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ABSTRACT 
 

Flying snakes possess a sophisticated gliding ability with a unique aerial behavior, in which they 

flatten their body to make a roughly triangular cross-sectional shape to produce lift and gain 

horizontal acceleration. Also, the snakes assume an S-like posture and start to undulate by 

sending traveling waves down the body. The present study aims to answer how the snakes are 

able to control their glide trajectory and remain stable without any specialized flight surfaces. 

Undulation is the most prominent behavior of flying snakes and is likely to influence their 

dynamics and stability. To examine the effects of undulation, a number of theoretical models 

were used. First, only the longitudinal dynamics were considered with simple two-dimensional 

models, in which the snake was approximated as a number of connected airfoils. Previously 

measured force coefficients were used to model aerodynamic forces, and undulation was 

considered as periodic changes in the mass and area of the airfoils. The model was shown to be 

passively unstable, but it could be stabilized with a restoring pitching moment. Next, a three-

dimensional model was developed, with the snake modeled as a chain of airfoils connected 

through revolute joints, and undulation was considered as periodic changes in the joint angles. It 

was shown that undulation, when added to a linearization-based closed-loop control, could 

increase the size of the basin of stability. Our theoretical results suggested that the snakes need 

some extent of closed-loop control in spite of the clear contribution of undulation to the stability 

of glide. Next, we considered the effects of aerodynamic interactions between the fore and the aft 

body on the aerodynamic performance of flying snakes. Two-dimensional anatomically accurate 

airfoils were used in a water tunnel. Lift and drag forces were measured by load cells, and the 

flow field data were obtained using digital particle image velocimetry. The results confirmed 

strong dependence of the aerodynamic performance on the tandem arrangement. Flow fields 

around the airfoils were obtained to show how the tandem arrangement modified the separated 

flow and the wake; therefore altering the pressure field and resulting in changes in the lift and 

drag.   
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GENERAL AUDIENCE ABSTRACT 
 

Flying snakes are a group of snake species that are found primarily in lowland tropical forests of 

south and southeast Asia. These snakes possess a sophisticated gliding ability, with an aerial 

behavior which is fundamentally different from any other biological or man-made flyer. As 

flying snakes lack conventional wings or any other specialized flight surfaces, they use their 

entire body as a morphing ‘wing’ to produce lift and gain forward acceleration. While airborne, 

the snakes assume an undulating S-like posture, in which traveling waves move down the body. 

The role of this highly dynamic aerial behavior in the gliding of snakes is not known. In this 

study, we hypothesized that body undulation is likely to influence the dynamics and stability of 

snakes, because it continually redistributes mass and aerodynamic forces along the body. To 

study the dynamics of snake flight, we developed a number of theoretical models, starting from 

simple two-dimensional models, and then proceeding to more realistic three-dimensional models. 

Undulation was considered as periodic changes in the shape of the model. The models were 

shown to be passively unstable, but they could be stabilized with some control. Under certain 

conditions, it was shown that undulation could stabilize the trajectory without any control. 

Overall, our theoretical results suggested that the snakes need some extent of control in spite of 

the clear contribution of undulation to the stability of glide. We also considered the effects of 

aerodynamic interactions between the fore and the aft body on the aerodynamic performance of 

flying snakes. With two anatomically accurate airfoils placed in a water tunnel, the forces were 

measured by load cells, and the flow around the airfoils were captured by high-speed cameras. 

The results confirmed that the aerodynamic forces on the tandem airfoils would change when the 

airfoils are moved with respect to each other. Overall, the results of this study elucidate the 

underlying physical principles used by flying snakes in their unconventional mode of aerial 

locomotion. Therefore, these results can help to engineering novel biologically inspired vehicles.  
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Chapter 1. Introduction 
 

1. Motivation 

 

Gliding, defined as the ability to control an aerial descent, has evolved in many vertebrate and 

invertebrate animals (Dudley et al., 2007). Almost every gliding taxon has solved the physical 

problem of how to generate sufficient aerodynamic forces in the same way: they use 

symmetrically paired wings projected from the body and held in a generally static posture 

(Biewener, 2003, Alexander, 2003). Bilateral symmetry is present also in the design of 

engineered flyers ranging from micro-air vehicles to airplanes to multi-rotor helicopters 

(Hoffmann et al., 2007, Lupashin et al., 2010). This design, through asymmetric deployment of 

aerodynamic surfaces about different body axes (Dudley, 2002), provides the ability to alter 

flight speed, trajectory, and body orientation, which is required to meet performance objectives 

such as efficiency and control for straight flight, maneuvering, and landing. For most animal 

gliders, flight control is augmented by the ability to selectively apply forces to counteract 

rotations, usually by altering wing characteristics (such as camber) or by shifting the position of 

appendages. 

However, the Asian arboreal snakes of the genus Chrysopelea have found a much less 

expected solution for aerial locomotion (Socha, 2002). With a cylindrical body, the snakes lack 

conventional wings and appendages and have no specialized anatomy to produce flight forces 

used to oppose the gravity and to control the trajectory. Despite a design that would appear 

disadvantageous for flight, the flying snakes possess a sophisticated ability to glide: they jump 

from trees, flatten the body and undulate in the air in a complex 3D pattern. The glide 

performance of the snakes is comparable to that of other gliders (Scholey, 1986, Socha and 

LaBarbera, 2005, McGuire, 1998). The snakes are able to cover significant horizontal distance 

with a shallow glide angle (as little as 13° from the horizon) toward the end of the glide. One of 

the species, C. paradisi, is even capable of active maneuvers (Socha, 2002, Socha and 

LaBarbera, 2005, Socha et al., 2010). In contrast, some non-flying snakes are known to tumble 

when dropped from a height (Heyer and Pongsapipatana, 1970), and no other species can glide, 

demonstrating that the physical or physiological mechanisms of control used by Chrysopelea are 

not present in all snakes. 
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The flying snakes do not appear anatomically exceptional or unique, but their flight is 

fundamentally different from any other biological or man-made flyer. Upon becoming airborne, 

the snake first splays its ribs to the side, flattening out in the dorsoventral axis and creating a 

‘wing’ with an unconventional cross-sectional shape. The snakes glide by using this morphing 

wing that continuously reconfigures throughout flight, which is accomplished by sending high-

amplitude traveling waves posteriorly down the body, producing an aerial undulation. This 

combination of body morphing and undulation produces a glider with symmetries drastically 

different from all other biological or engineered flyers. In particular, (i) undulatory motion 

entails significant out-of-plane translation of different parts of the body, a feature not observed in 

other gliders, and (ii) because of undulation, the snake’s body posture is bilaterally asymmetric at 

any moment in time, yet its rib splaying creates an airfoil with fore–aft symmetry. 

In summary, flying snakes exhibit a combination of peculiar behaviors that are 

counterintuitive to our conventional understanding of flight. Despite our growing knowledge 

about the kinematics and aerodynamics of flying snakes, it remains a mystery how they produce 

stable forward gliding or how it is capable of active maneuvering in the absence of obvious 

control surfaces. An important step toward solving this problem is to understand the snake’s 

stability characteristics in the pitch, roll and yaw directions. This project aims to use originally 

developed theoretical and experimental models to provide the first detailed physical investigation 

of how the snake produces controlled stable gliding. More precisely, we attempt to answer the 

question: how do postural reconfigurations of an undulating glider affect its aerial performance, 

and to what extent is this accomplished through active or passive control mechanisms? This 

work could serve as a basis for future studies that explore the evolutionary and ecological origins 

of snake gliding flight. Moreover, understanding the aerodynamics and mechanics of flying 

snakes will allow exploiting the underlying principles in order to engineer novel bio-inspired 

aerial vehicles. 

 

2. Background 

 

Flying snakes are a group of five species of colubrid snakes found primarily in lowland tropical 

forests of south and southeast Asia. In body size, they are not particularly large, with a length on 

the order of one meter and body mass from a few to a few hundred grams. The three species that 
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have been examined thus far (Chrysopelea ornata, C. paradisi and C. pelias) display a range of 

aerial performances, with C. paradisi being the superior glider (Socha and LaBarbera, 2005).  

Although only the basic kinematic features of glide trajectories of flying snakes are 

examined in a few recent studies, they are among the small group of animals certain aspects of 

whose gliding behavior have been precisely quantified (flying squirrels (Bahlman et al., 2013, 

Bishop, 2006), flying lizards (McGuire and Dudley, 2005), colugos (Byrnes et al., 2011), and 

flying snakes (Socha and LaBarbera, 2005, Socha et al., 2005, Socha et al., 2010)). The 

performance of other gliders has been characterized largely based on takeoff and landing 

locations (Jackson, 2000, Vernes, 2001, Young et al., 2002, Scholey, 1986, Scheibe and Robins, 

1998, Ando and Shiraishi, 1993, Heyer and Pongsapipatana, 1970). The studies on snakes have 

documented that they jump from trees using the takeoff sequence as shown in Fig. 1. The snake 

drops its fore body from a horizontal substrate such as a branch and assumes a J-shaped loop 

with the head facing forward. While the back of the body is gripping the branch, the snake 

accelerates its fore-body upward and away from the branch, which will be released when the 

snake reaches the apex of its jump.  

Concurrently, the snake dorsoventrally reconfigures its whole body shape, doubling the 

width with the cross-section being flattened on the bottom and triangular on the top. After take-

off, the snake passes through a ballistic dive phase, in which the glide angle (the angle of the 

glide path relative to horizontal) is steep (~50°-70°, depending on species) and on the order of 2 

m of height is lost. This is followed by a shallowing glide phase in which the glide angle 

decreases due to lift generation and the glide behavior of the snake develops fully. By the start of 

this phase, the snake has started to undulate laterally in an S-like shape, sending traveling waves 

posteriorly down the body. During the shallowing phase, the snake maintains a staggered 

configuration, with the anterior body oriented roughly level to the ground traveling at a speed of 

8-11 m/s (Fig. 2). Finally, the snake lands on the ground or vegetation without injury (Socha, 

2002, Socha et al., 2005, Socha and LaBarbera, 2005, Socha, 2006, Socha, 2011, Socha et al., 

2010).  

Any flyer’s abilities essentially depend on its aerodynamic performance. The 

aerodynamic basis of flight in birds, bats and insects has been extensively studied, and the steady 

and unsteady effects, 2D and 3D dynamics, wake patterns and fluid–structure interactions have 

been largely revealed (Lehmann, 2004, Wang, 2005, Tobalske, 2007, Hedenström and Spedding, 
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2008, Song et al., 2008, Usherwood and Lehmann, 2008, Lehmann, 2009, Johansson et al., 

2010). In comparison, the aerodynamics of animals that can only glide has received far less 

attention (Emerson and Koehl, 1990, McCay, 2001, Bishop, 2007, Alexander et al., 2010, Park 

and Choi, 2010, Bahlman et al., 2013) despite the relative simplicity of ‘static’ gliders wings and 

their large morphological and taxonomic diversity (Dudley et al., 2007, Dudley and Yanoviak, 

2011). Anyway, steady state aerodynamic behavior of a 2D airfoil with the snake’s body cross-

sectional shape has been examined in some recent experimental and computational modeling 

studies (Miklasz et al., 2010, Krishnan et al., 2014, Holden et al., 2014). It has been shown that 

the snake-like airfoil can maintain high lift at angles of attack as large as 35°, with lift 

coefficients reaching as high as 1.9. Moreover, high lift and lift-to-drag ratios can be maintained 

over a large range of angles of attack, helping to explain how the snake begins to generate 

significant lift even during the steep ballistic dive portion of the trajectory (Fig. 3). 

Because of the staggered S-shaped configuration of the gliding snake, aerodynamic 

interactions between the fore and aft body are likely to take place. Specifically, the vortices 

formed upstream are intercepted by the downstream cross-sections. It has been shown that such 

interactions, which have been previously observed in flapping wings (Akhtar et al., 2007, 

Lehmann, 2008, Wang and Russell, 2007, Maybury and Lehmann, 2004, Warkentin and 

DeLaurier, 2007, Weimerskirch et al., 2001), often result in reduced energy cost (Weimerskirch 

et al., 2001, Lehmann, 2009, Rival et al., 2011a) (but see (Usherwood et al., 2011)), while they 

possibly cause a reduction in overall lift (Usherwood and Lehmann, 2008, Rival et al., 2011b). 

There exist a few studies (Scharpf and Mueller, 1992, Michelsen and Mueller, 1987, Husain et 

al., 2005) on the static tandem airfoils in flows with moderate Reynolds numbers (Re = 8.5×104 

– 2.25×105), but only a simplified preliminary study (Miklasz et al., 2010) used snake-like 

airfoils and Re = 15000. It was suggested that the tandem arrangement of two airfoils could 

cause significant changes in the lift and drag coefficients of the downstream airfoil relative to a 

solitary airfoil at the same angle of attack (Fig. 4). Also, Holden (unpublished data) examined 

geometrically accurate airfoils placed in tandem at several combinations of gap, stagger, and 

angle of attack. The results, summarized in Fig. 5, show the normalized change in the combined 

lift-to-drag ratio of the tandem model with respect to two single models having the same angles 

of attack. 
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3. The present work 

 

Among a diversity of flying snake’s arboreal behaviors that may potentially be employed in the 

snake’s control system, undulation and staggered configuration are the most important. 

Undulation manifests itself in the snake’s flight dynamics by continually redistributing body 

mass and aerodynamic forces, and the staggered configuration enables the snake to exploit the 

upstream-downstream aerodynamic interactions toward controlling its trajectory. To address the 

question of how these traits are integrated in the snake’s control system, this work takes three 

general approaches, which are briefly introduced below. Each of the next chapters reports these 

approaches in detail. 

 

Objective 1: Determining the role of undulation in pitch stability during straight glide. 

 

Undulation is arguably the most prominent arboreal behavior of flying snakes. Because of 

undulation, body mass and aerodynamic forces are continually redistributed which means that 

the center of mass (CoM) and the center of pressure (CoP) move with respect to each other. 

Since the relative position of CoM and CoP plays the most important role in the rotational 

dynamics and stability characteristics of an object moving through a fluid, it is anticipated that 

undulation profoundly influences the snake’s glide trajectory. This speculation is also supported 

by the results of (Socha and LaBarbera, 2005) stating that relative undulation amplitude is 

correlated with the snake’s airspeed and acceleration. Therefore, any attempt to understand the 

control system of flying snakes should start with determining the effects of undulation on the 

dynamics of glide. The first objective encompasses the initiative step toward this goal by 

considering the motion of snake in 2D and focusing on stability in the pitch direction. In 

particular, the hypothesis that undulation contributes to pitch stability is examined. 2D 

theoretical models are used to approximate the dynamics of flying snakes.  

 

Objective 2: Developing a dynamical framework for the motion of snake in 3D and determining 

its basic stability characteristics. 

 

In spite of the substantial information that simplified 2D analysis of flying snakes provides about 
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the fundamentals of their control system, in order to fully understand the locomotion and design 

of snakes, it is crucial to provide an analytical and computational framework, which encapsulates 

their entire 3D motions. This becomes more important by recalling that the snake has only an 

elongate body and its postural motions to produce flight forces and maintain stability, and the 

kinematics that produce the required forces can be revealed only by a 3D model capable of 

duplicating snake’s postural reconfigurations. Furthermore, this dynamical framework, allows us 

to explore theoretically possible but biologically unrealized motions, and to exploit the 

underlying principles to engineer biologically inspired robotic analogues to snakes. 

An intuitive way to model the snakes is using a chain of n  rigid links connected by 

revolute or spherical joints (n-chain) to obtain an articulated snake-like system. This model has 

been widely used to study and reproduce the terrestrial motion of snakes (see e.g. Hirose and 

Morishima, 1990, Prautsch and Mita, 1999, Maladen et al., 2011, Dowling, 1999, Saito et al., 

2002, Mori and Hirose, 2002, Chernousko, 2005, Enner et al., 2012). Here, we use this model for 

the first time to consider the motion of snakes through air. The principles of snake flight can be 

uncovered by understanding how the n-chain is reoriented by changes in its shape. In other 

words, we are interested in the coupling between the shape dynamics and the overall rotation and 

translation of the n-chain. We hypothesize that undulation, which is a cyclic motion in the shape 

space of the n-chain, is required for the flight stability. In relation to this hypothesis, we 

determine the minimum number of links required for stable flight.  

 

Objective 3: Determining how the staggered configuration modifies the aerodynamic 

performance of flying snakes. 

 

Flying snakes assume an S-shape and undergo a sequence of undulatory motions while airborne. 

These motions also include a cyclic vertical translation of the aft body. Consequently, a complex 

interaction between the fore and the aft body takes place where vortices formed upstream are 

intercepted by the downstream cross-sections. In a simplified approach, this interaction can be 

approximated by a two-dimensional staggered airfoil configuration, as shown in Fig. 4A. By 

varying the gap and stagger spacing between the two airfoils as well as the angles of attack, it is 

possible to reproduce a wide range of conditions representative of the snake’s flight 

configurations. Holden et al. who used anatomically accurate physical models to characterize the 
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aerodynamic performance of a single snake-like 2D airfoil (Holden et al., 2014), also measured 

lift and drag forces on two such airfoils placed in tandem at a few combinations of gap, stagger, 

and angles of attack. The yet unpublished results confirmed strong dependence of the lift and 

drag forces on the arrangement (Fig. 5), which provides the possibility for the snake to exploit 

these aerodynamic interactions to control the glide trajectory.  

Consistent with the goal of this project to study the physical mechanisms of control in 

flying snakes, we try to determine the effects of tandem arrangement on the overall aerodynamic 

performance. The portions of the parameter space, including the arrangements that are close to 

snake kinematics, have to be explored. We hypothesize that the underlying vortex-blade 

interaction is responsible for the vortex-induced lift augmentation and drag reduction. Particle 

Image velocimetry (PIV) is used to visualize the flow around the airfoils and verify the 

hypothesis. More broadly, this study determines the physical limits on the aerodynamics of the 

tandem snake airfoils. 
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Fig. 1: Side view of takeoff in C. paradisi, adapted from (Socha, 2006). 
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Fig. 2: Trajectory kinematics of C. paradisi. (A) Compilation of 14 glide trajectories, adapted 
from (Socha et al., 2005). (B) Summary of the body posture normalized by the snout-vent length, 
adapted from (Socha et al., 2010). 
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Fig. 3: Steady-state lift and drag coefficients and the lift-to-drag ratio measured for a straight 
airfoil having the same cross-sectional shape as the flattened snake, adapted from (Holden et al., 
2014). 
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Fig. 4: (A) Two airfoils having the same angle of attack of α=25° are arranged in the staggered 
configuration. ‘U’ and ‘D’ indicate upstream and downstream, respectively. The aerodynamic 
interactions between the airfoils result in significant changes in the (B) lift and (C) drag 
coefficients of the downstream airfoil, relative to a single airfoil at the same angle of attack. The 
figures are adapted from (Miklasz et al., 2010). 
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Fig. 5: For the depicted combination of angles of attack, striking changes in the lift-to-drag ratio 
could be achieved by choicely changing the gap and stagger as small as one chord length 
(Holden, unpublished data). 
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Chapter 2. A theoretical analysis of pitch stability during gliding in flying 

snakes 
 

Abstract 

 

Flying snakes use their entire body as a continuously morphing ‘wing’ to produce lift and 

shallow their glide trajectory. Their dominant behavior during gliding is aerial undulation, in 

which lateral waves are sent posteriorly down the body. This highly dynamic behavior, which is 

unique among animal gliders, should have substantial effects on the flight dynamics and stability 

of the snakes, resulting from the continuous redistribution of mass and aerodynamic forces. In 

this study, we develop two-dimensional theoretical models to assess the stability characteristics 

of snakes in the pitch direction. Previously measured force coefficients are used to simulate 

aerodynamic forces acting on the models, and undulation is simulated by varying mass. Model 1 

is a simple three-airfoil representation of the snake’s body that possesses a passively stable 

equilibrium solution, whose basin of stability contains initial conditions observed in 

experimental gliding trajectories. Model 2 is more sophisticated, with more degrees of freedom 

allowing for postural changes to better represent the snake’s real kinematics; in addition, a 

restoring moment is added to simulate potential active control. The application of static and 

dynamic stability criteria show that Model 2 is passively unstable, but can be stabilized with the 

restoring moment. Overall, these models suggest that undulation does not contribute to stability 

in pitch, and that flying snakes require a closed-loop control system formed around a passively 

stable dynamical framework.  

 

1. Introduction 

 

All flyers require the ability to alter flight speed, trajectory, and body orientation to meet 

performance objectives such as efficiency and control for straight flight, maneuvering, and 

landing. Flight control is usually accomplished through asymmetric deployment of aerodynamic 

surfaces about different body axes (Dudley, 2002). From aircraft to animals that have evolved 

the ability to fly, the use of symmetrically paired wings is an almost universal feature. Elevators, 

wing flaps, spoilers and a horizontal tail are used in aircraft as control devices, but flying and 
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gliding animals must use their wings, tail, and other morphological features both to generate 

aerodynamic forces and to control the trajectory (Alexander, 2003, Biewener, 2003). 

For most animal gliders, flight control is augmented by the ability to selectively apply forces 

to counteract rotations, usually by altering wing characteristics (such as camber) or by shifting 

the position of appendages. However, flying snakes of the genus Chrysopelea lack conventional 

wings and appendages, and possess no specialized anatomy for control. Despite a design that 

would appear disadvantageous for flight, the glide performance of flying snakes is comparable to 

that of other gliders (Scholey, 1986, McGuire, 1998, Socha et al., 2005), with one species that is 

even capable of aerial maneuvers (Socha, 2002, Socha et al., 2005, Socha et al., 2010). In 

contrast, some non-flying snakes are known to tumble when dropped from a height (Heyer and 

Pongsapipatana, 1970), and no other species can glide, demonstrating that the physical or 

physiological mechanisms of control used by Chrysopelea are not present in all snakes. However, 

the specific mechanisms that enable Chrysopelea snakes to remain stable while gliding, or to 

turn on command, are unknown. 

Recent studies have helped to elucidate the basic kinematic features of glide trajectories of 

flying snakes (Socha, 2002, Socha et al., 2005, Socha and LaBarbera, 2005, Socha et al., 2010, 

Socha, 2011). After a jumping take-off, the snake passes through a ballistic dive phase, in which 

the glide angle (the angle of the glide path relative to horizontal) is steep (~50-70°, depending on 

species) and on the order of 2 m of height is lost. This is followed by a shallowing glide phase in 

which the glide angle decreases due to lift generation and the glide behavior of the snake 

develops fully. By the start of this phase, the snake has dorsoventrally flattened its whole body 

and undulates laterally in an S-like shape, sending traveling waves posteriorly down the body 

(Fig. 1D). During the shallowing phase, the snake maintains a staggered configuration, with the 

anterior body oriented roughly level to the ground and the overall body angled upward in the 

range of 25° from the glide path (Fig. 1C). Recent experimental and computational modeling 

studies show that the snake’s body cross-sectional shape can maintain high lift at angles of attack 

as large as 35°, with lift coefficients reaching as high as 1.9 (Fig. 1E) (Miklasz et al., 2010, 

Holden et al., 2014, Krishnan et al., 2014). Moreover, high lift and lift-to-drag ratios can be 

maintained over a large range of angles of attack (Fig. 1F), helping to explain how the snake 

begins to generate significant aerodynamic forces even during the steep ballistic dive portion of 

the trajectory. 
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Despite our growing understanding of the kinematics and aerodynamics of flying snakes, 

their ability to maintain flight control remains a mystery. How does an undulating glider produce 

stable gliding in the absence of obvious control surfaces? An important step toward solving this 

problem is to understand the snake’s stability characteristics in the pitch, roll and yaw directions. 

The simplest hypothesis is that a flying snake is passively stable in all directions; at the other 

extreme, the snake requires active control to counteract rotations about all axes.  

