
Class Hierarchy Design
or

Space Time Problems

by

Sanjay Chopra

A project report submitted to the Faculty of

Virginia Polytechnic Institute and State University

in partial fulfillment of

the requirements for the degree of

Master of Science

in

Computer Science

Approved:

. Dr. a Kafura

Committee Chairman

Cdman Bales Saw.

Dr. Osman Balci Dr. Sallie Henry

Committee Member Committee Member

July 1995

Blacksburg, Virginia

Key words: Class Hierarchy, Object Oriented, Space time, Simulation

Class Hierarchy Design
or

Space Time Problems

by

Sanjay Chopra

Dr. Dennis Kafura, Chairman

Computer Science

Abstract

The purpose of the project is to design a class hierarchy that will aid in the development of

simulations for certain space time problems. The class hierarchy and the problem domain to

which it applies are illustrated by considering simulations of three representative problems: a

pool game; a collision detection system for robot arms; an automated highway system. The

emphasis in the simulations is on the class hierarchy. The class hierarchy contains base

classes to model objects, space, time and interactions among objects. These classes could be

applied to other similar problems in the problem domain. For example the class objects help

to model various objects like cars, pool balls, robots, trains, birds etc. Class space allows the

user to subdivide the problem space into smaller dynamic sub-spaces. The user can define

rules to decompose the space into 'n’ smaller spaces when there are more than 'x' objects in

the space.

Class Hierarchy for Space Time Problems il Virginia Tech

Acknowledgments

I wish to express my Sincere appreciation and thanks to Dr. Dennis Kafura for his invaluable

guidance and instruction through the project. His cheerful and friendly support made the

work very enjoyable.

I would also like to thank Dr. Osman Balci and Dr. Sallie Henry for being on my defense

committee, and for their excellent teaching.

My thanks to every one at the Reactive Systems Laboratory, VPI&SU for maintaining all

systems in great condition, particularly Actor.

Finally, I would like to acknowledge with deep gratitude the many opportunities provided to

me by my parents; the love and support of my fiancée and brother, that have made this

project possible.

Class Hierarchy for Space Time Problems ill Virginia Tech

List of Figures

re Figure Description Pree

WOT xo Number

1 Class hierarchy 5

2 Various objects in AHP deriving from Class Object 10

3 Subdivision of circular space 13

4 Sample screen, widgets defined for OOSPG 21

5 Class Hierarchy of OOSPG 22

6 Collision between ball and line - various cases 25

7 Dynamic spaces with df = 4, 1 33

8 Sample space object list 34

9 Class Hierarchy for RACDS 37

10 Class Hierarchy for AHP 39

11 Proposed CD model for AHP 4]

12 Alternative CD model for AHP 4]

13 Collision Checks v/s Space DF’s 44

Class Hierarchy for Space Time Problems iv Virginia Tech

Contents

ABSTRACT. ccc ccc cc cece cere n cece erences eeseceesesecceeseenseeees bo cccensrscccccssccuscccccses iI

ACKNOWLEDGMENTS.ccccccescccesccceesccseeeeenseeceeseesescceenseneeeesesseesaenes III

LIST OF FIGURES..........ccccccccceccecceneccees Cone cece tere rect cen seeeecessucaceesnccnecssonee IV

1.0 INTRODUCTION.cccccsccesccceseeceescccesesessenseeeees che aaccececctcccesseceseesecs 1

1.1] PROBLEM DOMAIN ..0........:ccccvccecceeeceeueeeeeseeeeee nena ee eee e eects eG eee EGGEEGEGH EASES TES; A SAGES EE EEE EEE EEE EEE EEE EE EE 1

LD] Pool game Simulations... 0.00. ccccccc cece cece ccc tenn ened ete e AEE EEE EEA EE EE EE DEAE EEG EAD ECU EEE SEEGER EGET BEES 3

1.1.2 Robot arm collision detection SYStem:cccccccccceeecc cece tece teen nece beeen ecu ceanesee een esaneaeeeneseanes 3

1.1.3 Automated highway problemen... ccccccccccccccccccteceteceeee ence neee ence eee e een ee eae e cea eeeeetneeen sean esneteaaes 4

1.2 CLASS HIERARCHYcccccccseee cece eee e ree beer e EEE DERE DEED LESS CHEE; EEE IEE DEEEE DEES GHEE EESUEEEEE EE EEL EO MEER SOLE EES 4

P21 ClASS VeCtON oo. oie cece eccc cece ene e cee e ec eee ene ene ee nee eee eee DEE EU DEED EEA G EGTA EAM EOAESeaE EEG EE GaSe GH esa peHA RSG HEEEE ES 5

T.2.2 ClaSS SHAPE... cece cee keke Eee EDEL DEE DEE EEE EEA EOD DE DEES EEO EE EDI ELA EASE EEO R EERE EEEE DEE ES 7

Di2.3 LINC Ar ccc een OnE EEE EEE EE EEE EET EE DUDS SESSA EDDA DEORE EE EED ES LOOSE REEL DEERE DEORE DED EE EES 7

1.2.4 RECtANQUIAD. 00... cecil e cette tek een e ene DEAD NED E EEO HEED EOEEE ADE DS TEBE DS UES EEE DEES EOD EEE EGE SE EER EO ES HEHE SEE ES 8

DiQ.5 CUCU arc. ccc ccc cece cence eee eee e eee ence ee EERE EERE DESDE SEO D ESTES MEAG EGE SEAS A EEG EERO HEH EEA SESE Ee DESEO HERE OHS 9

T.2.6 ClasS ODJOCE 0. ccc cececc cece cece nee nected been ttn cede een EE DECADE EAD U EEA DA DESO DEG EOD EE EEDA E ROG ESH SSO EO HRSA EA DESH EE EEE ES 9

1.2.7 Stationary ODjJeCHS.... 0.00. cccccce cece ence cette eee e ene EE EEA DEEDES EEA DE EES SESE DEE EEE EAMES EEE g SHEE E EOE 10

1.2.8 Mobile ODjeCts. 00.0.0 0cc ccc cccccccc nee e teen ee een n eke eee e ee DEE EE EE DECODED EEE E EEE EO EEH DED ET ESSE ES EAD ESE Ee DEE EEE ESE Il

1.2.9 ClASS SPACE oo. ccc cccc ence teen c cece tent e een e nee E EAE E DEED EEE EDEL EEE EE DOD EE DEORE DED ES SERS GEE EE REESE DEERE EE EE ES I]

1.2.10 Class Object Listccccccccccccecc etc en cence nec e tee tee nee e EDLC REECE EADS EEE EO EEE OEE DOE REEL EEEE DEG EERE E EEE ES 14

T.2.1] Class Rule... cic cccccccccccc cect cence teen eee cee n cee e eke nen EGO EEE E EDGE EU EG EO EET ES DES EEE EG EE EEO ben ESE e a EEE eH EEE SS 14

L.2.12 Class LLISt ic... cccccc ccc ccc cece recente eee nbc cnet eee ne enone AEE DEED SAGE OE ECU ESHA AGES tC eG EOE EE EEE Eta SSE een EE EE ES 15

2.0 AN OBJECT ORIENTED SIMULATION OF THE POOL GAME (OOSPG)........ 17

2.1 THE SIMULATION.ccc ccc cec cece cece e eee ence ene eR ene A EERE EED EEE EEG EEG ED REET EAD EO REG EEE EE EE ROE; ROHL ESE EE EEE ES 17

2.1.1 Termination of the simulation Step. i... ccccccccccccec cece teen nee EEE SELES EEE ES eA EEE SHEE EEE 19

2.1.2 Graphical User Interface.cccccecnec nec n cree tee eet tet eee e een e nen DE DEES TEED EERE EEG E EEE E SSE O ESE DEES EEE 19

2.2 BALL 20... ce cccc ccc cec cece e eee n cent ene en kee d een EOLA AE EEE DOG EE CHES EE DEED EES EEO EEO EOI EGG EEE EES DEE DEEDES EE EE EE EOH DEAE EH EEE ESS 22

2.2.1 COLLISIONS oo ccc ccc ccc cccc cece eee e cee ene te eee enn ene LEAN EA DESH EEE OSE EG ODED; GDEG HAGE OEO DEG EO GSA EDO D ES BEG ea bE EES b ERS 24

2.2.2 Collision Detection And Resolution.........c.cccccccccsccucc nee necc teen een eee see nee eee eenecteeeeeeeeaneaneneeness 24

Q.3 CUE. ccc ccc ec ee cece cree nee ne ened ee An AEE PEGE EG ECH EEG EEO DOH EEG DSA I EAD EEE E; GORGE EG DEOE can eu etEeeH ote se EeE EEE REESE EEE: 30

Class Hierarchy for Space Time Problems Vv Virginia Tech

2.4 HOLE (POCKET)ccccecececcsececseeceecveueecuceneeseusseseuseusncusaveneceeeenensucaeeeeresecusaeneesasaveseseeaens 31

2.5 WALL 20... ccccccecece cece ccsecectuceecenscnecseasaeneeseastaeesneesenenseaeusneetereraeacuneasuseaeuetasneesenetseaetetatsenens 31

ON) 7.0) 32

2.6.1 Dynamic vs. Static SPQC€.......cccccccecc cece eeenece ec eee cee e nee e eee nee Geese eG EEG EE DREGE EEO EEG EGA E Ed EEE REARS EEEEES 34

3.0 ROBOT ARM COLLISION DETECTION SYSTEM (RACDS)...........cccccccsecees 36

3.1 PROBLEM DEFINITION.............ccccccccceccececcencvucccecceveeecenceceuseceenecnceeeserseneenesestescesecseteuaecneneeens 36

