STRUCTURE AND MICROWAVE SPECTRUM OF THE 2-CYANO-2-PROPYL RADICAL
by

Rodinson C. P. Claytor

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in
Chemistry

APPROVED:
J.D. Graybeal, Xhairman

MICROWAVE SPECTRUM AND STRUCTURE OF THE 2-CYANO-2-PROPYL RADICAL

by

Robinson C. P. Claytor
Committee Chairman: J.D. Graybeal Chemistry
(ABSTRACT)

The rotational spectra of the 2-cyano-2-propyl and $d^{6}-2-c y a n o-2-$ propyl radicals were observed using a Stark modulated spectrometer. The radicals were generated in the gas phase by UV irradiation of sublimed azoisobisbutyronitrile. They were detectable in the cell for approximately one hour. Thirty-three transitions were assigned for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$ and twenty-one for $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$. The rigid rotor rotational constants determined by calculation of the hypothetical unsplit rotational transitions are $A=8276.7, B=3919.7, C=2751.5 \mathrm{Mhz}$ for $\left(\mathrm{CH}_{3}\right) \mathbf{Z}_{2} \mathrm{CCN}$ and $A=6241.3, B=3490.7, C=2372.6 \mathrm{Mhz}$ for $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$.

A program to calculate the fine splittings and hyperfine splittings due to the ${ }^{14} N$ nucleus and six protons was written. The spin rotation constants determined for the two species were $E_{a d}=-69.9, E_{D D}=-36.1$, $E_{C C}=2.7 \mathrm{Mhz}$ and $E_{a a}=-55.4, E_{b b}=-32.6 \mathrm{Mhz}$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$ respectively. The hyperfine coupling constants for ${ }^{14} N$ are identical for both isotopic species and were found to be $T_{a a}=-17.2, T_{b D}=-17.1$ and $T_{C C}=34.4 \mathrm{Mhz}$. The proton and deuteron hyperfine splittings were not resolved. The structural parameters determined from an $\left\langle r_{0}\right\rangle$ fit of the moments are $r_{C N}=1.18 \AA, r_{C C}=1.42 \AA, r_{C M e}=1.50 \AA$ and $C C M e=119.3^{\circ}$. The $C_{4} N$ skeletal framework was found to be planar.

Acknowledgments

The author wishes to express his deep appreciation to his advisor, Dr. Jack D. Graybeal for his continuing support and guidance and his infinite patience throughout this work. He wishes to thank Dr. Jimmy Viers for his assistance with the ab initio calculations and their interpretation. The author also wishes to thank Dr. David Lewis for his help with generating the free radical, Dr. Judith Lewis for her help with synthesizing the deuterated starting materials and for her help on the computers used.

Finally, the author wishes to thank his wife, , for her patience and support throughout his graduate school career and for giving him a beautiful daughter (" "). The author acknowledges the NASA Langley Materials Program for support of this research project.

Dedication
to
(my parents)

「able of Contents

Chapter I
Introduction 1
Chapter II
Review of Prior Research 3
Chapter III
Review of Theoretical Concepts 9
Coupling Theory 9
Moments of Inertia 23
Rigid Asymmetric Rotor 24
Symmetry of the Asymmetric Rotor Wavefunctions 29
Chapter IV
Matrix Elements of the Hamiltonian 31
Spin Rotation 32
Hyperfine Coupling 35
Chapter V
Experimental 43
Chapter VI
Results 52
Discussion 75
Conclusions 82
Appendix A
Useful Relations in Spherical Tensor Methods 83
Appendix B
Selected Wigner 3-J Symbols 86
Appendix C
Selected Wigner 6-J Symbols 88
Appendix D
Selected Wigner 9-J Symbols 90
Appendix E
Hyperfine Coupling of the Protons on Two Equivalent Methyl Groups 92
Appendix FComputer ProgramsMoment of Inertia95
Asymmetric Rotor 96
CDANAL (Semirigid Rotor Fit Program) 97
STRFTQ 98
Gaussian 80 99
Gaussian 80 Control Program with Sample Data 100
Gaussian 80 Abbreviated Output 101
Hyperfine 110
Hyperfine Computer Program Listing 113 113
Sample Output from Hyperfine 144 144
Bibliography 155
Vita 159

List of Tables

Table 6.1 Final Theoretical Structural Parameters Calculated with Gaussian 80 56
Table 6.2 Normalized Spin Rotation Constants for $\mathrm{C}_{2 V}$ Symmetry Molecules 58
Table $6.3 \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$ Assigned Transitions 60
Table 6.4 Initial and Final Fine and Hyperfine Coupling Constants of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$ 62
Table 6.5 Theoretical Unsplit Rotational Transitions of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$ 64
Table 6.6 Initial and Final Rotational Constants for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$ 65
Table 6.7 Final Structural Parameters of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$,Prior to ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$ Study ($\mathrm{LCCMe}=120.55^{\circ}$ Assumed) 66
Table 6.8 $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$ Assigned Transitions 68
Table 6.9 Final and Inital Fine Splitting Parameters for $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$ 69
Table 6.10 Theoretical Unsplit Rotational Transitions for $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$ 70
Table 6.11 Comparison of Experimental Rotational Constants and Those Calculated from Final Structure 72
Table 6.12 Final Structural Parameters 73
Table 6.13 Comparison of r^{\prime} and $r_{C C}$ of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$ with Other Compounds 78

Table 6.14 Comparison of Theoretical and Experimental Inertial Defects of the 2-Cyano-2-Propyl Radical with that of Acetone81

List of Illustrations

Figure 5.1 Thermogravimetric Analysis/Mass Spectrometry of Sublimed AIBN 45
Figure 5.2 Infrared Spectra of Sublimed AIBN versus Time 47
Figure 5.3 Schematic of Stark Modulated Spectrometer System 49
Figure 5.4 Radical Generation Apparatus for Microwave Spectroscopy 50
Figure 6.1 Theoretical Structural Parameters for the 2-Cyano-2-Propyl Radical using 4-31G(STO-3G) Basis sets 55
Figure 6.2 Final Structure Parameters Determined from the Experimental Moments of Inertia of Both Isotopic Species 74

Chapter I

Introduction

The purpose of this work was to characterize the molecular and electronic structure of the 2-cyano-2-propyl radical,

by using data obtained from the rotational spectra of the protonated and fully deuterated species. The analysis of two isotopic species was necessary in order to determine the four important structural parameters. The use of two isotopic species also serves to confirm the assignment as well as the fine and hyperfine coupling constants.

Analysis of the fine and hyperfine spectral splittings allowed the components of the spin-rotation and dipole-dipole tensors to be determined. Using these values, the hypothetical unsplit rotational transition frequencies were calculated and the principal moments of inertia determined. From the six moments, four highly correlated structural parameters were obtained.

The planarity of the non-hydrogen skeleton of the molecule was established by the fit of the fine splitting parameters and the
magnitude of the moment differences. If only diagonal components of the spin-rotation tensor are needed in the fit, a planar structure is most probable. The position of the orbital of the unpaired electron relative to the molecular plane can be determined by examining the relative magnitudes of the fine splitting parameters.

Spin density on the nitrogen atom can be estimated by considering the magnitudes of the dipole-dipole coupling constants. The magnitude of the Fermi contact parameter is related to the hybridization of the orbital which the lone electron occupies when it is on the nitrogen nucleus.

Hyperfine splittings due to the six protons or deuterons were not resolved in this study. These components could have been assigned using a computer program written for the study if the splittings had been resolvable. This program considers the interaction of six equivalent spin $\not / 2$ nuclei and a separate nonequivalent spin 1 nucleus. This assignment could further substantiate assumptions made by Endo ${ }^{2}$ and White ${ }^{3}$ where the spins of the six nuclei were handled as a single nucleus with a spin equal to the vector sum of all the individual nuclei.

Chapter II

Review of Prior Research

This chapter will review three related topics; the development of high resolution spectroscopy of paramagnetic species, previous studies of the 2-cyano-2-propyl radical that are relevant to this work and previous high resolution studies of several multinuclear-spin free radicals. The particular radicals of interest are $\mathrm{NH}_{2}{ }^{2}, \mathrm{CF}_{3}{ }^{2}$, and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO}$.

Identification of the stable free radical triphenylmethyl in the early 1900 's gave impetus to the study and characterization of these novel chemical species." Due to the short lifetime of most radicals their study remains a formidable task. A number of simple free radicals, mostly diatomics, were identified in flames and discharges by recording their emission spectra.

In the $1920^{\circ} \mathrm{s}$ and $1930^{\circ} \mathrm{s}$, the new quantum theory provided spectroscopists with a sound theoretical basis for assigning and interpreting spectra. Development of radar during World War II lead to the new spectroscopic method of Electron Spin Resonance. This technique has been successfully applied to examine a number of free radicals trapped in inert matrices. Carrington' successfully applied it to gas
phase diatomic and linear triatomic free radicals. The hyperfine coupling constants obtained from these investigations provide information on transient molecules that is unobtainable from traditional optical spectroscopy.

Microwave spectroscopy has improved the precision with which molecular parameters can be determined. It has been applied to a number of molecules, most of which are stable.',' Townes' succeeded in detecting rotational transitions of the $O H$ radical in 1955. Nine years later, Powell and Lide' successfully observed and characterized the so radical using microwave spectroscopy.

In the past twenty years, many other techniques have been developed to characterize radical species spectroscopically. New infrared, laser and fluorescence techniques along with improvements in microwave hardware have advanced this type of spectroscopic study to the point where the limiting factors are generation of the radical or developing the theoretical basis for assigning and interpreting the spectra. Developing the theory for a spectroscopic investigation is especially difficult with a radical possessing many coupled nuclear spins.

The 2-cyano-2-propyl radical has been widely used in initiating free radical polymerization. It is produced by the thermal or photolytic decomposition of azobisisobutyronitrile.

The proximity of the $C N$ triple bond with the lone electron makes the lifetime in solution of this radical similar in magnitude to the benzyl
radicals."
Most interest in this radical has been concerned with its properties in solution. Numerous studies have been performed on its lifetime in different solutions and its reactivity with a number of monomers. No gas phase studies were performed, hence only a few sources concerning this radical were relevant to this study.

The 2-cyano-2-propyl radical is known to recombine to form the dimer:

and other minor products that form less readily.' This includes a keteneimine compound

which dissociates back into the radical and eventually forms the stable dimer. ${ }^{10}$ The recombination rate of the radical in $100^{\circ} \mathrm{C}$ biphenyl solution has been monitored by ESR by Kerr et al. ${ }^{11}$ The second order rate constant was found to be $5.5 \times 10^{\prime} \mathrm{M}^{-1} \mathrm{sec}^{-1}$. With a starting concentration of $5 \times 10^{-7} \mathrm{M}$, over half of the radical species remained after 20 minutes. Other work ${ }^{12}$ has presented rate constants an order of magnitude less for the recombination of the free radical than that reported by Kerr.

Other ESR studies of the 2-cyano-2-propyl radical in liquid and solid states have yielded much information concerning the electronic nature of the species. ${ }^{13}{ }^{14}$ The Fermi contact parameters for nitrogen and protons were found to be $9.5 \pm .2$ and $59.0 \pm .6 \mathrm{Mhz}$, respectively. ${ }^{10}$ The study of this radical in the solid state yielded data concerning the anisotropic coupling of the nitrogen nucleus. The parallel dipolar coupling constant was found to be 13 ± 2 gauss ($36 \pm 6 \mathrm{Mhz}$), which indicated a spin density on the nitrogen nucleus of approximately 0.3. ${ }^{14}$

A theoretical study was performed on a series of α-substituted isopropyl and cyclopropyl free radicals. ${ }^{15}$ This study included the 2-cyano-2-propyl radical. The calculations were performed using a Restricted Hartree Fock basis set at a 3-21G level of theory and the "MONSTERGAUSS" program. ${ }^{16}$ The calculations found all α-substituted isopropyl radicals to be nonplanar. The 2-cyano-2-propyl radical deviated the least from planarity with an out of plane angle of 12.7°. The same calculations determined the isopropyl radical to deviate from planarity by 23.1°, however, this radical has been experimentally determined to be planar. " For this reason, the author believes that the most probable structure for the 2-cyano-2-propyl radical is planar (with the exception of the out of plane protons). This can be rationalized by the cyano group being a π-acceptor. Donation of the unpaired electron into the π^{*} orbital on the cyano group would favor a planar structure.

Structural parameters reported from this theoretical structure were $r_{C-M e}=1.51 \mathrm{~A}$ and $r_{C-C N}=1.41 \mathrm{~A}$. The other structural parameters were not reported. The total energy (without nuclear repulsion considered) was
calculated to be -208.20846 Hartrees. Spin densities on each atom were not reported.

The NH_{2} radical has been characterized by Curl and coworkers ${ }^{1}$ using a microwave-optical double resonance technique. The theory for hyperfine splitting due to two equivalent protons and one nitrogen (${ }^{14} N$) was examined in detail. Expressions for the matrix elements of the hyperfine Hamiltonian were derived in this paper. This particular study is important to radical spectroscopists since it considers two different types of nuclei involved in hyperfine splitting. It was found experimentally that two equivalent protons each with $1 / 2$ spin could be treated theoretically as a single l-spin system. With this assumption, a satisfactory spectral fit with reasonable structural and spectroscopic parameters was obtained.

Endo ${ }^{2}$ and coworkers analyzed the rotational spectrum of the trifluoromethyl radical. The theory for the hyperfine structure due to three equivalent fluorine nuclei (k spin) was developed and the matrix elements of the hyperfine Hamiltonian were derived. The off diagonal elements in the quantum number K (quantum number for the angular momentum about the symmetry axis) were neglected in the hyperfine energy matrix which resulted in no systematic errors in calculated and observed lines. Matrix elements diagonal in K are identical to those for a single nucleus with a spin equal to that of the sum of the three component spins (here $3 x_{2}=3 / 2$). An excellent spectral fit justified this approximation.

White has taken Endo's approximation one step further. ${ }^{3}$ In the analysis of the bistrifluoromethyl nitroxide radical $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{NO}$, the two
trifluoromethyl groups were treated as two equivalent $3 / 2$ spin systems. This work extends Endo's approximation to multiple "group spin" systems. White's approximation is used in this study to characterize the hyperfine coupling of the protons on the two equivalent methyl groups. The matrix elements derived by Curl for the $N H_{2}$ radical are used to calculate the hyperfine splitting due to the ${ }^{14} N$ nucleus in the 2 -cyano-2-propyl radical.

Chapter III

Review of Theoretical Concepts

This chapter is composed of four parts. The first part will address the theory used in deriving the pertinent equations involving the fine and hyperfine splitting in free radicals. The second and third parts will deal with the description of the moments of inertia and the asymmetric rigid rotor respectively. The final section will discuss the symmetry of asymmetric rotor rotational energy levels.

