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(ABSTRACT)

This research analyzes the long-lived public good/bad. The public good/bad is defined to ‘live
long’ in the sense that the external effects of an action persist beyond the decision horizon
of the actor. Thus, a very simple overlapping generations economy is modeled in which the
agent lives for two periods while the public durable good/bad lasts indefinitely with
deterioration/amelioration. Pareto optimality, the Lindahl equilibrium, and the theory of vol-
untary provision for this overlapping generations model are contrasted with those of the

atemporal model.
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CHAPTER 1

INTRODUCTION

An activity by some economic agents often affects other economic
agents not directly engaged in the activity. The effects occur inside
or outside the normal market process. Externalities are said to exist
when the effects occur outside the normal market process{
Externalities are classified as external economies or external
diseconomies depending on whether the effects are beneficial or
harmful. Externalities are also classified as consumption
externalities, production externalitqes or consumption-production
externalities depending on whether the effects enter the utility
function only, the production function only or both.

A special case, and indeed a logical extreme, of consumptive
external economies is traditionally referred to as the public good.
Some goods have the property that when one person consumes them, then
all other people can physically consume them too. In other words
benefits cannot be withheld costlessly by the provider. This property
is called nonmexcludability. Some goods have the property that "each
individual's consumption of such a good leads to no subtraction from
any other individual's consumption"[Samuelson(1954,p387)]. This
property is called nonrivalry. The pure public good is characterized
by nonexcludable and nonrival external economy.

Most public goods are durable in nature. Many public goods, once
provided, yield services over multiple periods of time. There might be

some goods whose benefits persist beyond the lifetime, or, in general,



the decision horizon, of the economic agents; that is what Mishan(1981)
descriptively called the property of being "long-lived".

The public durable good is, then, characterized by nonexcludable,
nonrival and long-lived external economy. Even though the public
durable good is an abstract construct, close examples of such goods are
abundant; defense, light houses, bridges, dams, national parks,
knowledge, and so on[Sandler/Smith(1976,ppl54-157)].

The other case is the public darable bad, the mirror image of the
public durable good. The public durable bad is characterized by
nonexcludable, nonrival and long-lived external diseconomy. Nuclear
waste dumps and toxic wastes are good examples of the public durable
bad.

Most of the models in the theoretical works on public goods, with
the exception of very few [Sandler/Smith(1976), Mishan(1981), Sandler
(1982) and Yoshida(1986)], are atemporal. We can reinterpret these
models as dealing with the case where temporal spillovers span over a
time period shorter than or, at most, equal to the decision horizon of
every economic agent involvedf But it seems necessary to also study
explicitly the remaining (opposite) case in which intertemporal or
intergenerational spillover persist longer than the lifetime (decision
horizon) of economic agents. We build a model where we can discuss the
public durable good/bad explicitly. This model is based on the
overlapping generations model. In the model the public durable
good/bad lasts forever with deterioration/amelioration, while the

agents live for two periods. After specifying the model, we obtain the

steady-state Pareto optimal level of, the steday-state level of the



stationary Lindahl equilibrium, and the noncooperative equilibrium
level of the public durable good/bad and compare these levels.

A Public Durable Bad Theory We start our research with the case of
reciprocal externalities. The reciprocality means that there are no
nonnegativity constraints on values of decision variables. It makes
the problem simpler and the implication clearer and provides us good
guidelines for the public durable good case where values of decisions
are restricted to be nonnegative. We find that the steady-state Pareto
optimal level is less than the steady-state level of the stationary
Lindahl equilibrium which is less than the steady-state level of any
(stationary) noncooperative equilibrium level of the public durable
bad.

Public Darable Goods : Pareto Optimality and the Lindahl Equilibrium
We obtain the steady—~state Pareto optimal level of the public durable
good. This level is positively related to durability. Meanwhile, in
Appendix B, the intergenerational version of the Samuelson public good
optimality condition is obtained in the more gé%eral setting and
compared with the (intertemporal) Sandler/Smith(1976) version of the
condition in light of Mishan(1981). We also discuss the justification
for our simplifying assumptions. Next we obtain the steady-state level
of the stationary Lindahl equilibrium of the public durable good. It
turns out that the stationary Lindahl equilibrium is not Pareto optimal
contrary to the atemporal result and that inefficiency may increase as
durability increases.

Voluntary Provision Theory for Public Durable Goods After reviewing

the atemporal voluntary provision theory very briefly, we ask what the



voluntary provision level of the public durable good would be. We can
expect that the young agent might provide more of the publid durable
good than he would of the nondurable public good. However the young
agent, knowing that the next generation will provide the public durable
good anyway, might act the same way as he would when the public good is
not durable. We obtain some noncooperative equilibrium results. These
results depend upon the parameters of the model. In some cases, there
exist an equilibrium where the agent acts as if the durability did not
matter. In the other cases, the durability disqualifies this behavior
as an equilibrium one. Not surprisingly, every subgame-perfect
equilibrium we have found confirms the inefficiency of the voluntary
provision.

Finally, we conclude this research and suggest issues for future

research.



CHAPTER 2

A Public Durable Bad Theory

We build an overlapping generations economy model where we can
discuss the public durable bad explicitly. After specifying the model,
we obtain the steady-state Pareto optimal level, the steady-state level
of the stationay Lindahl equilibirum, and the steady-state level of any
(stationary) noncooperative equilibrium of the public durable bad. We

do comparative steady-state analyses and compare these levels.

2.1 The Model

Time is discrete and elapses period by period. All actions
occur within a period and will be indexed by the subscript t which
takes on integer values. Agents are born at the beginning of each
period and live for two periods. Each generation consists of only one
agent. There are always two agents in each period; one young and one
old. We can interpret this as that each generation is aggregated into
one representative agent. [See Wallce(1978).]

An activity of an economic agent brings him not °“1y,B£iX§EEq

nondurablgmgggggitg but also produces harmful by-products, say toxic

[P et

wastes, to the entire economy as a public durable bad. It is analogous

to the one-input-two—output technology. The relation between the

beneficial activity, x, and its by—products, b, are described by :

b = B*x



where x is assumed to be in R. It means that we have a case of the
reciprocal externality. g is also assumed to be positive. This
by-product last forever once produced. Fortunately, mother nature has
the capability of purifying the public durable bad at the rate (1 - k)
per period where k ¢ (0,1). Denote as By the total accumulated public
durable bad in period t and as by the newly produced public durable bad
in period t. Then the state equation for the public durable bad, Bg,

is given by :

Agents are assumed to be identical except for their periods of
birth. The utility functions of the agents are the same and depend on
the level of the activity and the total level of the public durable

bad. The utility of an agent in generation t is given by :

Ut = Ut (th ,Bt ,X°t+1 ,Bt+1)

= x¥¢ - u(Bg) + d*[x% 41 = u(Be41)]

where xY. denotes the level of the activity the agent t in period t
(when the agent is young), x%p4+] the level of the activity of agent t
in period t + 1 (when the agent is old), and d the time preference rate
of agents. It is assumed that d ¢ (0,1). Note that (1) the utility
function is additively (intertemporally) separable, that (2) the time
_preference rate is identical for every agent of every generation, and

. 3
" that (3) the periodwise utility function is quasi-linear. The



following assumptions on u(*) are maintained throughout :

u(B) = 0 for all B < O
u' >0 :u'(0) <1 ; u'(w) =

} for all B > O.
u" > 0

Note that these assumptions implies that By > O for all t.

We can view u(B) as the disutility of the public durable bad in
the economy in terms of the private nondurable numeraire. Additive
separability and quasi-linearity assumptions are crucial for our
overlapping generations economy (infinite horizon) model and seem to be
difficult to relax for our study. [See Basar/Olsder(1982).]

Each agent is endowed with the following constraint that

1x¥el < WY and  #x%0 < wO.
It is assumed that the agent's endowments are bounded but sufficient
enough to allow any desired level of the activity. Our assumptions on
utility functions and endowments ensure the interiority of any chosen
activity value.

At this point we need to distinguish stationarity from
steady-stateness. We simply use 'stationary' when referring to
additional production of the public durable bad and 'steady-state' when
referring to the total level of the public durable bad. Let < by > be
the sequence of the additional production of the public durable bad in
each period and < By > be the associated sequence of the total level of
the public durable bad. The sequence < by > is stationary if by = bp+]

and the sequence < By > is steady-state if By = Bp4].



2.2 The Steady-state Pareto Optimal Level

Let X = x% + x¥, be the total activity level in period t. A
sequence < X; > will be Pareto optimal'if < X¢ > solves the following

program :

max Xy - 2u(kBy-) + BXp)

0 + d [Xes) - 2u(k?Beo) + kBXy + BXp4p)]
1
+ d2'[Xt+2 - 2u(kaBt-1 + k28X, + kBXe+1 + BXp+2)]

+ LI I

Before we obtain the first-order condition, we need to show the program
(1) is well-defined. Invoking our assumptions on endowments, wY and w°
are bounded, say, by We Then W + kW + K2W + +++ = W/(1 - k) is
bounded. Hence W - 2u[W/(1 - k)] is bounded, say, by M. Then M + dM +
d®M + +++ = M/(1 - d) is bounded. Therefore the above program is
well-defined.

The first-order conditions are :

(2a) Xy ¢ 2u'(kBy—j + BXp)B
+ kd2u'(k23t_1 + kBX, + BXp+1)8
+ k2a%2u" (kK3Bp -1 + k28X, + kBXp4] + BXc+2)8
oo =1

(2b) Xe+1 ¢ d2u'(kZBy_) + KBXy + BXp+1)8

+ kd?20" (K®Bpoy + KPBXe + kBXp4) + BXp42)B



+ k2a%2u" (K"Bpoq + k38X, + k2BXp4] + KBXe42 + BXp+3)8
b eee =4

(2¢) Xeaz ¢ 220" (K3Bpo) + k28K, + kBRp4 + BXp+2)B
+ kd32u' (K" Beop + k38X + k28X 41 + KBXp42 + BXe+3)B

4 oo sdz

and so on for X¢ 43, ***. We obtain (3a) from (2a) and (2b), (3b) from

(2b) and (2¢) :

(3a) 2u'(kBg-1 + BX¢)8 =1 - kd.

(3b) 2u' (k2By] + kBXy + BXc+1)8 = 1 - kd.
and similarly for (3¢), °°-.

Hence given kBy_) a sequence < X; > is Pareto optimal if its
associated sequence < By > equals < BP > such that :

where v = [u']'l. We have the following proposition :

PROPOSITION 2.1 : 1In this overlapping generations economy the

steady-state Pareto optimal level of the public durable bad is :

Remark : < BP > is not a Pareto optimal sequence among the

steady-state sequences but the only Pareto optimal sequence.
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Note that BP decreases as k increases from O+ to l1-, since v is
monotonically increasing. Similarly BP decreases as d increases from
0+ to 1l-. Aso note that BP decreases as B increases.

If the number of the agents in each period is n, then the
steady-state Pareto optimal level, BP(n), of the public durable bad is

1 (1 - kd)

BP(n) = v[-+—————=-1].
n 28

BP(n) decreases as n increases.

2.3 The Steady-state Level of the Stationary Lindahl Equilibrium

Lindah1(1958)'s original discussion on public goods was atempotal.
It is not easy to guess what would be the proper version of the Lindahl
equilibrium for our model according to the spirit of Lindahl, even
though the public (durable) bad is the mirror image of the public
(durable) good.

The Lindahl equilibrium for the public good is the result of a
thought experiment where we design a tax scheme under which an economic
agent solves his own utility maximization problem as a tax share taker.
The tax scheme requires balanced budget and unanimity. Balanced budget
means that costs must be covered by tax revenues. Unanimity means that
each agent's demand for the public good given his individual tax share
is identical across agents. This tax scheme then achieves two things :
optimality and linkage. It provides for a Pareto optimal output of the

public good and links agent's taxes to the benefit he recieves.
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Linkage is "partly a matter of common sense and partly a matter of
justice" [Feldman(1980,pll5), see also Wicksell(1958)].

In our model unanimity must mean that x°%p = x¥, since the
currently alive c;nnot agree with the future generations yet to be born
and the past generations already passed away.

Suppose that somehow X; is chosen unanimously as the total level
of the activity in period t and, thus, BX; as the new production level
of the public durable bad in period t. Then the consumption of X; has
to be shared between the old agent and the young agent. Thus we can
define r% and r¥, as the benefit shares such that rOX; goes to the
old agent and rY¥ X; to the young agent in period t. Balanced budget
simply means that rO + r¥y = 1 for all t.

The real difficulty lies in the linkage issue. Linkage requires
that agents have to compensate whole series of external diseconomies
caused by him to all others. This linkage issue implies there that
must be some kind of intergenerational transfer mechanism that enables
transfers from past generations to future generations. That is, the
currently old generation, as the representative of all past generations
who have have produced the public durable bad, has to pay to the
currently young generation, as the representative of all future
generations who will suffer. Finding such an intergenerational scheme
which achieves Pareto optimality and linkage along with balanced budget
and unanimity is a very hard problem which we will leave to future
research.

One simple way of approaching this problem is to regard the public

durable bad from the previous period as burdensome endowments of the
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public durable bad to the populace. Agents cannot do anything about
it. Then we can have a following version of the Lindahl equilibrium

concept.

DEFINITION 2.1 : An intergenerational Lindahl equilibrium for the
public bad is a sequence < (r%,r¥,,b.*) > of benefit share (1 - tax
share) vectors (r9,r¥;) and a level of new production schedule b¢* of
the public durable bad such that rO + r¥, =1 for all t and the
individually chosen production level of the public durable bad equals
bt* for all t.

A (intergenerational) Lindahl equilibrium for the public
durable bad is stationary 1f r® = rOp4) = r%, ¥ = ¥4 = ¥, and
be* = b41* = b*(g) where g denotes the value of the state, i.e., the

leftover of the public durable bad from the previous period.

We are looking for the stationary Lindahl equilibrium for this
economy. The stationarity constraint can be justified in the sense
thgt equals are treated equally. Irrespective of generation we treat
thé'youhg and old respectively equal.

The old agent's problem is
max rox° - u(g + Bx°).
%x©

From the first-order condition, we obtain :

r® = u'(g + Bx°)8 ;
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1'0
x%(g;r0) = [v(--) - gl/B.
8

The young agent's problem is :
max rY¥x¥ - u(g + BxY) + d-T(kg + kBxY;r%)

xy

where T(g;r%) = rox%(g;r°) - ulg + Bx°(g;r°)]. From the first-order

condition we obtain :

ry - kdr® = v(g + BxY)B

x¥(g;r0,r¥) = v(-—————- )/8.

{=> r¥ - kdr© = r©

since v is strictly monotonic. From r¥ + r© = 1 and r¥ - kdr® = %, we

obtain :

The unanimously chosen production level of the public durable bad is :
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b*(g) = v[=-———-—- 1-g or g+b*g) =v[-———- 1.
(2 + kd)g (2 + kd)B
Whatever the level of g is, g + b*(g) is constant. So we define
BL = v[1/(2 + kd)8] as the steady-state level of the stationary Lindahl
N

equilibrium of the public durable bad. We have the following

proposition :

PROPOSITION 2.2 : In this overlapping generations economy the
steady-state level of the stationary Lindahl equilibrium of the public

durable bad is not Pareto optimal. That is,

28 (2 + kd)B

Note that BL decreases as k increases from O+ to l1-. Similarly BL
decreases as d increases from O+ to l-. Also note that BL decreases as

B increases.

PROPOSITION 2.3 : If u" is nondecreasing, then BL - BP increases as k

increases.

If the extra marginal disutility from an extra unit of the public
durable bad is nondecreasing, then the inefficiency increases as the
durability increases.