3.2 SOLUTIONccccccccececeseccceseucecuseesecseneeseenecseucsaeneevesataeaessencucseneeseeseseceesevesacacaeaenpareveeensa 36

4.0 AUTOMATED HIGHWAY PROBLEM (AHP)...........cccccccccccccccscescecccscceserse 39

4.1 PROBLEM DEFINITION............ccccccccccccccsccueveceusessuesseveeeeesseneeueesseresseeersseevsscuerreeustarestenerenernes 39

4.2 SOLUTION 2.0... 0c. ccccccecccccsccccuccvcenecsccrecsecnenceseceeecrnssseeeeeeeneeseseereevesesenesueeasseeueeuategecneesneseevess 40

4.3 THE SIMULATION..........ccccccccccccevceccusseeeseeeeeseescueeneeusesseeeesenessestereenseeseustpeessenseneesseeeeneeneeers 42

5.0 EVALUATION ccc cece cc ccc cccccccccccscccnstecscteescceseseeneesseeeeseececseeesseeeeese 43

5.1 WHEN AND HOW TO SUBDIVIDE THE SPACE..........ccccccecceccececeeuteeeuseeeteeteateneeneteteateeeeegetneneeeatenes 43

5.2 HOW TO MODEL OTHER PROBLEMS IN THE PROBLEM DOMAINccccseccuccccsveseneeesteseueteueeneteteneess 45

5.3 LIMITATIONS.ccccccc secs ecee cscs eeeee cues eens ceases eeseene res eeeeeneneseeseeeeeeeeeseueeeeneepeteneeteetensteaeeeanens 46

6.0 CONCLUSION. ccc cc cece cece cece eect ese e cence eer ee eee e eee eee seen esse eseeeessseseseeees 47

6.1 FUTURE WORK 000... ccccccccccc ccc cc cece eee ne ee een ence eases een eee en eee b ee eee DEE EAE EEE ODE EE EEE ESHER; SDE ERE EEE EEE E SRE EEE EEE E EEE ES 47

6.1.1 Applicability to Other Problems in the Problem DOMAIN0..ccccc ccc cc cece cee ece cette ena ee nen ern ees 47

6.1.2 Enhancements to the Class Hierarchy...........ccccccccec eect eee een TEES EE EEE EEE EEE 47

6.1.3 Better User Interface for OOSPG......... cc cece ccccc cence eee e eee nee nent n enn een EE DEAE AED EEG Ee RE SADE SEE BED 47

7.0 REFERENCES. ccc ccc ccc cence cee ence cece ene e eee ene eect eee nesses eres eessensseseseees 48

Class Hierarchy for Space Time Problems v1 Virginia Tech

1.0 Introduction

1.1 Problem Domain

Space time problems are those problems where mobile objects move and interact with one

another in space with respect to time. The key elements of these problems are space, objects

in the space, and the interactions among objects. In different problems different

characteristics may be associated with the notion of “object”, “space” and “interactions”.

For example, in the pool game simulation space constitutes of the pool table, while in a

galaxy simulation, space is the entire galaxy. Objects in the pool game would be balls, walls,

pockets and the cue, and the interactions in this case would be balls colliding with one

another, the walls, the cue or the pockets. Objects in the simulation of a galaxy would be the

planets, various stars, constellations, etc. and the interactions would be the gravitational

forces between them.

Among all space time problems, those included in the problem domain have the following

characteristics:

1. The emphasis is on individual objects and the interactions among them, rather than on

patterns or aggregate behaviors.

2. There is a distinct space within which the objects interact.

The problem can be modeled using a discrete conservative simulation.

Some problems in the problem domain are : First, simulation of an automated highway

system, which constitutes of a collision detection system to warn against imminent collisions

involving cars moving on the highway. In this problems cars, curb, lanes etc. are the objects.

All the roads and highways constitute the space. Second, modeling galaxies, planets, solar

systems, comets and stars. This model has distinct objects in space interacting with other

objects. Third, simulations to see the effects of: a falling meteor. Fourth, reactive systems

that drive or are driven by events in the physical world and for which time and space are

scarce resources. Fifth, systems for the command and control of real-world entities, such as

Class Hierarchy for Space Time Problems] Virginia Tech

the routing of air or railway traffic. In all such systems each object’s interactions are

considered within the defined problem space.

Problems outside the problem domain are illustrated by the following examples. First,

simulating the depletion of the ozone layer caused by its interaction with other chemicals

present in the atmosphere. In this problem though there are objects that interact in a given

space with respect to time, the intent is to look at aggregate behaviors and not at individual

objects. Second, predicting the pollution content of a river in a given period of time, due to

the various pollutants being introduced at various stages down the stream. This problem also

involves modeling aggregate behaviors and not at individual objects. Third, studying the

traffic patterns to determine optimal timing of traffic lights (to facilitate smooth traffic)

during the course of the day. Here, the emphasis in again on aggregate behavior (how many

cars move in a certain direction in a given period of time at a certain time during the day),

and not on individual cars crossing the traffic light.

The purpose of this project is to develop a generic class hierarchy for space time problems

within the problem domain. This class hierarchy is not intended to be a simple encompassing

solution for all space time problems (even for those within the problem domain). The class

hierarchy is intended to be a comprehensive infrastructure to extend as per the problem

requirements. The design of the class hierarchy has the flexibility to cater for subtle but

important variations in problem characteristics. For instance, the class hierarchy can be

extended to model objects of all shapes and sizes, to model various physical characteristics of

objects, and to change the characteristics of space as per problem needs.

The following three space time problems have been used to design the class hierarchy. The

pool game simulation covers problems where there is actual physical interaction among

objects. The simulation needs to detect these interactions and resolve them by providing new

paths to the objects. The automated highway problem is more reactive in nature where the

motion of automobiles makes the system issue a waming if any two automobiles are about to

collide. In this problem, cars are independent entities that cross space boundaries at will. In

the robot arm collision detection system the idea is to issue a warning if the arm is about to

Class Hierarchy for Space Time Problems 2 Virginia Tech

collide with other objects around it. In this problem there is one mobile object and the space

changes according to its movement. A complete solution to the pool game simulation and

detailed designs for both the automated highway problem and the robot arm collisions

detection system are presented.

1.1.1 Pool game simulation:

This problem simulates pool balls as they move and collide with one another on a pool table

that constitutes the entire problem space. The "universe of discourse” of this problem is

moving balls, stationary holes, cue, walls and the pool table.

The following are the reasons for choosing this problem:

1. This is a relatively simple two dimensional problem, allowing the design to be focused on

the class hierarchy rather than the geometrical representation of the objects and the

physics.

2. Objects (specially the balls) in this problem are very dynamic, requiring proper modeling

of the space and the physics.

3. Objects interact with one another; balls interact with other balls and as a result acquire

new directions and velocities, balls collide with walls and are deflected at an angle equal to

the incident angle, balls interact with holes and are removed from the problem space

The implementation of the pool game problem employs simple kinematics and dynamic

principles such as conservation of momentum and energy. Further, no table friction is

assumed in this problem.

1.1.2 Robot arm collision detection system:

In this problem a real-time safety system warns of imminent unintentional collisions of a

robot arm with nearby stationary objects [Shaf90]. During its operations the robot arm

Class Hierarchy for Space Time Problems 3 Virginia Tech

should not collide with itself, other robot arms and other objects in the environment. If an

unintentional collision is about to occur the software should stop the robot arm. The objects

in this problem are various components of the robot arm, other arms and objects. A robot

arm has seven degrees of freedom, with each section of the arm being nearly cylindrical in

shape. The operating environment is not static, that is, the system accommodates

movement of the arms as well as other objects. The operating paradigm is one of receiving

an indication of movement by certain objects, updating the representation of the

environment to reflect that movement, and reporting any imminent collision.

This is a complex three dimensional problem, where movement of objects is input to the

system and it must decide in real-time if that movement would result in a collision. The

space is the environment around the robot arm and is subdivided into smaller sub-spaces or

the sub-divisions reunite based on the movement of the robot arm. Space in this problem is

relatively static as the robot arm has restricted degrees of freedom.

1.1.3 Automated highway problem:

In this problem “smart” cars sense the presence of other cars and obstacles and notify the

driver of impending danger. The objects in this problem are cars, lanes, curb, etc. The space

in this problem is the highway. This space is divided into smaller sub spaces called cells. All

cars within a cell look out for other cars in the same cell and check for collision with them

and with other objects within the cell. The implementation of this problem employs simple

kinematics and dynamic principles.

This is a more complex two dimensional problem but the objects (cars) do not cross space

boundaries as frequently as in the pool game simulation, and the objective in this problem is

to avoid interaction among cars rather than resolve the interaction.

1.2 Class Hierarchy

A generic class hierarchy [Bing93] is presented to solve problems in the problem domain

defined above. This class hierarchy was developed to answer questions like: How effective are

Class Hierarchy for Space Time Problems 4 Virginia Tech

object oriented concepts [Kors90] in modeling space time problems? What attributes should

objects possess? What is the structure of the space class? How does the space class help

model and efficiently solve space time problems? How are various shapes and physical

properties of various objects represented?

This class hierarchy [Wass91a] [Wass91b] is intended to be useful for any space time

problem within the problem domain. It provides a basic infrastructure comprising of base

classes and some problem specific classes that can be used as examples to solve other space

time problems within the problem domain.

The class hierarchy constitutes of the following classes: vector, shape, linear, rectangular,

circular, object, stationary, mobile, space and rule as shown in Fig. 1. Embedded within the

space class are object list and llist classes.

Lines Depict Inheritance

Lines Depict Information Sharing

Class Hierarchy

Fig. |

1.2.1 Class Vector

Class vector helps in modeling the physics of a problem. This class is totally independent of

the individual problems and can be used in any application where vector manipulations are

needed.

