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A variational principle is not generally satisfied in steady-state quantum transport as opposed to the case of
ground-state problems. We show that for a short-range potential, a functional for the scattering amplitude can
be introduced that is stationary for arbitrary variations about the exact scattering wave function. However,
except for the special case of spherically symmetric potentials, the functional does not satisfy any minimum
principle even in linear response and for single-channel scattering. The absence of a minimum principle puts
severe limitations on the choice of trial wave functions in transport calculations. Examples of electronic
transport in selected quantum wires will be presented to illustrate the problem.
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The variational method is a powerful tool to estimate theing at that energy andii() the potential does not support
ground-state energy of a particle with Hamiltonigit The  bound states or, if it does, the radial part of the Hamiltonian
method relies on the use of a trial wave functign(or a  has a negative expectation value on the bound states-trial
family of trial wave functiony which reproduces as closely wave functions'.
as possible the actual ground-state wave funciigg. The In recent years, electric-current calculations have received
functional renewed attention in view of the remarkable experimental

progress in nanoscale electronicén particular, computa-
_ (x[H[x) tional methods are being developed that address fundamental
[x]= (xIx) 1) issues in quantum transport in nanoscale structures from first
principles®~* These types of calculations are shedding new
has then the property that light on the microsiécg)gizml%chanisms of electronic transport
in nanoscale devices.”*“~These methods rely on either
Elx]=Ecs=(vedH|¥e9- 2) the self-consistent solution of the Lippman-Schwinger

If the trial wave functiony depends on certain parameters, €quatiofi~ or the Keldish nonequilibrium Green's function
then due to Eq(2), the best estimate for the ground-stateformalism°~**In the noninteracting quasiparticle approxi-
wave function and consequently the ground-state energy cadhation, both approaches are equivalent. In this type of cal-
be obtained by minimizing the functionfEq. (1)] with re-  culation, the basis set used to represent the scattering-wave
spect to these parameters. Total-energy calculations if¥nctions ranges, as in usual total-energy calculations, from
condensed-matter physics, for instance, are based on suctogalized basis functions to plane waves? The choice of
principle? The families of trial wave functions used in actual One basis set with respect to the other depends on numerical
calculations vary from linear combinations of atomic orbitalsconvenience. However, unlike the case of total-energy calcu-
to p|ane waves, and the choice of one fam||y with respect tdations and for the reasons described above, caution has to be
another depends mainly on numerical conveniénte.all  used in choosing a given family of trial wave functions.
choices, however, confidence in the convergence of the re- In this paper we show that for any short-range potential, a
sults with respect to the best estimate of the ground-statinctional for the scattering amplitude can be introduced that
wave function is guaranteed by the existence of the varials stationary for arbitrary variations about the exact
tional principle[Eq. (2)]. scattering-wave function. Except for spherically symmetric
Electronic transport in a given sample connected to exterPotentials, however, the functional does not satisfy any mini-
nal reservoirs is neither an equilibrium nor a ground-staténum principle. In this case, the calculation of the current
problem. The physical observable that one needs to calculag®uld thus show large errors if completeness of the basis set
in this case is the electric current across the sample. In geris not properly checked. We will illustrate the problem with
eral, therefore, one should not expect to have a minimun$elected examples of transport in quantum wires using plane
principle from which the best estimate of teeattering am- Wwaves as the basis set.
plitudes can be obtained. Note that the absence of such a Our starting point is the integral Lippman-Schwinger
principle puts severe limitations on the choice of trial waveequatiof’ that can be written for each scattering energy in
functions in transport calculations since a minimum principleoperator notation as
is necessary to uniquely determine the best estimate from a
family of trial wave functions This problem was recognized
a long time agd.It was demonstratédhat a minimum prin-
ciple still applies to the scattering amplitudes for a spheri-
cally symmetric potential at zero energy for the very specialvhereG® and|¥°) are the Green’s function and wave func-
case wherti) a singles-wave channel contributes to scatter- tion, respectively, of the system in the absence of the scat-

W) =[¥°)+GoV|¥), 3)
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tering potentiaV. The potentiaV is assumed to tend asymp-
totically to zero more rapidly than ./ The wave function
|WO) satisfies usual scattering boundary conditibHsWe
now introduce a functional for the scattering amplitude. The
latter is proportional to'’

f=(Vo|V|WP). (4)

For a given energy and for single-channel scattering the
current is simply proportional to the scattering amplitude.
Under these conditions then, stationarity of the scattering
amplitude implies stationarity of the current. We introduce
the following functional

[(POIV]x)|?
(xIV=VG®V|x)

We first show that ify=cW¥, wherec is a proportionality
constant, therA[ x]=f, i.e., it is proportional to the exact
scattering amplitude. Indeed, the wave functiprsatisfies
the Lippman-Schwinger equatidn

Alx]= ©)

[xX)=c|¥°)+GV|x). ©6)

The denominator of Eq.(5) therefore reduces to
c?(WOV|W), which exactly cancels a factor from the nu-
merator to giveA[ y]="f.

We are now left to demonstrate that for any arbitrary
variation of y of the type
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FIG. 1. (a) Schematic of one of the systems under investigation.

|x)=cl¥)+|5x), @) Three atoms are sandwiched between semi-infinite bulk electrodes.
the functional[Eqg. (5)] is stationary. To first order in the (b) Schematic of the total effective potential of the bare electrodes
variation 8y, the variationsA is with biasVg. The left electrode is positively biased. Electrons in-
cident from the right electrode are partly transmitted into the left
SA=2( 5X|V|\P°>—(5X|V—VG°V|\I’>. (8) electrode with probability, and partly reflected back into the right

electrode with probability.