If the number of the agents in each period is n, then :
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11+ kd

ry(n) = -o————v
n 2 + kd
1 1

ro(n) = —-c=m——v
n 2 + kd

since (r® + r¥)n = 1 and r¥ - kdr® = rO. Accordingly BL(n) is :

1 1
BL(n) = v[-+—-—mm=amm-].
n (2 + kd)B
PROPOSITION 2.4 : If u"(x)/x is monotonically decreasing/increasing,

then BL(n) - BP(n) increases/decreases as n increases.

1f the average of the extra marginal disutility from an extra unit of
the public durable bad is decreasing/increasing, then inefficiency

increases/decreases as the number of agents increases.

2.4 The Steady-state Level of Amy Noncooperative Equilibrium

Agent t chooses x¥y units of the activity when he is young and
X% 4] units when old. Given the initial leftover of the public durable
bad from the previous period, Bg, we then have the following state

equation for the public durable bad :

By = kBy-] + Bx% + BxYy ; Bg being given
(4) } > 1.
1Ix% 1 < w0 and ¥IxXY¢t < WY
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We shall denote by < (x°,x¥:) > a feasible infinite sequence of the
activities and by Q the set of all feasible sequences of < (x% ,x¥:) >
which satisfy (4). Thus under a sequence < (x%,xY¥,) > € Q, the

lifetime utility of agent t will be :

U0 = x0; - u(kBg + Bx%) + BxY}) t=0
(5 Ut = x¥p - u(kBg-) + Bx% + BxYy)

t > L.
+ d-[x%¢4] - u(kBy + Bx%¢41 + BxVe41)

As we see in (5), Ut depends not only on his own activity but also
on others' activities. This situation, therefore, is a game situation.

Considering the sequential nature of the model, one of the most
natural restrictions is that the decisions are made period by.period.
In each period the old agent and the young agent make their moves
simultaneously. Thus the problem which the old agent faces is very
different from the one which the young agent faces. The old agent's

problem in period t is

max x% - u(kBg—] + Bx% + BxY.).
x0
t
In general how the old agent will choose x%; depends on (1) the initial
state of the current period, kBy-j, (2) his expectations of what other
agents would choose, (3) the general history of what all the previous
players have chosen, and so on.
For the young agent, he has to take into consideration that he is

to make one more decision when he becomes old. Since decisions are



17

made period by period, the young players problem has a character of

dynamic programming. The young agent's problem in period t is :

max ®¢ - u(kBy-] + Bx%¢ + BxYy)
xY¢
+ d*[max xOp4] - u(k(kBy-1 + BxO¢ + BxY¢) + BxOp+1 + 8xV¢+1)]
xOt+1 .
Here we assume subgame perfection between the old and young versions of
the same person. The young agent has to choose xY, provided that he
will 'do his best in the next period when he becomes o0ld'. Therefore
the young player has to solve first the decision problem as if he were
the old agent in the next period in order to derive a decision rule
which describes what the young agent would do when old. Only then,
given this derived rule, the young agent's problem arrives to the very
same dimension in which his contemporary old agent's problem lies.
There will be two basic premises in approaching this overlapping
generations (dynamic) game. One is that in each period one agent's
decision is not affected by his contemporary's decision. This
underlying assumption is of Cournot. The other is of Markov type. No
matter what has happened in the previous period, the current decision
depends only on the value of the state. Under these two premises, the
activity depends on nothing but the state variable. Abusing formal
expressions, we denote decision rules, which associate activity levels
with values of the state, by x°; = Op(kBy-1) and xVy = Yy (kBg-1). [See
Maskin/Tirole(1982,1985).]

Due to our assumption on activity constraints, we simply assume

that the agents', young or old, strategy sets are given by :
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S={f:f is a function from Ry to R }.

Thus S is the largest set which is relevant. Note that we do not
impose any mathematical structures on it.
We only consider the subgame-perfect equilibrium concept for this

overlapping generations game. [See Selten(1975) and van Damme(1983).]

DEFINITION 2.2 : A sequence of strategies < (0.(*),Y¢(*)) > is a
subgame-perfect equilibrium if it satisfies the following inequalities

simultaneously, for all t > 1 and for all Bg ¢ [0,®) :

Op(kBy—-3) = ulkBg—y + BOy(kBy-1) + BY(kBr-1)]
> x% - ulkBy~} + BxCp¢+ BY¢(kBe-1)]
for all x% € R
and
Yy (kBy-1) = ulkBg—) + BOp(kBr—1) + BY¢(kByp-1)]
+ d°Te+1(k(kBy—] + BOp(kBr—1) + BY¢(kBy—1))
> x¥y - ulkBg_) + BOy(kBy—1) + BxYV¢]
+ d°Tp41[k(kBp-) + BOp(kBy—1) + BxY¢)]

for all x¥, ¢ R
where Ty41(g) = Op41(g) - ulg + BOr+1(g) + BYr+1(g)].
A subgame-perfect equilibrium is stationary if, for all t > 1,

Ot(') = 0t+1(') and Yt(') = Yt+1(’).

Note that the above inequalities have to hold for all By ¢ [0,»). We
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might consider t = 0 as the beginning of the biological time and set
Bg = 0. [See Leininger (1985) and Bernheim/Ray(1987).]
Obtaining a stationary subgame-perfect equilibrium is finding a

pair of functions (0(g),Y(g)) such that for all g € [0,B) :

0(g) solves mgx x0 - ulg + Bx° + BY(g)]
and ’
Y(g) solves max xY - ulg + BO(g) + BxY]
~ + a-r[k(g + g0(g) + 8xY)]

where I'(g) = 0(g) - ulg + B0(g) + BY(g)]. Note that Y(g) again
appears as a part of the problem.

Let < (0(g),¥(g) > be a stationary subgame-perfect equilibrium.

The first—order condition of the old agent's problem is :

1 = gu'lg + B8x° + 8Y(g)].

Since 0(g) belongs to a stationary subgame-perfect equilibrium, we

have :

(6) 1 = gu'[g + 80(g) + BY(g)] for all g > O.

The first-order condition of the young agent's problem is :

1 = gu'lg + 80(g) + BxY] - kBd-[0' [k(g + BO(g) + BxY)]

- u'{k(g + BO(g) + Bx¥Y) + BO[k(g + BO(g) + BxY)]
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+ gY[k(g + 80(g) + 8x¥)]}+{1 + gO'[k(g + BO(g) + BxY)]

+ BY' [k(g + 8O(g) + BxN)1}].

Since Y(g) belongs to a stationary subgame-perfect equilibrium, we

obtain :
1 = gu'[g + 80(g) + 8Y(g)] - kgd-[0'[k(g + BO(g) + 8Y(g))]
- Bu'{k(g + BO(g) + BY(g)) + BO[k(g + 8O(g) + BY(g))]
(7) + BY[k(g + 8O(g) + BY(g))1}-{1/8

+ 0'[k(g + 80(g) + BY(g))] + Y'[k(g + 80(g) + 8Y(g))]}]

for all g > 0.

(6) and (7) imply :

(8) Y'[kv(1/8)] = - 1/8.

Note that (8) is true irrespective of k and v( ). Hence we have :

Y(g) = - g/B + const
0(g) = v(1/8)/B - const

g + BY(g) + go(g) = v(1/8) for all g » O.

That g + B0(g) + BY(g) = v(1/B) for all g » O also comes directly
from the fact that any pair of subgame-perfect equilibrium strategies
in a certain period must be such that the old player cannot benefit

from changing his activity level unilaterally. Whatever g is,
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g + B0 (g) + BY (g) = v(1/8)

for any subgame-perfect equilibrium. So we define BN = v(1/8) as the
steady-state level of any (stationary) subgame-perfect equilibrium of

the public durable bad. We have the following proposition :

PROPOSITION 2.5 : In this overlapping generations economy, the
steady-state level of any subgame-perfect equilibrium of the public
durable bad is not Pareto optimal. That is,
- 1 - kd 1
BP = v(----—-) < BN = v(-) (BF < BL < BY).
28 B
This again confirms the usual Pigouvian conclusion that if there is an
externality, then socially optimal level differs from the individually
optimal level [Piogu(1920)].
Note that BN is constant with respect to k. This means that as k
increases inefficiency increases. Also note that BN decreses as B

increases.

PROPOSITION 2.6 : BN - BP increases as k increases.

Now suppose that the number of the agents in each period is n and

04 (g) denotes the equilibrium strategy of the old agent i and Yi(g)

that of the young agent i, i = 1,°*+,n. From the first-order condition

of the old agent i, we have :
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n
1 =u'lg + 0;(g) + Y for all g » O.
g 121 1(g) *+ ] Yi(g)] g

Hence whatever the level of g is, g + igloi(g) + lei(g) is constant

regardless of n and is v(1/8).

PROPOSITION 2.7 : BN(n) - BP(n) increases as n increases.



CHAPTER 3
PUBLIC DURABLE GOODS :
PARETO OPTIMALITY AND THE LINDAHL EQUILIBRIUM

In this chapter, we deal with a public durable good. The model
itself is similar to the one for the public durable bad except that
agents' actions are restricted to take on only nonnegative values. The
discussions here follow those in Sections 2.3 and 2.4. We obtain the
steady-state Pareto optimal level of the public durable good. A brief
review on the 'atemporal' and 'intertemporal' Samuelson public good
optimality condition and the derivation of and comparison with the
'intergenerational' Samuelson public good optimality condition appear
in Appendix B. We introduce a Lindahl tax scheme for our model. It
turns out that the steady-state level of the stationary Lindahl
equilibrium is not Pareto optimal. We also show the unique existence
of the stationary Lindahl equilibrium in Appendix C. Last, we discuss
the issue of restoring Pareto optimality and linkage through Pigouvian

externality-corrective tax/subsidy in addition to Lindahl tax.

3.1 The Model

Time is discrete and elapses period by period. All actions occur
within a period and will be indexed by t which takes on integer values.
Agents are born at the beginning of each period and live for two
periods. Each generation consists of only one agent. So there are
always 2 agents in each period, one young agent and one old agent.

The model differs from the usual overlapping generations models in

23
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two ways. First, there exists technolpgy for converting private goods
into public durable goods. Second, the public durable good lasts
forever once provided in a certain point of time. This situation is
very similar to the overlapping generations model with storage
technology except that the only way we can store the private good is to
convert it into the public durable good [Compare with Koda(1984)].
Usually goods are distinguished by their physical characteristics,
their spatial locations, and their temporal locations. In the above
model, goods are distinguished by their physical characteristics and
their temporal locations. Besides the temporal distinction, goods are
identical: so there are two goods in the economy; one private good 332

one public durable good.

B

The private good is nondurable. Its lifetime is only one period
long. It plays the role of the numeraire good in each period and can
be interpreted as leisure (negative of labor). The private good will
be indexed by t.

There is a technology for converting private goods into public
durabie goods. This technology is described by a cost function, ¢,
from Ry to Ry. The cost of producing z units of the public durable
good is c(z) units of the private good. In other words, c(z) units of
the private good have to be forgone to obtain z units of the public
durable good. The following assumption on c(*) is maintained

throughout :

c(z) =z for z » 0.
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Notice that the technology is period-insensitive, that is, free of
indices meaning, in particular, being free of any technological
progress. This assumption can be easily relaxed in the discussion of
Pareto optimality.

Here the public durable good lasts forever with depreciation. The
newly provided public durable good is, thus, indexed by the period of
provision. The depreciation rate is (1 - k), where 0 < k < 1, and can
be described as wearing down or detraction in the good's services due
to ageing. 1If one unit of the public durable good is provided in some
period, say period t, then without any additional provision of the
public durable good there will be k units of the public durable good in
the next period, period t+l, and k2 units of the public durable good in
the following next period, period t+2, and so on. The total level of
the public durable good in period t can be expressed by the following

state equation :

Zt = th_l + Z¢

where Z, denotes the total (service) level of the public durable good
in period t and z; denotes the level of the public durable good newly
provided in period t. The total level of the public durable good is
the sum of the leftover from the previous period and the newly provided
public durable good. Recall that z takes on only nonnegative values.
Agents are considered to be identical except for their periods of
birth. The preferences of each agent are the same and are represented

by a utility function. The utility of agent t depends on consumption
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of the private good and the public durable good :

Ut = U (Z¢, %Y, Ze4+1,X%+1)

= u(Zy) + Wy + d[uw(Zes) + x0p4]

where xY. denotes the level of the private good consumed by agent t in
period t (when the agent is young), x%. 4] the level of the private good
consumed by agent t in period t+l (when the agent is old), Zg the total
(service) level of the public durable good in period t and d the time
preference rate (0 < d < 1). The additively separable and periodwise
quasi-linear assumption of utility function is crucial for our entire
research and it seems to be very difficult to relax this assumption.
The underlying reason can be found in Section 3 of Appendix B. The

following assumptions on u(*) are maintained throughout :

u(Z) is defined over Z > O
u' >0 ; limg,g u'(Z) > 1 ; limz,e u'(Z) =0

u" < 0.

We can view u(Z) as the willingness-to-pay for the level of the public
durable good, Z, in terms of the private numeraire good.
Each agent is endowed with the private good in both periods ; Wy

units when young and w°i4+) units when old. It is assumed :

The agent's per period endowment of the private
good is bounded above and sufficient to finance
any desired level of the public durable good.
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Our assumption on endowments makes the feasibility constraints
redundant and, along with assumptions on preferences, insures the
interiority of solutions. We leave the case where the boundaries are
binding to future study.

Preferences and technology are sufficiently simple enough to allow
for tractable results. The drawback is that some results might hold

only in these simplifications. [See Section 3.B of Appendix B.]

3.2 The Steady—-state Pareto Optimal Level

With the discussion of Appendix B in mind, we derive the
steady-state Pareto optimal level for our model. Note that in our
model there is a nice feature that the planner faces the same problem

5

no matter what his reference point of time is.

Given kZy-}), the planner has to solve the following problem :

(9 max 2u(kZp-] + 2z¢) - 2¢
Czg >>0 ,

+ d[ 2u(k“Zp-1 + kzg + Zp4+]) - Zp+l )

+ d2[ 2u(k3zt_1 + kzzt + kzp4] + Zp+2) — Ze42 )

4+ oo

The maximand in (9) can be interpreted as the "aggregate net benefits"
from the sequence of provisions of the public durable good, < z¢ >, in
terms of the private good in period t.

Again we need to show that the above maximization problem is

well-defined, before obtaining the first—order condition. Invoking our
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assumption on endowments, wY and w© are bounded above, say, by B. Then
B + kB + k®B + +++ = B/(1l - k) is bounded. Hence 2u[B/(l - k)] - B is
bounded above, say, by M. Then M + dM + d°M + +oe = M/(1 - d) is
bounded. Therefore the above maximization program is well-defined.