Here, we develop new theoretical models as tools to address the stability characteristics of 

flying snakes for the first time. As a first-order study of a highly complex system, we chose to 

simplify the problem by considering the snake as a series of 2D airfoils, and focus only on 

stability in the pitch direction. We conducted simulations of glide trajectories using the 

aerodynamic characteristics of the snake’s cross-sectional shape, with undulation simulated by 

periodically varying the mass and area of the airfoils. The models were examined for pitch 

stability by obtaining the eigenvalues of the linearized system about the steady-state solutions.  

Overall, we aim to understand the fundamental control mechanisms that snakes employ 

during a glide, contributing to our broader goal of discovering the minimum set of parameters 

necessary to reproduce the glide performance of flying snakes. Such work will lend insight into 

the morphological and behavioral requirements to evolve gliding in snakes, and can also 

contribute to design principles for future flying snake-inspired air or water vehicles. For example, 

this work could serve as the basis for a staggered-wing micro-air vehicle that operates in the 

same Reynolds number regime as the real snake. This vehicle would draw inspiration from the 

undulating movement of the snake’s body, allowing the staggered foils to change their relative 

spacing in order to achieve a desired aerodynamic performance.     

 

2. Methods 
Several approaches have been used to assess flight stability of animal flyers. One of the 

most common methods is to examine the static stability criterion (Etkin, 2012, McCormick, 

1995). When a system experiences a small perturbation from equilibrium, this criterion 

determines if the acting forces would restore the system back to the equilibrium state. In recent 

years, the static stability criterion has been used to analyze animal flyers, including the testing of 

physical models in wind tunnels to understand flying frogs (McCay, 2001) and theoretical 

analyses of how the pitching moment about the center of mass (CoM) changes with angle of 
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attack in birds (Thomas and Taylor, 2001). Other studies have examined dynamic stability using 

kinematics of the moving animal, as has been used to assess insects (Taylor and Thomas, 2003) 

and flying squirrels  (Bishop, 2006). Computational or robotic models have been used to analyze 

the passive dynamic stability of hovering fruit flies (Gao et al., 2011) and hawkmoths (Cheng et 

al., 2011).  

Most such studies involve the simplifying assumption of bilateral symmetry (but see (Gao et 

al., 2011)), which allows the motions in the longitudinal direction to be decoupled from those in 

the lateral direction. This enables pitch stability to be considered as a simple one-dimensional 

problem. McCay (2001) and Thomas and Taylor (2001) additionally considered equilibrium 

gliding and determined whether disturbances from equilibrium would be passively counteracted.  

However, neither of these assumptions can be employed to simplify the problem of gliding 

in snakes. First, the S-like posture of the snake endows it with a complete lack of bilateral 

symmetry, which means that the longitudinal and lateral dynamics cannot be decoupled. Second, 

due to the snake’s dynamic undulating motion, whose effect acts like a periodic inertial force, it 

is unlikely that flying snakes glide in equilibrium. In fact, most recorded glide trajectories consist 

of transient motion, and equilibrium gliding has rarely been observed (Socha, 2002, Socha et al., 

2005, Socha and LaBarbera, 2005, Socha et al., 2010). The undulatory motion must periodically 

change the locations of the center of pressure (CoP) and center of mass (CoM) via redistribution 

of area and mass, which leads to the hypothesis that the stability characteristics of the snakes are 

influenced by undulation. Overall, these characteristics suggest that understanding how flying 

snakes glide requires analyses of both static and dynamic stability. 

In this study, we examined the dynamics and stability of gliding flight in snakes by 

developing two theoretical models, beginning with a simple model and progressing to a more 

complex and realistic model. As a first-order modeling approach, we ignored the effects of 

coupling between the longitudinal and lateral dynamics. This can also be viewed as a specific 

case of a straight glide with negligible roll, for which the longitudinal dynamics are independent 

from lateral motions. 

How justifiable is this approach given real snake glide dynamics? The existing kinematic 

data are insufficient to appraise the decoupling of longitudinal and laterally dynamics, but lateral 

motions are indeed negligible under certain conditions. For a straight glide, sideslip and yaw are 

negligible, and if we also assume that roll is not pronounced, the coupling effects are further 
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diminished. According to Fig. 1A, which shows the rotation angles of the body relative to an 

inertial frame estimated from experimental data (Socha et al., 2010) for approximately two 

undulation periods, the assumption of small roll motion is reasonable, at least during late-phase 

gliding in C. paradisi. The angles in Fig. 1A are defined as the consecutive rotation angles that 

transform the inertial frame into the principal axes of inertia of the snake body as a whole; these 

were calculated from the moments of inertia in the x-y-z coordinates, which were estimated by 

assuming that the snake consisted of four line segments of equal masses determined by the 3D 

coordinates of five landmarks (Fig. 1C). Fig. 1A shows that for the majority of the time, 

deviations in roll are less than 10°. Small roll angle could also be inferred from Fig. 1B, where 

the relative displacements of different landmarks on the body are shown in the vertical and 

lateral directions.  

 

2.1. Modeling of forces 

 

We considered gravity and the aerodynamic forces of lift and drag in our two models. To 

calculate aerodynamic forces, we used lift and drag coefficients (Cl  and Cd , respectively) from 

an experimental study of the 2D cross-sectional shape of C. paradisi, which assumed steady-state 

lift and drag (Holden et al., 2014). These coefficients (Figs. 1E, 1F) represent values over a range 

of Reynolds numbers that have been reported for C. paradisi (Socha et al., 2005). Based on an 

average glide speed of 8.9±1.4 m/s (Socha et al., 2005) and a characteristic length of 2.2 cm 

(chord length; (Miklasz et al., 2010)), we chose Cl  and Cd  values corresponding to Re = 11000. 

The use of steady-state aerodynamic force coefficients to model undulating snakes is not 

ideal, but these coefficients are a reasonable approximation to use in our first-order modeling. As 

explained in detail by Holden et al. (2014), the speed of the snake’s forward motion in gliding is 

much greater than the motions of undulation, which suggests that the freestream velocity should 

dominate the local airflow patterns over the body. This suggests that it is reasonable to use these 

force coefficients in a first study. Future modeling should incorporate unsteady and tandem 

aerodynamic effects on the snake, when such results become available.  

 

2.2. Model 1 
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In the first model, we considered the snake as three evenly spaced airfoils (Fig. 2). These 

airfoils represent sections of the snake’s body whose long axis (span) is roughly perpendicular to 

the direction of motion. The distance d  between the airfoils (Fig. 2A) can be characterized as 

half of the undulation wavelength (Fig. 2B). We restrict the airfoils to remain coplanar. The 

previously measured kinematics of body movements (Socha et al., 2010) justifies this restriction, 

showing that total displacements of several landmarks on the snake’s body, perpendicular to the 

‘mean’ body orientation, are about 10% of the snout-vent length (Fig. 1C). Because no data are 

available about the local angles of attack along the snake body, as a reasonable first 

approximation we assumed that the airfoil orientation could be differentiated from the pitch 

angle θ  by the same constant angle ϕ  for all of the airfoils (Fig. 2A). The angle ϕ  represents 

the angle between the chord line of each airfoil and the line that defines the whole-body 

orientation (i.e., the 3-foil system). Further, we assumed that mass and pressure are uniformly 

distributed along the “wings”. The basic assumption for the aerodynamics of this model is that 

the main contribution to producing force comes from those parts of the body that are 

perpendicular to the air flow, and that the curved portions contribute negligible force. 

To simulate undulation, we allowed the masses and, proportionally, areas of the segments to 

vary as the following functions of time: 

m1 t( ) =ma +Δmcosωt

m2 t( ) =mtot − 2ma

m3 t( ) =ma −Δmcosωt

⎧

⎨
⎪

⎩
⎪

 (1) 

where ω  is the frequency of undulation and mtot  is the total mass of the snake, with 

m1 t( )+m2 t( )+m3 t( ) =mtot . The constraint Δm <ma  applies to Eq. (1). 

The equations of motion of Model 1, whose kinematics are shown in Fig. 2C, are written as: 

mtot !!xi+ !!zj( )− 2Δmd cosωt !!θ sinθ + !θ 2 cosθ( ) i+ −!!θ cosθ + !θ 2 sinθ( ) j⎡
⎣

⎤
⎦

= Flj sinγ j −Fdj cosγ j( ) i+∑ Flj cosγ j +Fdj sinγ j −mjg( ) j
 (2) 

2 ma

mtot

−
Δm
mtot

⎛

⎝
⎜

⎞

⎠
⎟

2

cos2ωt
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
mtotd

2 !!θ = dj∑ Flj cos θ +γ j( )+Fdj sin θ +γ j( )( )  (3) 
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where g  is the gravitational acceleration, dj  is the position of airfoils relative to CoM along the 

longitudinal axis of the body, and γ j  is the glide angle of each airfoil. See Appendix A1 for the 

detailed derivation of these equations. The lift and drag forces were calculated as: 

Flj = ρairCljvj
2Saj 2

Fdj = ρairCdjvj
2Saj 2

⎧
⎨
⎪

⎩⎪
 (4) 

where Clj  and Cdj  are the force coefficients, and Saj  is the area of each airfoil.  

Eqs. (2) and (3), together, determine the trajectory of the model when released from any 

initial position. In the simulations, we set ϕ  equal to the value given in Table 2 (see section 2.6 

for details). 

To study the steady-state behavior of Model 1, we first observe that the equations of motion 

are nonautonomous, i.e. they explicitly depend on time. Although nonautonomous systems are 

not usually expected to have equilibrium solutions, we note that with !θ = 0 , the airfoils have the 

same velocity and experience the same angle of attack (see Appendix A1). By substituting Eq. 

(4) into the right hand side of Eq. (3), it can be readily shown that, in this case, CoP coincides 

with CoM; therefore, the net moment about CoM vanishes and Eq. (3) is identically satisfied. 

Also, Eq. (2) reduces to: 

mtot !!xi+ !!zj( ) = Fl sinγ −Fd cosγ( ) i+ Fl cosγ +Fd sinγ −mtotg( ) j  (5) 

where Fl  and Fd  are the net lift and drag forces acting on the model and are not explicitly time-

dependent.  

Eq. (5) is equivalent to the equations of motion for a fixed-shape glider, resulting in definite 

values for equilibrium speed and glide angle. The stability of the equilibrium solution depends 

on the initial conditions from which the trajectory starts; therefore, the equilibrium is locally 

stable. Additionally, it is passively stable because stability is inherent in the model’s behavior 

without using closed-loop feedback control. 

 

2.3. Model 2 

 

Model 2 was developed based on the idea that the snake maintains a staggered configuration in 

mid-air, but different parts of the body move relative to one another. In this 2D model, illustrated 
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in Fig. 3, two airfoils are connected through a rigid link by means of multiple springs and 

dampers. The airfoils and the long axis of the middle link are restricted to remain collinear, but 

they are free to move with respect to each other under the action of gravity, aerodynamic forces, 

and the springs and dampers. The effect of the springs and dampers is shown in Fig. 3A by the 

forces f1  and f2 , which have magnitudes: 

f1 = k r1 − l( )+ b!r1
f2 = k r2 − l( )+ b!r2

⎧
⎨
⎪

⎩⎪
 (6) 

where l  is half of the length of the middle link and the free length of the connecting springs. 

Fig. 3B depicts a top view of Model 2. Compared to Model 1, the middle link is added in 

this model to represent the role of the parts of the body of the snake that are almost parallel to the 

direction of motion (Fig. 3C), which provides rotational inertia. Based on the assumption that 

aerodynamic forces are mainly produced by segments that are perpendicular to the flow, we 

ignored the aerodynamic contribution from this streamwise middle link. Another modification in 

Model 2 is that only two airfoils are used, in contrast to three airfoils in Model 1. Because the 

middle airfoil in Model 1 had no role in the equations of motion, it was removed in Model 2 for 

the sake of abstraction. The two remaining airfoils were sufficient to produce external forces and 

moments; therefore, the dynamics of the snake could be adequately approximated by Model 2. 

Two more assumptions are present in the construction of Model 2, which are are also used in 

Model 1: (i) the airfoils are constrained to move only along the orientation of the middle link, 

and (ii) the airfoils have the same angle of attack. Similar to Model 1, the effects of undulation 

were modeled by allowing the mass of the airfoils to change sinusoidally, such that the total 

mass of the system remains constant: 

m1 t( ) =ma1 +Δmcos ωt +σ( )
m2 t( ) =ma2 −Δmcos ωt +σ( )

⎧
⎨
⎪

⎩⎪
 (7) 

where σ  is some phase angle and is considered to account for the phase within the undulation 

cycle at the starting point. Application of Eq. (7) is subject to the restriction that Δm <ma1 , ma1 . 

The mass of the middle link mi  is held fixed. We further assume that the areas of the airfoils are 

proportional to their masses. 
In the previous section, Model 1 was shown to possess locally stable equilibrium solutions, 

because its structure allowed a uniform distribution of aerodynamic forces. However, in Model 2, 
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presence of the middle link, which does not produce any aerodynamic forces, makes it 

impossible that such a solution be obtained. Therefore, active control is required in Model 2 to 

stabilize the trajectories. We used a restoring moment in Model 2 to represent the overall effect 

of control movements. Based on kinematic observations showing that the snake’s body remains 

roughly level with the ground in mid-glide (Socha et al., 2010), a linearized form was considered 

for the restoring moment, which would maintain the pitch angle θ  close to zero. Similar to 

expressions that have been commonly used to stabilize models of flying animals (see e.g. (Cheng 

et al., 2011)), we let: 

Mu = Kuθ +Bu !θ  (8) 

It is important to note that the proportionality term Kuθ  might not be sufficient for control, 

because it could overcompensate to disturbances and lead to divergent oscillations. Therefore, a 

damping term Bu !θ  was also included to dissipate the unwanted pitching motion.  

 

2.4. Equations of motion for Model 2 

 

Before deriving the equations of motion, a few definitions are presented for convenience of 

notation. We select x = x z θ r1 r2⎡
⎣

⎤
⎦
T

 (see Fig. 3A) as the vector of generalized coordinates of 

the system. Among these variables, x  and z  define the position of the model as a whole in the 

plane of motion and are called the position variables, while r1 , r2  and θ  determine the relative 

position of model segments and are called the configuration variables. Additionally, we define 

the state vector as: 

y = θ r1 r2 !x !z !θ !r1 !r2
⎡
⎣⎢

⎤
⎦⎥

T

 (9) 

The reason for excluding the position variables from the state vector is that, unlike state variables, 

they will not settle to periodic motions, and prevent obtaining a periodic steady-state solutions 

(see section 2.6 for more details). 

The equations of motion are derived using a Lagrangian formulation, and are written in the 

following matrix form: 

M x, t( )!!x+ c x, !x, t( )+ g x, t( ) = q x, !x, t( )+ f x, !x( )sin ωt +σ( )  (10) 
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where M x, t( )  is the mass matrix, c x, !x, t( )  is a vector containing the centrifugal, Coriolis and 

damping terms, g x, t( )  contains the gravitational and elastic terms, and q x, !x, t( )  is the vector of 

generalized force. Also, f x, !x( )  is a forcing term produced by the transport of mass between the 

airfoils, whose harmonic behavior is shown in Eq. (10).  

Upon integration of Eq. (10) from any initial condition, the glide trajectory of the model can 

be determined. A detailed derivation of Eq. (10) including explicit formulae for the terms is 

provided in Appendix A1. 
 

2.5. Determination of parameters for Model 2 

 

It can be seen from Fig. 3 and Eqs. (6-8) that Model 2 involves multiple parameters, including 

the inertial parameters ma1 , ma2 , Δm , mi  and Ii ; biomechanical parameters k  and b ; 

geometric parameters l , σ  and ϕ ; and control parameters Ku  and Bu . Among these, 

determining Ku  and Bu  required fitting the model to observed glide trajectories of snakes, by 

formulating it as an optimization problem (see below). This approach has been commonly used 

when control system parameters are dealt with; for example, Cheng et al. (2011) determine the 

characteristic coefficients of the feedback control system of a hawkmoth model using a similar 

approach. Because direct measurement of other parameters from live specimens of flying snakes 

was not possible for this study, we chose to use a data fitting procedure to find model parameters 

by requiring that the resulting model would reproduce the observed glide trajectories as close as 

possible. 

We chose to use glide trajectory data from a previous study (Socha et al., 2010), using a 

representative snake 42.0 g in mass and 74.0 cm in snout-vent (SVL) length. Based on another 

study (Socha et al., 2005) and following Miklasz et al. (2010), we estimated that this snake 

created an airfoil with a chord of 2.2 cm by flattening its body. 

To simplify the formulation, the following nondimensionalized inertial parameters were 

used in the process: 
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η1 =ma1 mtot

η2 =ma2 mtot

ζ = Δm mtot

⎧

⎨
⎪

⎩
⎪

, µ = Ii
mil

2 3
 (11) 

Eq. (7) could then be rewritten as: 

m1 = η1 +ζ cos ωt +σ( )⎡⎣ ⎤⎦mtot

m2 = η2 −ζ cos ωt +σ( )⎡⎣ ⎤⎦mtot

⎧
⎨
⎪

⎩⎪
 (12) 

We thus obtain the mass and moment of inertia of the middle link as: 

mi = 1−η1 −η2( )mtot  (13a) 

Ii = µ 1−η1 −η2( )1
3
mtotl

2  (13b) 

Using the assumption that the projected areas of the airfoils are proportional to their masses, 

we could also find the airfoil area Sa  from Eq. (12):  

Saj =
mj

mtot

lSVc , j =1,2  (14) 

where lSV  and c  are SVL and airfoil chord, respectively. Sa  is used along with the aerodynamic 

coefficients to calculate the lift and drag forces. 

Finally, the error between the recorded trajectory and the theoretical trajectory obtained by 

integration of Eq. (10) is defined in the least squares sense as: 

e = xr t( )− xm t( )( )
2
+ zr t( )− zm t( )( )

2⎡
⎣⎢

⎤
⎦⎥dtt1

t2∫  (15) 

where the subscripts r  and m  denote the recorded and model trajectories, respectively. The 

model parameters are the solution to an optimization problem in which the error in Eq. (15) is 

considered as the objective function to be minimized. 

It is important to note that the discretized form of Eq. (15) was used here, because the 

measured data existed at a series of discrete time steps. We used the initial conditions based on 

the previous trajectory data (Table 1). We chose initial values of x , z  and θ  from the measured 

data, whereas the initial values of !x , !z  and !θ  were calculated using a finite difference formula. 

Because no measured data existed for r1  and r2 , we simply integrated these variables from rest 

( r1 = r2 = l  and !r1 = !r2 = 0 ). 
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2.6. Stability analysis 

 

To analyze the stability characteristics of a system in the sense of dynamic stability, we first 

need to determine its steady-state response. Model 2, as described by Eq. (10), is nonautonomous 

and periodically forced with the frequency of undulation. Hence, the steady-state response of 

Model 2 is periodic in state space and has the same frequency. As a side note, it should now be 

clear that in order to be able to obtain periodic solutions, we had to define the state vector as in 

Eq. (9), because the trajectory in the x-z plane is not periodic. We can assess the stability of the 

periodic solution by applying the Floquet theory (Nayfeh and Balachandran, 2004), which is 

described below. 

Due to the complexity of the equations of motion of Model 2, analytical solutions were not 

attempted; instead, we employed a finite difference method to determine the solution to Eq. (10). 

First, a sufficiently small step size was selected to construct a dense set of time steps spanning 

one period of undulation. Then, a central difference formula was used to approximate the time 

derivative of the state vector at the midpoint of each interval. By imposing the periodicity 

condition, a set of algebraic equations was obtained in terms of discrete states at the steps, 

sufficient to solve for discrete states, determining the periodic solution (Nayfeh and 

Balachandran, 2004). This periodic solution is called y0 t( ) , and we denote its period by τ . 

To examine the dynamic stability of y0 t( ) , Eq. (10) is first rewritten in the following state 

space form: 

!y = !y y, t; p( )  (16) 

where p  could be any parameter. A disturbance !y t( )  is superimposed on y0 t( ) , so that: 

y t( ) = y0 t( )+ !y t( )  (17) 

Next, Eq. (17) is substituted into Eq. (16), a Taylor series expansion is used about y0 t( ) , and 

linear terms in the disturbance are retained. It follows that: 

!"y = ∂ !y
∂y y0

!y =A t; p( ) !y  (18) 
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where A t; p( )  is the Jacobian matrix. The linearly independent solutions of Eq. (18) are 

collected in a matrix form as below: 

!Y t( ) = !y1 t( ) !y2 t( ) ! "y8 t( )⎡
⎣⎢

⎤
⎦⎥

 (19) 

!Y t( )  is the fundamental matrix solution and satisfies the differential equation: 

!"Y t( ) =A t; p( ) !Y t( )  (20) 

When integrated from the initial condition !Y 0( ) = I , the fundamental matrix solution evaluated 

at the period τ  is called the monodromy matrix; i.e., 

Φ = !Y τ( )  (21) 

The eigenvalues of the monodromy matrix, Φ , are called Floquet multipliers. The Floquet 

theory states that stability of y0 t( )  is determined by the following condition: if all of the Floquet 

multipliers are within the unit circle in the complex plane, the periodic solution is stable (Nayfeh 

and Balachandran, 2004). 

The effect of parameter p  on the stability of y0 t( )  can be determined by examining 

whether changes in the value of p  cause a Floquet multiplier to enter or exit the unit circle. For 

the case of Model 2, parameters of interest are Ku  and Bu , and Δm  (or equivalently ζ , which is 

a measure of undulating amplitude and could be used to determine the effect of undulation on the 

pitch stability of the model). A previous study of flying snake kinematics (Socha and LaBarbera, 

2005) found no correlation between undulation frequency and any glide performance variable. 

Therefore, we do not consider this parameter here. Among the parameters of interest, the 

amplitude of undulation, ζ , requires further elaboration, because the forcing term f x, !x( )  is 

proportional to it; see Eq. (S21). As this parameter goes to zero, the steady-state response 

continuously transforms from a periodic to an equilibrium solution, for which the Floquet theory 

can no longer be applied. In this case, the eigenvalues associated with the linearized equations of 

motion have to be obtained; for an equilibrium solution to be dynamically stable, all of these 

eigenvalues must have negative real parts (Nayfeh and Balachandran, 2004). 

Here, for an equilibrium solution of Model 2 with ζ = 0  (i.e., without undulation), we 

instead applied the static stability criterion, which determines the ability of a system to produce a 
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restoring effect after receiving a disturbance, and is a necessary condition for dynamic stability. 

In planar motion, the analysis of static stability in the pitch direction reduces to determining the 

slope with which pitching moment, Mc , varies with angle of attack, αb . If the slope is negative, 

i.e., 

∂Mc

∂αb

< 0  (22) 

this means that a disturbance from equilibrium passively induces an opposing pitching moment, 

and the system is statically stable (Taylor and Thomas, 2002). This criterion was applied to 

Model 2 without undulation as follows: 

We kept the pitch angle θ  constant, integrated Eq. (10) with respect to other generalized 

coordinates, giving sufficient time to let them reach steady state. Then, the reference angle of 

attack was found as: 

αb =θ − tan
−1 !z !x( )  (23) 

Also, the pitching moment was obtained as: 

Mc = r1 − rc( ) Fl1 cosβ1 +Fd1 sinβ1( )− r2 + rc( ) Fl2 cosβ2 +Fd2 sinβ2( )−Kuθ  (24) 

with β j, j =1, 2  defined in Eq. (S15), and rc  being the position of CoM with respect to the center 

of the middle link, calculated as: 

rc = m1r1 −m2r2( ) mtot  (25) 

By repeating the above procedure while changing the pitch angle, a curve is constructed 

displaying the relation between the pitching moment and angle of attack. The stability criterion 

of Eq. (22) was applied to this curve. For comparison, this criterion was also applied to the 

model with undulation. For this case, the reference angle of attack and the pitching moment had 

to be averaged over one period of undulation. Finally, we varied Ku  to examine the effect of the 

control term on the static stability properties of the system. 

 

2.7. Simulations 

 

We used custom-written programs in MATLAB (version 2010a) to integrate the equations 

of motion (using ode functions), to solve the parameter-fitting problem (formulated as an 

optimization problem and solved using the fmincon function) and to perform the subsequent 
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simulations. The sequential quadratic programming algorithm was employed to solve the 

optimization problem and to find the unknown model parameters within a definite range 

determined by lower and upper bounds. These bounds were imposed on the solution to ensure a 

biomechanically realistic solution. The optimization process resulted in several local minima of 

the error function, among which we selected the solution associated with the least error value.  