The variationdA can be zero for arbitrargy if and only if

computed by solving the Lippman-Schwinger equafiig.

|gy=2V|¥%) —(V-VGV)|¥) (90  (3)]iteratively to self-consistency in steady state for the con-
_ o tinuum part of the spectrufh’ The bound states, if any, are
is zero. This implies calculated by direct diagonalization of the total

(1-G°V)| W) =Db|¥O), (10

Hamiltonian! Exchange and correlation are included in the
density-functional formalism within the local-density

whereb is a multiplicative constant. The last equation is theapproximation'® The current at zero temperature is com-
solutionbW of the scattering problem. system by integrating the energy region between the right
For a spherically symmetric potential the functiofe. ~ and left Fermi levelgsee Fig. 1)]. The continuum region

(5)] can be decomposed in partial-wave contributions, eac
of which is proportional to the functional introduced by
Schwingef In this case a minimum principle is satisfied for
singles-wave-channel scattering and no bound st&f€dn
general, however, the functionplEq. (5)] does not satisfy
either a minimum or a maximum principle.

Hetween the bottom of the left-hand electrddelicated as
Vef(— ) in Fig. 1(b)] and the right Fermi level has been
divided into 40 energy points and convergence has been
checked by increasing the number of energy points.

For each scattering energy, we are now faced with the

choice of the trial wave functions to represent the best esti-
mate of the exact scattering solution. We choose plane waves

We now illustrate the implications of these findings for {4 represent the wave functiohs\part from other technical
actual calculations. We restrict ourselves to the study of S€advantages, like, e.g., the fact that the Green’s funoB6n
lected atomic wires. A schematic of one such wire is repreang the potentiaV can be analytically written in this basis
sented in Fig. (&), where a sample is sandwiched betweenset, or the absence of Pulay-like forces in the calculation of
two metal electrodes that we model with ideal met@s  current-induced forces® plane waves form a complete set in
lium mode).®’ The two electrodes are kept at a finite bigs ~ any Hilbert space, and convergence of both scattering ampli-
(see Fig. ), where we have assumed the left-hand electudes and electric current can be easily checked by simply
trode is positively biased The electron wave functions are increasing their number in the family of trial wave functions.
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FIG. 2. Current vs number of plane waves for one H atom

sandwiched between two bulk electrodes. The bias is 0.01 V. The FIG. 3. Current vs number of plane waves for three Si atoms
inset shows the density of states as a function of energy. The zemandwiched between two bulk electrodes. The bias is 0.1 V.
energy value is taken as the left Fermi level.

=0.1 V. The Si atomic positions are kept equal to their re-
We stress here that any other basis set could be used laxed value at zero bias: the Si-Si distances are 4.2 a.u., and
principle provided that convergence with increasing numbeghe left and right Si atoms are at 2.1 a.u. from the electrodes
of basis functions be checked. In the examples below, fokS€e Fig. 1a)]. It is evident from Fig. 3 that the current for
each total number of plane waves the total charge density dlifferent values of the number of _plane waves can be either
the system(sum of the charge density from both the con-!arger or smaller than th@symptotically converged current
tinuum and discrete part of the spectfinhas been con- (dotted line in Fig. 3 Furthermore, convergence with the

verged to less thanx110 3% for each plane-wave compo- number of plane waves is reached in an oscillatory way. It is
nent also evident from this figure that relative errors of as much as

o . : :
In Fig. 2 we plot the electric current as a function of the 30% in the value of the current can be obtained with a fixed

: number of basis functions.
number of plane waves for a single hydrogen atom between |, summary, we have shown that for any short-range po-

two metal electrodes.. The distance of the hy.drog.en atonHential, a functional for the scattering amplitude can be intro-
from the electrodes is 4 al. The external bias iVe g ced that is stationary for arbitrary variations about the ex-
=0.01 V (linear-response regimend thes orbital of the 50 gcattering-wave function. The functional, however, does
hydrogen atom is mostly responsible for transport in this, ot satisfy any minimum principle. This puts severe limita-
system(corresponding to the peak of the density of states injqng in the choice of trial wave functions in transport calcu-

the inset of Fig. 2 Furthermore, the scattering potential has)ations. In particular, this study shows that a fixed number of
almost spherical symmetry in the region of interest, and thgy,is functions is not generally enough to assure conver-
total Hamiltonian does not support any bound state. Tht=gence in electric current calculations.
physical situation then corresponds to the one for which the
functional [Eq. (5)] satisfies a minimum principle. This is This work is supported in part by the National Science
clearly evident in Fig. 2 where the current for a fixed numberFoundation Grants No. DMR-01-02277 and DMR-01-33075,
of plane wavedor equivalently the scattering amplitude in Carilion Biomedical Institute, and Oak Ridge Associated
this linear-regime cages always larger than th@symptoti-  Universities. Acknowledgement is also made to the Donors
cally) converged currentdotted line in Fig. 2 of The Petroleum Research Fund, administered by the
As we have shown in this paper, for a general short-rang@&merican Chemical Society, for partial support of this re-
potential a minimum principle is not guaranteed. This case isearch. The calculations reported in this paper were per-
illustrated in Fig. 3 where we plot the electric current as aformed on the beowulf cluster of the Laboratory for Ad-
function of the number of plane waves for three Si atomsvanced Scientific Computing and Applications at Virginia
between metal electrodes. The external potentialVis  Tech.
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