Coupling Theory

It has been shown that an angular momentum eigenfunction $\mid j m>$ spans an irreducible representation $D^{(J)}$ of R_{3}, the infinite rotation group. ${ }^{21}, 2^{22},{ }^{23}$ In other words, if one rotates the coordinate system but not the angular momentum state $\mid j m>$, its $(2 j+1)$ states in the new coordinate system may be expressed as a linear combination of the $(2 j+1)$ states of the previous coordinate system.

$$
[3.1] \quad D(\alpha \beta \gamma)|j m\rangle=\sum_{m=j}^{j} \mid j m^{\prime}>D(j) m_{m m}(\alpha \beta \gamma)
$$

where m^{\prime} refers to the new coordinate system, the $d^{(j)} m^{\prime} m^{(\alpha \beta \gamma)}$ are the
coefficients depending on j, m and m^{\prime} and on α, β, and γ, the Euler angles of rotation.

This property is similar to that of the spherical harmonics $Y_{m}^{l}(\theta, \phi)$, where we can say that $21+1$ ortnonormalized functions $Y_{m}^{l}(\theta, \phi)$ form an invariant subspace under the set of operators $D(\alpha \beta Y)$. Premultiplying both sides of equation 3.1 with <jm/, integrating and applying the orthonormality of the angular momentum eigenfunctions, the matrix elements of the coordinate transformation can be expressed as

$$
\begin{equation*}
d_{m m^{\prime}}^{(\alpha)}(\alpha \gamma)=\left\langle j m^{\prime}\right| \mathbf{D}(\alpha \beta \gamma)|j m\rangle \tag{3.2}
\end{equation*}
$$

Thus, for a given j, there are $(2 j+1)^{2}$ elements in the matrix which describe this transformation. The general matrix of this kind is called the Wigner rotation matrix.

The direct product of two independent sets of states $\left|j_{i} m_{1}\right\rangle$ and $\left|j_{2} m_{2}\right\rangle$ consist of $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$ product functions $\left|j_{1} m_{2}\right\rangle\left|j_{2} m_{2}\right\rangle$ all of which are eigenfunctions of the operators $j_{1 Z}, j_{2 Z}, j_{1}^{2}$ and j_{2}^{2}. These product functions are not necessarily eigenfunctions of $j^{2}\left(j^{2}=j_{1}^{2}+j^{2}\right)$. However, there exists a unitary transformation that transforms this set of product functions into another orthogonal set of $\left(2 j_{1}+1\right)\left(2 j_{2}+2\right)$ states which are eigenfunctions of j^{2} along with j_{2}^{2}, j_{1}^{2} and $j_{Z}\left(j_{Z}=j_{1 Z}{ }^{+j}{ }_{2 Z}\right)$. The matrix elements connecting these two schemes are the Clebsch-Gordon Coefficients. ${ }^{24}$

$$
\begin{equation*}
\left|j_{1} m_{1}>\right| j_{2} m_{2}>\rightarrow \text { Clebsch-Gordon Coefficients } \rightarrow \mid j_{j} j_{2} j m> \tag{3.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{j}_{1}^{2} \mathrm{j}_{2}^{2} \mathrm{j}_{12} \mathrm{j}_{22} \rightarrow \text { Clebsch Gordon Coefficients } \rightarrow \mathrm{j}_{1}^{2} \mathrm{j}_{2}^{2} \mathrm{j}^{2} \mathrm{j}_{z} \tag{3.4}
\end{equation*}
$$

Clebsch-Gordon coefficients are often called vector-coupling (or VC) coefficients and will be referred to as VC coefficients in this thesis. Equation 3.3 can be written in a more explicit form describing the coupled states and VC coefficients.

$$
\begin{equation*}
\left|j_{j} j m\right\rangle=\sum_{m_{1} m_{2}} C_{m_{1} m_{2} m}^{1_{2} j_{2} j}\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle \tag{3.5}
\end{equation*}
$$

For convenience, $\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle$ can be written as $\left|j_{1} m_{1} j_{2} m_{2}\right\rangle$. Multiplying both sides of Equation 3.5 by this quantity and integrating over all possible states, the expression for the VC coefficient is found.

$$
\begin{equation*}
C_{m_{1} m_{2} m}^{j_{1} j_{j}}=\left\langle j_{1} m j_{2} m_{2} \mid j_{j} j_{2} j m\right\rangle \tag{3.6}
\end{equation*}
$$

From this, one observes that the coefficients are actually scalar products of the states $\left|j_{1} m_{1} j_{2} m_{2}\right\rangle$ and the state $\left|j_{1} j_{2} j m\right\rangle$. The geometrical interpretation of this result is that one can regard the state $\mid j_{1} j_{2} j m$ as a vector in a $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$ subspace spanned by the orthogonal product states $\left(\left|j_{1} m_{1} j_{2} m_{2}\right\rangle\right)$. This means the contribution of a state, $\left|j_{1} m_{1} j_{2} m_{2}\right\rangle$, to this vector is the projection of a vector on this state, or the scalar product of the two states. Using this concept, equation 2 can be rewritten as

$$
\begin{equation*}
\left|j j_{2} m\right\rangle=\sum_{m_{1} m_{2}}\left|j_{1} m_{j_{2}} m_{2}\right\rangle\left\langle j_{1} m_{j_{2}} m_{2} \mid j_{j} j_{j} m\right\rangle \tag{3.7}
\end{equation*}
$$

This can also be found by using the identity operator expressed as

$$
\begin{equation*}
\mathbf{E}=\sum_{m_{1} m_{2}}\left|j_{1} m_{1} j_{2} m_{2}\right\rangle\left\langle j_{1} m_{j_{2}} m_{2}\right| \tag{3.8}
\end{equation*}
$$

and applying it to one side of the expression

$$
\begin{equation*}
\left|j_{\nu} j_{j} m\right\rangle=\left|j_{j} j_{2} m\right\rangle \tag{3.9}
\end{equation*}
$$

In order to evaluate the VC coefficients, their properties must first be examined. The coefficient vanishes unless $m_{2}+m_{2}=m$ and $\left(j_{1}+j_{2}\right) \geq j \geq\left|j_{2}-j_{2}\right|$ (this is called the triangle condition). This arises as a consequence of rules for vector addition of angular momenta. The coefficients are also real and form an orthogonal matrix.

The symmetry of the VC coefficients can be used to simplify their evaluation. For example:

$$
\begin{equation*}
\left.\left\langle j_{1} m_{\sqrt{2}} m_{2} \mid j_{\sqrt{2}} j_{3} m_{3}\right\rangle=(-1)^{j_{2}+m_{2}}\left(\frac{j_{3}+1}{2 j_{1}+1}\right)^{1 / 2}<j_{2}-m_{2} j_{3} m_{3} \right\rvert\, j_{2} j_{3} j_{1} m_{1}> \tag{3.10}
\end{equation*}
$$

which indicates a relationship between two VC coefficients differing only in the order or sign of their constituent and their m values. This and similar relationships reduce the number of coefficients it is necessary to tabulate.

Wigner has introduced a symbol that has very simple symmetry properties and is very closely related to the VC coefficients." This is called a $3-J$ symbol and is defined by

$$
\left.\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \tag{3.11}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)=(-1)^{1_{1}-j_{2}-m_{3}}\left(2 j_{3}+1\right)^{-1 / 2}<j_{1} m_{1} j_{2} m_{2} \right\rvert\, j_{2} j_{3} m_{3}>
$$

An even permutation of columns results in an unchanged value for the symbol,

$$
\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \tag{3.12}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)=\left(\begin{array}{lll}
j_{2} & j_{3} & j_{1} \\
m_{2} & m_{3} & m_{1}
\end{array}\right)=\left(\begin{array}{lll}
j_{3} & j_{1} & j_{2} \\
m_{3} & m_{1} & m_{2}
\end{array}\right)
$$

and an odd permutation results in a symbol multiplied by the factor $(-1)^{j_{1}}+j_{2}+j_{3}$

$$
(-1)^{j_{1}+j_{2}+j_{3}}\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \tag{3.13}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)=\left(\begin{array}{lll}
j_{2} & j_{1} & j_{3} \\
m_{2} & m_{1} & m_{3}
\end{array}\right)
$$

The practical and computational advantages of the $3-J$ symbols are obvious due to the simplicity of these relationships.

The relationship connecting elements of the rotation matrix is now addressed. It can be shown that ${ }^{2 s}$

$$
\begin{align*}
& d_{m_{1}^{\prime} m_{1}}^{\left(j_{1}\right)}(\alpha \beta \gamma) d_{m_{2}^{\prime} m_{2}}^{\left(v_{2}\right)}(\alpha \beta \gamma)=\sum_{j}\left\langle j_{1} m^{\prime} j_{2} m_{2}^{\prime} \mid j_{j} j\left(m_{1}^{\prime}+m_{2}^{\prime}\right)\right\rangle \tag{3.14}\\
& x<j_{1} m_{1} j_{2} m_{2} \mid j_{\nu} j_{2}\left(m_{1}+m_{2}\right)>d_{\left(m_{1}+m_{2}^{\prime}\right),\left(m_{1}+m_{2}\right)}^{(\eta}(\alpha \beta \gamma)
\end{align*}
$$

Hence, if one takes any element of matrix $D^{\left(j_{1}\right)}(\alpha \beta \gamma)$, and
multiplies it by any element of matrix $D^{\left(j_{2}\right)}(\alpha \beta \gamma)$, the result can be expressed as a linear combination of the matrices $D^{j}(\alpha \beta \gamma)$ where j can have values of $\left|j_{1}-j_{2}\right|$ up to $j_{1}+j_{2}$. Equation 3.14 can be expressed in a computationally more convenient form if the VC coefficient are replaced by 3-J symbolism.

$$
\begin{align*}
d_{m_{1}^{\prime} m_{1}}^{\left(v_{1}\right)}(\alpha \beta \gamma) d_{m_{2}^{\prime} m_{2}}^{\left(j_{2}\right)}(\alpha \beta \gamma)=\sum_{j}(2 j+1) & \left(\begin{array}{ccc}
j_{1} & j_{2} & j \\
m_{1^{\prime}} & m_{2} & -\left(m_{1}^{\prime}+m_{1}^{\prime}\right)
\end{array}\right) \tag{3.15}\\
& \times\left(\begin{array}{ccc}
j_{1} & j_{2} & j \\
m_{1} & m_{2} & -\left(m_{1}+m_{2}\right)
\end{array}\right) d_{\left(m_{1}^{\prime}+m_{2}^{\prime}\right),\left(m_{1}+m_{2}\right)(\alpha \beta \gamma)}^{(\alpha)}
\end{align*}
$$

When these angular momenta couple form a resultant total angular momentum j, the order of the coupling can be carried out in several different ways. The order of the coupling determines the phase of the resulting vector. Associated with each of the different coupling schemes are intermediate values of angular momentum winch result in the same final total angular momentum. These states are independent and must be distinguishable by these intermediate j values and mode of coupling. It follows from the development of the VC coefficients that each mode of coupling must be related by a unitary transformation.

If one couples j_{1} and j_{2} together first, then couples the resulting vector j_{12} with the remaining vector j_{3}, the state is symbolized by $\mid\left(j_{1} j_{2}\right) j_{12} j_{3} j m>$. Similarly, if j_{2} and j_{3} are coupled together first the corresponding symbol is $\mid j_{1}\left(j_{2} j_{3}\right) j_{i 3} j m>$. Following the argument developed for two angular momenta, one can write ${ }^{2 \prime}$

$$
\begin{equation*}
\mid\left(j_{\nu} j_{2}\right) j_{1} j_{3} j m>\rightarrow \text { transformation coefficients } \rightarrow \mid j_{1}\left(j_{2} j_{3}\right) j_{2} j m> \tag{3.16}
\end{equation*}
$$

$$
\left|\left(j_{j} j_{2}\right) j_{12} j_{3} j m\right\rangle=\sum\left\langle\begin{array}{c}
\substack{\text { expansion coefficient }} \tag{3.17}\\
\left(j_{2}\right) j_{1} j_{j} j\left|j_{1}\left(j_{j} j_{3}\right) j_{23} j\right\rangle
\end{array} \quad\right| j_{1}\left(j_{2} j_{3}\right) j_{2 j} j m>\delta_{j j^{\prime}} \delta_{m m^{\prime}}
$$

where the expansion coefficient is merely the scalar product between kets taken from the coupling schemes. These coefficients are independent of M and vanish unless $J=J$ and $M=M^{\prime}$. They are often called recoupling coefficients since they describe the transformation between two different coupling schemes.

These expansion coefficients have certain symmetry properties that may be utilized to simplify their evaluation. A short hand notation can be employed similar to the $3-J$ symbolism. It is the $6-3$ symbolism. It is related to the expansion coefficients by the following expression ${ }^{2}$

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \tag{3.18}\\
j_{3} & j & j_{23}
\end{array}\right\}=(-1)^{j_{1}+j_{2}+j_{3}+j}\left[\left(2 j_{12}+1\right)\left(2 j_{23}+1\right)\right]^{-1 / 2}\left\langle\left(j_{j_{2}}\right) j_{12} j_{3} j \mid j_{1}\left(j_{2} j_{3}\right) j_{2} j\right\rangle
$$

It should be noted that a $6-\mathrm{J}$ symbol is denoted by a brace and a $3-\mathrm{J}$ symbol by parenthesis.

A 6-J symbol is unaltered in value by the interchange of any two rows or columns or by switching the upper and lower members of any two rows.