We carried out several simulations with the developed models, using initial conditions that 

are summarized in Table 1. In addition, we used ma =mtot 4  and Δm =mtot 4  for Model 1. The 

fitted parameters for Model 2 are given in Table 2 along with the lower and upper bounds against 

which they were obtained. For consistency, the value of ϕ  obtained for Model 2 was used for 

both models in all simulations.  

 

3. Results 

 

3.1. Trajectory simulations 

 

To investigate how the developed theoretical models predict the transition from the ballistic 

phase to the shallowing phase, the trajectories and corresponding glide angles starting from 

!x0 , !z0( ) = 1.7 , 0( )  m/s  were compared to the experimental trajectories in Socha et al. (2005) 

(Figs. 4A and 4B). Because no data exist on the initial pitch angle of the snake, we assumed 

reasonable values for the simulations. Fig 4A shows that Model 1 with θ0 = −10°  produced a 

trajectory that followed the experimental data; it also shows that the trajectories predicted by 

Model 1 do not change monotonically with θ0 . When the initial pitch angle is decreased from 

zero to θ0 = −10° , the distance traveled increased by about 20%; but if θ0  is further decreased to 

θ0 = −30° , the traveled distance is less than halved. Fig. 4B shows that no shallowing phase 

exists for Model 1 with θ0 = −30° , but the glide angle tends to an equilibrium value of about 70°. 

It can be also observed that the trajectory of Model 1 with θ0 = 0° , reaches equilibrium in less 

than 1.5 s, while the experimental glide angle continues to decrease even after 2 s. On the other 

hand, the trajectories predicted by Model 2 change monotonically with θ0 , and do not seem to 
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reach equilibrium by the end of the simulation time; however, they underperform in horizontal 

distance travelled relative to both Model 1 and the experimental data. 

The reason for the non-monotonic behavior of Model 1 may be readily explained if we recall 

the following equation for the equilibrium glide angle: 

tanγ = Cd

Cl

= f α( )  (26) 

where α  is the angle of attack, and f α( )  is a nonmonotonic function (see Fig. 1F).  

The vertical and horizontal components of the velocity are also plotted in Figs. 4C and 4D, 

respectively. As with the other performance metrics, it is clear that the simulated velocities do 

not closely match the experimental velocities. The velocities predicted by Model 2 have 

relatively similar trends to those of real snakes, for which the vertical velocity starts to increase 

in magnitude for roughly one second, after which sufficient airspeed is achieved and lift is 

generated to provide a positive vertical acceleration. Moreover, the horizontal velocity shows a 

positive acceleration during the whole time, although the acceleration starts to diminish after 1.5 

s. However, the simulated velocities are considerably smaller in magnitude than the experimental 

data; whereas the largest vertical speed of snakes is ~6 m/s, the simulated vertical speeds reach a 

maximum of ~4.5 m/s. (Fig. 4C). The velocity magnitude deficit is particularly obvious in the 

horizontal component of the velocities, which leads to the steep shallowing trajectories of Model 

2 (Fig. 4D). The same discrepancies exist in the results of Model 1, in addition to the aberrant 

behavior of the vertical speed with θ0 = 0° , where positive acceleration is never attained. 

Fig. 5 compares the recorded trajectory and pitch angle of a flying snake to the simulated 

ones obtained by integrating equations of motion of Model 2 from the same initial conditions. 

The experimental trajectory of the CoM, shown in Fig. 5A, was calculated based on the 3D 

kinematic data of five landmarks on the snake body, recorded from the mid-to-end portion of the 

glide (Socha et al., 2010). The experimental pitch angle, which was originally calculated using 

the same kinematic data, is repeated from Fig. 1A. It can be seen that the simulated trajectory 

closely follows the recorded data; the maximum position difference between model and observed 

results was 13 cm over a total distance of more than 12 m traveled, resulting in a relative 

difference of 1.0%. On the other hand, the simulated pitch angle deviates largely from the 

recorded data. In particular, it seems that a phase shift exists between the two time series, 

although they exhibit the same dominant frequency, which is equal to the frequency of 
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undulation. In addition, the amplitude of oscillations of the experimental pitch angle is roughly 

twice that of the simulated one. 

 

3.2. Stability analysis 

 

Model 1 was shown to have an equilibrium solution, although its equations of motion were 

nonautonomous. A trial-and-error investigation of the initial conditions revealed that the 

equilibrium of Model 1 is locally passively stable. The blue region in Fig. 6A shows the basin of 

stability of the equilibrium in the θ0 − !θ0  plane, with the initial velocities set as the same as those 

of the experimental trajectories (see Fig. 4). It is clear that many of the snake-related initial 

conditions lie within the basin of stability of equilibrium. The trajectories that start from the 

initial conditions in blue go to the equilibrium state, whereas the initial conditions in red result in 

non-gliding trajectories similar to those of a pure projectile (Fig. 6B). 

To explore the stability properties of Model 2, the static stability criterion was first applied. 

As stated previously, this criterion provides a necessary condition only for stability of 

equilibrium solutions of a system. However, the steady-state response of Model 2 is periodic 

unless Δm  is nullified; in other words, undulation effects had to be eliminated from the model 

for the stability criterion to be properly applied. Here, for the sake of comparison, we also 

examined the model with undulation by averaging its steady-state response over one period and 

applying the criterion to the averaged response. Finally, the effect of the controlling term Ku  on 

stability of the model was examined by varying it from zero to its fitted value (Table 2). 

The results of the above analysis are given in Fig. 7A. It is clear from the positive slope of 

the Mc −αb  curves with Ku = 0  that the model is unstable when no restoring moment acts on it. 

However, in all other cases, the slopes of the curves are negative, indicating that the restoring 

moment is capable of stabilizing the pitch dynamics, at least in the static sense. It is also 

important to note that undulation somewhat affects the Mc −αb  curves; it slightly changes the 

slopes near the equilibrium point at αb ≈ 26° , and adds an unstable equilibrium point to the 

curve with Ku = 0.02  Nm/rad. However, it does not change the qualitative behavior of the 

curves near the stabilized equilibrium; therefore, the static stability analysis predicts that pitching 

stability cannot be achieved in Model 2 with Ku = 0  just by switching undulation on or off. 
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The dynamic stability analysis of the periodic motions of Model 2 was also carried out using 

the Floquet theory. Figs. 7B-7D show all of the Floquet multipliers associated with six periodic 

solutions (each one resulting in 8 Floquet multipliers) obtained by gradually changing a 

parameter of the model. The parameters of interest were the undulating amplitude index ζ  and 

the control indices Ku  and Bu . We examined the effects of these parameters by varying them in 

the ranges 0.1ζ opt <ζ <ζ opt , 0.2Ku
opt < Ku < Ku

opt , and 0.3Bu
opt < Bu < Bu

opt , one at a time. All other 

parameters of the model were kept fixed at their fitted values (Table 2). When varying ζ , we 

used Ku = 0.2Ku
opt  instead of Ku = Ku

opt ; this choice was made to test if undulation could 

compensate when the control parameter was too small to provide stability on its own. 

Fig. 7B shows that one of the Floquet multipliers enters the unit circle through +1 by 

increasing the undulation amplitude with ζ > 0.1ζ opt , but the same multipliers later exits the unit 

circle through +1 when the undulation amplitude is further increased with ζ > 0.9ζ opt . This 

means that undulation with amplitude bigger than a threshold could in fact compensate for the 

insufficient control parameter, but when the undulation amplitude increases beyond another 

threshold, it makes the model unstable again. Figs. 7C and 7D show the effect of the control 

indices on the stability characteristics of the periodic motions. In Fig. 7C, one of the Floquet 

multipliers enters the unit circle through +1 with Ku > 0.2Ku
opt  and, in Fig. 7D, one of the 

Floquet multipliers enters the unit circle through -1 with Bu > 0.3Bu
opt . This means that both 

control terms are required for a stable motion; also, there exist threshold values for these terms 

below which stability cannot be achieved. 

 

4. Discussion 

 

4.1. Stability analysis of the models 

 

To investigate the theoretical stability characteristics of a flying snake during a glide 

trajectory, we developed two dynamical models. Model 1 was a simple representation of the 

staggered configuration of a gliding snake’s body. Our analysis shows that the nonautonomous 

equations of motion of Model 1, indeed, had an equilibrium solution, which was locally 
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passively stable. This counterintuitive result was an inherent feature of the model’s structure, in 

which the uniform distribution of mass and pressure over the airfoils would cause the CoP and 

CoM to coincide and, therefore, the pitch equation to be identically satisfied. More interestingly, 

many of the take-off conditions of flying snakes correspond to the initial conditions within the 

basin of stability of the equilibrium solution of Model 1. However, the structure of Model 1 

requires that all parts of the virtual body contribute equally to producing aerodynamic forces, 

which is not possible in real gliding snakes due to variation of angle of attack and sweep angle 

along the body. Model 2 was developed to provide a more sophisticated representation of flying 

snake’s behavior in mid-air. The airfoils were allowed to move with respect to each other; 

additionally, to account for potential control movements, a restoring moment was included to 

keep the pitch angle close to zero. This model was unstable in the pitch direction, but could be 

stabilized with the restoring moment. 

An essential feature of snake gliding behavior that was incorporated into the models was 

undulation. A priori, undulation should affect the dynamics of flying snakes through at least 

three mechanisms: (i) continual changes in areas of the upstream and downstream airfoils, which 

in turn alters the aerodynamic forces; (ii) continual redistribution of body mass, which changes 

the position of the CoM; (iii) inertial couplings between the translational and rotational motions 

(see Eq. (S21)). There are other possible effects of undulation; for instance, it may cause 3D 

unsteady aerodynamic interactions that are not observed in static measurements, and it has been 

postulated that it enables stability in the rolling direction (Socha and LaBarbara, 2005), but this 

was not modeled here. These mechanisms motivated the hypothesis of this study that undulation 

contributes to stability in the pitch direction, which was tested by applying the Floquet theory to 

Model 2. As shown by Fig. 7B, undulation with an amplitude properly adjusted between two 

limits can provide stability in the absence of sufficient control. However, the periodic solution 

was found to be unstable with Ku < 0.2Ku
opt  or with Bu < 0.3Bu

opt  regardless of the influences 

from undulation. This shows that undulation has a limited capability for providing stability.  

The results of Model 2 suggest that flying snakes require active control to perform stable 

glides. Although the actual control mechanisms that provide stability are not yet known, here we 

describe some possibilities. The asymmetric effect of pitch velocity on the airspeeds and angles 

of attack experienced by the upstream and downstream airfoils could be exploited to produce the 

restoring moment. This might be accomplished (see Fig. 3A) either by actively modifying 

� 

r1 and 



 37 

� 

r2 , or by actively oscillating the airfoils out of the model plane (i.e. the plane defined by the line 

connecting the airfoils). Both of these mechanisms would change the magnitude and direction of 

the airfoils’ velocities and could be used as means of control. Another potential mechanism 

could take advantage of the dynamic changes of the aerodynamic load distribution along the 

snake body. This is in part supported by the results of preliminary tandem model manipulations, 

which suggest that changing the horizontal gap and vertical stagger affects the lift and drag 

forces on both airfoils (Miklasz et al., 2010). In some configurations of the tandem models, the 

lift and drag coefficients of the downstream airfoil are about half of those of the upstream airfoil, 

but the force coefficients approached those of a solitary airfoil when moved apart by multiple 

chord lengths. Thus, a ‘nose-down’ pitching moment could be produced in Model 2 by moving 

the downstream airfoil farther downstream (increasing r2 ), while a ‘nose-up’ pitching moment 

requires the opposite movement. Although damping could also be obtained with a similar 

strategy, it should be recognized that some amount of damping is inherent in the dynamics of 

Model 2, which originates from the asymmetric effect of pitching velocity on the velocities of 

the upstream and downstream airfoils. This gives rise to a force asymmetry and a counteracting 

moment is thereby produced. 

Recalling that the flying snakes produce lift using their entire body as a morphing wing, it 

becomes clear that one functional consequence of the S-shape is that it creates ‘upstream’ and 

‘downstream’ airfoils. In fact, Miklasz et al. (2010) found that an enhancement in overall lift-to-

drag ratio might be achieved with certain configurations. Thus, forming the staggered S-shape 

may enable such aerodynamic interactions. Moreover, it is well known that no aircraft could be 

made with a single positively cambered wing, because it would be unstable in the pitching 

direction (Etkin, 2012). In practice, such wings may be used only in conjunction with an 

auxiliary surface that provides a nose-up moment when the wing is at zero lift. This may explain 

another possible function of the aerial snake’s S-shape. 

 

4.2. Implications about gliding snakes 

 

The seemingly contradictory results of our two models, when viewed together, render a 

deeper insight of how the control system of flying snakes works. Model 1 indicates that there 

exists a passively stable equilibrium state to which the trajectories converge, provided that they 
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start from proper initial conditions within the basin of stability. Therefore, flying snakes would 

be able to glide without need for closed-loop feedback control if they could reconfigure their 

body according to the kinematics of Model 1. However, closed-loop feedback control is likely 

necessary, resulting from several idealizations in Model 1: (i) the couplings between the 

longitudinal and lateral motions have been neglected, (ii) mass and aerodynamic forces were 

distributed uniformly over the body area and, (iii) segments of the body are rigidly coherent. 

These criteria can never be met by an animal glider. Nonetheless, the ideally passively stable 

trajectory predicted by Model 1 provides an underlying 'dynamical skeleton' for closed-loop 

control to work with. A similar framework has been developed for walking in bipeds, which was 

believed to require active control. However, passively stable gaits have been found in theory, and 

these have been used to develop passive biped walkers (e.g. (Garcia et al., 1998, Collins et al., 

2005)).  

The results of Model 2 provide the basis for predictions of how a snake’s sensory system 

should provide feedback on body position and orientation while airborne. The success of Model 

2 in predicting stable glide trajectories with a restoring moment proportional to the pitch angle, 

along with the observation that flying snakes tend to remain level with the ground during gliding, 

supports the idea that the snakes use pitch angle as a feedback variable in a closed-loop control 

system. Indeed, both the vestibular and/or visual systems are viable candidates for providing the 

primary sensory information needed for such control. Boistel et al. (2011) observed that 

dimensions of the vestibular system in species of squamates capable of descent in the air were 

different from those in species with only a climbing or terrestrial lifestyle, and suggested that 

these modifications might be related to the maintenance of stability. Interestingly, the vision of 

flying snakes has been implicated as being particularly acute compared to that of other snake 

species (Socha and Sidor, 2005), which may suggest a role in providing visual input to the 

animal’s control system. 

This does not exclude the possibility of other measures of position and orientation being 

utilized as feedback signals; for example, proprioception and pressure distribution information 

from the skin could provide sensory information. Non-flying snakes are known to possess 

mechanoreceptors that include rapidly adapting receptors and slowly adapting receptors (Proske, 

1969). However, rapidly adaptive receptors have high mechanical thresholds and restricted 

receptive fields. If flying snakes use skin pressure for feedback, they would require fast 
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responses to small changes in air pressure. Assuming an ability to sense differences in flow 

speed on the dm/s scale, this would require mechanoreceptors with a sensitivity on the order of 

10-2 Pa.  

 

4.3. Gliding trajectories 

 

The theoretical models of this study were based on experimental data from the developed 

stage of the glide. Our simulations of gliding trajectories (Fig. 4) were conducted with the 

assumption that the models represented the behavior of flying snakes both in the ballistic dive 

and shallowing phases. However, the initial ballistic dive involves postural configurations whose 

effects have not been quantitatively studied. Starting with a straight body, during this phase the 

snake forms the S-shape and pitches downward (Socha, 2002), bringing itself to the staggered 

configuration shown in Fig. 1C. Therefore, it is likely that the aerodynamic forces acting on the 

snake are different in the ballistic dive phase. This might explain why both models predicted 

trajectories with speeds whose magnitudes are much less those achieved by gliding snakes (Figs. 

4C and 4D). Furthermore, Model 2 predicted trajectories that became closer to the measured data 

when the initial pitch angle was changed from 0° to -30° (Figs. 4A and 4B). By decreasing the 

initial pitch angle, the model would benefit from smaller angles of attack in the ballistic phase to 

decrease drag and to obtain greater glide speed by the beginning of the shallowing phase; greater 

speed would result in greater lift production. Because the restoring moment would increase the 

glide angle by making the pitch angle tend to zero, smaller initial angles of attack should produce 

trajectories that are more realistic.  

 

4.4. Conclusion 

 

This study presents two new first-order dynamical models developed to understand the 

gliding performance of flying snakes, in particular, the stability of the snake about the pitch axis. 

Model 1, which was a simple two-dimensional representation of the airborne snake as 

three rigidly attached airfoils, resulted in equilibrium glide trajectories that were locally 

passively stable. However, with relaxation of the rigidity assumption and other essential features 

of the gliding snake incorporated into Model 2, the passive stability was lost. It was then shown 
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that the trajectories of Model 2 could be stabilized with a simple control mechanism using the 

pitch angle and pitch velocity as feedback. Although the modeling in this study was motivated as 

an attempt to understand how flying snakes glide, these results may be broadly applicable to a 

wide array of staggered, multi-winged flyers, at least within the low Reynolds number regime 

used by the snakes. Our initial first-order modeling also suggests that flying snakes require active 

control for stable gliding, but caution is warranted in over-extending these results to real gliding 

flight. Verification of the theoretical models using physical experiments is needed, and a full 

exploration of the parameter space should be conducted to probe the limits of the system. 

Furthermore, the biomechanical properties of the snake’s body, as well as body orientation 

angles and muscle activity during gliding, must be measured to understand its control parameters. 

If experimentally justified, Model 2 would become a powerful tool to study the dynamics of 

flying snakes, and can be used to examine those aspects of gliding that are difficult, if not 

impossible, to study experimentally. 
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Table 1: Initial conditions used for simulations resulting in Figs. 4-6 

Variable Fig. 4 Fig. 5 Fig. 6A 
x  (m) 0 0 0 
z  (m) 10 0 10 
θ  (deg) -30, -10, 0 -8.85 -30 to 60 
r1  (m) l  l   
r2  (m) l  l   
!x  (m/s) 1.7 6.91 1.7 
!z  (m/s) 0 -5.06 0 
!θ  (deg/s) 0 -25.6 -120 to 120 
!r1  (m/s) 0 0  
!r2  (m/s) 0 0  

 

 

 

 

Table 2: The model parameters fitted to experimental data along with the lower and upper 
bounds used in the optimization process 

Parameter Fitted Value Lower Bound Upper Bound 
η1  0.379 0.2 0.4 
η2  0.380 0.2 0.4 
ζ  0.319 0.25 0.35 
l c  2.981 1 4 
µ  0.495 0 2 

k  (N/m) 0.198 0 2 
b  (Ns/m) 0.199 0 2 

Ku  (Nm/rad) 0.119 0 2 
Bu  (Nms/rad) 0.099 0 2 
ϕ  (deg) -5.39 -30 30 
σ  (deg) 3.92 -180 180 
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Fig. 1: Kinematic (A-D) and aerodynamic (E-F) data that was used in this study. (A) Observed 
rotation angles between an inertial frame and the principal axes of inertia of the snake show that 
the snake undergoes relatively small roll and pitch angles during gliding. (B) Summary of body 
posture of C. paradisi, in the trajectory reference frame and normalized by SVL from the front 
view, indicate that the snakes undergo small roll displacement. (C) The side view shows the 
staggered configuration of flying snakes during glide. These data are composed of the 3D 
position of five landmarks relative to the CoM of the snake body. (D) The sinusoidal movement 
of all five landmarks is shown in the overhead view of a trajectory, where the Y-axis is expanded 
relative to the X-axis to better reveal side-to-side movements. The kinematic data in B-D are 
from late-phase gliding trajectories of eight glide trials performed by two C. paradisi snakes 
(Socha et al, 2010). The box plots indicate the mean, and first and third quartiles, with whiskers 
representing 10% and 90% percentiles. (E) Steady-state lift and drag coefficients measured for a 
straight airfoil having the same cross-sectional shape as the flattened snake; and (F) lift-to-drag 
ratio for the same configuration. The aerodynamic data (E-F) are adapted from (Holden et al., 
2014). 
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Fig. 2: (A) 2D structure of Model 1, which is composed of three coplanar airfoils; the distance 
between the airfoils is constant. (B) Correspondence between the airfoils and parts of the 
undulating snake body that are perpendicular to the airflow. (C) Kinematics of the model 
showing the asymmetric effect of pitch velocity on the velocity of airfoils. Resulting from this 
asymmetry, each airfoil experiences a different glide angle γ j . The middle airfoil is used as the 
positional reference point.  
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Fig. 3: (A) Model 2 from side view, showing that it is composed of two airfoils connected 
through a middle link by means of springs and dampers. A restoring moment Mu  is used to 
control the orientation angle θ  about zero. The center of the middle link is used as the positional 
reference point. (B) Overhead view of Model 2. (C) The middle link is included in the model to 
represent the encircled parts of the snake body. These parts are assumed to not contribute to 
aerodynamics forces, but do provide rotational inertia. 
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Fig. 4: Comparison of the simulations with an assemblage of experimental data, from Socha et al. 
(2005). (A) Trajectories and (B) associated glide angles produced by the theoretical models. The 
trajectories given by Model 1 (dashed lines) reach equilibrium earlier than real snakes, as can be 
seen in the glide angle data. In contrast, Model 2 (solid lines) produced trajectories that resemble 
experimental data, but underperform in terms of glide ratio. (C) and (D) show vertical and 
horizontal components of the velocity, respectively. Whereas both models are incapable of 
reaching velocities as high as seen in the snakes, Model 2 better predicts the trends in the 
velocities. 
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Fig. 5: (A) Model 2 with the fitted parameters successfully reproduced the experimental average 
trajectory (Socha et al., 2010). Because the data were from the late-phase gliding trajectory, no 
specific origin was selected for the plot, but only the displacements in the horizontal and vertical 
directions are shown. (B) The simulated pitch angle deviated from the experimental data. 
However, the two time series have the same dominant frequency, which is equal to the frequency 
of undulation. 
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Fig. 6: The equilibrium solution of Model 1 is passively stable, with (A) basin of stability in the 
θ0 − !θ0  plane, the initial velocity being !x0 , !z0( ) = 1.7 , 0( )  m/s . The trajectories starting from an 
initial condition within the blue region converge to equilibrium, whereas the initial conditions in 
red result in trajectories that do not shallow and are similar to those of projectiles. (B) Two 
representative trajectories starting from the initial conditions singularized in (A).  
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Fig. 7: Results of the static (A) and dynamic (B-D) stability criteria applied to Model 2. (A) 
Plots of the pitching moment about the CoM, Mc , against the body angle of attack, αb , with 
different values of the control parameter Ku . The dashed lines and solid lines correspond to the 
model with no undulation (ζ = 0 ) and the model with undulation, respectively. These plots show 
that the model with Ku = 0  is passively unstable, but becomes statically stable with a positive 
restoring moment. The Floquet multipliers (relative to the unit circle in the complex plane) 
associated with the periodic motions of Model 2 when (B) 0.1ζ opt <ζ <ζ opt , (C) 

0.2Ku
opt < Ku < Ku

opt , and (D) 0.3Bu
opt < Bu < Bu

opt . The superscripts denote the fitted values of the 
parameters (Table 2). The arrow in (B) shows that one of the Floquet multipliers enters the unit 
circle through +1 with ζ > 0.17ζ opt , meaning that undulation compensates for a small control and 
stabilizes the motion (in this case, we set Ku = 0.2Ku

opt ). The arrows in (C) and (D) show that one 
of the Floquet multipliers enters the unit circle through +1 with Ku > 0  and Bu > 0.1Bu

opt , 
respectively, meaning that an unstable motion could be stabilized using the restoring moment. 
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Chapter 3. Dynamical analysis of undulatory motions in a 3D model of flying 

snakes 
 

Abstract 

 

Flying snakes of genus Chrysopelea possess a highly dynamic gliding behavior, which is 

dominated by an undulation in the form of lateral waves sent posteriorly down the body. The 

resulting high-amplitude periodic variations in the distribution of mass and aerodynamic forces 

have been supposed to contribute to the stability of the snake’s gliding trajectory. This is 

supported by the theory of vibrational control, which employs high-amplitude periodic inputs to 

produce desireable stable motions in nonlinear systems. However, a previous two-dimensional 

analysis in the longitudinal plane failed to reveal a significant effect of undulation on the stability 

of snakes in the pitch direction. In this study, a theoretical model was used to examine the 

dynamics and stability characteristics of flying snakes in the 3D. The snake was modeled as an 

articulated chain of airfoils connected through revolute joints. Undulation was considered as a 

periodic input to the system, either by directly prescribing the joint angles as periodic functions 

of time, or by assuming periodic torques acting at the joints. The aerodynamic forces were 

modeled using the blade element theory and the previous force coefficients. The results showed 

that torque undulation along with linearization-based closed-loop control could increase the size 

of the basin of stability. The effectiveness of the stabilization provided by the torque undulation 

was a function of the amplitude and frequency of the input. However, the kinematic undulation 

was shown to provide open-loop stability for sufficiently large frequencies. The results suggested 

that the snakes need some extent of closed-loop control in spite of the clear contribution of 

undulation to the stability of glide. However, as the closed-loop control system needs to work 

around a passively stable trajectory, it is therefore less demanding. 