Vectors are directed lines, that is, they have a direction and a length. Numerically, vectors

are represented by two components, one for the x direction and one for the y direction.

Each component is the length of the projection of the vector on the corresponding

Class Hierarchy for Space Time Problems 5 Virginia Tech

coordinate axis. By convention, a component is positive if the projection of the vector on

the corresponding coordinate axis points in the same direction as the coordinate axis, and the

component is negative if the projection points in the direction opposite to the coordinate

axis.

Mathematically, vectors do not reside at any particular place on the plane, rather they can

be moved around to wherever they are needed. There may be confusion over the fact that

the coordinates of points (x, y) and the components of vectors are formally the same, that

is, that both points and vectors are represented by pairs of numbers. The resolution of the

confusion lies in the fact that associated with each point is a vector pointing from the origin

of coordinates to the point, and the components of that vector are numerically equal to the

coordinates of the point.

The following methods have been defined for class vector.

class vector {
public:

double vx; // x value of the vector
double vy; // y value of the vector
vector(); // Constructor
~vector(); // Destructor

vector(double x, double y); // A vector defined by the x and y values
vector(point pl, point p2); // A vector can be defined between two points
inline point OtherEndPoint(const point p); // Returns the end point of a vector
inline double Mag(); // Returns the magnitude of a vector
inline double MagSaqr(); // Returns the square of the magnitude
inline vector operator*(const scalar s); // Overloaded to cal. vector times scalar
inline vector Reverse(); // Returns the reverse of the vector
inline vector Unit(); // Calculates the unit vector
inline vector ClockWiseNormal{); // A norma! vector in the clockwise direction
inline vector AntiClockWiseNormal(); // An anti-clockwise normal vector
inline vector operator+(const vector v); // To add vectors
inline vector operator-(const vector v); // To subtract vectors
inline double operator&(const vector v); // To calculate the dot product
inline double operator*(const vector v); // To calculate the cross product
inline vector Display(); // To get the x and y components of the

vector

5

Class Hierarchy for Space Time Problems 6 Virginia Tech

1.2.2 Class Shape

Class shape is a base class used to represent various objects in a problem. For instance, lines,

rectangles, circles are derived from this base class to represent various two-dimensional

objects and cubes, spheres, cubiods, cones, etc. to represent three dimensional objects. This

class helps mode]! the possible onscreen appearance of various objects. It also helps define

events associated with various shapes, e.g., how to detect collisions between circles and how

to resolve these collisions, as illustrated in the poo] game simulation. Al] shapes are derived

from this base class or one of derived classes of class shape.

class shape { public:
shape(); // Constructor
~shape(); // Destructor
virtual void draw() = 0; // All pure virtual functions
virtual void move() = 0;; };

1.2.3 Linear

Class linear derives from class shape. A line segment is represented by one end point, E, a

unit normal vector (N), and a vector (L), pointing from one end point to the other end

point. Class Linear has the following declaration:

class linear : public shape {
public:

point E; // A point : The origin of the line segment
vector L; // A vector pointing from the origin to the end
vector N; // A unit normal vector to the vector L.
linear(){ } // Constructor
linear(point p, vector v) // Constructor with arguments

vector Tv;

Pl = p;
Vi=Vv;
Tv = v.ClockWiseNormal();
NI = Tv.Unit();

~linear (){ } // Destructor

i

Class Hierarchy for Space Time Problems 7 Virginia Tech

The unit perpendicular, N, strictly speaking, is redundant information. The line is actually

completely described by its endpoint E and its length vector L. As N is required in many

calculations it is being stored along with E and L for efficiency. To create a line segment, the

user needs to specify a point and a vector. The constructor method for class Linear will

automatically compute the value of N. Class Linear is used to model the walls of the pool

table and space edges in the pool game simulation and lanes and curbs in the automated

highway problem.

1.2.4 Rectangular

Class rectangular derives from the shape class. This class has the following declaration:

class rectangular : public shape {
protected:

point LeftTop; // Top left corner of the rectangle
point RightBottom; // Bottom right corner of the rectangle
linear* side[MAX R_ SIDES]; // Linear representing the sides for collision

// detection.
// Constructor

rectangular(double x1, double yl, double x2, double y2);
rectangular(){}
~rectangular () {} // Destructor
void SetPoints(point pl, point p2) _—// Set the points of a rectangle
{LeftTop = p1;RightBottom = p2;}
int contain(point p); /! To check if the point is inside the rectangle
rectangular Getpoints(); // Get the two points of the rectangle
linear GetSide(int num) // Get the side of a rectangle
{return *side[num];}
void ShowSides(); // To print the sides of a rectangle
// Draw and move functions ...

}

This class may be used to model actual objects in the simulation or abstract objects. For

example, in pool game simulation class rectangular is used to model space. Class rectangular

is used as a template class to the space class. Whenever a space is constructed it constructs

its respective shape object. Rectangular has a contain method that allows the space to find

what objects lie within its domain. Further, the sides of the rectangle are used to check for

collision of objects within the space with the space boundary. It is this class that provides a

definite boundary to the abstract space. In case, of a dynamic space, the space can create

Class Hierarchy for Space Time Problems 8 Virginia Tech

smaller or larger instances of its respective shape. The subdivision of rectangular spaces is

explained in detail in the space class (Section 2.6.1).

1.2.5 Circular

Class circular derives from shape class. This class has the following declaration:

class circle : public shape {
protected:

double Radius; // Radius of the circle
point Center; // Center of the circle

public:
circle(); // Constructors for circle
circle(double rad, int xc, int yc);
~circle(); // Destructor
inline virtual void SetCircle(double r, point c);

// Set center and radius
inline virtual circle GetCircle(); // Get center and radius
inline int contain(point p); // Check if a circle contains a given point
// Draw and move functions ...

}

Like the rectangular class this class may be used to model actual objects or abstract objects.

1.2.6 Class Object

Objects in all simulations are uniquely identifiable, have a mass and are either mobile or

stationary. For example, in the automated highway problem each automobile has a unique

identification number, and a mass to get the momentum which is useful in calculating the

braking force needed to stop the automobile in time. Stationary objects do not have any

perception of time, where as, mobile objects have time associated with them. Objects are the

entities around which all simulations revolve.

class object {
protected:

int Num; // Every object has a unique number.
double Mass; // Every object has some mass
char Type; // Type of object

public:
object) {} // Constructors

Class Hierarchy for Space Time Problems 9 Virginia Tech

object(int num, char otype) {Num= num; Type = otype;}
object(int num, double mass, char otype)

{Num= num; Mass = mass; Type = otype;}
~object () {} // Destructor
// These functions may be redefined in the specific classes
inline virtual int GetNumber() {return Num; }
inline virtual double GetMass() {return Mass; }
inline virtual char GetType() {return Type; }

Objects in any space time simulation will be derived from either the stationary or mobile

instance of the object class. Fig. 2 illustrates for the automated highway problem how cars,

lanes, curbs derive from one of the above mentioned sub classes of class object.

Various objects in Automated Highway Problem deriving from Object Class

Fig. 2

1.2.7 Stationary Objects

Class stationary derives from class object and has the following declaration:

class stationary : public object {
protected:

vector Svec; // Stationary vector
// A pair of x and y components

public:
stationary(); // Constructor
~stationary (); // Destructor

33

Class Hierarchy for Space Time Problems 10 Virginia Tech

1.2.8 Mobile Objects

Class mobile derives from class object and has the following declaration:

class mobile : public object {
protected:

vector Vec; // A vector : Denoting the relative velocities in the
// x and y direction.
// The position of an object is derived from the shape
/! class.

Abs _time Time; // This time is local to the object and is used to project
// the time in future when this mobile object could
// collide with other objects.

Abs _time Atime; // This is the absolute time that has elapsed since the
// beginning of the simulation. See section 6

public:
mobile();
~mobile ();
inline virtual void SetInitTime();
inline virtual void SetTime(double t);
inline virtual void SetInitVel();
inline virtual void SetVec(double x, double y);
inline virtual vector GetVec();
inline double GTime();

1.2.9 Class Space

Class space is an abstract base class whose purpose is to efficiently help solve the problem

using the basic strategy of divide and conquer. Class space helps in dividing the entire

problem space into smaller sub-spaces, so instead of dealing with al] interactions among all

objects the system deals with interactions among objects within a particular sub-space.

Subdivision of the space is application dependent and may also be computation dependent, as

in the case of parallel computing.

For the robot arm collision detection system and the poo] game simulation the space class

could dynamically subdivide into smaller spaces if there are more than “n” objects within the

space and then reunite if there are less than “n” objects in the newly formed sub-spaces.