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \tag{3.19}\\
j_{4} & j_{5} & j_{6}
\end{array}\right\}=\left\{\begin{array}{lll}
j_{4} & j_{5} & j_{3} \\
j_{1} & j_{1} & j_{6}
\end{array}\right\}=\left\{\begin{array}{lll}
j_{2} & j_{1} & j_{3} \\
j_{5} & j_{4} & j_{6}
\end{array}\right\}
$$

The triangle condition holds for any possible row in a ó-J symbol. The symbol can also be expressed in terms of $3-J$ symbols

$$
\begin{align*}
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\} & =\sum_{a!: n, m_{1}, m_{2}}(-1)^{j_{4}+j_{5}+j_{6}+n_{1}+n_{2}+n_{3}}\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) \tag{3.20}\\
& \times\left(\begin{array}{ccc}
j_{1} & j_{5} & j_{6} \\
m_{1} & n_{5} & -n_{6}
\end{array}\right)\left(\begin{array}{ccc}
j_{4} & j_{2} & j_{6} \\
-n_{4} & m_{2} & m_{6}
\end{array}\right)\left(\begin{array}{ccc}
j_{4} & j_{5} & j_{6} \\
m_{4} & -n_{5} & m_{3}
\end{array}\right)
\end{align*}
$$

Just as recoupling of three angular momenta could be described using the $6-\mathrm{J}$ symbolism, the recoupling of four leads to the $9-\mathrm{J}$ symbol. Following the line of reasoning used to obtain the $3-\mathrm{J}$ and $6-\mathrm{J}$ symbols, any state in a particular coupling scheme can be expressed. ${ }^{2}$
$\left|\left(j_{\nu} j_{2}\right) j_{12}\left(j_{3} j_{4}\right) j_{34} j m\right\rangle=\sum_{j_{13}}\left\langle\left(j_{i} j_{2}\right) j_{12}\left(j_{3} j_{4}\right) j_{34} j\right|\left(j_{\nu} j_{3}\right) j_{13}\left(j_{j} j_{4} j_{24} j\right\rangle \quad\left|\left(j_{j} j_{3}\right) j_{13}\left(j_{2} j_{4}\right) j_{24} j m\right\rangle$ expansion coefficient

The expansion, or recoupling, coefficients are independent and possess certain symmetry properties. Wigner has replaced the coefficients with closely related properties with greater symmetry. Nine angular momenta are required in order to define them, thus they are called 9-J symbols and are defined by the following relationship. ${ }^{29}$

$$
\begin{align*}
\left\langle\left(j_{j}\right) j_{12}\left(j_{3} j_{4}\right) j_{34} j \mid\left(j j_{3}\right) j_{13}\left(j_{2} j_{4}\right) j_{24} j\right\rangle= & {\left[\left(2 j_{14}+1\right)\left(2 j_{34}+1\right)\left(2 j_{13}+1\right)\left(2 j_{24}+1\right)\right]^{1 / 2} } \\
& \times\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{j 4} & j_{34} \\
& j_{13} & j_{24}
\end{array}\right\}
\end{align*}
$$

An even permutation of rows or columns or a transposition results
in an unchanged value for the $9-J$ symbol. An odd permutation of rows or columns results in a factor of $(-1)^{\Sigma}$ all j multiplying the symbol. The 9-J symbols can be expressed in terms of the $6-J$ symbols and ultimately in terms of the 3-J symbols.

Having reviewed the method used to describe the coupling of angular momenta and their behavior upon coordination transformation, the effect of the symmetrization upon operations will be considered. In particular, the transformation properties of operators under coordinate rotations will be addressed.

It is known that functions which transform under coordinate rotations transform into linear combinations of a closed set of functions. This concept can be applied to operators as well. ${ }^{30}$

Many operators that occur in spectroscopy are built from products of components of simpler operators. They are called compound operators or, in this discussion, compound irreducible tensor operators. Irreducible tensor operators have been defined such that under coordinate transformations they behave identically to angular momenta. For this reason, building compound irreducible tensor operators is the same as coupling angular momenta.

An irreducible tensor operator ("ITO") of rank K is a set of $2 K+1$ operators, T_{q}^{K} (where q can have values of K to $-K$), which under a coordinate rotation transform according to the relation ${ }^{31}$

$$
\begin{equation*}
\mathbf{D}(\alpha \beta \gamma) \mathbf{T}_{q}^{k} \mathbf{D}^{-1}(\alpha \beta \gamma)=\sum_{q^{\prime}} \mathbf{T}_{q^{\prime}}^{k} \cdot d_{q^{\prime} q}^{(k)}(\alpha \beta \gamma) \tag{3.23}
\end{equation*}
$$

Under coordinate rotation $D(\alpha \beta \gamma)$, the operator T_{q}^{X} is transformed
into a linear combination of the $2 K+1$ operators, with the expansion coefficients being elements of the Wigner rotation matrices. Note that the definition concerns itself only with the transformation properties of the operators and not with the detailed form.

In order to utilize the transformation properties of coupled angular momenta, the operators which eventually give us the desired quantities must be written in irreducible tensor form.

Simple examples of rewriting the operators into the necessary form will be informative. For example, many operators are scalar, $k=0$, and only one operator spans the D^{0} representation.

$$
\begin{equation*}
\mathrm{D}(\alpha \beta \gamma) \mathrm{T}_{0}^{0} \mathrm{D}^{-1}(\alpha \beta \gamma)=\mathrm{T}_{0}^{0} d_{00}^{0}=\mathrm{T}_{0}^{0} \cdot 1=\mathrm{T}_{0}^{0} \tag{3.24}
\end{equation*}
$$

For $k=1$, there are three component operators, T_{1}^{1}, T_{0}^{1} and T_{-1}^{1} which form a first rank irreducible operator. Under coordinate transformation, they must transform into one another.

$$
\begin{equation*}
\mathbf{D}(\alpha \beta \gamma) \mathbf{T}_{0}^{1} \mathbf{D}^{-1}(\alpha \beta \gamma)=\mathbf{T}_{-1}^{1} d_{-10}^{1}+\mathbf{T}_{0}^{1} d_{00}^{1}+\mathbf{T}_{1}^{1} d_{01}^{1} \tag{3.25}
\end{equation*}
$$

These three component operators span the representation and they constitute a vector operator. The simplest example of a vector operator is the position operator \boldsymbol{r}, having components $\mathbf{r}_{X}, \mathbf{r}_{Y}$ and $\mathbf{r}_{\mathbf{Z}^{\circ}}{ }^{\mathbf{3 2}}$ These components do not, however, transform according to Equation 3.23, thus they do not satisfy the definition of an irreducible tensor operator. The component operators r_{X}, r_{Y}, r_{Z} do not $\operatorname{span} D(1)$ in the standard form. The transformation coefficients in Equation 3.1 are elements of
the Wigner rotation matrices, which are defined in terms of a transformation of a standard set of basis functions. A suitable orthogonal transformation of the set $\left\{\mathbf{r}_{X}, r_{Y}, r_{Z}\right\}$ will result in another set that spans $D^{(1)}$ in the appropriate standard form.

$$
\begin{equation*}
\mathbf{z} \equiv \mathbf{T}_{0}^{1}, \quad-2^{-1 / 2}(x+i y) \equiv \mathbf{T}_{1}^{1}, \quad 2^{-1 / 2}(x-i y) \equiv \mathbf{T}_{-1}^{1} \tag{3.26}
\end{equation*}
$$

These operators are proportional to the spherical harmonics $Y_{m}^{1}(\theta, \phi)$. This is not surprising considering the way irreducible tensor operators are defined in Equation 3.23. This fact will also help in writing operators into irreducible tensor operator form when the rank is greater than 0 .

Given two irreducible tensor operators of rank k_{1} and k_{2} spanning $D^{\left(k_{1}\right)}$ and $D^{\left(k_{2}\right)}$, a direct product can be defined consisting of all the $\left(2 k_{1}+1\right)\left(2 k_{2}+1\right)$ possible products $T_{q}^{k} T_{q}^{k}$. A linear combination of these products will span the irreducible representation contained in the product representation $D^{\left(k_{1}\right)} \times D\left(k_{2}\right)^{33}$

A simple example at this point will be informative. Consider the direct product of two first rank irreducible tensor operators, a compound operator made up of two lst rank irreducible tensor operator. The direct product will span the representation:

$$
\begin{equation*}
D^{1} \otimes D^{1}=D^{2}+D^{1}+D^{0} \tag{3.27}
\end{equation*}
$$

In other words, one second rank, one first rank and one scalar tensor operator are formed.

$$
\begin{equation*}
T^{1} \otimes T^{1}=T^{2}+T^{1}+T^{0} \tag{3.28}
\end{equation*}
$$

Referring back to the theory developed for coupling angular momenta, the correct linear combination of the three tensor operators on the right of Equation 3.28 is given by the VC coefficients of $\left|j_{1} m_{1}\right\rangle$ and $\left|j_{2} m_{2}\right\rangle$ where $j_{1}=j_{2}=1{ }^{34}$

It has been shown that the T_{q}^{k} behave under coordinate rotations in the same way as the spherical harmonics, Y_{q}^{k}, and therefore the same as the states $|\mathrm{kq}\rangle^{24}$ This allows the coupling of commuting tensor operators to be mathematically identical to the coupling of angular momenta. Thus, only transformational and group theoretical properties of the states or operators are needed.

Having outlined the theory for the coupling for several angular momenta and compound operators, it remains only to examine the procedures used to generate the necessary angular momenta matrix elements. First, a theorem which allows one to separate the physical part of the problem from the geometric aspect is introduced. This is called the Wigner-Eckert Theorem. ${ }^{3 s}$ An operator T_{q}^{k} operating on a state |ajm> transforms under rotations as follows.

$$
\begin{align*}
\mathbf{D}(\alpha \beta \gamma)\left[\mathbf{T}_{q}^{k} \mid \alpha \beta \gamma>\right] & =\mathbf{D}(\alpha \beta \gamma) \mathrm{T}_{q}^{k} \mathrm{D}^{-1}(\alpha \beta \gamma) \mathbf{D}(\alpha \beta \gamma) \mid \alpha j m> \\
& =\sum_{q^{\prime}} d_{q q^{\prime}}^{k}(\alpha \beta \gamma) \mathbf{T}_{q^{\prime}}^{k} \times \sum_{m^{\prime}} d_{m m^{\prime}}^{\prime}(\alpha \beta \gamma) \mid \alpha j m> \tag{3.29}\\
& =\sum_{q^{\prime} m^{\prime}} d_{q^{\prime} q}^{(k)}(\alpha \beta \gamma) d_{m m^{\prime}}^{(v)}(\alpha \beta \gamma) \mathbf{T}_{q^{\prime}}^{k}\left|\alpha j m^{\prime}\right\rangle
\end{align*}
$$

The $(2 k+1)(2 j+1)$ products $T_{q}^{k} \mid \alpha j m>$ transform under rotation as bases for
the direct product representation $D^{(k)} \times D^{(j)}$. This representation can be broken up :ito subspaces.

$$
\begin{equation*}
D^{(k)} \otimes D^{(0)}=D^{(k+j)}+\ldots D^{|k-j|} \tag{3.30}
\end{equation*}
$$

The linear combination of the products $T_{q}^{k} \mid \alpha j m>$ that transforms according to a particular component $|\beta J M\rangle(J=k+j$. . $|k-j|)$ of the $2 J+1$ functions that are basis for a particular representation D^{J} are given by the $V-C$ coefficients

$$
\begin{equation*}
\left|\beta J M>=\sum<k q j m\right| k j J M>\left.\mathbf{I}_{q}^{k}\right|_{\alpha j m}> \tag{3.31}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\mathrm{T}_{q}^{k}\left|\alpha j m>\sum_{J M}<k q j m\right| k j J M>\mid \beta J M> \tag{3.32}
\end{equation*}
$$

multiplying both sides of Equation 3.32 by $\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right|$

$$
\begin{equation*}
\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| \mathrm{T}_{q}^{k}|\alpha j m\rangle=\sum_{J M}\langle k q j m \mid k j J M\rangle\left\langle\alpha^{\prime} j^{\prime} m^{\prime} \mid \beta J M\right\rangle \tag{3.33}
\end{equation*}
$$

Due to the orthogonality of angular momentum eigenfunctions, the summation vanishes except when $J=j^{\prime}$ and $M=m^{\prime}$. This makes the value of the summation independent of m^{\prime}. Thus, Equation 3.33 can be written

$$
\begin{equation*}
\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| \mathrm{T}_{q}^{k}|\alpha j m\rangle=\left\langle k q j m \mid k j j^{\prime} m^{\prime}\right\rangle\left\langle\alpha^{\prime} j^{\prime}\right|\left|\mathrm{T}^{k} k\right||\alpha j\rangle \tag{3.34}
\end{equation*}
$$

where $\left\langle\alpha^{\prime} j^{\prime}\left\|T^{k}\right\| \alpha j\right\rangle$ is equal to $\left\langle\alpha^{\prime} j^{\prime} m^{\prime} \mid \beta j^{\prime} m^{\prime}\right\rangle$ and is called the reduced matrix element. Equation 3.34 shows that the matrix elements of an
irreducible tensor operator can be factored into a coupling constant and a term independent of magnetic quantum numbers.

The VC coefficient in Equation 3.34 can be replaced with the $3-J$ symbolism to give an expression which will appear in many matrix elements in this study.

$$
\left\langle\jmath^{\prime} j^{\prime} m^{\prime}\right| \mathrm{T}_{q}^{k}|\alpha j m\rangle=(-1)^{k-j+m^{\prime}}\left(2 j^{\prime}+1\right)^{1 / 2}\left(\begin{array}{ccc}
j^{\prime} & k & j \tag{3.35}\\
-m & q & m
\end{array}\right)\left\langle\alpha^{\prime} j^{\prime}\right|\left|T^{k}\right||\alpha j\rangle
$$

If the value of one reduced matrix element $\left\langle\alpha^{\prime} j^{\prime}\right| T^{k}|\alpha j\rangle$ is known, then all of the rest can be evaluated. The values of the reduced matrix elements of pertinent operators (I, L and S) have been evaluated. ${ }^{30}$

Now that the Wigner-Eckert theorem has been introduced, all tools necessary to generate the matrix elements of ITO's are present. The basic steps for deriving the formulas are as follows.

1) Functions are constructed such that they form standard basis functions for the full rotation group.
2) All operators are written in irreducible tensor operator form.
3) The wigner-ickert theorem is employed to factor matrix elements into the reduced matrix element (physical component) and the $3-J$ symbolism (the geometrical component).
4) If the operator is compound, the reduced matrix element of the operator is expressed in terms of the component operators. In doing this, 6-J and 9-J symbols are often introduced to signify the recoupling of several component operators.

This method and the theory behind it is best understood by use of
examples. For this reason, the expressions for matrix elements of the fine and hyperfine Hamiltonians for this system will be derived, not merely shown, in Chapter 4. Useful relations employed in these derivations are outlined in Appendix A.

Moments of Inertia

The classical angular momentum P of a rigid system of point masses is given by

$$
\begin{equation*}
\mathbf{P}=\underline{\mathbf{I}} \cdot \omega \tag{3.36}
\end{equation*}
$$

where $\underline{\omega}$ is the angular velocity and $\underline{\underline{I}}$ is the inertial tensor. The elements of this tensor are:

$$
\begin{align*}
& I_{x x}=\sum_{l} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) \tag{3.37}\\
& I_{y y}=\sum_{i} m_{i}\left(z_{i}^{2}+x_{l}^{2}\right) \tag{3.38}\\
& I_{z z}=\sum_{l} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right) \tag{3.39}\\
& I_{x y}=I_{y x}=-\sum_{l} m_{i} x_{i} y_{l} \tag{3.40}\\
& I_{z x}=I_{x z}=-\sum_{l} m_{i} x_{i} z_{i} \tag{3.41}\\
& I_{z y}=I_{y z}=-\sum_{l} m_{i} y_{i} z_{l} \tag{3.42}
\end{align*}
$$

where the summation is over all particles in the system, m_{i} is the mass of the $i^{\text {th }}$ particle and x_{i}, y_{i} and z_{i} are $i t s$ cartesian coordinates in the center of mass coordinate system. By rotation of the center of mass coordinate system, the products of inertia $I_{x y}, I_{x z}, I_{y z}$ can be reduced
to zero, leaving only nonzero diagonal elements. These elements are called the principal moments of inertia and are the roots of the cubic equation

$$
\left|\begin{array}{ccc}
I_{x x}-I & I_{x y} & I_{x z} \tag{3.43}\\
I_{y x} & I_{y y}-I & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}-I
\end{array}\right|=0
$$

The axes of this new coordinate system in which the inertial tensor is diagonal are normally designated by a, b and c, and the principal moments by I_{A}, I_{B} and I_{C}. By convention, the largest moment is designated I_{C}, the smallest I_{A} and the intermediate I_{B}.

