
A Localization Solution for an Autonomous
Vehicle in an Urban Environment

Jonathan Michael Webster

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State
University in partial fulfillment of the requirements for the degree of

Master of Science
in

Mechanical Engineering

Dr. Charles F. Reinholtz, Chairman
Alumni Distinguished Professor of Mechanical

Engineering and Engineering Education

Dr. Alfred L. Wicks, Co-Chairman
Associate Professor of Mechanical Engineering

Dr. Dennis W. Hong
Assistant Professor of Mechanical Engineering

December 3, 2007
Blacksburg, Virginia

A Localization Solution for an Autonomous Ground Vehicle

in an Urban Environment

Jonathan Michael Webster

ABSTRACT

Localization is an essential part of any autonomous vehicle. In a simple setting, the
localization problem is almost trivial, and can be solved sufficiently using simple dead
reckoning or an off-the-shelf GPS with differential corrections. However, as the surround-
ings become more complex, so does the localization problem. The urban environment is
a prime example of a situation in which a vehicle’s surroundings complicate the problem
of position estimation. The urban setting is marked by tall structures, overpasses, and
tunnels. Each of these can corrupt GPS satellite signals, or completely obscure them,
making it impossible to rely on GPS alone. Dead reckoning is still a useful tool in this
environment, but as is always the case, measurement and modeling errors inherent in dead
reckoning systems will cause the position solution to drift as the vehicle travels eventually
leading to a solution that is completely diverged from the true position of the vehicle.

The most widely implemented method of combining the absolute and relative position
measurements provided by GPS and dead reckoning sensors is the Extended Kalman
Filter (EKF). The implementation discussed in this paper uses two Kalman Filters to track
two completely separate position solutions. It uses GPS/INS and odometry to track the
Absolute Position of the vehicle in the Global frame, and simultaneously uses odometry
alone to compute the vehicle’s position in an arbitrary Local frame. The vehicle is then
able to use the Absolute position estimate to navigate on the global scale, i.e. navigate
toward globally referenced checkpoints, and use the Relative position estimate to make
local navigation decisions, i.e. navigating around obstacles and following lanes.

This localization solution was used on team VictorTango’s 2007 DARPA Urban Chal-
lenge entry, Odin. Odin successfully completed the Urban Challenge and placed third
overall.

Acknowledgments
This thesis, as well as my entire college career, would not have been possible without

the help of several people. First, I would like to thank my family for their love and prayers
throughout the years. Thank you for always expecting the best of me and never letting me
settle for less. I would also like to thank Danielle Boltersdorf for her love and support as
I worked on this project, and for spending late nights in the lab with me to help me keep
my sanity.

I would like to especially thank Joseph Putney and Eric Bonnini for inviting me into
their highly exclusive study group. This was a turning point for me in my undergraduate
career and without them I may not have made it through the undergraduate ME curricu-
lum, much less the graduate one. Thank you to Brett Leedy for his leadership on the Grand
Challenge project and for making me the new team “expert” on everything I asked him
about. Thank you to Andrew Bacha and Ruel Faruque for all of their LabVIEW advise
over the years. Thank you to the rest of the members of the 2005 Grand Challenge team
and team Victor Tango for making the smartest, cleanest, most well designed vehicles I
could ever hope to work on and for making the experience as a whole so rewarding.

Finally I would like to thank my committee members. Thank you to Dr. Reinholtz
for giving me the chance to get involved in such an exciting field of research. Thank you
to Dr. Wicks for continuing to challenge me day to day throughout my graduate career.
Thank you to Dr. Hong for his advise on this thesis and for having such confidence in me
and in our Urban Challenge team in general. Working with all of these people has made
me a better engineer, and knowing them has made me a better

iii

Contents

Chapter 1: Introduction 1
1.1 Thesis Overview . 1
1.2 The DARPA Urban Challenge . 3

Chapter 2: The Vehicle 5
2.1 The Base Platform . 5
2.2 Drive-By-Wire Conversion . 6
2.3 Vehicle Power System . 7
2.4 Computing Systems . 8
2.5 Sensors . 9
2.6 Software Architecture . 11

2.6.1 Perception . 12
2.6.2 Planning . 14

Chapter 3: Methods Of Localization 17
3.1 Defining Localization . 18
3.2 Absolute Localization . 20

3.2.1 Absolute Landmark Detection 20
3.2.2 Global Positioning Systems . 22

3.3 Relative Localization . 23
3.3.1 Odometry . 23
3.3.2 Inertial Navigation . 24

Chapter 4: Kalman Filtering 26
4.1 The Linear Kalman Filter . 27
4.2 The Extended Kalman Filter . 30

Chapter 5: Filter Design 32

iv

5.1 Absolute Position Filter . 33
5.1.1 System Model . 33
5.1.2 Measurement Model . 35
5.1.3 Noise Model . 38

5.2 Relative Position Filter . 42
5.2.1 System Model . 42
5.2.2 Measurement Model . 42
5.2.3 Noise Model . 45

Chapter 6: Filter Implementation and Testing 47
6.1 Software Overview . 47
6.2 Absolute Position Filter Tuning . 48
6.3 Relative Position Filter Tuning . 52

Chapter 7: Conclusion 54
7.1 The Urban Challenge . 54

7.1.1 NQE . 55
7.1.2 UFE . 57

7.2 Future Work . 58

References 60

Appendix A: Kalman Filter Example 61
A.1 System Model . 61
A.2 Measurement Model . 63
A.3 Noise Models . 64
A.4 The Kalman Filter . 67
A.5 Kalman Filter Tuning . 70
A.6 Conclusion . 76

v

Acronyms
AGV Autonomous Ground Vehicle

APF Absolute Position Filter

CCD Charge Coupled Device

CEP Circular Error Probable

DARPA Defense Advanced Research Projects Agency

DBW Drive-by-Wire

DRAC Drivable Area Coverage

DOP Dynamic Obstacle Predictor

DUC DARPA Urban Challenge

ECU Electronic Control Unit

EKF Extended Kalman Filter

GDOP Geometric Dilution of Precision

GPS Global Positioning System

GUI Graphical User Interface

IMU Inertial Measurement Unit

INS Inertial Navigation System

JAUS Joint Architecture for Unmanned Systems

LAN Local Area Network

LIDAR Light Detecting and Ranging

MDF Mission Definition File

MOUT Military Operations on Urban Terrain

NQE National Qualifying Event

vi

OC Object Classification

RLP Report Lane Position

RNDF Route Network Definition File

RPF Relative Position Filter

SBAS Satellite-Based Augmentation System

SFM Structure From Motion

SPAN Sychronized Position Attitude & Navigation

UAV Unmanned Aerial Vehicle

UFE Urban Challenge Final Event

UGV Unmanned Ground Vehicle

UTM Universal Transverse Mercador

VI Virtual Instrument

VM Virtual Machine

vii

List of Figures

1.1 The Urban Challenge Winners . 4

2.1 NI cRIO Real Time Controller . 8
2.2 Ibeo XT Fusion System . 10
2.3 Rooftop Sensor Array . 10
2.4 Sensor Layout . 11
2.5 Perception Module Flowchart . 12
2.6 Planning Module Flowchart . 15

3.1 Metric Mapping . 19

4.1 Linear Kalman Filter Flowchart . 29

6.1 Filter Performance with High GPS Weight 50
6.2 Filter Performance with Low GPS Weight 51
6.3 Error Accumulation in Relative Position 53

7.1 Ground Level View of Traffic Circle . 56

A.1 Planar Vehicle Model . 62
A.2 Position Estimate with High Measurement Confidence 72
A.3 Position Estimate with Low Measurement Confidence 74
A.4 Tuned Filter Position Estimate . 75
A.5 Tuned Filter Estimate w/ Q and R Scaled Up One Order of Magnitude . . 75

viii

Chapter 1

Introduction

This thesis presents the localization solution developed for team Victor Tango’s 2007

DARPA Urban Challenge entry, Odin. This work was funded by the Defense Advanced

Research Projects Agency (DARPA), and although it was designed specifically for Odin

and for the Urban Challenge, the algorithm can be applied to any autonomous platform.

1.1 Thesis Overview

Localization is a fundamental element of any autonomous vehicle. There are many tech-

niques for localizing a vehicle, and each technique has unique advantages and disadvan-

tages. A logical solution when attempting to develop a robust localization algorithm is to

blend different techniques in a way that takes advantage of the strengths of the individual

methods, and mitigates their weaknesses. Since the early 1960’s, the tool that engineers

have chosen to accomplish this has been the Kalman filter. The Kalman filter provides

1

a means of optimizing measurements to achieve the best position estimate. This thesis

will describe how the Kalman filter can be used to take advantage of different localization

techniques to provide a robust localization solution and overcome challenges presented

by even the most difficult environments.

Chapter One describes the motivation for the development of this localization soft-

ware. This chapter discusses the DARPA Urban Challenge, and explains why it is neces-

sary to have more sophisticated localization to be successful in this competition. Chapter

Two will then describe the platform on which this localization solution has been imple-

mented. Chapter Two will also present the vehicle’s software architecture to explain how

the localization software will interact with other software modules.

Chapter Three will begin by clearly defining the localization problem, and will then

describe various methods available for autonomous vehicle applications. For each method,

this chapter will discuss strengths and weaknesses, as well as sources of error. Chapter

Four will present the linear Kalman filter and the Extended Kalman filter. These two

chapters give the background necessary for the discussion of the localization solution

presented in this thesis.

Chapters Five and Six will describe the measurements used in this localization solu-

tion and the position filters developed to blend the measurements. These chapters will

follow the development of the software from modeling to implementation and testing.

Finally, Chapter Seven will discuss the conclusions reached after observing the per-

formance of the localization software during the Urban Challenge, and give suggestions

for future work.

2

1.2 The DARPA Urban Challenge

The DARPA Urban Challenge (DUC) is the third in a series of autonomous vehicle races

sponsored by DARPA, the first being the 2004 DARPA Grand Challenge. The previous

two challenges have both been set in a rugged desert environment. The challenge was

to design an Autonomous Ground Vehicle (AGV) that could navigate itself through more

than 130 miles of rough desert terrain. The inspiration for this competition was a 2001

congressional mandate that set the goal of having one third of the operational ground

combat vehicles in the Armed Forces to be unmanned by 2015 [5]. The competitions

were therefore a means of stimulating industry and academia to further the state of the art

of AGV.

The DUC is the next phase in the advancement of AGV’s. In the 2005 DARPA Grand

Challenge, five teams proved that the problem of long distance autonomous navigation

through rough terrain was well within the capabilities of the unmanned systems commu-

nity. The DUC now addresses the problem of navigating through crowded city streets,

interacting with moving traffic, avoiding dynamic obstacles and obeying the rules of the

road. This problem requires far more intelligence from an AGV since it must not only

perceive the world around it, but correctly interpreting what it perceives to make the ap-

propriate decision for it’s current situation. This situational awareness is what sets the

DUC apart from the previous challenges.

Entry into the DUC was achieved by following one of two competition tracks, Track

A or Track B. To participate in Track A, teams were required to submit a proposal to

DARPA to be eligible for up to $1,000,000 in technology development funding awards.

The teams selected for Track A were then required to meet a series of milestone events that

evaluated the progress of the team and guaranteed adequate progress toward the goal of

completing the DUC. Teams not selected for Track A were still permitted to participate in

the challenge through Track B. The primary distinction between Track A teams and Track

3

B teams is funding. Track B teams were still required to meet a series of milestone events,

including a site visit and the National Qualifying Event (NQE). Track B teams however

did not receive any funding from DARPA to aid them in completing the challenge.