The following attributes and methods have been defined for the space class:

Class Hierarchy for Space Time Problems 11 Virginia Tech

template <class SpaceShape>
class space : public stationary

HI An efficient and easy way to manipulate objects
LList<int, obj_Ist>* SpaceLst; // list of sub spaces
int ParentNum; // parent node number
int obj_ctr; // Object key counter
int spc_ctr; // Space key counter

public:
LList<int, obj_!Ist>* ObjectLst; // list of objects
Rule* space_rule; // Space rule(s)
SpaceShape — sp_shape; // Space shape type
int Subdivided; // Subdivided flag
int ToBSubdivided; // To be Subdivided flag

// Constructor
space(int num, int df, int sf, int nd, int pnum)

Num = num; obj_ctr = 0; spe_ctr = 0;
Subdivided = FALSE; ToBSubdivided = FALSE;
ParentNum = pnum;
ObjectLst = new LList<int, obj_Ist>(0, obj_Ist(0, 'n’));
SpaceLst = new LList<int, obj_Ist>(0, obj_Ist(0, 'n'));
space rule = new Rule(df, sf, nd); // if sf is FALSE other two do not count

}
space() { }
~space() { } // Destructor
void define_shape(SpaceShape& m) {sp_shape = m;}

// Assign any shape to the space
void sp_init_rule(){space_rule->init();}// Initializes the rule as per the space
int GetParent(){return ParentNum; } // Return the parent node number
void sp_show_rule() {//print} /! View the rule
void ShowObjects() //! Procedure used to test space lists
void sp_clear_space_Ist() // Clear the space list
void sp_clear_objects() // Clear the object list
void subdivide(int num_div) // To subdivide a space into n parts

// New subspaces will have the same
// shape and set of rules.

void TransferObject(obj_Ist tx_obj, double otime)
// To transfer objects to the correct space on
// colliding with the space that contains them.
// The space goes through its siblings.

void AssignObjects(int num_div) /! Method to assign objects to the correct
// subspaces after a parent space has divided. It
// goes through the parents object list and
// assigns these objects to the corresponding
// subspaces.

void reunite(int num_div) // This method reunites a dynamic space. It

Class Hierarchy for Space Time Problems 12 Virginia Tech

// concatenates the subspaces objects lists to
// form the parent spaces object list. It further
// clears the sub-spaces and deletes them.

void wrap_up() // Remove a particular space from the list.
void InsertObject(obj_Ist new_obj) —// Insert object into the object list
void RemoveObject(obj_Ist old_obj) // Remove objects from the object list
int NumSpaces() // Return number of spaces in the space list
int NumObjects() // Return the number of objects in a spaces

// object list

The user has the flexibility to define the shape of the space by using this shape class as a

template to the space class. Shape classes have the contain procedure which lets the space

know what objects lie within its domain. Within the space class the user can either subdivide

a particular shape or reunite it. Fig. 3 demonstrates a way of subdividing and reuniting a

circularly shaped space.

r = Radius of Circular Space r=r,t+f

Original Space Subdivided into two

subspaces

Subdivision of circular space

Fig. 3

Class Hierarchy for Space Time Problems 13

r=r,tmt+Pr

Subdivided into

three subspaces

Virginia Tech

1.2.10 Class Object List

This class helps maintain a list of objects to be used by any other class which needs to

maintain information about a group of objects. For example in automated highway problem,

space needs to keep a track of all cars within its boundary.

Class object list has the following attributes and methods:

class obj_Ist {
public:

int obj_num; /! Object Number
char obj_type; // Object Type

// Constructors
obj_Ist(int num, char otype) { obj num = num; obj_type = otype;}
obj_IstQ {3
~obj_IstQ {} // Destructor

3

1.2.11 Class Rule

Class Rule helps define the set of rules or conditions according to which space class would

behave. It provides encapsulation and abstraction for these governing rules and allows rules

to be accessed by another class. For example, rules govern how space decomposes itself into

smaller subspaces or spaces reunite to form a bigger space. The following attributes and rules

have been defined for this class:

// The rule class to store the rules that govern the nature and actions of the space

class Rule {
int Decomposition_Factor; /! Subdivide after these many objects
int Subdivision _Flg; // Flag to check if space subdivides
int Num_ Divisions; // Number of subdivisions

public :
Rule() {} // Constructors
Rule(int d, int s, intn) {

Decomposition Factor = d;
Subdivision_Flg = s;
Num_ Divisions = n;

Class Hierarchy for Space Time Problems 14 Virginia Tech

~Rule() { } // Destructors
// Utility Get methods

inline int GetDF () {return Decomposition_Factor;}
inline int GetSF () {return Subdivision_Flg;}
inline int GetND ({return Num_Divisions;}
inline void init () // Initialize
{Decomposition_Factor = 0; Subdivision Flg = 0;Num_Divisions = 0}

1.2.12 Class LList

This class helps define a doubly linked list of user definable nodes. Each node has a key and a

value. This class is used to maintain a list of various objects and can be used by any class. For

example, the space class in the pool game simulation maintains a list of all balls within its

boundary, each space cell in the automated highway problem uses this list to track all

automobiles within its boundary.

template<class K, class V> class LList;

template<class K, class V> class Link {
// Friendship ensures that Links can be created,
// manipulated, and destroyed only by appropriate
// List class.

friend class LList<K,V>;
private:

K key; // Each link holds a key value pair
V value;
Link* pre;
Link* suc;

public:
Link (const K& k, const V& v) : key(k), value(v) { }
~Link () {delete suc; } // recursively deletes all links

// Each list has a head, tail with default values. Current points to the currently accessed
values.
template<class K, class V> class LList {

Link<K, V>* head; // pointer to the head

Link<K, V>* current; // pointer to current
Link<K, V>* tail; // pointer to the tail
Vv def_val; // Default value value
K def_key; // Default key value

Class Hierarchy for Space Time Problems 15 Virginia Tech

int SZ; // Size of the list
/! Initialize

void init() { sz = 0; head = 0; current = 0; tail = 0; }
public :
LList() {init Q;} // Constructor
LList(const K& k, const V& d)// Constructor with args

: def_key(k), def_val(d) { initQ; }
~LList() {delete head; } // delete all links recursively
V& find(const K& k); // find V corresponding to K
void insert(const K ky, V val); // insert an element
int size() {return sz; } // return the size of the list
void clear() {delete head; init (); }

// clear the size
void show() // print values to standard out
void remove(const K& k); // Remove element with key k
LList<K,V>* concatenate(LList<K,V>* new_Ist, LList<K,V>* add_Ist);

// Concatenate two lists
int FillUp(const K& k); // To fill up gaps created by removes

5

The above mentioned classes are intended to model space-time problems in the defined

problem domain. These classes can be used as base classes with little or no modification, and

problem specific classes can inherit from these classes. Let us now apply this class hierarchy

to the three problems; pool game simulation, robot arm collision detection system, and

automated highway problem.

Class Hierarchy for Space Time Problems 16 Virginia Tech

2.0 An Object Oriented Simulation of the Pool Game (OOSPG)

OOSPG is a discrete event driven, conservative object oriented simulation [Hont89] of the

pool game. In the simulation each “interaction” is considered an event and these

interactions govern the simulation. A interaction could be a ball colliding with one another

ball, a ball colliding with a wall, a hole, the cue, or any space boundary.

In OOSPG at the end of every simulation step collision times are calculated between various

interacting objects within a space. Each space thus has a minimum collision time for itself.

The least of these collision times for all spaces becomes the time to which each space

advances on the next simulation step. Within each space, all mobile objects in the simulation

are projected forward in time by this minimum collision time. At this point again collisions

times are calculated for all the spaces for the various objects within their boundaries. The

collision that will occur first among all the spaces decides the next simulation time step and

sO ON.

The "universe of discourse" of OOSPG contains moving balls, stationary holes, vectors, and

line segments(walls). Dynamically, the balls behave like perfectly elastic objects of possibly

varying radius and mass. Dynamically, points and lines behave like stationary obstacles with

infinite mass, that is, balls rebound elastically from them without disturbing them. The

implementation employs simple kinematic and dynamic principles such as conservation of

momentum and energy. There is total conservation of energy and no table friction is

assumed.

2.1 The Simulation

At the beginning of the simulation all objects are at rest and the absolute time is zero. All

objects are displayed on the screen and the user can impart the initial force to the cue ball

using the cue. This force is in the direction of the cue and the magnitude of the force is

proportional to the length of the cue as drawn by the user. At this point the cue ball is the

only moving ball and its collision times are calculated with all balls, walls, holes and space(if

applicable). The minimum of these times becomes the simulation time step. All objects that

will not participate in a collision are moved forward in time by this time step. Collisions are

Class Hierarchy for Space Time Problems 17 Virginia Tech

resolved for all objects that participated in a collision and these objects have new vectors

associated with them describing their new velocities and direction. These objects are also

projected forward in time. All objects are then redrawn on the screen to give the user an

illustration depicting things as they would happen in real time. There are two versions of the

simulation:

e Version I: The entire table is considered one space. Space here is purely abstract.

Collision is checked for all moving objects against all objects in the simulation. This

version serves as the benchmark for version II, which uses a dynamic space. Section 5

“Evaluation” compares the two versions.

e Version II: The table is divided into dynamic spaces depending on the rules the user

decides. For instance, space decomposes itself into smaller subspaces depending upon the

traffic/congestion within it. If there are more than ‘n’ objects within a space, then the

space subdivides itself into ‘m’ divisions. The decomposition factor ‘n’ and the number

of divisions ‘m’ depend on the nature of the problem [Shaf90]. Both ‘n’ and ‘m’ can be

specified by the user.

The current dynamic version running of OOSPG has two dimensional rectangular spaces.

These spaces subdivide into four equal sub-spaces. This enables the space to be maintained by

a quad tree structure [Chie89] [Shaf89] with each node representing a space instance. The

user can specify the decomposition factor, that is, when the space contains more objects than

specified by the decomposition factor, subdivide the space into four smaller subspaces.

In version I, where there is one space, each object has to check for collision against all other

objects. Say if there are ‘n’ objects on the pool table each object checks for collision with

‘n-1? objects. This is a O(n’) process [Nico90]. Now, by subdividing the space into smaller

sub spaces depending on a certain set of rules the following is achieved.

Each space provides to all mobile objects within it a list of other potential objects with which

they can collide. A object now checks for collision with utmost ‘m’ objects, where ‘m’ is the

decomposition factor’. Assume that there is an equal distribution of objects among the ‘s’

' If there are more than ‘m’ objects in a space, the space subdivides itself.