Then the first-order conditions are :

(10a) zg 3 2u'[kZp-y + oz
+ kd2u' [k%Zpo) + kzg + zes1]
+ (kd)22u'[k32t_1 + kzzt + kze4l + 2p42]
+ c°* <1 with =4if 2z, > 0
(10b) Ze+l 3 d2u'[k22t_1 + kzp + zg41]
+ dkd2u'[k32t-1 + kzzt + kzp4+1 + z¢+2]
+ d(kd)22u'[qut_1 + kazt + kzzt+1 + kzp 42 + zp43]
+ e+ ¢ d with =1if z¢4) > 0
(10¢) zes2 5 d220' [K3Zeoy + KPzp + kzp4] + ze42]
+ dzdeu'[k“zt_l + kszt + k22t+1 + kzZp42 + Ze43 ]
+ a2kd)22u' (K5Zp oy + K2y + Kzpay + KPzpag + kzpe3

+ ze4s] + 000 < d% with = if zg4) > O

and so on for zg43, *°°.
1 - kd
Now suppose that p(--———- ) < kZg-). Construct a sequence < zlt >

and < zzt > such that :

zlt is chosen so that kZy—) + zlt > u(===-—- )/k, zlt+1 =0 ;
2

zzt = 0, 22t+1 = kzlt ;

zlt+2 = 22t+2-
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Plug < zlt > into the maximand in (9). Then we have :

Zu[th_l + zlt] - zlt
+ d2u[k2Zt_1 + kzlt]
(1lla)
+ d?lul’zeog + kP2l + 2lig) - zlesg]

<+ LI I
Plug < zzt > into the maximand in (9). Then we have :

2u [th_I]
+ d[2ulk®Zey + kzly] - k2ly]
(11b) 2 3 2
+d [u[k Ze-1 t k zlt + zlt+2] - zlt+2]

4+ see,
Subtract (lla) from (llb). Then we obtain :

2u[th..1] - (1 - kd)th-l
- [2ulkzZy—y + 21g] = (1-kd) (kZy-) + 21p)]
> 0.
1 - kd
Hence < z¢ > = < max[p(------ ) = kZy-1,0] > is the only solutiom
to (9) given kZi-j.
Whatever the level of kZ; ] is, there is an n such that
1 - kd
N )
2 1 - kd
since kZy.; < ». Thus we call ZP = y(———-- ) as the steady-state

Pareto optimal level of the public durable good. We have the following
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proposition :

PROPOSITION 3.1 : In this overlapping generations economy the

steady-state Pareto optimal level of the public durable good is :

where y = (u')"1l.

Remark : Again < ZP > is not a Pareto optimal sequence among the
steady-state sequences but the only Pareto optimal sequences.
Note that ZP increases as k increases from O+ to l-. Similarly zP
increases as k increases from 0+ to 1-.
The new provision level, zP, for the steady-state Pareto optimal
level will be (1 - k)ul(l - kd)/2] since zP = kzP + zP.
If the number of the agents in each period is n, then the
steady-state Pareto optimal level, zP(n), is :
1 (1 - kd)
A

n 2

ZP(n) increases as n increases.

3.3 Stationary Lindahl Equilibrium

As in Section 2.4, one simple way of approaching the problem of
dealing with the leftover of the public durable good from the previous

period is to regard the public durable good from the previous period as
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the endowment of the public durable good to the populace. Agents
cannot do anything about it. Then we can have a following version of

the Lindahl equilibrium concept.

DEFINITION 3.1 : A (intergenerational) Lindahl equilibrium is a
sequence < (pyt,p°t),1*t > of tax share vectors (pY.,p% ) and a level
of new provision l*t of the public durable good such that pY, + pO = i
for all t » 1 and when the agent t's (the young agent in period t) tax
share is pYy and the agent (t-1)'s (the old agent in period t) tax
share is p%. the desired level of public durable good output’ of each
agent in period t equals l*t for all t>l.

A stationary (intergenerational) Lindahl equilibrium is a sequence
< (pY,p°),1*(q) > of tax share vectors (pY,p®) and a schedule 1*(q)
such that pY + p® = 1 and, for 1 = y,0 , when i's tax share is pl, his

desired level of the public durable good output equals 1*(q) where q is

the leftover of the public durable good from the previous period.

Interestingly, in this model there is only one stationary Lindahl
equilibrium given k and d and there is no nonstationary Lindahl
equilibrium. This nonexistence result even holds for the case where
agents are not identical but have additively separable quasi-linear
preferences. [See Appendix C.]

pY > p° is imposed a priori. This restriction might be justified
since one unit of the public durable good will generate more services

to the young agent than to the old agent.
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The old agent's problem is :

max u(q + 1°) - pQ10,
1950

The first-order condition is :

u'{q + 19} < p® with equality 1f 1° > O.

Hence from 10* = ,(p°®) when q = 0,

19(5934) u(p®) - q if u(p®) > q
p%;3q) =
if u(p®) < q

where y = (u')~l. Let us define :

v(p®;q) = max ulq + 1°] - p%1° = u[q + 1°(p°;q)] - p®1°(p%;q)
1050

ulu(p®)] - pOu(p®) + p°¢ 1if u(p®) > q

ulq] if u(p°) < q.

Then the young agent's problem is :

max u(q + 1Y) - p¥1¥ + dv[p©;k(q + 1¥)].
1Y>0
Note that ulq + 1Y] - pY1¥ + dvip®;k(q + 1Y)] is unimodal.
Consider q = 0 in particular. See Figure I. Given p° and, thus,
pY, there are two possible cases depending on (1) the magnitude of k,

(2) the magnitude of d, and (3) the shape and slope of u(*). One is



33

that 1f u'[p(p®)/k] = p¥ + dp°® < 0, then ul[lY] - p¥-1¥ + dv(pO;k1¥)
achieves its maximum between p(pY) and p(p©®)/k and the other is that
if u'[u(p®)/k] = pY + dp® > O, then its maximum occurs at somewhere
beyond p(p®)/k. The lining-up of 1Y and 1° given q is possible only

when the equilibrium levels of pY and p°® satisfy :

(12) u'lu(p2)/k] - p¥ + dp° < O.

Thus the corresponding relevant problem should be :

max ulq + 1Y] - p¥1Y + d{ulu(p®)] - pOu(p®) + p°kq}
1¥50

From the first-order condition, 1¥* = y(pY - kdp®) when q = 0. Thus

Y (o .5050) [ u(p¥ - kdp®) - q 4if u(p¥ - kdp®) > g
1Y (pY,p%q) =
0 if u(pY - kdp°) < q.

In order to line up 1°(p°;q) and 1Y(pY,p°;q) together, we need :

u(pY - kdp®) = u(p°)

Hence u{(pY - kdp®) = u(p°®) means pY - kdp® = p°, since y is strictly

monotonic. From pY + p® = 1 and p¥ - kdp® = p°, we obtain :

Note that the equilibrium values of pY and p©® satisfy our restriction
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u FIGURE 1. Lining of 19(p®:
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q =

u(l) - p91
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(12)
1 1 + kd 1
u' fu(=-=—-- )] - +d
2 + kd 2 + kd 2 + kd
1 1 + kd 1
< u' )] - +d mmmme - o.
2 + kd 2 + kd 2 + kd

The stationary Lindahl equilibrium schedule of the public durable

good with respect to q is :

1*(q) = max[y(-————- ) - q,0].

Whatever the level of q is, there is an n such that kPq < u[1/(2 + kd)]
since q < ». ZL = ;[1/(2 + kd)] is the steady-state level of the

stationary Lindahl equilibrium level of the public durable good.

PROPOSITION 3.2 : In this overlapping generations model the
steady-state level of the stationary Lindahl equilibrium is not Pareto

optimal. That is,

However this is not surprising at all since the agents are only
concerned about their lifetimes while the planner is concerned about
entire generations involved.

Note that ZL increases as k increases from O+ to l-. Similarly zL

increases as d increases from 0+ to 1-.
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1im zL = 1im ZzP, meaning that when depreciation goes to 100% the
k+0+ k+0+
intergenerational externalities goes to zero and a Lindahl equilibrium
is Pareto optimal. lim ZL < 1im ZP ; lim zL < 1im ZP.
k+>1- k+1- d+1- d+1-
PROPOSITION 3.3 : If u" is nonincreasing, then ZP - ZL increases as k

increases from 0+ to 1-.

If the extra marginal utility from an extra unit of the public durable
good is nonincreasing, then.the inefficiency increases as the
durability increases.

If the number of agents in each generation is n, then :

1 1 11 +kd
po(n) = —+=————- and pY¥(n) = —e=—=——m-

since (p® + p¥)n = 1 and p¥ - kdp® = p®. Accordingly zl(n) will be :

1 1

zl(n) = y(-+----—- ).
n 2 + kd

ZL(n) increases as n increases.

PROPOSITION 3.4 : If u"(x)/x is monotonically decreasing/increasing,

then ZP(n) - zL(n) increases/decreases as k increases from O+ to l-.

If the average of the extra marginal utility from an extra unit of the
public durable good is monotonically decreasing/increasing, then the

inefficiency increases/decreases as the number of agents in each period
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increases.
3.4 Pigou-Lindahl Tax/Sabsidy Scheme

Contrary to the usual (atemporal) result that the Lindahl
equilibrium is Pareto optimal [e.g., Wicksell(1958), Lindah1(1958),
Foley(1970), Feldman(1980,ppll4-119), Tresch(1981,pl1l19,fnll), and
Cornes/Sandler(1986,pp98-102)], the Lindahl equilibrium‘of Definition
3.1 is not Pareto optimal. Relying only on unanimity and balanced
budget together will not achieve Pareto optimality and linkage.

Linkage requires that the cost of producing the public durable
good in a certain period must be covered by every agent who enjoys the
extra benefits from that public durable good. Thus linkage implies
that there must be some kind of intergenerational transfer mechanism
that enables transfers from future generations to past generations.
That is, the currently young generation, as the representative of all
the future generations who will enjoy the extra benefits from the
public durable good left over from the previous period, has to pay to
the currently old generation, as the representative of all the past
generations who has been contributed to the public durable good
accumulated up to the current period.

Let us consider a (stationary) linear transfer payment schedule,
r*q, on the existing public durable good from the young agent to the
old agent. Under this intergenerational transfer mechanism, the old

agent's problem is :
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max u[q + 1°] - p©1¢ + rq
1950

From the first-order condition,

19(p%;q) = max[u(p®) - q,0].

The young agent's problem is :

max ulq + 1Y] - p¥Y1Y - rq
1550
+ d[ max ulk(q + 1Y) + 1°] - p®1° + rk(q + 1Y) ].
1950

From the lining-up condition,

1Y(pY¥,p°;q) = max[u(p¥ - kdp® - kdr) - q,0].

Thus p°® = pY - kdp® - kdr. The balanced budget conditiom, p¥ + p© = 1,
and the lining-up condition, p° = pY - kdp® - kdr, together do not
solve for r a priori. We cannot determine p®, p¥, and r without an
additional condition. So we apply the externality-corrective
tax/subsidy idea[Pigou (1920)] to the Lindahl conditions. This means
pinning down the unanimously chosen demand schedule on the Pareto
optimal level; that is, p(p®) = pu(p¥ = kdp® - kdr) = ul[(1 - kd)/2].

Then :
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Note that r
Hence Lindahl taxes, p°* and pY¥*, and Pigou tax/subsidy, r*,
achieve unanimity, balanced budget and Pareto optimality with improved

linkage.



CHAPTER 4

VOLUNTARY PROVISION THEORY FOR PUBLIC DURABLE GOODS

First, we very briefly review the literature on (atemporal)
voluntary provision theory of public goods. Second, we explain the
game-theoretic nature of the problem, strategy sets, and equilibrium
concepts for our model. Third, we obtain a few noncooperative
equilibria. In general, these equilibria turn out to be not Pareto
optimal. Finally, we discuss general implications of the voluntary

provision theory for the public durable goods.

5.1 Review

01son(1965) started the theory of voluntary provision of public
goods [See Chamberlin(1974) and McGuire(1974)]. He concluded

[01son(1965,p2,p36)] :

Unless the number of individuals in a group is quite
small, or unless there is coercion or some other
special device to make individuals act in their
common interest, rational, self-interested individuals
will not achieve their common or group interests.
ees The 1larger a group 1is, the farther it will
fall short of obtaining an optimal supply of any
collective good, and the less 1likely that it will
act to obtain even a minimal amount of such a good.
In short, the larger the group, the 1less it will
further 1its common interests.

Consider an economy with a public good where individual
preferences are given by Ul = ui(Z) + xi, 1 = 1,---,n. Each individual

i contributes zl to produce Z such that Z = Zi zl. Then the utility

40
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level of individual i is Ul = ui(zj z3) - z1 + wl. The strategy of
individual i is zi(3> 0). The payoff to individual i is :
Ui(zl, Jja1 23) = ui(fy 20) - zi,
Let (z1*,+++,20%) be a Nash equilibrium. Then :
ui(z1*, 1y#1 2i*) = max vi(zt, Li#i 23*)
z130

which is equivalent to :

dul(zl, Jjg1 23
azi zi:zi*

<1 with =if zi* > 0.

Consider the following individual optimization problem :
maxyiyo ul(zi) - zl + wi

The optimal solution for this problem is denoted by zi*. Then the
total level of contribution, z* = Zi zi*, will be max{ 2i+ } and zi*
will be zero for all i such that zl+ < max{ z1i+ }. Let ZP be the
Samuelson public good optimal level; Ji aul(zP)/3z = 1. Clearly, 2P is
greater than z*. Voluntary provision equilibrium of the public good in
the Nash sense is suboptimal.

Now assume further that ul(Z) = u(Z) for all i. The Samuelson
public good optimal level is argmax nu(Z) - 2 ; zP = y(1/n) where
= (u')'l. As n inceases, ZP increases. The quasi-linear utility
function implies that the Nash equilibrium level is independent of n,
while the optimal level rises with n. Thus zP - z* increases as n
increases.

The following results do not depend on quasi-linearity of
preferences. In a model of a binary public good with binary
participation, Palfrey/Rosenthal(1984) concluded that Nash equilibria

are inefficient. In a model of a continuous public good with
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continuous contributions, Cornes/Sandler(1986) confirmed that the Nash
equilibrium is typically not Pareto optimal and questioned the idea
that the higher the expected contribution by others the lower will be
the individual's own contribution. In a model of a continuous public
good with binary participation, Gradstein/Nitzan (1987) concluded not
only that voluntary participation is suboptimal but also that as the
number of potential participants increases the inefficiency increases.
Andreoni(1987) showed that as the size of the whole group increases to
infinity, the size of the contributors and the average contribution
decreases to zero?

All theoretical works mentioned above have been developed using
models where time is neglected (atemporal models). Yet we can
interpret those models as dealing with the situation in which the
temporal spillover of an agent's decision lasts a certain number of
periods shorter than or at most equal to the decision horizon of
agents. However, in our model, the intergenerational spillover of
agent's decisions persists longer than the agent's decision horizon
(agent's lifetime). Then we ask what the voluntary provision level
would be in this new situation. We might expect that the young agent
would provide more of the public durable good than he would of the
nondurable public good. However the young agent, knowing that next
generation will provide the public durable good anyway, might act the
same way as he would when the public good is not durable. Our results

indicate that both cases may prevail and confirm that voluntary

provisions would be suboptimal in general.
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4.2 Intergenerational Game

4.2.1 The nature of the problem

We use the same model in Chapter 3 :

Ut = u(Zy) + ¥y + dlu(Zg41) + x%¢+1] : preferences

Zey = kZp—) + z¢ : state equation
c(zg) + x0 + x¥p = wOp + w¥ : budget constraint
c(z) =z : technology.

Now agent t voluntarily provides z¥, units of the public durable
good when the agent is young and 29.4] units when old. The choice of
z¥, and z% 4] is constrained : 0 < z¥y < WYy and 0 < 204 < Wopy4).
Given the leftover of the public durable good from the previous period,

kZy -], we then have the following state equation :

Zp = kZp-) + 20 + 2¥¢5 2o being given
(13) } fort =1,2,°""
with 0 < 29 < wo , 0« z¥y < WYy

We shall denote by < (29,zY¥;) > a nonnegative infinite sequence of
voluntary provisions, and by Q the set of all infinite sequences

< (2%,2Y) > that satisfies (13). Q is, therefore, the set of all
feasible voluntary provision sequences. Because of our assumptions on
utility functions and endowments, we are only concerned with the net

(lifetime) benefit from voluntary provisions. Then under a sequence
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< (29,2z¥,) > € Q, the agents will enjoy :

n0 = u(kzg + z°; + z¥y) - z% t =0
(14) Nt = u(kZy-y + 20 + 2¥;) - zYy t>1

+ dlu(kZy + 2%4) + 2Vp4)) = 2%+

So agent 0 has to choose z©9) to maximize 1m0 and each and every agent t,
t > 1, has to choose (2Y¥.,z%4]) to maximize nt.