 

1. Introduction 

 

Flying snakes have developed a peculiar form of aerial locomotion, which is unique among all 

flyers. Because the snakes lack any specialized flight anatomy, they have to use their entire body 

to produce aerodynamic forces both to oppose gravity and to control the trajectory. Upon 
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becoming airborne, the snakes splay their ribs to the side and create a ‘wing’ with an 

unconventional cross-sectional shape. Simultaneously, they assume an S-like shape and send 

high-amplitude traveling waves posteriorly down the body, producing an aerial undulation 

(Socha, 2002, Socha, 2006, Socha, 2011, Socha and LaBarbera, 2005, Socha et al., 2010, Socha 

et al., 2005, Socha et al., 2015). Compared to other biological or engineered flyers that use a pair 

(sometimes pairs) of bilaterally symmetric wings (Biewener, 2003, Alexander, 2003), snake 

flight possesses a number of conspicuous characteristics. In particular, (i) snakes glide with a 

highly dynamic behavior in the form of undulation, as opposed to the generally static posture of 

other gliders; (ii) the snake’s body posture is not bilaterally symmetrical at any moment in time; 

and (iii) undulatory motion involves significant out-of-plane translation of different parts of the 

body, a feature not observed in other gliders. As a result of this fundamentally different design, 

snake flight is expected to entail some unconventional mechanics, which are not explored yet. 

Undulation is the most prominent flight behavior of snakes that glide. Its dynamic effects 

area manifested by the continuous redistribution of body mass and aerodynamic forces. 

Therefore, undulation must play some functional role related to snake’s aerial performance, 

stability or control. However, despite the growing number of studies on the physical basis of 

gliding in snakes, the question of why they undulate has not been answered. Jafari et al. (2014) 

developed 2D theoretical models of snakes to test the hypothesis that undulation contributes to 

stability in the pitch direction. They concluded that undulation has a limited capacity for 

providing longitudinal stability. Socha and LaBarbera (2005) used experimental kinematics data 

to show that undulation was weakly correlated to gliding performance. In particular, they found 

no relation between performance and undulation frequency, which suggested that frequency is 

not involved in aerodynamic force production. As a corollary, this also suggests that the quasi-

steady forces produced by the animal’s forward speed would be sufficient to enable gliding. 

Holden et al. (2014) made the same argument based on the large advance ratios observed in 

flying snakes. All in all, the previous studies have not been successful in determining the main 

function of undulation, which has yet to be understood. 

With our current knowledge about flying snakes, the strongest hypothesis about the 

function of undulation concerns the stability of the airborne snake. This may seem in 

contradiction to the results of (Jafari et al., 2014); however, it should be noted that in the 

mentioned study, only the longitudinal dynamics of the snakes were analyzed, and only the 
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effects of undulation in the pitch direction were considered. It is still possible that undulation 

contributes to stability in the roll and yaw directions. This hypothesis is supported by the 

following line of reasoning: To be able to produce control moments, the snake assumes the S-

shaped posture, which is bilaterally asymmetric at any moment of time. As a result, unfavorable 

nonzero moments are produced even in the absence of disturbances. However, the average body 

posture over one undulation cycle is symmetric. The symmetric averaged posture causes the 

moments about the fore-aft axis to periodically vary with relatively small magnitudes about zero 

means. If the average moments were nonzero, this would drive the snake’s body to rotate, 

potentially causing it to spin out of control. By contrast, under certain conditions that depend on 

the relative timescales of the motions, zero-mean periodic moments would cause the snake to 

wobble moderately about the upright position without losing control. 

Flying snakes are not the only systems exploiting such properties of periodic motions. In 

fact, there exists a whole branch of the control theory, named vibrational control, which deals 

with similar exploitations in mechanical systems. A systematic insight into the mechanics of 

snake flight can be gleaned by the methods that vibrational control offer to produce desirable 

changes in the dynamic response and properties of nonlinear mechanical systems via high-

frequency zero-mean periodic inputs (Meerkov, 1980). Applying periodic inputs in a mechanical 

system may change the stability properties, natural frequencies, transient response, and equilibria 

of the system (Thomsen, 2005). The simplest and most well-known example is the Stephenson-

Kapitza pendulum (Kapitza, 1951), a simple inverted pendulum with a pivot free to move along 

the vertical line. By vibrating the pivot vertically with sufficiently high frequency, the unstable 

upward position of the pendulum can be stabilized without using feedback control. 

Employing periodic inputs to control mechanical systems generally gives rise to periodic 

steady-state motions that are not easy to find and characterize. Nevertheless, for a large class of 

time-periodic mechanical systems, the averaging theorem provides a powerful tool to predict the 

existence and determine the stability of periodic solutions (Guckenheimer and Holmes, 2013, 

Bullo, 2002). Physically speaking, when the inputs oscillate much more rapidly than the natural 

dynamics of the system, the state of the system can be approximated to remain the same during 

one input cycle. The averaging theorem averages the dynamics over one input cycle and 

introduces a time-invariant (or autonomous) system that approximately has the same trajectory 

and stability characteristics as the original time-periodic system. In vibrational control, the 
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approach is usually to use the averaging theorem to replace the original time-periodic dynamics 

with the averaged time-invariant system. Next, the averaged system is designed to possess a 

desirable stable equilibrium solution, about which the time-periodic system is ensured to have a 

stable periodic orbit. The required inputs are then found according to the aforementioned design. 

With this technique, the control is open loop, and the desired motion is achieved without any 

feedback from the state of the system. It is imperative to note here that the necessary condition 

for the averaging theorem to be valid is that the frequency of inputs must be larger than a certain 

amount, which depends on the physical parameters of the system. However, the minimum 

required frequency cannot be determined from the averaging theorem itself. In practice, a trial 

and error approach is usually used to select the input frequency that makes the stabilization work 

(Tahmasian and Woolsey, 2015).  

Averaging techniques have found widespread applications in stabilization and control of 

biomimetic systems incluing robotic fish (Morgansen et al., 2002), flapping wing micro-air 

vehicles (Tahmasian et al., 2014), and snake robots (Liljebäck et al., 2010). Averaging 

techniques have also been used to analyze the dynamics of biological systems such as flying 

insects (Taha et al., 2015).  

In this work, we treat flying snakes as nonlinear mechanical systems, with undulation as a 

zero-mean periodic input. According to vibrational control, it might be possible that a snake 

undulates to take advantage of the properties of periodic motions and obtain some degree of 

passive stability. We examine this hypothesis using a theoretical approach by representing the 

snake as a chain of successively linked airfoils to develop a dynamical framework for the 3D 

motions. Within this framework, the snake’s postural reconfigurations can be approximated by 

properly changing orientations of the airfoils. Using joint torques as the control inputs makes it 

possible to adjust the complexity of the model to the control requirements. This formalism 

enables us to examine the influence of changing the number of links, as well as the amplitude 

and frequency of the periodic inputs, on the stability characteristics of the model. In this regard, 

we determine the minimum number of links and the minimum frequency necessary to stabilize 

the model. Moreover, we test the hypothesis that snakes need to undulate to maintain their flight 

stability.  

This study helps us understand the fundamental control mechanisms that snakes employ 

during a glide. We determine the minimum functional requirements for the stability of snake 
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gliding; therefore, our findings could provide insight into the evolutionary transitions that have 

led to such a unique behavior. Furthermore, by studying the gliding behavior of snakes, it may be 

possible to learn a novel method of implementing vibrational control in a flying air or water 

vehicle. Finally, the dynamical framework we develop allows us to explore theoretically possible 

but biologically unrealized motions, and to exploit the underlying principles to engineer 

biologically inspired robotic analogues to snakes. 

 

2. Methods 

 

In this study, we model the snakes using a chain of n  rigid links connected by revolute or 

spherical joints (n-chain), producing an articulated snake-like system. This model has been 

widely used to study and reproduce the 2D terrestrial motion of snakes (e.g., Hirose and 

Morishima, 1990, Prautsch and Mita, 1999, Maladen et al., 2011, Dowling, 1999, Saito et al., 

2002, Mori and Hirose, 2002, Chernousko, 2005, Enner et al., 2012). Here, we modify this 

model to consider the 3D motion of snakes through air. In this study, we use a theoretical 

multibody model, which consists of a chain of n  airfoils connected by n−1  revolute joints. The 

axes of the joints are assumed to be parallel, so that the shape of the n-chain model remains 

planar while it translates and rotates in 3D as a whole. Ignoring the out-of-plane motions is in 

accordance with experimental kinematic data (Socha et al., 2010), which showed that the total 

displacements of several landmarks on the snake’s body, perpendicular to the ‘mean’ orientation, 

were small compared to the snout-vent length. This same justification was used in (Jafari et al., 

2014) to develop 2D models of flying snakes. We consider our model links to be identical, with 

uniform mass distribution and the cross-sectional geometry of the snake-like airfoils (Socha, 

2011, Holden et al., 2014). The mass and length of each airfoil are adjusted, such that the total 

mass and length of the model match those of the real snake. To drive the model and control the 

trajectory, actuators that produce the required torques are considered at each joint (Fig. 1A). 

The configuration space of the n-chain in 3D space has a geometric decomposition into 

the internal shape variables, called the shape space S , and the rotational and translational group 

motion of the system as a whole, which is the special Euclidean group in 3D, G = SE 3( ) . 

Elements of G  consist of !r ∈ℜ3 , the position of the ‘head’ (point O  in Fig. 1), and R ∈ SO 3( ) , 

the relative orientation matrix of the body-fixed frame x-y-z with respect to the inertial 
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coordinate system X-Y-Z. The shape space S = S2
1 ×!× Sn

1 , whose elements are 
!
Θ = θ2,…,θn{ } , 

is the product of n−1  circles, with Si
1  comprising the relative orientation of the i th segment with 

respect to the first segment, θi . The shape variables completely determine the articulated body’s 

shape by describing the relative orientation of the connected links. The configuration of the n-

chain can be fully described by an element in the direct product G× S . 

This decomposition of the configuration space neatly clarifies the dynamical analysis of 

the n-chain: to find the stability characteristics of the n-chain, it is sufficient to determine how 

the model is reoriented in 3D by motions in the shape space, which are associated with postural 

reconfigurations of the snakes. In particular, undulation is represented by closed cycles in S , 

whereas flight stability concerns stability of invariant sets (less precisely, steady-state solutions) 

in G  only. Because flying snakes remain stable with the notion that they do not topple or 

experience excessively high roll and pitch angles, we ignore the translations of the model in its 

stability analysis and consider the rotational stability only. 

 

2.1. Modeling of forces 

 

To develop the equations of motion, the aerodynamic forces on each of the airfoils must be 

resolved in terms of its orientation and velocities. A well-established approach to account for the 

variation of velocities along the wing axis due to its angular velocity is the blade element method 

(Ellington, 1984). We employed this method by finding the forces acting on thin strips using the 

local velocities, and summing up these forces to find the net force and moment acting on the 

airfoil. To calculate the local forces, we followed (Jafari et al., 2014) to ignore any aerodynamic 

interaction between the airfoils, and to use the steady lift and drag coefficients for the snake 

airfoil determined by (Holden et al., 2014). These coefficients had to be first adjusted for the 

sweep angle that the airfoil makes with the airflow (Fig. 2). A simple but useful theory, 

introduced by Jones (1947), relates the aerodynamic performance of a swept wing to that of a 

reference configuration where the wing is perpendicular to the airflow. Despite being simple, this 

theory has been verified to be in satisfactory agreement with experimental results, particularly at 

high Reynolds numbers (Re > 105) and for sweep angles up to 60° (e.g., Boltz et al., 1960). The 

basic assumption in simple sweep theory is that only the normal component of the airspeed 
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contributes to producing forces (Schlichting and Truckenbrodt, 1979). As a result, the magnitude 

of the aerodynamic forces Fλ  at the sweep angle λ  can be obtained as 

Fλ = F⊥ cos
2 λ  (1) 

In the above equation, F⊥  is the aerodynamic force with the assumption of zero sweep angle.  

We used Eq. 1 to find the local normal forces; we also neglected any force components 

along the airfoil span axis. 

 

2.2. Equations of motion 

 

To specify the orientation of the model in three dimensions, we use the rotation matrix R , which 

represents the rotation from the inertial frame to the body frame fixed to the first link. We chose 

to determine the elements of R  in terms of the 3-2-1 Euler angles, with the rotation angles χ , ψ  

and φ  about z-, y- and x-axes, respectively. 

To explicitly write the equations of motion for arbitrary n , we selected the velocities 

expressed in the body-fixed frame x-y-z (commonly called the quasi-velocities) as the variables, 

and summed the Newton-Euler equations over all of the segments to obtain the dynamic 

equations in G . The dynamic equations in S  were derived by writing the moment equation 

about each joint axis. This approach was identical to using Kane’s method (Kane and Levinson, 

1985). The equations of motion were compiled in the following compact form: 

M
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 (2) 

where !v  is the velocity of the ‘head’, and !ω  is the angular velocity of the body-fixed frame, 

with both expressed in the x-y-z coordinates. Matrix M  contains the inertial terms and is a 

function of shape variables only, and 
!
f  is the drift vector resulting from the gravity, the 

aerodynamic forces and the second-order velocity terms. Also, !τ  represents the input torques 

exerted at the joints.  

To obtain a complete set of equations describing the motion, the dynamic equations were 

supplemented by the following kinematic relation:  
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d
dt
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= J φ,ψ( )
!
ω  (3) 

where J  is the Jacobian of the rotation matrix (Baruh, 1999).  

 

2.3. Controlled motion about a fixed point  

 

Standard methods to calculate stability in a multi-dimensional state space require obtaining an 

invariant set, whose stability can be determined linearly. We started analyzing the n-chain model 

with the simplest invariant set, a fixed point. Because neither the position vector 
!r  nor the 

rotation angle χ  appeared in Eqs. (2) and (3), these variables were omitted from the state vector. 

A fixed point was therefore determined using 

!"v = !"ω = 0
!φ = !ψ = 0
!"Θ =
!""Θ = 0

"

#
$$

%
$
$

 (4a) 

To ensure an upright configuration, Eq. (4a) was augmented with the following conditions: 

φe = 0 , ψe = 0  (4b) 

where the subscripts indicate equilibrium values. 

To control the roll and pitch angles, the model requires at least two inputs, which must be 

supplied by the joint torques. Therefore, the simplest chain had to incorporate three links. After 

substituting Eqs. (4a) and (4b) into Eqs. (2) and (3), we solved for !ve , 
!
ωe , 
!
Θe , and 

!
τ e , in which 

the subscript denotes the values at the fixed point solution, !xe . Next, we linearized the nonlinear 

equations of motion about the fixed point to obtain the local state-space time-invariant form. We 

then used the linear quadratic regulator (LQR), a well-known feedback control scheme, to 

stabilize the fixed point solution (Sontag, 1998). As a result, the joint torques were determined 

as:  
!
τ =
!
τ e −K

!x− !xe( )  (5) 

with !x  being the system state, and K  some constant gain matrix determined by the LQR. 

Although the stabilization rendered by Eq. (5) was obtained for the locally linearized system, it 
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tended to work within a fair neighborhood of the fixed point due to the robustness of the LQR. 

 The above procedure was repeated for a 4-link model. The extra degree of freedom made 

it possible to control !χ  in addition to the conditions expressed in Eqs. (4a) and (4b). To this end, 

we replaced the second line of Eq. (4a) with !ω = 0 . 

 One interesting result arising from the addition of vibrational control is the fact that 

employing periodic inputs could modify the properties of a mechanical system. To examine the 

influence of periodicity on the stabilizing properties of the designed feedback control, we revised 

Eq. (5) to incorporate a periodic term as 
!
τ =
!
τ e −K

!x− !xe( )+αu

!
h sinΩut  (6) 

where Ωu  is the input frequency, 
!
h  is a constant vector, and αu  is a scalar parameter 

determining the amplitude of input vibrations.  

The procedure described above can likewise be used to control other motions such as yaw 

and sideslip, as long as the number of input torques in the n-chain is equal or greater than the 

number of coordinates that are desired to be controlled.  

 

2.4. Motion with undulation 

 

To reproduce shape changes in the n-chain that resemble undulatory waves, we employed a 

sinusoidal wave of varying θi s traveling posteriorly, with the entire model comprising one 

wavelength. Such a wave was mathematically written as:  

θ j t( ) =
π
2
cos 2π j

n
−Ωut

⎛

⎝
⎜

⎞

⎠
⎟ , j = 2,…,n  (7) 

By differentiating Eq. (7) and substituting the results into Eq. (2), the rate of translation and 

rotation of the model, as well as the joint torques, could be determined. However, at this point, 

we were mostly interested in the passive stability that undulation could possibly provide, without 

considering the required control effort. Therefore, to eliminate the torques from the calculations, 

we rewrote the whole-body equations of motion as:  

M11

!"v
!"ω

!
"
#

$#

%
&
#

'#
=
!
f1 −M12

!""Θ  (8) 
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in which M11 , M12 , and 
!
f1  are proper partitions of M  and 

!
f , and 

!""Θ  aptly takes the role of 

control inputs. It is also evident from Eq. (7) that 
!""Θ = −Ωu

2
!
Θ  (9) 

We combine Eqs. (8) and (9) to obtain the equations of motion in the following form:  
!"v
!"ω

!
"
#

$#

%
&
#

'#
=M11

−1
!
f1 +Ωu

2M12

!
Θ t( )( )  (10) 

in which the periodicity of the input is emphasized by the explicit dependence of the shape 

variables on time. 

 

2.5. Simulations 

 

We developed custom-written programs in MATLAB (version 2014a) to integrate the equations 

of motion using the Dormand-Prince method (Dormand and Prince, 1980). We also used built-in 

MATLAB functions to find the fixed-point solutions of section 2.3 to design the LQR feedback 

matrix. Among the several solutions that we found for the fixed-point, we carried out the 

simulations with the one having the farthest dominant pole from the origin. 

In spite of the effectiveness of the LQR, because it was based on local linearization of the 

system, there was a limit for the initial deviation before stabilization fails. Hence, it would make 

sense to measure effectiveness of the stabilization and the influence from the periodic input in 

terms of the size of the basin of stability. Here, we defined stability as not being too deflected 

from the upright configuration, so it would be reasonable to consider the basin of stability only in 

the φ −ψ  plane, instead of the whole state space. For the same reason, vector 
!
h  in Eq. (6) was 

chosen to be the summation of the columns in the gain matrix K  of the LQR associated with φ  

and ψ  (see Eq. (5)). To determine the basin of stability, we discretized the φ −ψ  plane, and 

carried out simulations with initial conditions selected from the discrete points one by one. Based 

on the observed snake undulation data (Socha et al., 2005, Jafari et al., 2014), the frequency of 

the periodic inputs was selected to be 1.4 Hz in the simulations, unless specified. 

 Because the rotation angles φ , ψ  and χ  describe the orientation of the first link, not the 

‘average’ body orientation, little physical sense can be made of the results for the body 
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orientation when presented in terms of these angles. This issue was resolved by introducing the 

xʹ-yʹ-zʹ coordinate frame, with the zʹ axis being parallel to the z axis, and the xʹ axis determined 

such that the center of mass velocity, vG , lies in the xʹ-zʹ plane (Fig. 1B). We defined the roll, 

pitch, and yaw angles as the consecutive rotation angles that would transform the inertial frame 

into the xʹ-yʹ-zʹ frame. 
 

3. Results 

 

Fig. 3 shows the fixed-point solutions of the chain model with three and four links that were 

obtained as outlined in section 2.3, along with the trajectories of the orientation angles and the 

center of mass (CoM) velocities. In Figs. 3A and 3B, the shape of the model and the in-plane 

component of the fixed-point velocities are plotted. Although the velocity vector is shown at the 

‘head’ point, it is clear that any point of the model has the same velocity. As the fixed-point 

solutions were found subject to Eq. (4b), the axis of gravity is perpendicular to the x-y plane. The 

solutions for n = 3  and n = 4  were generally similar, with a C-shape in which the airfoils made 

moderate sweep angles with the velocity direction. Examining the numerical values revealed that 

(i) in both solutions, every airfoil made the same angle with the velocity vector, and (ii) vy  and 

vz  were the same in both solutions, meaning that the angle of attack was also the same and equal 

to α = 27.4°  for all of the airfoils. As a result, equilibrium in the vertical direction becomes 

trivial: with the same angle of attack and normal velocity, both models produced the same 

amount of lift force to cancel the same weight.  

Figs. 3C to 3F prove the success of the LQR in stabilizing the fixed point by showing that 

the trajectories starting from an initial point somewhat away from the fixed point converged to it. 

The initial deviation for the plotted trajectories were φi = 30° , ψi = 40°  with the subscripts 

denoting the initial conditions, and a 2% deviation in the velocity. Note that the roll, pitch and 

yaw angles plotted in Figs. 3C and 3D are calculated based on the xʹ-yʹ-zʹ coordinate frame (Fig. 

1B), and their initial values are not necessarily equal to φi  and ψi . Figs. 3C to 3F also show the 

effect of the periodic term in Eq. (6), which made the trajectories starting from the same initial 

state converge to oscillating about the fixed-point solution without becoming unstable. However, 

the periodic input caused the yaw angle to deviate from the equilibrium value and start to 
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decrease or increase with time. This happened owing to the existence of the variable χ , which 

became the same as the yaw angle at the fixed point, where φ =ψ = 0 . We had no control 

authority on χ  because it was cyclic (i.e., it did not appear in the equations of motion) and 

unactuated. Although there exist methods to control systems having unactuated cyclic variables 

(e.g., Grizzle et al., 2005), we did not employ them here because our primary goal was to control 

the roll and pitch motions.  

Fig. 4 depicts the basin of stability in the φ −ψ  plane with colors representing the 

minimum amplitude of the periodic input, αu  (see Eq. (6)), required to have a stable trajectory. 

The amplitudes are normalized with respect to the maximum value used for the simulations. 