Rigid Assymetric Rotor

If a molecule possesses no equivalent or zero moments of inertia, it is classified as an asymmetric top molecule. The rotational Hamiltonian for such a molecule is given by

$$
\begin{equation*}
\mathbf{H}_{r}=(1 / 2)\left(\frac{P_{a}^{2}}{I_{a}}+\frac{P_{b}^{2}}{I_{b}}+\frac{p_{c}^{2}}{I_{c}}\right) \tag{3.44}
\end{equation*}
$$

where the P_{g} are the components of angular momentum along the principal interital axes $(g=a, b, c)$. To simplify the Hamiltonian, rotational constants are introduced.

$$
\begin{equation*}
A=\frac{h}{8 \pi^{2} I_{a}} \tag{3.45}
\end{equation*}
$$

$$
\begin{align*}
& B=\frac{h}{8 \pi^{2} I_{b}} \tag{3.46}\\
& C=\frac{h}{8 \pi^{2} I_{c}} \tag{3.47}
\end{align*}
$$

The rigid rotor Hamiltonian is now written

$$
\begin{equation*}
\mathbf{H}_{r}=\frac{4 \pi^{2}}{h}\left[A P_{a}^{2}+B P_{b}^{2}+C P_{c}^{2}\right] \tag{3.48}
\end{equation*}
$$

For an asymmetric top molecule, the energy levels (except for the lowest states) cannot be expressed in a single algebraic form like those for a symmetric top molecule. They must be obtained by diagonalization of the energy matrix. A description of the rotation used to designate the energy levels of an asymmetric top molecule relative to those of a symmetric top molecule will be informative.

For a prolate symmetric top molecule having $B=C \neq A$, Equation 3.48 simplifies to

$$
\begin{equation*}
\mathbf{H}_{r}=\frac{4 \pi^{2}}{h}\left[B P^{2}+(A-B) P_{a}^{2}\right] \tag{3.49}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{r}=h B J(J+1)+h(A-B) K^{2} \tag{3.50}
\end{equation*}
$$

where J is the quantum number related to the total angular momentum and K is that related to the projection of the total angular momentum on the symmetry axis of the molecule. J can have any nonnegative value and K can have values ranging from $-J$ to $+J$.

Similarly, an expression for an oblate top molecule having $A=B \neq C$ is

$$
\begin{equation*}
E_{r}=h B J(J+1)+h(C-B) K^{2} \tag{3.51}
\end{equation*}
$$

For an asymmetric top molecule B can have values ranging from A to C, depending on the asymmetry of the molecule. An asymmetry parameter is introduced to help describe the energy of this type of rotor.

$$
\begin{equation*}
\kappa=\frac{2 B-A-C}{A-C} \tag{3.52}
\end{equation*}
$$

Note that $k=-1$ corresponds to the molecule being a prolate symmetric top, $B=C$ and $K=1$ to its being an oblate symmetric top, $B=A$. These are the two limiting cases for K .

In symmetric top molecules, the energy levels corresponding to $-k$ and K are degenerate due to the energy expression containing only K^{2} terms. For the symmetric rotor there are $\mathrm{J}+1$ energy levels for a given value of J. These levels are not degenerate in asymmetric molecules and there will be $2 J+1$ levels for a particular J value.

For an asymmetric top molecule, J and its projection M on an axis fixed in space are constants of motion and are good quantum numbers. The K quantum number is not and cannot be used to specify a rotational state. However, rotational energy levels for an asymmetric rotor are designated or indexed by a superscript giving the value of J and subscripts giving those of $K\left(K_{-1}\right)$ for the limiting prolate case and K $\left(K_{1}\right)$ for the limiting oblate case. An alternate method involves the subscripting of J with τ where τ is defined by

$$
\begin{equation*}
\tau=K_{-1}-K_{1} \tag{3.53}
\end{equation*}
$$

τ has values ranging from $-J$ to J with increasing energy. For the rigid asymmetric rotor, Equation 3.48 can be rearranged to give ${ }^{11}$

$$
\begin{equation*}
\mathbf{H}_{r}=\frac{4 \pi^{2}}{h}\left[\frac{1}{2}(A+C) P^{2}+\frac{1}{2}(A-C) \mathbf{H}(\kappa)\right] \tag{3.54}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{H}(\kappa)=P_{a}^{2}+\kappa P_{b}^{2}-P_{c}^{2} \tag{3.55}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{2}=P_{a}^{2}+P_{b}^{2}+P_{c}^{2} \tag{3.56}
\end{equation*}
$$

The Hamiltonian cannot be solved directly and a general closed expression for the wavefunctions cannot be obtained. The asymmetric rotor wavefunctions must be expressed as linear combinations of symmetric top function

$$
\begin{equation*}
\Psi_{(a)}=\sum_{n} c_{n} \Psi_{(s) N} \tag{3.57}
\end{equation*}
$$

where $\Psi_{(s) n}$ is a normalized set of orthogonal symmetric top wavefunctions.

Using $H_{a}=E \Psi_{a}$ with Ψ_{a} given by Equation 3.57 yields

$$
\begin{equation*}
\sum_{n} c_{n} \mathrm{H} \Psi_{n}=E \sum_{n} c_{n} \Psi_{n} \tag{3.58}
\end{equation*}
$$

Multiplication by Ψ_{m}^{*} and integrating gives

$$
\begin{equation*}
\sum_{n} c_{n} \int \Psi_{m}^{*} \mathrm{H} \Psi_{n} d \tau=E \sum_{n} c_{n} \int \Psi_{m}^{*} \Psi_{n} d \tau \tag{3.59}
\end{equation*}
$$

Incorporation of the orthogonality of the symmetric top wavefunctions leads to a set of equations. The criteria for having a solution for this set of equations is that the determinant vanishes.

$$
\begin{equation*}
\left|(m|\mathbf{H}| n)-E \delta_{m n}\right|=0 \tag{3.60}
\end{equation*}
$$

Knowing the matrix elements $(m|H| n)$, one can solve for the energies of an asymmetric rotor. The nonvanishing matrix elements are

$$
\begin{equation*}
\left(J K M\left|\mathbf{P}_{2}\right| J K M\right)=K h \tag{3.61}
\end{equation*}
$$

$$
\begin{equation*}
\left(J K M\left|\mathbf{P}^{2}\right| J K M\right)=J(J+1) h^{2} \tag{3.62}
\end{equation*}
$$

$$
\begin{equation*}
\left(J K M\left|\mathrm{P}_{2}^{2}\right| J K M\right)=K^{2} h^{2} \tag{3.63}
\end{equation*}
$$

$$
\begin{equation*}
\left(J K M\left|\mathbf{P}_{y}^{2}\right| J K M\right)=\left(J K M\left|\mathbf{P}_{x}^{2}\right| J K M\right)=\frac{1}{2}\left[J(J+1)-K^{2}\right] h^{2} \tag{3.64}
\end{equation*}
$$

$$
\begin{align*}
& \left(J K M\left|\mathbf{P}_{y}^{2}\right| J K \pm 2 M\right)=-\left(J K M\left|P_{x}^{2}\right| J K \pm 2 M\right)= \\
& \frac{1}{4}\{[J(J+1)-K(K \pm 1)][J(J+1)-(k \mp 1)(K \mp 2)]\}^{1 / 2} h^{2} \tag{3.65}
\end{align*}
$$

The matrix is diagonal in J but has off-diagonal elements in K. It is Hermitian, thus $H_{K, K+2}=H_{K+2, K}=H_{-K,-K-2}=H_{-K-2,-K}$. The matrix is diagonal in J so each J block may be solved separately. This procedure is explained in detail in a variety of sources. ${ }^{34}$,"

Symmetry of the Asymmetric Rotor Wavefunction.

The symmetry of the total wavefunction depends on the combined symmetries of each of the component functions.

$$
\begin{equation*}
\Psi_{T}=\Psi_{e} \Psi_{v} \Psi_{r} \Psi_{n} \tag{3.66}
\end{equation*}
$$

where Ψ_{T} is the total wavefunction, $\Psi_{e}, \Psi_{v}, \Psi_{r}$ and Ψ_{n} are the electronic, vibrational, rotational and nuclear functions, respectively.

The asymmetric rotor functions are distinguished by their behavior with respect to a 180° rotation about the three principal axes $\left(C_{2}^{a}, C_{2}^{b}\right.$, C_{2}^{c}). The C_{2}^{c} and C_{2}^{a} operations are all that need be considered since C_{2}^{b} is equivalent to the other two carried out in succession. There are four different types of rotational levels, ++, +-, -+, -- where the first sign refers to the behavior of the corresponding wavefuntion with respect to the C_{2}^{c} operation and the second with respect to the $C_{2}^{a}{ }^{\text {" }}$

For a $C_{2 v}$ molecule, if the a axis (corresponding to the least moment of inertia) is the C_{2} axis, the rotational eigenfunctions belong.
to type A or B for,++-+ or,+--- levels respectively. A type rotational levels are considered symmetric and B type are considered antisymmetric. The parity classifications of the rotational levels of a nonplanar molecules are not of interest in this work and will not be discussed.41

The symmetry of the total wavefunction is also effected by the nuclear spin quantum numbers, I_{i}. If two (or more) identical nuclei exchange upon a C_{2} rotation, the total wavefunction must obey BoseEinstein statistics if I for a single nucleus is integer or Fermi-Divac statistics if I is half integer. For I being an integer, the total wavefunctions is symmetric with respect to rotation about the symmetry axis. If I is half integer, the wavefunction is antisymmetric.

There are $(2 I+1)^{2}$ total spin functions for two identical nuclei, $(I+1)(2 I+1)$ are symmetric and $I(2 I+1)$ antisymmetric. For two $3 / 2$ spin nuclei (which obey Fermi Dirac statistics) the symmetric spin functions ($I=3,1$) combine only with the antisymmetric rotational levels and antisymmetric spin functions ($I=2,0$) combine only with the symmetric rotational levels when the molecule is in a totally symmetric vibronic and electronic state.

Chapter IV

Matrix Elements of the Hamiltonian

Using the theory outlined in the previous section, the Hamiltonian and appropriate matrix elements for the analysis of the microwave spectrum of the 2-cyano-2-propyl radical were developed. Hund's coupling case b applies to this molecule as it does to all nonlinear radicals." For an asymmetric top radical, the electron spin angular momentum \underline{S} couples to the molecular rotation angular momentum \underline{N} to give a resulting momentum $\underline{\mathbf{J}}$. This results in a doubling of each rotational line producing fine structure in the observed spectrum.

If there exists at least one nucleus with nonzero spin in the molecule, its nuclear spin \underline{I} will couple with \underline{J} resulting in a total angular momentum E. When several such nuclei are present in the molecule, the introduction of intermediate angular momentum vectors \mathcal{F}_{j} is necessary. Hence, the coupling scheme for the 2-cyano-2-propyl radical is

$$
N+S=L ; L+L_{N}=E_{1 ;} E_{1}+l_{H}=E
$$

where I_{N} is the nuclear spin state of the ${ }^{14} N$ nucleus and I_{H} is the
total nuclear spin state of the six protons. ${ }^{14} N$ is taken as the first nucleus coupled with \underline{J} strictly for convenience. The order in which different nuclei are coupled into the system will not effect the calculated splitting.' Splitting of the rotational lines due to nuclear spin is referred to as hyperfine splitting.

The Hamiltonian needed to analyze the spectrum of the 2-cyano-2propyl radical is

$$
\begin{equation*}
\mathbf{H}=\mathbf{H}_{r o r}+\mathbf{H}_{s r}+\mathbf{H}_{h f}^{N}+\mathbf{H}_{h f}^{H} \tag{4.1}
\end{equation*}
$$

where the terms on the right describe molecular rotations, spin-rotation coupling, ${ }^{14} N$ hyperfine interactions and ${ }^{1} H$ hyperfine interactions, respectively. $H_{r o t}$ is the asymmetric rotor Hamiltonian which was discussed earlier. The remaining three will be addressed separately.

Spin Rotation

Unpaired electrons produce three types of fine structure interactions. These are spin-orbit, spin-rotation and spin-spin. Spinspin interactions apply only to molecules with more than one unpaired electron. The spin orbit interaction is generally several orders of magnitude smaller than spin-rotation interaction in an asymmetric top radical. ${ }^{43}$ This makes spin-rotation the predominant term in the fine splitting of the 2-cyano-2-propyl radical rotational spectrum. The Hamiltonian for spin-rotation is given by"

$$
\begin{equation*}
\mathbf{H}_{s r}=(1 / 2) \sum_{\alpha, \beta} \varepsilon_{\alpha \beta}\left(\mathbf{N}_{\alpha} \mathbf{S}_{\beta}+\mathbf{S}_{\beta} \mathbf{N}_{\alpha}\right) \tag{4.2}
\end{equation*}
$$

where $\alpha, \beta=X, Y, Z$. This can be rewritten in terms of spherical tensors

$$
\begin{equation*}
\mathbf{H}_{s r}=(1 / 2) \sum_{k=0}^{2}\left[T_{p}^{k}(\varepsilon) T^{k}(\mathbf{N}, \mathbf{S})+T^{k}(\mathbf{N}, \mathbf{S}) T^{k}(\varepsilon)\right] \tag{4.3}
\end{equation*}
$$

where

$$
T_{p}^{k}(\mathbf{N}, \mathbf{S})=(-1)^{p}(2 k+1)^{1 / 2} \sum_{p_{1} p_{2}} T_{p_{1}}^{1}(\mathbf{N}) T_{p_{2}}^{1}(\mathbf{S})\left(\begin{array}{ccc}
1 & 1 & k \tag{4.4}\\
p_{1} & p_{2} & -p
\end{array}\right)
$$

where $T_{p}^{k}(\varepsilon)$ is an irreducible tensor of rank K composed of the spin rotation coupling constants. $T^{k}(\varepsilon)$ is a second rank tensor and in general will have nine components. In a molecule with no symmetry, only six components are independent. The number of independent components decreases with increasing molecular symmetry. A molecule possessing $C_{2 V}$ symmetry will have a tensor where only the diagonal elements remain. The matrix elements of the Hamiltonian are evaluated using Hund's case b basis functions |NKSJMJ. No contributions due to \underline{I} or \underline{F} are present in the functions since spin-rotation interaction is independent of nuclear spins. The rotational parts of these functions are the symmetric top functions which simultaneously diagonalize the N^{2} and N_{2} operators. They can be expressed by the wigner rotation matrix of rank N.

$$
\begin{equation*}
\left\lvert\, N K M>=\left[\frac{(2 N+1)}{8 \pi}\right]^{1 / 2} D_{m k}^{(N)^{*}}(\omega)\right. \tag{4.5}
\end{equation*}
$$

