + kB + k2B +
•••

·
B/(1 — k) is bounded. Hence 2u[B/(1 - k)] - B is

bounded above, say, by M• Then M + dM + d2M +
·••

= M/(1 - d) is

bounded. Therefore the above maximization program is wel1—defined.

Then the first·order conditions are :

(10a) 2, ; 2u'[kZ,-1 + 2,]

+ (kd)22u'[k3Z,-1 + kzz, + k2,+1 + 2,+2]

+ ·•·
< 1 with = if 2, > O

+ dkd2u'[k3Z,-1 + kzz, + kz,+1 + 2,+2]

+ ;1(1;;1)22u' [1;*2,-1 + k,3z, + 1;%,+1 + 1;;,+2 + 2,+3]

+ < d with = if 2,+1 > O

(10c) 2,+2 ; d22U'[k3Zt-1 + kzz, + kz,+1 + 2,+2]

k3z,
+ k2Zt+1 + kz,+2 + 2:+3 ]

+ d2(kd)22u' [1;5z,-1 +
1;“;,

+ 1;%,+1 + 1;%,+2 + 1;;,+3

+ 2,+4] + ·••
< d2 with = if 2,+1 > 0

and so on for 2,+3, ···„
1 - kd

Now suppose that p(--—-——) < kZ,-1• Construct a sequence < 21, >

and < 22, > such that :
2

1 - kd
21, is chosen so that kZ,-1 + 21, > p(----—-)/k, 21,+1

-
0 ;

Z2: ‘ O, Z2t+1 = kzl, {
2

Z1t+2 = z2t+2•



29

Plug < zlt > into the maximand in (9). Then we have :

+ ' zlt

+ d2u[k2Zt-1 + kz1t]
(11a)

+ d2[“[k3Zt—1 + kzzlc "’ 21::+2] ' Z1c+2]
+

•••·

Plug < zzt > into the maximand in (9). Then we have :

+ d[2u[k2Zt-1 + kzltl - kzlt]
(11b)

2 3 2+ d [u[k Zt-1 + k zlt + 21;+2] ‘ 21;+2]

+
•••.

Subtract (11a) from (11b). Then we obtain :

2u[kZt-1] - (1 - kd)kZ;-1

- [2u[kZt-1 + zlt] - (1-kd)(kZt-1 + zlt)]

> O.

1 — kd
Hence < zt > = < max[p(-——---) - kZt-1,0] > is the only solution

2
to (9) given kZt-1.

Whatever the level of kZt-1 is, there is an n such that
1 - kd

knzt-1
< \.l(----——)

2 1 - kd
since kZt-1 < w. Thus we call ZP = u(———-—-) as the steady—state

2
Pareto optimal level of the public durable good. We have the following
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proposition :

PROPOSITION 3.1 : ln this overlapping generations economy the

steady—state Pareto optimal level of the public durable good is :

(1 -116)
ZP=u[··—·····]

2

where u = (u')'1.

Remark : Again < zP > is not a Pareto optimal sequence among the

steady-state sequences but the only Pareto optimal sequences.

Note that ZP increases as k increases from 0+ to 1-. Similarly zP

increases as k increases from 0+ to 1-.

The new provision level, zp, for the steady-state Pareto optimal

level will be (1 - k)p[(1 - kd)/2] since ZP = kZP + zP.

If the number of the agents in each period is n, then the

steady—state Pareto optimal level, ZP(n), is :

1(1 -1«1>
ZP = u[‘°'*''***']

n 2

ZP(n) increases as n increases.

3.3 Stationary Lindahl Equilibrium

As in Section 2.4, one simple way of approaching the problem of

dealing with the leftover of the public durable good from the previous

period is to regard the public durable good from the previous period as
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the endowment of the public durable good to the populace. Agents

cannot do anything about it. Then we can have a following version of

the Lindahl equ1l1br1um concept.

DEFINITION 3.1 : A (intergenerational) Lindahl equilibrium 1s a

sequence < (pYt,p°t),l*t > of tax share vectors (pYt,p°t) and a level

of new provision 1*t of the public durable good such that pYt + p°t

=forall t > 1 and when the agent t's (the young agent in period t) tax

share 1s pYt and the agent (t-1)'s (the old agent in period t) tax

share 1s p°t the desired level of public durable good output of each

agent in period t equals 1*t for all t>1.

A stationagy (intergenerational) Lindahl equilibrium is a sequence

< (pY,p°),l*(q) > of tax share vectors (pY,p°) and a schedule l*(q)

such that pY + p° = 1 and, for 1 = y,o , when i's tax share 1s pi, his

desired level of the public durable good output equals 1*(q) where q is

the leftover of the public durable good from the previous period.

Interestingly, in this model there is only one stationary Lindahl

equilibrium given k and d and there 1s no nonstationary Lindahl

equ1l1br1um. This nonexistence result even holds for the case where

agents are not 1dent1cal but have add1t1vely separable quas1—l1near

preferences.[See Appendix C.]

pY > p° 1s imposed a priori. This restriction might be justified

since one unit of the public durable good will generate more services

to the young agent than to the old agent.
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The old agent's problem is :

max u(q + l°) — p°1°.
l°>0

The first-order condition is :

u'[q + l°] < p° with equality if l° > O.

Hence from l°* = p(p°) when q = O,

u(p°) · Q If u(1>°) > Q
1°(P°;Q)· {

0 if u(p°) < q

where p = (u')'1• Let us define :

v(p°;q) = max u[q + l°] — p°I° = u[q + l°(p°;q)] — p°1°(p°;q)
1°>0

{
¤lu(p°)] — p°u(p°) + p°q if u(p°) > q

ulq] If u(p°) < Q-

Then the young agent's problem is :

max u(q + IV) — pVlV + dv[p°;k(q + IV)l•
1Y>0

Note that u[q + 1Y] — pYlY + dv[p°;k(q + 1Y)] is unimodal•

Consider q = O in particular• See Figure I. Given p° and, thus,

pY, there are two possible cases depending on (1) the magnitude of k,

(2) the magnitude of d, and (3) the shape and slope of u(•)• One is
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that if u'[p(p°)/kl - pY + dp° < O, then u[1Y] - pY·1Y + dv(p°;k1Y)

achieves its maximum between u(pY) and p(p°)/k and the other is that

if u'[p(p°)/k] - pY + dp° > 0, then its maximum occurs at somewhere

beyond u(p°)/k. The lining—up of IY and l° given q is possible only

when the equilibrium levels of pY and p° satisfy :

(12) u'[p(p°)/k] — pY + dp° < 0.

Thus the corresponding relevant problem should be :

wax ulq + 1Vl · PVIV + d{¤lMP°)l · P°MP°) + P°kq}
lY>0

From the first—order condition, 1Y* = p(pY — kdp°) when q = O. Thus

MPV · kdP°) · <1 if MPV · kdP°) > q
1V<PV„P°;q) = {

0 if u(pY — kdp°) < q.

In order to line up l°(p°;q) and lY(pY,p°;q) together, we need :

MPV — kdP°) = U(P°)

Hence p(pY — kdp°) = p(p°) means pY - kdp° = p°, since p is strictly

monotonic• From pY + p° = 1 and pY - kdp° = p°, we obtain :

1 + kd 1 4
pY = --——-- and p° = ——-—--.

2 + kd 2 + kd

Note that the equilibrium values of pV and p° satisfy our restriction
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u FIGURE I. Lining Up of 1°(p°;q) and 1Y(pY,p¤;q) »
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(12) :

1 1+kd 1
¤'lu(------>/kl - --—--- +6 ------

2 + kd 2 + kd 2 + kd

1 1+kd 1
< u'[u(-—--—-)] - -——--- + 6 —-——-- = 0.

2 + kd 2 + kd 2 + kd

The stationary Lindahl equilibrium schedule of the public durable

good with respect to q is :

1
l*(q) = max[u(—·————) · q,0]-

2 + kd

Whatever the level of q is, there is an n such that knq < u[1/(2 + kd)]

since q < ¤. zL = p[1/(2 + kd)] is the steady—state level of the

stationary Lindahl equilibrium level of the public durable good.

PIDPOSITION 3.2 : In this overlapping generations model the

steady-state level of the stationary Lindahl equilibrium is not Pareto

optimal. That is, ¤ °

1 1 - kd
ZL·u<——————)<ZP=u(——-—--)-

2 + kd 2

However this is not surprising at all since the agents are only

concerned about their lifetimes while the planner is concerned about

entire generations involved.

Note that zL increases as k increases from 0+ to 1-. Similarly zL

increases as d increases from 0+ to 1-.
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lim zL = lim ZP, meaning that when depreciation goes to 100Z the
k->0+ k+0+

intergenerational externalities goes to zero and a Lindahl equilibrium

is Pareto optimal. lim zL < lim ZP ; lim zL < lim ZP.
k-rl- k-rl- d+1- d+1-

PIOPOSITION 3.3 : lf u" is nonincreasing, then ZP — zL increases as k

increases from 0+ to 1-.

lf the extra marginal utility from an extra unit of the public durable

good is nonincreasing, then the inefficiency increases as the

durability increases.

If the number of agents in each generation is n, then :

1 1 1 1 + kd
p°(n) = —•—----— and pY(n) =

—•
—--—--

n 2 + kd n 2 + kd

since (p° + pY)n = 1 and pY - kdp° = p°. Accordingly ZL(n) will be :

1 1zL<¤> -
„<-· --—--->.

n 2 + kd

ZL(n) increases as n increases.

PROPOSITION 3.b : If u"(x)/x is monotonically decreasing/increasing,

then ZP(n) · ZL(n) increases/decreases as k increases from 0+ to 1-.

If the average of the extra marginal utility from an extra unit of the

public durable good is monotonically decreasing/increasing, then the

inefficiency increases/decreases as the number of agents in each period
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increases.

3.k Pigourliudahl Tax/Subsidy Schene

Contrary to the usual (atemporal) result that the Lindahl

equilibrium is Pareto optimal [e.g., Wicksell(1958), Lindahl(1958),

Foley(1970), Feldman(1980,pp114-119), Tresch(1981,p119,fn11), and

Cornes/Sandler(1986,pp98-102)], the Lindahl equilibrium of Definition

3.1 is not Pareto optimal. Relying only on unanimity and balanced

budget together will not achieve Pareto optimality and linkage.

Linkage requires that the cost of producing the public durable

good in a certain period must be covered by every agent who enjoys the

extra benefits from that public durable good. Thus linkage implies

that there must be some kind of intergenerational transfer mechanism

that enables transfers from future generations to past generations.

That is, the currently young generation, as the representative of all

the future generations who will enjoy the extra benefits from the

public durable good left over from the previous period, has to pay to

the currently old generation, as the representative of all the past

generations who has been contributed to the public durable good

accumulated up to the current period.

Let us consider a (stationary) linear transfer payment schedule,

' r•q, on the existing public durable good from the young agent to the

old agent. Under this intergenerational transfer mechanism, the old

agent's problem is :
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max u[q + l°] - p°1° + rq
1°>0

From the first-order condition,

1°<p°;q) = max[u(p°) — q,0]-

The young agent's problem is :

max u[q + 1Y] — pY1Y — rq
lY>0

+ d[ max u[k(q + 1Y) + 1¤] — p°l° + rk(q + 1Y) ].
1°>0

From the lining-up condition,

lY(pY,p°;q) = max[u(pY - kdp° — kdr) - q,0].

Thus p° = pY — kdp° - kdr. The balanced budget condition, pY + p° = 1,

and the lining—up condition, p° = pY — kdp° — kdr, together do not

solve for r a priori. We cannot determine p°, pY, and r without an

additional condition. So we apply the externa1ity—corrective

tax/subsidy idea[Pigou (1920)] to the Lindahl conditions. This means

pinning down the unanimously chosen demand schedule on the Pareto

optimal level; that is, p(p°) = u(pY - kdp° - kdr) = p[(1 - kd)/2].

Then :

1 - kd 1 + kd
pO* s •-—--• and py* s ——————

2 2
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1 + kd
r* - --—---.

2

Note that r* = pY*•

Hence Lindahl taxes, p°* and pY*, and Pigou tax/subsidy, r*,

achieve unanimity, balanced budget and Pareto optimality with improved

linkage.