Although the maximum amplitude for n = 3  and n = 4  were different, they were selected such 

that they resulted in the same control effort, defined as the average torque at the joints (see 

Appendix A2). The initial deviations from the fixed point solutions were φi  and ψi , in addition 

to a 2% deviation in the velocity. No data exists for the roll and pitch angles in actual snake 

flight, but (Socha et al., 2005) reported glide angles up to 60°, based on which we considered the 

maximum φi  and ψi  deviation to be 60°. We defined a trajectory to have not diverged, if neither 

φ  nor ψ  reached 80° during a 15 s simulation, which was long enough for any instabilities to be 

manifested. It should be noted that the basin of stability is plotted only in the first quadrant 

because it is symmetric about the φ  and ψ  axes. It is evident from Fig. 4 that the LQR could 

provide stability only for a finite portion of the shown space. When the initial angles went far 

away from the fixed-point solution, the stabilization by the LQR alone failed, but the trajectories 

could be stabilized with the addition of a periodic term to the control input. In the three-link 

model, φi  mainly determined whether the LQR alone was sufficient for stability, and φi = 40°  

was the approximate border for the periodic inputs being required for stability. The four-link 

model had a more complex behavior, with both φi  and ψi  playing roles to determine where the 

LQR alone stabilized the trajectories. Also, stabilization of the trajectories with farther initial 

conditions generally required larger amplitudes of the periodic input. However, this method 

could not be used without limits either, as the empty regions in Fig. 4 show those initial 

conditions for which no stable trajectories could be found. Nevertheless, by adding a periodic 

term to the control input, we could significantly expand the basin of stability, particularly for 

n = 3 .  
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Next, we explored how the amplitude and frequency of the input influenced its stabilizing 

properties. Fig. 5 shows how different periodic input amplitudes caused the trajectories starting 

from various φi  and ψi  to converge to the fixed-point (green regions) or become unstable 

(orange regions). As before, a trajectory was considered unstable if either φ  or ψ  reached 80° 

during a 15 s simulation. Note that the regions shown in Fig. 5 are not plotted in the φ −ψ  plane 

and should not be confused with the basin of stability. Figs. 5A to 5D summarize the results for 

n = 3  and indicate that for the majority of the simulated initial conditions, there existed a range 

for the amplitude of the input, within which the trajectories remained stable. In addition, as could 

be expected, the stable region became smaller as φi  increased, because the initial conditions 

moved farther from the fixed-point solution. Figs. 5E to 5F summarize the results for n = 4  and 

show a more complicated behavior, with some trajectories becoming stable and unstable, and 

sometimes stable again, as the input amplitude increased from zero to the maximum value. 

Moreover, there exist ‘islands’ of stable and unstable parameter sets within the unstable and 

stable regions, respectively. Nonetheless, proper periodic inputs could be employed to stabilize 

many of the trajectories for which the LQR failed, also for n = 4 . Such trajectories are identified 

as parts of the horizontal axes that are borders of the orange regions. 

Fig. 6 encapsulates the effects of the input frequency on the size of the basin of stability. 

The figure shows the percentage of the φi −ψi  space that could be stabilized using the LQR and 

the periodic term with any amplitude. The input frequency range, Ωu =1 to 2.2 Hz, was selected 

to match the range observed in actual snake flight (Socha et al., 2005). It is evident from Fig. 6 

that for the three-link model, the basin of stability was the largest with the input frequency within 

the range 1.4-1.6 Hz, whereas Ωu = 1.8 Hz resulted in a moderate size of the basin of stability, 

and the other cases were even inferior. Therefore, an optimal range for the input frequency 

existed where the basin of stability became the largest; outside of this optimal range, the basin of 

stability shrank rapidly. However, the four-link model exhibited a different behavior, in which 

the size of the basin of stability gradually increased with frequency from ~70% to ~95% of the 

total variable space. Although a local maximum existed at Ωu = 1.6 Hz, it was insignificant and 

did not imply an optimum value.  

The detailed effects of the input frequency are reflected in Fig. 7, where the curves are 

plotted for several input frequencies and show the minimum values of the input amplitude 
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required to stabilize the trajectories. Where the curves do not continue, no input could be found 

for stabilization, so the basin of stability was larger where the curves spanned a bigger fraction of 

the plot domain. It is clear from the figure that frequency had nonuniform effects on different 

parts of the parameter space. For instance, the curves might become discontinuous at their left or 

right ends (e.g. compare the φi = 60° curves in Figs. 7D and 7E), or in the middle (e.g. compare 

the φi = 50° curves in Figs. 7A and 7B). Figs. 7F to 7J reveal that the basin of stability spanned 

the entire range of ψi  at φi ≤ 50° , whereas the shape of the basin of stability at φi ≥ 55°  changed 

drastically with frequency; but those large changes had limited influence on the size of the basin 

of stability (Fig. 6).  

Next, we considered the passive dynamics of the n-chain with high-amplitude undulation 

(Eqs. (7) and (10)), and used the previously mentioned criterion to track whether they lost 

stability for a range of frequencies and link numbers. The results are depicted in Fig. 8A, where 

the orange region indicates the set of frequencies and link numbers that made the model become 

unstable, and the green region contains the set of parameters that resulted in passively stable 

trajectories. The figure verifies that undulation could provide passive stability for the chain 

model for several frequencies and link numbers. Apart from the scattered green islands, the bulk 

of the stabilizing parameters were within the region to the upper right corner of the plot, where 

both the frequency and the number of links were the largest. This bulk region was separated from 

the rest of the plot by a borderline, which could be described as undulation frequency being a 

function of the number of links, Ωu = f n( ) , where frequency generally decreased with the 

number of links. The most important inference drawn from Fig. 8A is that for any specific 

number of links, there existed a minimum frequency of undulation, above which passive stability 

was obtained. Although the figure suggests that the bulk green region did not extend below 

n =12 , because we have not examined larger frequencies, it would not be prudent to make 

deductions about the existence of a minimum number of links for passive stability to be possible. 

Fig. 8B shows the orientation angles of the model for Ωu = 1.6 Hz and n = 20 . This 

simulation started from an upright configuration, 8 m/s forward velocity, and 3 m/s sinking 

velocity. It is observed that the roll angle increased from zero to about 25° and then back to zero 

in about 5 seconds. The roll angle continued to oscillate about zero for the rest of the time. The 

pitch angle increased from zero to about 50° in 5 seconds, and then started to gradually go back 
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to zero. The yaw angle started to oscillate about approximately -90° after reaching this value. 

The large deviation of the yaw angle should not be interpreted as a sign of instability, as the 

stability criterion in this work concerns remaining upright, but not directional control. Fig. 8C 

shows the rates of roll and pitch angles, which indicate they continued to oscillate about zero 

without diverging. It is observed from Fig. 8D, which shows the forward and sinking speeds, that 

while the forward speed varied limitedly during the simulation time, the sinking speed first 

decreased from -3 m/s to about -10 m/s and then returned to approximately its initial value. All in 

all, at the end of the simulation, every variable that appeared in the equations of motion went 

back to approximately its initial value. Therefore, it is expected that the model would continue to 

remain stable no matter how long simulation lasts. Note that yaw, which deviates from its initial 

value, is closely related to the angle χ , and has no effect on the model dynamics. 

 

4. Discussion 

 

4.1. Glide simulations 

 

The results of this work prove the effectiveness of using periodic inputs to stabilize gliding 

trajectories of the n-chain as measured by the size of the basin of stability. The results are 

important from the point of view that the periodic part of the input is not determined from the 

feedback, therefore the periodic input can contribute to the trajectory stability at any point in the 

state space, meaning that the stabilizing properties of the periodic inputs used in the model are 

quite general. The only requirement for the stabilizing effectiveness of the periodic input is that 

the amplitude and frequency have to be properly tuned (Figs. 5 and 7). Moreover, the basins of 

stability for the three-link and four-link models are not similar, indicating that the stabilization is 

dependent on the model’s number of links.  

An interesting consequence of adding the periodic term to the control input was that it 

caused the model to rotate in the yaw direction with an averaged constant rate, whereas the yaw 

angle would asymptotically converge to some constant value in the absence of the periodic input. 

As explained earlier, the reason for this behavior is that angle χ , which becomes the same as the 

yaw angle at the fixed point, is cyclic and unactuated; therefore, it is not controllable and is 

expected to be influenced by any perturbation including the periodic inputs. As a result, the 



 66 

model lacks directional control and disturbances change its direction of motion. On the other 

hand, the effect of the periodic input on the yaw angle is predictable and constant in average, 

making it possible for the periodic inputs to be used as a simple means to ‘drive’ the model in the 

yaw direction. Upon reaching the desired direction, the periodic inputs are ‘turned off’, after 

which all variables including the yaw rate will dissipate and go to zero, and the system proceeds 

with the new direction. 

The periodic motions in the controlled glide simulations are small-amplitude compared to 

undulation in flying snakes; they cause the model to wobble about the fixed-point shape, which 

is asymmetrical about any axis (Fig. 3). By contrast, high-amplitude undulation waves render 

averaged symmetry about the fore-aft axis, which is expected to minimize the control demand. In 

addition, according to the theory of vibrational control, undulation is a zero-mean periodic input 

to the system and may be able to provide open-loop stability. The simulations of the passive 

dynamics of the model with high-amplitude undulation confirm that it could indeed provide 

stability without any control. Our results are also in accordance with the averaging theorem, as 

they indicate that passive stability is obtained for any undulation frequency above a certain 

value. The minimum required frequency is a generally decreasing function of the number of 

links, which suggests that a lager number of links, or equivalently smoother shape changes, helps 

to obtain passive stability. Moreover, because power consumption is proportional to the square 

of frequency, with a larger number of links, stability is obtained at lower energy cost.  

Fig. 8A shows that some low-frequency undulatory motions can also lead to passive 

stability, even at zero frequency (n = 6 ). However, these low-frequency motions are scattered 

and separate from the compact set of high-frequency parameters. Such scattered parameters 

could not be predicted by the averaging theorem, but they have been studied in some simple 

mechanical systems (Berg and Wickramasinghe, 2015). Fig. 8A also suggests that a minimum 

number of links is needed to obtain passive stability with undulatory motions. Testing this 

hypothesis requires analyzing the model at higher frequencies, which was not done in this work. 

However, it is noteworthy that some other mechanical systems, namely boomerangs, are made of 

as few as two rigidly connected airfoils and fly through the air with near zero rates of roll and 

pitch, but they use high spin rates instead of shape reconfigurations. 

Finally, although we used a single snake data for the simulations, the results obtained 

here are generally valid. The only snake-specific parameters are the model’s mass and total 
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length, which do not change the form of Eq. (2), but merely scale the velocities, frequencies and 

input torques. More importantly, because the angles are nondimensional variables, the fixed-

point shapes and the basins of stability remain unchanged. 

 

4.2. Implications about gliding snakes 

 

Our first hypothesis about why airborne snakes undulate was that undulation is a necessary 

condition for stable gliding. The results obtained from the controlled glide simulations negate the 

hypothesis, as we found stabilizable fixed points in the state space, to which the trajectories 

converged asymptotically. Our analysis shows that stable trajectories could be obtained with a 

minimum number of three airfoils in the model. Therefore, it is theoretically possible for the 

airborne snakes to hold a static posture and glide, provided that the snakes have sufficient 

postural control to dissipate disturbances. For instance, fine locomotor control executed 

independently along the snake body as prescribed by the LQR can maintain stability. This 

control strategy needs accurate feedback from the state variables including velocities, orientation 

angles and their rates, and shape angles and their rates. However, the neural and musculoskeletal 

systems of the snakes might not be sufficient to accomplish such a complex task. Particularly, 

this issue could hinder the early stages of the evolution of the gliding behavior, when the 

required traits had not been developed yet. By contrast, the simulations suggest that snakes could 

use large-amplitude undulation to obtain some degree of open-loop stability, and become less 

dependent on the feedback and active control. Of course, the passive stability of the simulated 

trajectories is presumably a result of several idealizations in the modeling; nevertheless, the 

closed-loop control can be formed about the ideally passively stable trajectories and therefore be 

less demanding. A very similar deduction was made in (Jafari et al., 2014), where a model with 

some idealizations resulted in passively stable trajectories, but a more realistic model required 

active control. 

The properties of the chain model can also explain how the snakes obtain an agile aerial 

performance despite lacking specialized flight surfaces. The closed-loop control can be applied 

to stabilize not only the roll and pitch motions as exemplified by our simulations, but also other 

motions such as yaw and sideslip. These control strategies are force-based (i.e., the shape 

changes are used to alter the aerodynamic forces and achieve the desired motion) and work as 
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long as a sufficient number of links in the n-chain is considered. If the chain model has more 

links than necessary, the redundant control inputs conduce to larger reachable and controllable 

sets (Sontag, 1998) within the state space, which translate into the complicated tasks that cannot 

be performed by the system with the minimum number of links. Having well above a hundred 

vertebrae, the snakes are able to perform several maneuvers in this way. Additionally, the snakes 

can implement inertial reorientation by exploiting shape changes to rotate in 3D irrespective of 

the aerodynamic forces. In this regard, the induced rotation is similar to the righting of lizards 

using tail inertia (Jusufi et al., 2010) and certain bat maneuvers using wing inertia (Bergou et al., 

2015). With inertial reorientation, the snakes can perform maneuvers that are not observed in 

other gliders, such as surprisingly sharp turning at low speeds and turning without banking 

(Socha, 2002). Therefore, it is suggested that the snakes can accomplish multiple maneuvers 

because of their unrestrained ability for postural changing, which is enabled by their ample 

musculoskeletal design. In other words, in the case of gliding by snakes, a seemingly inept body 

design turns out to be a versatile asset, which facilitates unexpected functionalities. 

Before closing this section, the interested reader who wishes to learn more details on the 

physical basis of inertial reorientation is referred to consult the literature on the geometric phase 

of holonomic and nonholonomic systems (e.g. Bloch et al., 2005, Koon and Marsden, 1997). 

 

4.3. Modeling limitations 

 

The theoretical analysis made in this work entails the following limitations, which are related to 

the model assumptions: 

- Despite our scarce knowledge about the aerodynamic interaction between the fore and the aft 

body (Miklasz et al., 2010), it is reasonable to speculate that the flow structures created 

upstream are intercepted by the downstream parts, producing some aerodynamic coupling. 

Because no data is available in this regard, as a first-order approximation, each model link 

was assumed aerodynamically uncoupled from the links before and after. Moreover, we 

neglected aerodynamic end effects, such as tip-vortices or effects due to the low aspect ratio 

of the airfoils. However, owing to the robustness of the model stabilizations, we expect to 

attain no major difference in the main results by incorporating the influence from the 

mentioned aerodynamic effects in the model. 
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- The model assumes that the links are uniform, whereas the real snake displays varying 

morphology along the body length. In particular, the width is non-uniform, being maximal at 

mid-body and tapering toward the tail, and the cross-sectional shape may not be constant. 

However, these variations are insignificant, and the link shape is close enough to the real 

snake to be sufficient for a first-order model. 

- The model structure was not sufficient to simulate the beginning part of the snake glide, 

when the speeds are small and the undulating configuration is not formed yet. In practice, 

any simulation starting from small initial velocities would result in instability; the stable 

trajectories could be obtained only with sufficiently large initial velocities. As discussed in 

(Jafari et al., 2014), this part of the glide involves kinematics that have not been quantified 

and are likely to produce different aerodynamic forces than those in the developed phase of 

the glide.  

 

4.4. Conclusion 

 

In this study, we set out to understand the role of undulation in the dynamics of snake 

flight using theoretical modeling. We simulated trajectories of the n-chain model about its 

biomechanically relevant fixed-point solutions for n = 3  and n = 4 . A linearization-based 

stability analysis showed that the fixed-point solutions were unstable, but could be stabilized 

using shape variables as inputs. Although the stabilization was not accomplished globally, it was 

shown to be effective for a considerable portion of the state space that was relevant to the actual 

kinematics of snakes. Further exploration revealed that by adding small-amplitude periodic 

motion about the fixed-point shape, the size of the basin of stability significantly expanded. 

Moreover, we examined the simulations with large-amplitude undulatory motions and 

demonstrated that open-loop stability could be obtained with sufficiently large frequency of 

undulation. All in all, this study exemplified methods of maintaining stability during glide with a 

morphing body instead of employing symmetrically paired wings. It was also suggested that the 

undulation lowers the demand for a complex closed-loop control system by allowing it to be 

formed about an ideally passively stable trajectory. 

Modification of our theoretical modeling into a more realistic representation of the flying 

snakes requires further exploration of their kinematics as well as understanding the full 
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aerodynamics of the snake’s cross-sectional shape. A study is currently underway to determine 

the behavior of two snake-like 2D airfoils placed in tandem (Jafari et al., in preparation), but the 

effects of low aspect ratio, unsteady motions, and sweep angle has also to be found. Experiments 

with the snakes being perturbed in their developed stage of glide, or with robotic models are 

needed to verify our results. Upon verification, the methods of this work can be used to study 

several aspects of snake flight including the dynamics of turning or the effects of shape 

kinematics on the trajectory. Moreover, a similar approach can be applied to limbless motion 

through any fluid, for example with the swimming of eels (Tytell et al., 2010). 
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Fig. 1: Overview of the n-chain model. (A) A representative view of the n-chain model with n=3 
identical links. The inset shows the snake-like cross-sectional shape of the links. The x-y-z frame 
is fixed to the first link, whereas the X-Y-Z coordinate system is inertial. The entire body of the 
model, which is viewed from the z-direction in this figure, lies in the x-y plane. The shape of the 
model is determined by the angle each link makes with the x-axis. The overall position and 
orientation of the model are determined by the position vector  and the orientation of x-y-z 
frame relative to the X-Y-Z frame. The joint torques represent the effort needed to change the 
shape of the n-chain. (B) The roll, pitch, and yaw angles are defined based on the xʹ-yʹ-zʹ 
coordinate frame, in which the zʹ-axis is parallel to the z-axis, and the xʹ-axis is determined such 
that the center of mass velocity, , lies in the xʹ-zʹ plane. Therefore, the misleading effects 
caused by the rotation of the first link with respect to the average body motions do not 
contaminate the results. 
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Fig. 2: Modeling of the aerodynamic forces. The local forces in the blade element method were 
calculated using the local velocities and the steady lift and drag coefficients for the snake airfoil 
(A), as determined by (Holden et al., 2014). (B) Sweep angle, λ , was accounted for by using 
simple sweep theory, in which only the normal component of the velocity, v⊥ , contributes to 
producing forces (left). Any force component along the airfoil span axis was neglected (right). 
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Fig. 3: The fixed-point solutions of the n -chain model with three and four links. (A-B) The 
model shape and the in-plane component of the fixed-point velocities. Although the velocity 
vector is shown at the ‘head’ point, every point of the model has the same velocity. The axis of 
gravity is perpendicular to the figure plane. Simulations for the model orientation (C-D), and 
CoM velocities (E-F). Using the LQR to stabilize the fixed point, the trajectories with the initial 
conditions of φi = 30° , ψi = 40° , and a 2% deviation in the initial velocity converged to the fixed 
point (solid lines). The state variables starting from the same initial condition, but having the 
periodic term in their input, converged to oscillating about the fixed-point solution without 
becoming unstable (dashed lines). The yaw angle, which was not a state variable, and therefore 
was not controllable, started to decrease or increase with time when the periodic term was added 
to the input. 
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Fig. 4: The basin of stability in the φ −ψ  plane. Colors represent the minimum amplitude of the 
periodic input, αu , required to have a stable trajectory. The amplitudes are normalized with 
respect to maximum values that resulted in the same control effort for both n = 3  and n = 4 . φi  
and ψi  were the initial deviations from the fixed point solutions, in addition to a 2% deviation in 
the velocity. The basin of stability is plotted only in the first quadrant because it is symmetric 
about the φ  and ψ  axes. The addition of the periodic term to the input significantly expanded 
the size of the basin of stability by making the trajectories stable where the LQR alone failed. For 
the initial conditions inside the white regions, no stabilizing control input could be found. 
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Fig. 5: The effect of the periodic input amplitude on the stabilizing properties of the input in the 
three-link model (A-D) and the four-link model (E-H). With the set of parameters shown in 
green, the trajectories converged to the fixed-point, whereas they became unstable with the 
parameters shown in orange. The plots do not represent the basin of stability because they are not 
in the φ −ψ  plane. In the three-link model, for the majority of the simulated initial conditions, 
there existed a range for the amplitude of the input, within which the trajectories remained stable. 
However, in the four-link model, increasing the input amplitude could possibly change the 
stability properties of the trajectories with the same initial condition multiple times. 
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Fig. 6: The effect of undulation frequency on the total size of the basin of stability. The set all of 
the trajectories that could be stabilized using the LQR and the periodic term with any amplitude 
was highly depending on the input frequency in the three-link model. The basin of stability 
became the largest within the range Ωu = 1.4-1.6 Hz, but rapidly shrank outside this optimal 
range. By contrast, in the four-link model, the size of the basin of stability moderately changed 
with input frequency, and no optimal range was observed. 
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Fig. 7: The effects of input frequency on the shape of the basin of stability. The curves show the 
minimum values of the input amplitude required to stabilize the trajectories. Where the curves 
are discontinuous, no stabilizing input could be found. The shape of the basin of stability 
changed nonuniformly with the input frequency for both n = 3  and n = 4 . The curves became 
discontinuous at their left or right ends (φi = 60° curves in D and E), or in the middle (φi = 50°
curves in A and B). For n = 4 , the basin of stability spanned the entire range of ψi  at φi ≤ 50° , 
but became dependent on the frequency at φi ≥ 55°  (F-J). 
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Fig. 8: The passive dynamics of the model with high-amplitude undulation (Eq. (7)), and with 
varying number of links and undulation frequency. (A) The green region contains the set of 
frequencies and link numbers that resulted in passively stable trajectories, and the orange region 
contains the set of parameters that made the model unstable. Within the bulk green region to the 
upper right corner of the figure, which is separated from the rest of the parameter space with the 
hatched band, undulation worked as a zero-mean input to render passive stability above a certain 
frequency for any link number, as the theory of vibrational control predicts. (B-D) The 
simulation results starting from 8 m/s forward velocity, and 3 m/s sinking velocity, with Ωu = 1.6 
Hz and n = 20 . (B) The roll and pitch angles deviated from zero and reached a maximum of 
~25° and ~50°, respectively, but they returned back to oscillate about zero during the simulation 
time. The yaw angle exhibited a large deviation, which indicates that directional stability was not 
achieved. (C) The rates of the roll and pitch angles, showing that they continued to oscillate 
about zero. (D) Although the forward speed did not undergo large changes, the sinking speed 
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decreased from -3 m/s to -10 m/s, and returned back to its initial value.  
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Chapter 4. Experimental study of the aerodynamics of snake-like airfoils in 

tandem configuration  
 

Abstract 

 

Upon becoming airborne, flying snakes flatten their body to make a roughly triangular cross-

sectional shape, which enables them to produce lift and gain horizontal acceleration. In addition 

to flattening their body, the snakes assume an S-like posture, which makes it possible that 

aerodynamic interactions occur between the fore and the aft body. Such interactions have been 

studied experimentally; however, models with a very coarse approximation of the cross-sectional 

shape of snakes were used in the experiment. Moreover, the effects were measured only for the 

downstream model. In the present study, the aerodynamic interactions of the snake body were 

approximated by two-dimensional anatomically accurate airfoils placed in tandem with several 

snake-related configurations. The experiments were conducted in a water tunnel, and load cells 

were used to measure lift and drag forces produced by both airfoils simultaneously. In addition, 

the flow field data were obtained using digital particle image velocimetry (PIV). The results 

confirmed strong dependence of the aerodynamic performance on the tandem arrangement, with 

the lift coefficients being generally more influenced. Two sets of configurations particularly 

stood out; the first set included configurations close to the most probable posture of real flying 

snakes, and the second set showed extreme variation in the lift-to-drag ratio with slight changes 

in the vertical stagger. Spectral analysis showed that the upstream and downstream dominant 

frequencies usually locked, suggesting interactions between the downstream airfoil and the 

vortices shed upstream. Inspecting flow field around the airfoils revealed that the tandem 

arrangement modified the separated flow and the wake size. Whenever the wake vortices were 

formed closer to the models, they produced suction on the dorsal surface of the model resulting 

in lift enhancement. Moreover, the downforce created by the flow separation from the ventral 

surface of the models at 0° angle of attack was a function of tandem arrangement. Pressure fields 

were calculated to confirm the information obtained from the flow topology. 

 

1. Introduction 
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Three species of snakes in the genus Chrysopelea found in Southeast Asia have developed the 

ability to glide (Socha, 2002, Socha, 2011, Socha et al., 2015). Flying snakes do not appear 

anatomically exceptional, and with a typical snake body, they seem to be inept for gliding. 