At the Urban Challenge Final Event (UFE), teams were given a Route Network Defi-

nition File (RNDF). The RNDF describes the entire network of roads and zones through

which the vehicles must navigate during the UFE. Individual Mission Definition File

(MDF)s were used to define which areas within the RNDF the vehicle was required to

travel to for a particular mission. In the end each vehicle had approximately 60 miles to

travel and 6 hours to complete all of the missions. Six teams completed all three missions

in under six hours, with Tartan racing, Stanford, and team Victor Tango comprising the

top three.

Figure 1.1: Boss, Junior, and Odin placed first, second, and third in the 2007 DARPA
Urban Challenge.

4

Chapter 2

The Vehicle

The research for this thesis was done using Team VictorTango’s entry for the DUC, Odin.

The software discussed in this thesis is the localization software used by Odin in the com-

petition. This chapter will discuss the following aspects of Odin’s design: base vehicle,

drive-by-wire, power systems, computing, sensors and software architecture.

2.1 The Base Platform

If anything was learned from the 2005 Grand Challenge about base vehicle design, it

was that it is in a team’s best interest to keep the design simple, and add as few compo-

nents to the platform as possible. This means selecting a platform that has stock features

that can be used in the conversion to autonomous operation. For example, the winning

vehicle in the 2005 Grand Challenge, Stanley, which is based on a 2004 Volkswagen

Touareg R5 TDI, used the vehicle’s stock alternator to supply power to its computers and

5

instrumentation. In addition, the team took advantage of the Touareg’s native brake and

throttle-by-wire systems which greatly simplified the drive-by-wire conversion [12]. Us-

ing stock vehicle subsystems increases the reliability of the vehicle system as a whole

because these subsystems have been rigorously tested to automotive industry standards.

With this in mind, team VictorTango chose the 2005 Ford Escape Hybrid as the base

platform for Odin. The Escape is a compact SUV first introduced by Ford in 2001. The

Escape provides enough rear storage (0.75m3) to allow all of the vehicle’s computers and

electronics to be stored within the climate controlled interior of the vehicle. In addition,

the Escape has an 11.5 meter turning radius making it more maneuverable than larger

SUVs. The team chose the hybrid model because of its high voltage power system, and

its natively Drive-by-Wire (DBW) throttle and shift control systems. Ford generously do-

nated two of the 2005 Escapes to team VictorTango for use in the DUC. The purpose of

the dual platforms was to allow the team to make progress in vehicle and software devel-

opment simultaneously. Both vehicles were fully converted to autonomous operation, and

have identical components and software. For the DUC competition, the second vehicle

will served as a back-up vehicle for the entry vehicle.

2.2 Drive-By-Wire Conversion

To operate the vehicle via computer control, the throttle, braking, steering and shifting

control systems had to be converted to DBW. As previously stated, the throttle and shift-

ing controls are natively DBW; therefore no additional actuators were needed. Instead,

automatic relays were added to the throttle and shifting controllers that replace the con-

trol signals sent by the accelerator pedal and shifter with simulated control signals. The

system was designed so that the relays automatically return control of the vehicle to the

human driver in case of an emergency.

6

The Escape’s steering controls are not fully DBW, but they are electronically assisted

rather than hydraulically. The steering assist motor provides enough torque to steer the

vehicle without a human driver. The control signals sent from the steering wheel to the

steering assist motor were replaced with simulated control signals, and automatic relays

were installed to return control to a human driver in emergency situations.

The Escape’s brake actuator is the only vehicle control system that is fully mechanical.

As a result, a pedal-mounted linear actuator had to be added to the vehicle to electronically

control the brakes. A brake controller was designed to control the linear actuator and

switch between autonomous control and human control. The system was also designed

such that additional brake effort can be added at any time by a human driver. A separate

spring-actuated emergency brake was also added to fully stop the vehicle in emergency

situations.

2.3 Vehicle Power System

All of Odin’s electronics are powered by the Escape’s stock power systems. The Escape’s

high-voltage power is supplied by a 300V sealed NiMH battery. A 2kW 300V to 52V

DC-DC converter from V-Infinity was connected to the high-voltage system to convert

the high-voltage to 48V. The DC-DC had to be slightly modified to output a nominal 48V

instead of the nominal 52V it was originally designed to produce. This modification was

done at V-Infinity before the team received the unit. The output of this DC-DC converter

is then divided such that 80% of the power is sent to a Triplite UPS to provide redundant

power to Odin’s computers, and the remaining 20% of the power is sent to a 24V DC-DC

converter that supplies a clean 24V to the vehicle’s sensors. Any 12V systems onboard

the vehicle are powered by the Escape’s 12V battery located in the engine compartment.

7

2.4 Computing Systems

The computing systems on board Odin are one of the more uniquely designed systems

on the vehicle. Odin is equipped with two HP Proliant DL140 rack mounted servers and

a National Instruments cRIO-9012 real time controller. The RIO controls all low level

vehicle functions such as actuating the brake, throttle and shifter as well as monitoring

vehicle systems through the vehicle’s CAN bus. The RIO is also cleverly mounted un-

derneath the dashboard in the space where the glove box used to be as shown in Figure

2.1.

Figure 2.1: The RIO has been installed in the glove compartment space to preserve the
aesthetics of the vehicle interior.

The HP servers are referred to by their nicknames Linus and Bill which respectively

run Linux and Windows operating systems. Each server has dual processor sockets with at

least one quad-core processor. Bill has an additional quad-core processor because Bill has

the expensive processing task of reading in raw camera data. In addition, Bill is running

a less efficient OS than Linus, so it was decided that Bill would get the extra chip. The

servers each have 4 GB of RAM and RAID1 250 GB hard drives.

Linus is divided into four Virtual Machine (VM). The VM’s, named Alpha, Bravo,

Charlie, and Delta, act as independent machines running Linux OS, when in fact they are

simply multiple instances of Linux running on a single platform. This architecture was

chosen to give more control over resources and delegate them more efficiently. Each VM

8

has access to all of Linus’s communications ports and other hardware. In addition, if one

of the VM’s needs to be shut down because of a crash or other error, this can be done

without affecting the other machines.

Odin’s computers are connected to a Local Area Network (LAN) via an HP Procurve

24 port switch. Linus handles all of the network management including assigning IP

addresses to all of the other machines and devices.

2.5 Sensors

Odin is equipped with an array of sensors that allow it to perceive its surroundings as it

moves through the DUC course. The sensor array was designed such that Odin will be

able to detect obstacles on all sides, and be able to detect road coverage and lane markings

in front. Sensors associated with the vehicle’s position and other internal vehicle states

will not be discussed in this section, and will instead be discussed in greater detail in

Chapter 3.

The primary object detection sensor is the Ibeo XT Fusion system. The Fusion system

consists of two Ibeo XT Light Detecting and Ranging (LIDAR) units and an Electronic

Control Unit (ECU). The system has an advertised range of 200 meters and a horizontal

field of view of 220 degrees. The Ibeo XT’s are mounted to the front corners of the Escape

as shown in Figure 2.2. The units themselves are protected by 1/4” wall 1.5” diameter

steel tubing. In addition, the mounts have been designed to break away from the vehicle

in the event of a head on collision to prevent the Ibeo units from being crushed.

On the roof of the vehicle, there is an array of four Sick LIDAR and two Imaging

Source 1024 x 768 color Charge Coupled Device (CCD) cameras. This sensor array is

shown in Figure 2.3. Two of the Sick LIDAR are angled such that their scan planes

intersect the ground 15 and 18 meters in front of the vehicle. The purpose of the forward

9

Figure 2.2: The protection for the Ibeo XT’s is designed to break away from the vehicle
in the event of a collision.

looking Sicks is to scan the road in front of the vehicle to detect small objects and negative

obstacles, and scan the sides of the road to find curbs and other road defining boundaries.

The two remaining Sicks are pointed down and to the sides of the vehicle, intersecting the

ground 5 meters from either side of the vehicle. These sensors monitor the blind spots on

the sides of Odin.

Figure 2.3: The sensor mounts on the roof rack are designed such that the orientation of
any one sensor can be easily adjusted.

The cameras have a combined 90 degree field of view in front of the vehicle. The pri-

mary function of the cameras is to detect road markings such as lane lines and stop lines.

10

The cameras are also used to find the edges of the road, as well as provide redundancy

in classifying objects seen by the Ibeo sensor such as cars. The cameras are also used to

visually recognize stop lines when approaching intersections.

When all of Odin’s sensors are working together, they provide the field of view illus-

trated in Figure 2.4. This sensor coverage allows Odin to detect obstacles far enough

in advance to be able to appropriately react to them. The range of coverage to the front

of the vehicle is larger than the range of coverage to the sides or rear because objects

approaching the vehicle from the front can be approaching up to twice as fast as objects

approaching from any other direction.

Figure 2.4: Odin’s sensor layout provides 360 degrees of sensor coverage.

2.6 Software Architecture

To better distribute the burden of software development, team VictorTango divided Odin’s

software into discrete modules. These software modules fall into two categories: percep-

11

tion and planning.

2.6.1 Perception

The perception category encompasses all vehicle software involved in sensing the vehi-

cle’s environment as well as the vehicle’s state within the environment. The individual

software modules in the perception category are: Object Classification (OC), Road Detec-

tion, and Localization. Each software module is responsible for processing sensor inputs,

packaging the data into Joint Architecture for Unmanned Systems (JAUS) messages, and

reporting the messages to the planning modules. Figure 2.5 illustrates the flow of infor-

mation from raw sensor data to JAUS messages.

Figure 2.5: Raw sensor data is packaged into JAUS messages and reported to the planning
modules.

The OC module is responsible for detecting and reporting any obstacles within Odin’s

field of view. These obstacles are classified as either static or dynamic obstacles. The

DUC rules do not mention or imply the possibility of moving obstacles such as pedestri-

ans or bicycles being present during the competition, therefore the OC module assumes

that all objects having an appreciable absolute velocity (i.e. absolute velocity > 3 m/sec)

12

are vehicles. Additional processing must be done to distinguish between large static ob-

stacles and dynamic obstacles that are momentarily stopped, such as vehicles queued at

an intersection.

OC relies primarily on the Ibeo XT scanners to detect and classify obstacles. OC

receives both object data, and raw scan data from the Ibeos. The Ibeo object data provides

OC with a preliminary classification, the range to the object, and the absolute velocity of

the object. The Ibeo’s classification of obstacles is based mostly on the size of the object,

therefore OC must perform its own sanity checks to ensure that data given by the Ibeo is

correct. These sanity checks are done by integrating camera data into the classification

algorithm. OC uses the vision data to detect the presence of features unique to cars, such

as tail lights and license plates.

Once an object has been determined to be either static or dynamic, the object data

is packaged into the appropriate message and sent to the planning modules. For static

obstacles, OC sends the approximate size and centroid of the obstacle. If an obstacle is

classified as dynamic, the data is then sent to the Dynamic Obstacle Predictor (DOP).

DOP is a sub-module of OC and is responsible for projecting the path of dynamic ob-

stacles into the future. The DOP module allows the planning modules to make decisions

based on where dynamic obstacles will be rather than where they are currently. This is

something that human drivers do almost subconsciously and is completely necessary for

making correct decisions when interacting with other moving vehicles.

The next module in the perception category is the Localization module. Localization

is perhaps the most important of the perception modules because it is responsible for

estimating and reporting the vehicle’s position, velocity, and attitude to all other modules

in the system including the other two perception modules. This module will not however

be discussed further in this section due to the fact that it is the subject of this thesis, and

will be discussed in great detail in the remaining chapters.