CHAPTER 4

VOLUNTARY PROVISION THORY FOR PUBLIC DURABLE GOODS

First, we very briefly review the literature on (atemporal)

voluntary provision theory of public goods. Second, we explain the

game—theoretic nature of the problem, strategy sets, and equilibrium

concepts for our model. Third, we obtain a few noncooperative

equilibria. In general, these equilibria turn out to be not Pareto

optimal. Finally, we discuss general implications of the voluntary

provision theory for the public durable goods.

4.1 Review

Olson(196S) started the theory of voluntary provision of public

goods[See Chamberlin(1974) and McGuire(1974)]. He concluded

[Olson(1965,p2,p36)] :

Unless the number of individuals in a group is quite
small, or unless there is coercion or some other
special device to make individuals act in their
common interest, rational, self-interested individuals
will not achieve their common or group interests.
... The larger a group is, the farther it will
fall short of obtaining an optimal supply of any
collective good, and the less likely that it will
act to obtain even a minimal amount of such a good.
In short, the larger the group, the less it will
further its common interests.

Consider an economy with a public good where individual

preferences are given by ui = ui(Z) + xi, i = l,···,n. Each individual

i contributes zi to produce Z such that Z = Zi zi. Then the utility

40
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level of individual 1 1s U1 = u1(2j zj) — z1 + w1- The strategy of

individual 1 1s 21(> 0)- The payoff to individual 1 1s :

U1(21, Xj$i zj) zj) — 21-

Let
(z1*,•••,z“*) be a Nash equilibrium- Then :

U1(21*, 2j*i 2j*) = max U1(z1, 2j*i 2j*)
21>0

which is equivalent to :

a-1(zi , [ju zJ*)
—-———-——·———————- ] < 1 with = if 21* > 0

-821 z1=z1*

Consider the following individual opt1m12at1on problem :

maxz1>0 u1(21) - 21 + w1

The optimal solution for this problem is denoted by 21+- Then the

total level of contribution, 2* = Xi 21*, will be max{ 21+ } and 21*

will be zero for all 1 such that 21+ < max{ 21+ }- Let zP be the

Samuelson public good optimal level; Xi 3u1(ZP)/32 = 1- Clearly, ZP is

greater than 2*- Voluntary provision equilibrium of the public good in

the Nash sense is suboptimal-

Now assume further that u1(Z) = u(Z) for all i- The Samuelson

public good optimal level is argmax nu(Z) - Z ; ZP = u(1/n) where

p = (u')'l- As n inceases, zP increases- The quasi-linear utility

function 1mpl1es that the Nash equilibrium level is independent of n,

while the optimal level rises with n- Thus zP - 2* increases as n

increases.

The following results do not depend on quasi-linearity of

preferences- In a model of a binary public good with binary

participation, Palfrey/Rosenthal(1984) concluded that Nash equilibria

are inefficient- In a model of a continuous public good with
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continuous contributions, Cornes/Sandler(1986) confirmed that the Nash

equilibrium is typically not Pareto optimal and questioned the idea

that the higher the expected contribution by others the lower will be

the individual's own contribution. In a model of a continuous public

good with binary participation, Gradstein/Nitzan (1987) concluded not

only that voluntary participation is suboptimal but also that as the

number of potential participants increases the inefficiency increases.

Andreoni(1987) showed that as the size of the whole group increases to

infinity, the size of the contributors and the average contribution

decreases to zero?

All theoretical works mentioned above have been developed using

models where time is neglected (atemporal models). Yet we can

interpret those models as dealing with the situation in which the

temporal spillover of an agent's decision lasts a certain number of

periods shorter than or at most equal to the decision horizon of

agents. However, in our model, the intergenerational spillover of

agent's decisions persists longer than the agent's decision horizon

(agent's lifetime). Then we ask what the voluntary provision level

would be in this new situation. We might expect that the young agent

would provide more of the public durable good than he would of the

nondurable public good. However the young agent, knowing that next

generation will provide the public durable good anyway, might act the

same way as he would when the public good is not durable. Our results

indicate that both cases may prevail and confirm that voluntary

provisions would be suboptimal in general.
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4.2 Intergenerational Game

4.2.1 The nature of the problem

We use the same model in Chapter 3 :

ut = u(Zt) + xYt + d[u(Zt+1) + x°t+1] : preferences

Zt = kZt-1 + zt : state equation

c(zt) + x°t + xYt = w°t + wYt : budget constraint

c(z) = z : technology.

Now agent t voluntarily provides zYt units of the public durable

good when the agent is young and z°t+1 units when old. The choice of

zYt and z°t+1 is constrained : 0 < zYt < wYt and 0 < z°t+1 < w°t+1.

Given the leftover of the public durable good from the previous period,

kZt-1, we then have the following state equation :

Zt = kZt-1 + z°t + zYt; Z0 being given
(13) } for t ¤ 1,2,***

with 0 < z°t < w°t , 0 < zYt < wYt

We shall denote by < (z°t,zYt) > a nonnegative infinite sequence of

voluntary provisions, and by Q the set of all infinite sequences

< (z°t,zYt) > that satisfies (13). Q is, therefore, the set of all

_ feasible voluntary provision sequences. Because of our assumptions on

utility functions and endowments, we are only concerned with the nat

(lifetime) benefit from voluntary provisions. Then under a sequence
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< (z°t,zYt) > e Q, the agents will enjoy :

HO
- u(kZ0 + z°1 + zY1) — z°1 t = 0

(14) Ht = u(kZt..1 + z°t + zyt) 1- zYt t > 1

+ d[u(kZt + z<>t.,,1 + zYt.,,1) — z<>t+l]

So agent 0 has to choose z°1 to maximize H0 and each and every agent t,

t > 1, has to choose (zYt,z°t+1) to maximize Ht.

As we can see in (14), the net lifetime benefit of agent t, Ht,

from voluntary provisions, also depends on other players' actions, z°t

and zYt+1, as well as his own actions, zYt and Zot+1• The situation,

therefore, is a dynamic game with an infinite horizon.

4.2.2 Strategy set and equilibriun concept

Consider the decision problem of the old player in period t :

max u(kZt-1 + z°t + zYt) - z°t
z°t>0

In general the old player's decision rule of choosing z°t depends on

(1) the state value, kZt-1, (2) his expectations of the other player's

choice, (3) the general history of what all the previous players have

chosen, and so on.

The decision problem of the young player in period t, however, is

very different from that of the old player in that period. Considering

the sequential nature of the model, the most natural restriction is
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that the decisions g£g_gagg period py period. In period t the old

player (agent t-1) and the young player (agent t) make their moves

simultaneously. Since the young player has to take into consideration

that he is to make one more decision when he becomes old, periodwise

decision-making involves a certain nature of dynamic programming.

The young player has to choose zYt provided that he will 'do his best

in the next period'. The decision problem of the young player is :

max u(kZt-1 + z°t + zyt) — zYt
zYt>0

+ d[max u[k(kZt-1 + z°t + zYt) + Zot+1 + zYt+1] —
z°t+1].

Z°t+1>0

Hence the decision—making of the young player carries more complexity
·

than that of the old player. Only after he solves the decision problem

as if he were the old player in the next period in order to derive the

decision rule of his old age, can the young player worry about how to

choose 2Yt. This amounts to assuming the subgame perfection between

the old and young versions of the agent.

In order to pull the dimension of the decision problem of the

young player down to that of the old player, we need two assumptions.

One is that in each period one player's decision is not affected by his

contemporary's decisions. The other is that no matter what happened in

the previous period, the current decisions depend only on the initial

state of the current period out of the entire history. These two

assumptions, Cournot and Markov, implies that voluntary provision

decisions depend on nothing but the state variable and allow us to
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denote decision rules, which associate voluntary provision levels with

values of state, by z°t = Ot(kZt-1) and zyt = Yt(kZt-1) for all t. [See

Maskin/Tirole(1982, 1985).]

The strategy sets for both the old player and the young player in

a certain period consist of such decision rules. The strategy set,

S°t, of player t—l when he is old consists of all functions from the

set of values which kZt-1 possibly takes to the interval [0,w°t] and

the strategy set, Syt, of player t when he is young consists of all

functions from the set of values which kZt-1 possibly takes to the l

interval [0,wYt]. We simplyassumeS°t

= SYt = S = { f : f is a function from [0,¤) to [0,¤) }.

Thus S will be the largest set which is relevant, since "there is

nothing a priori to limit the functional form" for strategy sets

[Dasgupta (1984,p420)].

We only consider the subgame—perfect equilibrium concept. [See

Selten(1975) and van Damme(1983).]

DEFINITION 4.1 : A sequence of strategies < (0t*(•),Yt*(•)) > is a

subgame-perfect equilibrium if it satisfies the following inequalities

simultaneously, for all t > 1 and for all Zg 6 [0,¤) :

u[kZt-1 + Ot*(kZt-1) + Yt*(kZt-1)] - 0t*(kZt-1)

for all z°t > 0
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+ +

'(15b)> u[kz„-1 + Ot*(kZt-1) + zYt] — zYt

for all zYt > 0

where Vt+1[q] == ulq + ¤;+1*(<1) + Y;+1*(<1)] · 0;+1*01)-

Note first that the decision problem of the old agent in period t

is a very simple optimization problem given and, thus, Y*(kZt-1).

However the decision problem of the young agent in period t requires

internalizing all the externalities imposed on him by the next young

player's behavior, Yt+i*(·), as well as the old version of himself,

Ot+1*(•). Only then, as we have seen in (15b), the objective function

of the young agent in period t has the single decision variable given

kZt-1 and, thus, 0t*(kZt-1)• Secondly, from (15b) existence of a

subgame-perfect equilibrium requires that there is a solution to the

following maximization problem, for all q > 0 :

max u[q + 0t*(q) + x] · x + dVt+1[k(q + Ot*(q) + x)]•
x>0

Clearly, the existence of a solution to the above problem depends on

the structure of Vt+1(•), which depends on Ot+1*(•) and Yt+1*(•), which

depend on the mathematical structures of the strategy sets?

Generally the decisions of the young agent in period t will have

the form :
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2Yt ·
f[q ; Yt+1*(•)]

Thus the optimal decision rule, Yt*(•), will be functionally related to

Yt+1*(·) and so on recursively, for instance :

v„*<·> - grv,+1*<·>1
So for an infinite horizon problem, a fixed point of mapping q, if any,

will be a natural object to concentrate on„[See Phelps/Pollack(1968)

and Kydland/Prescott(1977).]

DEFINITION &.2 : An identity sequence of a pair of provisions

< (O*(),Y*()) > is a stationagy subgame-perfect equilibrium if it

satisfies the following inequalities simultaneously, for all q > 0 :

u[q + 0*(q) + Y*(q)] — O*(q) > ulq + z° + Y*(q)] ·· z°

for all z° > 0

u[q + o*<q> + Y*<q)l - Y*<q> + dvwq + o*<q> + Y*(q)l]

> u[q + 0*(q) + zY] - zY + dV[k[q + O*(q) + zY]]

for all zY > 0

where V[q] = u[q + 0*(q) + Y*(q)] — O*(q).

Obtaining a stationary subgame-perfect equilibrium is finding a

pair of functions (0*(q),Y*(q)) such that, for all q > O,

0*(q) : max u[q + Y*(q) + z°] - z°
solves z°>0
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Y*(q) : max u[q + O*(q) + zY] - zY + d[u[k(q + O*(q) + zY)
solves zY>0

*+ o mq + 0*(q) + z>·>> + Y*(k(q + 0*(q) + um

- O*(k(q + O*(q) + zY))].

Note that the solution Y*(•), if any, appears in the problem itself.

"Although this [identity] restriction might appear "natural" since

all generations have the same preferences, and face the same

technology, there is no demonstration of the fact that along [an] ••·

equilibrium, the ... schedules would have to be identical" [Lane/Mitra

(1981,p322)]. There may exist some non-identical (cyclical)

equilibria. [See McTaggart/Salant(1986) for an example.]

DEFINITION Ä.3 : A subgame-perfect equilibrium is periodic if there

exists a integer H and H pair of functions

( (01(q),Y1(q)), ,(0H(q),YH(q)) ) such that 0},+14;* = 0h(q) and

Yh+Ht* = ;h(q), for t > 1 and h = 1,2, ••• ,H. The integer H is the

period of the equ1librium.[See Bernheim/Ray(1987).]