However, their aerial performance is comparable to other gliding animals (Scholey, 1986, 

McGuire, 1998, Socha et al., 2005). The flying snakes lack any specialized surfaces to produce 

the required flight forces; instead they use their entire body as a wing. Upon becoming airborne, 

the snake splays its ribs to transform a rounded cylindrical body to have a roughly triangular 

cross-sectional shape. This shape is symmetrical in the fore-aft axis with a semi-triangular dorsal 

surface and a concave ventral surface, which has a pair of ventrally oriented ‘lips’ on each lateral 

edge (Socha, 2011). Fig. 1A shows the mid-body profile of an airborne C. paradisi; although 

personal observations of the authors indicate slight shape variations along the body, no exact 

data are available for those variations. In addition to flattening their body, airborne flying snakes 

assume an S-like posture (Fig. 1B) and start to undulate laterally by sending traveling waves 

posteriorly down the body. With this dynamic behavior, different parts of the body move with 

respect to each other, but a staggered configuration is maintained during the shallowing part of 

the glide (Fig. 1C). 

The gliding ability of the snakes fundamentally depends on the aerodynamics of their 

body shape as a peculiar wing profile. Three studies provide our current understanding of the 

aerodynamics of the snake’s cross-sectional shape (Holden et al., 2014, Miklasz et al., 2010, 

Krishnan et al., 2014). As first-order approximations, all of these studies neglected the effects of 

undulation, 3D posture, and possible variation of the snake profile along the body, and 

determined the steady behavior of uniform 2D models having snake-like cross-sectional shapes. 

Miklasz et al. (2010) used empty, half-full and full semi-circular tubing to coarsely model the 

snake profile, and they found an aerodynamic behavior robust to shape changes. The lift 

coefficient was shown to increase up to 30° angle of attack reaching a maximum of 1.5, but high 

lift was maintained up to 55° angle of attack, with a lift-to-drag ratio of 2.4-2.8 over a wide range 

of angles of attack. Stall gradually occurred beyond 30° angle of attack, as lift failed off slowly 

and drag increased. The ventral lip at the trailing edge was found to have the biggest impact on 

producing high lift forces by further deflecting the flow downward. Holden et al. (2014) studied 

the aerodynamic performance of anatomically accurate models with the cross-sectional shape of 

Fig. 1A. They used load cell measurement and digital particle image velocimetry (PIV) and 
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focused on the fluid dynamics to determine the underlying physics of snake’s aerodynamics. In 

addition, they examined several Reynolds numbers representing a range of body sizes and glide 

speeds. They found lift and drag coefficients generally resembling the results of (Miklasz et al., 

2010) with slight dependence on Reynolds number; however, the anatomically-accurate snake 

profile enjoyed a significantly larger maximum lift coefficient of 1.9 for Reynolds numbers 

Re≥9000. Vortex trajectory analysis of the experimental velocity field and subsequent 

computational investigations (Krishnan et al., 2014) suggested that vortex-induced suction on the 

dorsal surface of the snake may underlie such a surprisingly high lift coefficient. 

The snake profile is superior to many other thick airfoils in steady flows with the same 

Reynolds numbers; however, even such an outstanding aerodynamic performance is not 

sufficient to explain the gliding abilities of real snakes. For instance, estimations of the required 

lift-to-drag ratio based on the assumption of equilibrium gliding at 13° glide angle – the 

shallowest glide angle observed in snakes – are significantly larger than the measured values 

(Socha et al., 2010, Holden et al., 2014). Therefore, some mechanism must give the snakes a 

better aerodynamic performance than the already measured data. Unsteady and 3D effects have 

previously been shown to augment lift in some biological systems (e.g. Bahlman et al., 2013, 

Wang et al., 2014, Shyy et al., 2009, Song et al., 2014, Muijres et al., 2008, Lentink and 

Dickinson, 2009, Bomphrey et al., 2006), but the snake’s exceedingly large value of advance 

ratio (ratio of the forward motion to the reciprocating motion) compared to that of insects and 

birds (Vogel, 2003, Dickson and Dickinson, 2004, Holden et al., 2014) suggests that unsteady 

mechanisms are less likely to produce a significant aerodynamic contribution. Another 

possibility, rendered by the staggered S-shaped configuration of the gliding snake, is that a 

complex interaction between the fore and the aft body takes place where vortices formed 

upstream are intercepted by the downstream cross-sections. Such interactions have been 

previously observed in flapping wings with an often favorable contribution to the aerodynamics 

(Akhtar et al., 2007, Lehmann, 2008, Lehmann, 2009, Maybury and Lehmann, 2004, Usherwood 

and Lehmann, 2008, Wang and Russell, 2007, Warkentin and DeLaurier, 2007, Weimerskirch et 

al., 2001). There also exist a few studies (Scharpf and Mueller, 1992, Michelsen and Mueller, 

1987, Husain et al., 2005) on static tandem airfoils in flows with Reynolds numbers Re=8.5×104-

2.25×105, showing mixed aerodynamic effects. A simplified preliminary study (Miklasz et al., 

2010) used 2D snake-like airfoils and Re=15000; gap and stagger were varied, but the upstream 
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and downstream angles of attack were kept fixed at 25°. The force coefficients, measured only 

for the downstream airfoil, suggested that the tandem arrangement of two airfoils could produce 

significant lift enhancement and drag reduction for the downstream airfoil relative to a solitary 

airfoil at the same angle of attack. 

These results should be considered with caution because differences between the simple 

geometry of the model and the snake’s true cross-sectional shape may result in large differences 

in flow patterns, potentially causing a large deviation between the measured force coefficients 

and those experienced by the snakes. Moreover, a vast portion of the tandem arrangement 

parameter space remains unexplored. The present work aims to study the characteristics of the 

complex interactions among the snake’s body parts. In a simplified approach, those interactions 

can be approximated by two-dimensional anatomically accurate airfoils placed in tandem with 

several snake-related configurations (Fig. 1B). By varying the gap and stagger spacing between 

the two airfoils as well as the angles of attack, it is possible to reproduce a wide range of 

conditions representative of the snake’s flight configurations. Load cells are used to measure the 

individual lift and drag forces acing on each airfoil. Also, digital particle image velocimetry 

(PIV) is used to determine the flow field data and test the hypothesis that the underlying vortex-

blade interaction is responsible for the vortex-induced lift augmentation and drag reduction. This 

study furthers our knowledge about how snakes produce flight forces. Because control of gliding 

is carried out using aerodynamic forces, valuable insight is also provided about how the snake’s 

control system works in connection with its aerodynamics. Finally, this study determines the 

physical bounds on the aerodynamic capabilities of the tandem airfoils, allowing us to predict the 

limits on the snake’s aerial performance. 

 

2. Methods 

 

In designing our experiments, we had to minimize the number of independent variables so that 

the number of test cases would not become impractically large. First, we used the previous 

measurements (Holden et al., 2014) showing that the aerodynamic performance of a single airfoil 

is mildly dependent on the Reynolds number. Hence, in the present study, we kept the Reynolds 

number fixed at Re=13000 (with chord as the characteristic length), which is representative of 

the developed stage of glide in an adult snake. Instead, we emphasized the effects of the 
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staggering configuration. The parameter space for placing two airfoils in tandem consisted of the 

distances between the airfoils parallel to the flow (gap, Δx ) and perpendicular to it (stagger, Δy

), and the upstream and downstream angles of attack, αu  and αd . Sampling of this large 

parameter space entailed a trade-off between being able to capture the important phenomena and 

generating a feasible test matrix. To somewhat reduce the volume of the parameter space, we 

restricted our attention to its snake-relevant portion, which was determined based on the 

previously determined kinematic data (Socha et al., 2010). Guided by these data, the distances 

were varied in the ranges 2c < Δx < 8c  and 0c < Δy < 5c , with c  being the chord length of the 

airfoil. Because no data exist for the angle of attack, we used the range of glide angles reported 

in (Socha et al., 2005) to approximate the range of angles of attack as 0 <αu,αd < 60° . This 

approximation is justified by the kinematic data indicating that the snakes glide generally level 

with the ground (Socha et al., 2010), in conjunction with assuming small twist along the body, 

which means that the body cross-sectional shape is more or less aligned with the plane of mean 

body posture. We also considered the possibility that the fore and the aft body may not have the 

same angle of attack; however, in accordance with the assumption of small twist, we rejected 

combinations with excessive difference between αu  and αd . The generated test matrix is 

summarized in Table 1. The combinations of the angles of attack in the test matrix could be 

sorted in two groups: (i) the upstream angle of attack was kept fixed at αu = 30°  and the 

downstream angle of attack was varied from 0° to 60°, and (ii) the downstream angle of attack 

was kept fixed at αd = 30°  and the upstream angle of attack was varied from 0° to 60°.  

Load cell measurements were carried out to determine the aerodynamic performance of 

the tandem airfoil arrangements for all of the 4×6×8=192 test cases from Table 1. Next, we used 

digital particle image velocimetry (DPIV) to obtain the flow field measurements for select cases 

that exhibited significant lift enhancement compared to single models. The velocity field results 

were used to estimate the aerodynamic forces and verify the load cell measurements, as well as 

to carry out several other analyses including proper orthogonal decomposition and spectral 

analysis. 

   

2.1. Experimental model and test facility 
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All experiments were conducted with the snake models used in (Holden et al., 2014). The models 

were geometrically accurate replicas of the cross-sectional shape of the airborne snake (Fig. 1A). 

Each model was rapid prototyped from ABS plastic (DREAMS lab, Virginia Tech) with a chord 

of 25.4 mm and an aspect ratio of 20 to simulate a single 2D segment of the snake’s. The 

experiments were conducted in a closed-loop water tunnel in Virginia Tech with a 0.6×0.6×1.5 

m test section. The freestream turbulence intensity at the test location was less than 3% at speeds 

up to 0.5 m/s (Gifford et al., 2011). 

 

2.2. Load cell measurements 

 

In the experimental setup of (Holden et al., 2014), four 5 lb (22 N) load cells (LCFD-5, accuracy: 

±0.15% FSO, DMD-465WB, strain-gage amplifiers; Omega Engineering, Stamford, CT, USA) 

were used to simultaneously measure the lift and drag forces on the model, which was mounted 

to the load cells with support arms. The setup was designed to minimize unwanted effects: the 

support arms were completely encased by acrylic sidewalls to prevent interaction with the water 

flow, the leading edges of the acrylic sidewalls were designed with super-ellipse shapes to avoid 

separation, and the model spanned the entire width between the sidewalls with a clearance of ~1 

mm to eliminate 3D effects. For the tandem model experiments, the sidewalls of the same setup 

were modified with two grids of holes as shown in Fig. 2 to accommodate the second model. 

This way, the lift and drag forces on one of the models were measured while the other model was 

fixed to the sidewalls. LabVIEW software (National Instruments, Redmond, WA, USA) and a 

DAQ board (NI PCI-6251) were used to record the data for each trial at a sampling rate of 1000 

Hz for 30 s. The weight of the experimental setup and model was accounted for by zeroing the 

force measurement before each trial. 

 The lift and drag coefficients were calculated as 

CL =
2FL
ρU 2cl

, CD =
2FD
ρU 2cl

 
(1) 

where FL  and FD  are the measured lift and drag forces, ρ  is the water density, U  is the 

freestream velocity, c  is the chord length, and l  is the span length of the model. 

 The experiments and analyses of this section were entirely carried out by Daniel Holden 

following his own research work (Holden, 2011). 
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2.3. Flow field measurements 

 

The flow field was spatiotemporally resolved using planar digital PIV measurements to quantify 

flow field characteristics including vorticity and pressure fields. To minimize the undesirable 

optical effects in the captured images, the acrylic sidewalls of the force measuring setup were 

modified to accommodate detachable walls of acrylic exclusively cut for each combination of 

gap and stagger (Fig. 3A). The experimental models were rigidly mounted to the detachable 

walls for the PIV measurements. To seed the water tunnel, we used small, neutrally buoyant, 

hollow glass spheres (mean diameter, 126.4 µm) that acted as flow tracers. The particles were 

illuminated using a dual head laser system (Pegasus PIV, New Wave Research, Portland, OR, 

USA), whose light was guided through an optical train and spread into a thin plane (1 mm 

thickness). To eliminate the shadow cast by the models, two mirrors were placed above the snake 

model on top of the experimental setup to reflect the laser plane back through the test section. 

The desired region of interest was quite large containing the two models, the sizable distances 

between them (maximum of 6 chords of gap and 3 chords of stagger, see Table 1), and the 

downstream wake. We used two cameras to be able to capture this region with sufficient 

resolution. Even so, the camera placement needed to be carefully designed because (i) adequate 

overlap ought to exist between the field of view of the two cameras, and (ii) to capture the entire 

height of the desired field of view, the cameras had to be placed at a 1 in vertical offset for the 

cases with stagger of Δy =2c or 3c, whereas they had to be placed at the same level for the cases 

with stagger of Δy =0c or 1c (Fig. 3B). High-speed video cameras (XS-5, Integrated Design 

Tools, Tallahassee, FL, USA) were used to record images at a sampling rate of 1000 Hz. With a 

resolution of 1024×1280 pixels for each camera, an image magnification of 108.1 µm/pixel was 

achieved. Before taking each set of data, both cameras took images of a calibration grid (an 

aluminum plate with a grid of dots), which was placed accurately at the laser sheet plane. The 

calibration data were used to determine the overlap between the two cameras, and to later ‘stitch’ 

the upstream and downstream data. 

The time-resolved DPIV images were processed with the publicly available code 

PRANA, developed at Virginia Tech (Eckstein and Vlachos, 2009). We used the Robust Phase 

Correlation (RPC) with three iterations of multigrid iterative deformable windows (Scarano, 
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2001) to correlate the images and determine the instantaneous velocity field. Iterative deformable 

windows were used because they improved the particle image pattern and prevented loss-of-pairs 

due to in-plane motion at areas with high shear. Gaussian image masking and spatial filtering of 

the velocity fields between iterations were employed to stabilize the iterative process (Schrijer 

and Scarano, 2008). PIV processes were carried out with three passes, one pass with 64×64 pixel 

interrogation windows, and two passes with 32×32 pixel interrogation windows. After each pass, 

the results were validated using velocity thresholding and universal outlier detection to replace 

significantly bad vectors (Westerweel and Scarano, 2005). The final processed velocity fields 

had a uniform vector grid spacing of 8 pixels. 

 

2.4. Spectral analysis 

 

Spectral analysis was performed on the force coefficients (Eq. (1)) to determine the dominant 

spectral components and the vortex shedding behavior. The frequencies were made 

nondimensional as  

f * = fh
U

 (2) 

where f  is the frequency, h  is the characteristic length, and U  is the freestream velocity. The 

characteristic length was considered for both models to be the same and equal to the projection 

of the model with 30° angle of attack perpendicular to the freestream.  

 To provide a comparison between the force and velocity data, spectral analysis was 

performed also on the velocity field, one chord length downstream of the centroid of each airfoil 

(Fig. 3B).  

 

2.5. PIV-based aerodynamic force calculation 

 

Starting from the integral form of the momentum equation for a steady control volume 

surrounding an airfoil, the force acting on the airfoil is found to be 

F = − ρ
∂v
∂t
dV∫∫∫ − ρv v ⋅ n̂( )dS!∫∫ − pn̂dS!∫∫ + n̂ ⋅τ dS!∫∫  (3) 
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where F  is the force vector, v  is the velocity vector, ρ  is the water density, p  is the pressure, 

n̂  is the force vector, and τ  is the stress tensor. For a statistically steady flow, the time average 

of the first integral, which is the unsteady term, is zero. The second and third integrals represent 

the contributions from the momentum flux and pressure, respectively. The last integral, which 

includes the contribution of viscous effects, is usually eliminated by properly choosing a control 

surface on whose boundaries the viscous stresses and the turbulence stresses are negligible. 

However, we were not able to follow the same procedure because the downstream airfoil was too 

close to either the upstream airfoil (cases with Δx = 2c ) or the downstream boundary of the 

image (cases with Δx = 6c ). To find the stress integral, we calculated the stress tensor as  

τ ij = µ
∂ui
∂x j

+
∂uj
∂xi

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ , i, j =1,2  (4) 

in which, the partial derivatives were numerically obtained using the second-order central 

difference method. The pressure field was calculated using virtual-boundary, omni-directional 

pressure integration (Charonko et al., 2010).  

After finding the forces, Eq. (1) was used to obtain the lift and drag coefficients.  

 

2.6. Proper orthogonal decomposition 

 

Proper orthogonal decomposition (POD) is a mathematical tool to decompose a dataset in space 

and time into orthogonal basis functions that capture the most energetically important modes of 

the data. In fluid mechanics, POD can be considered as a physics-based filter retaining the most 

energetic modes of the velocity field, which tend to be less contaminated by noise. By contrast, 

the lower energy modes contain a large amount of noise and are discarded. POD has been 

applied to a wide variety of problems in fluid mechanics in this way (Smith et al., 2005, Santa 

Cruz et al., 2005, Berkooz et al., 1993). Here, we filtered the velocity data using POD with the 

method of snapshots (Smith et al., 2005) and kept the modes that accounted for 80% of the total 

energy. 

 In connection with POD, the energy fraction of modes and entropy are defined as 
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EFj =
λ j

λii=1

N
∑

, j =1,…,N  (5) 

H = −
1

logN
EFi log EFi( )

i=1

N

∑  (6) 

where λi  is the energy of mode i , and N  is the total number of modes. Basically, energy 

fraction is the ratio of each mode’s energy to the total energy. For organized wakes, only a small 

number of modes would dominate the flow, whereas mode energy is distributed more uniformly 

in a very turbulent flow. Entropy quantifies the complexity and order of the flow. With a 

minimum value of 0, entropy indicates that the total energy is contained in only one mode, and 

with a maximum of 1, it means that the energy is distributed evenly among all of the modes 

(Santa Cruz et al., 2005). 

 

2.7. Uncertainty analysis 

 

We used the propagation of error to calculate the uncertainty ranges for the lift and drag 

coefficients obtained from the force measurements. It was shown in (Holden, 2011) that the 

random error in the force measurements was negligible; therefore, we considered only the 

systematic uncertainty. The terms contributing to the uncertainty of the force measurements 

include (i) load cell data (combined linearity and hysteresis error of 0.15% FSO), (ii) freestream 

velocity (0.02 m/s), (iii) moment arm lengths (5×10-4 m), (iv) model chord length (5×10-7 m), and 

(v) model span (7.9×10-5 m). For more details, see (Holden, 2011). 

 

3. Results 

 

3.1. Lift and drag coefficients 

 

The overall aerodynamic performances of the tandem configuration of the snake models are 

summarized in Fig. 4, where the lift and drag coefficients obtained from tandem force 

measurement data are compared to the summation of those coefficients for two solitary models 

having the same angles of attack. Each of the eight plots in the figure represents the data for a 
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combination of αu  and αd  (See Table 1). In general, the lift coefficient underwent more changes 

than the drag coefficient. The tandem effects were larger when the models were placed closer to 

each other, but when the distance between the models increased, the tandem lift and drag 

coefficients generally converged to those of single models. In particular, the tandem effects 

diminished, almost independent of gap, when the stagger became larger than two chord lengths, 

except for the lift coefficients with αu = 0°  and αd = 30° , which received the utmost influence 

from the tandem arrangement. For these angles of attack and with Δx = 2c , extreme changes 

occurred in the lift coefficient, where it went from zero (about -100% change) to more than three 

times (~200% change) of the single model data, with the stagger changing from zero to one 

chord. The lift and drag coefficients degraded when the models were at zero stagger for all 

configurations except those with αu = 30°  and αd = 0° . For the latter cases, the lift coefficients 

somewhat increased whereas the drag coefficients with Δx > 2c  almost did not change.  

Fig. 5 summarizes the changes in the lift-to-drag ratio. As for the lift and drag 

coefficients, changes in the lift-to-drag ratio generally became smaller when the models were 

placed farther apart, with the stagger having a larger influence than the gap. Also, the lift-to-drag 

ratio mainly followed the patterns in the lift coefficient, most noticeably for cases with αu = 30°  

and αd = 0° , or αu = 0°  and αd = 30° , as the drag coefficient received smaller effects from the 

tandem arrangement. The big variation in the lift-to-drag ratio with Δx = 2c , αu = 30°  and 

αd = 60°  was an exception that resulted from simultaneous lift enhancement and drag reduction. 

Fig. 6 shows the contour plots of the overall lift-to-drag ratio of the tandem airfoils in the Δx -

Δy  plane with each panel corresponding to a combination of the angles of attack. When 

αu = 20°  and αd = 30° , or vice versa, the tandem lift-to-drag ratio was generally larger than 

other combinations of the angles of attack, and it displayed small dependence on the relative 

position of the airfoils. At these combinations of the angles of attack, the maximum value of the 

tandem lift-to-drag ratio exceeded 2.2 and was almost 20% larger than that of single models with 

the same angles of attack. For some other combinations of the angles of attack, relatively large 

changes in the lift-to-drag ratio could be obtained by adjusting the horizontal and vertical 

distance between the airfoils. For instance, with αu = 30°  and αd = 0° , there was a preferred 

posture ( Δx = 6c  and Δy =1c ) that would produce a considerable enhancement in the 
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aerodynamic performance of the tandem system. Also, with αu = 30°  and αd = 60° , the tandem 

lift-to-drag ratio became close to its global maximum value at Δx = 2c  and Δy =1c  although it 

rapidly decayed and remained almost unchanged for other postures. 

The circles in Fig. 5 specify the cases for which flow fields were measured with PIV. The 

PIV cases were selected based on the distinguished changes in their lift-to-drag ratios, and they 

were used to study the fluid mechanisms behind the extreme tandem effects and the aerodynamic 

properties of the snake-related configurations. To minimize redundancy, almost all of the flow 

field results in this work concern the cases depicted by red circles. The following two categories 

of tandem arrangements were considered in the selection of the ‘red’ cases: (i) Analysis of body 

configurations in airborne snakes (Socha et al., 2010) has revealed that the most probable relative 

position of the fore and the aft body airfoils is 6-8 chords of gap and 2-3 chords of stagger. These 

data conspicuously overlapped with the configurations having αu = 30°  and αd = 0°  that 

produced the largest tandem effect on the lift coefficient and the lift-to-drag ratio. The first group 

of the red cases includes those configurations along with the ‘neighbors’ that lack the large 

tandem effect. For instance, by just changing the downstream angle of attack, the significant 

tandem effect in Δx = 6c , Δy = 2c , αu = 30° , αd = 0°  nearly vanished in Δx = 6c , Δy = 2c ,

αu = 30° ,αd = 20° . (ii) The uttermost tandem effects happened with Δx = 2c , αu = 0°  and 

αd = 30° , which are included in the second group of the red cases along with their less 

influenced neighbors. 

Within each highlighted group, the three cases that had the same gap and angles of attack 

but were different in stagger were the most interesting, as very large changes in the aerodynamic 

performance could be obtained with small changes in the vertical separation. The individual lift 

and drag coefficients of these configurations are tabulated in Table 2. The first three 

configurations in Table 2 are relevant to the real snake posture (Δx = 6c , αu = 30° , αd = 0° ), for 

which the aerodynamic performance of the upstream airfoil was similar and almost the same as a 

single model at 30° angle of attack. By contrast, the downstream airfoil produced significantly 

larger lift and smaller drag with Δy ≤ 2c , but the enhanced performance was lost at Δy = 3c . The 

second three configurations in Table 2 are the cases experiencing the uttermost tandem effects (

Δx = 2c , αu = 0° , αd = 30° ). At Δy = 0c , the lift and drag of both tandem models changed with 

respect to their single model counterparts, but the overall lift summed to about zero, which 
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resulted in a drastic negative change in the combined lift and lift-to-drag ratio (Figs. 4 and 5). At 

Δy =1c , the upstream airfoil with 0° angle of attack produced positive lift, as opposed to 

negative lift of a single model (Holden et al., 2014), which was the most important contribution 

to the drastic enhancement of the combined aerodynamic performance. At Δy = 2c , the upstream 

lift became negative again but remained larger than the single model lift; therefore, the tandem 

system experienced a smaller positive change in the aerodynamic performance. 