13

The final module in the perception category is the Road Detection module. The Road

Detection module can be broken down further into two sub-modules: Drivable Area

Coverage (DRAC) and Report Lane Position (RLP). DRAC is responsible for using cam-

era data to find flat, uniform surfaces that are considered to be drivable. RLP is responsi-

ble for fusing lane data from line detection algorithms with the lane data provided by the

RNDF to produce a message that lets other modules know which lane Odin is currently

occupying.

2.6.2 Planning

The planning category contains all of the higher level intelligence that controls how Odin

behaves in a given situation, and how the vehicle will maneuver through the course. The

individual planning components are: Route Planner, Driving Behaviors, Motion Planning,

and Vehicle Interface. The responsibilities of these modules are organized in a hierarchi-

cal manner with Driving Behaviors being at the top of the hierarchy and Vehicle interface

being at the bottom. The flow of data is illustrated in Figure 2.6.

The first module in the planning category is the Route Planner. Although the Route

Planner can be considered to be at the top of the planning hierarchy, it is actually the

simplest of the planning modules. The Route Planner uses an A* graph search algorithm

to determine the shortest route that will achieve all checkpoints specified by the MDF

while traveling the shortest possible route through the RNDF. The Route planner sends a

JAUS message to the other planning modules giving them a list of waypoints to follow.

The next module in the planning software hierarchy is Driving Behaviors. Driving

Behaviors is responsible for the highest levels of intelligence as well as short term nav-

igation. Driving behaviors receives perception data and the planned route provided by

the Route Planner, and determines how the vehicle should behave to handle the perceived

situation. Driving Behaviors outputs a list of target points and sends this list to the Motion

14

Figure 2.6: The planning modules work together to correctly interpret perception data and
execute the correct vehicle behavior and motion for any given situation.

Planning module via JAUS message. These target points are essentially smaller pieces of

the route provided by the Route Planner.

The next module in the planning category is the Motion Planning module. Motion

Planning is responsible for generating the exact path that the vehicle will follow to achieve

the target points it receives from Driving Behaviors. Motion Planning does this by de-

termining a mathematical curve that connects all of the target points while considering

the constraints of the vehicles motion. Motion Planning is also responsible for obstacle

avoidance and zone navigation. Motion planning outputs motion profiles which consist

of a series of steering rates and accelerations. These commands are sent to the Vehicle

Interface via JAUS message.

The final module in the planning category, and the lowest level of vehicle control,

is the Vehicle Interface. The Vehicle Interface is responsible for converting commanded

vehicle movements into actuator signals. The Vehicle Interface controls all vehicle level

tasks such as speed control, steering, braking, and shifting. The Vehicle Interface also

15

controls vehicle functions such as turning on turn signals and beeping the horn.

16

Chapter 3

Methods Of Localization

Effective autonomous vehicle navigation requires the vehicle’s ability to answer three

questions: “where am I?”, “where am I going”, and “how do I get there?” The answer

to the first question is the subject of vast amounts of research in the unmanned systems

world and is known as the localization problem. The preceding elements of autonomous

navigation are in fact completely dependent on solving the localization problem. A map is

useless if one cannot determine one’s current position within the map, and solving a path

to a goal is impossible if one does not know one’s initial position relative to the goal. An

autonomous vehicle is therefore irretrievably lost if it does not have the ability to localize

itself.

The degree to which an autonomous vehicle can localize itself also affects the useful-

ness and flexibility of the autonomous platform. For example, a vehicle may be able to

determine its location based on visually recognizing features within an environment, but

if the vehicle is placed in a different environment, with different features, or if its vision

17

sensors fail, its localization capabilities fail, and the vehicle is lost. Robust localization

is a key element in increasing the independence and usefulness of robotic vehicles in

varying environments. A flexible autonomous vehicle should be able to combine diverse

localization techniques so that it will be able maintain its navigational capabilities when

one of its localization methods fail.

This chapter will present a brief background on the general problem of localization.

First this chapter will define the localization problem for different types of maps. This

chapter will then describe techniques for relative and absolute localization. Finally this

chapter will discuss popular methods of combining relative and absolute position solu-

tions.

3.1 Defining Localization

The term localization has been defined as determining one’s location within an environ-

ment. However, the realization of this can vary depending on what type of map is used to

represent the environment. There are two main categories of map representations: metric

and topological.

Metric maps are named so because they are based on quantitative measurements of the

environment they represent. These types of maps generally consist of occupancy grids or

2-D coordinate frames that are superimposed on the area of interest [2]. Localization

for this type of map is the task of determining the position of the vehicle with respect

to the coordinate system. Figure 3.1 shows a simplified example of an occupancy grid.

Figure 3.1 shows a vehicle with an initial position of (0,0). The vehicle is navigating to

a goal with coordinates (7,7). An important characteristic of this map representation is

that the position of the vehicle, as well as other objects in the environment, is depicted as

occupying an entire cell in the grid, even though the size of the object may not actually

18

fill the cell completely. In this way, the quality of the environmental representation is

limited by the resolution of the map. A more useful and globally referenced example

of a metric map representation is the Universal Transverse Mercador (UTM) coordinate

system. UTM coordinates provide much higher resolution, allowing users to position

objects with millimeter precision.

Figure 3.1: The position of objects within the map are the coordinates of the grid cell they
occupy.

Topological mapping techniques use landmarks to describe an environment. Local-

ization for a topological map requires landmark detection using vision, range finding,

or a combination of both. This type of localization is very effective in structured envi-

ronments, such as indoor environments. Indoor environments usually contain uniform

man made features that are ideal for topological mapping and localization. Topological

localization using natural landmarks in an outdoor environment is more difficult because

19

there is a great deal of variation between landmarks and desirable features such as straight

edges or flat surfaces are not common in nature. Positioning objects in a topological map

is done by determining the object’s relative distance to landmarks within the map.

3.2 Absolute Localization

Absolute localization refers to localization techniques that provide a direct measurement

of global position. Absolute localization is an essential part of any autonomous vehicle

application because, while it is still important for the vehicle to know its position rela-

tive to its immediate surrounding, its usefulness is greatly limited if it does not know its

position in the world.

The following section will discuss several methods for achieving absolute localization.

This section will also discuss the difficulties associated with these techniques, and the

fundamental strengths and weaknesses of absolute localization in general.

3.2.1 Absolute Landmark Detection

One of the oldest techniques for absolute localization, used by humans and robotic vehi-

cles alike, is visual landmark detection. Conceptually, this technique is extremely simple:

have a priori knowledge of the global position of a landmark, detect the landmark, and

then determine range to the landmark to calculate position. In practice, however, this

process is much more difficult.

The first challenge in localization through landmark detection is detecting the land-

mark. This is not a trivial process. Several methods may be used to perform landmark de-

tection. One common method is LIDAR. LIDAR provides accurate range measurements,

but it is difficult to use for landmark detection because it can only convey geometric fea-

tures of the landmark. This makes it difficult to determine with any certainty if the object

20

the vehicle is ranging off of is the landmark of interest, or just an object with a similar

size and shape.

Another means of detecting landmarks is computer vision. This can be broken down

further into monoscopic and stereoscopic vision. For both monoscopic and stereoscopic

sensing, the first task is to recognize the landmark through pattern matching or the use of

a visual template. These techniques can be rather processor intensive, but are generally

straight forward. The next task is to determine the range from the vehicle to the landmark.

For stereoscopic cameras this task is trivial assuming the processing required for stereo

vision is already in place. For monoscopic cameras, range information is much harder

to come by. For this case range can be determined using Structure From Motion (SFM)

techniques, however, it can be difficult to achieve range information that will be usably

accurate using this method. In addition, the vehicle must be moving for range to be

observable using SFM.

The next problem that needs to be solved when localizing via absolute landmarks is

dealing with multiple solution ambiguities [1]. Once a landmark is detected and range is

determined, the vehicle position can be any point along a circle with radius equal to the

range to the landmark. Different methods can be used to reduce the number of position

solutions to just two possible position, but a unique solution cannot be calculated without

having more information about the landmark. This information can include orientation of

the landmark or distinct features of the landmark that would indicate from which direction

the object is being viewed. Of course, if the absolute heading of the vehicle is already

known, a unique position solution can be calculated directly.

Absolute localization using landmark detection can be used as a primary means of

vehicle localization, but in most cases it cannot be used independently. The first disad-

vantage is that landmarks can be sparse, requiring a vehicle to navigate solely by the use

of relative localization techniques until a new landmark can be acquired. Perhaps the

21

greatest drawback of absolute landmark detection is that it can only be done when there is

a priori knowledge of landmarks in an area. This greatly limits the applicability of vehi-

cles dependent on landmark detection for localization, because they cannot be deployed

in an environment unless landmarks in that area have already been surveyed.

3.2.2 Global Positioning Systems

In recent years, Global Positioning System (GPS) has become the preferred solution for

absolute localization. GPS units such as the U-blox can be purchased for $200 and provide

position accuracy as low as 2 meters Circular Error Probable (CEP), or a more expensive

unit ($9,000) such as the Novatel Propak LBplus can be used to achieve position accuracy

as low as 10 cm CEP. GPS units are typically easy to interface and can provide reasonable

update rates, usually ranging from 1 to 50 Hz.

Like most absolute localization solutions, GPS has its faults. The first and most ob-

vious limitation of GPS technology is that it requires that the GPS antenna maintain a

clear view of the sky, and be able to observe at least four satellites at all times. Four

satellites are needed to carry out the 3D trilateration techniques used to calculate GPS

position [6]. GPS is therefore not an option for indoor robotics, and is of limited use to

vehicles traveling in environments with occlusions such as tree canopies or tall buildings.

For vehicles traveling between tall buildings there are also other problems. GPS sig-

nals can be deflected by solid objects causing the signal to have an increased time of flight.

Since GPS position calculations are based on the time of flight of the satellite signal, this

deflection corresponds directly to position errors. This phenomenon is known as mul-

tipath and is most often experienced on city streets lined with tall buildings commonly

referred to as urban canyons.

22

3.3 Relative Localization

Relative localization, also known as dead reckoning, is the process of determining position

relative to a starting point. This starting point may be a location with known global coor-

dinates, or it may be considered the origin of an arbitrary position frame. In either case,

relative localization is characterized by the exclusive knowledge of initial position, with

no means of directly measuring position afterward. Relative localization is accomplished

by integrating proprioceptive measurements over time to achieve a change in position.

The two most widely practiced methods for implementing this are odometry and inertial

navigation.

3.3.1 Odometry

Odometry is the most widely used method for relative localization in mobile robotics [3].

This is because it can be accomplished using inexpensive sensors and simple calculations

and can produce highly accurate position estimates at high update rates. Odometry works

by integrating wheel speeds over time to produce incremental vehicle motions. Sum-

ming the vehicle movements produces a position estimate. Of course, the direction of

the incremental vehicle motion must also be known. In simple differential drive AGVs,

a relative heading can be estimated with wheel speed measurements alone, but for larger

four-wheeled Ackerman steered vehicles, heading or yaw rate measurements are neces-

sary.

The drawback of this method is that each measurement of vehicle movement has er-

ror, and as these movements are added together the total error in the position estimate

will continue to grow without bound. There are two types of error associated with odo-

metric measurements: systematic errors, and non-systematic errors. Systematic errors

include errors associated with imperfections in the kinematic vehicle model, and errors in

23

the measurement of wheel base and wheel diameter. Systematic errors can typically be

compensated for through calibration.

Non-systematic errors are errors that arise due to interaction between the vehicle and

its environment. This includes errors such as lateral and longitudinal slip between the

wheels and the ground, and loss of contact between the wheel and the ground due to un-

even or rocky terrain. These errors are much more difficult to overcome. In general, the

only way to compensate for non-systematic errors is to update the relative position solu-

tion periodically with an absolute position measurement, essentially reseting the relative

position solution.