4.3. Ioncooperative Equilibria

4.3.1 Stationary and periodic equilibriu : examples

There are three parameters in this intergenerational game : u(·),

d and k. Any noncooperative equilibrium level of the net lifetime

benefit depends on these parameters crucially. In the examples

provided below we show some relations between equilibria and
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parameters.

Consider an overlapping generations economy with the public

durable good where u(z) = 2/ z. Suppose the public good is not

durable (k = 0). The individual optimization problem, regardless of

age, is to maxz>g 2/ z - z. The individual optimum is 1. In fact,

1 is the total provision level (the simple Nash equilibrium level) when

k = 0.

Stationary subgamezperfect eguilibrium

We might expect that the young agent would provide more of the

public durable good than he would of the nondurable public good.

However, for relatively small k, the agent, knowing that the next

generation might provide the public durable good anyway, seemingly acts

the same way as he would when the public good is not durable. In the

following example we show that this scenario holds.

EXAHPLE A : d = 0.8 and k = 0.25.

Claim 1 : < (0,max[1 - q,0]) > is a stationary subgame-perfect

equilibrium.

Simply consider the following optimization problem :

max 2/ q + z - z
z>0

+ (O.8)2/ 0.25(q + z) + max[1 - 0.25(q + z),0]

This problem achieves its maximum if z is chosen according to
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max[1 - q,O] :

2/-1-'1+q+(O.8)2/T-*2.6+q for0<q<1
2/—E

+ (0.8)2/_T”= 1.6 + 2/TE for 1 < q < 4

zfä + (0.8)2/_0T8T; = 2.8/T for 4 < q.

Since q + max[1 — q,O] > 1 for all q > O, we know that

< (0,max[1 — q,0]) > is a stationary subgame-perfect equilibrium

The total level of the public durable good under this stationary

subgame-perfect equilibrium is 1, which is also the simple Nash

equilibrium level when k = 0.

Is < (0,max[1 - q,0]) > the only stationary equilibrium? The

answer is no and, in fact, we can find another kind of stationary

subgame-perfect equilibrium other than < (0,max[1 - q,0]) >. Consider

the following decision rule :
V/’<i' q

3.2 - 2 ---- + -—--
0.25 0.25

1/4[ -------——--------—-— ]2-q 1sq<1
v(q) ={ 0-8

0 if 1 < q

This decision rule says that if the value of the state is less than 1,

then provide in such a way that 2 /“E7ETEE - q/0_25 + (0.8)2/_q_;f;?q$

achieve 3.2. Otherwise, do not provide. We call these kinds of

decision rules "cooperative" ones.

Claim 2 : < (0,v(q)) > is a stationary subgame-perfect equilibrium.
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Consider the following optimization problem :

max 2/ q $ 2 - 2
z>0

+ (0.8)2/ 0.25(q + z) + v[O.25(q + 2)]

This problem achieves its maximum :

3.2 + q if 2 is chosen among [0,4 - q] for q < 4

2.8/ q if z = 0 is chosen for q > 4

Note that 1.96 = argmaxz>0 2 /-2 - z + (0.8)2/ 0.252. It is true that

(1) q+»(q)>11¤6611q>0

(11) q + »(q) < 4 166 all q 6 [0,11,

since :

/ Q Q
3.2 - 2 -——— + ----

0.25 0.25
2

q + v(q) = 1/4[ ·—-————·—··——·—··—·· ] > 1
0.8

/ Q Q / Q 2
<-> 1.6 - 2 --—— + ---- > 0 <=> [ -——— — 1] + 0.6 > 0

0.25 0.25 0.25

which is true for all q > 0, and

/ Q Q
3.2 - 2 ---— + ----

0.25 0.25
q + v(q) < 4 <=> 1/4[ --——·-----—----—---

]2 < 4
0.8

<-> 0 < 2/ q — q

which is true for all q 6 [0,4]. Hence the old agent provides nothing
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when the young agent provides more than 1. Given the next young agent

providing according to v(q), the presently young agent is indifferent

to providing among [0,4 — q] when the value of the state is q. So he

chooses the "cooperative" one v(q). Hence < (0,v(q)) > is a stationary

subgame-perfect equilibrium. Agents can do better by choosing z

according to v(q) rather than according to max[l - q,0]. Under v(q),

agents achieve their net lifetime benefit 3.2 + q for q < 4 and 2.8/—q

for q > 4. Here every agent Pareto-improvesfo

Claims 1 and 2 together demonstrate the multiplicity of equilibria

for the same parameter values.

Periodic subgamezperfect eguilibrium : example

For relatively large k, it might be the case that durability

disqualifies < (0,max[1 - q,0]) > as a stationary subgame-perfect

equilibrium. Furthermore there are no "cooperative" equilibria for

certain pairs of d and k. Yet we find some periodic subgame—perfect

equilibria.

EIIMLE B : d = 0.8 and k = 0.81.

Claim 3 : < •••,(0,max[1 — q,0]),(0,max[2.9584 - q,0]),··· ) is a

periodic subgame-perfect equilibrium of period 2.

Consider the following optimization problem :

max z
z>0 _________________________________.

+ (O.8)2/ 0.81(q + z) + max[l · 0.81(q + 2),0].
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This problem achieves its maximum if z is chosen according to

max[2.9584 — q,0] :

2/ 2.9584 - 2.9584 +q=

2.9584 + q for 0 < q < 2.9584

2/-q + (O.8)2/ (0.81)q = 3.44/ q for 2.9584 < q.

Note that 2.9584 = argmaxz>g 2/ z - z + (O.8)2/ 0.81z and, therefore,

might be called the guaranteed (maximin) net lifetime benefit level

for this set of parameters. Thus < (O,max[1 - q,0]) > cannot be a '

stationary subgame-perfect equilibrium when d = 0.8 and k = 0.81.

Now consider another optimization problem :

max 2/ q + z — z
z>O

+ (O.8)2/ O.8l(q + z) + max[2.9584 - O.8l(q + z),0].

The previous problem achieves its maximum if z is chosen according to

max[1 — q,0] :

2/T- 1 + q + (0.8)2 / 2.9584 = 3.752 + q tor 0 < q < 1
__ 2_958*•

2/-q + (O.8)2/ 2.9584 = 2.752 + 2/ q for 1 < q < --—---
2_958¤+

0°81

2/”q + (O.8)2/ 0.81q = 3.44/ q for 6—§Y-- < q.

Since q + max[2.9584 - q,0] > q + max[1 - q,0] > 1 for all q > 0,

<
•••,(0,max[1 — q,0]),(0,max[2.9584 ·

q,0]),·••
> is a periodic

subgame—perfect equilibrium of period 2 when d = 0.8 and k = 0.81.
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Remark : max[1 · q,0] with prob 1/2
< <0,{ >>

max[2.9584 - q,0] with prob 1/2

is a stationary subgame-perfect equilibrium, if the strategy set is

enlarged properly.

Let /q <1 —
3.2 - 2 —--- + —---

0.25 0.25 21/4[ -——-———--—-—-------- ] - q if q < 3.24
'l’(q) '{ O•8

0 if 3.24 < q.

Claim 4 : < (0,r(q)) > is a subgame-perfect equilibrium.

Claims 3 and 4 together demonstrate that a periodic subgame-perfect

equilibrium and a "cooperative" stationary subgame-perfect equilibrium

coexist for the same set of patamététs. [We will not prove Claim 4

here since it is supported by Proposition 4.1.]

Note that not every agent Pareto—improves under < (0,r(q)) > over

< ••·,(0,max[1 — q,0]),(0,max[2.9584 - q,0),·•· >. The 'optimistic'

generations, who play (max[1 — q,0],0), do worse and the 'pessimistic'

generations, who play (max[2.9584 - q,0), do better under < (0,r(q) >.

The next question naturally arises : Can we always construct such

a "cooperative" stationary subgame-perfect equilibrium for any pair of

d and k. The answer is no.

EXAMLE C : d
-

0.4 and k = 0.81. Let us construct a "cooperative"

decision rule based on Proposition 4.1 (which appears later) :
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/ Q Q
1.6 - 2/ ——-— + ----

0.25 0.25 21/4[ —·—·———·——····—···—— ] — q if q < 3-24
x<q> ={ 0.6

0 if 3.24 < q.

Suppose that q = O. The agent can do better by choosing z = 1.8496

since maxz>0 2/ z - z + (0.4)2/ Ö.81z = 1.8496 when z = 1.8496 which is
11

greater than 1.6.

Through examples we have seen how k and d mold subgame-perfect

equilibria. Next we obtain a few general results.

4.3.2 Existeuce propositious

Let us go back to the general model. Define the following :

m = argmaxz>g u[z] — z ; Q = u[w] - m + du[w];

6 = argmaxz>O u[z] — z + du[kz] ; E = u[6] — 6 + du[k6];

e(>0) solves u[z] - z = u[0] ; E = du[e] + u[O].

IRQPOSITION 4.1 : If (d,k,u(·)) satisfies E > max[E,Q] and

e > max[6,m/k], then there exists a stationary subgame-perfect

equilibrium < (0,o(q;ke,E)) > where u(q;ke,E) is defined by :

1 E — ulq/kl + (q/k)
u' [--—·—-·——---------] - q if q < ke

v(q;ke„E) ={ d
0 if ke < q

where E is a constant and ke is a fixed critical level of the argument
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of y(•) which enables u[q/k] — (q/k) + du[q + y(q)] to achieve E for

all q < c and becomes zero for all q > c.

u(q;ke,E) guarantees that every agent will achieve a net lifetime

benefit of E plus the value of the state, i.e., Ht = E + kZt-1 for all

t. ,

PROPOSITION 4.2 : If (d,k,u(·)) satisfies Q > E and 6 < w/k, then

there exists a stationary subgame—perfect equilibrium. That is,

< (0,;(q)) > where ;(q) - max[m — q,O].

PROPOSITION 4.3 : If (d,k,u(·)) satisfies E > Q, then there exist two

periodic subgame-perfect equilibria of period 2. These are

< (0,¢(q)),(0,¤|:(q)),••• > and < (0,¤p(q)),(0,¢(q)),··· > where
u

w(q) = max[6 — q,0] and ¢(q) = max[w - q,O].

Remark : These two periodic equilibria are not essentially different;

the amplitudes and the frequencies are the same and only the phases

differ.

Equilibrium strategies we have found so far are special

cases in the sense that there may be other equilibrium strategies such

that the strategy of the old age is not zero for all q > 0 but a

non—zero function of the state. In general if < (0t*(q),Yt*(q)) > is a

subgame-perfect equilibrium, then the following must be satisfied, atleast, for all t : —
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q + Ot*(q) + Yt*(q) > m for all q > 0

(16) { 0t*(q) = 0 for all q > w
‘

If 0 for some E < w, then
q—+

Ot*(q) + Yt*(q) = w.

The set of equilibria is restricted by the fact that the decision rule

of the old player must be such that it is not advantageous to deviate

from it unilaterally.

In the following discussion we demonstrate that a pair of

strategies satisfying the conditions in (16) can not be an stationary

subgame-perfect equilibrium. In general, the characteristics of Ot*(q)

and Yt*(q) are not known yet.

Recall Example A where u(z) = 2/_E, d = 0.8 and k = 0.25. We

know that o*(q) = 0 and y*(q) = max[1 - q,0] are a stationary

subgame—perfect equilibrium strategy pair. Note that o*(q) + y*(q) =

max[1 - q,0]. Now consider a strategy pair such as max[t°·(1 - q),O]

and max[tY•(1 — q),0]) where t° + tY = 1, t°,tY 6 R+. This strategy

satisfies the conditions in (16). We show that this strategy pair

violates the assumption of subgame—perfection between the old and young

versions of the agent. Suppose q < w. If the agent follows this

strategy pair, then he would achieve :

u(1) - tY(1· q) + d[u(1) — t°(1 — k)l•

While if the agent chooses tY(1 — q) + 6 (6 > 0) instead, then he will

achieve :

u(1) — tY(1 ' Q) * 6 + d[u(1) - t°(1 - k) + t°k6].