In Fig. 7, the individual lift and drag coefficients estimated from the PIV data are 

compared to those as measured using the load cells, with the error bars representing the 

measurement uncertainty. Overall, the results obtained from the two methods were in satisfactory 

agreement, with the PIV estimated results mostly lying within the uncertainty range of the 

measured data, and with the maximum relative error being about 18%. The data were grouped 

according to the abovementioned categories; the red shades denote the two groups of cases 

whose details were studied, and the blue shade specifies the rest of the PIV cases. It is observed 

that for the first red group, where the gap between the models was larger, the upstream model 

was almost unaffected by the presence of the other model; however, the downstream model in 

some cases received the influence of the upstream model resulting in a largely modified lift 

coefficient. By contrast, in the second red group where the gap was smaller, the lift and drag of 

both models were altered.  

 

3.2. Spectral analysis 

 

Fig. 8 shows the spectra of the measured forces, which represent the vortex shedding behavior of 

the tandem system. It is observed that for all the upstream cases in Fig. 8A, a single dominant 

frequency existed at f * ≈ 0.23 , which was independent of the tandem configuration. The 

dominant frequency of the downstream airfoil was ‘locked’ at the upstream dominant frequency 

for four cases, it was different ( f * ≈ 0.34 ) for two other cases, and in another configuration the 

downstream spectra exhibited two peaks, one of which coincided with the upstream peak. The 

spectra of the cases in Figs. 8C and 8D were less orderly, with the peak frequency varying from 

f * ≈ 0.23  to f * ≈ 0.42 , and neither of the upstream and downstream groups showing a preferred 

dominant frequency. In particular, no clear peak could be identified for the case Δx = 2c , 
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Δy = 0c , αu = 0°  and αd = 30° ; however, increasing the stagger to Δy =1c  resulted in two 

locked dominant frequencies. When the stagger was increased to Δy = 2c , the secondary peak 

vanished and the primary dominant frequencies no longer matched. For all other configurations, 

no secondary peak was observed, but the upstream and downstream primary peaks matched.  

Fig. 9 shows the probability density of the upstream and downstream dominant 

frequencies for different combinations of the angles of attack. Each probability density curve was 

obtained from the compilation of all peaks in the spectra of any combination of gap and stagger. 

Generally, the upstream model experienced a single peak, which was also shared by the 

downstream model. This frequency was a function of the configuration and varied with the 

angles of attack. In addition to the upstream dominant frequency, the downstream model 

exhibited one or more peaks that could be smaller or larger than the upstream peak frequency. 

Overall, the tandem configuration could influence the spectra of the models by changing the 

dominant frequency, which was usually shared by both models, and by creating additional peaks 

for the downstream model. 

Figs. 10 and 11 encompass the spatially resolved power spectra of the vertical velocity 

component one chord downstream of each airfoil. These results were in agreement with those 

obtained from the spectral analysis of forces. In addition to the dominant frequencies, the 

velocity spectra revealed the behavior of the wake structure behind each model. It is observed 

that the position and distribution of the wake varied with the configuration. For the cases 

presented in Fig. 10, the upstream high power band was relatively narrow and symmetric relative 

to the airfoil position, with the maximum energy contained between Y = −c  and Y = c . By 

contrast, the downstream wake was asymmetric and shifted a little upward, except for Δx = 6c ,

Δy = 2c ,αu = 30° ,αd = 20° , which had a symmetric spectrum. The cases presented in Fig. 11 

experienced greater influence from the tandem configuration, which caused the vertical position, 

distribution width, and frequency of the high power band to vary. For the case Δx = 2c , Δy = 0c , 

αu = 0° , αd = 30° , the power was spread for a large range of frequencies and no preferred 

frequency could be identified. For the same gap and angles of attack but with stagger increased 

to Δy =1c , a clear high power upstream band emerged at f * ≈ 0.42 . The downstream spectra 

exhibited a band at f * ≈ 0.23  which was shifted downward; moreover, the upstream wake was 

sensed two chord lengths above the downstream model. Keeping the same configuration but 
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increasing the stagger to Δy = 2c  caused the downstream band to become stronger and 

symmetric; also, the upstream wake was no longer sensed. Keeping the stagger at Δy =1c  and 

changing the upstream angle of attack to αu = 20°  caused the power bands of both models to 

spread over a larger spatial and frequency range. Dependence of the downstream wake structure 

on the tandem configuration was also observed in the cases with Δx = 4c . An interesting point 

about the tandem wake was that it had a larger spatial distribution than a single model. For 

instance, the spatial distribution of the wake of model at 0° angle of attack in tandem 

configuration was comparable to that of a single model at 60° angle of attack (Holden et al., 

2014). 

 

3.3. Velocity field 

 

To visualize the flow topology and better understand the mechanisms through which the tandem 

configuration modifies the aerodynamic performance of the system, the mean velocity field is 

plotted in Figs. 12 and 13 for the cases tabulated in Table 2. The background color indicates the 

velocity magnitude normalized with respect to the freestream velocity and the gray shades are 

the regions where the flow field data could not be captured owing to shadows. The previous 

results indicating that with Δx = 6c , αu = 30° , αd = 0° , the upstream airfoil was mainly not 

affected by the hanging the stagger were confirmed by the mean velocity fields of Fig. 12, which 

clearly show that mean velocities around the upstream airfoils were almost identical. However, 

the mean flow speeds close to the downstream airfoil as well as the mean downstream wake were 

significantly influenced by the tandem arrangement. In particular, the downstream wake grew 

considerably longer as the stagger increased. Fig. 13A shows that with Δx = 2c , αu = 0° , 

αd = 30°  and zero stagger, the downstream airfoil interfered with formation of the upstream 

wake and caused it to become excessively elongate. It is further observed that the mean flow 

speeds in the vicinity of both airfoils were significantly altered by the change in the stagger. For 

instance, the flow speed close to the dorsal surface of the downstream model at Δy = 0c  was 

notably smaller than that at Δy =1c  and Δy = 2c , whereas the flow speed close to the ventral 

surface of the upstream body substantially decreased when the stagger was increased from 

Δy = 0c  to Δy =1c .  
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  For a single snake-like airfoil, flow separation from the lower surface of the models with 

0° angle of attack has been argued to play an important role in producing negative lift by creating 

a low pressure region (Holden et al., 2014). Figs. 14 and 15 depict the mean streamlines in the 

vicinity of the 0° angle-of-attack airfoils of the tandem configurations in Table 2 and provide 

details of the flow structure around them. It is clear that flow generally separated from the 

concave ventral surface creating a ‘trapped’ vortex in the cavity. However, the size of the ventral 

wake and the strength of the trapped vortex were depending on the configuration. Even in one 

case, where Δx = 2c , Δy =1c , αu = 0° , αd = 30° , the gap flow did not allow the flow to separate 

from the lower surface and no ventral vortex could be formed (Fig. 15B). Finer details about the 

size and structure of the dorsal wakes can also be observed from Figs. 14 and 15.  

 The mean recirculation region (also referred to as the mean wake bubble) is defined as 

the region in the flow where the streamwise component of the velocity and the freestream 

velocity are in opposite directions. In the absence of vortex shedding, the length of the mean 

recirculation region has been related to the base pressure of certain bluff bodies (Balachandar et 

al., 1997), stating that a shorter recirculation region would produce a larger base suction, and 

therefore a larger drag coefficient. The small upstream drag coefficient for the case Δx = 2c , 

Δy = 0c , αu = 0° , αd = 30°  could be explained by its excessively long recirculation region (Fig. 

16B). Moreover, in Fig. 16A, Δy =1c  resulted in the smallest recirculation region, suggesting 

that – as mentioned earlier – the wake vortices were formed closer to the dorsal surface and the 

suction from vortices increased lift and decreased drag. A similar mechanism is suggested for the 

high lift and small drag of the case Δx = 2c , Δy =1c , αu = 0° , αd = 30°  according to Fig. 16B. 

 

3.4. Pressure field 

 

According to Eq. 3 and ignoring the unsteady effects for a statistically steady flow, three factors 

contribute to the net force acting on the airfoils: (i) pressure, (ii) the momentum flux, and (iii) the 

viscous stresses. PIV data were used to estimate each of these terms as well the total lift and drag 

coefficients, and the results for the tandem configurations of Table 2 are shown in Fig. 17. The 

load cell data are also included for comparison. As previously indicated by Fig. 7, the PIV-based 

estimations of the lift and drag coefficients were in agreement with the load cell measurements 

and confirmed them. Moreover, it was revealed that the contribution from the viscous stresses 
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was mostly negligible, whereas the momentum flux could make a large contribution or a small 

one (e.g. ~48% to the upstream lift, and ~0% to the downstream lift with Δx = 2c , Δy = 0c , 

αu = 0° , αd = 30° ). However, it was pressure that made for the largest part of each of the force 

coefficients. Therefore, the effects of the tandem arrangement on the aerodynamic behavior of 

the airfoils could be broadly examined by considering the changes in the mean pressure field 

shown in Figs. 18 and 19.  

In Fig. 18, the upstream pressure in all cases experienced a large high-pressure zone at 

the ventral surface and a large low-pressure zone at the dorsal surface near the apex. The 

characteristics of this pressure field were slightly influenced by the varying stagger. However, 

significant changes in the downstream pressure field were observed. The high-pressure zone at 

the stagnation point on the dorsal surface of the models increased both in size and magnitude as 

the stagger increased from Δy =1c  to Δy = 3c . More importantly, the low-pressure zone at the 

ventral surface became significantly stronger creating an increasing downforce. The aft of the 

model was also surrounded by a low-pressure region.  

Fig. 19 shows that at Δy = 0c , the upstream pressure field consisted of a high-pressure 

region at the stagnation point on the dorsal surface and a low-pressure zone at the concave 

ventral zone. At Δy =1c , the high-pressure zone increased in size and enveloped even parts of 

the ventral surface. The whole aft body and the dorsal surface past the apex were surrounded by 

a low-pressure region caused by wake vortices. By increasing the stagger to Δy = 3c , the low-

pressure zone considerably expanded and enveloped some parts of the dorsal surface before the 

apex as well as the whole ventral surface. Fig. 19 shows that the downstream pressure field was 

also a function of stagger. At Δy = 0c , rambling high-pressure regions existed at the leading 

edge and the ventral surface, whereas a strong low-pressure zone surrounded most of the dorsal 

surface and the whole aft of the model. However, at Δy =1c  and Δy = 2c , the pressure field 

became generally similar to the 30° angle-of-attack airfoils of Fig. 18, with high-pressure and 

low-pressure zones at the ventral and dorsal surfaces, respectively. 

 

3.5. POD modes 
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The entropies calculated in connection with proper orthogonal decomposition of the cases in 

Table 2 are plotted in Fig. 20. The majority of the tandem model entropies were significantly 

larger than the maximum entropy of H = 0.425  for a single model (Holden et al., 2014). Clearly, 

the tandem model flow was less ordered and entailed greater turbulence. It is also observed that 

the largest entropies belonged to the cases with the largest interaction between the two airfoils. In 

particular, a very large entropy for the case Δx = 2c , Δy = 0c , αu = 0° , αd = 30°  was obtained 

(Fig. 20B) because the downstream airfoil interfered with the formation of upstream wake, 

which in return, altered the flow around the downstream model. This scenario is evident from 

Fig. 21A which depicts the associated first two POD eigenmodes. Santa Cruz et al. (2005) and 

Epps and Techet (2010) showed that the first two eigenmodes can be used to accurately 

reconstruct the dynamics of Kármán vortex streets. Therefore, Fig. 21A indicates that a strong 

and organized Kármán vortex street could not be produced. With Δy =1c , the entropy decreased 

but the interaction between the models still existed as the vortices shed from the two models 

were coupled (Fig. 21B). With Δy = 2c , the entropy decreased even more as the interaction 

between the two models considerably diminished. Fig. 21C shows that the more energetic vortex 

shedding modes, which were produced by the downstream model, were only slightly influenced 

by the presence of the upstream model. 

 

4. Discussion 

 

4.1. Tandem aerodynamic performance 

 

Our results verified the strong dependence of the aerodynamic performance of the tandem 

system on the configuration. However, that dependence was not uniform throughout the 

configuration space. For example, the lift and drag coefficients were very sensitive to the relative 

position of the airfoils at some combinations of the angles of attack, whereas the sensitivity of 

the aerodynamics performance on the gap and stagger were minimal for other angles of attack. 

Nonetheless, the results showed greater sensitivity to stagger, and the tandem effects almost 

universally diminished when the stagger was larger than three cord lengths. This can be 

explained by the vortex-blade interaction mechanism responsible for the aerodynamic force 

production. For smaller stagger, the vortices shed from the upstream airfoil passed closer to the 
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downstream airfoil, and therefore could produce a larger influence on it. By contrast, when the 

vertical distance between the airfoils increased, less interaction could happen.  

To account for the details of how the lift and drag coefficients varied with the tandem 

configuration, we need to consider the flow topology. The velocity fields depicted in Fig. 12 

show that the mean velocities around the upstream airfoils remained almost unchanged by the 

varying stagger when Δx = 6c , αu = 30° , αd = 0° . This confirms the corresponding data in Table 

2 indicating that the aerodynamic performance of the upstream model was almost the same at 

these configurations. Fig. 12 also shows the effects of the tandem arrangement on the 

downstream airfoil. The mean velocities close to the dorsal and ventral surfaces of this airfoil at 

Δy =1c  were respectively larger and smaller compared to those at Δy = 3c . Therefore, the 

downstream airfoil at Δy =1c  enjoyed a larger circulation and produced a larger lift according to 

the Kutta-Joukowski theorem. Moreover, it is observed that the mean wake was shorter at 

Δy =1c , meaning that wake vortices were formed closer to the dorsal surface of the model and 

vortex-induced suction could augment lift. In a similar manner, the mean velocity fields depicted 

in Fig. 13 can explain the aerodynamic performances of the airfoils with Δx = 2c , αu = 0° , 

αd = 30°  summarized in Table 2. First, the interference of the downstream model with the 

upstream wake resulted in a distorted wake and therefore no vortex-induced lift enhancement 

could be achieved. In addition, the upstream wake did not allow the mean velocities close to the 

dorsal surface of the downstream model to reach the large magnitudes observed in Figs. 13B and 

13C. Therefore, the circulation-based downstream lift was considerably smaller. Fig. 13B shows 

that one chord of stagger modified the gap flow such that (i) the upstream wake could form but 

was pushed by the gap flow closer to the model, (ii) the mean velocity close to the ventral 

surface of the upstream airfoil decreased, and (iii) the mean velocity close to the dorsal surface 

of the downstream airfoil increased. These mechanisms augmented both the upstream and 

downstream lift through vortex-blade interaction and circulation modification. Fig. 13C shows 

that increasing the stagger to Δy = 2c  diminished the effect of the mentioned mechanisms, and 

therefore, the combined lift and lift-to-drag ratio decreased. Nonetheless, the downstream lift 

was a maximum at Δy = 2c , which was the result of the mean wake vortices formed closest to 

the dorsal surface of the airfoil. 
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 In addition to the circulation around the airfoils and the wake, separation of flow from the 

model’s lower surface originating at the leading edge altered the lift production of the airfoils 

with 0° angle of attack. Holden et al. (2014) observed negative lift for a single airfoil at 0° angle 

of attack and argued that it was the result of a low-pressure zone at the concave ventral surface 

created by a vortex trapped in the cavity. The negative lift was also observed for almost all of the 

0° angle-of-attack airfoils in the present study, but the magnitudes of the negative lift were 

dependent on the tandem configuration. As clearly observed from Fig. 14A, for Δx = 6c , 

Δy =1c , αu = 30° , αd = 0° , separation occurred at the leading edge and the resulting vortex 

created a strong down-force that resulted in negative lift. By increasing the stagger to Δy = 2c  

and Δy = 3c , the trapped vortex gained more strength (Figs. 14B and 14C) and created larger 

down-forces, which explain why the magnitude of the downstream negative lift increases with 

stagger for these cases. Fig. 15A evidences the same mechanism for the upstream negative lift 

with Δx = 2c , Δy = 0c , αu = 0° , αd = 30° . However, when the stagger was increased to Δy =1c , 

the gap flow changed in a way that did not allow the trapped vortex to form below the model. As 

a result, no down-force was created and the upstream lift became positive. Further increasing the 

stagger to Δy = 2c  allowed a weak vortex to reappear and the upstream lift became negative 

again, although with a smaller magnitude than the case with Δy =1c . 

Overall, drag was much less influenced by the tandem configuration than lift because, 

unlike lift, drag was created mostly by pressure difference. Fig. 4 shows that zero stagger 

generally had negative effect on both lift and drag. The negative impact on the combined lift 

likely originates from the downstream lift being degraded by the upstream wake. Also, drag was 

reduced by the low-pressure zone created in front of the downstream airfoil. Figs. 13A and 19A 

exemplify the mentioned interactions between the upstream wake and the downstream airfoil and 

their effects on the pressure distribution around the downstream airfoil. The situation was 

different with the downstream airfoil at 0° angle of attack, where the combined lift was enhanced 

at Δy = 0c . Inspection shows that decrease in the magnitude of the negative lift of the 

downstream airfoil made for the biggest contribution to the overall lift enhancement. It might be 

possible that the upstream wake modified the flow around the 0° angle-of-attack downstream 

airfoil such that the trapped vortex at the concave ventral surface diminished, and as a result the 

downforce decreased. 
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The mean pressure fields of Figs. 18 and 19 provide a more direct explanation of the 

changes in the lift and drag coefficients of the tandem configurations in Table 2. The pressure 

field is correlated with the velocity field, confirming the argument that suction created by wake 

vortices was the predominant mechanism for producing lift. In particular, the low-pressure zone 

at the ventral surface, which was the key factor related to the magnitude of the negative lift 

coefficient, changed in accordance with the strength of the ventral vortex. The pressure 

distribution also accounted for producing drag and its variation with the tandem configuration. 

For instance, the upstream airfoil with Δx = 2c , Δy = 0c , αu = 0° , αd = 30°  experienced an 

exceptionally small drag coefficient (Table 2) as a result of the diminished base suction in 

comparison to the cases with Δy =1c  and Δy = 2c , which had increased base suctions and 

experienced drag coefficients larger than that of a single model (See Figs. 7 and 19). Moreover, 

Figs. 19B and 19C show that the dorsal low-pressure zone moved slightly beyond the apex as the 

stagger was changed from Δy =1c  to Δy = 2c . Therefore, in the latter case, the horizontal 

component of the suction significantly increased resulting in a larger drag coefficient. 

The vortex-blade interaction that we used to explain the aerodynamic performance of the 

tandem system was further confirmed by the spectral analysis revealing that the dominant 

frequency of the downstream force was locked at that of the upstream force when there was 

significant modifications in the lift and drag coefficients (Fig. 8). For instance, the dominant 

frequency of the upstream airfoils (30° angle of attack) in Fig. 8A matched that of a single model 

with the same angle of attack, likely because the upstream flow was not influenced by the 

downstream model. The dominant frequency of the downstream airfoil (0° angle of attack) with 

Δy =1c  and Δy = 2c  matched that of the upstream airfoil ( f * ≈ 0.23 ) and a substantial lift-to-

drag enhancement was observed for these cases. However, at Δy = 3c , the downstream dominant 

frequency became ‘unlocked’ from the upstream wake and its value suddenly changed to the 

single model value ( f * ≈ 0.34 ). Thereupon, the lift enhancement was entirely lost (See Figs. 4 

and 8). Another interesting point about the tandem wake was that it had a larger spatial 

distribution than a single model. For instance, the spatial distribution of the wake of model at 0° 

angle of attack in tandem configuration could be comparable to that of a single model at 60° 

angle of attack (Compare Figs. 10 and 11 to the results of (Holden et al., 2014)). 
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4.2. Implications about gliding snakes 

 

Despite the large lift enhancement obtained with some configurations close to the kinematics of 

flying snakes, it is not possible to conclude that the snakes take the staggered posture in order to 

exploit such aerodynamic enhancements. In fact, the snakes use many other configurations with 

Δx > 6c  and Δy > 3c  (Socha et al., 2010), for which little or no aerodynamic effects exist. 

Moreover, the snakes rarely use small gaps that would result in the largest tandem effects we 

observed. Nonetheless, with the angles of attack being 30° and 20° in no particular order, almost 

any combination of gap and stagger would produce a near-maximum lift-to-drag ratio. Therefore, 

the snakes might be able to modulate their body posture to exploit such optimal angles of attack. 

It is interesting to note that in the shallowing part of the glide, the snakes maintain a body angle 

of 25° from the glide path (Socha et al., 2010), but no further inferences could be made owing to 

the lack of data for the variation of the airfoil angle along the body. 

The results also did not support the hypothesis that lift-to-drag enhancement provided by 

tandem interactions are sufficient to explain the smallest glide angles observed in snakes. None 

of the configurations, even those with the largest aerodynamic enhancements, could increase the 

overall lift-to-drag ratio to the required value of 3.08-4.33 (Socha et al., 2005, Socha et al., 

2010). In fact, as demonstrated by Table 2, most of the aerodynamic enhancements happened 

with one of the airfoils having a 0° angle of attack. Because of the poor performance of the 

single model with this angle of attack, even its relatively enhanced performance cannot be 

sufficient. However, the results of this study are not sufficient to dispute the hypothesis either, as 

a large portion of the parameter space remains unexplored. For example, we did not consider the 

tandem configurations with both angles of attack at 30°. Moreover, we did not examine the 

special angle of attack of 35°, for which a single airfoil produced narrow dominant peaks in the 

lift coefficient (CL =1.9 ) and the lift-to-drag ratio ( L D = 2.7 ) with more than 30% increase 

with respect to the neighboring values at 30° angle of attack. It might be possible that the tandem 

interactions augment the peak even more and produce sufficiently large lift-to-drag ratios 

required for the minimum glide angles observed in snakes. Other simplification in the present 

study was that the effects of the sweep angle, 3D shape of the snake body and spanwise camber 

were ignored. In particular, it has been shown that spanwise camber is somewhat related to 

controlling profile drag in a bird (KleinHeerenbrink et al., 2016). 
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Another hypothesis about why the snakes use the staggered configuration is that they can 

exploit the resulting changes in the lift and drag to control their gliding trajectory. The relatively 

large changes in the overall lift-to-drag ratio that accompany slight adjustments in the posture 

make this hypothesis reasonable. Also, the control hypothesis implies that the snakes would have 

to actively keep their body in a favorable posture where the sensitivity of the aerodynamic forces 

to tandem configuration is a maximum. The agreement between this implication and the most 

probable relative position of body segments in the flying snakes (Socha et al., 2010) along with 

the results of the present study (see Figs. 4 and 5 with αu = 30° , αd = 0° ) further supports the 

control hypothesis. A possible scenario through which the snakes can actually use tandem 

aerodynamics to control their glide trajectory is outlined below. In a simple planar motion, if the 

tandem system is simply assumed to represent the mass distribution of the snake body as well as 

the aerodynamic forces, it follows that the pitching moments produced by upstream-downstream 

asymmetry can be used to control the pitch angle (also see (Jafari et al., 2014)).  In a three-

dimensional motion, with the complex shape of the snake body, external moments can be 

produced about any arbitrary axis, and therefore full orientation control is achieved. For the 

control hypothesis to gain weight, it should also be examined whether the snakes are capable of 

body movements fast enough for controlling their glide. In the developed stage of glide, where 

the airspeed is close to its equilibrium value, the weight of each part of the body is almost 

supported by the aerodynamic forces. As a result, any muscular forces and moments will produce 

an acceleration, which quickly reconfigures the body. It is therefore reasonable to hypothesize 

that the snakes use postural reconfigurations to modify the aerodynamic forces and use them to 

control their motion. It is further suggested that the snakes try to keep their posture close to 

‘sensitive’ configurations, which allow them to correct their trajectory with small motions.  