As we can see in (14), the net lifetime benefit of agent t, nt,
from voluntary provisions, also depends on other players' actions, 20
and z¥,4], as well as his own actions, z¥¢ and z%t4+). The situation,

therefore, is a dynamic game with an infinite horizon.

4.2.2 Strategy set and equilibrium concept

Consider the decision problem of the old player in period t :

max w(kZp-y + 2% + 2¥,) - z%

29,50
In general the old player's decision rule of choosing 29, depends on
(1) the state value, kZy-), (2) his expectations of the other player’s
choice, (3) the general history of what all the previous players have
chosen, and so on.

The decision problem of the young player in period t, however, is

very different from that of the old player in that period. Considering

the sequential nature of the model, the most natural restriction is
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that the decisions are made period by period. 1In period t the old

player (agent t-1) and the young player (agent t) make their moves
simultaneously. Since the young player has to take into consideration
that he is to make one more decision when he becomes o0ld, periodwise
decision-making involves a certain nature of dynamic programming.

The young player has to choose zY, provided that he will 'do his best

in the next period'. The decision problem of the young player is :

max u(kZg-) + 20 + 2¥,) - z¥,
z¥:>0

+ d[max ulk(kZe-y + 2% + 2Y¢) + 2041 + 2Ve41] - 2%41]
2% +120

Hence the decision-making of the young player carries more complexity
than that of the old player. Only after he solves the decision problem
as if he were the old player in the next period in order to derive the
decision rule of his old age, can the young player worry about how to
choose zY¥Y,. This amounts to assuming the subgame perfection between
the old and young versions of the agent.

In order to pull the dimension of the decision problem of the
young player down to that of the old player, we need two assumptions.
One is that in each period one player's decision is not affected by his
contemporary's decisions. The other is that no matter what happened in
the previous period, the current decisions depend only on the initial
state of the current period out of the entire history. These two
assumptions, Cournot and Markov, implies that voluntary provision

decisions depend on nothing but the state variable and allow us to
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denote decision rules, which associate voluntary provision levels with
values of state, by 29 = 0 (kZy-)) and 2¥, = Y (kZ;-]) for all t. [See
Maskin/Tirole(1982, 1985).]

The strategy sets for both the old player and the young player in
a certain period consist of such decision rules. The strategy set,
SO, of player t-1 when he is old consists of all functions from the
set of values which kZ,_] possibly takes to the interval [0,w%.] and
the strategy set, Syt, of player t when he is young consists of all
functions from the set of values which kZy-) possibly takes to the

8
interval [0,wY¥.]. We simply assume :

S0, =8Y, =8 = { f : f is a function from [0,») to [0,») }.

Thus S will be the largest set which is relevant, since "there is
nothing a priori to limit the functional form" for strategy sets
[Dasgupta (1984,p420)].

We only consider the subgame-perfect equilibrium concept. [See

Selten(1975) and van Damme(1983).]

DEFINITION &.1 : A sequence of strategies < (0.*(*),Y¢*(*)) > is a
subgame-perfect equilibrium if it satisfies the following inequalities

simultaneously, for all t > 1 and for all Zg e [0,=) :

ulkZe— + 0p*(kZg-1) + Ye*(kZg-1)] - O¢*(kZ¢-)
(158) > u[th_l + Zot + Yt*(th_l)] - Zot

for all 29 > O
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ulkZeoy + 0% (kZpoy) + Y *(kZpo1)] - ¥ *(kZe o)

+ dVpap[klkZp—] + 0™ (kZpop) + Yp*(kZe-1)]1]
(15b) > ulkZe—] + 0p*(kZp-1) + 2Y.] - 2¥¢

+ aVpyy[klkZpog + 0p*(kZp-1) + 25 1]

for all zyt >0

where Veyi[a] = ulq + 0ps1*(q) + Ye+1*(@)] = Op41%(q).

Note first that the decision problem of the old agent in period t
is a very simple optimization problem given kZ,_) and, thus, Y*(th_l).
However the decision problem of the young agent in period t requires
internalizing all the externalities imposed on him by the next young
player's behavior, Yt+i*(')’ as well as the old version of himself,
Ot+1*(°). Only then, as we have seen in (15b), the objective function
of the young agent in period t has the single decision variable given
kZ¢-j and, thus, Oy*(kZy-1). Secondly, from (15b) existence of a
subgame-perfect equilibrium requires that there is a solution to the

following maximization problem, for all q » O :

max ulq + Ot*(q) + x] - x + dVtylk(q + Ot*(q) + x)].
x>0
Clearly, the existence of a solution to the above problem depends on
the structure of Vy41(*), which depends on Op+1%(*) and Ye4+1%(*), which
. 9
depend on the mathematical structures of the strategy sets.

Generally the decisions of the young agent in period t will have

the form :
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2¥, = £lq ;3 Ye41%(*)]
Thus the optimal decision rule, Yt*('), will be functionally related to
Yt+1*(') and so on recursively, for instance :

() = gl¥e41* ()]
So for an infinite horizon problem, a fixed point of mapping q, if any,
will be a natural object to concentrate on.[See Phelps/Pollack(1968)

and Kydland/Prescott(1977).]

DEFINITION 4.2 : An identity sequence of a pair of provisions
< (0*(),Y*()) > is a stationary subgame-perfect equilibrium if it

satisfies the following inequalities simultaneously, for all q > 0 :

ulq + 0%(q) + Y*(q)] - 0%(q) » ulq + z0 + Y*(q)] - z°

for all z© > O

ulq + 0%(q) + Y*(q)] - Y*(q) + aV[klq + 0%(q) + ¥Y*(q)]]
> ulq + 0%(q) + 2¥] - 2¥ + av[klq + 0%(q) + z¥]]

for all z¥ > 0

where V[q] = ulq + 0*(q) + Y*(q)] - 0%(q).

Obtaining a stationary subgame-perfect equilibrium is finding a

pair of functions (0*(q),Y*(q)) such that, for all q » O,

0*(q) : max ulq + Y*(q) + 2z0] - 20
solves 2930
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Y*(q) : max ulq + 0*(q) + 2¥] - 2¥Y + d[u[k(q + 0*(q) + zY)
solves zY>0
+ 0*(k(q + 0%(q) + 2¥)) + Y*(k(q + 0%*(q) + 2z¥))]

- 0*(k(q + 0%(q) + z¥))].

Note that the solution Y*(’), if any, appears in the problem itself.
"Although this [identity] restriction might appear "natural" since
all generations have the same preferences, and face the same
technology, there is no demonstration of the fact that along [an] --°
equilibrium, the ... schedules would have to be identical” [Lane/Mitra
(1981,p322)]. There may exist some non-identical (cyclical)

equilibria. [See McTaggart/Salant(1986) for an example.]

DEFINITION 4.3 : A subgame-perfect equilibrium is periodic if there
exists a integer H and H pair of functions

( ©1(a),¥1(a)), *** ,(0u(a),¥u(a)) ) such that Opsme™ = Op(q) and
Yh+Ht* = §h(q), for t » 1l and h = 1,2, *-« JH. The integer H is the

period of the equilibrium.[See Bernheim/Ray(1987).]
4.3. Honcooperative Equilibria
4.3.1 Stationary and periodic equilibrium : examples
There are three parameters in this intergenerational game : u(-),
d and k. Any noncooperative equilibrium level of the net lifetime

benefit depends on these parameters crucially. In the examples

provided below we show some relations between equilibria and
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parameters.

Consider an overlapping generations economy with the public
durable good where u(z) = 2/ z. Suppose the public good is not
durable (k = 0). The individual optimization problem, regardless of
age, is to max,,0 2V z - z. The individual optimum is 1. 1In fact,
1 is ghe total provision level (the simple Nash equilibrium level) when

k = 0.

Stationary subgame-perfect equilibrium

We might expect that the young agent would provide more of the
public durable good than he would of the nondurable public good.
However, for relatively small k, the agent, knowing that the next
generation might provide the public durable good anyway, seemingly acts
the same way as he would when the public good is not durable. In the

following example we show that this scenario holds.

EXAMPLE A : d = 0.8 and k = 0.25.
Claim 1 : < (O,max[l - q,0]) > is a stationary subgame-perfect

equilibrium.

Simply consider the following optimization problem :

max 2/ q +z -z
z>0

+ (0.8)2/ 0.25(q + z) + max(l - 0.25(q + z),0]

This problem achieves its maximum if z is chosen according to
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max[l - q,0]
2/ T-1+q+ (0.8)2/1=2.6+q for 0 < q <1
2 g+ (0.8)2/ T=1.6 + 2/ q for 1 < q < &
2/ q + (0.8)2/ 0.81q = 2.8/ q for 4 < q.

Since q + max[l - q,0] » 1 for all q » O, we know that

< (0,max[1l - q,0]1) > is a stationary subgame-perfect equilibrium
The total level of the public durable good under this stationary
subgame-perfect equilibrium is 1, which is also the simple Nash
equilibrium level when k = 0.

Is < (0,max[1l - q,0}) > the only stationary equilibrium? The
answer is no and, in fact, we can find another kind of stationary
subgame-perfect equilibrium other than < (O,max[l - q,0]) >. Consider
the following decision rule :

q q
3.2 = 2/ === 4 ——m-

0.25 0.25

1/4] ]2 -q if q<1

v(q) = { 0.8
0

if 1 < q

This decision rule says that if the value of the state is less than 1,
then provide in such a way that 2 v q70.25 - q/0,25 + (0.8)2/ q + v(q)
achieve 3.2. Otherwise, do not provide. We call these kinds of

decision rules "cooperative" ones.

Claim 2 : < (0,v(q)) > is a stationary subgame-perfect equilibrium.
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Consider the following optimization problem :

max 2/ q ¥z - 2
z>0

+ (0.8)2/ 0.25(q + z) + v[0.25(q + 2)]

This problem achieves its maximum :

3.2 +q if z is chosen among [0,4 - q] for q < 4

2.8/ q if z = 0 is chosen for q > 4

Note that 1.96 = argmax,;9 2V z - z + (0.8)2/ 0.25z. It is true that
(i) q+v(q) » 1 for all q » 0

(i1) q + v(q) < 4 for all q ¢ [0,1],

since :
q q
3.2 = 2f === 4 —=—-
0.25 0.25 2
q + v(q) = 1/4] ] > 1
0.8
q q q 2
<=> 1.6 =2/ ~——+ —==—=50 <&=> [ —— -1]° +0.6 >0
0.25 0.25 0.25
which is true for all q » 0, and
q q
3.2 = 2/ === 4+ ———-
0.25 0.25 2
q +v(q) < &4 <=> 1/4] ]© < 4
O.8

<=> 0< 2/ q-q

which is true for all q € [0,4]. Hence the old agent provides nothing
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when the young agent provides more than 1. Given the next young agent
providing according to v(q), the presently young agent is indifferent
to providing among [0,4 - q] when the value of the state is q. So he
chooses the "cooperative" one v(q). Hence < (0,v(q)) > is a stationary
subgame-perfect equilibrium. Agents can do better by choosing =z
according to v(q) rather than according to max[l - q,0]. Under v(q),
agents achieve their net lifetime benefit 3.2 + q for q < 4 and 2.8/ q
for q > 4. Here every agent Pareto-improves}0

Claims 1 and 2 together demonstrate the multiplicity of equilibria

for the same parameter values.

Periodic subgame—perfect equilibrium : example

For relatively large k, it might be the case that durability
disqualifies < (O,max[l - q,0]) > as a stationary subgame-perfect
equilibrium. Furthermore there are no "cooperative" equilibria for
certain pairs of d and k. Yet we find some periodic subgame-perfect

equilibria.

EXAMPLE B : 4 = 0.8 and k = 0.81.
Claim 3 : < *-*,(0,max{1l - q,0]),(0,max[2.9584 - q,0]),*** > is a

periodic subgame—perfect equilibrium of period 2.

Consider the following optimization problem :

max 2/ q+z -z

z>0

+ (0.8)2/ 0.81(q + z) + max[1 - 0.81(q + z),0].
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This problem achieves its maximum if z is chosen according to

max[2.9584 - q,0]

2/72.9584 - 2.9584 + q + (0.8)2/ (0.81)2.9584
= 2.9584 + g for 0 < q < 2.9584

2/7q + (0.8)2/ (0.81)q = 3.44/q for 2.9584 < q.

Note that 2.9584 = argmax,,0 2/ z -z + (0.8)2/ 0.81z and, therefore,
might be called the guaranteed (maximin) net lifetime benefit level
for this set of parameters. Thus < (O,max{l - q,0]) > cannot be a
stationary subgame-perfect equilibrium when d = 0.8 and k = 0.81.

Now consider another optimization problem :

max 2/ q tz -2z
z>0

The previous problem achieves its maximum if z is chosen according to

max[l - q,0]

2/ 1 -1+q+ (0.8)2 y 2.9584 = 3,752 + q for 0 < q < 1

_ 29584

2/7q + (0.8)2/ 2.9584 = 2.752 + 2/ q for 1 < q € —————-
2 9sgy 081
2/7g + (0.8)2/ 0.81q = 3.44/ q for =2==—- < q.

Since q + max[2.9584 - q,0] > q + max[l - q,0] > 1 for all q » O,
{ +++,(0,max[1 - q,0]),(0,max[2.9584 - q,0]),°** > is a periodic

subgame-perfect equilibrium of period 2 when d = 0.8 and k = 0.81.
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Remark : max[l - q,0] with prob 1/2
< (0,{ ) >
max[2.9584 - q,0] with prob 1/2

is a stationary subgame-perfect equilibrium, if the strategy set is
enlarged properly.

Let q q .
3.2 = 2f ——=—— 4 ——em

0.25 0.25

1/4] ]2 -q if q < 3.24

1(q) = { 0.8
0

1f 3.24 < q.

Claim 4 : < (0,1(q)) > is a subgame-perfect equilibrium.

Claims 3 and 4 together demonstrate that a periodic subgame-perfect
equilibrium and a "cooperative" stationary subgame-perfect equilibrium
coexist for the same set of parameters. [We will not prove Claim 4
here since it is supported by Proposition 4.1.]

Note that not every agent Pareto-improves under < (0,t(q)) > over
< *++,(0,max[1l - q,0]),(0,max[2.9584 - q,0),*** >. The 'optimistic'
generations, who play (max[l - q,0],0), do worse and the 'pessimistic’
generations, who play (max[2.9584 - q,0), do better under < (0,t(q) >.

The next question naturally arises : Can we always construct such
a "cooperative" stationary subgame-perfect equilibrium for any pair of

d and k. The answer is no.

EXAMPLE C : d = 0.4 and k = 0.81. Let us construct a "cooperative"

decision rule based on Proposition 4.1 (which appears later) :
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/q q
1.6 = 2/ === + =
0.25 0.25
1/4] 12 -q 1f q < 3.24
x€a) = { 0.4
0 if 3.24 < q.

Suppose that q = 0. The agent can do better by choosing z = 1.8496

since maxz,0 2V z - z + (0.4)2/ 0.81z = 1.8496 when z = 1.8496 which is
11

greater than 1.6.

Through examples we have seen how k and d mold subgame-perfect

equilibria. Next we obtain a few general results.

4.3.2 Existence propositions

Let us go back to the general model. Define the following :

w = argmax,,0 ulz] - z 3 @ = ulw] - w + dufwl];

o)

1)

8 = argmax,30 ulz] - z + dulkz] ; 2 = u[8] - 6 + du[ke];

e(>0) solves ulz] - z = ul0] s E = dule] + u[0].