Class Hierarchy for Space Time Problems 18 Virginia Tech

sub spaces and within each space there are ‘m’ objects leading to m’ collisions checks. Since,

there are ‘s’ spaces the total number of comparisons is s* m’. As ‘n’ objects are equally

divided into ‘m’ parts in ‘s’ spaces so n=m*s. The order of the algorithm would thus be O(s *

m’), or O(n/m* m?), that is, O(n*m), where ‘m’ as defined earlier is the decomposition

factor. Ideally, for m = 1, that is, one object per space in the simulation we would have an

O(n) algorithm. It seems that the finer the granularity of objects within a space the better

performance we would get, but that is not quiet the case as explained in the “Evaluation”

section (Section 5).

The details of how the space nodes are maintained, how space maintains its object list, and

the algorithms for subdivision and reunification of the space are in the space class details in

section 2.6.1.

2.1.1 Termination of the simulation step

Each simulation step terminates either naturally or is terminated unusually. Remember the

system has no table friction.

e §6Rest state termination

If all moving balls in the system collide with holes.

e Time termination

Time Termination : The simulation step is stopped after a specified amount of time, that is,

at that point in time all moving objects stop at their current positions.

After every simulation step the user can impart force to the cue ball again and continue.

2.1.2 Graphical User Interface

OOSPG uses X-windows XT Intrinsics Release 4.0 for its graphical user interface [Tarl92]

[Bart86]. Upon execution the system places balls on the table in user pre-defined locations’ .

? See Future Work : Better User Interface

Class Hierarchy for Space Time Problems 19 Virginia Tech

OOSPG then draws the space boundaries on the screen (if applicable). The user can now

impart any amount of force to the cue ball in any direction by means of the cue. To define a

cue the user uses the third (rightmost) mouse button. The user presses the third mouse button

at the starting location, and drags the mouse (while the third button is pressed) to the desired

ending location. Once the user lets go of the third mouse button the definition of the cue is

complete. The amount of force imparted to the cue ball in X and Y direction is proportional

to the cue vector. The direction given to the cue ball is same as the slope of the cue line’ .

Both force and direction are bundled into the vector of the ball which it receives from the cue

on click of the “Done” button in the control widget box (on the upper right hand corner of

the screen) as shown in Fig. 4. After the user has clicked on the “done” button the entire

simulation is displayed on screen as it would occur in real time. The user can view the balls

are moving, colliding with each other, with walls, holes, and space boundaries (if applicable).

The user has the capability to stop after any simulation step and start over from the initial

configuration. He can further stop the simulation at any time and exit the system.

OOSPG provides the basic display infrastructure and widgets, which can be modified/upgraded

to fit most simulation. Fig. 4 shows the widget classes available.

The following problem specific classes are used in OOSPG. All of these classes derive from

one or more generic classes discussed in section 1.2. The complete class structure/hierarchy

used in the OOSPG is shown in Fig. 5. As seen in Fig. 5 class ball inherits from classes mobile

and circular, class wall from classes stationary and linear, class hole from classes stationary

and circular, and class cue from class mobile.

3 See Cue Class for details

Class Hierarchy for Space Time Problems 20 Virginia Tech

 Vv

Command Widgets Canavas Widget Dummy Widget Control Widget

OOSPG with its objects as it looks on the screen. All the widgets used are listed.

Fig. 4

Class Hierarchy for Space Time Problems 21 Virginia Tech

Lines Depict Inheritance

Lines Depict Information Sharing

Class Hierarchy for OOSPG

Fig. 5

2.2 Ball

In the pool game simulation balls are considered perfectly elastic circles and inherit from

class mobile and class circle (multiple inheritance). Class ball inherits mass, and number from

class object, vector from the class mobile, and center and radius from the class circle. Since

balls are mobile objects that participate in collisions, they contain collision detection and

resolution mechanisms. Class ball has the following declaration:

enum pattern {solid, stripped}; // Possible patterns of the balls
/ Solid is 0, stripped is 1

enum color {white, yellow, purple, red, blue, orange, green, maroon, black};

class ball : public mobile, public circle {
color col;
pattern pat;

int moving;
public:

inline ballQ;
inline ball(pattern p, color c, int num);
inline ~ballQ);
inline color GetColor();

Class Hierarchy for Space Time Problems 22

// Possible colors of the balls

// Color of the Ball.

// Pattern of the Ball.

// To check if ball is moving.

// Constructor
// Constructor with arguments
// Destructor

// Returns the color of the ball

Virginia Tech

inline pattern GetPattern(); // Returns the pattern of the ball
inline void GetGoing (ball *bg); /1 Moves the ball
inline void StopBall (ball *b); // Stops the ball
inline int IsMoving(); /! To check if ball is moving
inline void SetPosition(int x, int y); 1 To place a ball
inline point GetPosition(); /! To get the center of the ball
inline void SetMassNRadius(double x, int i); | // To set mass and radius
inline void SetOType(char o_type); // To set ball type
inline void Assign(ball *t); // To copy a ball
inline vector GetMomentum(); // Returns momentum of the ball
inline double GetVel() { return Vec.Mag();} _// Returns velocity of the ball
inline double GetEnergy(); // Returns energy of the ball
inline point WhereBallAtT(const Abs_time t);// Where would the ball be at

// absolute time t
inline point WhereBallAtDeltaT(const Abs_time t); // Where would the ball be at

// delta time t
inline void MoveBall(const Abs_time t); // Move ball to time t
inline void MoveBallDeltaT(const Abs_time t);// Move ball to time delta t

// Collision Detection
collision CollD_BallCenter_Line(linear 1); // Ball center and line |
collision CollD | BallEdge Line(linear 1); // Ball edge and line |
collision CollID_ BallEdge Point(point p); // Ball edge and point p
collision ColID_Ball_Ball(ball *b1, ball *t); — // Ball and ball
collision CollD_ Ball "LineDepart(linear], int d);// Ball and departing line
collision CollD_Ball " PointIntersect(point p); // Ball and point intersection
collision CollD Ball _LineIntersect(linear 1); // Ball and line intersection

// Collision Resolution
collision ColiR_ Ball LineSeg(linear 1); // Ball and line |
collision CollR__ Ball _Ball(ball *b, ball *t); // Ball and ball
collision CollR_Ball_Point(point Pp); // Ball and point p

Why do the collision detection(CD) and collision resolution(CR) methods reside in the ball?

It was observed during the design and development of objects and space classes that if CD and

CR methods are within the space, the space needs to know the position, velocity, number,

type of the objects contained within it. If the CD and CR methods are within the object

itself, it allows for data encapsulation. The object knows what other object(s) it can collide

with and has CD and CR methods built into it. As both CD and CR are application specific,

it further suggests for CD and CR methods to be part of an application specific class.

Since balls take part in all collisions a discussion about collisions, their detection and

resolution follows.

Class Hierarchy for Space Time Problems 23 Virginia Tech

2.2.1 Collisions

The simulation needs to determine whether, when, and where several types of collisions will

occur. Therefore, there is a collision data type containing the answers to "whether" and

"when". There is no single answer to where since its meaning is different for each

geometrical object type defined.

typedef struct

{
AbsTime at ;
int yes ;

}
collision ;

The 'yes' attribute of a collision value will have the value YES if the collision occurs, and in

this case, the ‘at' attribute of the collision value will express the absolute time at which the

collision occurs. The values YES and NO have the property that they can be used like

Boolean values in conditionals and tests, allowing code to be shorter and simpler. For

example, one might write:

Collision my_collision ;
... find out whether the collision occurs ...

if (my_collision.yes)
{ ... compute consequences of the collision ... }

2.2.2 Collision Detection And Resolution

Collision detection [Fuji86] and resolution play a vital role in this and many other

applications. This section looks at these in detail with respect to the objects in OOSPG.

Ball and Line

If a moving circle crosses a stationary line segment the CENTER of the circle will touch the

line segment at a particular instant of time, measured by an AbsTime value. The answer to

"whether" and the answer to "when" are neatly packaged in a Collision value returned by the

method CollD_BallCenter_Line (the method CollD_BallEdge_line predicts times at which

the EDGE of a circle crosses a line).

Class Hierarchy for Space Time Problems 24 Virginia Tech

Note that the collision might occur at a time in the past of the current time of the circle,

that is, the ‘at’ attribute of the Collision value might be less than the ‘at’ attribute of the

Circle input value. This condition will occur when the circle is heading away from the

segment. Such cases should not be considered as collisions with the least collision times as the

collisions have already occurred in the past.

When a moving circle is heading towards a line segment, the edge of the circle crosses the

segment at a certain time, different from, and, in fact, earlier than, the time at which the

center of the circle crosses the segment.

There are several cases (See Fig. 6) to explain what is meant by collisions between circles and

line segments in OOSPG and to explain how these methods behave.

(+ -
Case I Case II

Case III Case IV

Various cases of collision between a circle and a line

Fig. 6

e Casel: A collision will be predicted at the moment the leading edge of the circle crosses

the line segment. The predicted time will be greater than the reference time of the circle.

e Case II : No collision will be predicted by the method because the circle is regarded as

moving away from the line.

Class Hierarchy for Space Time Problems 25 Virginia Tech

e Case III: A collision WILL BE PREDICTED, because the circle is regarded as heading

towards the line since its center is heading towards the line. However, the collision will be

predicted for the time at which the leading edge of the circle crossed the line in the past,

that is, the predicted time of the collision will be less than the current reference time of

the circle.

e Case IV : No collision will be predicted because the circle is regarded as heading away from

the line since its center is heading away from the line.

The final subtlety concerning the definition of circle and line segment collisions concerns

collisions between the circle and the endpoints of the segment. The current method only

predicts collisions where the line segment becomes tangent to the circle. Cases where the

circle will strike the endpoints but will never lie tangent to the line segment are ignored by

this method, and it predicts no collision. However, such cases can easily be taken into

account by a method whose purpose is to predict collisions between circles and points. Such a

method is discussed later.