The magnitude of these types of errors depends on the type of surface the vehicle is

traveling on, and the speeds at which the vehicle is moving. For instance, if a vehicle

is traveling on a smooth surface at low speeds, the wheels will experience less lateral

slip, and are less likely to loose contact with the ground. For this case the magnitude of

non-systematic errors will be small and the vehicle will be able to maintain an accurate

position solution over longer distances. In general, the faster a vehicle travels, the more

lateral wheel slip it will induce. Similarly, the more uneven or loose the terrain is that the

vehicle is traveling over, the more longitudinal slip it will experience.

3.3.2 Inertial Navigation

Inertial navigation is a more sophisticated and more expensive solution for relative local-

ization. Inertial navigation is done by integrating accelerations twice and angular rates

once to determine incremental vehicle movements. The acceleration and angular rate

measurements are typically provided by an Inertial Measurement Unit (IMU), which con-

sists of three orthogonal accelerometers and three laser ring gyroscopes. This arrangement

provides 3D acceleration measurements and angular rate measurements about each axis.

The primary advantage inertial navigation when compared to odometry is that it is not

24

susceptible to outside error sources such as wheel slip. However, because the angular rate

measurements must be integrated to produce angular position, the angle measurements

will drift with time [3] and the position error will therefore increase without bound as the

vehicle moves. Inertial navigation is therefore only useful over relatively short distances.

25

Chapter 4

Kalman Filtering

A critical part of robust localization is the ability to simultaneously use diverse localiza-

tion methods in a manner that takes advantage of the strengths of each method. Since

1960, the tool of choice for accomplishing this task has been the Kalman Filter.

The Kalman filter is an optimal recursive data processing algorithm [10] that was

introduced by Rudolph E. Kalman in 1960 as a solution to some of the problems left

unsolved by his predecessor Norbert Wiener and his Wiener filter. The Wiener filter was

developed for the United States during World War II and was released to the public in

1949 [11]. The Wiener filter quickly earned the nickname, “The Yellow Peril”, due to the

paper’s yellow cover, and the mathematical complexity found within. In his 1960 paper,

R.E. Kalman addressed the limitations of the Wiener filter and presented a new method

that proved to be less abstruse mathematically and better suited to machine computation

[7]. This new method became known as the Kalman filter, and is still used 47 years later

to solve estimation problems in a wide array of applications.

26

The following chapter will present an overview of the Kalman filter. This overview

will assume that the reader has at least a familiar knowledge of linear systems theory and

state-space representations, as well as an understanding of probability theory. First, this

chapter will review the necessary linear systems and probability theory needed for the

Kalman filter formulation. Then, this chapter will discuss the state-space models used in

Kalman filters. Finally, this chapter will expound upon extensions of the Kalman filter

for nonlinear systems. The material discussed in this chapter is a compilation of material

gathered from [8], [4], and [11].

4.1 The Linear Kalman Filter

The linear Kalman filter formulation begins with a state space model of the system. Be-

cause the work presented in this thesis is done using the discrete form of the Kalman filter,

the continuous Kalman filter will not be discussed. Moreover, the continuous form of the

Kalman filter, though not to be discounted entirely, is of limited use in the digital world

in which we live.

The system we wish to apply the Kalman filter to consists of two parts: the states of

the system, and the measurements taken to monitor these states. The states are described

by a discrete first order linear system given by

x̄k+1 = Φkx̄k +Γkw̄k (4.1)

where x̄k is the state vector at time tk, Φk is the state transition matrix that relates x̄k to

x̄k+1, and Γk is the process noise distribution matrix which puts the process noise w̄k into

coordinates of x̄k. In the absence of a forcing function, the state transition matrix will

propagate the state estimate through time based on the dynamics of the system.

The measurements are also modeled as a discrete first order linear equation of the

27

form

z̄k = Hkx̄k + v̄k (4.2)

where z̄k is the measurement at time tk, and Hk is the observation matrix that relates x̄k

to z̄k. The measurements can directly or indirectly measure states of the system, and not

all measurements must be available for a given time although one must take precautions

to ensure that missing measurements will not cause the system to become unobservable.

At this point, some assumptions must be made about the noise terms in the each of

the preceding equations. In order for the Kalman filter formulation to be valid, the noise

terms w̄k and v̄k must be white noise sequences, and must have known covariance. The

covariance matrices for w̄k and v̄k are given by

E
[
w̄kw̄T

i

]
=

 Qk, i = k

0, i 6= k
(4.3)

E
[
v̄kv̄T

i

]
=

 Rk, i = k

0, i 6= k
(4.4)

E
[
w̄kv̄T

i

]
= 0, f or all k and i (4.5)

These equations also imply that the process noise and the measurement noise are uncor-

related.

Now that the system model is considered known, the linear Kalman filter equations

may be implemented. The linear Kalman filter equations are as follows:

Kk = P−k HT
k

[
HkP−k HT

k +Rk
]−1

(4.6)

x̂k = x̂−k +Kk
[
z̄k−Hkx̂−k

]
(4.7)

Pk =
[
I−KkHk

]
P−k (4.8)

28

x̂−k+1 = Φkx̂k (4.9)

P−k+1 = ΦkPkΦ
T
k +ΓkQkΓ

T
k (4.10)

The proof of these equations can be found in [7]. The hat symbol in x̂ denotes an esti-

mate of the state vector x̄. The super minus on x̂−k and P−k denote that these are estimates

of these terms prior to updating based on new measurements. These equations are not

run all at once, and for some cycles, some of these equations will not be run at all. The

flowchart in Figure 4.1 illustrates how these equations are used.

Figure 4.1: The system equations can continue to be projected forward in time without
measurement updates, but the accuracy of the estimates will depend only on the accuracy
of the state model.

As depicted in Figure 4.1, the state estimates are calculated by linearly projecting

the state model forward by the time step, ∆t. If the process model were perfect, these

equations could be run indefinitely without measurement updates. Because the process

model will never be perfect, measurements must be incorporated periodically to keep

the solution from diverging. When measurements are available, the filter equations will

update the prediction. The state estimate is never fully based on the prediction or the

measurements. Instead, the Kalman gain, K, is used to optimally blend the prediction and

the measurements based on the covariance of each.

29

4.2 The Extended Kalman Filter

The preceding section presented a linear formulation of the Kalman filter. However, for

many systems, the process model and/or the measurement model are nonlinear. To apply

a Kalman filter tow these system, linearization of the process and measurement models

must be performed. The following section presents an Extended Kalman Filter (EKF)

formulation for nonlinear systems.

One common method for applying the Kalman filter to nonlinear systems is to lin-

earize the process around a precomputed nominal trajectory. The problem with this

method is that over extended missions, the difference between the estimated trajectory

and the nominal trajectory can grow to the point that linearization about the nominal tra-

jectory is no longer a good estimate of the true trajectory of the vehicle. The EKF is

a linearization solution that is better suited for long missions. This is because the EKF

linearizes the state model around the estimated trajectory instead of a precomputed trajec-

tory. Intuitively, it would seem that using the updated estimated trajectory for linearization

would be better than using the nominal trajectory. This is true for most cases, but if the

updated estimate is actually poorer than the nominal trajectory, the next estimate will also

be poorer and the estimates will continue to deviate from the nominal trajectory until the

filter is completely diverged. In other words, while the EKF may produce better estimates

over extended missions, it is a riskier approach because bad measurements can quickly

lead to divergence of the filter.

To begin the EKF formulation, consider a system that may be written in the form

˙̄x = f (x̄, t)+ w̄(t) (4.11)

z̄ = h(x̄, t)+ v̄(t) (4.12)

where f and h are nonlinear functions. For a given trajectory estimate, these nonlinear

30

functions can be approximated by their Jacobian matrices evaluated at the current trajec-

tory estimate. This is written as

Fk =
∂h
∂ x̄

(
x̂−k

)
(4.13)

Hk =
∂ f
∂ x̄

(
x̂−k

)
(4.14)

The linear approximations of the nonlinear functions can now be used in the Kalman

equations as follows:

Kk = P−k HT
k

[
HkP−k HT

k +Rk
]−1

(4.15)

x̂k = x̂−k +Kk
[
z̄k−Hkx̂−k

]
(4.16)

Pk =
[
I−KkHk

]
P−k (4.17)

x̂−k+1 = Φkx̂k (4.18)

P−k+1 = FkPkFT
k +ΓkQkΓ

T
k (4.19)

where H and F are now the measurement Jacobian matrix and the system Jacobian matrix

respectively. These equations are run in the same manner as the linear Kalman filter equa-

tions with the only difference being that the measurement and system Jacobian matrices

must be calculated at the beginning of each cycle.

31

Chapter 5

Filter Design

When considering a localization solution for an AGV, it is important to think about how

the localization data will be used. For route planning and global navigation, it is important

to know as accurately as possible the location of the vehicle so that navigation decisions

can be made such as when to change lanes or when to exit a road segment. In contrast, it

is not important for the perception modules to know the true global position of the vehicle

as much as it is important for them to have a steady continuous position solution for

keeping track of obstacles within sensor range. In designing the localization software for

Odin, these needs were taken into account and the solution was to provide both types of

localization solutions simultaneously. The localization software will provide the planning

modules with an accurate absolute position while also providing the perception modules

with continuous relative position. This chapter discusses how this was accomplished and

presents the formulation of the Absolute Position Filter (APF) and the Relative Position

Filter (RPF).

32

5.1 Absolute Position Filter

The APF is designed to provide the planning modules on Odin with a reliable global po-

sition solution. Odin is equipped with a high precision INS, wheel encoders, and steering

sensors, as well as cameras that can be used to aid the APF by sensing absolute landmarks.

Odin’s INS provides the APF with a filtered GPS and inertial measurement solution.

This system could be used as a stand alone localization solution for the vehicle, however,

as with any inertial solution, the position estimate will drift when the vehicle is traveling

without at least four satellite observations. The APF will blend odometry measurements

into the inertial solution in order to decrease the rate at which this drift occurs. The

APF will also provide a means of incorporating other absolute position measurements

asynchronously such as absolute landmarks.

Finally, the APF will afford the user more control over the behavior of the global

position estimate. The user can tune the filter to adjust how the position estimate will

react to GPS pops and how quickly the position estimate will converge to the new position

solution solution after a GPS pop.

5.1.1 System Model

Development of the APF begins with modeling the vehicle dynamics. Some assumptions

have been made to simplify this model. First, the velocities and angular rates are as-

sumed to be constant from one time step to the next. This is known as the low dynamics

assumption and is a reasonable assumption for vehicles traveling at low speeds over rela-

tively even terrain. The greatest benefit of making this assumption is that it considerably

reduces the number of states necessary to model the system by eliminating acceleration

states from the process model.

The other necessary assumption made concerning the system model arises from limi-

33

tations imposed by the localization sensor suite available on Odin. A linear system model

could be developed that would sufficiently model the dynamics of the vehicle, but with the

given sensor suite, that system would not be observable. The nonlinear system projects

all vehicle velocities on the the vehicle x-axis and all vehicle rotation rates to rotations

about the vehicle z-axis. This essentially assumes that velocities along the lateral and

vertical axes of the vehicle are negligible, as are the rotation rates about the longitudinal

and lateral axes of the vehicle. Since Odin is designed to travel on paved roads in an ur-

ban environment, and at reasonably low speeds, these assumptions can be made without

detrimentally degrading the validity of the vehicle model.