 

4.3. Conclusion 

 

This study determined the aerodynamic performance of a tandem system with airfoils having the 

cross-sectional shape of C. paradisi. As previously observed in single model experiments, vortex 

shedding and separation dominated the aerodynamics of the tandem system. The vortex-blade 

interactions were shown to be the main mechanism through which the tandem configuration 

modifies the overall aerodynamic performance. In addition to understanding the aerodynamics of 
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flying snakes, the results of this work provide valuable insight about the underlying physics that 

the control system of the snake uses to maintain the stability or maneuver in midair. Finally, 

these results can be incorporated in theoretical studies of the dynamics of flying snakes. For 

instance, (Jafari et al., in prep, Jafari et al., 2014) developed theoretical models of flying snakes , 

but they used the results of (Holden et al., 2014) to model the aerodynamic forces. Such models 

can be refined using the tandem aerodynamic data to better approximate the real snakes. 

 The following limitations existed in our approach: (i) Although the exact variation of 

cross-sectional shape along the snake body is not known, at least the lateral lips on the ventral 

side have been reported to become smaller posteriorly toward the vent (Socha, 2011). We 

ignored the variation of body shape and used uniform models. (ii) The snakes have a complex 

3D posture, which can result in complex flow structures and produce significant aerodynamic 

effects. However, as a first step approximation, the snake posture was modeled just by two 

straight airfoils. (iii) Based on the results of (Holden et al., 2014) stating that the single model 

aerodynamics were generally mildly dependent on the Reynolds number, the effects of the 

Reynolds number were not considered. However, that study also reported significant effects of 

the Reynolds number at the angle of attack of 35°. (iv) Other effects such as sweep angle and 

relative motion of the airfoils were also ignored. More realistic experiments in the future are 

required to assess the degree of importance of the above simplifications.  
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Table 1: The test matrix for the load cell measurements. Pairs of the angles of attack are 
separated based on which model has 30° angle of attack. Table entries, one from each column, 
were combined to determine the test points in the parameter space. 
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Table 2. The individual lift and drag coefficients for the most interesting cases of tandem effects. 
The first three cases were relevant to the actual kinematics of flying snakes, and the next three 
cases received the largest changes in the aerodynamic performance. Within each group, the cases 
differ only by the stagger. 

 
Δx −Δy−αu −αd  CL

upstream  CD
upstream  CL

downstream  CD
downstream  

6c-1c - 30°-0° 1.3393 0.6799 -0.1116 0.3444 
6c-2c - 30°-0° 1.3965 0.7041 -0.1480 0.3568 
6c-3c - 30°-0° 1.3588 0.7046 -0.8277 0.4096 
2c-0c - 0°-30° -0.5046 0.3207 0.5358 0.3277 
2c-1c - 0°-30° 0.1919 0.4877 1.6255 0.5508 
2c-2c - 0°-30° -0.3455 0.4674 1.6985 0.6725 

 

  

Δx  (c) Δy (c) αu,αd( )
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Fig. 1: The flying snake body shape and posture while airborne. (A) The snakes flatten their 
body when airborne, creating an unconventional airfoil to produce lift (adapted from (Socha, 
2011)). (B) The snake assumes an S-like posture, in which the body parts that are roughly 
perpendicular to the airflow can be considered as a pair of airfoils in tandem. (C) During the 
developed stage of glide, the snake maintains a staggered posture, as evidenced by the 
experimental kinematic data from C. paradisi. The shown data summarize the displacements of 
five landmarks on the snake body relative to its mass center and normalized with respect to the 
snout-vent length (adapted from (Socha et al., 2010)). 
  

ΔX (%SVL)

Head

Vent

Glide path

0-10-20 10 20c

(C)(B)(A)



	 110	

 
Fig. 2: The sidewalls of the setup used by (Holden et al., 2014) to measure forces on a single 
airfoil were modified with two grids of holes to accommodate a second model. With the new 
setup, measurements could be done on one of the airfoils, while the other one was fixed to the 
walls. 
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Fig. 3: The PIV measurement setup. (A) The sidewalls of the force measurement setup were 
modified to accommodate acrylic plates designed for each combination of gap and stagger. The 
airfoils were fixed to the plates upside down to minimize the shadows. (B) Two cameras were 
used to capture the required field of view. For two or three chords of stagger, the cameras were 
placed with one inch vertical offset, whereas they were placed level for smaller staggers. The 
blue dashed lines indicate the position where power spectral analysis was performed on the 
velocity data. 
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Fig. 4: The combined lift and drag produced by the tandem system. The curves show the percent 
change in the data compared to the results for single airfoils having the same angles of attack. 
The cases grouped in each panel have the same combination of angles of attack, and the curves 
depict the effects of gap and stagger within each group, revealing that stagger generally has a 
much stronger effect on the combined aerodynamic performance, and that lift is influenced by 
the tandem arrangement more noticeably than drag. 
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Fig. 5: The combined lift-to-drag ratio for the tandem system. The curves show the percent 
change in the data compared to the results for single airfoils having the same angles of attack. 
The cases grouped in each panel have the same combination of angles of attack. The cases with 
striking lift-to-drag augmentation along with their ‘neighbors’ that lack such effects were 
selected for the PIV experiments. The circled data specify the PIV cases. To minimize 
redundancy, the results were explored in greater detail only for the cases circled in red. 
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Fig. 6: Contour plots of the overall lift-to-drag ratio of the tandem airfoils in the Δx -Δy  plane. 
Each panel shows the data for a combination of the angles of attack.  
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Fig. 7: Comparison between the load cell measurements and the PIV-based estimation of the lift 
and drag coefficients. The error bars indicate the uncertainty of the measured data. The data are 
categorized in three groups. The flow fields for the two groups specified by the red shade were 
explored in greater detail. The first red group includes the tandem configurations relevant to the 
kinematics of real snakes, and the second red group includes the cases with the most extreme 
tandem effects. The rest of the PIV cases are shaded blue. 
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Fig. 8: Power spectral densities of the force measurements helps to understand the vortex 
shedding behavior of the two configuration groups of interest. (A) The upstream PSD of the 
group related to the snake kinematics is independent of the configuration. (B) The downstream 
peak frequency is locked at the upstream peak for some cases, but it is different for others. (C) 
The upstream PSD of the group experiencing the largest tandem effects is a function of tandem 
arrangement. (D) Both of the two peak frequencies of the case with the largest lift-to-drag 
enhancement (Δx = 2c ,Δy =1c ,αu = 0° ,αd = 30° ) coincide, whereas other cases exhibit less 
coherence between the upstream and downstream PSDs. 
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Fig. 9: Dependence of the PSD peaks on the tandem configuration. For each set of angles of 
attack, the probability density of the compilation of all peak frequencies of all combinations of 
gap and stagger was calculated and plotted separately for the upstream and downstream models. 
The results show that the tandem configuration could influence the spectra of the models by 
changing the dominant frequency, which is usually shared by both models, and by creating 
additional peaks for the downstream model. 
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Fig. 10: Spatially resolved PSD of the vertical velocity component one chord downstream of 
each airfoil from the tandem configurations relevant to the flying snake kinematics. The 
upstream results with a single dominant frequency suggest a conventional bluff body wake. The 
downstream wakes are generally more turbulent and contain a broader spectrum of flow 
structures; however, the cases with the largest stagger (Δy = 3c ) have structured wakes. 
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Fig. 11: Spatially resolved PSD of the vertical velocity component one chord downstream of 
each airfoil from the configurations experiencing the largest tandem effects. Except for Δy = 0c , 
the upstream wakes have a single dominant frequency, which varies with gap and stagger. The 
downstream wakes are generally more turbulent and power is spread through a large range of 
space and frequency domain. 
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Fig. 12: The mean velocity field for three of the cases relevant to the kinematics of flying 
snakes. The background color indicates the normalized velocity magnitude, and the gray shades 
are the regions where the flow could not be resolved owing to shadows. The configurations are 
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the same except for the stagger. Unlike the upstream models, the flows around the downstream 
models are influence by the configuration.  
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Fig. 13: The mean velocity field for three of the cases experiencing the largest tandem effects. 
The background color indicates the normalized velocity magnitude, and the gray shades are the 
regions where the flow could not be resolved owing to shadows. The configurations are the same 
except for the stagger. The flows around the upstream and downstream models are both 
influence by the configuration. 
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Fig. 14: The mean streamlines in the vicinity of the downstream models for three the cases 
relevant to the kinematics of flying snakes shown in Fig. 12. The configurations are the same (
Δx = 6c , αu = 30° , αd = 0° ) except for the stagger. The vortex trapped under the models is 
created when the flow on the ventral surface separates at the leading edge. The trapped vortex 
creates a downforce that results in negative lift. For the cases shown here, the strength of the 
vortex, and therefore the magnitude of the negative lift, varies with the stagger (See Table 2). 
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Fig. 15: The mean streamlines in the vicinity of the upstream models for the cases experiencing 
the largest tandem effects shown in Fig. 13. The configurations are the same (Δx = 2c , αu = 0° , 
αd = 30° ) except for the stagger, which results in different flow structures. In particular, with 
one chord of stagger, the vortex that is normally trapped under the model vanishes and a positive 
lift is achieved (See Table 2).  
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Fig. 16: The mean recirculation regions in the wake of (A) the downstream models of Fig. 14, 
and (B) the upstream models of Fig. 15. The recirculation region is where the streamwise 
velocity component and the freestream are in opposite directions. 
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Fig. 17: The individual contributions of pressure, momentum flux, and viscous stresses to 
producing the lift and drag of the upstream and downstream airfoils for the cases summarized in 
Table 2. For these cases, viscous stresses made negligible contribution, whereas pressure 
accounted for the biggest contribution. 
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Fig. 18: The mean pressure fields in the vicinity of the models for the three cases relevant to the 
kinematics of flying snakes shown in Fig. 12. The configurations are the same (Δx = 6c , 
αu = 30° , αd = 0° ) except for the stagger. Unlike the upstream pressure field, the downstream 
pressure field was influenced by the tandem arrangement. In particular, the size and strength of 
the low-pressure region at the ventral surface of the model significantly changed with the 
stagger. 
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Fig. 19: The mean pressure fields in the vicinity of the models for the three cases experiencing 
the largest tandem effects shown in Fig. 13. The configurations are the same (Δx = 2c , αu = 0° , 
αd = 30° ) except for the stagger. Both the upstream and downstream models were influenced by 
the tandem arrangement. In particular, at Δy =1c , the typically low-pressure region at the ventral 
surface of the upstream model is partly replaced by a high-pressure zone, which results in a 
positive lift, unusual for a snake-like airfoil at 0° angle of attack. 
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Fig. 20: The entropy associated with the POD, which indicates the level of flow organization, for 
(A) the cases relevant to the kinematics of flying snakes, and (B) the cases experiencing the 
largest tandem effects.  
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Fig. 21: The first two POD eigenmodes for three of the cases experiencing the largest tandem 
effects, illustrated by the velocity vectors and the nondimensional vorticity. These eigenmodes 
are representative of the dynamics of Kármán vortex streets. 
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Chapter 5. Conclusions 
 

This work took the first steps toward a better understanding of how the snakes control their glide 

and maintain stability. In particular, the role of undulation and the S-shaped staggered posture 

were considered. Theoretical models were used to analyze the dynamics of flying snakes first in 

the longitudinal plane, and then in the three dimensions. The snake was modeled as a mechanical 

system with a number of airfoils. In the 2D approach, the airfoils were parallel to each other, and 

undulation was modeled by varying the length and mass of the airfoils. In the 3D analysis, the 

airfoils formed a chain, with undulation prescribed as a periodic input either for the joint torques 

or the joint angles. Despite their largely different structures, the two models led to similar 

deductions about the dynamics of snake flight, suggesting that (i) snake glide trajectories are 

passively unstable, and the snakes likely need a closed-loop control system to actively stabilize 

their trajectories, and (ii) in ideal conditions, passively stable trajectories relevant to the actual 

kinematics of snakes exist, and they provide an underlying stable framework around which a less 

demanding control system could be formed. The 3D model also verified the important role of 

undulation in expanding the basin of stability for the equilibrium gliding. Overall, the theoretical 

models of this study demonstrate the possibility of maintaining stability during gliding using a 

morphing body instead of symmetrically paired wings. 

Physical models having the snake body’s cross-sectional shape were tested in a water 

tunnel to study the aerodynamic interactions in a tandem arrangement. Such interactions are 

likely to be created by the staggered posture of snakes between the fore and the aft body. The 

results indicated that the tandem arrangement has significant effects on the aerodynamic forces 

on the upstream and downstream airfoils. Also, it was found that with specific arrangements, 

large changes in the aerodynamic performance could be produced with slight changes in the 

configuration. The aerodynamic performance is particularly sensitive to the stagger. It was 

therefore suggested that the snakes use the tandem effects, not necessarily as a means to produce 

more lift, but to control their glide trajectory by modifying the aerodynamics. 

The above results contribute to many related fields. For instance, the chain model 

predicted a passively stable trajectory with undulation. This mode of locomotion, which was 

found here for the first time, can be used in many aerial and underwater bioinspired vehicles. 

Moreover, by determining the minimum set of requirements for a stable glide, an important 
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contribution was made to understanding the evolutionary path toward the gliding ability in 

snakes. This work has broader significance than merely its results. For the first time, purely 

theoretical approaches were used in this work to study the problem of stability analysis of gliding 

animals. The challenges and shortcomings of this approach had to be identified and overcome. 

This technique was proved to be effective, and it can likewise be employed in similar problems. 

The approaches used in this study were subject to a number of limitations. Apart from the 

idealistic modeling of the snakes in 2D, the aerodynamic interactions among the airfoils and the 

3D and unsteady effects were neglected in the theoretical works. In addition, the variation of 

mass, shape and size along the snake body was ignored, and no out-of-plane motion was 

allowed. The same idealizations existed in the experimental modeling approach too. Although 

each of these simplifications was argued to result in a relatively small error, the results of this 

work have to be validated with other theoretical or experimental work. An obvious next step 

would be using the tandem force coefficients in the theoretical models and study if that 

significantly changes the behavior of the model. If so, the results of the present work have to be 

considered with extra caution. 

The outcome of this work was summarized in a number of hypotheses regarding the 

gliding behavior of flying snakes, which proposed that (i) the snakes required active control to 

remain stable, (ii) undulation contributes to stability, and (iii) staggered posture helps the snakes 

lower the control effort by increasing the sensitivity of aerodynamic forces to certain motions. 

Carefully designed experiments with real snakes to test these hypotheses seem extremely 

challenging, and robotic models seem to be a solution to conduct such experiments. Of course 

the range of applications of robotic models will go much further beyond testing the above 

hypotheses, and it seems that a deeper understanding of the physics of snake flight will need 

robotic replicas of the snakes in near future. 
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Appendices 
 

A1. Derivation of the equations of motion for the two-dimensional model 

 

A1.1. Equations of motion for Model 1 

 

We recall that the momentum equation for a system with mass m , which changes with rate !m , 

is written as: 

d
dt

mv( ) = F+ !mu  (A1) 

where F  is the net external force, v  is the velocity of the system and u  is the velocity of the 

mass flow entering it. In other words, the mass flow moving through the boundaries of the 

system acts like an external force on it and, therefore, we can derive the equations of motion for 

a variable mass system by substituting the modified force: 

F* = F+ !mu  (A2) 

in the equations that we normally use for a system with constant mass.  

If we define the linear momentum and the angular momentums about CoM as: 

G =
d
dt

mjv j∑  (A3) 

H = rj − rc( )∑ ×mjv j  (A4) 

where rj  is the position of mass mj , and rc  is the position of CoM, we have: 

!G = Fj
*∑  (A5) 

!H = rj − rc( )∑ ×Fj
* − !rc ×G  (A6) 

It is helpful to mention that the underlined term in Eq. (A6) vanishes for a constant mass system, 

but we have to consider it here because of the variable mass. 

The position of airfoils in Model 1 are readily given by: 

r1 = x + d cosθ( ) i+ z+ d sinθ( ) j
r2 = xi+ zj
r3 = x − d cosθ( ) i+ z− d sinθ( ) j

⎧

⎨
⎪

⎩
⎪

 (A7) 
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The airfoil velocities could be found by differentiating Eq. (A7) with respect to time. 

For the undulating mass (i.e., the mass moving among the airfoils), we assume that it passes the 

boundaries of each airfoil with zero velocity relative to that airfoil; hence, we let u j = v j . 

Also, the position of CoM is calculated as: 

rc =
1
mtot

mjrj∑ = x + 2d Δm
mtot

cosθ cosωt
⎛

⎝
⎜

⎞

⎠
⎟i+ z+ 2d Δm

mtot

sinθ cosωt
⎛

⎝
⎜

⎞

⎠
⎟ j  (A8) 

with airfoil masses defined in Eq. (1) of Chapter 2. 

The equations of motion for Model 1 (Eqs. (2) and (3) of Chapter 2) can now be derived by 

substituting the above expressions in Eqs. (A5) and (A6). 

 

A1.2. Equations of motion for Model 2 

 

Here we relax the assumption of zero velocity of the undulating mass with respect to the airfoils; 

instead, we consider a uniform flow of mass along the middle link that transports mass between 

the airfoils (Fig. A1). This mass flow represents the undulation waves that pass along the flying 

snake’s body. Clearly, the flow velocity should be proportional to the rate at which airfoils 

masses vary. Therefore, the flow velocity is given by: 

u = uw sin ωt +σ( )  (A9) 

where u  is the flow velocity, and uw  is the undulation wave speed. Using the data given in 

(Socha et al., 2005) we set uw = 0.28  m/s. 

We use Lagrange’s equations to derive the equations of motion for Model 2. The set of 

generalized coordinates for this system was introduced in section 2.4 of Chapter 2, in terms of 

which the kinetic and potential energies are written as: 

T = 1
2
Ii !θ

2 +
1
2
mi !x −ucosθ( )2 + !z−usinθ( )2⎡
⎣

⎤
⎦

+
1
2
m1 !r1 + !xcosθ + !zsinθ( )2 + r1 !θ − !xsinθ + !zcosθ( )

2⎡
⎣⎢

⎤
⎦⎥

+
1
2
m2 !r2 − !xcosθ − !zsinθ( )2 + r2 !θ + !xsinθ − !zcosθ( )

2⎡
⎣⎢

⎤
⎦⎥  

(A10) 

V =migz+m1g z+ r1 sinθ( )+m2g z− r2 sinθ( )+ 1
2
k r1 − l( )2 + 1

2
k r2 − l( )2 + 1

2
Kuθ

2

 
(A11) 
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Also, the dissipative energy function is: 

R = 1
2
b!r1

2 +
1
2
b!r2

2 +
1
2
Bu !θ

2  (A12) 

Finally, the virtual work of the aerodynamic forces plus the effect of variable mass of the airfoils 

(Pesce, 2003) through any virtual displacement is written as: 

δW = Fl1 sinγ1 −Fd1 cosγ1 +Fl2 sinγ2 −Fd2 cosγ2[ ]δx
+ Fl1 cosγ1 +Fd1 sinγ1 +Fl2 cosγ2 +Fd2 sinγ2[ ]δz
+ r1 Fl1 cosβ1 +Fd1 sinβ1( )− r2 Fl2 cosβ2 +Fd2 sinβ2( )⎡⎣ ⎤⎦δθ

+ Fl1 sinβ1 −Fd1 cosβ1 + !m !xcosθ + !zsinθ −u( )⎡⎣ ⎤⎦δr1
+ −Fl2 sinβ2 +Fd2 cosβ2 + !m !xcosθ + !zsinθ −u( )⎡⎣ ⎤⎦δr2  

(A13) 

where !m = −Δmω sinωt  is the time rate of change of airfoil masses, and u  is calculated from Eq. 

(A9). The lift and drag forces are calculated based on the instantaneous velocities of the 

upstream and downstream airfoils and the corresponding lift and drag coefficients. Glide angle is 

obtained in terms of the generalized coordinates as: 

γ1 = − tan
−1 !z+ !r1 sinθ + r1 !θ cosθ
!x + !r1 cosθ − r1 !θ sinθ

⎛

⎝
⎜

⎞

⎠
⎟

 
(A14a) 

γ2 = − tan
−1 !z− !r2 sinθ − r2 !θ cosθ
!x − !r2 cosθ + r2 !θ sinθ

⎛

⎝
⎜

⎞

⎠
⎟

 
(A14b) 

Having found γ j , the angle β j  is calculated as: 

β j =θ +γ j  , j =1, 2  (A15) 

The equations of motion are derived upon inserting Eqs. (A10) through (A13) into the 

Lagrange’s equations: 

d
dt
∂T
∂ !x j

−
∂T
∂x j

+
∂V
∂x j

+
∂R
∂ !x j

= qj
 

(A16) 

with x j  and qj  being the generalized coordinates and forces, respectively. The consequent 

equations may be written in the matrix form of Eq. (10) of Chapter 2, where 
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M =

mtot 0 − m1r1 −m2r2( )sinθ m1 cosθ −m2 cosθ

0 mtot m1r1 −m2r2( )cosθ m1 sinθ −m2 sinθ

− m1r1 −m2r2( )sinθ m1r1 −m2r2( )cosθ Ji +m1r1
2 +m2r2

2 0 0

m1 cosθ m1 sinθ 0 m1 0
−m2 cosθ −m2 sinθ 0 0 m2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥  

(A17) 

c =

−2 m1!r1 −m2 !r2( ) !θ sinθ − m1r1 −m2r2( ) !θ 2 cosθ +miu !θ sinθ

2 m1!r1 −m2 !r2( ) !θ cosθ − m1r1 −m2r2( ) !θ 2 sinθ −miu !θ cosθ

2 m1r1!r1 +m2r2 !r2( ) !θ −miu !xsinθ − !zcosθ( )+Bu !θ
−m1r1 !θ

2 + b!r1
−m2r2 !θ

2 + b!r2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥  

(A18) 

g =

0
mtotg

m1r1 −m2r2( )gcosθ +Kuθ

m1gsinθ + k r1 − l( )
−m2gsinθ + k r2 − l( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥  

(A19) 

q =

L1 sinγ1 −D1 cosγ1 + L2 sinγ2 −D2 cosγ2
L1 cosγ1 +D1 sinγ1 + L2 cosγ2 +D2 sinγ2

r1 L1 cosβ1 +D1 sinβ1( )− r2 L2 cosβ2 +D2 sinβ2( )
L1 sinβ1 −D1 cosβ1

− L2 sinβ2 −D2 cosβ2( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥  

(A20) 

f = Δmω

!r1 + !r2( )cosθ − r1 + r2( ) !θ sinθ
!r1 + !r2( )sinθ + r1 + r2( ) !θ cosθ

r1 + r2( ) − !xsinθ + !zcosθ + r1 − r2( ) !θ⎡⎣ ⎤⎦

!r1 +u
− !r2 +u

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥  

(A21) 
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Fig. A1: The kinematics of Model 2 of Chapter 2 showing velocity components of the airfoils. 
The undulation of the body is considered as a smooth flow of mass along the middle link that 
transports mass between the airfoils. The velocity of the mass flow, which represents the 
undulating waves along the body, is proportional to the rate at which airfoils masses vary.  
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A2. Normalizing the periodic input amplitude based on the control effort 

 

The head and tail points of the n-chain model of Chapter 3 are free, so the boundary conditions 

indicate that torque is always zero at those points. Because the n-chain model is an attempt to 

approximate the waveform of the real snake, it would be reasonable to assume a sinusoidal 

variation of torque along the body, which satisfies the mentioned boundary conditions (also see 

(Hirose and Yamada, 2009)). The appropriate form of torque is written as 

τ j = τ 0 sin 2π
j
n( )  (A22) 

where τ i  is the j th joint torque, and τ 0  is some reference torque. 

If we define the control effort as the RMS value of the joint torques, using Eq. (A22), it 

can be easily shown that  

τ rms =
1
n

τ j
2

j
∑ =

2
2
τ 0  (A23) 

which is independent of the number of links. 

Therefore, to be able to compare the simulation results properly, we normalized the 

amplitude of the periodic inputs for the models with different numbers of links, with respect to 

reference amplitude for each n  that resulted in the same control effort. 
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