PROPOSITION 4.1 : If (d,k,u(*)) satisfies E » max[5,2] and

e » max(6,w/k], then there exists a stationary subgame-perfect

equilibrium < (0,u{(q;ke,E)) > where u(q;ke,E) is defined by :
. E - ulq/k] + (q/k)

u [ ] -q if q < ke
v(q;ke,E) = { d
0

if ke < q

where E is a constant and ke is a fixed critical level of the argument
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of y(*) which enables ulq/k] - (q/k) + dulq + y(q)] to achieve E for
all q € ¢ and becomes zero for all q > c.

v(q;ke,E) guarantees that every agent will achieve a net lifetime
benefit of E ﬁlus the value of the state, i.e., NIt = E + kZ¢-] for all

t.

PROPOSITION 4.2 : If (d,k,u(*)) satisfies Q@ > 5 and 9 < w/k, then
there exists a stationary subgame-perfect equilibrium. That is,

< (0,z(q)) > where z(q) = max[w - q,0].

PROPOSITION 4.3 : 1I1f (d,k,u(*)) satisfies = > Q, then there exist two
periodic subgame-perfect equilibria of period 2. These are
< (0,¢(q)),(0,9(q)),*** > and < (0,¥(q)),(0,¢(q)),*** > where

v(q) = max[® - q,0] and ¢(q) = max[w - q,0].

Remark : These two periodic equilibria are not essentially different;
the amplitudes and the frequencies are the same and only the phases
differ.

Equilibrium strategies we have found so far are special
cases in the sense that there may be other equilibrium strategies such
that the strategy of the old age is not zero for all q » 0 but a
non-zero function of the state. In general if < (Ot*(q),Yt*(q)) > is a
subgame-perfect equilibrium, then the following must be satisfied, at

least, for all t :
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q + Ot*(q) + Yt*(q) > w for all q > 0
(16) { 0.%(q) = 0 for all q > w

1f Ot*(E) > 0 for some q < w, then q + Ot*(a) + Yt*(aj = e

The set of equilibria is restricted by the fact that the decision rule
of the old player must be such that it is not advantageous to deviate
from it unilaterally.

In the following discussion we demonstrate that a pair of
strategies satisfying the conditions in (16) can not be an stationary
subgame-perfect equilibrium. In general, the characteristics of Ot*(q)
and Y.*(q) are not known yet.

Recall Example A where u(z) = 2/ z, d = 0.8 and k = 0.25. We
know that 0*(q) = O and y*(q) = max[l - q,0} are a stationary
subgame-perfect equilibrium strategy pair. Note that 0*(q) + y*(q) =
max[l - q,0]. Now consider a strategy pair such as max{t®-(1 - q),0]
and max[tY*(l - q),0]) where t© + t¥ =1, t°,tY ¢ Ry. This strategy
satisfies the conditions in (16). We show that this strategy pair
violates the assumption of subgame—perfectiop between the old and young
versions of the agent. Suppose q < w. If th;'égént follows this
strategy pair, then he would achieve :

u(l) = t¥(1 - q) + dlu(l) - t°(1 - K)].
While if the agent chooses tY(1 - q) + ¢ (¢ > 0) instead, then he will
achieve :

u(l) - t¥(1 - q) - ¢ + dlu(l) - t°(1 - k) + t%e].
For ( max[t®-(l - q),0],max{[t¥*(1 - q),0] ) to be a stationary

subgame-perfect equilibrium strategy, the following must hold, for all
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€ >0 :

u(l) + ¢ = u(l +¢) - kdt% > 0

which is equivalent to :

u(l) + e - u(l + ¢)
t0 < .
kde

Thus t° must be zero.

The previous three propositions do not cover the case where Q@ > 8
and w < k8. In the following examples, we are only able to show that
there exist some equilibria for some parameter values which satisfy
Q > =5 and w { k0. This incompleteness seems to rise from the fact that
the old agent and the young agent make their moves simultaneously. For
the intergenerational altruism model where each information set
contains only one decision node (no simultaneous moves) there exists a
general existence result. [See Hellwig/Leininger(1985) and

Leininger(1985).]

Example D : Let u(z) =2/ z , d = 0.4 and k = 0.64. Define

rl -q 0<qxgl
0 1 <q < 1.5376
zt(q) =
1.7424 - q 1.5376 < q < 1.7424
L O 1.7424 < q

where 1.7424 = argmax,,0 2/ z - z + (0.4)2/ 0.64z and 1.5376 solves

2 Z -z + (0.4)2/ 1 = 2/ 1.7424 - 1.7424 + (0.4)2/ 0.64-1.7424,
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1,5376
Claim 5 : < ¢+-,(0,max{1l - q,O]),(O,max[a‘g;" - q,01),(0,z%(q)),*** >
* 12

is a periodic subgame-perfect equilibrium of period 3.

Consider the following optimization prblems (17), (18) and (19)

(17) max 2/ q +z -2

z30

+ (0.4)2/70.64(q + z) + max[l - 0.64(q + z), O]

This problem achieves its maximum if z is chosen according to ¥ (q) :

2/ 1-1+q+ (0.4)2/ 1 =1.8 +q 0<qc<l
2/ q + (0.4)2/ 1 = 0.8 + 2/ q 1<q< 1.5376
2/ 1.7624 ~1.7424 + g 1.5376 < q < 1.7424

——
+ (0.4)2/ 0.64-1.7424 = 1.7424 + q

2/ q + (0.4)2/70.64q = 2.64/ q 1.7424 < q.

(18) max 2/ q +z -z
z>0

+ (0.4)2/70.64(q + z) + ¢¥[0.64(q + 2)]

This problem achieves its maximum if z is chosen according to

1,5376
mexlgTg™ ~ 00
//TT§573 1,5376 1 5376
2 TeR T e tat (0.4)2/ 1.7424 0¢q< g5
= 1.7535 + q
——r 1,5376 1,742,
2/ q + (0.4)2/ 1.7424 = 1.056 + 2/ q Sieeem < Q< por-
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(19) max 2/ q +z -z
z>0 // 1.5376

This problem achieves its maximum if z is chosen according to

max{l - q,0]
/1.5376
2/ 1 -1+q + (0.4)2 T = 2.24 + q
/1.5376
2/ q + (0.4)2 f —=——— = 1.24 + 2/ q

2/q + (0.4)2/ 0.64q = 2.64/ q

Since q + ¢¥(q) » 1 for all q » 0 and

q + max[1.5376/¢ 64 - q,0] > q + max[l - q,0] > 1 for all q > O,

1,5376

< +++,(0,max[1l - q,01),(0,max[z=c=—- - q,01),(0,z*(q)),*** > is a

0,64
periodic subgame-perfect equilibrium of period 3.

Remark : Is

max[1l 537670 &% - 4. 0] with prob 1/3

< +++,(0,{ max[l - q,0] with prob 1/3 }),** >

z¥(q) with prob 1/3

a stationary subgame—perfect equilibrium, if the strategy set is

enlarged properly.

In the following example we recapitulate the subgame—perfect

equilibria based on the general results.

EXAMPLE E : Consider u(z) = 2/ z. Thene =4, E = 4d; v =1,

Q=1+2d; 6 = (1 +/ kd)2, = = (1 + /&a)2.
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Let z(q) = max[l - q,0], ¢(q) - ¢(q) = max[6 - q,0] ~ max(1l - q,0]

and v(q) = 1/4[(4 - 2/ q/k +q/k)/d]1® - q 1if q < &

0 if q > 4k
Given (k,d) e (0,1)?, see Table I and Figure II. The regioms in
Figure II are distinguished by the conditions in Table I accordingly.
Points A, B, C and D in Figure II correspond to Cases A, B, C and D
respectively. Equilibrium strategies we have found for Example E are
based on our existence propositions.

Region III, demands special remarks. We might approximate an
equilibrium by a stationary strategy of type r(q) for we can justify
this a little more. Suppose kZg ¢ [0,1]. Then any sequence generated
by < (0,z(q)) > given kZp is a Nash equilibrium of voluntary provisions
since ulw) - w + dulw] is greater than u[6] - 6 + dulké]. For the
general discussion on the parameter values which satisfy Q > £ and

w < k&, see Appendix D.

4.4 Suboptimality of Voluntary Provisions

Let < 2P >(kZg) denote the solution to the following problem,

given kZg :

(20) max 2u(kZo + Zl) - 2]
< Zt >» 0 2

+ d[ 2u(k“2g + kzj + z3) - z3]

+ d2[ 2u(k3ZO + k221 + kzo + 2z3) - z3]

-+ v
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TABLE I. Equilibrium Strategies for Example E

REGION CONDITION STRATEGY
Ia w/k De Do z(q)
Ib E>Q >0 eD>uwk>® v(q) , z(q)
Ic e > 8 >uwlk v(q)
1la w/k De >0 z(q)
IIb Q>E>06 e >uwk Do z(q)
1lc e > 8 >uwlk v(q)
IIla w/k De Do z(q)
IIIb Q>0>E e >uwk Do z(q)
I11lc e >0 >uwlk ?
1V E>8>Q e>08 >k v(q) , v(q)~¢(q)
v 8>E>QR e > 8 >uwlk $(q)«¢d(q)
VI 8>Q>E e >8>uk v(q)~¢(q)
VII 8 > E e >0 >uwk v(q)~$(q)
< <
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Equilibria for Example E

FIGURE 1I.

ST°0

. IA

\\wwl
\\\ ey

ey

S°0

\\\\

L T

8°0




65

< zZP >(kZp) denotes the sequence of the total level associated with

< 2P >(kZg), < Z% >(kZg) the sequence of the total level associated
with the stationary subgame-perfect equilibrium < (0,z(q)) >,

< Z¥ « 29 >(kZg) the one associated with the periodic subgame-perfect
equilibrium < <++,(0,9(q)),(0,4(q)),**+ >, and < 2V >(kZp) the one
associated with the stationary subgame-perfect equilibrium < (0,uv(q)) >
given kZg. In general < Z%& >(kZp), < ZV¥ « Z¢ >(kZg), and < ZY >(kZg)

are very different from < ZP >(kZg).

CONJECTURE 4.4 : Voluntary provisions of the public durable good are

not Pareto optimal in general.

It is a conjecture simply because we have not found and

characterized every existing equilibrium. We only provide an example :

EXAMPLE F : Let u(z) = 2/ z and d = 0.4. k only varies. Suppose

k = 0.25. Then we can predict Z& = 1 and ZP(0.25) = 4.9383. 1If k =
0.3, then 2& = 1 and zP(0.3) = 5.1653. 1If k = 0.81, then z¢ = 1.4982,
ZV = 1.8496 and ZP(0.81) = 8.7532. 1In this example we observe that

inefficiency increases as k increases.

The theory of voluntary provision for the public good has been
criticized because of its limited applicability. [See Margolis(1982)
and Sugden(1982).] However the theory of voluntary provision for the
public durable good seems to be very relevant in this overlapping

generations economy in the sense that what people of one generation
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provide for themselves can be understood as voluntary provisions on
their part towards peoples of other generations. If we accept this
relevancy, then the suboptimality of voluntary provision might be an
enormous phenomenon especially when the durability is relatively large,

which cannot be detected explicitly in the atemporal model.



CHAPTER 35

CONCLUSIONS AND QUESTIONS FOR FUTURE RESEARCH

Here we present the conclusions we have drawn from the analyses in

this research. We also raise some questions for future research.

1 Conclusions

1, The stationary Lindahl equilibrium [Definition 2.1] of the public
durable bad is not Pareto optimal. However this is not surprising at
all since the agents are only concerned about their lifetimes while the
planner is concerned about entire generation involved. The
noncooperative voluntary provision equilibrium [Definition 2.2] of the
public durable bad is not Pareto optimal. This is due to the fact that
any pair of equilibrium strategies in a certain period must be such
that the old players are on their best responses.

2, There does not exist any non-stationary Lindahl equilibrium
[Definition 2.2] of the public durable good. There exists only one
unique stationary Lindahl equilibrium which is unstable. The
stationary Lindahl equilibrium of the public durable good is not Pareto
optimal. This is again due to the difference of decision horizons
between the agents and the planner. Our Lindahl/Pigou scheme seems to
work. But this scheme has an innate instability caused by the temporal
separation of costs and benefits of the public durable good to the
agents involved under the scheme. [See Samuelson(1958) and

Sjoblom(1985).] 1In other words, the Lindahl/Pigou scheme is not

67
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time~consistent. [See Arrow(1974), Dasgupta(l974a,b),
Kydland/Prescott(1977) and Stutzer(1984).]

3. Any noncooperative voluntary provision equilibrium of the public
durable good we have found so far is not Pareto optimal. This again
comes from the fact that any pair of equilibrium strategies in a
certain period must be such that the old players are on their best
responses. The atemporal theory of voluntary provision for the public
good has been criticized of its limited applicability. However the
intergenerational theory of voluntary provision of the public durable
good must be immune to this criticism in the sense that what people of
one generation provide for themselves can be understood as voluntary
provisions on their part towards peoples of other generations. This
aspect can be fortified since if a democratic government represents
only the currently alive, then it is hard to imagine a government which
caters fully to the preferences of all generations to come. Especially
note that the subgame-perfect equilibrium concept in the intertemporal
theory of voluntary provosion for the public durable good is
'time-consistent' or 'conjecture-consistent'. [See Peleg/Yaari(1973),
Goldman(1980), Lane/Mitra(1981) and Lane/Leininger(1984).]

%, Concludingly, if the public durable good lasts longer than the
agents live, then the level of inefficiency will be higher than the

level of inefficiency we analyze in the atemporal model.
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5.2 Questions for Future Research

5.2.1 Length of decision horizon

The inefficiency is due to the fact that the agents only care
about their lifetimes while the planner cares about indefinite future.
Various introductions of altruism between generations might reduce the
ineffciency or even restore the efficiency. First of all we point out
that this overlapping generations model is mathematically equivalent to
the simple paternalistic model of intergenerational altruism where a
certain generation's utility depends on its own consumption and the
consumption of the immediate next generation. [See Kohlberg(1976),
Lane/Mitra(1981), Lane/Leininger(1984), Leininger(1985),
Bernheim/Ray(1987), and Ray(1987).] Hence this short-range altruism
will not do the job. It will be interesting that we introduce the
'long-range' paternalistic model of intergenerational altruism where a
certain generation's utility depends on its own consumption and the
consumptions of entire future generations. [See Barro(1974) and
Gale(1985).] Or we can introduce the non-paternalistic model of
intergenerational altruism where each generation's utility depends on
its own consumption and the utility of the immediate next generation.
Thus one agent's decision horizon is, in fact, an infinite one. [See
Ray(1987).] We may consider allowing the agents to live for, say m
periods, and check whether the inefficiency disappears as m tends to
infinity. However we doubt this approach since as m increases the

population also increases - there will be m agents in each period.
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5.2.2 Alternatives for Lindal equilibrium

Lindahl equilibrium is a unanimity decision rule. We might
develop a model where we can discuss a majority decision rule. [See
Kaneko(1977a,b).]

Suppose that the government or the planner must be chosen among
the currently alive. Then any tax/subsidy policy must be
time-consistent or subgame-perfect. [See Phelps/Pollack(1968),

Kydland/Prescott(1977) and McTaggart/Salant(1986).]
5.2.3 Suboptimality of voluntary provisions

In general the overlapping generations economy only with the
private good allows Pareto improvement thtoﬁgh very simple
punishment-reward scheme. [See Hammond(1975), Shell(1975) and
Salant(1988).] That this economy does not have any public (durable)
good makes the punishment-reward scheme (trigger strategy) rather
simple. [See Friedman(1971,1985).] However if there is any public
(durable) good at all, then this fact brings one more difficulty inm
constructing the trigger strategy. In the overlapping generations
model, the equilibrium must be such that the oldest agent should be on
his best response. Hence the hardest punishment will be no provision
of the public (durable) good on all the younger agents' parts. This
implies these younger agents' actions should be rewarded in their later
lives. But these punishments and rewards-will prevent arriving at the
Pareto frontier. However it will be interesting to check how far we

can push out towards the Pareto frontier by constructing trigger
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strategy type equilibria. The possibility of success might be greater

under no discounting and longer life.