Ball and Point

The edge of a circle can collide with a stationary point in the plane. The method

ColID BallEdge Point predicts the time of such a collision and returns a collision type. To

obtain this time we define a temporary vector ‘t’ between the center of the circle and the

point. Then if the discriminant ‘d’ is positive the circle will collide with the point. The

term d is calculated as follows:

a = Squared magnitude of the circles vector ‘Vec’

b = -2 * Cross product of the vector ‘t? & vector ‘Vec’

c = Magnitude of ‘Vec’ - (square of the balls radius)

d=b’ - 4*a*c

To calculate the time of collision we find the real roots and take the minimum of the two

real roots. So,

Root, = -b + square root (d) /2*a

Root, = -b - square root (d) / 2*a

Class Hierarchy for Space Time Problems 26 Virginia Tech

The time of the collision then would be : Time + Minimum(Root, , Root,). The actual

program follows:

collision ball::CollD_BallEdge Point(point p) // Between ball edge and point p

collision Answer;
vector Tmp(Center, p); // Tmp : A distance vector between, circle and point p
double a, b, c, d;
double Mag;

double R1, R2;
double TmpR;
Answer.yes = YES; Answer.at = 0.0;
a= Vec.MagSar();

= -2.0 * (Tmp & Vec);
Mag = Tmp.MagSqr(Q);
c = Mag - (Radius*Radius);
d=(b*b)-4*a*c;
if (d<=0) // No hit or just grazing

{
Answer.yes = NO;
return Answer;

}
// Case of two real root, take min. to be the time of the first collision

TmpR = sqrt(d); // More efficient implementation
R1 = ((-b) - TmpR) / (2*a);

R2 = ((-b) + TmpR) / (2*a);
if (R] < R2) R2=R1;
Answer.at = Time + R2;

cout <<" Time collision at : " << Answer.at << "\n";
return Answer;

}

Ball and Ball

Pairs of circles can collide, also, and CollD Ball Ball method predicts the time of such a

collision. CollD_Ball_ Ball method uses the above method and is as follows :

collision ball::ColID Ball Ball(ball *b1, ball *t)// Between ball and ball

{
point p;

t->MoveBall(b1->Time); /! Move the temp ball to current time
t->Vec = Vec - b1->Vec; // Define the vector of temp ball to be the

// difference between the vector of the ball calling
// the method and the ball with which the collision
// is being, checked.

t->Radius = Radius + b]->Radius; // Set the radius of the temp ball to be the sum of
// the two radii

p = bl->Center ; // Point p is the center of ball bl

Class Hierarchy for Space Time Problems 27 Virginia Tech

return t->CollD_BallEdge Point(p); // Check for collision between temp ball and p.

The previous three methods do not have any side effects on the circles. They serve only to

predict whether and when collisions occur. When dynamical effects of a collision on the

objects are considered, side effects on values come into play. Dynamical effects change circle

velocities and take into account the masses of objects. The next method treats a line

segment as an infinitely massive fixed object, like a granite wall, and bounces a given circle

off the wall. These methods modify the reference time, the position, and the velocity

vector of the circle. These methods also answer the "whether" and "why" questions and

returns an appropriate Collision value. If the collision does not occur, the input data will not

be disturbed. In Case III, discussed above, where a collision is predicted in the past of the

circle, the circle is backed up to the time where its leading edge first touched the granite wall

before the dynamical effects on the velocity of the circle are calculated. The methods are

discussed below:

This effect of backing up the circle can lead to unexpected results if one is not careful in the

use of this method.

/*

Between ball and a departing line segment. This method returns the collision structure which
tells if a ball has departed from the specified line. A departure is defined as the last point on
the edge of the ball crossing away from a line segment. This function is used to calculate the
position and time when a ball moves away from a space boundary.
*/
collision ball::CollD_ Ball LineDepart(linear |, int d)

collision when;
vector Vv;
vector dv;
switch (d)

case POSITIVE_ONE:
v = 1.V1 * (Radius * 2);

break;
case NEGATIVE ONE:

v =1.V1 * (-Radius * 2);
break;

default:
when.yes = NO;
when.at = 0.0;

return when;

Class Hierarchy for Space Time Problems 28 Virginia Tech

}
linear displaced(v.OtherEndPoint(1.P1), 1.V1);
dv = displaced. V1.Unit() * Radius;
linear NL((dv.Reverse()).OtherEndPoint(displaced.P1),displaced.V1 + (dv+dv));
vector k(Center, NL.PI);
if (((Vec & NL.NI) * (k & NL.NI)) <= 0.0)

{
when.yes = NO;
return when;

}
when = CollD_BallEdge Line(NL);
if (when.yes == NO)

return when;
MoveBall(when.at); // side effect on the ball c
retum when;

}

The following method is similar to the previous except that it produces the effects of a

collision on a pair of circles. It also has side effects on its input circles, returning to the

caller the positions and velocities of the two circles after a rigid- body collision. It sets the

reference times of the two circles to the collision time, and the position and velocity

attributes of the circles to their values after the collision. Note that if the collision does not

occur, the input circles are not disturbed.

/*

This method returns the collision structure which tells if a circle edge has intersected with the
specified point. If an intersect does occur, the circle’s position is updated to that
intersection. But unlike the collision function the vector of the ball is unchanged. This is
used in calculating the time when a ball crosses space boundary.
*/
collision ball::CollID_Ball_PointIntersect(point p)

collision when;
when = CollD_BallEdge_Point(p);

if (when.yes == NO)
return when;

MoveBall(when.at) ; // side effect on ball
return when;

}

The following method returns the collision data structure which tells the caller whether and

when the ball will intersect with line segment (1). What is meant by intersect here is the time

at which the first edge point of the circle touches a point on the line segment. If an intersect

does occur, this function updates the ball's state. Intersection is different from the collision

Class Hierarchy for Space Time Problems 29 Virginia Tech

functions here in that the intersecting circle does not bounce of the line segment but passes

through the line segment.

/*

This method returns the collision structure which tells if a circle edge has intersected with the
specified line. If an intersect does occur the circles position is updated to that intersection.
But unlike the collision function the vector of the ball is unchanged. This is used in
calculating the time when a ball crosses space boundary.
*/
collision ball::CollD_Ball_LineIntersect(linear 1)

collision when;
when = CollD_BallEdge Line(I);
if (when.yes == NO)

return when;
MoveBall(when.at); // side effect on ball c
return when;

}

Finally, for dynamical effects, a point is considered to be an infinitely massive barrier from

which circles rebound elastically. The method calculates the effects of such a collision and

deposits the appropriate values in its input circle buffer, and computes and returns a Collision

type.

2.3 Cue

Class cue is used to impart the initial force to start the simulation. The cue class derives from

class mobile. It has the following declaration:

class cue : public mobile {
line Ln; // line not linear

public:
cue(line CueStick);

~cue ();
};

The user imparts force, and gives direction to the cue ball using the cue. To do so he draws a

cue using the mouse. Details on how to draw and define the cue are in the Graphical User

Interface section (2.1.2).

Class Hierarchy for Space Time Problems 30 Virginia Tech

The amount of force imparted to the cue ball in X and Y direction is proportional to the

magnitude of the difference in the X and Y coordinates of the starting and ending point, that

is, say the start point has coordinates (x), y,) and the and point has coordinates (x), y.) the

magnitude of the vector given to the cue ball will be (dabs’ (x-x,), dabs(y>-y,)).

The direction given to the cue ball is same as the slope (y2-y,)/(x2-x,) of the cue line.

2.4 Hole (Pocket)

Class hole derives from classes stationary and circular. It has no attributes. The constructor

of the hole class is given below. It inherits all its attributes from its base classes.

class hole : public circle, public stationary{ _// Multiple inheritance from circle and
stationary
public:

hole (point c, int r, int n);
~ hole Q;
inline point GetPosition();

}
A hole is considered as a point object in the simulation. The ball method CollD_Ball_Point

is used to project collision of balls with holes. After colliding with the hole the ball is

removed from the simulation.

2.5 Wall

Class wall derives from classes linear and stationary. It has the following declaration:

class wall : public linear, public stationary {
linear Ln;
public:

wall(point p, vector v, int 1); // Constructor
~wall (); // Destructor
inline linear GetLine(); // Returns a line

5

* Returns the double absolute value

Class Hierarchy for Space Time Problems 31 Virginia Tech

A line segment is represented by one endpoint, e, a unit normal vector, n, and a vector, 1,

pointing from the endpoint to the other endpoint’ , the other endpoint is implicit and

unexpressed; it can be found by calling the Vector method "OtherEndPoint".

2.6 Space

It is useful to subdivide the entire problem space into smaller subspaces. As pool balls on one

end of the table will first collide with objects around them rather than objects on the other

end. So, we should limit our collision detection system to within the subspace. Similarly, cars

moving on the highway would want to guard against cars close to them rather than those far

away.

It is important to take into consideration the dynamic nature of the application in selecting

an appropriate decomposition factor (the number of objects based on which either the space

subdivides or reunites). “Evaluation” section (5) has a comparison of number of collision

checks versus different decomposition factors.

At the beginning of the simulation each space determines the initial position of all the

objects and forms its initial object list. While the space is inserting objects into its list, if

there are more objects than the decomposition factor the space calls its subdivision method

and decomposes into smaller spaces. At this time all the objects are redistributed among

these newly formed sub spaces. If an object is lying at the intersection of two or more

spaces, all involved spaces have the object in their respective lists. Once all the rules

specified by the rule class are meet and all space lists are formed, the space is ready.