An anomalous sign arises between the commutation relations of angular momentum operators that are molecule fixed and those that are spacefixed. Transforming all molecule-fixed components (q) of angular momenta to space-fixed components (p) alleviates this difficulty This is done using the wigner rotation matrix.

$$
\begin{equation*}
T_{p}^{k}(\varepsilon)=\sum_{q} d_{p q}^{(k)^{*}}(\omega) T_{q}^{k}(\varepsilon) \tag{4.6}
\end{equation*}
$$

Using the spherical tensor operator given in equation 4.3 and the tensor relations given in Appendix A, the spin rotation matrix elements can be written.

$$
\begin{aligned}
& <N^{\prime} K^{\prime} S J^{\prime} M^{\prime}, H_{s r} \mid N K S J M_{j}>=\delta_{\Gamma J} \delta_{M_{J}^{\prime} M_{J}} \sum_{k=0}^{2}(2 k+1)^{1 / 2}\left[S(S+1)(2 S+1)(2 N+1)\left(2 N^{\prime}+1\right)\right]^{1 / 2} \\
& \times\left\{\begin{array}{ccc}
1 & 1 & k \\
N^{\prime} & N & N
\end{array}\right\}(-1)^{J+S+N}(1 / 2)\left\{(-1)^{k}[N(N+1)(2 N+1)]^{1 / 2}\left\{\begin{array}{ccc}
1 & 1 & k \\
N^{\prime} & N & N
\end{array}\right\}\right\} \\
& \times \sum_{q}(-1)^{N^{\prime}-K^{\prime}}\left(\begin{array}{ccc}
N^{\prime} & k & N \\
-K^{\prime} & q & K
\end{array}\right) T_{q}^{k}(\varepsilon)
\end{aligned}
$$

This equation indicates the spin-rotation Hamiltonian has non-vanishing matrix elements where $\Delta N=0, \pm 1$ and $\Delta K=0, \pm 1, \pm 2$. The matrix is diagonal in J. In a molecule possessing $C_{2 V}$ symmetry, $\Delta K= \pm 1$ also vanish." Derivation of the spin-rotation matrix elements has been reported in several different publications, (Cook and DeLucia"' is one of the better). Thus only an outline was presented here. Other Hamiltonian matrix elements where the derivation is more informative and less well
known will be derived in greater detail.

Hyperfine Coupling

Interactions involving nuclear spin angular momentum are usually very small and can only be observed using a high resolution instrument. In free radicals, the most important hyperfine interactions are magnetic which are due to the coupling between unpaired electrons and the nuclear spin in the molecule. This type of coupling can occur with any nucleus having nonzero spin, unlike nuclear quadrupole coupling which requires the nucleus to have a spin greater than k. Nuclear quadrupole due to ${ }^{14} \mathrm{~N}$ coupling will also be present in the 2-cyano-2-propyl radical, but the magnitude of its splitting will be below the resolution of the microwave spectrometer used in this study. Nuclear spin-rotation and nuclear spin-nuclear spin interaction will also be unresolved since they are several orders of magnitude smaller than other hyperfine couplings.

The magnetic interactions of the unpaired electron and nuclear spins is composed of two terms. The first term is the interaction of electron orbital angular momentum \underline{L} and nuclear spin angular momentum \underline{I}. This interaction does not exist in nonlinear radicals ${ }^{43}$ and will not be discussed further. The second term arises from the interaction of the electron spin angular momentum \underline{S} and nuclear spin angular momentum \underline{I}. It is composed of two parts, the Fermi contact interaction and the dipole-dipole interaction. The operators are given respectively as:

$$
\begin{equation*}
\mathbf{H}_{F}=a_{F} \mathbf{S} \cdot \mathbf{I} \tag{4.8}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{H}_{D D}=\mathrm{S} \cdot \mathrm{I} \cdot \mathbf{I} \tag{4.9}
\end{equation*}
$$

where I denotes a second rank traceless tensor.
The Fermi contact interaction is due to the finite probability of finding the lone electron at the nucleus being considered, tnus the Fermi contact parameter a_{F} is proportional to the expectation value of the unpaired electron at this nucleus, $|\psi(0)|^{2}$. Hence, it is proportional to the S character of the orbital that the electron occupies. The parameter can be written:

$$
\begin{equation*}
a_{F}=(8 \pi / 3) g_{g} g_{N} \beta \beta_{N}|\psi(0)|^{2} \tag{4.10}
\end{equation*}
$$

The remainder of the Fermi contact Hamiltonian is S•I. These are vector operators and can be written in spherical tensor rotation. Using the states from Hand's case b coupling ($\underline{N}+\underline{S}=\underline{J}, \underline{J}+\underline{I}_{N}=\underline{E}_{1}$) and considering only the ${ }^{14} \mathrm{~N}$ nucleus, the matrix elements are initially expressed as:

$$
\left\langle N^{\prime} K^{\prime} S J^{\prime} I_{N} F_{1} M_{F_{1}}^{\prime}\right| T^{1}(\mathbf{S}) \cdot T^{1}\left(\mathbf{I}\left|N K S J I_{N} F_{1} M_{F_{1}}\right\rangle\right.
$$

Operators $T^{1}(S)$ and $T^{1}(I)$ commute because their eigenfunctions are independent, i.e. they refer to different parts of the system. The scalar product of two vectors is a scalar thus, part A.6.3 of Appendix A applies to this case. The matrix elements now may be written

$$
\begin{align*}
& \left.<V^{\prime} K^{\prime} S J^{\prime} I_{N} F_{1} M_{F_{1}}^{\prime}\left|T^{1}(\mathbf{S}) \cdot T^{1}(\mathbf{I})\right| N K S J I_{N} F_{1} M_{F_{1}}\right\rangle=(-1)^{J+I_{N}+F_{1}} \delta_{F_{1} F_{1}} \delta_{M^{\prime} F_{1}} M_{F_{1}} \\
& \left.\left\{\begin{array}{ccc}
F_{1} & I_{N} & J^{\prime} \\
1 & J & I_{N}
\end{array}\right\} \sum_{N^{\prime \prime} K^{\prime \prime}}<N^{\prime} K^{\prime} S J^{\prime}| | T^{1}(\mathbf{S})| | N^{\prime \prime} K^{\prime \prime} S J\right\rangle\left\langle N^{\prime \prime} K^{\prime \prime} I_{N}\right|\left|T^{1}(\mathbf{I})\right|\left|N K I_{N}\right\rangle \tag{4.11}
\end{align*}
$$

where the terms after the $6-J$ symbol are the reduced matrix elements. The second reduced matrix element will be zero unless $N^{\prime \prime}=N$ and $K^{\prime \prime}=K$ and can be written

$$
\begin{align*}
\left.<N^{\prime \prime} K^{\prime \prime} I_{N}\left\|T^{1}(\mathrm{I})\right\| N K I_{N}\right\rangle & \equiv\left\langle I_{N}\right|\left|T^{1}(\mathrm{I}) \| I_{N}\right\rangle \delta_{N^{\prime}} N^{\prime} \delta_{K^{\prime \prime} K} \tag{4.12}\\
& =\left[I_{N}\left(I_{N}+1\right)\left(2 I_{N}+1\right)\right]^{1 / 2}
\end{align*}
$$

The first reduced matrix elements in Equation 4.11 involves a tensor operator working only on part two of a coupled state, as in A.6.4 of Appendix A. This reduced matrix element can now be written

$$
\begin{align*}
\left.<N^{\prime} K^{\prime} S J^{\prime}\left\|T^{i}(\mathbf{S})\right\| K N S J\right\rangle= & (-1)^{N+S+J^{\prime}+1}\left[(2 J+1)\left(2 J^{\prime}+1\right)\right]^{1 / 2}\left\{\begin{array}{lll}
S & J^{\prime} & N \\
J & S & 1
\end{array}\right\} \tag{4.13}\\
& \left.\times<K^{\prime} N^{\prime} S \| T^{1}(\mathrm{~S})| | K N S\right\rangle
\end{align*}
$$

and

$$
\begin{equation*}
\left.\left\langle K^{\prime} N^{\prime} S \backslash\right| T^{1}(\mathrm{~S})| | K N S\right\rangle=[S(S+1)(2 S+1)]^{1 / 2} \tag{4.14}
\end{equation*}
$$

Combining equations 4.11-4.14, the matrix element expression for the Fermi contact parameter for the nitrogen nucleus is obtained.

$$
\begin{gather*}
<N^{\prime} K^{\prime} S J^{\prime} I_{N} F_{1}, M_{F_{1}}^{\prime}\left|\mathbf{H}_{F}\right| N K S J I_{N} F_{1} M_{F_{1}}>=\delta_{F_{1} \cdot F_{1}} \delta_{M^{\prime} F_{1} M_{F_{1}}} \delta_{N N^{\prime}} \delta_{K^{\prime} K}(-1)^{J+1+F}(-1)^{N+S+J^{\prime}+1} \\
{\left[(2 J+1)\left(2 J^{\prime}+1\right) I_{N}\left(I_{N}+1\right)\left(2 I_{N}+1\right) S(S+1)(2 S+1)\right]^{1 / 2} \quad[4.1 .} \tag{4.15}\\
\left\{\begin{array}{ccc}
F_{1} & I_{N} & J^{\prime} \\
1 & J & I_{N}
\end{array}\right\}\left\{\begin{array}{lll}
S & J^{\prime} & N \\
J & S & 1
\end{array}\right\} a_{F}\left(I_{N}\right)
\end{gather*}
$$

The second set of nuclei considered in the hyperfine splitting of the 2-cyano-2-propyl radical are the six equivalent hydrogens. The hyperfine splitting of six equivalent nuclei with $1 / 2$ spins has been addressed by White ${ }^{3}$. It was found that the hyperfine matrix elements of six equivalent spins can be handled in the same way as a single nucleus with a spin of the vector sum of the original six. The assumptions and reasoning behind this is detailed in Appendix E. The proton hyperfine coupling is calculated for total spin states of $0,1,2$, and 3.

For the Fermi interactions for the protons, a different coupled state, $\left|N K S J I_{N} F_{1} I_{H} F M_{F}\right\rangle$, and a slightly different operator, $\left[a_{F} \cdot T^{\prime}(S) \cdot T^{\prime}\left(I_{H}\right)\right]$, are used to formulate the matrix elements. Following the same logic as that for the nitrogen nucleus, one obtains an exprassion differing only in the first reduced matrix element of Equation 4.11. The new reduced matrix element will add a factor of

$$
(-1)^{J^{\prime}+F_{1}+I_{N}+1}\left[\left(2 F_{1}+1\right)\left(2 F_{1}+1\right)\right]^{1 / 2}\left\{\begin{array}{ccc}
I_{N} & J^{\prime} & F_{1}^{\prime} \\
1 & F_{1} & J
\end{array}\right\}
$$

to the original element expression. The second reduced matrix element now refers to the proton spin state rather than the nitrogen spin resulting in cnanging I_{N} to I_{H} in the expression. The final expression
for the Fermi contact matrix elements of the protons is:

$$
\begin{align*}
& <N^{\prime} K^{\prime} S J^{\prime} I_{N} F_{1} I_{H} F M_{F}\left|a_{F} \cdot T^{\prime}(\mathbf{S}) \cdot T^{1}(\mathrm{I})\right| N K S J I_{N} F_{1} I_{H} F M_{F}>=(-1)^{2 F_{1}+F+2 J^{\prime}+S+N+I_{N}+I_{H}} \\
& \times\left[\left(2 F_{1}+1\right)\left(2 F_{1}+1\right)(2 J+1)\left(2 J^{\prime}+1\right) I_{H}\left(I_{H}+1\right)\left(2 I_{H}+1\right)\right]^{1 / 2}\left\{\begin{array}{ccc}
F & I_{H} & F_{1} \\
1 & F_{1} & I_{H}
\end{array}\right\} \tag{4.16}\\
& \times\left\{\begin{array}{ccc}
I_{N} & J^{\prime} & F_{1} \\
1 & F_{1} & J
\end{array}\right\}\left\{\begin{array}{ccc}
N & J^{\prime} & S \\
1 & S & J
\end{array}\right\} a_{F}\left(I_{H}\right)
\end{align*}
$$

Dipole-dipole interactions arise from the interaction of two dipoles (electron and nuclear spins); consequently the interaction depends upon their mutual orientation and a tensoral quantity is required to describe it. Dipole-dipole matrix elements are slightly more involved. The S•I•I operator can be rewritten using spherical tensors.

$$
\begin{equation*}
\mathbf{H}_{D D}=\left[T^{2} \times T^{i}(\mathbf{S})\right]^{1} \cdot T^{1}(\mathrm{I}) \tag{4.18}
\end{equation*}
$$

The matrix elements for the second nucleus were not rigorously derived for the Fermi contact term. The dipole-dipole matrix elements are now derived in order to clarify now one obtains the matrix expressions for the second nucleus. The coupled state used is $\left|N K S J I_{N} F_{i} I_{H} F M_{F}\right\rangle$. Equation 4.18 is applied to this coupled state. The two operators, $T^{\prime}(I)$ and $\left[I^{2} \times T^{1}(S)\right]^{1}$, operate on different parts of this state, thus they commute. The expression for the scalar product of commuting tensor operators, A.6.3 of Appendix A is once again applicable."

$$
\begin{align*}
& <N^{\prime} K^{\prime} S J^{\prime} I_{N} F_{1}^{\prime} F M_{F}^{\prime}\left|\left[\underline{I}^{2} \times T^{1}(\mathbf{S})\right]^{1} \cdot T^{1}(\mathbf{I})\right| N K S J I_{N} F_{1} F M_{F}>=\delta_{F F} \delta_{M_{F}^{\prime} M_{F}}(-1)^{F_{1}+I_{N}+F} \\
& \left.\left.\left\{\begin{array}{lll}
F & I_{N} & F_{1} \\
1 & F_{1} & I
\end{array}\right\}<N^{\prime} K^{\prime} S J^{\prime} I_{N} F_{1} \|\left[T^{2} \times T^{1}(\mathbf{S})\right]^{1}| | N K S J I_{N} F_{1}\right\rangle\left\langle I_{H}\right|\left|T^{1}(\mathrm{I})\right| I_{H}\right\rangle \tag{4.19}
\end{align*}
$$

The first reduced matrix element is defined by

$$
\begin{equation*}
\left\langle I_{H}\left\|T^{1}(\mathrm{I})\right\| I_{H}\right\rangle=\left[I_{H}\left(I_{H}+1\right)\left(2 I_{H}+1\right)\right]^{1 / 2} \tag{4.20}
\end{equation*}
$$