5.2.4 Relaxation of quasi-linearity and additive separability

The complete existence result and characterization of the
subgame-perfect equilibria for our model have to be done. There is a
trade-off of simplicity of structure between the strategy sets and the
utility (payoff) functions. Since we have the simplest form of the

utlity functions, we might impose more on the strategy set side.
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FOOTNOTES

In general externalities are distinguished between pecuniary
externalities and nonpecuniary (technological) externalities
depending on whether the effects (beneficial or harmful) are
properly reflected in the market system. Here externalities mean
only nonpecuniary externalities.

It is difficult to imagine the 'scrap' market for public goods. 1In
the private good case, even though the lifetime of the good is
longer than the lifetime of the economic agent, we can resolve this
problem by modeling under existence of the scrap market for the
private good.

See Varian(1983) pp. 278-283 and Green/Laffont(1979) pp. 27-34.
Bewley(1977) analyzed the underlying rationale for the quasi-linear
utility function. For criticism of quasi-linearity, see
Bergstrom/Cornes(1983) and the references therein.

The uniqueness result of the stationary Lindahl equilibrium can be
inferred from Appendix C.

The social planner's decision, i.e. the solution to (9) can be
considered to be parameterized with respect to the leftover of the
public good from the previous period, kZy-j. < zt* > =

< ze® >(kZgo1)e If kZg-] = kZg-), then < 2¢* Dpap = < z¢™ Dpag for
all T and s.

See Kaneko(1977) for the ratio equilibrium concept and
Mas-Colel1(1980) and Mas-Colell/Silverstre(1985) for the nonlinear

technology case in the atemporal setting.
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See Guttman(1978) and Bagnoli/Lippman(1987) for the opposite
result.
There is an upper bound up to which kZi_) possibly takes values
since endowments are bounded from above. For convenience we

choose the strategy space S. Compare with strategy sets used in
Leininger(1985) or Berﬂheim/Ray(1987).
Yet we do not know ideal restrictions - the so called preservation
property restrictions - on strategy sets. See Leininger (1985).

an agents do better than these levels? Let vy(q) be v(q) with 3.2
being replaced by some number W which is greater than 3.2. Suppose

q = 0. Then

2/ oy(0) - wy(0) + (0.8)2/ 0.25vy(0) + vyl (0.25vy(0)]

becomes :

7 25
27 V(0) - vy(0) + (0.8)2/70:2504(0) = =W - g;owz

since vy(0) = 1/4[ (W - 2/ 0/0.25 + 0/0.25]/0.8]% - 0 = W?/(0.64-4)

and 0.25vy(0) = W2/(0.64°16) > (3.2)2/(0.64-16) = 1. Given that
W

the next generation's decision rule is vwy(q), the current agent can

25
achieve W by choosing z from [0,4] instead vwy(0) = E;'Wz > 4 since
7 25
1.6 is greater than =W - g;'Wz. Thus < (0,Cy(q)) > cannot be a
stationary subgame-perfect equilibrium. So we cannot "push up too

far."

However consider the following optimization problem :

max 2/ q +z -2z + (0.4)2/ 0.81(q + z) + x[0.81(q + 2)]
z>0

Suppose q = 0. Given that the generation's decision rule is x( ),
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if the current agent chooses z according to x( ), then his net
lifetime benefit will be 1.6. Instead assume that the agent
chooses z = 1.8496. The next generation is supposed to choose z
accoding to x( ) :

x(0.81-1.8496)

= 1/4[[1.6 - 2/71.8496 + 1.8496]/0.4]% - 0.81-1.8496

= - 0.64207793975 < 0
This means that the next generation's decision rule cannot
be realized. They are confined to choose a nonnegative level.
Thus the worst thing that can happen to the current agent is that
the next generation chooses zero level. This implies the current
agent's guaranteed (maximin) net lifetime benefit is :

2/ 1.8496 - 1.8496 + (0.4)2/ 0.81-1.8496 = 1.8496
which is greater than 1.6. Thus yx(q) cannot be a stationary
subgame-perfect equilibrium. If a decision rule is a stationary
subgame-perfect equilibrium, then it must satisfy B-individual
rationality constraint.
There also exist a periodic subgame-perfect equilibrium of period
3 for each and every k between 0.64 and 0.71 when d = 0.4 and

u(z) = 2 y z.
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APPENDIX A : PROOFS OF PROPOSITIONS

® Proof of Proposition 2.2 : Since v is monotonically increasing, we
need to show :
1 - kd 1

- <
2 2 + kd

which is true because 2 - kd - kd2 < 2.

® Proof of Proposition 2.3 :

a(BL - BP)
ak k ¢ (0,1)
d 1 -kd 1 1 1
= ~o[v'(-——- Yom = v'( ) 2]
B 28 2 (2 + kd)8 (2 + kd)
d 1 1 1 1
= ..o[ ¢ - . 2]
8 1 -kd 2 1 (2 + kd)
u" (m———-—- ) " (m=——————— )
28 (2 + kd)g
d 1 1 1
> - [- - mm——————— ] > OO
8 1 2 (2 +kd)?
L G )
(2 + kd)B

Remark : The nondecreasing assumption of u" is sufficient for our

proposition.
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Proof of Proposition 2.4 :

a[BL(n) - BP(n)]

on
1 1 1 -1 11 ~-%kd 1 -kd -1
= y'(-¢ ). s - - v'(-e ). -5
n (2 +kd)g (2 +kd)8 n n 28 28 n
1 11-~-kd 11 -kd 1 1 1 1
E -— [v'(—. ).—. -— v'(_. ).—. ]
n n 28 n 28 n (2 +kd)g n (2 + kd)B
11 -kd 1 1
1 n 28 n (2 + kd)B
Il e e - 1.
n 11-kd 1 1
u" (_.______) u'l (_. _________ )
n 28 n (2 + kd)Bg

Proof of Proposition 2.5 : v is monotonically increasing.

Proof of Proposition 2.6 :

9k ke (0,1) B 28 2
Proof of Proposition 2.7 :

3[BL(n) - BP(n)] | 11-%kd 11-kd
] = = [y (- Yome > 0.
an n n 28 n 28

Proof of Proposition 3.1 : y is monotonically decreasing.
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® Proof of Proposition 3.2 :

a(zL - zP)
ok k € (0,1)
1 - kd -d 1 -1
= [y' (= Ye—= - u'(- )e 2]
2 2 (2 + kd) (2 +kd)
1 1 1 1
- —du[----—---_-n_ - ¢ - 2]
1 -kd 2 1 (2 + kd)
u" (- ) u" (m-=—————- )
28 (2 + kd)
1 1 1
b -d° ------------ [ ----------- ] > 00
1 2 (2 +kd)?
u" (-~ )
(2 + kd)

Remark : The nonincreasing assumption of u'" is sufficient for our

proposition.

@ Proof of Proposition 3.3 :

alzl(n) - zP(n)]

an
1 1 -%kd 1 -kd -1 1 1 1 -1
= y'(=- )e -5 u'(-- )e s
n 2 2 n n2+kd 2+%kdn
11 ~-kd 1 1
1 n 2 n (2 + kd)
- - 1.
n 11 -kd 1 1
u"(_. ______ ) u"(_. ________ )

n 2 n (2 + kd)
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® Proof of Proposition 4.1

Instead of proving directly, we show that < (0.u(q;ke,E)) > is a
stationary subgame-perfect equilibrium by constructing v(q;ke,E) from a
family, Y, of functions :

L ulq/k] + (q/k) -
u ] —aqc<e
d

Y = { y@q) : y(q;c,W) = { }

0 q>e¢

where W is a constant and ¢ is a fixed level of the argument of y(°)
which enables ulq/k] - (q/k) + dulq + y(q)] to achieve W for all q < ¢
and becomes zero for all q > c.

y(q) must be restricted to be nonnegative for all q » 0. In
particular,

L W - ula/k] + (q/k)
y(q) =u™ | ] —q >0 forallq<c

which is equivalent to :
W > ulq/k] - (q/k) + dulq) for all q < c
If ¢ is chosen so that ¢ < k6, then W must be greater than or equal to

ule/k] - (e/k) + dulc] and if ¢ is chosen so that ¢ > k8, then W must

be greater than or equal to u[8] - & + dulke].



84
Now we want the following to hold true, for all q > 0 :

(Al) ulq + y(q)] - y(q) + dulk(q + y(q)) + y(k(q + y(q)))]

> ulq + z] -z + dulk(q + z) + y(k(q + z))] for all z » O.

Firstly, for all q > c/k, y(q) = 0 and k(q + y(q)) > c. Hence, the
left-hand side (LHS) of (Al) becomes u(q) + dulkql. Suppose c/k < 9.

Then the right-hand side (RHS) of (Al) is less than or equal to :

supzy0 ulq +z] - z + dulk(q + z)] == + q.

It is possible that LHS < RHS. So we need to have the restriction :
(A2) c/k > 9.

Then (Al) holds true as an equality.

Secondly, for all q < c/k, consider the following problem :

(A3) sup ulq + z] = z dulk(q +z) + y(k(q +z2))]
23>0

If z is chosen so that k(q +z) < ¢, then (A3) becomes W + q. If z is

chosen so that k(q + z) > ¢, then (A3) is equivalent to :

:g%clk)-q ulq + z] - z + dulk(q + 2)] < & + q.
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Meanwhile for q such that e¢/k » q > ¢, y(q) = 0 and k(q + y(q)) < c;
hence LHS of (Al) becomes W + q. For q such that q < ¢, there are two
possibilities : (1) k(q + y(q)) < c or (2) k(q + y(q)) > c. 1If

k(q + y(q)) < c, then LHS of (Al) becomes W + q. If k(q + y(q)) > ¢,
then LHS of (Al) becomes ulq + y(q)] - y(q) + dulk(q + y(q))] < E +q.
Note that LHS of (Al) should be not less than max[W + q, £ + ql.

Therefore we need the follwing restriction :
(A4) W E.
To guarantee (A4), the following must hold, for all q < ¢ :

W - ulq/k] + (q/k)
1
y(q) =u™" [ ] -q < e/k -q
d

which is equivalent to :

W < ulq/k] - (q/k) + dule/k]
Note that ming¢c ulq/k] - (q/k) occurs at either (1)gq=00r (?)q =c¢
only when u[0] + dulc/k] > ulec/k] - (e/k) + dulc/k]. Since

ule] - e = ul0], c = argming¢e ulq/k] - (q/k) only when c > ke. Thus :

W < dule/k] + ulO] if c < ke

W < ule/k] - (e/k) + dule/k] < dule/k] + u[0] 41if ¢ > ke
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Therefore, by choosing ¢ = ke, W can achieve, at most, dulc/k] + u[0]
which is less than or equal to du[e] + u[0]. Hence from (A2), (A4) and

(AS) :

<W=E

(A6) {
8 < c/k = e.

Now we need :

(A7) c = ke > w.

and since :
q +uv(q) > w for allq > w
<=> ul[[E - u(q/k) + q/k]/d] > w for all q > w
<=> E » u(q/k) - q/k + du(w) for all q > w

which will be guaranteed by :

(A8) E > ulnw) —u + du(w) = Q.

From (A6), (A7), and (A8) :

max[Q,5] <K E =W

max[w/k,8] < e = c/k.
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® Proof of Proposition 4.2 : We first show that q + z(q) + 0 > w for

allq » 0 :
q +z(q) +0 =q + max[w - q,0] > 0w
Now we have to show that the following is true, for all q > O :

ulq + z(q)) - z(q) + dulk(q + g(q)) + g(k(q + g(q)))]

> ulqg + z] -z + du[k(q + z) + g(k(q + 2))] for all z > O.

Firstly, for q > w/k, z(q) = 0, z(kq) = 0, and g(k(q + 2z)) = O.
LHS = u[q] + dulkq]l. RHS = u[q + z] - z + du[k(q + 2)] < ulq] + dulkq]
since w/k > 6.
Secondly, for w/k » @ > w, ¢(q) = 0 and g(kq) = w - kq.
LHS = ulq] + dulw]. RHS = ul[q + z] - z + dulk(q + z) + g(k(q + 2))]
becomes :
ulq + z] -z + dulw] < ulq] + dulw] if k(q +2) < w
ulg + z] - z + dulk(q + 2)] if k(q + 2) > w.
< ulw/k] - w/k + q + dulw]
Finally, for q < w, 2(q) = w - q and z(kw) = w ~ kw. LHS becomes
ulw] - o +q + dulw]. RHS = ulq + z] - z + du(k(q + z) + glk(q + 2)]
becomes either (1) ulq + z] - z + dulw] < ulw] - 0w + q + dulw] if
k(q + 2) < w or (2) ulq + z] - z + dulk(q + z)] which is less than

ulw/k] - w/k + q + dulw] 1if k(q + 2z) > w.
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® Proof of Proposition 4.2 : Firstly, we show that the following

holds, for all q > O :

ulqg + ¢(q)] - ¢(q) + dulk(q + ¢(q)) + y(k(q + ¢$(q)))]

> ulq + z] -z + dulk(q + z) + y(k(q + z)] for all z > O

For q > 6/k, since ¢(q) = 0, y(kq) = 0, and Y(k(q + 2z)) =0 :

RHS = u[k + q] - z + du[k(q + z)] < ulq] + dulkq] = LHS.

For 8/k » q > w, since ¢(q) = 0 and y(kq) =6 - kq :

RHS = ulq + z] - z + dulk(q + 2z) + y(k(q + 2))]
ulq + 2] -z + du[6] < ulq] + dulq] = LHS if k(q + 2z) < 6
ulq + z] -z + dulk(q + 2)]

< ule/k] - 8/k + q + dule] < LHS if k(q + 2z) > 0.

For q < w, since ¢(q) = w - q and p(kw) =6 - ko :

ulw] - w +q + dule] = LHS if k(q + 2) < 9
RHS = {

ulg + z} - z + dulk(q + 2)]

<ule/k] - o/k +q + dule]

< ulw] —w +q + dule] = LHS if k(q + z) > 6.
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Secondly, we show that the following holds, for all q » O :

ulq + p(q)] - ¥(q) + dulk(q + ¢(q)) + ¢(k(q + v(q)))]

>ulq +z] -z + dulk(q + 2) + ¢(k(q + 2)] for all z » O

Note that k8 > w. For q > 8, since P(q) = 0 and ¢(kq) = 0 :

RHS = u[q + z] - z + du[k(q + z)] < ul[q] + dul[kq] = LHS.

For 8 » q > w, since y(q) =0 - q and ¢(k6) = 0 :

ulq + z] - z + dulw] < ulql + dulwl

< uf[el -9 +q + dulke] = LHS if k(q + 2) < w
RHS = {
ulq + z] - z + du(k(q + 2)]

< ulw/k] —w/k +q + dulw]

< ulw/k] =w/k +q + dulw] = LHS if k(q + z) > w.

L]
@
|

For q < w, since 9(q) q and ¢(ke) = 0 :
ulg +z] -z + dulw] < ulw] - w + q + dulw]
<ule] -6 +q + du[k6] = LHS if k(q +2) < w
RHS = {
ulq + z] = z + dulk(q + 2)]

< ulw/k]

|
€
=

+q + dulw]

< ule] -

<
+
£

+ du[ke] = LHS  if k(q + z) D w-.
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APPENDIX B : THE SAMUELSON PUBLIC GOOD OPTIMALITY CONDITION

First, we very briefly review the Samuelson public good
optimality condition derived from a typical atemporal model. Second,
we introduce a finite horizon model and obtain the intertemporal
version of the Samuelson public good optimality condition. Since this
model is different from the Sandler/Smith(1976) model, the result needs
a different interpretation. Third, we introduce a more general
version of our original overlapping generations model. Our intent is
not only to extend a finite horizon model but also to show the
differences between the original overlapping generations model and the
general one and the difficulties therein. This section naturally
explains why we have very restrictive assumptions on utility functions
-~ additive separability and quasi-linearity. The derivations are

gathered in the last section.