Any time an object moves, it obtains from its space a list of all the objects with which it can

collide. Each moving object in the space checks for collision with all other objects in the

space list and with the boundary of the space itself. Whenever an object collides with its

space boundary, the space removes the object from its lists and calls the transfer method to

assign this object to the appropriate new space. Then the space asks its parent space to

check if it needs to

> See Class linear for details

Class Hierarchy for Space Time Problems 32 Virginia Tech

Zs

DRAW

=4 Dynamic Space with df

1 { i | Li i! i i a
a

J

 Erase

 Cue

Dynamic Space with df= 1
Fig. 7

Virginia Tech 33 Class Hierarchy for Space Time Problems

recombine as an object has left its domain. The parent node in turn checks against the set of

rules and reunites if needed. On the other hand the space that received this new object also

checks against its rules to see if it needs to subdivide into smaller subspaces. This process

continues during the course of the simulation.

Let us now look at various type of spaces and how they can be used in various applications.

2.6.1 Dynamic vs. Static Space

A simulation could use one or more static subspaces, or dynamic subspaces which subdivide or

reunite as objects cross space boundaries. The space class is designed to allow the above

mentioned flexibility. The user can also dictate the rules for decomposing this space e.g.

number of sub divisions, decomposition factor (after how many objects does the space

subdivide) etc. Care has been taken to make the space class as flexible as possible to ensure

adaptability to a wide class of space time simulations.

Fig. 7(a) shows a dynamic space in OOSPG with a decomposition factors of four (df = 4) and

Fig. 7(b) shows a dynamic space with a decomposition factor of one (df = 1). The space

boundaries, displayed in Fig. 7, show how the space would subdivide and reunite itself

depending on the rules.

Each space class maintains the its and the space lists. These are doubly linked [Stro92] lists,

where every link is a combination of a key and a value. Both the key and value are user

definable classes. Each link maintains a pointer to its predecessor and successor. The list

class has methods for inserting, finding, removing, and concatenating lists. It provides an

efficient way of maintaining the space’s object and subspace lists. Fig. 8 shows a sample

space object list.

Head Link, Link, Link, (current) Tail

Ch 0, (0,’nj)¢ ae (0,’b’) 4 > 12,Q,b)< > | 3, (5,°b”) { 0, (0,’n’) f)

A sample Space Object List

Fig. 8

Class Hierarchy for Space Time Problems 34 Virginia Tech

Each link in Fig. 8 is a combination of a key and a value. The first part of the link is the key

and the second part, which is within parentheses, is the value (and combination of object

number and object type). Each link in the space list has a unique sequential key except for

the head and the tail which have a default key and a default value. The list of Fig. 8 has three

objects of type Ball with number 0, 2 and 5, and with keys 1, 2 and 3 respectively. By using

the above list class it becomes simple to maintain object lists for the space. For example, to

find the type of the object with key = 2, one would say, find(2).obj type. To concatenate

lists add the size of list; to each link’s key of list,, make the predecessor of the tail of list,

point to successor of the head of list, and then drop the tail of list; and the head of list).

Class Hierarchy for Space Time Problems 35 Virginia Tech

3.0 Robot Arm Collision Detection System (RACDS)

3.1 Problem Definition

In NASA’s proposed space station there are robot arms to move objects, perform repairs and

construction, etc. [Shaf90]. The objective is to warn these real-time robot arms of imminent

unintentional collisions. A collision could be between two robot arms or between a robot arm

and other objects in the environment.

Each robot arm has seven degrees of freedom, with each section of the arm being nearly

cylindrical in shape. The operating environment is dynamic - the system must accommodate

movement of both arms and other objects. The motions of various objects are not pre-

defined. The operating paradigm is one of receiving an indication of movement by certain

objects, updating the representation of the environment to reflect that movement, and

reporting any imminent collisions.

3.2 Solution

From the problem definition we see that RACDS has the following characteristics. First, we

must determine in real time if robot arms/objects are about to collide. Second, the model

must be constantly updated, adjusting to the movements of the robot arms and objects. Both

updating and collision detection must be consistently performed within the permitted time

period to be acceptable as a real time safety system. Third, the model must be reliable, but

not necessarily exact. That is, since the objective is to warn and avoid imminent collisions,

an exact representation of the objects is not required - as long as the approximation does not

lead to missing imminent collisions, nor leads to reporting too many false alarms.

The approach to collision detection is to maintain a model of the working environment and

through that model, detect when objects in the real world are about to collide. In effect, a

real time simulation of the environment is performed. Information regarding the position of

Class Hierarchy for Space Time Problems 36 Virginia Tech

the robot arms is input to the system by placing sensors on the motors that drive various

components of the robot arm. These sensors give indication to movements about to happen

and the model is updated based on these inputs. Like in OOSPG each space calculates the

collision time for all objects within its boundary. Among all the spaces if any collision time

is “too short” an imminent collision is reported. As the space in RACDS is three dimensional

so we would need an octree instead of a quad tree to model the space. The space shape would

be of class cuboid.

Class vectors are used to represent motion of various objects and calculate their collision

times. When a certain distance between two non-compatible objects is to be maintained, a

standard technique for a static environment is to extend each object by 1/2 the minimum

tolerance distance in all directions and then using vector arithmetic to determine any

collisions that might occur.

For performance reasons the user can specify various rules to manipulate the space. As in

OOSPG the space would subdivide into eight subspaces if there are more than ‘n’ objects

within a space. Similarly eight adjoining subspaces would reunite if the total objects within

their boundaries are ‘n’ or less. Since this problem is less dynamic than OOSPG (as the robot

arm has seven degrees of freedom) and cannot traverse space boundaries rapidly a lower

decomposition factor would give improved performance. This is explained in section 5 in

detail.

(Robot Arm) (Space shuttle) (Space station)

The Generic Class Hierarchy applied to RACDS

Fig. 9

Class Hierarchy for Space Time Problems 37 Virginia Tech

Fig. 9 shows the generic class hierarchy that could be used for RACDS. The robot arm

inherits from mobile and various shapes. It has the collision detection system built into it.

The space shuttle and the space station inherit from stationary and various shapes. Other

mobile objects derive from class mobile and various shapes. Mobile objects, having vectors

and time associated with them, are used to model and calculate collisions times. Upon

receiving data from the sensors the objects that moved update their vectors. These new

vectors are used by the collision detection algorithm. If a collision between two non-

compatible objects is detected a warning is issued and the motion of the robot arms stopped.

But if no two objects are close enough to report a collision all objects are moved forward in

time and their vectors updated. This process continues as long as the robot arms are in use.

Class Hierarchy for Space Time Problems 38 Virginia Tech

4.0 Automated highway problem (AHP)

4.1 Problem Definition

The intent is to devise a collision avoidance system that will warn the car drivers if the car is

going to collide with other cars, with the curb, or even crossing the lane markers. These

“smart” cars will look out for other cars, curbs and lanes, calculate their collision times with

other objects and if the collision time is less than the “safe time”, notify the driver of

impending danger. The “safe times” are calculated based on the mass and velocity of the

automobile. The greater the momentum (mass * velocity) the higher the value of safe time.

The generic class hierarchy will be used to model the automated highway problem and

develop the collision avoidance system as shown in Fig. 10. All automobiles inherit from

mobile and various shapes. Lanes and curbs inherit from stationary and linear. Other objects

in the simulation would also inherit from various shapes and from either mobile or stationary.

The Generic Class Hierarchy applied to AHP

Fig. 10

Class Hierarchy for Space Time Problems 39 Virginia Tech

4.2 Solution

The highway is divided into cells®. The cell is analogues to space in the pool game simulation

and robot arm collision detection system. Each car checks for collision with other cars in the

same cell. Cells have a list of all cars at all times within their domain.

The functionality of keeping a list of cars that belong to a certain cell for the automated

highway problem is different than that the one used in the pool game simulation. In the

automated highway problem each car keeps monitoring the signals via cellular phone from all

the cells (spaces) to see which is the strongest. Whenever it discovers that a different cell

has become stronger (as a result of the car driving into this new cell), the car informs the old

cell which then hands it over to this new cell. This avoids the space having to go through a

list of its siblings (neighboring spaces) to find out the new space that contains the object that

collided with its boundary.

For collision detection between cars and cars, cars and lanes, cars and curbs, the car can be

modeled by five circles as shown in Fig. 11, where each circle represents the zone of a radar

attached to the car as follows:

1. One in the center to the car to check for curbs, as a car generally travels closer to curbs

than to other automobiles.

2. One at the front and one at the rear of the car to check for cars that may collide from

the front/rear.

3. One on both sides of the cars to check for cars coming from the side.

These circles may intersect each other in different ways, representing varying degrees of

detection as depicted in Fig. 11(a) and 11(b). So, a car has five methods : CheckFront,

CheckCenter, CheckLeft, CheckRight, CheckRear in its collision detection algorithm. These

methods are invoked to calculate the collision times of the car with various objects. Each of

°Taken from cellular communication, same concept as the space for OOSPG and RACDS.

Class Hierarchy for Space Time Problems 40 Virginia Tech

these methods in turn invokes basic collision detection methods described in the pool game

simulation. For example, CollDCircleLine, CollDCirclePoint, etc.

Fig. 11(a) Fig. 11(b)

Proposed collision detection model for AHP

Fig. 11

An alternative to the above proposed five circle design is to model] the cars by to two

concentric circles. The inner circle for checking collisions with curb, lanes, etc. and the

outer (larger) circle for checking collisions with other cars as shown in Fig. 12.