For ( max[t°'(l · q),0],max[tY'(1 · q),O] ) to be a stationary

subgame—perfect equilibrium strategy, the following must hold, for all
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6 > O :

u(1) + 6 · u(1 + g) - kdt°6 > 0

which is equivalent to :

u(1)+ 6 — u(1+ 6)
1:° <

--——----———-—---—-—.
kd6

Thus t° must be zero. .

The previous three propositions do not cover the case where Q > 9

and w < k6. In the following examples, we are only able to show that

there exist some equilibria for some parameter values which satisfy

Q > E and w < k6. This incompleteness seems to rise from the fact that

the old agent and the young agent make their moves simultaneously. For

the intergenerational altruism model where each information set

contains only one decision node (no simultaneous moves) there exists a

general existence result. [See Hellwig/Leininger(l985) and

Leininger(1985).]

Example D : Let u(z) = 2/-2 , d ¤ 0.4 and k = 0.64. Define

1 — q 0 < q < 1

0 1 < q < 1.5376
c"'(q) · 1.7424 — q 1.5376 < q < 1.7424

0 1.7424 < q

where 1.7424 = argmaxz>g 2/-2 - 2 + (0.4)2/ 0.642 and 1.5376 solves

2/ 2 - z + (0.4)2/_T-= 2/ 1.7424 — 1.7424 + (0.4)2/ 0.64•l.7424.
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‘ 1_5376
Claim 5 = < ···,(0,max[1 — q,0l),(0,max[;-gg-— — q,0]),<0,t+(q)),··• >

° 12
is a periodic subgame-perfect equilibrium of period 3.

Consider the following optimization prblems (17), (18) and (19) :

(17) max 2/ q + z - z
z>O ________________________________.......

+ (0.4)2/ 0.64(q + z) + max[1 - 0.64(q + z), 0]

This problem achieves its maximum if z is chosen according to ;+(q) :

2/-1-— 1 + q + (0.4)2/_1_= 1.8 + q 0 < q < 1

2/ q + (0.4)2/-1 •
0.8 +

2/-;- 1 < q < 1.5376

2/ 1.7424 -1.7424 + q 1.5376 < q < 1.7424

0.64·1.7424 = 1.7424 + q

2/-q + (0.4)2/ 0.64q = 2.64/—E— 1.7424 < q.

(18) max 2/ q + z - z
z>O

+ (0.4)2/ 0.64(q + z) + ;+[0.64(q + z)]

This problem achieves its maximum if z is chosen according to
1_5376

max[5:··€:···· · q,O] :

/1_5376 1_5376 1_5376
2 graz-- - E-gz-- + q + (0.4)2/ 1.7424 O < q < 6j€:·—

~ * 1.7535 + q

1_S376 1_7*+24
2/ q + (0.4)2/ 1.7424 * 1.056 + 2/_?[ 6·€;·· < q < 6·€;···
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1_7424
2/ q + (O.4)2/ 0.64q = 2.64/ q 6-g;-- < q.

(19) max 2/ q + z - z
z>0 / 1_5376

+ (0.4)2 O.64(q + z) + max[6—€;—-
- O.64(q + z), 0]

This problem achieves its maximum if z is chosen according to

max[l — q,0] :

/1_5376
2/1—].+q+(O.4)2 6·€;··*2.24·+q O<q<I

/1_5376 1_S376
2/1 + (0.4)2 -———--

·= 1.24 + 2/T 1 < q <
---————°.6“
(0_64)2

· _ 1_5376
zfi + (O.4)2/ 0.64q = 2.64/ q -——--——

< q.
(0_64)2

Since q + ;+(q) > 1 for all q > 0 and

q + max[1•5376/0,64 · q,0] > q + max[1 — q,0] > 1 for all q > O,
1_5376

< ···,(0,max[1 - q,O]),(0,max[6—g;—— — q,0]),(0,;+(q)),··· > is a

periodic subgame-perfect equilibrium of period 3.

Remark : Is
max[1 5376/0 G" · q,0] with prob 1/3

< max[1 - q’O] with prob 1/3 }),··· >
;+(q) with prob 1/3

a stationary subgame—perfect equilibrium, if the strategy set is

enlarged properly.

In the following example we recapitulate the subgame-perfect

equilibria based on the general results.

EXIMLE E : Consider u(z) = 2/ z. Then e = 4, E = 4d; w = 1,

_ Q-1+2d; 6 =(1+/kd)2, E =(1+/-1-€d)2.
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Let ;(Q) * max[l - q,O], ¢(q) · ¢(q) = max[6 — q,0] · max[l - q,0]

and v(q) == 1/4[<4 - + q/k)/dlz - q if q < hk
{

0 if q > 4k

Given (k,d) 6 (0,1)2, see Table I and Figure II. The regions in

Figure II are distinguished by the conditions in Table I accordingly.

Points A, B, C and D in Figure II correspond to Cases A, B, C and D

respectively. Equilibrium strategies we have found for Example E are

based on our existence propositions.

Region IIIC demands special remarks. We might approximate an

equilibrium by a stationary strategy of type ;(q) for we can justify

this a little more. Suppose kZ0 6 [0,1]. Then any sequence generated

by < (0,;(q)) > given kZ0 is a Nash equilibrium of voluntary provisions

since u[w] — m + dulw] is greater than u[6] · 6 + du[k6]. For the

general discussion on the parameter values which satisfy Q > E and

w < kB, see Appendix D.

E.4 Suboptinality of Voluntary Provisions

Let < zP >(kZg) denote the solution to the following problem,

given kZO :

(20) max 2u(kZ0 + zl) - Z1
< Zt > > O 2+ d[ 2u(k Z0 + kzl + zg) - zg]

+ d2[ 2u(k3Zg + kzzl + kzg + zg) - zg]

+
•••·
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TABLE I. Equilibriun Strategies for Exaqle E

REGION CONDITION STRATEGY

Ia um/k > e > 6 C(q)

Ib E > n > 6 6 > 6/k > 6 v<q) „ c<q)

Ic e ) 9 > us/k v(q)

IIa us/k > e > 6 C(Q)

116 n > E > 6 6 > 6/k > 6 ;(q>

IIc e > 6 > um/k v(q)

IIIa w/k > e > 6 Z;(q)

1116 6 > 6 > E 6 > 6/k > 6 ;(q>

IIIc e > 0 > w/k ?

IV E > 6 > n 6 > 6 > 6/k v(q) , w<q)·¢(q>

v 6 > E > n 6 > 6 > 6/k w<q>~¢<q>

VI 6 > 6 > E 6 > 6 > 6/k ¢<q>~¢(q)

VII 6 > E 6 > 6 > 6/k w(q)~¢(q)
< <

Q
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FIGURE II. Equilibria for Exaqle E
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< zP >(kZg) denotes the sequence of the total level associated with

< zP >(kZg), < ZC >(kZg) the sequence of the total level associated

with the stationary subgame-perfect equilibrium < (O,;(q)) >,

< ZW ~ ZW >(kZ0) the one associated with the periodic subgame-perfect

equilibrium < •••,(O,¢(q)),(O,¢(q)),••• >, and ( ZU >(kZQ) the one

associated with the stationary subgame-perfect equilibrium < (0,u(q)) >

given kZ0. In general < ZC >(kZg), < ZW „ ZW >(kZg), and < ZU >(kZo)

are very different from < ZP >(kZ0).

CONJECTURE &.4 : Voluntary provisions of the public durable good are

not Pareto optimal in general.

It is a conjecture simply because we have not found and

characterized every existing equilibrium. We only provide an example :

EXAMLE F : Let u(z) = 2/-;- and d = 0.4. k only varies. Suppose

k = 0.25. Then we can predict ZC = 1 and ZP(0.2S) = 4.9383. If k =

0.3, then ZC = l and ZP(0.3) = 5.1653. If k = 0.81, then ZW = 1.4982,

ZW = 1.8496 and ZP(0.8l) = 8.7532. In this example we observe that

inefficiency increases as k increases.

The theory of voluntary provision for the public good has been

criticized because of its limited applicability. [See Margolis(1982)

and Sugden(1982).] However the theory of voluntary provision for the

public durable good seems to be very relevant in this overlapping

generations economy in the sense that what people of one generation
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provide for themselves can be understood as voluntary provisions on

their part towards peoples of other generations• If we accept this

relevancy, then the suboptimality of voluntary provision might be an

enormous phenomenon especially when the durability is relatively large,

which cannot be detected explicitly in the atemporal model.



CHAPTER 5

CONCLUSIONS AND QUESTIONS FOR FUTURE RESEARCH

Here we present the conclusions we have drawn from the analyses in

this research. We also raise some questions for future research.

1 Conclusious

1. The stationary Lindahl equilibrium [Definition 2.1] of the public

durable bad is not Pareto optimal. However this is not surprising at

all since the agents are only concerned about their lifetimes while the

planner is concerned about entire generation involved. The

noncooperative voluntary provision equilibrium [Definition 2.2] of the

public durable bad is not Pareto optimal. This is due to the fact that

any pair of equilibrium strategies in a certain period must be such

that the old players are on their best responses.

2. There does not exist any non-stationary Lindahl equilibrium

[Definition 2.2] of the public durable good. There exists only one

unique stationary Lindahl equilibrium which is unstable. The

stationary Lindahl equilibrium of the public durable good is not Pareto

optimal. This is again due to the difference of decision horizons

between the agents and the planner. Our Lindahl/Pigou scheme seems to

work. But this scheme has an innate instability caused by the temporal

separation of costs and benefits of the public durable good to the

agents involved under the scheme. [See Samuelson(1958) and

Sjoblom(1985).] In other words, the Lindahl/Pigou scheme is not ·
[
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time—consistent. [See Arrow(1974), Dasgupta(l974a,b),

Kydland/Prescott(1977) and Stutzer(1984).]

3. Any noncooperative voluntary provision equilibrium of the public

durable good we have found so far is not Pareto optimal. This again

comes from the fact that any pair of equilibrium strategies in a

certain period must be such that the old players are on their best _

responses. The atemporal theory of voluntary provision for the public

good has been criticized of its limited applicability. However the

intergenerational theory of voluntary provision of the public durable

good must be immune to this criticism in the sense that what people of

one generation provide for themselves can be understood as voluntary

provisions on their part towards peoples of other generations. This

aspect can be fortified since if a democratic government represents

only the currently alive, then it is hard to imagine a government which

caters fully to the preferences of all generations to come. Especially

note that the subgame-perfect equilibrium concept in the lntertemporal

theory of voluntary provosion for the public durable good is

'time-consistent' or 'conjecture-consistent'. [See Peleg/Yaari(l973),

Goldman(1980), Lane/Mitra(1981) and Lane/Leininger(1984).]

“.
Concludingly, if the public durable good lasts longer than the

agents live, then the level of inefficiency will be higher than the

level of inefficiency we analyze in the atemporal model.



69

5.2 Questions for Future Research

5.2.1 Length of decision horizon

The inefficiency is due to the fact that the agents only care

about their lifetimes while the planner cares about indefinite future.

Various introductions of altruism between generations might reduce the

ineffciency or even restore the efficiency. First of all we point out

that this overlapping generations model is mathematically equivalent to

the simple paternalistic model of intergenerational altruism where a

certain generation's utility depends on its own consumption and the

consumption of the immediate next generation. [See Kohlberg(1976),

Lane/Mitra(1981), Lane/Leininger(1984), Lein1nger(1985),

Bernheim/Ray(l987), and Ray(1987).] Hence this short-range altruism

will not do the job. It will be interesting that we introduce the

'long—range' paternalistic model of intergenerational altruism where a

certain generation's utility depends on its own consumption and the

consumptions of entire future generations. [See Barro(1974) and

Gale(1985).] Or we can introduce the non—paterna1istic model of

intergenerational altruism where each generation's utility depends on

its own consumption and the utility of the immediate next generation.

Thus one agent's decision horizon is, in fact, an infinite one. [See

Ray(1987).] We may consider allowing the agents to live for, say m

periods, and check whether the inefficiency disappears as m tends to

infinity. However we doubt this approach since as m increases the

population also increases - there will be m agents in each period.
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5.2.2 Alternatives for Lindal equilibriu

Lindahl equilibrium is a unanimity decision rule. We might
V

develop a model where we can discuss a majority decision rule. [See

U
Kaneko(1977a,b).]