The resulting nonlinear vehicle model is as follows:

x̄k+1 = Φ x̄k

Nk+1

Ek+1

Dk+1

Vk+1

φk+1

θk+1

ψk+1

β̇k+1



=



1 0 0 cosθcosψdt 0 0 0 0

0 1 0 cosθsinψdt 0 0 0 0

0 0 1 −sinθdt 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 tanθcosφdt

0 0 0 0 0 1 0 cosφdt

0 0 0 0 0 0 1 cosφsecθdt

0 0 0 0 0 0 0 1





Nk

Ek

Dk

Vk

φk

θk

ψk

β̇k



(5.1)

where N, E, and D are the Northing, Easting, and Down position of the vehicle, φ , θ , and

ψ represent the roll, pitch, and yaw of the vehicle respectively, and V and β represent

the projection of all vehicle velocities onto the vehicle x-axis, and the projection of all

angular rates about the vehicle z-axis respectively. By projecting the vehicle velocities

onto the vehicle x-axis and the angular rates onto the vehicle z-axis, the number of states

in the system model is reduced, thus decreasing the computational requirements of the

34

system model and solving the observability problem.

5.1.2 Measurement Model

The next part of the APF development is to determine the measurement model. Some

of the relationships between the measurements and the process model are nonlinear, so

a nonlinear form of the Kalman filter must be formulated. An EKF has been chosen for

this system and the measurement model. As discussed in the previous chapter, the mea-

surement matrix in the EKF is actually the Jacobian matrix of the nonlinear function that

relates the measurements to the process model. This section will populate the measure-

ment Jacobian matrix with the functions determined by the sensors used in the filter.

Odin is equipped with a Novatel Propak LBplus GPS/INS. From this system, the filter

will receive 3D global position, 3D velocity, and three-axis rotation angles. The Propak

system is the primary sensor for the localization system. Other sensors will serve only to

improve the solution provided by the Propak, but cannot be used for extended periods of

time without it. The measurement Jacobian for these measurements is

HINS =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 cosφsinθ 0 0 0 0

0 0 0 sinφsinθ 0 0 0 0

0 0 0 cosθ 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0



(5.2)

Odin is also equipped with four wheel encoders that provide wheel speeds that can be

35

read directly from the vehicle’s CAN bus. The data taken from the CAN bus is already

preprocessed and is output as a direct velocity measurement, so no further processing

is necessary to get usable data. The measurement Jacobian matrix for the wheel speed

measurements is

HWS =
[

0 0 0 1 0 0 0 0

]
(5.3)

To measure the vehicle steering angle, two string potentiometers have been installed

on the vehicle’s steering shaft. This data is also processed at the vehicle interface level, so

no further processing is necessary to achieve steering angle. The steering angle measure-

ments are incorporated into the measurement model using a classical bicycle model. The

bicycle model will convert steering angle measurements and velocity estimates into yaw

rate measurements. The derivation of the bicycle model equations is done in Appendix A

and the resulting equations are,

∂δ

∂V
=

−Lβ̇

1+
(

Lβ̇

)2 (5.4)

∂δ

∂ β̇
=

 LV

1+
(

Lβ̇

)2

 (5.5)

where δ is the steering angle, L is the length of the vehicle, V is the estimated forward

velocity of the vehicle, and β̇ is the estimated yaw rate. The measurement Jacobian for

the steering angle measurement is

HSA =
[

0 0 0 ∂δ

∂V 0 0 0 ∂δ

∂ β̇

]
(5.6)

The final localization measurement on Odin is absolute landmark position. The land-

marks that will be detected are stop lines. The vehicle will have a priori knowledge of the

location of all stop lines in the DUC course, and will be required to stop within 1 meter of

36

the painted lines. The range to the stop line will be determined and used to translate the

stop line position to vehicle position using the equations

N = NSL−dSLcosψ (5.7)

E = ESL−dSLsinψ (5.8)

where N and E are the northing and easting of the vehicle respectively, NSL and ESL are

the northing and easting of the stop line respectively, dSL is the distance to the stop line,

and ψ is the heading of the vehicle. These equations provide a direct measurement of the

vehicle northing and easting and their measurement Jacobian is therefore

HSL =

 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

 (5.9)

Combining the preceding measurement Jacobians into the total measurement Jacobian

37

for the measurement model yields

H =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 cosφsinθ 0 0 0 0

0 0 0 sinφsinθ 0 0 0 0

0 0 0 cosθ 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 ∂δ

∂V 0 0 0 ∂δ

∂ β̇

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0



(5.10)

5.1.3 Noise Model

The final step necessary for the formulation of the APF is to quantify the error associated

with both the process model and the measurement model. At this point is important

to note that accurately quantifying the process and measurement noise is not essential

to the optimal operation of the EKF. What is important is that the relative weight of the

individual process state errors and the individual measurement errors are correct. This will

allow the filter to trust in more accurate measurements or state estimates than less accurate

ones, thus optimizing the available measurements and the process model predictions.

The primary source of error in the process model is Taylor series truncation error. A

constant velocity model has been used to approximate the system, therefore the errors

38

in the model will be velocity errors caused by the fact that the velocities are not truly

constant. The system covariance matrix, Qk, is assumed to be diagonal because there is

little or no knowledge of the correlation of errors between states. These off diagonal terms

are therefore assumed to be zero. The error induced by this assumption will be handled

by the filter covariance matrix, Pk, which will populate the off diagonal covariance terms

naturally as the filter runs.

The error for each state will now be approximated as the Taylor remainder in the dead

reckoning equations. The first three states in the process model are linear position states.

The error associated with these states is the double integral of the neglected accelerations.

This integral can be approximated as

σx = σy = σz =
amax (∆t)2

2
(5.11)

where ∆t is the time step of the filter and amax is an estimate of the maximum acceleration

that the vehicle is likely to experience. A weighting vector will also be used to account for

the fact that most of the acceleration the vehicle experiences will be along the longitudinal

axis of the vehicle. The weighting vector for the vehicle accelerations is

āmax =
[

1.0amax 0.1amax 0.3amax

]T

(5.12)

For the angular position states in the process model, it is the angular velocity terms

that have been neglected. Therefore, the error for these states will be a function of angular

velocity and the Kalman filter time step. These errors are written as

σφ = σθ = σψ = Ωmax∆t (5.13)

where Ωmax is the maximum angular velocity the vehicle is likely to experience and ∆t is

39

the time step of the EKF. This is a very rough estimate of the angular position state error,

but as previously mentioned, it is not important that these error estimates be accurate as

much as it is important to have a mechanism by which the errors can be weighted. Just as

with the linear position states, the magnitude of the state error will vary along each axis

of the vehicle. A weighting vector is used for the angular position errors and is written as

Ω̄max =
[

0.3Ωmax 0.3Ωmax 1.0Ωmax

]T

(5.14)

This vector weights angular velocities about the vehicle z-axis more heavily because it is

about this axis that the vehicle is most likely to see higher angular velocities.

The error associated with the linear velocity states is a direct result of neglecting

accelerations in the process model. The linear velocity error can therefore be written as

σV = amax∆t (5.15)

where amax is the same acceleration term from the linear position state error, and ∆t is still

the time step of the EKF.

Now that the process noise has been sufficiently estimated, the measurement noise

must be determined. This is far more critical to the operation of the filter. The measure-

ment noise model is what the filter will use to determine which measurements should be

trusted and which measurements should be ignored. For most of the localization sensors

the noise model will simply be set to the error given in the sensor specifications.

The noise model for the Novatel Propak LBplus is actually quite simple to determine

due to the fact that the covariance for the Novatel INS solution is an output of the sensor.

This output will be inserted directly into the measurement covariance matrix and will be

updated as new covariance messages are received from the Propak. This takes care of all

position, velocity, and attitude measurements received from the Propak.

40

The noise model for the wheel encoder is a function of the error induced by the scale

factor used to convert the encoder pulses to a velocity, and the velocity of the vehicle.

This function is written as

σWS = SFEWSVWS (5.16)

where SFEWS is the estimated scale factor error and VWS is the wheel speed measurement.

The steering measurement is not considered a high fidelity measurement, so precisely

estimating the steering measurement error is unnecessary. The steering measurement

error will therefore be set to a constant to be determined when tuning the filter.

The uncertainty associated with the stop line measurements will be determined by the

Road Detection module. The Road Detection module will assign a confidence value to

the stop line position estimate and send it along with the stop line data.

The state uncertainties were estimated in vehicle frame coordinates because it is more

intuitive to do so. To use these error estimates in the APF however, they need to be

transformed into global frame coordinates. This is accomplished with the Γ matrix. The

Γ matrix for this system is written as

Γ =



[
Rn

b

]
0 [0] 0

0 1 0 0

[0] 0 [Ω] 0

0 0 0 1


(5.17)

where Rn
b is the rotation matrix that transforms linear and angular position state uncertain-

ties from the body frame to the nav frame, and Ω is transforms angular velocity uncer-

tainties from the body frame to the nav frame. The kinematics for these coordinate frame

transformations are presented in [9], with the modification that the navigation frame in

this thesis is a North-East-Down coordinate system and the navigation frame in [9] is a

41

North-East-Up coordinate system.

5.2 Relative Position Filter

The second half of Odin’s localization software is the RPF. The RPF will provide Odin’s

perception modules with a position in a local position frame that is guaranteed to be free

of discontinuities such as GPS position pops. This is perhaps the most important function

of the localization solution because GPS pop is very likely to occur in an urban setting

and without a relative frame to place perceived objects, GPS pops will result in phantom

obstacles.

5.2.1 System Model

This system model chosen for the RPF consist of only three states: velocity, heading, and

yaw rate. This simple model was chosen to avoid nonlinearities which would require an

EKF to estimate the system, and to avoid observability problems caused by eliminating

all localization measurements influenced by the GPS. The state space equation for this

system model is written as

x̄k+1 =


Vk+1

ψk+1

ψ̇k+1

=


1 0 0

0 1 0

0 0 1




Vk

ψk

ψ̇k

 (5.18)

5.2.2 Measurement Model

A major criteria of the RPF is that the position that it estimates be based entirely on

relative localization measurements. This is essential for eliminating the possibility of

position pops, which is the main purpose of the RPF. There are two relative localization

42

techniques to choose from on Odin. These techniques are dead reckoning with odometry

and inertial navigation. Due to the amount of preprocessing required to use the raw inertial

measurements provided by the IMU and the added complexity to the system model, only

odometry was used in the RPF.