Alternative collision detection model for AHP

Fig. 12

Having two concentric circles makes the calculations relatively simple and the problem

reduces to OOSPG. Instead of one ball, AHP has two concentric balls. When it comes to

collision detection between ball and ball the outer circle is considered, and between ball and

wall (curbs and lanes) , hole (pot hole!), then the inner ball (circle) is considered. Thus,

instead of five methods only two methods CheckOuter and CheckInner are required.

Class Hierarchy for Space Time Problems 4] Virginia Tech

4.3 The Simulation

At the beginning of the simulation all objects are at rest and the absolute time is zero. Once a

car starts moving in the space, its clock starts ticking. The car’s collision detection

algorithms start calculating the collision times with other objects in its space. The collision

times are checked at every clock tick, against the “safe times”. AHP would have different

safe times for collisions concerning cars and cars, and for collisions concerning cars and

curbs/lanes. If any collision time is equal to or below the safe time then a warning is issued

and appropriate action taken. If there is no collision warning all objects are moved forward

in time by delta ‘t’. The reason for moving objects forward in time by delta ‘t’ is because,

cars do not have synchronized clocks (a car could start moving at any time).

Class Hierarchy for Space Time Problems 42 Virginia Tech

5.0 Evaluation

5.1 When and How to subdivide the Space

In Section 2 it was shown that the OOSPG algorithm had complexity O(n*df) where, ‘n’ is

the total number of objects and ‘df? the decomposition factor. Recall that the decomposition

factor causes the space to subdivide if it has ‘df? number of objects, or reunites if there are

less than ‘df number of objects in adjoining spaces. However, simply reducing ‘df will not

necessarily yield the best overall performance, as will be seen. If there are very few objects

per space, then the overhead of the space becomes significant as objects constantly move

between spaces. That is, more collision checks are required between objects and spaces

boundaries and consequently each space having to modify its object list.

For OOSPG, Fig. 13 compares the number of collision checks made during a simulation

against different space decomposition factors (df) for varying number of mobile objects, the

total number of objects being constant at fifteen. As seen in Fig. 13 for a decomposition

factor of five (df = 5) among the chosen decomposition factors we get the best performance.

Fig. 13 shows the advantages of a dynamic space. The significance of ‘NS’ curve is to show

the overhead of space. ‘NS’ curve shows the number of collision checks if there where No

Space. The ‘15’ lines shows the number of collision checks if it was one big space. The delta

between the above two gives the overhead of one space (objects colliding with space

boundary). The ‘2’ curve represents the least decomposition factor but it does not have the

least number of collision checks, due to the collisions involving objects and space boundaries.

The df = ‘5’ curve has the least number of collision checks and the difference in the number

of collision checks is even more significant as the number of objects increases. This signifies

an optimal trade off between the advantages of the space and its overhead. The optimal

value of ‘df the decomposition factor is application specific and depends on the dynamic

nature of the application.

To illustrate the above statement let us take into consideration RACDS (Robot Arm Collision

Detection System). In RACDS the robot arms have restricted degrees of freedom meaning

the robot arm is less dynamic than pool balls, resulting in fewer collision checks between the

objects and the space boundaries. Thus, for RACDS a lower decomposition factor ‘df’ would

give better results. On the other hand AHP (Automated highway problem) is more like the

pool game

Class Hierarchy for Space Time Problems 43 Virginia Tech

of Objects NS | 15 10 5 2
2 420 480 582 660. 1396
3! 1760 1850. 2185 1679. 1576

oS 5 3290 3408 2980 2600. 2400
10 11287 12908 8976 7658 9076
15 16756 17078 12081 10742 11210

| Collision Checks v/s Spaces DF's |__|

2 18000 - ao

ra ae 3 i—
£

oi 8 i i 5 |

2 a : oes

ee ag
Hae 2 ae
i) eS Po

—— co

a —@—# of Objects a
pe —#—NS ee

ieee a pas
ce 1 3 4 5 6 (10 —

p—- Num of Objects oe. — eo |—~@—2 eiaea
|

| ! 3 ! !
| iFig.13 | |

Class Hiercrahy 44 Virginia Tech

simulation and would have an higher “optimal” decomposition factor than RACDS. Thus, it

is vital to choose the right decomposition factor, and number of divisions to get optimal

performance. Again both these factors are dependent on the dynamic nature of the

application and can only be determined by empirical measurement. In general the

decomposition factor depends on the dynamic behavior of the objects within an application

and the role of space in the application.

5.2 How to model other problems in the problem domain

The following approach is recommended to solve other problems in the problem domain

using the class hierarchy developed in this project:

1. Identify mobile and stationary objects in the problems. All objects should derive directly

or indirectly from either mobile or stationary class.

2. Decide what shape classes various objects would derive from and how to model their

physical and dynamic characteristics.

3. Decide how to proceed with the simulation and how to resolve the interactions during the

course of the simulation.

4. Decide where the interaction resolver would fit in the class hierarchy.

5. Decide how to model the space and how the space would interact with the objects.

6. Decide the set of rules which would govern the behavior of the space, that 1s, how and

when the space would subdivide and reunite. This involves choosing the right

decomposition factor.

Class Hierarchy for Space Time Problems 45 Virginia Tech

5.3 Limitations

Limitation 1. OOSPG - Circle and Line Collision Detection Method:

For detecting collisions between a circle and a line the method currently being used only

predicts collisions where the line segment becomes tangent to the circle. Cases where the

circle will strike the endpoints but will never lie tangent to the line segment are ignored by

this method, and it predicts no collision. However, such cases can be taken into account by a

method, whose purpose is to predict collisions between circles and points.

Limitation 2. Absolute time stored as an attribute of mobile objects:

The declaration of class mobile objects (section 1.2.8) has the time that has elapsed since the

beginning of the simulation as an attribute. This “absolute time” could be associated with the

global space and a method defined for each object to retrieve this time. This would eliminate

the need to store absolute time as an attribute of each mobile object.

Limitation 3. Jerky motion of the objects on the screen:

At times if many objects are moving on the screen, and due to other CPU intensive processes

running on the system the objects may have a jerky motion.

Class Hierarchy for Space Time Problems 46 Virginia Tech

6.0 Conclusion

A generic class hierarchy has been developed and used to implement the pool game

simulation. A design using the class hierarchy, to solve the robot arm collision detection

system, and automated highway problem is presented.

6.1 Future Work

6.1.1 Applicability to Other Problems in the Problem Domain

The generic class hierarchy needs to be applied to other problems in the problem domain.

This would prove the generic nature of the class hierarchy and bring forth any shortcomings

of the current class hierarchy.

6.1.2 Enhancements to the Class Hierarchy

Based on the observations from 6.1.1 the existing class hierarchy needs to be enhanced to

model more problem in the problem domain by adding more classes and making the existing

classes more generic.

6.1.3 Better User Interface for OOSPG

e In OOSPG an option can be provided, where the user can move balls around in space

before defining the cue rather than the system placing the balls in pre-defined locations.

e Using GUI (a menu option) the user should be able to add more objects to the simulation

and change the properties of the existing objects.

Class Hierarchy for Space Time Problems 47 Virginia Tech

7.0 REFERENCES

[Bart86]

[Bing93]

[Chie89]

[Fuji86]

[Hont89]

[Kors90]

[Nico90]

[Shaf89]

[Shaf90]

[Stro92]

[Tarl90]

Paul S. Barth. An Object Oriented Approach to Graphical Interfaces. ACM

Transactions on Graphics, 5(2), April 1986 pp. 142-172

Tim Bingham, Nancy Hobbs and Dave Husson. Experiences Developing and

Using an Object-Oriented Library for Program Manipulation. Software

Development Technologies, Digital Equipment Corporation. OOPSLA 1993,

pp. 83-89

C.H. Chien and T. Kanade. Distributed Quadtree Processing. School of

Computer Science, Carnegie-Mellon University, Pittsburgh, PA

Kikuo Fujimura and Hanan Samet. A hierarchical strategy for path planning

among moving obstacles. Center for Automation Research. University of

Maryland, College Park, MD

Philip Hontalas, Brian Beckman, Michael DiLoreto, Leo Blume, Peter

Reiher, Kathy Sturdevant, L.Van Warren, John Wedel, Fred Wieland and

David Jefferson (UCLA). Performance of the Colliding Pucks simulation on

the time wrap operating systems. “Jet Propulsion Laboratory”, Pasadena, CA.

The Society for Computer Simulation 1989.

Tim Korson and John McGregor. Object-oriented design: A tutorial.

Communications of ACM, 33(9), 1990

David M. Nicol. The Cost of Conservative Synchronization in Parallel

Discrete Event Simulations. Department of Computer Science, College of

William and Mary, May 7, 1990.

Clifford A. Shaffer and H. Samet. Optimal Quadtree construction algorithms.

Computer, Vision, Graphics and Image Processing, 37(3):402-419, March

1987

Clifford A. Shaffer and Gregory M. Herb. A Real Time Robot Arm Collision

Detection System. Department of Computer Science, VPI&SU, Blacksburg,

VA June, 11 1990

Bjarne Stroustrup. The C++ Programming Language. Second Edition.

Addison Wesley Publishing Company. April 1992

Mark A. Tarlton and P. Nong Tarlton. A Framework for Dynamic Visual

Applications. “Microelectronics and Computer Technology Corporation”.

Class Hierarchy for Space Time Problems 48 Virginia Tech

1992 Symposium on Interactive 3D Graphics, Cambridge, MA March 29 -

April 1, 1992

[Wass9 la] Anthony I. Wassermann. Object-oriented software development: issues in

reuse. Journal of Object Oriented Programming, 4(2), 55-57, 1991.

[Wass9 1b] Anthony I. Wassermann. From Object-oriented Analysis to design. Journal

of Object Oriented Programming, 4(2), 55-57, 1991.

Class Hierarchy for Space Time Problems 49 Virginia Tech