Samuelson(1954,1955) obtained a formal optimality condition for
the provision of public goods - now known as the Samuelson public good
optimality condition - from a typical atemporal model.

Atemporal model : There are two goods in the economy; one is public, z,
and the other is private, x. There are n agents in the economy, whose
utility functions are represented by vl = vi(z,x1), 1 = 1,°**,n. The
technology in the economy is given by F(z,X) = 0, where J; x! = X.

Ui( ) and F( ) are assumed to satisfy the second-order conditions.
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The Samuelson public good optimality condition can be obtained by
1
solving the following problem :

max vl(z,x!)
z>0, xi>0 _

vi(z,xi) =0l 1 =2/--.n
subject to {

F(z,X) = 0 where X = J§ =i,

The well-known (atemporal) Samuelson public good optimality condition

is [See Section 4] :

(B1) MRT,x(z,}; x1) = J; MRsi(z,x1)

Any allocation (z,x1,++,x") satisfying (Bl) is Pareto optimal.
Note that the Pareto optimal level of the public good, z, is always
jointly determined with (xl,"°,x“) rather than with Zi xl as we can
see from (Bl). In this sense the determination of the Pareto optimal
level of the public good is not free of distributional 1ssue?

One way of allowing the issue of efficiency to be independent from

3
the issue of distribution is the quasi-linearity assumption.

2 The Intertemporal Sammelson Public Good Optimality Conditiomn

We will introduce a finite horizon model.
T period model : The model is T periods long. In each period, there
are two goods in the economy; one is publie, Z, and the other is

private, x. There are n agents in this economy whose utility functions
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are given by vl = Ui(Zl,xil,"',ZT,xiT), i=1,°**,n, where Z¢, t = 1,°
++,T, denotes the total (service) level of the public good in period t
and xit denotes the consumption level of the private good of agent i in
period t. The technology in this economy is given by G(z¢,X;) =0, t
=1,+-,T, where X; = 21 xit, zZ;y denotes the new provision level of the
public durable good in period t and X; the total supply of the private
good in period t. This periodwise independent technology means that
there are limited resources for the production of the private good and
the public durable good in each period. This limitation is
independently given period by period. In other words there is no
saving technology which allows a larger pie for tomorrowt The relation
between the total (service) level of the public good in period t, Z¢,
and the previous and current provisions, zg , s < t, are given by

Zy = Z¢(z1,°°*,2¢), t = 1,°°*,T. The functional form Ze( ) implicitly
describes deterioration due to ageing and the like. UL( ), G.( ), and
Z( ) are assumed to satisfy the second-order conditions.

The intertemporal Samuelson public good optimality condition for

this model can be obtained by solving the following problem :

max vl{z1(z1),x}y, ¢+, Zp(21,* **, 2z7) ,xlg]
z¢>0,x150

ﬂilzl(zl),xil,"',ZT(zl,"‘,zT),x;T] =0, 1+ 1
subject to {
Gt(zt,):i xit) - 0, t = 1,"',!-
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The intertemporal Samuelson public good optimality condition for

our T period model is [See Section 4]

T 3Zy
(B2) MRT, x = J )i MRsi; . ———mmsi . s =1,...,T.
S s t=s tt azs t s

Note that in this model it is meaningless to define the marginal rate

of transformation between the numeraire good in period t and in period
8, since there is no relation between Gy and Gg for t # s. Therefore

we obtain a corollary to Cabe's theorem [Cabe(1982,Theorem I)]:

Corollary Pareto optimal allocation of resources requires
discounting the value of future services of a
public good newly provided in period t at a
discount rate corresponding to the marginal rate
of substitution between the numeraire good in
period t and the numeraire good in the period
in which services of the public good accrue.

Now consider the following model based on Sandler/Smith(1976,1977,
1982), Bishop(1977) and Cabe(1982), which is the same as our T period
model except for the technology.

Sandler/Smith model : Instead the technology is given by F(zy,**°,z7,
X1,***,Xr) = 0. This depicts the technological relation between the
pefiodwise public good production and the periodwise total supply of

private good across all periods.

For this model, the intertemporal Samuelson public good optimality

condition is :

T 32,
(83) MRT, x = ] JiMRSiz o -—-MRTx x s =1,-°-,T.
S S t=s t't azs t s
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Thus Cabe's theorem is obtained [Cabe(1982,Theorem I)]:

Pareto optimal allocation of resources requires
discounting the value of future services of a
public asset(valued in terms of a numeraire) at

a discount rate corresponding to the marginal
rate of transformation between the numeraire good
in the current period and the numeraire good in
the period in which services of the public asset
accrue.

With the numeraire assumption{Sandler/Smith(1976,pl156)], the technology
is simply given by F(zj,***zT,X] + °** + Xr) = 0. Then MRTx x =1 for
t s

all t,s = 1,°*-,T and (B3) becomes :

T 3z,
(34) MRTZ X = 2 zi MRSiZ x - s = 1’--0’T.
8 S t=g t't dzg

Thus Sandler/Smith's theorem is obtained [Sandler/Smith(1977)] :

Discounting the estimates of the marginal value

of the services of a public asset in each period

over the life of the asset will lead to a Pareto-

inefficient allocation of resources.
This theorem implies that we are required to "treat each person's
incremental benefits from the public good fn question equally
regardless of the time they receive the benefits"
[Sandler/Smith(1977,p255)]. We conclude this section pointing
out (l) that Sandler/Smith's theorem is entirely based on the numeraire
assumption they apply and (2) that our corollary directly applies to
Sandler/Smith model since MRTy y = MRSix x» 1 = 1,++,n, at any Pareto

t s t's

optimal allocation while Cabe's theorem does not directly apply to our

model because MRTy x is not well defined in our model.
ts
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3 Intergenerational Pareto Optimality in an Infinite Horizon

3.1 Derivation

In the previous discussion, we have derived a intertemporal
version of Samuelson public good optimality condition. However the
derivation was based on a finite horizon model. Here we will consider
an infinite horizon model. This change brings one major restriction
that we cannot have an intertemporal transformation function such as
Sandler/Smith(1976) has - so their model cannot be extended to an
infinite horizon model - and one difficult problem of grouping the
relevant agents on which the public (durable) good, provided in some
period, has impacts, when the lifetime of the public (durable) good is
finite but fairly long - not shorter than the lifetime of agents
involved.

Consider the following general overlapping generations model which
differs from the original overlapping generations model on three
accounts :

General OG model : The utility functions are more general and given by:

v0 = U°(Z1,x°1) = u°1(21,x%)) t =0

Ut = Ut(Zt,xyt,Zt+1,x°t+1) t > 1.

The technologies are more general and given by:

Gt(Zt,xot + th) =0 t > 1.
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The relation between the total (service) level of the public durable
good, Z;, and the previous and the current provisions, zg, 8 < t, are

given by:

Zy = Ze(21,000,2¢) l1<t<p

Zt = Zt(zt_p+1,"°,zt_1,zt) t > p.

These relations depict that the public durable good lasts for p (p » 2)
periods once provided and that the total (service) level of the public
good in period t is determined by the previous p-~l provisions which
still 'exist' in period t and the new provision in period t. Overall
the general overlapping generations model is exactly identical to the
original overlapping generations model we have except utility
functions, technologies, and the nature of the public durable good.
Ut( ), Ge( ), and Zy( ) are assumed to satisfy the second-order
conditions.

The intergenerational Samuelson public good optimality condition

can be obtained by solving the following problem:

max 0 = u%;(21,x°;1)

<(zt,x°t,xyt)>>0 _

subject to Ut(Zy ,xV ¢ 3 Z¢415%%+1) = Ut t>1
Gt(zt,xot + xyt) =0 t>1
Zt - zt(ZI,"',Zt) t < P

Zt - Zt(zt_p+1,°'°,zt_1,zt) t > p.
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The intergenerational Samuelson public good optimality condition is

[See Section 4]:

s+p-1 ¢ -1
(BS) MRT, x = [ Mrst=1l; . -——— [m MRS®, x|
s 8 t=s t't 5z, a=s atl a
¢ -1
+MRSt; . -—- [ @1 MRS3;, x 1] s> L
t't 3z, a=s a+l a

Note that our original model has p = » in (B5). Note also that
t-1
[n MRS2, x| ] is meaningful because agents are connected. That
a=g a+l a
is, "there is *** a common point of time at which each person can
attach an equivalent value"{Mishan(1981,p199)]. This is why we chose
an overlapping generations model. If there is a point of time where

agents are not connected, then we cannot apply the Pareto criterion[See

Mishan(1981) for a detailed discussion].

3.2 Simplification

Every < (2z¢,x%,xY¥y) > satisfying (B5) is Pareto optimal for our
general overlapping generations economy. However (B5) consists of an
infinite number of equations. This difficulty is dicussed in the
following section.

Besides the infinity problem in the general overlapping
generations model, z's and, thus, Z;'s are determined together with
x%:'s, and x¥,'s . But we want to have z¢'s and, thus, Z;'s determined
independently from x° 's and xY¢'s as in the quasi-linear case in the
atemporal model. Thus we simplify the general overlapping generations

model as follows ; the utility function are simplified to :
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o = u%y(Z;) + x%; t=20

Ut = uyt(Zt) + th + dt[uot(Zt+1) + Xot+1] t > 1.

The technologies to :

zt+x°t+xyt=w°t+wyt t > 1.

The relations between the total (service) level of the public durable

good in period t, Z¢, and the previous and current provisions of the

public durable good, zg's, s < t, to :

Z] =23 t =1
Z9 = kz] + 22 t =2
p-2
zp—l =k z] t+ o tzp t = p-1
p-1
Zt =k Zt-p+1 + ** + kzt_l + Zy t > p.

While the public durable good lasts forever with the deterioration rate
(1 - k) in our original model, the public durable good lasts for p

(p » 2) periods and vanishes completely (p + 1) periods later in this
general model.

In the simplified model one unit of the private good in period t
will be exchanged at the rate of dt with the private good in period t+1
since agent t is willing to change x¢ for x¢+} at the rate of dt, i.e.,
agent t's time preference rate. To increase one unit of the public

durable good newly provided in period t, we have to forgo one unit of
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the private good in period t. One additional unit of the public
durable good newly provided in period t will generate extra benefits
from period t to period t+p-1l.

In period t such that t < T < ttp-l, the extra benefits are, in
terms of the private good in period 1, worth

duo, uy . -t

(%] +-==] }

32y Zp 3Ly I

-t 1-1
(=21 +===] b [ e

™1 1
where [ I d2] should be understood as [ I d2] =1 when v = t. Thus
ast a=t

the values of z{'s and, thus, Z;'s are determined by :

t+p-1 u° uy -t -1
(36) 1= 8 (X1 +-—21 }x ['m @] t> 1L
s=t 3Zy Zp 3Zp I, a=t

This is a simplified version of the intergenerational Samuelson public

good optimality condition. Now compare (B6) with (B5). auas/azs]z in

-1 s
(B6) amounts to MRShZ x for h = o,y in (B5); [ I da] in (B6)
s's
t—
corresponds to I MRS&8, x 1in (BS5).
a=g a+l a

As we see from (B6), we can, in principle, determine z{'s and,
thus, Z,'s independently from x°.'s and xY¥.'s even though there are
infinite number of equations. Note that as t varies, [:éida] varies.
Thus < 2 > satisfying (B6) can be considered to be parameterized by

< dt > and < (U (*),u¥ (*)) >. We also assume further that
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(1) dt = d and (2) u%:(*) = u¥(*) = u(*) for all t » 1 in order to
avoid < zy >'s depending on the beginning of the biological time.

We conclude that (1) quasi-linearity and additive separability is
necessary for z¢'s to be determined independently from distribution of
X¢'s and (2) that the stationarity of the discount factor is necessary

for us to have some time-free results.

4 Derivations of the Pareto Optimal Conditions

() The atemporal Samuelson public good optimality condition can be

obtained by solving the following problem :

max vl(z,x1)
z>0, xi50 _

dEz,xl) = 1 =2,:---»
subject to {

F(z,X) = O vhere X = }; =i,

The corresponding Lagrangian is :

L = )3 ai{ui(z,xl) - Ui} + nF(z,X).

The first-order conditions are :

z 5 )1 AiUiz = nF,

xi; Alul, = nFy 1 =1,°c,n
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where Al and n are the Lagrangian multipliers. Then the first-order

conditions become :

F, nFp J;adul alut, ui,

—— EE esetem X = -——— = i ————— = ——

Fx nFyx nFx Al vl
(B1) MRT,x(z,}i x1) = J; MRsi(z,x1).

' The intertemporal Samuelson public good optimality condition for

this model can be obtained by solving the following problem :

max Ullzl(zl),xll,"‘.zr(zl,“‘,zr),xlr]
zt>0,x1t>0 _
Ui[ZI(zl),xil,'°',ZT(zl,"‘,zr),xir] =9l, 1 #1
subject to |
Gelze,)q xip) =0, £ = 1,°-,T

The corresponding Lagrangian is :

L = Ei Ai{Ui[ZI(Zl),Xil,"',ZT(ZI,"',ZT),XiT] = ﬁi}

- g neGe (24, x1).
by Mebelze 11 xe

Then the first-order conditions are :

T aul 3z, 3G
2 i ] LiM - omg =0 s = leeeT
t=s aZt 823 azS
aui aF
xty ;A === -y —— =0 i =1,"**,n ; t = 1,°°*,T.
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with (3ui/azy)/(aul/axiy) = MRSiztxt and (3G/3z¢)/(3G/3%) = MRT; X ,

the first-order conditions reduce to :

aF T aul 3z, aul 3z, aul
ng = J Jiale—— e e e
- dzg t=s 3Z, dzg g ; 3z 3zg axl,
z X = = = i ————————————
88 aF aul t=s aul aul
ng ——- Al —em- — -
3xXg axig axl,  axig
T 32y
= ] Iiwmesiy , ---mrsi, , .
t=s dzg t's

The intertemporal Samuelson public good optimality condition for
our T period model is :
9Z

T t
(B2) MRT, ¥ = J J; Mrsi; . -—-—-mmsi s =1,...,T.
S S8 t=s t azs ts
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[ The intergenerational Samuelson public good optimality condition

can be obtained by solving the following problem:

max U0 = 40y(z),x%)

{(zg,x% ,x¥)>>0 _

subject to UY(Ze x5 Z¢41»X% 1) = OF t>1
Gp(zy,x% +xV.) =0 t>1
Zt = Zt(zl,"',zt) t < P
Zt = Zt(zt_p.'.l,"',zt_l,zt) t > p.

The corresponding Lagrangian is :

L = A0[u%;(2z},x%) - u0;]

AE{UC[Zy %Y, Z¢41,%0¢4+1] - UL}

+
w18

t=1

neGe (ze,x% + ).