Since both operators are independent of I_{N}, they can now be treated as a single operator in a coupled scheme." Using A.6.4, the second redeuced matrix element can be rewritten as:

$$
\begin{align*}
& <N^{\prime} K^{\prime} S J^{\prime} I_{N} F_{1}\left\|\left[T^{2} \times T^{1}(\mathbf{S})\right]^{1}\right\| N K S J I_{N} F_{1}>=(-1)^{\left.J^{\prime}+I_{N}+F_{1}+1\right)} \\
& {\left[\left(2 F_{1}+1\right)\left(2 F_{1}+1\right)\right]^{1 / 2}\left\{\begin{array}{ccc}
J^{\prime} & F_{1} & I_{N} \\
F_{1} & J & 1
\end{array}\right\}<N^{\prime} K^{\prime} S J^{\prime}\left\|\left[T^{2} \times T^{1}(\mathbf{S})\right]^{\prime}\right\| N K S J>} \tag{4.21}
\end{align*}
$$

The two operators operate on different systems, thus A. 6.2 can be applied to Equation 4.21. This results in

$$
\begin{align*}
&\left\langle N^{\prime} K^{\prime} S J^{\prime}\left\|\left[T^{2} \times T^{1}(\mathrm{~S})\right]^{1}\right\| N K S J\right\rangle=\left\langle N^{\prime} K^{\prime}\left\|\underline{T}^{2}\right\| N K\right\rangle\left\langle S\left\|T^{1}(\mathrm{~S})\right\| S\right\rangle \\
& N^{\prime} N \tag{4.22}\\
& \hline
\end{align*}
$$

The first reduced matrix element in Equation 4.22 is simply defined as

$$
\begin{equation*}
\left\langle S\left\|T^{1}(\mathbf{S})\right\| S\right\rangle=[S(S+1)(2 S+1)] \tag{4.23}
\end{equation*}
$$

The components of angular momentum in the second reduced matrix element
of 4.22 are defined in the molecule fixed coordinate system. They are transformed into space fixed coordinates in the same manner shown earlier with the spin-rotation interaction (Equation 4.6). Including this transformation, the second reduced matrix element is rewritten"

$$
\left(N^{\prime} K^{\prime}| | \underline{T}^{2} D_{q}^{2}| | N K\right)=\left[\left(2 N^{\prime}+1\right)(2 N+1)\right]^{1 / 2}(-1)^{N-K^{\prime}}\left(\begin{array}{ccc}
N^{\prime} & 2 & N \tag{4.24}\\
-K^{\prime} & q & K
\end{array}\right) T_{q}^{k}(\Delta K)
$$

The dipole-dipole matrix elements for the second nuclei can then be written

$$
\begin{align*}
& <N^{\prime} K^{\prime} S J^{\prime} I_{N} F_{1} F M_{F}\left|\mathbf{H}_{D D}\right| N K S J I_{N^{\prime}} F_{1} F M_{F}>=(-1)^{2 F_{1}+F+J^{\prime}+N^{\prime}+I_{N}+I_{H}+K^{\prime}} \\
& \times\left[I_{H I}\left(I_{H}+1\right)\left(2 I_{H}+1\right) S(S+1)(2 S+1)\left(2 N^{\prime}+1\right)(2 N+1)(2 J+1)\left(2 J^{\prime}+1\right)\left(2 F_{1}+1\right)\left(2 F_{1}+1\right)\right]^{1 / 2} \\
& \left\{\begin{array}{ccc}
I_{N} & J^{\prime} & F_{1}^{\prime} \\
1 & F_{1} & J
\end{array}\right\}\left\{\begin{array}{ccc}
F & l_{H} & F_{1} \\
1 & F_{1} & I_{H}
\end{array}\right\}\left\{\begin{array}{lll}
N^{\prime} & N & 1 \\
S & S & 1 \\
J^{\prime} & J & 2
\end{array}\right\} \sum_{q}(-1)^{N-K^{\prime}}\left(\begin{array}{ccc}
N^{\prime} & 2 & N \\
-K^{\prime} & q & K
\end{array}\right) T_{q}^{2}(\Delta K) \tag{4.25}
\end{align*}
$$

where

$$
\begin{gather*}
g_{S} g_{N} \beta \beta_{N} T_{0}^{2}(C)=\frac{T_{z z}}{2}=-\frac{\left(T_{y y}+T_{x x}\right)}{2} \tag{4.26}\\
g_{S} g_{N} \beta \beta_{N} T_{ \pm 1}^{2}(C)=\mp(1 / \sqrt{6})\left(T_{x z} \pm i T_{y z}\right) \tag{4.27}\\
\cdot \tag{4.28}\\
g_{S} g_{N} \beta \beta_{N} T_{ \pm 2}(C)=(1 / \sqrt{24})\left(T_{x x}-T_{y y} \pm 2 i T_{x y}\right)
\end{gather*}
$$

The dipole-dipole matrix element expression for the first nuclei is found in a similar fashion

$$
\begin{align*}
& \left\langle N^{\prime} K^{\prime} S J^{\prime} I_{N} F_{1} M^{\prime} F_{1}\right| H_{D D}\left|N K S J I_{N} F_{1} M_{F_{1}}\right\rangle=(-1)^{F_{1}+J+N+I_{N}+K^{\prime}} \\
& {\left[\left(2 J^{\prime}+1\right)(2 J+1)\left(2 N^{\prime}+1\right)(2 N+1) S(S+1)(2 S+1) I_{N}\left(I_{N}+1\right)\left(2 I_{N}+1\right)\right]^{1 / 2}} \\
& \left\{\begin{array}{ccc}
F & I_{N} & J^{\prime} \\
1 & J & I_{N}
\end{array}\right\}\left\{\begin{array}{lll}
N^{\prime} & N & 2 \\
S & S & 1 \\
J^{\prime} & J & 1
\end{array}\right\}\left(\begin{array}{ccc}
N^{\prime} & 2 & N \\
-K & \Delta K & K
\end{array}\right) T_{q}^{2}(\Delta K) \tag{4.29}
\end{align*}
$$

The selection rules for the hyperfine matrix elements are $\Delta \mathbb{N}=0, \pm 2$; $\Delta K=0, \pm 1, \pm 2$ and $\Delta J=0, \pm 1$. The algebraic expressions for the specific $3-J$, $6-\mathrm{J}$ and $9-\mathrm{J}$ symbols used in the fine and hyperfine coupling expressions are listed in Appendix B, C and D respectively.

A computer program was written to calculate the contributions of the fine and hyperfine interactions to the splitting of rotational transition. A detailed description of the program with a copy of the written code and a sample output is included in Appendix F.

Chapter V
 Experimental

The thermolysis and photolysis of azoisobisbutyronitrile (AIBN) to generate the 2-cyano-2-propyl radical has been used for many years by polymer chemists to initiate free radical polymerizations.

The same reaction is used to generate the radical for spectroscopic characterization.

The starting compound (Aldrich Chemical Co.) was recrystallized from cold methanol to insure purity. The melting point of the resulting crystals was $104^{\circ} \mathrm{C}$, agreeing well with that reported by Aldrich.

The fully deuterated analog was synthesized from d'acetone (Aldrich Chemical Co.) using the following reaction ${ }^{\text {so }}$

The final product was recrystallized twice from cold methanol. The melting point was $104^{\circ} \mathrm{C}$. Proton NMR of the final compound indicated that no detectable exchange of methyl deuterons with other protons had occurred.

Thermogravimetric Analysis-Mass Spectrometry was performed on the proton sample to determine the temperature at which AIBN evaporated and the resulting decomposition products whicn would be present. At atmospheric pressure, the compound evaporated at $127^{\circ} \mathrm{C}$. The mass spectrum shown in figure 5.1, contained the radical ion peak but no molecular (AIBN) ion peak. This suggests that thermolysis occurs at or below $127^{\circ} \mathrm{C}$.

The 2-cyano-2-propyl radical has been shown to have a significant lifetime in solution." Its lifetime in the gas phase has not been measured. A lifetime study of the radical was necessary in order to establish its presence in the microwave cell for a suitable length of time.

The first attempt at establishing a lifetime for the radical was performed using Electron Paramagnetic Resonance. This was not successful due to the lack of intense lines. In the gas phase, orbital angular momentum is quenched and the electron spin angular momemtum $\underline{\mathbf{S}}$

Figure 5.1 Thermogravimetric Analysis/Mass Spectrum of AIBN (sample evaporated at $127^{\circ} \mathrm{C}$)
decouples from the molecular frame work due to rotation of the molecule. Thus, only magnetic dipole transitions are possible. This results in numerous lines of extremely low intensity. For this reason, very few nonlinear radicals have been studied in the gas phase with EPR. ${ }^{51}$ This is also the reason why no reproducible signal was obtained for the 2 -cyano-2-propyl radical in the gas phase.

A successful lifetime study was performed using gas phase infrared spectroscopy (Figure 5.2). An apparent ketene-imine ($-C=C=N$) peak normalized with respect to the $\mathrm{C}-\mathrm{H}$ stretch was used to monitor radical concentration in the IR cell at $130^{\circ} \mathrm{C}$. Absence of a $\mathrm{N}-\mathrm{H}, \mathrm{CN}$ or $\mathrm{C}-\mathrm{N}$ stretch in the spectra confirmed the ketene-imine peak was due to the radical.

The ketene-imine peak was observed in the IR spectrum for approximately 60 minutes before a reduction in its intensity became apparent. This coincided with the cyano ($C=N$) stretch becoming stronger due to the recombination of the radical into 2-2'dimethyl,2$2^{\prime}$ dicyanopropane. Extrapolating from this study, once the radical is generated in the microwave cell, spectra of it could be obtained for at least 45 minutes. The IR experiment was repeated on the fully deuterated species with identical results other than expected peak shifts from D replacement.

The microwave spectrometer used in this study consisted of a standard Stark cell (three meters in length), a computer controlled Hewlett Packard 8673 oscillator and a Princeton Applied Research lockin amplifier. The Stark modulation frequency used was 35 Khz with a field strength of 750 V . Lower Stark fields were attempted but resulted

cm^{-1}
in a reduction in intensity of the microwave lines.
The cell is connected to a vacuum manifold through which the sample is introduced. For this study, the cell was heated to $110^{\circ} \mathrm{C}$ to prevent sample condensation in the cell. A schematic of the Stark cell is shown in Figure 5.3.

Thermal generation of the radical was attempted but due to the higher vacuum in the manifold of the Stark system as compared to that in the IR cell in earlier studies, the AIBN sublimed at $100^{\circ} \mathrm{C}$. The resulting spectrum consisted of methanol (solvent used for recrystallizing original compound) and ammonia (impurity believed to be present in cell prior to this study). This sample was frozen from the microwave cell and analyzed. It was determined that the AIBN had not dissociated into the radical. The absence of any observable rotational transitions (other than methanol or ammonia) indicated that the AIBN molecule has no strong microwave lines, thus will not interfere with the observation of the radical spectrum. This absence of any observable radical spectrum indicated that UV photodissociation would be necessary to generate an adequate concentration of the radical in the microwave cell.

Sublimed AIBN was passed through a quartz adaptor and photolyzed using a 140 watt Hg UV lamp before entering the microwave cell (Figure 5.4). The spectrum was obtained using sample pressures ranging from 50 to 100 microns. It consisted of many lines which could not be attributed to methanol or ammonia. These lines disappeared after approximately two hours (depending on sample pressure in the microwave cell) indicating their transient nature.

Figure 5.3 Schematic of Stark Modulated Spectrometer System

Figure 5.4 Radical Generation Apparatus for Microwave

The lines were broad ($4-5 \mathrm{Mhz}$) due in part to the relatively high pressure in the cell and in part due to unresolved hyperfine structure. Some of the lines exhibited fine structure which was impossible to assign due to noise in the spectrometer system and the possibility of vibrational satellites resulting from relatively high sample temperatures.

Chapter VI

Results

The observed microwave spectrum consisted of many lines which were due to methanol and ammonia in addition to those of the radical. A spectrum of methanol at $100^{\circ} \mathrm{C}$ was obtained in the same cell used for the observation of the radical spectrum. This spectrum of pure methanol was compared to the radical spectrum to insure that methanol lines were not erroneously assigned to the radical. Ammonia lines appeared in both the methanol and radical spectra. It is not known how the ammonia was introduced into the cell but once in the cell it is exceptionally difficult to completely remove. As with methanol, however, the lines were well cataloged and presented no problem other than to mask out an occasional weak radical transition.

The dimerized radical (2,3 dicyano-2,3-dimethylbutane), $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CNC}$ $\mathrm{CCN}\left(\mathrm{CH}_{3}\right)_{2}$, is not commercially available so the compound's microwave spectrum was not directly observed. A rigid rotor calculation using a model structure of the gauche form (the only conformer with a dipole moment) was performed to ascertain the general nature of its microwave spectrum. No spectral patterns of the types predicted were observed in the spectrum. This lead to the conclusions that either this compound
was not present in the cell or, more likely, it nas a trans conformation and exhibits no rotational spectrum.

It is beneficial to have a reasonable initial structure when making an assignment of a microwave spectrum. Since no previous molecular structure determination of the radical had been performed, a theoretical study was employed to obtain an initial structure. A previous theoretical study ${ }^{1 s}$ was performed using a Restricted Hartree-Fock basis set at a 3-21G level. This work was discussed in Chapter II.

Gaussian $80^{\circ 0}$ calculations were performed using an Unrestricted Hartree-Fock basis set at STO-3G and 4-31G levels. In the calculations, $r_{C H}$ was fixed to 1.09 A and angle CCH and angle HCH were set to 109.467°. All other structural parameters were allowed to vary to obtain the lowest energy. The CCMe angle, $r_{C N}, r_{C C}, r_{C M e}$ and the out of plane angle were set as computer program variables. The relative methyl group conformations were systematically varied on successive calculations.

Six different calculations were performed using the STO-3G basis sets: the three relative methyl conformations (staggered, eclipsed and doubly eclipsed) each with planar and nonplanar carbon-nitrogen skeletal networks as initial structures. The nonplanar cases started with an out of plane angle of 10°. Only one of the six calculations resulted in a final nonplanar structure. This nonplanar case had staggered methyl groups and a nonplanar structure as a starting point. The resulting energy was 0.3 Hartrees (180 kilocalories per mole) larger than any of the other five. This calculation is believed to have encountered a false minimum resulting in an erroneous structure.

At a 4-31G level of theory, calculations were performed on the
three methyl conformations but only the staggered form was started with both planar and nonplanar structures. All four calculations resulted in a planar structure with computational oscillations around the three bond lengths allowed to vary. The oscillations were on the order of .02 A . The final structure was taken to be the average of these bond lengths. The energy difference between methyl conformations was theoretically determined to be $120 \mathrm{cal} / \mathrm{mole}$. Structural parameters from the calculations are summarized in Table 6.1 and Fig. 6.1.

The $4-31 G$ structure was used as the inital structure to provide a basis for assigning the microwave spectrum. At best, only three structural parameters can be obtained from the initial fit since the spectrum of a single isotopic species provided only three moments of inertia. Initially, the CCMe angle was set to de 120.55 and $r_{C N}$, $r_{C C}$ and $r_{C M e}$ were systematically varied until the calculated rigid rotor rotational lines were brought into proximity with the observed lines. Once this initial fit of the spectrum was obtained, fine and hyperfine splitting was considered.