The first measurement used in the RPF measurement model is the wheel speed mea-

surement provided by the Vehicle Interface. This is a direct measurement of the velocity

state in the RPFs system model, so the observation matrix for this measurement is written

as

HWS =
[

1 0 0

]
(5.19)

The next measurement used in the RPF measurement model is the heading measure-

ment provided by the Novatel INS solution. Technically, this measurement is influenced

by the GPS, which violates the criteria of the RPF, however, this is the only heading

measurement available on Odin, so it will suffice. In addition, although the heading mea-

surement is updated with GPS measurements in the Novatel INS filter, this measurement

does not typically exhibit any strange behavior or discontinuities, even when GPS pops

occur. The observation matrix for this measurement is

Hψ =
[

0 1 0

]
(5.20)

The next measurement used in the RPF measurement model is the steering angle mea-

surement. This is converted to a yaw rate and velocity measurement using the same classic

bicycle model used in the APF measurement model. Again, the equations are

∂δ

∂V
=

−Lψ̇

1+(Lψ̇)2 (5.21)

∂δ

∂ψ̇
=

(
LV

1+(Lψ̇)2

)
(5.22)

43

where δ is the steering angle, V is the velocity estimate of the filter, L is the distance

between the front and rear axle, and ψ̇ is the yaw rate. For this measurement model, ψ̇

is used instead of β̇ because this model uses only the rotation about the vehicle z-axis to

estimate yaw rate rather than incorporating projections of rotations about other axes. The

observation matrix for this matrix is written as

HSA =
[

∂δ

∂V 0 ∂δ

∂ψ̇

]
(5.23)

The last measurement to be added to the RPF is the yaw rate measurement provided

by the gyro in the Propak’s IMU. So far the only measurement of yaw rate comes from

the steering angle measurement via simplified bicycle model. As stated in the previous

section, this measurement is a very low fidelity measurement. Therefore, the raw yaw

rate measurement provided by the IMU gyro will be used to help stabilize the yaw rate

estimate in the RPF. The observation matrix for this measurement is written as

Hgyro =
[

0 0 1

]
(5.24)

Having fully populated the observation matrix for the RPF, the full measurement

model can be written as

z̄k =



VWS

ψINS

δ

ψ̇gyro


=



1 0 0

0 1 0

∂δ

∂V 0 ∂δ

∂ψ̇

0 0 1




Vk

ψk

ψ̇k

 (5.25)

44

5.2.3 Noise Model

The noise model for the RPF is very similar to the noise model for the APF. Just as with

the APF, little is known about the cross correlation of the state errors or the measurement

errors, so the system covariance matrix, Q, and the measurement covariance matrix, R,

for the RPF are assumed to be diagonal matrices.

As mentioned in the discussion of the APF noise model, it is not as important that

errors be accurately quantified as much as it is that they have the correct relative weights.

When tuning the APF, it became clear that the error estimates did not make much sense

in terms of physical parameters, but the filter could still be tuned correctly by making

sure that state errors and measurement errors had the correct relative magnitudes. For this

reason, the system error estimates for the RPF have been simplified. The system errors

will be adjusted with error constants that are not based on real world parameters. The

error constants will simply provide a means of adjusting the integrity of the predictions

provided by the system model. The system error estimates will still be functions of the

filter time step. This makes sense intuitively because one would expect errors to increase

with time due to the fact that the system model is a linear approximation of the actual

vehicle dynamics. The system errors are then written as

σV = V EC∆t (5.26)

σψ = HEC∆t (5.27)

σψ̇ = Y EC∆t (5.28)

where VEC is the velocity error constant, HEC is the heading error constant, and YEC is

the yaw rate error constant.

The measurement noise estimates for the RPF will be the same as those for the APF.

This is because the measurements used in the RPF are also used in the APF with the

45

exception of the yaw rate measurement. The yaw rate measurement error is set to a

constant of 0.01 rad/sec or approximately 0.57 deg/sec.

46

Chapter 6

Filter Implementation and Testing

Perhaps the most daunting task in the development of any Kalman filter is the actual

implementation. This is a tedious process involving hours of tuning and testing in order

to arrive at a truly optimal filter (or as close to optimal as the filter can be). The following

chapter details the design of Odin’s localization software and the procedures for tuning

and testing the absolute and relative position filters.

6.1 Software Overview

Odin’s localization software is responsible for providing accurate position, velocity, and

angular orientation data to all other planning and perception modules. Because the entire

software suite is so dependent on localization data, it is imperative that the localization

module be robust and able to recover quickly from any errors it may encounter.

Odin’s localization software was developed using National Instrument’s LabVIEW

47

software. LabVIEW was chosen because it decreases software development time by

providing an easy to use graphical programming environment that is more intuitive for

engineers with little or no background in software engineering or computer science. Lab-

VIEW also allows for quick and easy development of a Graphical User Interface (GUI)

and a means of making on-the-fly code changes, without the need to recompile code.

The first task of the localization module is to interface all localization sensors. The

primary sensor is the Novatel Propak LBplus. The interface for the Propak was devel-

oped for the 2005 DARPA Grand Challenge, and, due to its modular design, could be

placed directly into Odin’s localization code with little or no changes. The interface for

all other localization sensors is taken care of by either the Vehicle Interface software mod-

ule, which provides the wheel speeds and steering angle, or the Road Detection module,

which provides stop line position data. Within the localization software, receiving these

measurements is simply a matter of parsing the corresponding JAUS message.

To save time, and because testing time with Odin was limited, data logging was added

to the localization software. All measurements used in the APF and RPF are logged along

with a boolean array that indicates which measurements were used for a particular cycle

of the filter. This allows filter tuning to take place in simulation using real data.

6.2 Absolute Position Filter Tuning

The goal when tuning the APF is to weigh state and measurement errors such that the

filter will rely on the measurements when the conditions are ideal and measurement data

is at its best, and rely on the process model when good measurement data is not available.

In other words, the filter should be tuned so that the state estimates are as good as or better

than the best measurements available, but never worse.

The best case scenario for the APF is for it to be receiving a good solution from the

48

Novatel system while observing ten or eleven satellites well distributed throughout the

sky. For this situation the filter should output a position estimate that is as close to the

unfiltered output of the Novatel system as possible. In other words, it is important to

ensure that the APF will not make the position estimate worse than a position estimate

that is known to be accurate. To tune the filter for this, sensor data was collected while

the vehicle was driven manually around a known path. The path driven was in a large

empty parking lot with a good view of the sky, and ten satellites were being observed by

the Novatel system with good Geometric Dilution of Precision (GDOP). The collected

sensor data was then run through the filter and the resulting position estimate was overlaid

onto a plot of the sensor data collected from the Novatel system.

The APF must also be tuned to appropriately handle GPS pops. What is appropriate

is completely up to the user. The user must decide whether it is desirable for the filter

solution to immediately jump to a new solution when it experiences a pop, or for the filter

solution to gradually merge with the new position solution. Figure 6.1 shows how the

APF handles GPS pops when the GPS measurement is heavily weighted. In this case the

estimated position immediately jumps to the new GPS position.

For Odin, it was decided that it would be better for the motion planning module for

the position to gradually merge with the new position solution, rather than jump instanta-

neously. This is achieved by increasing the magnitude of the GPS position error, which

effectively tells the filter to trust the GPS position measurements less. The result is shown

in Figure 6.2. This plot shows that the position estimate gradually merges to the new

position rather than popping over instantly. This behavior is much less confusing to path

planning modules because the apparent motion in the position estimate is smooth and

does not violate the kinematic constraints of the vehicle.

As scene in the previous figures, a critical decision must be made about the behavior of

the APF. Tuning the APF such that it is heavily reliant on the GPS measurements results

49

Figure 6.1: For this case, 5 meters of position bias were added instantaneously to illustrate
the effect of GPS pop.

50

Figure 6.2: The APF smooths out the GPS pop, but the overall position estimate is less
accurate.

51

in more accurate position measurements, but leads to instantaneous position jumps when

GPS is bad. These jumps can be smoothed by decreasing the filter’s faith in the GPS

measurement, but doing so decreases the accuracy of the position estimates, even when

GPS measurements are good. In the end, the decision was made for accuracy rather than

a smooth position estimate. This decision was based on the fact that the Novatel system

typically provides an accurate solution.

6.3 Relative Position Filter Tuning

In tuning the RPF, the goal is to minimize the accumulation of error between the estimated

position and the actual position. It is impossible to eliminate all of the error and the error

will continue to increase as the vehicle moves. This is a fundamental limitation of relative

localization. All that is necessary is to maintain a reasonable position estimate over the

range of the vehicles perception. This is because the RPF is only used to provide a frame

for positioning perceived obstacles that is not susceptible to GPS pop. Therefore the

overall error in this position is inconsequential as long as the position errors to not grow

substantially within the range that the vehicle can observe a particular object.

The RPF was tuned using the same method used to tune the APF. Data was collected

on the vehicle and then replayed in a simulator. Figure 6.3 shows sample data used to

tune the RPF. As shown in the figure, the error between the estimated position and the true

position increases as the vehicle travels. This plot also seems to indicate that the error has

decreased to nearly zero by the time the vehicle returns to the starting point. This is only

a coincidence. Position errors grow primarily in the direction that the vehicle is moving.

Therefore, if the vehicle travels 100 meters due North, and then returns 100 meters due

South, the position errors are likely to be roughly equal for each trip, thus cancelling each

other. Since the vehicle traveled in a loop, the error accumulated while traveling East and

52

North was cancelled by the error accumulated while traveling West and South. The error

is actually growing the entire time, but in different directions.

Figure 6.3: This data was collected while Odin was driving on a smooth paved surface.
The error will increase on uneven or loose terrain.

After tuning the RPF, this error was minimized to 2.6 meters per 100 meters traveled,

or 2.6% of the total distance traveled when traveling a straight path at 15 to 20 mph. This

error will increase to 3.4% when the vehicle is traveling on a curved path. This is a direct

result of the increase in lateral slip as the vehicle turns.

53

Chapter 7

Conclusion

The localization software presented in this thesis underwent hours upon hours of testing in

the months leading up to the DUC. However, the true test of the software’s abilities came

when the team and Odin arrived in Victorville, CA for the NQE. This chapter will discuss

the localization software’s performance during the DUC, the downfalls of the localization

software, and changes that can be made in the future to improve its performance and

robustness.

7.1 The Urban Challenge

The DUC NQE and final event took place in Victorville, CA from October 26, 2007 to

November 3, 2007. The site of the challenge was the former George’s Air Force Base,

which is now used as a MOUT site and for various other military training exercises.

Contrary to its name, the Urban challenge site was not very urban. There were however

54

plenty of trees and buildings that partially blocked the view of the sky on certain parts of

the course. This section will discuss Odin’s performance while in Victorville in terms of

localization, rather than overall failure or success in completing missions. Therefore any

errors not related to or caused by localization failures will not be discussed.

7.1.1 NQE

The NQE tested each vehicle’s ability to navigate safely through an urban environment.

The test courses ranged from parking lots with moving traffic with which vehicles were re-

quired to merge, to suburban neighborhoods with four-way stops. Throughout the NQE,

Odin’s localization performed flawlessly. Odin experienced no GPS outages, position

pops, or offsets. The team could not have asked for a better performance from the local-

ization software, until the last day of the NQE.

The second test for qualification, test area B, led vehicles through what used to be

base housing. In this area vehicles were tested on their ability to maneuver past a barrage

of disabled vehicles and navigate through zones. Area B contained the most occlusions

of any of the test courses, and was the only area in which Odin experienced a localization

error. The error occurred as Odin was exiting the traffic circle shown in Figure 7.1. Odin

had already navigated through Area B with no localization problems, but on his second

attempt, as Odin exited the traffic circle, the position solution provided by the Novatel

system popped almost 10 meters to the south west. Although position pops are a regular

occurrence when navigating through areas subject to multipath and occlusions, a position

pop of this magnitude is rarely seen. As shown in Figure 7.1, there are nearby buildings

as well as trees that line the road. These images clearly show that satellite visibility in

this area is potentially poor, but this does not completely explain why the Novatel system

would experience such a severe jump in position.

Unfortunately, the raw data needed to fully diagnose the cause of the position jump

55

Figure 7.1: The top picture gives a south facing view and captures Odin in the vicinity of
the position pop. The bottom picture provides a north facing view.

56

was not being logged. This error was especially mysterious given the fact that Odin had

already navigated through this area successfully with no localization errors. Several theo-

ries concerning the cause of the problem have been suggested. Many believe that DARPA

was actively jamming GPS signals at this point in the course to test the vehicle’s robust-

ness to GPS interference. There is no evidence to substantiate this claim, and DARPA

has never admitted to any such activity. The other popular opinion is that the position

jump was caused by multipath and/or satellite occlusions from nearby buildings and trees.

While this is a possibility, this is contrary to months of testing with the Novatel system,

during which Odin successfully navigated through far more cluttered environments with

no localization problems.