Suppose that the government or the planner must be chosen among

the currently alive. Then any tax/subsidy policy must be

time-consistent or subgame-perfect. [See Phelps/Pollack(1968),

Kydland/Presc0tt(1977) and McTaggart/Salant(1986).]

5.2.3 Suboptinality of voluntary provisions

In general the overlapping generations economy only with the

private good allows Pareto improvement through very simple

punishment-reward scheme. [See Hammond(1975), Shell(1975) and

Salant(1988).] That this economy does not have any public (durable)

good makes the punishment-reward scheme (trigger strategy) rather

simple. [See Friedman(1971,1985).] However if there is any public

(durable) good at all, then this fact brings one more difficulty in

constructing the trigger strategy. In the overlapping generations

model, the equilibrium must be such that the oldest agent should be on

his best response. Hence the hardest punishment will be no provision

of the public (durable) good on all the younger agents' parts. This

implies these younger agents' actions should be rewarded in their later

lives. But these punishments and rewards will prevent arriving at the

Pareto frontier. However it will be interesting to check how far we

can push out towards the Pareto frontier by constructing trigger
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strategy type equilibria. The possibility of success might be greater

under no discounting and longer life.

5.2.b Ielaxation of quasi—1inearity and additive separability

The complete existence result and characterization of the

subgame-perfect equilibria for our model have to be done. There is a

trade-off of simplicity of structure between the strategy sets and the

utility (payoff) functions. Since we have the simplest form of the

utlity functions, we might impose more on the strategy set side.
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FOOTNOTES

1. In general externalities are distinguished between pecuniary

externalities and nonpecuniary (technological) externalities

depending on whether the effects (beneficial or harmful) are

properly reflected in the market system. Here externalities mean

only nonpecuniary externalities.

2. It is difficult to imagine the ’scrap' market for public goods. In

the private good case; even though the lifetime of the good is

longer than the lifetime of the economic agent, we can resolve this

problem by modeling under existence of the scrap market for the

private good.

3. See Varian(1983) pp. 278-283 and Green/Laffont(1979) pp. 27-34.

Bewley(1977) analyzed the underlying rationale for the quasi-linear

utility function. For criticism of quasi-linearity, see

Bergstrom/Cornes(1983) and the references therein.

4. The uniqueness result of the stationary Lindahl equilibrium can be

inferred from Appendix C. .

5. The social planner's decision, i.e. the solution to (9) can be

considered to be parameterized with respect to the leftover of the

public good from the previous period, kZt-1. < zt* > =

< zt* >(kZt-1). If kZT-1
- kZS-1, then < zt* >t„T

- < zt* >t-S for

all 1 and s.

6. See Kaneko(1977) for the ratio equilibrium concept and

Mas-Colel1(1980) and Mas-Colell/Silverstre(1985) for the nonlinear

technology case in the atemporal setting.
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7. See Guttman(1978) and Bagnoli/Lippman(1987) for the opposite

result.

8. There is an upper bound up to which kZt-1 possibly takes values

since endowments are bounded from above. For convenience we

choose the strategy space S. Compare with strategy sets used in

Leininger(1985) or Bernheim/Ray(1987).

9. Yet we do not know ideal restrictions - the so called preservation

property restrictions — on strategy sets. See Leininger (1985).

10. an agents do better than these levels? Let vw(q) be v(q) with 3.2

being replaced by some number W which is greater than 3.2. Suppose

q = 0. Then

becomes :
7 25

2J“T»]'(0'$ — 0„(0> + (o.6)2./T?EJ„Xö$ = Tw - g;—w2

since »w<0> = 1/4[[W - 2/’0TOE + O/0.25]/0.8]2 - 0 = W2/(0.64-4)

and O.25vw(O) = W2/(0.64-16) > (3.2)2/(0.64·l6) = 1. Given that

[the next generation's decision rule is vw(q), the current agent can

achieve W by choosing z from [0,4] instead vw(O) =
;;•W2

> 4 since

1.6 is greater than ;•W - Thus < (0,Cw(q)) > cannot be a

stationary subgame-perfect equilibrium. So we cannot "push up too

far."

11. However consider the following optimization problem :

maxzz>0

Suppose q = 0. Given that the generation's decision rule is X( ),
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if the current agent chooses z according to X( ), then his net

lifetime benefit will be 1.6. Instead assume that the agent

chooses z = 1.8496. The next generation is supposed to choose z

accoding to X( ) :

X(0.81•1.8496)

= 1/4[[l.6 - 2/_1T8496 + 1.8496]/0.4]2 - 0.8l•1.8496

= — O.64207793975 < 0

This means that the next generation's decision rule cannot

be realized. They are confined to choose a nonnegative level.

Thus the worst thing that can happen to the current agent is that

the next generation chooses zero level. This implies the current

agent's guaranteed (maximin) net lifetime benefit is :

2./'ÜE? - 1.8496 + (0.4)2/ = 1.8496

which is greater than 1.6. Thus X(q) cannot be a stationary

subgame-perfect equilibrium. If a decision rule is a stationary

subgame—perfect equilibrium, then it must satisfy B-individual

rationality constraint.

12. There also exist a periodic subgame-perfect equilibrium of period

3 for each and every k between 0.64 and 0.71 when d = 0.4 and

u(z) = 2 /_EÄ
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APPENDIX A : PROOFS OF HLOPOSITIONS

• Proof of Proposition 2.2 : Since v is monotonically increasing, we

need to show : 2

1 - kd 1
......- < ......

2 2 + kd

which is true because 2 - kd - kdz < 2.

• Proof of Proposition 2.3 :
A

a(BL - 1sP)]

Bk k 6 (0,1)

d 1 · kd 1 1 1
= —·[v'(--····)°· · v'(•*******')' ''‘'‘'“‘E]

B 26 2 (2 + kd)ß (2 + kd)

d 1 1 1 1
, ...[ ............. - ............. . ........E]

3 1 - kd 2 1 (2 + kd)
ul! (______) uv! (__________)

28 (2 + kd)3

d 1 1 1
> ‘°""°"'°-"“"'[" " """“°"°E] >

O•

3 1 2 (2 + kd)
u|I (_________)

(2 + kd)6 ·

Remark : The nondecreasing assumption of u" is sufficient for our

proposition.



81

• Proof of Proposition 2.4 :

a1BL<¤> — BP(n)]]
En

1 1 1 -1 1 1 - kd 1 - kd -1
= vV(..,--........),.,.,.......,.,5, .,

-
VV(,,,,,,.,,),,,____,,5

I1 (2 + 1..1)6 (2 + 1..1)6 n .1 28 28 I1

1 1 1 - kd 1 1 - kd 1 1 1 1
=

—•
[v'(—•-—---—)~—•------ - VV(.-•-----.,,,.„.)•-•.,.„...,-..---]

n n 28 n 28 n (2 + kd)8 n (2 + kd)8

1 1 - kd 1 1

1 n 28 n (2 + kd)ß

' °° [°°°-°°°°°"°° ° °'°'°"'°””''''''' ]~
n 1 1 - kd 1 1

ul! (_, _______) ul! (_• _________)

I1 28 I1 (2 + 1..1)6

• Proof of Proposition 2.5 : v is monotouically increasing.

• Proof of Proposition 2.6 :

8(BN — BP) .1 1 - 1..1 1
——··——————] = —•[v'(-————-)·- > O.
Bk k 6 (0,1) 6 28 2

• Proof of Proposition 2.7 :

8[BL(n) - BP(n)] 1 1 1 - 1..1 1 1- 1..1
-——-—----------- ] = —· [v'(-•------)•-• --—--- > O.
Bu n n 28 n 28

• Proof of Proposition 3.1 : u is monotonically decreasing.
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• Proof of Proposition 3.2 :

a(zL - zp)

Bk k 6 (0,1)

1 - kd -d 1 -1
= [u'(····—·)•·· — u'(······——)•···——···5]

2 2 (2 + kd) (2 + kd)

1 1 1 1
s1

- kd 2 1 (2 + kd)
ul! (______) uI| (________)

2B (2 + kd)

1 1 1
> 'd°"'°°°°°°"'°°-[° °° °"'°'°--'°'°E] >

0•

1 2 (2 + kd)
ul! (________)

(2 + kd)

Remark : The nonincreasing assumption of u" is sufficieut for our

proposition.

•
Proof of Proposition 3.3 :

arz*·<¤> — ZP(n)]]
3n

1 1 - kd 1 - kd -1 1 1 1 -1

- u•(-.-------).-..---.-E - Uv(-.---.-.)..-----.-E
n 2 2 n n 2 + kd 2 + kd u

1 1 - kd 1 1

1 u 2 n (2 + kd)
-= --•[—-----——---— — ——-——————————— ]•

n 1 1 - kd 1 1
ul! (_, ______) ut! (_•________)

n 2 u (2 + kd)
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• Proof of Proposition 4.1 : _

Instead of proving directly, we show that < (O.u(q;ke,E)) > is a

stationary subgame-perfect equilibrium by constructing u(q;ke,E) from a

family, Y, of functions :

1W¤
[ ··················] · q 4 < ¤

d
Y = { y(q) = y(q;c,W> =·{ }

O q > c

where W is a constant and c is a fixed level of the argument of y(°)

which enables u[q/kl - (q/k) + du[q + y(q)] to achieve W for all q < c

and becomes zero for all q > c.

y(q) must be restricted to be nonnegative for all q > 0. In

particular,

1 W · u[q/kl + (q/k)
y(q) -

u’
[-—--—-------——----] - q > 0 for all q < c

d

which is equivalent to :

W > u[q/k] - (q/k) + du[q] for all q < c

If c is chosen so that c < k6, then W must be greater than or equal to

u[c/k] — (c/k) + du[c] and if c ls chosen so that c > kB, then W must

be greater than or equal to u[6] · 6 + du[k8].
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Now we want the following to hold true, for all q > 0 :

(A1) ulq + >·<q>l - y(q) + «1¤[k(q + y<q>) + >'(k(q + y<q)))l

> u[q + 2] - z + du[k(q + z) + y(k(q + 2))] for all z > 0.

Firstly, for all q > c/k, y(q) = O and k(q + y(q)) > c• Hence, the

left-hand side (LHS) of (A1) becomes u(q) + du[kq]• Suppose c/k < 6.
4

Then the right—hand side (RHS) of (A1) is less than or equal to :

supz>0 u[q +2] ·· 2 + du[k(q + 2)] = E + q•

It is possible that LHS < RHS. So we need to have the restriction _:

(A2) c/k > 9.

Then (A1) holds true as an equality.

Secondly, for all q < c/k, consider the following problem :

(A3) sup u[q + 2] — z du[k(q +2) + y(k(q +2))]
z>0

If z is chosen so that k(q +2) < c, then (A3) becomes W + q• If z is

chosen so that k(q + 2) > c, then (A3) is equivalent to :

su [q+z]—z+du[k( +z)]<E+q„
z>(c/k)-q

u q
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Meanwhile for q such that c/k > q > c, y(q) = 0 and k(q + y(q)) < c;

hence LHS of (A1) becomes W + q. For q such that q < c, there are two

possibilities : (1) k(q + y(q)) < c or (2) k(q + y(q)) > c. If

k(q + y(q)) < c, then LHS of (A1) becomes W + q. If k(q + y(q)) > c,

then LHS of (A1) becomes u[q + y(q)] - y(q) + du[k(q + y(q))] < E + q.

Note that LHS of (A1) should be not less than max[W + q, E + q].

Therefore we need the follwing restriction :

(A6) w > a.

To guarantee (A4), the following must hold, for all q < c :

1 W ·· u[q/k] + (q/k)
y(q)=u'[ ————·-—·————-—-—·—]—q < c/k—q

d

which is equivalent to :

w < u[q/k] · (q/k) + dulc/kl

Note that minq<c u[q/k] - (q/k) occurs at either (1) q = 0 or (2) q = c

only when u[0] + du[c/k] > u[c/k] - (c/k) + du[c/k]. Since

u[e] — e -
u[0], c = argminq<c u[q/k] — (q/k) only when c > ke. Thus :

W < du[c/k] + u[0] if c < ke

W < u[c/k] — (c/k) + du[c/k] < du[c/k] + u[0] if c > ke
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Therefore, by choosing c = ke, W can achieve, at most, du[c/k] + u[0]

which is less than or equal to du[e] + u[0]„ Hence from (A2), (A4) and

(A5) :

E < W = E
(A6) {

6 < c/k = e.