The largest splitting of the 2-cyano-2-propyl rotational lines is due to the spin rotation interaction (fine splitting). Lines with no hyperfine structure exist for $\underline{I}_{N}=I_{H}=0$. These lines can be assigned to determine the spin-rotation splitting and the relevant constants involved. Again, a reasonable starting point is needed.

It has been shown by Curl ${ }^{\text {"1 }}$ that the spin-rotation constants ($\varepsilon_{\mathrm{aa}}, \varepsilon_{\mathrm{bb}}, \varepsilon_{\mathrm{cC}}$) are proportional to the corresponding rotational constants of the molecule. These constants are often reported normalized with respect to the rotational constant. Molecules of like symmetry have

Figure 6.1 Theoretical Structural Parameters for the 2-cyanopropryl Radical using 4-31G(STO-3G) Basis Sets

Table 6.1

Final Theoretical Structural Parameters Calculated With Gaussian 80

Basis Set	ST0-3G	$4-31 G$
$r_{\text {C-N }}$	$1.21 \AA$	1.18 A
$r_{\text {C-C }}$	$1.40 \AA$	1.38 A
$r_{\text {C-CH3 }}$	$1.53 \AA$	$1.51 \AA$
$r_{\text {C-H }}$	$(1.09 \AA)^{*}$	$(1.09 \mathrm{~A})$
LCCN	180°	180°
$\angle(M e) C C$	120.55	120.55
$\angle C C H$	$\left(109.5^{\circ}\right)$	$\left(109.5^{\circ}\right)$

*Quantities in the parenthesis were not allowed to vary
normalized spin-rotation constants similar in magnitude. The initial estimates for the spin-rotation constants of the 2-cyano-2-propyl radical were taken to be the average value of the observed normalized spin-rotation constants for several molecules possessing $C_{2 V}$ symmetry multiplied by the rotational constant of the radical as determined from the theoretical study. These parameters are listed in Table 6.2. The magnitude of the $\varepsilon^{\prime} s$ were systematically varied until the calculated splittings agreed with those observed in the spectrum.

Hyperfine interactions for the two different types of nuclei were considered separately. Solution ESR work has shown the Fermi contact parameters to be 59.0 and 9.5 Mhz for ${ }^{1} \mathrm{H}$ and ${ }^{14} \mathrm{~N}$ nuclei, respectively. ${ }^{11}$ It was found that the calculated hyperfine splitting was not sensitive to changes in these parameters, so their values were not varied in the nyperfine fit. Dipole-dipole coupling parameter $T_{c c}$ can be estimated from the spin density on the nucleus of interest. ${ }^{2}$ ESR studies estimate the spin density on the ${ }^{14} N$ to be 0.3. Using the equation

$$
\begin{equation*}
T_{c c} \cong\left(\frac{4}{5}\right) g_{s} g_{n} \beta \beta_{n}\left\langle r^{-3}\right\rangle \tag{6.1}
\end{equation*}
$$

an initial value of $T_{c c}$ could be estimated. For a radical with the unpaired electron in an out of plane p orbital, the relative values of the diagonal components of the dipole-dipole tensor can be expressed as

$$
\begin{equation*}
(1 / 2) T_{c c} \cong-T_{a a} \cong-T_{\mathrm{bb}} \tag{6.2}
\end{equation*}
$$

Thus all diagonal components of the ${ }^{1 "} N$ hyperfine tensor can be

Table 6.2

Normalized Spin Rotation Constants
For $C_{2 V}$ Symmetry Molecules

	$E_{\mathrm{aa}} / \mathrm{A} \times 10^{2}$	$\mathrm{E}_{\mathrm{bD}} / \mathrm{B} \times 10^{2}$	$\mathrm{E}_{\mathrm{CC}} / \mathrm{C} \times 10^{2}$	
NH_{2}	-1.3046	-0.3488	0.0049	[52]
PH_{2}	-3.0782	-1.0145	-0.0056	[53]
NF_{2}	-1.3501	-0.7822	0.0443	[54]
$\mathrm{CH}_{2} \mathrm{~F}$	-0.57	-0.6003	0.0051	[55]
$\mathrm{CH}_{2} \mathrm{Cl}$	-1.1478	-1.4900	0.0785	[56]
NO_{2}	2.2536	0.0593	-0.7742	[57]

estimated from the spin density on the nitrogen nucleus.

The protons behave differently compared to the nitrogen nucleus. Their dipole-dipole coupling is mainly ascribed to the interaction of the protons with the unpaired electron localized on the atom to which the protons are attached. Most proton hyperfine coupling has been measured in molecules where the electron is predominantly localized on the atom to which the proton is attached $\left(\mathrm{NH}_{2}, \mathrm{PH}_{2}, \mathrm{CH}_{2} \mathrm{~F}\right.$, etc. $)$. Hyperfine splitting calculations using the dipole-dipole coupling parameters for $\mathrm{PH}_{2}{ }^{33}$ (which would be expected to be larger than those in the 2-cyano-2propyl radical) and the Fermi contact parameter from ESR studies of the 2-cyano-2-propyl radical resulted in a calculated splitting of less than 1 Mhz . This is too small to be resolved with the spectrometer system using the conditions present in this study.

The observed spectrum did not indicate otherwise. The broadening of observed transitions can be attributed to this unresolved hyperfine splitting. Dipole-dipole coupling constants for the protons could not be determined from this study.

Once initial values for all relevant parameters were obtained, a
 until calculated lines were brought into proximity of observed lines. Differences in calculated lines from fine and hyperfine splitting were compared to observed splittings in the spectrum. Fine and hyperfine coupling constants were varied until calculated splitting matched these observed. The assigned transitions are listed in Table 6.3. Initial and final fine and hyperfine coupling constants are listed in Table 6.4.

Table 6.3
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCM}$ ASSIGNED TRANSITIONS

$N\left(K_{1}, K_{-1}\right)$	- $N\left(K_{1}, K_{-1}\right)$	J-J	$F_{1}-F_{1}$	Obs Freq(Mhz)	$\mathrm{C}-0$ (Mhz)
$3(1,3)$	- $2(1,2)$	2.5-1.5	3.5-2.5	18118.0	-1.3
		3.5-2.5	2.5-1.5	18159.0*	-1.9
			3.5-2.5	18159.0*	-1.8
			4.5-3.5	17590.9	1.7
$3(0,3)$	- 2(0.2)	2.5-1.5	1.5-0.5	19314.3	-0.6
			2.5-1.5	19306.9	1.9
		3.5-2.5	2.5-1.5	19242.0	-0.6
			3.5-2.5	19242.0	-0.6
$3(2,2)$	- $2(2,1)$	2.5-1.5	1.5-0.5	20086.2	-0.4
			2.5-1.5	20074.9	-0.1
			3.5-2.5	20009.6	-1.9
		3.5-2.5	2.5-1.5	20019.1*	-2.4
			3.5-2.5	20019.1*	-0.7
$3(2,1)$	- $2(2,0)$	2.5-1.5	1.5-0.5	20839.9	1.0
			2.5-1.5	20805.0	0.5
		2.5-2.5	2.5-1.5	20786.3*	1.7
			3.5-2.5	20786.3*	-0.1
$3(1,2)$	- $2(1,1)$	2.5-1.5	1.5-0.5	21659.8	-1.9
			3.5-2.5	21558.0	-1.8
		3.5-2.5	2.5-1.5	21612.2	1.5
			3.5-2.5	21616.6	-0.3
			4.5-3.5	21487.4	-1.6

[^0]Table 6.3
(cont.)

4(1,4)	- 3(1,3)	3.5-2.5	2.5-1.5	24117.2	0.9
			3.5-2.5	24071.5	-1.6
			4.5-3.5	24019.7	1.9
		4.5-3.5	3.5-2.5	24031.1*	0.5
			4.5-3.5	24031.1*	-1.1
			5.5-4.5	23792.5	-1.9
4(0,4)	- $3(u, 3)$	3.5-2.5	2.5-1.5	25031.0	0.6
			3.5-2.5	24994.4	1.6
			4.5-3.5	24913.3	1.9
		4.5-3.5	3.5-2.5	24961.0*	0.3
			4.5-3.5	24961.0*	-1.9

> Table 6.4
> Initial and Final Fine and Hyperfine Coupling Constants
> of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$

parameter

$E_{a a}$
$E_{b b}$
$E_{C C}$
$a_{F}\left({ }^{14} N\right)$
$T_{a a}\left({ }^{14} N\right)$
$T_{b b}\left({ }^{14} N\right)$
$T_{C C}\left({ }^{14} N\right)$
$a_{F}\left({ }^{2} H\right)$
59.0

- 1.0
-4.46
5.46
final value(Mhz)
$-69.9 \pm .1$
$-36.1 \pm .1$
$2.7 \pm .1$
$9.5^{\text {a }}$
$-17.2^{b} \pm .1$
$-17.1^{b} \pm .1$
$34.3 \pm .1$
$(-)^{c}$
$(-)^{c}$
$(-)^{c}$
$(-)^{c}$
a) Not varied in fit of data
b) $T_{a a}$ and $T_{b b}$ values can be reversed and identical splitting will result
c) Proton hyperfine splitting not resolved in this study

From the observed lines and calculated splittings, a back calculation was performed to obtain hypothetical unsplit rotational transitions. These are referred to as centerline frequencies and are listed in Table 6.5.

Using a program developed by Kirchoff" (see CDANAL in Appendix F), the centerline frequencies were fit in order to determine the experimental rotational constants. If a sufficient number of observed transitions are available, this program allows the observed transitions to be fit to a maximum of 13 spectral constants (3 rotation constants and 10 centrifugal constants). A rigid rotor fit (using only the three rotational constants to fit the transitions) was performed due to the relatively small number and the low J values (where centrifugal distortion will be minimal) of the rotational transitions assigned.

Rotational constants obtained from this spectral fit were used to determine an experimental structure. The initial (from the theoretical structure) and final rotational constants are listed in Table 6.6. A structure fitting program developed by Scnwendeman ${ }^{\text {bs }}$ (see STRFTQ in Appendix F) was used to vary $r_{C N}, r_{C C}$ and $r_{C-M e}$ through a least squares reduction scheme to best fit the observed moments. These final structural parameters, with an assumed $\mathrm{C}-\mathrm{C}-\mathrm{CH}_{3}$ angle of 120.55 , are listed in Table 6.7.

The microwave spectrum of the fully deuterated species of the 2-cyano-2-propyl radical was experimentally obtained. This experiment was performed in order to better characterize the structure of the radical and to confirm the original assignment of the fully protonated species. The hyperfine splitting due to the six deuterium atoms will be

Initial and Final Rotational Constants for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$		
	Initial	Experimental
A	8274.7 Mhz	$8276.7 \pm 3 \mathrm{Mhz}$
B	3801.7Mhz	$3919.7 \pm .8 \mathrm{Mhz}$
C	2696.5Mnz	2751.5士.4Mnz
K	-0.602	-0.577

Table 6.7
 Structural Parameters of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$
 Prior to $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$ Study
 ((CCMe $=120.55^{\circ}$ assumed)

Parameter	Value
$r_{C N}$	$1.19 \AA_{ \pm .01}$
$r_{C C}$	$1.38 \AA_{ \pm .01}$
$r_{C M e}$	$1.48 \AA_{ \pm .01}$
$r_{C H}$	$(1.09 \AA)$
$\angle C C M e$	120.55°
$\angle C C H$	109.5°

smaller than those due to the protons, thus its spectrum can be analyzed in the same manner as used for the protonated radical.

The structure from the proton species study was used as an initial structure for assigning this spectrum. In order for an assignment to be made, four structural ($r_{\mathrm{CC}}, r_{\mathrm{CN}},{ }^{\mathrm{CCH}}{ }_{3}$, CCMe angle) parameters were varied until the calculated rotational transitions were brought into the vicinity of observed lines. Hyperfine and fine splittings were then added to these lines and compared with those observed in the spectrum.

It must be recognized, in order to fit the deuterated radical spectrum that the fine splittings observed for the protonated species will not be identical to those for the deuterated case. Fine splittings are proportional to the rotational constants. Deuterium substitution signficantly changes all three moments of inertia in the 2-cyano-2propyl radical. This means that the fine splitting parameters will change upon deuteration of the species. However, the normalized fine splitting parameters will not. An initial estimate of the fine splitting parameters for the deuterium species can be calculated from the normalized parameters taken from the proton species.

With these fine splitting parameters and the initial structure from the protonated species, the spectrum of $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$ was assigned in the same manner described for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$. The assigned lines are listed in Table 6.8. Initial and final fine splitting parameters are found in Tade 6.9. Hyperfine splitting parameters for the two species were identical, as expected. Using the assigned lines, the fine and the hyperfine splitting parameters for $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$, the centerlines (listed in

Table 6.8
$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$ ASSIGNED TRANSITIONS

$N\left(K_{1}, K_{-1}\right)$	$-N\left(K_{1}, K_{-1}\right)$	J-J	$F_{1}-F_{1}$	Obs Freq(Mhz)	$\mathrm{C}-\mathrm{O}(\mathrm{Mhz})$
3(1,2)	- $2(1,1)$	2.5-1.5	1.5-0.5	19077.5	1.9
			2.5-1.5	19068.3	0.1
			3.5-2.5	18977.6	0.0
		3.5-2.5	2.5-1.5	19141.2	-1.4
			3.5-2.5	19041.2	1.1
4(1,4)	- 3(1,3)	3.5-2.5	2.5-1.5	20824.1	-2.0
			4.5-3.5	20726.0	1.6
		4.5-3.5	5.5-4.5	20504.1	-0.3
4(0,4)	- $3(0,3)$	3.5-2.5	2.5-1.5	21370.7	0.0
			3.5-2.5	21341.2	-1.1
			4.5-3.5	21253.9	0.4
		4.5-3.5	3.5-2.5	21307.0	0.5
			5.5-4.5	21065.3	1.4
4(2,3)	- $3(2,2)$	3.5-2.5	2.5-1.5	23290.0	-2.2
			3.5-2.5	23232.4	0.4
			4.5-3.5	23134.5	-1.2
		4.5-3.5	3.5-2.5	23210.9	-0.2
			4.5-3.5	23205.1	-1.1
4(3,2)	- $3(3,1)$	3.5-2.5	3.5-2.5	23891.2*	-1.4
		4.5-3.5	3.5-2.5	23891.2*	-2.0
			4.5-3.5	23884.0	1.8
			5.5-4.5	23750.0	1.9

[^1]
Table 6.9

Final and Initial
Fine Splitting Parameters
for $\left(\mathrm{CO}_{3}\right)_{2} \mathrm{CCN}$

	Initial $^{\star}(\mathrm{Mhz})$	Final(Mhz)
$E_{\text {aa }}$	-52.7	$-55.4 \pm .1$
$E_{\text {DD }}$	-32.1	$-32.6 \pm .1$
$E_{C C}$	2.3	$2.4 \pm .1$

* initial values were obtained by taking the normalized spin-rotation constants of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$ and multiplying them by the theoretical rotational constants of $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$.