)
ne~-18
—

The first-order conditions are:

s+p-1 aut=l a3z, aUt 3z, 3Gg
zg 3 E [at=] —momm - + At - e -ng ——— =0 s>
t%s 3Zy  dzg 3Z, dzg dzg
aut-l 3Gy
x0p 5 At7D —emee -ng ——==0 t > 1
axot axt
aut 3G,
xVg 3 AL === =g === = 0 t > L
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With (3Gr/d2¢)/(3Gc/3%e) = MRTy x , (3UE/32¢)/(aUE/axVc) = MRS

and (aUt‘l/azt)/(aUt'llaxot) = MRSt'Itht, the first-order conditions

becomes : .
3Gg  g4p-1 aut—1 3z, aut a3z,
W e T
dzg 7S 3Zy  3zg 3Zy 3zg
(1) MRT, x = - -
s 8 9Gg 3Gg
Ng =~ Ng ~~=~
aXg 3Xg
aut-l 3z aut 3z
At-l _______ E AL - - E
s+p-1 9Zy Odzg 9Z¢ 3zg
= [ + ]
tes aus-1 aus
Pl Jp— AS ————
3x%g axYg
aut-1 3z, aut-1 auUt 3z, AUt
P il P —— P it — At —— — At ———-
= +
t=s aut-l aus~l1 aut aus
PN Sl Jp— A=l e R — AS ————
3x%¢ ax° axY¢ XV g
sut-l Ut
At-l _____ AL e
s+p-1 0Z¢ %0 3Z¢ axYe
= [ MRSE=l; o —om e + MRSty , -—= ---———-
t=s LTt 3z aus—l tTt 324 PYES
PY: g — AS ———-
3x0g axYg

If t # s, there is no ready interpretation for

aut-1 aus—l aut JUS
at=l e / A8=1 —eeec apd At ——— / A8 -—--
3x%¢ 3xO%% axY¢ XV g

since t and s belong to different generations. However, defining

MRSt‘lxtxt_.1 = (3Ut=1/5x0.)/(aUt~1/3xY 1) we obtain :



aut-l  aut-1 jut-1 jyt-2 jyt-2 austl gys*l jys  aus
(ii ) 8x°t ax°t ath_lax°t_lath_2 3X°s+23 xys+1ax°s+1axys
a = LI ]
aus-l  aut-l jut-2 jut-2 jyt-3 austl aus  aus  aus-l
9x%g XY 1 —19%0 19V + _28x%¢ -2 3% g413x05413xYg  3x%g
Ag-2 At-3
= MRSt=-1 ——== MRSt-2 ——— ees
XeXe-1 Xe-1%¢-2
At-1 Ag-2
Ag Ag-1
s s MRSS+1X % — - MRSSX x [P
s+27s+l Ag+1 s+1l7s Ag
= Mrst-l MRSt —2 oo sMRSSH1 MRSS if:l
¥¥e-1 Xe-1%e-2 R
aut  aut aut-l ut-l jut-2 aus*2 jus+tl 3ys+l jys
(Lib) ax¥y  3x¥y 9x% 9xV-19x%: -] %Y g4+20x%5+29%xY g4+19x%x% 41
aus  aut-laut-l jut-2 jyt-2 aus*l jus+l gys  3us
axYg  3x% 9%V -19x%-13xY 2 %05 4+29%Y g419%0g413x%Y ¢
At-1 -2
At tt=1 )‘t-l t=-1"t-2
As+l As
[ MRSS+1x % -—-- MRSS,
As+2 s¥27s+l 3o4 stls
Ag
= MRst—1 MRSt-2 ees MRgS+l MRSS -
Xe¥e-1 Xe-1¥e-2 Xg+2%5+1 xs+1xs)‘t
Substituting (iia) and (iib) into (i), we can derive the
intergenerational Samuelson public good optimality condition :
s+p-1 2t ¢-1
(BS) MRT, x = +§ [ MRst=l; . -—— [ 1 MRS3; x|
s s t=s t't 5z, a=s a+l a
3Z¢ -1
+MRSt; . -—— [ 1 MRS8;, x]] s> L
tt 5z a=s atl a
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Footnotes of Appendix B

4.

"Let us suppose that this will be supplied later and that we know
in advance it will have the following special individualistic
property: leaving each person on the same indifference level will
leave social welfare unchanged; at any point, a move of each man to
a higher indifference curve can be found that will increase social
welfare." [Samuelson(1955)]

Bergstrom/Cornes(1983) identified the restrictions on utility
functions under which allocative efficiency is independent from
distribution in the theory of public goods. The condition is :
Ui(z,xi) is of the form Al(z) + B(z)xi. Also see Cornes/Sandler
(1986) pp. 95-98.

Quasi-linearity is more than neccesary. It is a special case where
B(z) = 1.

See Cabe(1982) and Sandler/Smith(1982) for this concern.
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APPENDIX € : NON-EXISTENCE OF THE NONSTATIONARY LINDAHRL EQUILIBRIUM
Recall that the old agent's problem 1is :

max u(q + 10) - po1o
19,0

and we get the old agent's demand schedule :
19(p°;q) = max[u(p®) - q,0]

where p = [u']‘l. Let us define :
v(p®;q) = ulq + 19(p°;q)] - p°1°(p°;q).

Then the young agent's problem is :
max u(q + 1Y) - pY1Y¥ + dvip%;k(q + 1Y)].
1750

Thus the young agent's demand schedule is :
1Y(p¥,p%3q) = max{u(p¥ - kdp®) - q,0].

Then the lining-up condition is, since y is monotonic :

p° = p¥ - kdp°.
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However for the nonstationary Lindahl equilibrium, it becomes

(1 - 2p0,)
P%: = pYy — kdp®¢4) or pO4) = —mm-————-
kd

with 1 = p9 = kdp% 4} > 0. For the above equation to be well-defined,

we need :
1/4 < (2 - kd)/4 < p° < 1/2 for all t.
-2
Since 1 EE $ > 1, there is no nonstationary Lindahl equilibrium. The
(1 - 2p%t)
intersection between pO 41 = ----EEE—-— and p9 = p% 4] is the only

stationary Lindahl equilibrium given k and d. See Figure C.
In general, the lining-up condition for the additively separable

quasi-linear case is :
e (1 = pOp = kdp©p41) = u%e(p%;)
where pa3;, = [uat']'1 for a = y,0. If we totally differentiate the

previous equation, then :

dpOr41  uO%' + WYy’

= < -1

dpot - kd'uyt !

since p3;' < 0 for a = y,0. Thus the non-existence result holds again.
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FIGURE C : Non—existence of the Nonstationary Lindahl Equilibrium

POt+1
~
1 - 2p°t
PO+l = "”;;""
P%r+1 = P%
1/2 //
po*
1/4

1/4 po* 1/2
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APPENDIX D : DISCUSSION OF THE CASE WHERE
(u,d,k) IS SUCH THAT Q > Z AND o < k6

]

Define 10 as u[rO] - 1° + dulw] =ul8] - 8 + dulke}. Note that

0 < w/k. Then there are three subcases :

w T
(1) ul®/k] - %/ + aule] > ulw] - w + dulw]
(2) ulwl - w + dulw] > ule] - 6 + du(ke]
> ult®/k] - 1%/ + aule]
(3) ulwl] - o + dulol > ulz®/k] - t%/k + dule]
> ule] -6 + dulke].

For Case (1), there are three periodic equilibria of period 3. Define

r1 - g 0<q<uw
0 w<q-«< 10
z2°(q) = | )
8 - q T <q< 9
| O 0 < q

and go(q) = max[ro/k - q,0]. Then z°(q) is the best response to z(q),

Eo(q) to ¢£°(q), and z(q) to £%q).
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First, consider the following maximization problem :

max ulq + z] = z + dulk(q + 2z) + g(k(q + 2))]

z>0
0<q+z< awk w/k € q
0<q<uw zZ=w-q z2 =06 -q
ulw] —w +dufw ] +q * ule] - 6 + dulke]
w <€ q < To z=0 z =90 -q

ufe] - 0 + dulke]

ufq] + dufw] *

10 < q € w/k

z =0

ulq] + dulw]

z =0 —-q

ule] - 8 + dulke]

w/k < q<8

z=0

ulql + dulkq]

z =0 -q

u(6] - 8 + dulke]

z =0

ulq) + dulkql

z =0

ulq] + dulkq]

where * denotes the corresponding maximum.

Hence ;O(q) is the best response to z(q).
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Secondly, consider the following maximization problem :

max ulq + 2] - z + dulk(q + z) + % (k(q + 2))]

z>0

There are two cases : either tO/k < 0 or To/k > 8.

Case : 6 < ro/k

0<q+z m/k0< q+z To/k < q 8/k < q + 2z
< w/k <1 /k < 8/k
0<q<uw .z =4 - q 'z =90 - q .z = rolk -q .z =p8/k - q
ulw] - w ule] - o ult®/x] - %/ ule/k] - o/k
+ dulw] +q + du(ke] +q + dule] +q =« + dule] +q
w<q 'z =0 .z =9 -q .z =0 - q .z =g8/k - q
< w/k 0 0
ulq]l + dulw] ule] -9 ult /k)] -1 /& ule/k] - o/k

+ dulke]l +q + dule] +q =« + du[e] +q

w/k < q ) .z =9 -q .z = rofk -q .z =98/k - q
< 8
ufe] - o ult®/] - <%/ ule/k] - o/k
+ dulke] +q + dule) +q = + dufe] +q
8 <9 ) .z =0 .z =% - q .z =98/k - q
<t /k o 0
ulq] + dulkq] wult /&) -1 /kx ule/k] - 6/k
+ dule] +q « + du[e] + q
/K < q ) . .z =0 .z =9/k - q
< 6/k
ulq] + dule] ule/k] -6/k
x + dule] + q
e/k < q ) ’ .z =0 .z =0

ufq] + dulkql* ulq] +dulkql*

The same result holds for Case : rO/k < 6. Hence go(q) is the best

response to go(q).



113

Thirdly, consider the following maximization problem :

max ulq + z] - z + du[k(q + z) + go(k(q + z))]

z>0

0<q+zc< (10/k)/k (19/&k)/k < q
0<q<ow .z=w-q .Z=(T°/k)/k-q

ulw] - w + dult®/k] +q * ule] -6 + dulke] +4q
m<q<m/k.z=0 .z=(r°/k)/k-q

ulq] + dul<®/x] *  ule] -8 + dulke] +q
w/k < q Tz =0 .z=(‘r°/k)/k-q
< (10/K)/x 0

ulql + duft /k] * ule6] - 8 + dulke] + q
(tO/k)/k<q.z=0 T z=0

ulq] + dulkq] * ulq] + dulkq]

Hence z(q) is the best response to go(q).
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For Case (2), ulg8] - 6 + du[ke] » ul[t%/k] - 19/k + dul6] implies

t0/k since ® > k8. Consider the following maximization problenm :

max ulq + z] -z + dulk(q + z) + z;o(k(q + z))]

z>0
0<q+z m/k0<q+z to/k<q 8/k < q + z
< w/k <t /k < 8/k
0<q<m.z=m-q .z=6-q .z=-ro/k—q.z=e/k-q
ulw] - o ule] - 6 ult®/&] - 1%/ ule/k] - a/x
+ dufw] +q * + dulke] +q + dule] +q + dufe] +q
m<q<r°.z=0 .z=e-q .z=r°/k-q.z=9/k-q
ulq] + dulw] ule] - @ ult®/k] - %/ ule/k] - 6/k
* + dufke] +q + dulp] + q + dule] +q
-ro<q .z=0 .z=e-q .z='r°/k-q.z=6/k"q
< w/k 0 0
ulq] + dulw] ule] -9 uft /k] - 1 /k ule/k] -o/k
+ dulke] + q * + dule] + q + dufe] + q
w/k < q ) .z=e—q .z=r°/k—q.z=e/k-q
<0
ule] - o ult?/x] - %% ule/k] - 6/k
+ dulke] + q * + dule] + q + dule] + q
8 < q ) .z=0 .z=r°/k-q .z=9/k—q
0
<t /k 0 0
ulq] + dulkq] wult"/k) -1 /k ule/k] - 6/k
+ dule) + q + dule] + q
'ro/k<q. ) .z=0 .z=e/k-q
< 8/k
ulq] + dufe] ule/k] - 8/k
% + dule] + q
6/k €< q ) ) ) .z =0

ulq] +dulkq] *
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Note that, for 68 < q < tO/k, we do not know which is larger,
ulq]l - q + dulkq] or ult0/k] - 10/k + du[e]. However, since
ult0/k] - 0/ + dult®] < ult%/k] - t9/k + dule], we can define :

1

e (e,to/k) : u[tll -1 + du[krll = u[t0/k] - t0/k + dule]

and, thus,

sl - q 0<q<uw
0 w < q < 7°
0
1 e -q T < q< 8
g (q) = { )
0 6 <q< T
tolk -q Tl < q < ro/k
L 0 %/ < q

Consider the following maximization problem :

max ulg + z] - z + dulk(q + 2) + g'(k(q + 2))]
z>0
Then there are three subcases for Case (2) :
(2.1) ult*/k] = 2/ + ault®/k] > ule] - w + dulw)
(2.2) ulw] = w + dulw] > ule] - 6 + dulke]
> ult!/k] - t¥/k + dulr®/k]
(2.3) ulw] - o + dulw] > ult!/k] - e}/ + aul<® /]
> ule] - 6 + dulke]
For Case(2.1), there are four periodic equilibria of period 4. Define
£1(q) = max[t! - q,0]. z(q) is the best response to gl (q), £l¢q) to
£ (@), (@) to %), and £%(q) to z(a).

For Case (2.2), there will be three subcases in the similar way.
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For Case (3), consider the following maximization problem :

max ufq + z}] - z + dulk(q + z) + Co(k(q + 2))]
z>»0 '

There are two cases : either To/k £ 8 or ro/k > 0.

Case (3a) : 8 < tO/k

0<q+z w/k < q+z /K < q 0/k < q + z
< w/k < 0/ < 8/k
0<q<uw .z =g ~q .z =9 - q .z =K - q .z =98/k - q
ulw] - o ule] -0 ult®/x] - t% & ule/k] - o/
+ dulw] +q * + dulke] +q + dule] +q + dufe] + q
w<q¢< ro.z =0 'z =90 -q .z = - q .z =8/k - q
ulq] + dulw) ule] - o ult®/&) - % & ule/k]l - o /x
+ dulke] +q + dule] +q + dufe] +q
% < q .z =0 ‘z =9 -q .z = rofk -q .z =8/k - q
< w/k 0 0
ulq] + dulw] ule] -0 ult /k] =t /xk ule/k] - 8/k
+ dulke) +q + dule] +q % + dul6] +q
w/k € q ) .z =9 -q .z = to/k -q .z =8/k - g
< 9
ule] - o ult®/x] = % & ulo/k] - o/
+ du[ke] + q + dufe]l +q =« + dule] + q
_e < q ) .z =0 'z =0 - q .z =6/k - q
0
<t /k 0 0
ulq] + dulkq] wult /k] -1 /& ule/k} -6/k
+ dule] +q =« + dule] +q
%/ < q ) ) .z =0 .z =9/k - q
< 0/k
ulq] + du{e] ule/k] -8/k
* + dufe] +q
6/k < q . . ’ z=0

ulq] +dul(kq] *
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1 € (m,ro) such as ulel1] - 21 + dulw] = ult®] - <0 + dufe]

and, thus,

-1 -q 0<q<uw
) 0 w<q < 211
pr1(d) =1 1 0
t /k -q L1 <qg< T /k
L0 /% < q

There will be three subcases for Case (3a) again.

For

Case (3b) : 0 > ro/k, define similarly 2lz ¢ (w,To) such as

u[llzl - 212 + dufw] = u[rol - 19 + dufe] and, thus,

Pl-q 0<q<(ﬂ
0 w < q < 212

1

pril@) =1 1 0
t/k -q L'2<q<1t/k
L 0 9/ < q

There will be three subcases for Case (3b).

Therefore, given (u,d,k) € { (u,d,k) : W > Q and w < k6 }, we can

continue
periodic
goes on,
lifetime

have not

this process on and on. In every step, either we will find

equilibria or we will continue again. However as the process
the number of constraints increases and the difference of the
net benefit from approximation becomes insignificant. Yet we

found any general result for the case where W > Q and v < k6.
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