Now we need :

(A7) c = ke > w.

and since :

q+u(q)>w forallq>w

<=>
u””1[[E

· u(q/k) + q/k]/d] > w for all q > us

· <==> E > u(q/k) - q/k + du(m) for all q > w

which will be guaranteed by :

(A8) E > u(u>) — w + du(w) = S2.

From (A6), (A7), and (A8) :

max[Q,E] < E =- W

max[w/k„6] < e = c/k.
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•
Proof of Proposition 4.2 : We first show that q + ;(q) + 0 > m for

all q > 0 :

q + ;(q) + O = q + max[m - q,0] > w

Now we have to show that the following is true, for all q > 0 :

ulq + c<q>1 — c(q) + au[k<<1 + c<q>> + c<k<q + c<q>))l

> u[q + 2] - z + du[k(q + z) + ;(k(q + 2))] for all z > 0.

Firstly, for q > w/k, ;(q) = 0, ;(kq) = O, and ;(k(q + z))
-

0.

LHS = u[q] + du[kq]. RHS = u[q + 2] · z + du[k(q + 2)] < u[q] + du[kq]

since w/k > 9.

Secondly, for w/k > q > w. ¢(Q) = 0 and ;(kQ) = w · kq.

LHS = u[q] + du[m]. RHS = u[q + Z] — Z + du[k(q + Z) + ;(k(Q + Z))]

becomes :

u[q + 2] - z + du[m] < u[q] + du[m] if k(q + z) < m

u[q + 2] — z + du[k(q + 2)] if k(q + 2) > m.

< u[w/k] · w/k + Q + dolwl

I·‘1na11y, for q < w, c(q) = w — q and c<kw) = w — kw- LHS becomes

ulwl - w + q + dulwl- RHS = ulq + 2]- 2 + du[k(q + 2)+ clk(q + 2)]

becomes either (1) u[q + z] - z + du[m] < u[m] - w + q + du[m] if

k(q + z) < m or (2) u[q + z] - z + du[k(q + z)] which is less than

u[m/k] — m/k + q + du[w] if k(q + z) > m.
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• Proof of Proposition 4.2 : Firstly, we show that the following

holds, for all q > 0 :

ulq + ¢(q)l " ¢(<1)+ du[k(q + ¢<q)> + ¢<k<<1 + ¢(q)))l

> u[q + z] — z + du[k(q + z) + ¢(k(q + z)] for all z > 0

For q > 6/k, since ¢(q) = 0, ¢(kq) = O, and ¢(k(q + z)) = 0 :

Rus - un: + q] - Z + du[k(q + z)1< u[q] + dulkql * LHS-

For 8/k > q > w, since ¢(q) = O and ¢(kq) = 6 — kq :

Rus = u[q + Z1 - Z + du[k(q + 2)+ ¢<k<q + =>>1

{
u[q + z] - z + du[9] < u[q] + du[q] = LHS if k(q + z) < 6

u[q + 2]- 2 + du[k(q + 2)]

<u[6/kl -6/k+q +au[61 <Lus if k(q +Z> >6.

For q < w, since ¢(q)
-

w - q and ¢(kw) = 9 - kw :

u[w] —
w + q + du[6] = LHS if k(q + z) < 6

Rus ={
u[q + z] — 2 + du[k(q + 2)]

< ulo/kl - 6/k + q + dulal

< u[w] — w + q + du[6]
-

LHS if k(q + z) > 6.
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Secondly, we shw that the following holds, for all q > 0 :

u[q + mq)! - mq) + du[k(q + ¤p(q)) + mk<q + mq>>)l

> u[q + z] — z + du[k(q + z) + ¢(k(q + z)] for all z > O

Note that k0 > w- For q > 0, since ¢(q) = O and ¢(kq) = 0 :

RHS = u[q + z] - z + du[k(q + z)] < u[q] + du[kq] = LHS„

For 9 > q > u), since 1p(q) = 9 — q and ¢(k9)
·

0:

u[q + z] - z + du[w] < u[q] + du[m]

< u[6] — 6 + q + du[k6] = LHS if k(q + z) < w
Rus ={

u[q + z] - z + du[k(q + z)]

< u[w/k] · us/k + q + d\1[u)]

< u[w/k] — w/k + q + du[w] = LHS if k(q + z) > w.

For q < m, since ¤p(q) = 8 -q and ¢(k6) = 0:

u[q + z] - z + du[w] < u[w] - w + q + du[w]

<¤[6]-6+q+d¤[k6]=LHs ifk(q+z)<m
RHS = {

u[q + z] — z + du[k(q + z)]

< u[w/k] — m/k + q + dulwl

<u[6]-6+q+du[k6]=LHS if k(q+z) >«„.
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APPENDIX B : THE SAMUELSON PUBLIC GOOD OPTIHALITY CDNDITION

First, we very briefly review the Samuelson public good

optimality condition derived from a typical atemporal model. Second,
·

we introduce a finite horizon model and obtain the intertemporal

version of the Samuelson public good optimality condition. Since this

model is different from the Sandler/Smith(1976) model, the result needs

a different interpretation. Third, we introduce a more general

version of our original overlapping generations model. Our intent is

not only to extend a finite horizon model but also to show the
O

differences between the original overlapping generations model and the

general one and the difficulties therein. This section naturally

explains why we have very restrictive assumptions on utility functions

- additive separability and quasi-linearity. The derivations are

gathered in the last section.

1 leview

Samuelson(19S4,l955) obtained a formal optimality condition for

the provision of public goods — now known as the Samuelson public good

optimality condition - from a typical atemporal model.

Atenporal model : There are two goods in the economy; one is public, z,

and the other is private, x. There are n agents in the economy, whose

utility functions are represented by ui = Ui(z,xi), i =
1,•••,n. The

technology in the economy is given by F(z,X) = O, where Zi xi = X.

Ui( ) and F( ) are assumed to satisfy the second·order conditions.
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The Samuelson public good optimality condition can be obtained by
1

solving the following problem :

max U1(z,x1)
z>0, xi>0 _

Ui(z,xi) ¤ ui 1 = 2,···,n
subject to {

F(z,X)
-

0 where X = Zi xi.

The well—known (atemporal) Sauelson public good optimality condition

is [See Section 4] :

(61) MR'IzX(z,§i xi) = Qi mzs1(z,x1)

Any allocation (z,x1,•••,x“) satisfying (B1) is Pareto optimal.

Note that the Pareto optimal level of the public good, z, is always

jointly determined with
(x1,•••,x“) rather than with Xi xi as we can

see from (B1). In this sense the determination of the Pareto optimal
2

level of the public good is not free of distributional issue.

One way of allowing the issue of efficiency to be independent from
3

the issue of distribution ls the quasi-linearity assumption.

2 The Intertenporal Sanuelson Public Good Optimality Condition

We will introduce a finite horizon model.

T period model : The model is T periods long. In each period, there

are two goods in the economy; one is public, Z, and the other is

private, x. There are n agents in this economy whose utility functions
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are given by ui = Ui(Z1,xi1,•••,ZT,xiT), i = 1,•••,n, where Zt, t = 1,·

••,T, denotes the total (service) level of the public good in period t

and xit denotes the consumption level of the private good of agent i in

period t. The technology in this economy is given by Gt(zt,Xt) = 0, t

= 1,···,T, where Xt = Xi xit, zt denotes the new provision level of the

public durable good in period t and Xt the total supply of the private

good in period t. This periodwise independent technology means that

there are limited resources for the production of the private good and

the public durable good in each period. This limitation is

independently given period by period. In other words there is no

saving technology which allows a larger pie for tomorrowü The relation

between the total (service) level of the public good in period t, Zt,

and the previous and current provisions, zs , s < t, are given by

Zt
-

Zt(z1,···,zt), t = 1,•·•,T. The functional form Zt( ) implicitly

describes deterioration due to ageing and the like. Ui( ), Gt( ), and

Zt( ) are assumed to satisfy the second-order conditions.

The intertemporal Samuelson public good optimality condition for

this model can be obtained by solving the following problem :

nax U1[Zl(zl),zl1,•··,ZT(z1,·•·,zT),z1T]
zt>0,z1t>0

u1[z,(„1),x11,···,zT(z1,···,z-I),x1-I1 -i=l, 1 ¢ 1
subject to {

Gt(zt,Xi zit) • 0, t -
1,···,I.



· 93

The intertemporal Samuelson public good optimality condition for

our T period model is [See Section 4] :

”
T 8Zt

(B2) MMX X = [ Qi Mxsiz X —-- MRsiX X S = 1,...,T.
s s tss t t azs t s

Note that in this model it is meaningless to define the marginal rate

of transformation between the numeraire good in period t and in period

s, since there is no relation between Gt and GS for t ¢ s. Therefore

we obtain a corollary to Cabe's theorem [Cabe(1982,Theorem I)]:

Corollary Pareto optimal allocation of resources requires
discounting the value of future services of a
public good newly provided in period t at a
discount rate corresponding to the marginal rate
of substitution between the numeraire good in ,
period t and the numeraire good in the period
in which services of the public good accrue.

Now consider the following model based on Sandler/Smith(1976,1977,

1982), Bishop(1977) and Cabe(l982), which is the same as our T period

model except for the technology.

Sandler/Smith model : Instead the technology is given by F(z1,·•·,zT,

X1,•••,XT)
= 0. This depicts the technological relation between the

periodwise public good production and the periodwise total supply of

private good across all periods.

For this model, the intertemporal Samuelson public good optimality

condition is :

(B3) MMX X = Q Xi Musiz X -—- MRTX X S =1,·•·,'1‘.
s s t,S t t azs t s
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Thus Cabe's theorem is obtained [Cabe(1982,Theorem 1)]:

Pareto optimal allocation of resources requires
S

discounting the value of future services of a
public asset(valued in terms of a numeraire) at
a discount rate corresponding to the marginal
rate of transformation between the numeraire good
in the current period and the numeraire good in
the period in which services of the public asset
accrue.

With the numeraire assumption[Sandler/Smith(1976,p156)], the technology

is simply given by F(z1,···zT,X1 + ·•· + XT) = 0. Then MRTX X = 1 for
t s

all t,s
·

1,•••,T and (B3) becomes :

T BZ:
(B4) MRTZ X = E Xi MRSiZ X --- s = 1,··•,T.

S S t=s S S 8zS

Thus Sandler/Smith's theorem is obtained [Sandler/Smith(1977)] :

Discounting the estimates of the marginal value
of the services of a public asset in each period
over the life of the asset will lead to a Pareto—
inefficient allocation of resources.

This theorem implies that we are required to "treat each person's

incremental benefits from the public good in question equally

regardless of the time they receive the benefits"

[Sandler/Smith(1977,p255)]. We conclude this section pointing

out (1) that Sandler/Smith's theorem is entirely based on the numeraire

assumption they apply and (2) that our corollary directly applies to

Sandler/Smith model since MRTX X = MRSiX X , i = 1,•·•,n, at any Pareto
t s t s

optimal allocation while Cabe's theorem does not directly apply to our

model because MRTX X is not well defined in our model.
t s
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3 Intergenerational Pareto Optinality in an Infinite Horizon

3.1 Derivation

In the previous discussion, we have derived a intertemporal

version of Samuelson public good optimality condition. However the

derivation was based on a finite horizon model. Here we will consider

an infinite horizon model. This change brings one major restriction

that we cannot have an intertemporal transformation function such as

Sandler/Smith(1976) has - so their model cannot be extended to an

infinite horizon model - and one difficult problem of grouping the

relevant agents on which the public (durable) good, provided in some

period, has impacts, when the lifetime of the public (durable) good is

finite but fairly long · not shorter than the lifetime of agents

involved.

Consider the following general overlapping generations model which

differs from the original overlapping generations model on three

accounts :

General OG model : The utility functions are more general and given by:

UO * U°(Z]_,x°1) = u°1(Z]_,x°1) C * O

ut = Ut(Zt,xYt,Zt+1,x°t+1) t > 1.