While the cause of this problem may never be known, changes can be made to Odin’s

localization and perception software to handle these types of problems better. Had Odin

been actively perceiving the road as it traveled through the NQE course, the RPF posi-

tion could have been used to guide Odin through the course until a better GPS position

measurement could be acquired. All of Odin’s perception is done using the RPF position

solution which is not susceptible to GPS position pops. Therefore, instead of thinking that

the lane had suddenly shifted north, Odin would have maintained the correct lane position

and would not have gotten stuck at the end of the segment.

7.1.2 UFE

In spite of the localization problems experienced in Area B during the NQE, Odin was

admitted to the UFE and was seeded second among the eleven vehicles that had qualified.

Odin was the first to leave the start chute on the morning of the competition and smoothly

navigated through the DUC course.

Odin’s UFE run was not completely flawless. Aside from other minor errors not

related to localization, Odin experienced another position pop when exiting the George

57

Blvd. traffic circle onto Sabre Rd., the same place that the error occurred during the NQE.

The position pop was not as severe as the previous one, and resulted in Odin leaving the

road briefly and then returning. Once again, there is little evidence to explain the cause of

this position jump. Odin successfully drove this stretch of road several times before the

localization error, and had no problems navigating through this error during the remainder

of the race. No software changes were made between the NQE and the UFE.

Odin completed all three missions and crossed the finish line with an official time of

276 minutes. Odin placed third behind Boss, of Tartan racing, and Junior, from Stanford.

7.2 Future Work

The software presented in this thesis was successful in the DARPA Urban Challenge.

However, several changes can be made to increase the softwares usefulness and robust-

ness. In addition, changes can be made to Odin that would make better use of the features

provided by this localization solution.

The APF implemented in this localization solution provided accurate and reliable po-

sition estimates, as well as a means for incorporating additional measurements in the fu-

ture. The APF took advantage of several localization techniques to produce this position

estimate, but it is still overly dependent on only one sensor. Without the measurements

provided by the Novatel SPAN system, the APF would quickly diverge. This is mainly

due to the fact that the system becomes unobservable without the absolute position mea-

surements provided by the Novatel system. In addition, all of the attitude measurements

used by the APF were also produced by the SPAN system. Therefore, if this one sensor

were to fail, the filter would not be able to maintain position estimates and the localization

solution would fail. Future localization sensor suites should at the very least incorporate

a low cost GPS to guide the vehicle if the primary sensor fails.

58

The RPF implemented in this localization solution accomplished its goal of providing

a smooth position estimate that is not subject to GPS position pops. Odin’s perception

modules did not fully take advantage of this. To be successful in an urban setting, au-

tonomous vehicles must be actively sensing the world around them. Furthermore, all

perception must be done in a relative frame like the one provided by the RPF. This is the

only way to avoid the perception failures caused by GPS position pops. The solution is

not to eliminate position pops. In most cases the position is popping to a more accurate

measurement, which is desirable.

59

References

[1] A. Bais, R. Sablatnig, J. Gu. Single Landmark Based Self-Localization of Mobile
Robots, in Proceedings of 3rd Canadian Conference on Computer and Robot Vision,
IEEE Computer Society, 2006.

[2] G. Bekey. Autonomous Robots: From Biological Inspiration to Implementation and
Control. Cambridge, MA: MIT Press, 2005.

[3] J. Borenstein, L. Feng. Measurement and Correction of Systematic Odometry Errors
in Mobile Robots, in IEEE Transactions on Robotics and Automation, Vol. 12, No. 6:
869-880, 1996.

[4] R. Brown, P. Hwang. Introduction to Random Signals and Applied Kalman Filtering,
Third Edition. New York, NY: John Wiley & Sons, Inc.,1997.

[5] Defense Advanced Research Projects Agency. DARPA Grand Challenge Congres-
sional Mandate, 2004. Available Online: http://www.darpa.mil/

[6] B. Hofmann-Wellenhof, K. Legat, M. Wieser. Navigation: Principles of Positioning
and Guidance. Graz, Austria: Springer-Verlag Wien, 2003.

[7] R.E. Kalman. A New Approach to Linear Filtering and Prediction Problems, in Trans-
actions of the ASME-Journal of Basic Engineering, 82 (Series D): 34-45, 1960.

[8] A.J. Kelly. A 3D State Space Formulation of a Navigation Kalman Filter for Au-
tonomous Vehicles. Pittsburgh, PA: CMU Robotics Institute Technical Report CMU-
RI-TR-94-19, 1994.

[9] A.J. Kelly. Essential Kinematics for Autonomous Vehicles. Pittsburgh, PA: CMU
Robotics Institute Technical Report CMU-RI-TR-94-14, 1994.

[10] P.S. Maybeck. Stochastic models, estimation, and control, Volume 1. New York,
NY: Academic Press, 1979.

[11] D. Simon. Optimal State Estimation: Kalman, H infinity, and Nonlinear Ap-
proaches. New York, NY: John Wiley & Sons, Inc.,2006

[12] S. Thrun, et al. Stanley: The Robot that Won the DARPA Grand Challenge. Journal
of Field Robotics, 23.9, 662-692, 2006.

60

http://www.darpa.mil/grandchallenge04/sponsor_toolkit/congress_lang.pdf

Appendix A

Kalman Filter Example

This appendix presents a simple example of a Kalman filter implementation. This is

example is intended to provide readers with little or no previous experience with Kalman

filtering a chance gain an understanding of how the Kalman filter is applied, without the

added complexity of the 3D navigation problem presented in this thesis.

A.1 System Model

We will begin by defining our system. Consider the vehicle depicted in Figure A.1. The

vehicle’s position is described by its x and y coordinates, and its motion is described by

its forward velocity, V, and its heading, θ . The vehicle heading is measured counterclock-

wise from the x-axis.

61

Figure A.1: The vehicle motion is confined to the 2D plane and is described by the for-
ward velocity and heading of the vehicle.

The continuous state-space representation of this vehicle model is given by

˙̄x = Φx̄

ẋ

ẏ

V̇

θ̇


=



0 0 cosθ 0

0 0 sinθ 0

0 0 0 0

0 0 0 0





x

y

V

θ


(A.1)

Notice in this equation that the acceleration of the vehicle, and the yaw rate of the vehicle

have been neglected. This amounts to the assumption of a first order Taylor series approx-

imation for the linear position of the vehicle, and a zero order Taylor series approximation

for the angular orientation of the vehicle. In addition, there are no deterministic inputs

to the system such as steering, braking, or throttle. This means that the V and θ terms

will not update naturally. The only way to move these states forward in time is through

measurement updates. These will be discussed in the next section.

This example is for a discrete Kalman filter, so the discrete form of this system model

62

is written as

x̄k+1 = Φkx̄k

xk+1

yk+1

Vk+1

θk+1


=



1 0 cosθk dt 0

0 1 sinθk dt 0

0 0 1 0

0 0 0 1





xk

yk

Vk

θk


(A.2)

A.2 Measurement Model

The measurements that will be used for this Kalman filter are:

GPS

Encoders

Compass

which will provide the measurements:

2D position (x,y)

Forward Velocity

Heading

Having decided on the sensor suite, the measurement model can now be developed. The

measurement model is written as

z̄k = Hkx̄k

xGPS

yGPS

Venc

θcomp


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





xk

yk

Vk

θk


(A.3)

Notice that the observation matrix, H, is simply a 4x4 identity matrix. This is a result of

63

choosing a sensor configuration that provides a direct measurement of all vehicle states.

In addition, we now have a way to update the velocity and heading measurements. This

is important because as previously mentioned, the system model will not propagate the

velocity and heading forward in time since the accelerations and angular rates have been

neglected.

A.3 Noise Models

Now that the system model and the measurement model have been developed, the noise

associated with each model must be quantified. One major assumption of the Kalman

filter is that the noise associated with the system model and the measurement model is

an additive white noise sequence with a known covariance structure. This is of course

impossible to achieve since true white noise sequences do not exist in nature. In addition,

the covariance structure of the sequence, while it may be known well, is rarely known

completely. In spite of these deviations from the Kalman filter requirements, the Kalman

filter can still achieve an optimal solution.

First we will model the system model noise. For this example, the vehicle being

tracked is a simulated vehicle, so the natural process noise that would occur on a real

vehicle is not present in this system. Furthermore, even for a real vehicle with real process

noise, the errors induced by the assumptions made in developing the vehicle model far

outweigh the truly random noise in the system. Therefore, the covariance is assumed

to be a function of the terms neglected in the vehicle model development. Finally, the

position states, x and y, are orthogonal terms and therefore the covariance between x and

y is zero. The velocity and heading states, V and θ , are not orthogonal to each other,

or to the position states, so the noise between these states and other states is most likely

correlated. However, how these state errors are correlated is not well known. For this

64

reason, the off diagonal terms in the system covariance matrix, Q, will be assumed to be

zero. Any error induced by this assumption will be handled by the filter covariance matrix,

P. The off diagonal covariance terms in P will evolve naturally as the filter updates.

Having applied the for mentioned assumptions, the diagonal elements of the system

covariance matrix, Q, must now be approximated for each state. For most systems, it is

more intuitive to think about the errors associated with the vehicle model in the vehicle

frame. The covariance matrix would then be rotated into the navigation frame before it

is used in the Kalman filter equations. Given the relative simplicity of the system in this

example, the necessary rotations will be added directly to the diagonal terms in Q.

The noise associated with the linear position states, x and y, is due primarily to the

first order Taylor series approximation of the system. As previously mentioned, the true

random process noise would contribute on a real vehicle, but would have much less of

an effect on the system model than the approximation errors. The variance of the linear

position states will therefore be approximated by the equations

σ
2
x =

(
amax (∆t)2

2
cosθk

)2

(A.4)

σ
2
y =

(
amax (∆t)2

2
sinθk

)2

(A.5)

where amax is the estimated maximum forward acceleration of the vehicle, ∆t is the time

step of the Kalman filter, and θk is the current estimate of the vehicle heading. The

lateral and vertical accelerations of the vehicle have been completely neglected in this

approximation.

The noise associated with the velocity and heading states will be approximated as

functions of the neglected vehicle accelerations and vehicle angular rate respectively.

65

These terms are given by the equations

σ
2
V = (amax∆t)2 (A.6)

σ
2
θ =

(
θ̇max∆t

)2 (A.7)

where amax is the same maximum forward acceleration from the linear position noise

approximation, ∆t is the Kalman time step, and θ̇max is the estimated maximum yaw rate

of the vehicle.

Having estimated the noise associated with each state, the result is a system covariance

matrix that can be written as

Q =



(
amax(∆t)2

2 cosθk

)2
0 0 0

0
(

amax(∆t)2

2 sinθk

)2
0 0

0 0 (amax∆t)2 0

0 0 0
(
θ̇max∆t

)2


(A.8)

Although these terms due not represent the true variance of the system states in a statistical

sense, they do provide a good estimate of how the motion of the vehicle will deviate from

the trajectory predicted by the system model, and that is the purpose of the Q matrix.

One qualitative interpretation of the Q matrix is that it is an estimate of how fast the

state estimates will diverge if the process model equations are run open loop without

measurement updates [8]. This is why it is not as important to analytically or numerically

determine the true random process noise found in the system. For the system in this

example, the primary contributors to the error in the system model are the acceleration

and angular rate terms neglected in the modeling process. For some systems, it may

be very important to determine the true random process noise, especially if that is the

predominant error source in the system.