The technologies are more general and given by:

Gt(zt,x°t + xYt) = 0 t > 1.
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The relation between the total (service) level of the public durable

good, Zt, and the previous and the current provisions, zs, s < t, are

given by:

Zt = Zt(z1,...,zt) 1 < t < p

Zt
’

Zt(Zt-p+1,°°°,Zt-1,Zt)

/Ü

> P•

These relations depict that the public durable good lasts for p (p > 2)

periods once provided and that the total (service) level of the public

good in period t is determined by the previous p—1 provisions which

still 'exist' in period t and the new provision in period t. Overall

A the general overlapping generations model is exactly identical to the

original overlapping generations model we have except utility

functions, technologies, and the nature of the public durable good.

Ut( ), Gt( ), and Zt( ) are assumed to satisfy the second-order

conditions.

The intergenerational Samuelson public good optimality condition

can be obtained by solving the following problem:

la! U0 * \1°1(Z]_,x°1)
<(zt,x°t,xYt)>>0 _

subject to Ut(Zt,x7t,Zt+1,x?t+1) -
ut t > 1

Gt(zt,x°t + Xyt)
' 0 Ü > 1

Zt
‘

zt(Z1,'°',Zt) Ü < P

Zt ' Zt(*t-p+1•°°‘•Zt—1•¢t) Y > P-
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The intergenerational Samuelson public good optimality condition is

[See Section 4]:

s -1 az: :-1
(B5) MRT2 X =

+E
[ MRSt'1Z X

-—- [ H MRSaX x ]
s s t—s t t 328 a=s a+1 a

az: :-1
+M1>„s¤2X -—-[11 Mksax xl] s>1.

t t 32S a=s a+1 a

Note that our original model has p = w in (B5). Note also that

[tH1
MRSaX x ] ] is meaningful because agents are connected. That

a=s a+1 a

is, "there is
••• a common point of time at which each person can

attach an equivalent value"[Mishan(1981,p199)]. This is why we chose

an overlapping generations model. lf there is a point of time where

agents are not connected, then we cannot apply the Pareto criterion[See

Mishan(l981) for a detailed discussion].

3.2 Siuplification

Every < (zt,x°t,xYt) > satisfying (B5) is Pareto optimal for our

general overlapping generations economy. However (B5) consists of an

infinite number of equations. This difficulty is dicussed in the

following section.

Besides the infinity problem in the general overlapping

generations model, zt's and, thus, Zt's are determined together with

x°t's, and xYt's . But we want to have zt's and, thus, Zt's determined

independently from x°t's and xYt's as in the quasi—1inear case in the

atemporal model. Thus we simplify the general overlapping generations

model as follows ; the utility function are simplified to :
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UO = UO1(Z1) + x°1 t = 0

Ut ‘
+ xYt + + Xot+1] t > 1•

The technologies to :

zt + x°t + xYt = w°t + wYt t > 1.

The relations between the total (service) level of the public durable

good in period t, Zt, and the previous and current provisions of the

public durable good, zS's, s < t, to :

Z1
-

Z1 t = 1

Z2 = kz1 + zg t = 2

p-2
ZP-1 = k Z1 +

•••
+ zp-1 t = p—1

p-1
Zt = k Zt-p+l +

•••
+ kzt-1 + zt t > p.

While the public durable good lasts forever with the deterioration rate

(1 - k) in our original model, the public durable good lasts for p

(p > 2) periods and vanishes completely (p + 1) periods later in this

general model.

In the simplified model one unit of the private good in period t

will be exchanged at the rate of dt with the private good in period t+1

since agent t is willing to change xt for Xt+1 at the rate of dt, i.e.,

agent t's time preference rate. To increase one unit of the public

durable good newly provided in period t, we have to forgo one unit of
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the private good in period t. One additional unit of the public

durable good newly provided in period t will generate extra benefits

from period t to period t+p-1.

In period 1 such that t < 1 < t+p—1, the extra benefits are, in

terms of the private good in period 1, worth

{ ——-— 1 + -——— 1 1+
3ZT ZT 8ZT ZT

which is, in terms of the private good in period t, worth

auor a“y1
1-t 1-1

1 ———- 1 + -—-· 1 1+ 1¤ 881
azT zT azT zT Ft

1-1 1-1
where [ H da] should be understood as [ H da] = 1 when 1 = t. Thus

a-t a=t

the values of zt's and, thus, Zt's are determined by :

t+ -1
a“°1 guy 1-t 1-1

(B6) 1- E] ---- ]+---1] }1< [1168] t>1.S’*¤
azT zT azT zT 8**

This is a simplified version of the intergenerational Samuelson public

good optimality condition. Now compare (B6) with (B5). Buas/3ZS]Z in
1-1 s

(B6) amounts to MRShZ X for h = o,y in (B5); [ H da] in (B6)t_T s s
corresponds to H MRSBX x in (B5).

a=s a+1 a
As we see from (B6), we can, in principle, determine zt's and,

thus, Zt's independently from x°T's and xYT's even though there are
1-1

infinite number of equations. Note that as t varies, [ H da] varies.
a=t

Thus < zt > satisfying (B6) can be considered to be parameterized by

< dt > and < (u°T(·),uYt(·)) >. We also assume further that
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(1) dt = d and (2) u°t(•) = uYt(•) = u(•) for all t > 1 in order to

avoid < zt >'s depending on the beginning of the biological time.

We conclude that (1) quasi—linearity and additive separability is

necessary for zt's to be determined independently from distribution of

xt's and (2) that the stationarity of the discount factor is necessary

for us to have some time-free results.

A Derivations of the Pareto Optimal Conditions

•
The atemporal Samuelson public good optimality condition can be

obtained by solving the following problem :

max U1(z,x1)
z>0, xi>0 __

Ui(z,xi)
-

u1 1 = 2,·•·,n
subject to {

F(z,X) = 0 where X = Zi xi.

The corresponding Lagrangian is :

1. = gi >,1~{U1(z,x1) - E1} + „F(z,x).

The first—order conditions are :

= : 21 Aiviz - ¤Fz
xi; A1U1x = nFx i = 1,···,n
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where Ai and n are the Lagrangian multipliers„ Then the first-order

conditions become :

Fz 11Fz Xi Äiuiz Äiuiz Uiz

Fx nvx nax A1v1x v1x

(B1) MRTZX(z,2i x1) = [1 MRs1(z,x1).

•
The intertemporal Samuelson public good optimality condition for

this model can be obtained by solving the following problem :

naz U1[Z1(z1),zll,···,Z·1·(zl,···,z·I),zl·[]
zt>0,zit>0 _

Ui[Zl(z1),zil,·•·,ZT(z1,·•·,zT),ziT] = Ui, i ¢ 1
subject to {

Gt(zt,2i zit) = 0, t = 1,··•,T

The corresponding Lagrangian is :

L·

— ä c ( 1 ).pl nt t Zuli X 1;

Then the first-order conditions are :

T av1 azt ac
zs ; E Xi li ——— ——— — ns ——— = 0 s = 1,•·•,T

t=s 3Zt özs 3zs

av1 BF
xit ; Ai --—-

— nt --- = 0 1 = 1,···„¤ ; r -
1,•··.T-

aßf an
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With (8Ui/8Z8)/(8Ui/8xi8) = MRSiZ8xt and (8G/828)/(8G/8X8) = MRT8 X ,
t t

the first-order conditions reduce to :

8F T
8

8Ui 8Z8 8Ui 8Z8 8Ui
ns '“'

Z Zi Ä '”' "“ “'“ "' ‘"”'

828 t=s 828 828 T 8Z8 828 8xi8
MRTZ X = -———-— = -—•-—-———-—----—·-- = --—-—-—----—S 5 aa avi :=s avi avi

Us ——— Ai ··—— ·—-- ———-

axs axis axit axis

T 828
= [ Qi MRSZLZ X --- MRsiX X .

The intertemporal Samuelson public good optimality condition for

our T period model is :

T 8Z8
(B2) MRT8 X = E Xi MRSiZ X --- MRSiX X s = 1,...,T.

s s 8,8 t t 388 t s
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•
The intergenerational Samuelson public good optimality condition

can be obtained by solving the following problem:

la! Uo * u°1(Z]_,1°1)
l

<(zt,x°t,x7t)>>0 _
subject to Ut(Zt,x7t,Zt+1,x9t+1) = ut t > 1

Gt(zt,x°t +
‘ 0 t > 1

Zt = Zt(z1,•••,zt) t < p

Z: · Z¤<=¤—p+1-•·•-¤«;-1•=t> ¤ > v-

The corresponding LagrangianisL

· Ao[u°1(Z1,x°1)
— Tl-O1]

‘ X ¤cGt(Zt·x°c + xy:)-
t=1

The first—order conditions are:

+ -1
SUt'1 SZt aut SZt SGS

zS ;
SE [),t'l ----- --- + At —-- -—-] - nS ·-—— = O s > 1
t'S SZt SzS SZt SzS SzS

au¤*1 act
x°t;A*'1 ·—-—— —nt —·—==0 t>1

Sx°taut

act
xYt;At --—— —nt—··=O t>1•

SxYt ax':
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and (8Ut°1/BZ;)/(3Ut”1/3x°t) = MRSt°lZtXt, the f1rst·order conditionsbecomes : 1acS S -1 aut' azt aut azt
ns ---

(-E [AS‘1 ————— —-— + At --— --—]
ÖZS

t_S
azt BZS az: ÖZS

(1) MRTZ X = r-—--- = -———-——-———--—---—-——-—-———————--——-
S S acS 6cS

NS """ H5 "°"
BXS BXS

auS*1 az aut az
AC‘1 -.... --E At

----------
t*s

[
aus·1 aus

]

As-1 ..... As .-..
8x°S 8xYS

au=·1 azt au¤·1 aut azt aut
AC']. ...__ --., At'].

----- AC --- --- At
SZ: SSS S><°: SZ: SSS SSV:

= -——————------------——---- + -—-———-——--—-----— ]
S"S auS"1 aUS‘1 aut auS

At-1 .-.-. AS‘l
-.--- At ---- AS ....

3x°t 3x°S öxyt 8xYS
au¤‘1 aut

A:-1 ---.- At ----
- az ax° az ax?

=
3*-E

1t=s t t azs aus-1 t t azs aus
As-1 ..... AS ....

3x°S 8xYS

If t ¢ s, there is no ready interpretation for

aut—1 aus-1 gut ausA€‘1 ---—— / A$“1 --——— and At ———— / AS ·—·—
8x°t 3x°S 3xYt 8xYS

since t and s belong to different generations• However, defining

MRSt“1X X 1
• (8Ut°1/3x°t)/(8Ut°1/3xYt-1) we obtain :

t t··
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aus-1 aus-1 aus-1 aus-! aus-! aus+1 aus+1 aus aus

( )
8x°t

•• • —————-•———————-—--—-——-—

aus-1 aus-1 aus-! aus-! aus-3 aus+1 aus aus aus-1

3x°S 8xYt-13x°t-18xYt-23x°t-2 8xYS+18x°S+13xYS öxps

A - A -3

2
—E--

•••

: :-1 Xt_1 :-1:-A

A -1
xs+2s+1 XS+1 $+1 s XS

A $-1
x:x:-1 X:-1x:—2 xs+2xs+1 xs+1xsXt_1

aus aus aus-1 aus-1 aus-! aus+! aus+1 aus+1 aus

(iib) ---- s -------——--———-—-—---—- ••• ------——————----—-——-—-

8US 3Ut'13Ut'1 aut-2 3Ut'2 3Us+1 aUs+1 QUS 3US

3xYS 3x°t 8xYt-18x°t-18xYt-2 _8xPS+28xYS+18x°S+13xYS

A - A
MRSI:-lx X x

•••

Xt : :-1 Xt_1 :-1 :-2

)‘5+1 As... ...- MRSs+1 X ---- MRSSX x
XS+2 xs+2 $+1 ÄS+1 s+1 s

As
= Mass-1 Muss-! MRss+1 Muss --xtxg-1 xt-lx;-2 xg+2xs+1

xs+1xsXt

Substituting (iia) and (iib) into (1), we can derive the

intergenerational Samuelson public good optimality condition :

s -1 BZ: t-1
(B5) MRTZ X =

+g
[ MRSt’1z X

—-- [ H MRSaX x ]
s s t=s t t azs a=s a+1 a

BZ: :-1
+MRssZX---[11MRssX xl] s>1„

’
t t azs a=s a+1 a
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Footnotes of Appendix B

1. "Let us suppose that this will be supplied later and that we know

in advance it will have the following special individualistic

property: leaving each person on the same indifference level will

leave social welfare unchanged; at any point, a move of each man to

a higher indifference curve can be found that will increase social

welfare." [Samuelson(1955)]

2. Bergstrom/Cornes(1983) identified the restrictions on utility

functions under which allocative efficiency is independent from

distribution in the theory of public goods. The condition is :

Ui(z,xi) is of the form Ai(z) + B(z)x1. Also see Cornes/Sandler

(1986) PP. 95-98.

3. Quasi-linearity is more than neccesary. It is a special case where

B(z) = 1.

4. See Cabe(1982) and Sandler/Smith(1982) for this concern.
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APPENDI! C : NON—EXIS'1'ENCE OF THE NONSTATIONARY LINDAHL EQUILIBRIUH

Recall that the old agent's problem is :

max u(q + 1°) - p°1°1°>0

and we get the old agent's demand schedule :

l°(p°;q) · max[u(p°) — q,0l

where u = [u']"'1• Let us define :

v(p°;q) · ulq + l°(p°;<-1)] — p°1°(p°;q)·

Then the young agent's problem is :

max u(q + 17) - 1:717 + dv[p°;k(q + 17)]•
17>0

Thus the young agent's demand schedule is :

lY(pV„p°;q) · maxlu(pY — kdp°) - q,0]•

Then the lining-up condition is, since p is monotonic :

p° = p7 - kdp°•



108

However for the nonstationary Lindahl equilibrium, it becomes

(1 ' ZPO;)

¤rkd

with 1 - p°t - kdp°t+l > O. For the above equation to be wel1—defined,

we need :

1/4 < (2 - kd)/4 < p°t < 1/2 for all t.

-2
Since I gg I > 1, there is no nonstationary Lindahl equilibrium. The

(1 - 2 °c)
intersection between p°t+1 = -—--{EB--- and p°t = p°t+1 is the only

stationary Lindahl equilibrium given k and d. See Figure C.

In general, the lining-up condition for the additively separable

quasi-linear case is :

¤yt(1 ' P°c ' kdP°c+1) = ¤°t(P°t)

where pat = [uat']“1 for a = y,o. If we totally differentiate the

previous equation, then :

dP°;+1 U°;° * Uy;°
------ = --—----—--- ( -1
dp°t - kd•uYt'

since pat' < 0 for a = y,o. Thus the non-existence result holds again«
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FIGURE C : Nou—ex:I.ste¤ce of the Nonstatiouuary Liudahl Equilibriun

p°;+1

11/2

-A\

1/4 1,04 1/2 P°¤
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APPENDIX D : DISCUSSION OF THE CASE WHERE

(¤,«1,k)ISsUcH'1'HAI §2>E·.'ANDm <k0

Define 10 as u[10] ·· 10 + du[m] = u[0] - 8 + du[k6]. Note that

m < 10 < m/ka Then there are three subcases :

(1) u[1°/kl · ro/k + du[6] > ulm] — m + du[m]

(2) ulm] - da + ddxn,1 > u[61 - 6 + duikal

> ulro/kl — 10/k + dul9]

(3) ulm] — m + dulm] > u[1o/k] - 10/k + du[0]

> ul9] - 6 + dutkol-

For Case (1), there are three periodic equilibria of period 3. Define

1 — q O < q < m

m < q <
10c°(q) = 06 ·· q 1 < q < 0

0 0 < q

and §o(q) = IDHXITO/k - q,0]• Then ;°(q) is the best response to z;(q),

6°<q> ¤¤ ;°<q), and ;<q) an ;°<q>-
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First, consider the following maximization problem :

max u[q + z] - z + du[k(q + z) + ;(k(q + z))]
z>0

O<q+z<m/k w/k<q

0<q<w z=w·q z==6-q

ulm] -«»+dul«» 1+q * u[61 -6 +«1u[k6l +q

w<q<1‘0 z=O z=0—q

ulq1+ dulwl * ¤l6l - 6 + dulkal + q

r°<q<w/k z=0 z=·6··q

u[q] + dulw] u[0] — 6 + du[k6] + q *

um/k<q<6 z=0 z=6·q
·

ulql + duikql ¤[6] - 6 + du[k6l + q *

6 < q z = 0 z = O

u[q] + du[kq] *
u[q] + du[kq] ·k

where * denotes the corresponding maximum.

Hence ;0(q) is the best response to ;(q).
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Secondly, consider the following maximization problem :

max u[q + z] - z + du[k(q + z) + ;0(k(q + z))]
z>0

There are two cases : either 10/k < 6 or 10/k > 6.

Case : 6 <
10/k

0 < q + z w/ko< q + z 10/k < q 6/k < q + z
< 66/k < 1 /k < 8/k

0<q<wz=w-q z=6—q z-10/k·q z-6/k-q

¤[¢¤] ·· w u[6] · 6 u[10/kl · 10/k u[6/k] · 6/k
+ dulw] + q + dulksl + q + dutal + q 6 + du[6] + q

m<q z=O z=6—q z=10/k-q z=6/k—q
< w/k 0 0u[q] + du[w] u[6] — 6 U[T /k] — 1 /k u[6/k] · 6/k

+ du[k6] + q + dulol + q 6 + dulal + q

w/k < q z = 8 — q z = 10/k * q z = 0/k - q
< 6 um — 6 61%*/161 - 6°/16 616/161 - 6/16

+ du[kS] + q + auto] + q 6 + auto] + q

6<q z=0 z=1o/k-q z=6/k—q
0< 1 /k 0 0u[q] + du[kq] u[1 /k] ' 1 /k u[6/k] — 6/k

+ du[6] + q 6 + d¤[61 + q

10/k < q z = 0 z = 6/k - q
< 6/k

utql + aulal 016/kl - 6/k
6 + dutal + q

6/k < q z = 0 z = 0

u[q] + du[kq]* u[q] +du[kq]*

The same result holds for Case : 10/k < 0. Hence g°(q) is the best

response to ;0(q).
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'1'hirdly, consider the following maximization problem :

max u[q + z] — z + du[k(q + z) + €°(k(q + z))]
z>0

0 < q + z < (TU/k)/k (ro/k)/k < q

0<q<w •z=w-q •z=(·r°/k)/k·q

um — 6 + d¤[r°/kl + q * ¤l61 — 6 + du[k0] + q

u><q<w/k•z=0 .z=(·r°/k)/k·q

u[q] + du[r°/kl * u[6] — 6 + dulkt-J] + q
w/k<q •z==0 •z=(‘r0/k)/k—q< (10/k)/k 0utql + du[r /k] * u[6] — 6 + du[k6] + q

(ro/k)/k<q·z=O
•z=0

¤[q] + du[kq] * u[q] + du[kq] *

Hence ;(q) is the best response to §0(q)„
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For Case (2), u[6] — 6 + du[k6] > u[1°/k] — 1°/k + du[0] implies

9 < *1*0/k since 6 > kB. Consider the following maximization problem :

max u[q + z] - z + du[k(q + z) + 1;0(k(q + z))]
z>0 _

0<q+z ux/k0<q+z 10/k<q 6/k<q+z
< 611/16 < 1 /k < 6/16

111111 - 61 11161 - 6 1111°/161 - ·1°/16 1116/161 — 6/16
+du[111] +q * +du[k6] +q +dul6]+q +dul0] +q

m<q<10z=0 z=6—q z=10/k-q z==6/k-q

111ql + d11[ü)] 11161 - 6 \1[T0/kl - 1°/16 1116/161 - 6/16
* +du[k6] +q +du[0] +q +du[0] +q

10<qw/k 0 0ulq] + du[w] u[6] ' 6 u[r /k] " *1 /k u[6/k] " 6/k
+111111661 +q *+1111161 +61 +611116] +q

111/16<q
6 0 0u[6] - 6 u[1 /k] · 1 /k u[9/k] — 6/k

+111111661 +q *+611116]+61 +1111161+6;

9<q0< 1* /16 0 011161 + 1111116111 1111 /161 - 1 fk 1116/161 - 6/16
+ 6111161+ q + 6111161+ q

0/16
111q1 + 6111161 1116/161 — 6/16

61 + du[9] + q

0/k < q z = 0

u[q] +du[kq] *
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Note that, for 6 < q < to/k, we do not know which is larger,

u[q] — q + du[kq] or u[r°/k] - ro/k + du[6]. However, since

u[t°/k] ' to/k + du[r0] < u[r0/k] · 10/k + du[6], we can define :

rl 6 (9,10/k) =
u[r1] — rl + dulkrll = u[1°/kl - ·:°/k + du[6]

and, thus,

1 — q 0 < q < w

0 w < q <
to

6 · q 10 < q <
T

0 6 < q < 1

10/k - q 11 < q < ro/k

O ro/k < q

Consider the following maximization problem :

max u[q + z] - z + du[k(q + z) + ;1(k(q + z))]
z>0

Then there are three subcases for Case (2) :

(2.1) u[r1/k] — rl/k + du[t0/k] > u[w] · m + du[w]

(2.2) u[w] — w + du[w] > u[6] · 8 + du[k6]

> utrl/161 - 11/16 + du[·r0/k]

(2.3) u[m] — w + du[w] > u[t1/k] · rl/k + dulro/k]

> ¤[6l - 6 + dutkal

For Case(2.1), there are four periodic equilibria of period 4. Define

£1(q) = maxlrl -· q,0]. ;(q) is the best response to g1(q), g1(q) to

:10:1), v;1<<1> to c°<q>, and c°(q> c¤ c(<1).

For Case (2.2), there will be three subcases in the similar way.
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For Case (3), consider the following maximization problem :

max u[q + z] - z + du[k(q + z) + ;o(k(q + z))]

z>0Thereare two cases : either 10/k < 9 or 10/k > 6.

Case (3a) : 6 < 10/k

O<q+z 161/k0<q+z
10/k<q 6/k<q+z

< 111/16 < 1 /16 < 0/16

61611 — 6 6161 --6 616**/161 - ·6°/16 6116/161 — 6/16
+61111161 +6;* +61111166]+6; +du[61+q +du[61+q

u[q] + du[w] u[0] · 9 u[10/kl ·· 10/k u[6/k] — 0/k
+du[k6]+q +du[0]+q +6111161+6;

1°<q z=0 z=6-q z=1°/k·q z=6/k·q< 01/16 0 0u[q] + du[u1] u[9] “ 6 u[1 /k] · 1 /k u[6/16] - 6/k
+616111661]+6; +611116]+6; 66+du[01+q

166/16<q
6 O 016161 - 6 6111 /161 — 1 fk 1116/161 - 6/16

+dU[kÜ]+q +du[6]+q *+du[9]+q

646;0
< 1 /k 0 0u[q] + dulkql u[1 /k] · 1 /k u[6/kl - 0/k

+ 6161161 +61 ,6 + 616161 +<1

6/16
u[q] + 6161161 1116/161 — 6/16

66 + du[6] + Q

9/16 4 q z = 0 ‘

u[q] ·•~dulkq] *
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Define 211 6 (w,1o) such as u[211] — 211 + du[w]
·

n[1°] · 10 + du[9]

and, thus,

1 - q O < q < w
A 1*

1
0 1 0

1 /k ' Q 2 1 < Q < 1 fk
[

0 1°/1«<q

There will be three subcases for Case (3a) again.

For Case (3b) : 6 > 1U/k, define similarly 212 6 (w,10) such as

u[212] ·
212 + du[m] · U[T0] · 1° + du[6] and, thus,

1 — q O < q < w

0 w < q <
212

1 111/k—q 22<q<·c/k

0 10/k < q

There will be three subcases for Case (3b).

Therefore, given (u,d,k) 6 { (u,d,k) : W > Q and w < k6 }, we can

continue this process on and on. In every step, either we will find

periodic equilibria or we will continue again. However as the process °

goes on, the number of constraints increases and the difference of the

lifetime net benefit from approximation becomes insignificant. Yet we

have not found any general result for the case where W > Q and w < k6.
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