66

The final model to be determined before the Kalman filter can be applied is the mea-

surement noise model. The noise associated with the individual measurements used in this

example will be approximated using the specifications of the sensors. Since the sensors

used are simulated sensors, the approximation of their noise is completely arbitrary. For

this reason, the sensor noise for each sensor will be set to a constant and that constant will

be adjusted to illustrate the effects of sensor noise on the state estimates. Just as with the

system noise model, the measurement noise terms are assumed to be uncorrelated. This

is usually a good estimate, especially for measurements provided by completely different

sensors. The measurement covariance matrix, R, is therefore given by

R =



σ2
GPS 0 0 0

0 σ2
GPS 0 0

0 0 σ2
Enc 0

0 0 0 σ2
Comp


(A.9)

A.4 The Kalman Filter

Now that vehicle and the sensors have been completely modeled, these models can be used

in the Kalman filter equations. The first step in the Kalman filter process is to initialize

both the system states, and the filter covariance matrix. For simplicity, we will assume

that the vehicle is starting at the origin of the navigation frame and will have zero velocity

and heading. The initial value of the filter covariance, P, depends on how well the user

knows the initial state of the vehicle, x̄0. If x̄0 is perfectly known, the initial value of P

is zero. If x̄0 is not known at all, then P should be initialized to a very high value. Once

measurements are incorporated and more knowledge is gained about the trajectory of the

vehicle, the value of P will be updated and will decrease to a more reasonable value.

Although the initial conditions of the vehicle for this example are perfectly known, P will

67

be initialized to a very small value, but not zero. This is because initializing P to zero will

result in a trivial solution for all of the measurement update equations for the first cycle.

This will become clear as the Kalman equations are presented.

We will now take the states, x̄, and the covariance, P, through one step of the filter.

The first equation run in the Kalman filter is the calculation of the Kalman gain, K. The

Kalman gain equation is given by

Kk = P−k HT
k
[
HkP−k HT

k +Rk
]−1

(A.10)

where P−k is our current estimate of the filter covariance before the measurements are

incorporated as denoted by the −. Notice that if the covariance matrix P−k were zero, the

gain matrix, K, would also be zero and none of the measurements would be used in the

following state update equations. This is the trivial solution previously mentioned and is

the reason that P0 was not initialized to zero. This equation gives the optimal gain for

blending the measurements with the state estimates. This particular K is optimal because

it minimizes the mean-square errors in the estimates of the state vector, x̄, given by the

major diagonal terms of the matrix, Pk. The proof that K is in fact the optimal gain can be

found in [4].

Having determined the weighting for each measurement via the Kalman gain matrix,

K, the measurements can now be used to update the state estimate. This is done using the

equation

x̂k = x̂−k +Kk
[
z̄k−Hkx̂−k

]
(A.11)

where the ˆ denotes an estimate of the state vector, x. In this equation, the a priori state

estimate is being updated with weighted estimates of the error as given by the measure-

ments. The error, defined in this equation by the difference between the measurements

and the predicted state estimates, is weighted using the Kalman gain, K, and then added

68

to the predicted state estimate. In this way the filter is using the measurements to correct

the error in the state estimate predicted using the system model. If the measurements are

not reliable (i.e. the elements of the measurement covariance matrix, R, are high), the

Kalman gain will be small and the measurements will have little influence on the state

estimate.

Now that the measurements have been used to update the state estimate, the covariance

estimate must also be updated. The covariance update equation is

Pk = [I−KkHk]P−k (A.12)

This equation provides a means of updating the filter covariance based on the Kalman

gain matrix, K. However, this is not the only form of this equation that can be used for

updating P. This is the simplest from of the covariance update equation, but it is only

valid if we assume that K is the optimal gain. More generic forms are valid for optimal or

suboptimal conditions and can be found in [4] and [11]. For this example we will assume

that K is optimal and use the simple version of the P update equation given above. Note

however that in most real life Kalman filter applications, K is rarely the optimal gain. This

is due to the fact that it is often difficult to perfectly model any system, and the differences

between a process model and the true process will lead to a suboptimal K and therefore a

suboptimal estimate [4]. For this reason it is often safer to use more generic forms of the

P-update equation to ensure that the estimate will be valid for any K.

The covariance update equation concludes the measurement phase of the Kalman fil-

ter. An state estimate, x̂k, and a covariance estimate, Pk, have been determined based on

an ’optimal’ combination of model predictions and measurements. The next phase in the

Kalman filter process is to predict the states for the next cycle of the filter. To project the

69

system forward one time step to time tk+1, we use the equation

x̂−k+1 = Φkx̂k (A.13)

where x̂−k+1 is the a priori state estimate that will be used for the next cycle. This prediction

is based entirely on the dynamics of the system as given by the state transition matrix, Φk.

Likewise, P must be predicted for the next cycle. The projection of P into the next

time step is given by

P−k+1 = ΦkPkΦ
T
k +Qk (A.14)

where P−k+1 is the a priori estimate of the filter covariance for the next cycle of the filter.

Once again, this estimate is based only on the system model and the system noise model.

Also note that at this point all of the models developed in the previous sections have been

used, and one full cycle of the Kalman filter is now complete.

A.5 Kalman Filter Tuning

Now that the pieces of the Kalman filter have been described, as well as the process for

putting these pieces together, this section will explain how the tuning of the filter can

determine its behavior. The process of tuning a Kalman filter involves adjusting system

and measurement error estimates to achieve the desired behavior from the filter. For in-

stance, the amax term in the diagonal elements of the system covariance matrix, Q, can

be adjusted to increase or decrease the covariance estimate for the position and velocity

states in x̄. Neither Q nor R may be exactly known when developing the system and mea-

surement noise models, which is why the tuning process is necessary when implementing

a Kalman filter. The update rate of the Kalman filter is also a factor that can be adjusted

during the tuning process, and this is often determined by the rate at which measurements

70

are available.

Another important point to remember when tuning a Kalman filter is that the behavior

of the filter is determined by the relative magnitude of the Q and R matrices. Whether

or not Q and R have been accurately estimated, optimal filter performance can still be

achieved as long as the ratio of Q to R is correct. To illustrate this, simulated data will be

run through the Kalman filter for this system at varying values of Q and R.

To begin, the values of the R matrix will be set to constants. The measurements used

in this example are simulated measurements, therefore we can decide exactly what the

covariance of each measurement will be. Assume that the R matrix is given as

R =



1 0 0 0

0 1 0 0

0 0 0.01 0

0 0 0 0.01


(A.15)

The variance of the GPS measurements has been set to 1m2 and the variance of the veloc-

ity and heading measurement is set to 0.01. For the velocity and heading measurements

the goal is to set the measurement error very low so that the filter will use these measure-

ments almost exclusively instead of the predictions.

For the first test case, the maximum acceleration will be set to a very high value so

that Q will be given as

Q =



4 0 0 0

0 4 0 0

0 0 40000 0

0 0 0 400


(A.16)

The velocity and heading error terms are several orders of magnitude higher than the

position error terms because they are directly proportional to ∆t rather than ∆t2. For this

71

case, the process noise is estimated to be greater than the measurement noise. Figure A.2

shows the filter estimates plotted over the GPS measurements. As shown in the figure,

the filter estimates are scattered, and tend to follow the measurements very closely. This

is due to the fact that the measurements are being weighted very heavily compared to the

process model predictions. The K matrix for one cycle of the filter equations is calculated

as

K =



0.83 0 0 0

0 0.83 0 0

0 0 0.99 0

0 0 0 0.99


(A.17)

Notice that all of the diagonal terms in K are very close to one indicating that the mea-

surements are very trustworthy and will have much more weight in the filter estimate than

the process model predictions.

Figure A.2: Results when position terms in Q are much higher than GPS terms in R.

For the next case, the maximum acceleration terms in Q will be set to a more realistic

72

value of 1g. At a filter update rate of 50 Hz, the Q matrix is

Q =



4E−6 0 0 0

0 4E−6 0 0

0 0 40000 0

0 0 0 400


(A.18)

The velocity and heading terms have been left the same as the previous case to ensure

that the measurements are still used over the predicted velocity and heading. Running the

filter with this Q matrix gives the results shown in Figure A.3. Notice in this case that

the solution is very smooth and is closer to what the actual motion of the vehicle would

be. However, this position estimate diverges from the GPS measurements as the vehicle

travels. This is due to the fact that a very small weight has been assigned to the GPS

measurements and the filter is effectively running the open loop dead reckoning equations

with only velocity and heading measurement updates. The K matrix after the filter has

been running for some time is

K =



0.002 0 0 0

0 0.002 0 0

0 0 0.99 0

0 0 0 0.99


(A.19)

The elements of K associated with the GPS measurements are extremely small and as a

result, the GPS measurements have little effect on the filter estimate.

In the previous case, the maximum acceleration term in the Q matrix was set to a

perfectly reasonable value for a vehicle driving at a reasonable speed under normal con-

ditions. This brings us to an important point. Regardless of what the true value of the

system or measurement covariance is, if the filter does not produce useful results, these

73

Figure A.3: Results when position terms in Q are much lower than GPS terms in R.

values must be changed until the desired behavior is achieved. Obviously a position filter

that is completely diverged from the true position of the vehicle will not be useful for

localizing a vehicle. For the next case, the maximum acceleration term in Q will be raised

to 100 m
s2 . This is obviously not a reasonable estimate of the maximum acceleration that

the vehicle is likely to experience under normal conditions, but as shown in Figure A.4

this produces a better estimate of the true position of the vehicle. In addition, the filtered

position has smoothed the GPS measurements resulting in a continuous path that better

represents the true path of the vehicle.

For the final case in this example, both the Q and R matrices will be multiplied by 100.

Both matrices will have completely different values than they did in the previous case, but

as shown in Figure A.5, the resulting filter estimate is identical. As mentioned previously,

it is not as important that Q and R be accurately known as much as it is important that

their relative magnitude be correct. For this case Q has increased to a value that makes

even less physical sense that it did previously, and R has increased to a value that is known

74

Figure A.4: Results with optimal tuning of Q and R matrices.

to be incorrect. However, the ratio of Q to R has remained constant, and the behavior of

the filter remains unchanged.

Figure A.5: Results with Q and R increased by one order of magnitude.

75

A.6 Conclusion

The implementation of a Kalman filter can be a tedious process, but the difficulties rarely

involve the Kalman filter equations themselves. The difficulty lies in modeling the system

and the measurements and determining at least a rough estimate of the noise associated

with each one. Once this is done, hours upon hours must be spent calibrating sensors and

tuning the noise models until the desired behavior is achieved from the filter. The Kalman

filter equations themselves are very straight forward and do not need to be rederived or

adjusted to be used on a particular problem. This is what makes the Kalman filter such a

useful tool and is the reason it has been used on such a wide variety of applications.

76

	Introduction
	Thesis Overview
	The DARPA Urban Challenge

	The Vehicle
	The Base Platform
	Drive-By-Wire Conversion
	Vehicle Power System
	Computing Systems
	Sensors
	Software Architecture
	Perception
	Planning

	Methods Of Localization
	Defining Localization
	Absolute Localization
	Absolute Landmark Detection
	Global Positioning Systems

	Relative Localization
	Odometry
	Inertial Navigation

	Kalman Filtering
	The Linear Kalman Filter
	The Extended Kalman Filter

	Filter Design
	Absolute Position Filter
	System Model
	Measurement Model
	Noise Model

	Relative Position Filter
	System Model
	Measurement Model
	Noise Model

	Filter Implementation and Testing
	Software Overview
	Absolute Position Filter Tuning
	Relative Position Filter Tuning

	Conclusion
	The Urban Challenge
	NQE
	UFE

	Future Work

	References
	Kalman Filter Example
	System Model
	Measurement Model
	Noise Models
	The Kalman Filter
	Kalman Filter Tuning
	Conclusion