Table 6.10
 Theoretical Unsplit Rotational Transitions of $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CCN}$

Transition	Frequency(Mhz)
$3(1,2)-2(1,1)$	19063.8 ± 2.0
$4(1,4)-3(1,3)$	20769.6 ± 2.0
$4(0,4)-3(0,3)$	21332.6 ± 2.0
$4(2,3)-3(2,2)$	23233.2 ± 2.0
$4(3,2)-3(3,1)$	23897.2 ± 2.0

Table 6.10) were calculated and fit using CDANAL to determine the experimental rotational constants. These constants, along with those from the protonated species, are listed in Table 6.11.

With a total of six experimental moments from two isotopic species, it is theoretically posside to determine a maximum of six structural parameters using STRFTQ. If linear dependencies exist in a structure fit, then some structural parameters must be held constant at a reasonable value while others are fit to the moments. This is the case for the 2-cyano-2-propyl radical and r_{CH} and HCH angle which were held constant at $1.09 \AA$ and 109.467°, respectively. Since this occurred for the fitting of the radical, four structural parameters were determined giving a unique structure which reproduces the six experimental moments. It should be emphasized that this structure is a unique structure for these assumed parameters and only this combination of these four parameters fit the experimental moments. Table 6.11 compares experimental rotational constants with those calculated from the final structure. Good agreement of these constants confirms the original assignment of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$. A summary of the final structure is given in Table 6.12 and Figure 6.2.

Nonplanar structures were considered and their fit to experimental data was attempted. No reasonable nonplanar structure could be fit to the experimental moments. The spin rotation splitting parameters indicate a planar structure (no off diagonal elements necessary in the fit of either species). For these reasons, it is believed that the molecule is planar.

Table 6.11
 Comparison of Experimental Rotational Constants and Those Calculated From the Final Structure

Experimental(Mhz) Calculated(Mhz) Difference

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$

A	8276.7 ± 3.0	8273.8	2.9
B	3919.7 ± 0.8	3918.9	0.8
C	2751.6 ± 0.4	2751.9	0.3

$\left(C D_{3}\right)_{2} \mathrm{CCN}$

A	6241.3 ± 2.7	6240.6	0.7
B	3490.3 ± 0.9	3490.4	0.1
C	2372.5 ± 0.5	2372.7	0.2

Table 6.12
Final Structural Parameters

r_{CN}	$1.22 \pm .01 \AA$
r_{CC}	$1.40 \pm .01 \AA$
r_{CCH}^{3}	
LCCH_{3}	$1.50 \pm .01 \AA$
	$119.3^{\circ} \pm .2$

Figure 6.2 Final Structure Parameters Determined from the Experimental Moments of Inertia of Both Isotopic Species

Discussion

The H and D hyperfine splittings were too small to be resolved under the conditions used in this study. This is not surprising considering proton hyperfine splitting observed for similar molecules. ${ }^{53}$,6, "7

Hyperfine splittings due to protons have been observed in spectroscopic studies of $\mathrm{CH}_{3} \mathrm{O}^{66}$ and $\mathrm{CH}_{2} \mathrm{~F}^{55}$ radicals. Both compounds exhibit large proton Fermi contact parameters (-55.55 and -60.7 Mhz , respectively) explained by the lone electron hyperconjugating to the s orbital on the hydrogen. Proton dipole-dipole interactions are very small in the $\mathrm{CH}_{3} \mathrm{O}$ radical, probably due to the lone electron being primarily localized on the oxygen nucleus. The proton dipole-dipole parameters of CH_{2} F were larger due to the spin density (greater than 0.8) on the C atom. The observed proton hyperfine splitting in $\mathrm{CH}_{2} \mathrm{~F}$ is less than 10 Mhz . The observed splittings in $\mathrm{CH}_{3} \mathrm{O}$ are so small that they were only resolved using a laser technique with high sensitivity and resolution (laser magnetic reasonance)." The $\mathrm{CH}_{3} \mathrm{O}$ radical also exhibits electron orbit-nuclear spin interactions which contribute to the observed splittings, making the splittings larger than if only Fermi contact and dipole-dipole interactions were present.

The spin density of the methyl carbons in the 2-cyano-2-propyl radical is estimated to be 0.17 . This value was obtained using the atomic spin densities obtained from a 4-31G calculations. Considering this value relative to that of the $\mathrm{CH}_{2} \mathrm{~F}$ radical, it would be expected that the hyperfine splittings due to the methyl protons of the 2-cyano-2-propyl radical would be very small.

The nitrogen hyperfine coupling was well resolved. The Fermi contact parameter taken from EPR studies ${ }^{11}$ indicates very little s character in the unpaired electron orbital on the nitrogen nucleus. The relations $T_{a a}+T_{b D}+T_{C C}=0$ accurately describes the relative magnitudes of the coupling constants. This suggests that the lone electron occupies a $P \pi$ orbital perpendicular to the molecular plane. The relative value of $T_{a a}$ and $T_{b b}$ could not be explicitly determined. Identical calculated splitting resulted when their values were exchanged.

The $T_{c C}$ value indicates an approximate spin density on the nitrogen of . 32, agreeing well with that value obtained from solid state EPR of 0.3. ${ }^{11}$ This indicates that the unpaired electron spends a substantial amount of time on the nitrogen. This could lead to the occurrence of some double bond character between the two non-methyl carbons due to resonance with the carbon-nitrogen triple bond. This resonance would also result in a reduction of the bond order of the carbon-nitrogen bond.

The spin-rotation constants are responsible for the largest part of the splitting of rotational lines. Strict interpretation of three parameters includes assumptions concerning other electronic constants and contributions from excited states ${ }^{43}$, however some information may be
obtained from them. A satisfactory fit of the spin-rotation splitting of the lines was achieved for both isotopic species by considering only diagonal elements of the spin-rotation tensor. Calculated splittings were very sensitive to the magnitude of the off-diagonal elements and no satisfactory fit could be obtained using any off-diagonal component of substantial magnitude. This suggests a planar structure for the carbonnitrogen skeletal network.

The general trend $\varepsilon_{a d}<\varepsilon_{b D}<\varepsilon_{c c}$ observed in other free radicals was found to hold. The magnitude of $\varepsilon_{c c}$ indicates that the unpaired electron occupies the porbital perpendicular to the plane of the molecule where no one electron excitation can induce a C component. ${ }^{43}$

The predominant reason for perfoming this work was to determine the structure of the radical. Two isotopic species were studied and six moments of inertia were obtained. Four structural parameters which were highly correlated were determined. The lack of any single atom isotopic substitutions and the correlation of the structural parameters prevented the use of a Kraitchman analysis. Thus, only an $\left\langle r_{0}\right\rangle$ structure was determined. The use of some assumed structural parameters was necessary to odtain a statistically relevant fit. These parameters were $r_{C H}, \mathrm{CCH}$ angle and HCH angle.

The experimentally determined length of the $C N$ bond is longer than a typical CN triple bond but shorter than a $C N$ double bond. Similarly, the observed CC bond length is shorter than an aliphatic CC single bond but longer than a normal double bond. These are shown in Table 6.13. These determined distances coupled with the estimated spin density on the nitrogen nucleus indicate significant resonance of the unpaired

Table 6.13
Comparison of $r_{C N}$ and $r_{C C}$ of $\left(\mathrm{CH}_{3}\right) \mathrm{CCN}$ With Other Compounds

Parameter	Compound	Distance (A)	
$\mathrm{C}=\mathrm{N}$			
	$\mathrm{CH}_{3} \mathrm{CN}$	1.157	[58]*
	$\mathrm{CH}_{3} \mathrm{CH}_{2}=\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$	1.157	
	CN radical	1.177	
$r_{\text {CN }}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$	1.22	This study
$C=N$	$\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{C}-\mathrm{C}=\mathrm{N}-\mathrm{CH}_{3}$	1.34	
	$H C=N N H$	1.34	
	$\left(\mathrm{CH}_{3} \cdot \mathrm{C}=\mathrm{NOH}\right)_{2}$	1.27	
C-C	$\mathrm{C}_{2} \mathrm{H}$,	1.536	
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2}$	1.53	
	$\mathrm{CH}_{3} \mathrm{CN}$	1.458	
${ }^{\text {CC }}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCN}$	1.40	This study
$C=C$	$\mathrm{C}_{2} \mathrm{H}_{4}$	1.33	
	$\mathrm{CH}_{2} \mathrm{CCH}_{2}$	1.309	
	$\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$	1.34	

*all bond lengths other than $r_{C N}$ and $r_{C C}$ from this study were taken from this source.
electron with the $C N$ triple bond. This type of structure was predicted by Kerr et al. from EPR data and Huckel calculations. ${ }^{11}$

The planar carbon-nitrogen skeleton also agrees witn the result of the theoretical calculations. This is also in agreement with the general trends observed for similar organic radicals that have been characterized with spectroscopic means. The methyl", monofluoromethyl ${ }^{63}$, ethyl ${ }^{17}$, and isopropyl ${ }^{17}$ radicals have been shown to be planar. This is indicative of $s p^{2}$ hybridization on the center carbon a tom.

A characteristic of $s p^{2}$ hybridization is the occurrence of bond angles of approximately 120° about the central carbon atom. The slight derivation from this value by the C-C-Me angle is attributed to the steric interaction between the methyl groups. It is not expected that this angle will be less than 118° however, since the corresponding angle is bistrifluormethyl nitroxide radical was found to be $117.2^{\circ} .^{3}$ Hence, the value for this angle agrees well with other experimental measurements.

Consideration of the inertial defect also provides information concerning the structure of the molecule. If a molecule is planar and rigid in its equilibrium configuration, the moments are related by

$$
\begin{equation*}
I_{a}+I_{b}-I_{c}=0 \tag{6.3}
\end{equation*}
$$

where c is the pricipal axis perpendicular to the molecular plane. For a nonrigid molecule vibrational effects will result in a modification of this relationship to

$$
\begin{equation*}
I_{a}+I_{b}-I_{c}=\Delta \tag{6.4}
\end{equation*}
$$

where Δ is nonzero and is called the inertial defect. It is generally very small except in molecules with heavy atoms.

The plane of symmetry of the $2-c y a n o-2-p r o p y l$ radical contains all atoms with the exception of two pairs of hydrogen atoms lying above and below the plane. For a nonplanar molecule of this type, the moments are related by

$$
\begin{equation*}
\left|I_{a}+I_{b}-I_{c}\right|=\sum_{l} 4 m_{i} c_{l}^{2}-\Delta \tag{6.5}
\end{equation*}
$$

where the m_{i} are the masses of the out of plane atoms and the $c_{i}{ }^{\prime}$ s are their perpendicular distances from the $a b$ plane. The summation is over all pairs of atoms lying out of the ab plane.

The inertial defect for the radical should be small, thus the original assignment can be checked by comparing the difference, $I_{a}+I_{D}-I_{C}$ with the theoretical value of the sumation in Equation 6.3. These values agree well with one another. The inertial defect can also be compared with that in a similar molecule, acetone, as shown in Table 6.14. These values, for both the deuterated and protonated species, agree very well.

Table 6.14
Comparison of Theoretical and Experimental Intertial Defects of the 2-Cyano-2-Propyl Radical with that of Acetone

$$
\begin{array}{cc}
\text { 2-Cyano-2-Propyl Radical } \\
\text { Calculated } & \text { Experimental } \\
\sum 4 m_{i} c_{i}{ }^{2}\left(a m u \cdot A^{2}\right) & I_{a}+I_{b}-I_{c}\left(a m u \cdot A^{2}\right)
\end{array}
$$

Acetone ${ }^{11}$
Experimental
$I_{a}+I_{b}-I_{c}\left(a m u \cdot A^{2}\right)$

H
6.583
6.3
6.3

D
13.166
12.8
12.4

Conclusions

Two isotopic species of the 2-cyano-2-propyl radical were characterized using mircowave spectroscopy. The assignment of their spectra resulted in the calculation of six principal moments of inertia. These moments were used to determine four structural parameters.

Analysis of the fine and hyperfine splittings provided the 3 spinrotation coupling constants and the 4 hyperfine coupling constants of the nitrogen atom in the molecule. From these parameters, the nature of the unpaired electron and the spin density on the nitrogen nucleus could be estimated.

Proton and deuteron hyperfine coupling was not resolved due to experimental conditions used in this study. These splittings could probably be resolved using a flow technique with reduced sample pressures where line widths would be well below 1 Mhz . This would allow the assignment of the hyperfine splitting of the protons and deuterons and determine the nature of the interaction of the lone electron with these six equivalent nuclei. This would also confirm the methods of Endo ${ }^{2}$ and White ${ }^{3}$ in handling multinuclear-spin radicals as valid or invalid.

Appendix A
 Useful Relations in Spherical Tensor Methods

This section utilizes concepts of irreducible tensor operators and coupling of angular moments discussed in Chapter III to obtain relations useful in deriving matrix elements in Chapter IV. The derivation of each relation listed below can be found in Edmonds" and have been tabulated by Hirota. ${ }^{3}$

1) Spherical tensor rotation of a vector \mathbf{r}

$$
\begin{gather*}
r_{0}=Z \tag{A.1.1}\\
r_{ \pm}=\mp 2^{1 / 2}(x \pm i y) \tag{A.1.2}
\end{gather*}
$$

2) Coupling of two tensor operators (T and U couple to give Q)

$$
\mathbf{Q}_{m}^{l}=(-1)^{l_{1}-l_{2}-m}(2 l+1)^{1 / 2} \sum_{m_{1} m_{2}}\left(\begin{array}{ccc}
l_{1} & b & l \tag{A.2}\\
m_{1} & m_{2} & m
\end{array}\right) \mathbf{T}_{m_{1}}^{l_{1}} \mathbf{U}_{m_{2}}^{l_{2}}
$$

3) Scalar product of two tensors

$$
\begin{equation*}
\mathrm{T} \cdot \mathrm{U}=\sum_{q}(-1)^{q} \mathrm{~T}_{q}^{k} \mathrm{C}_{-q}^{k} \tag{A.3}
\end{equation*}
$$

4) The Wigner-Eckert Theorem

$$
\left.<r j^{\prime} m^{\prime}\left|\mathrm{T}_{q}^{k}\right| r j m>=(-1)^{\prime \prime-m^{\prime}}\left(\begin{array}{ccc}
j^{\prime} & k & j \tag{A.4}\\
-m^{\prime} & q & m
\end{array}\right)<r j^{\prime}| | \mathrm{T}^{k}| | r j\right\rangle
$$

where $\left\langle r^{\circ} j^{\prime}\left\|T^{K}\right\| r j\right\rangle$ is the reduced matrix element
5) Computation of the reduced matrix elements: Choose m, m_{k}^{\prime} and q so as to give a trivial value for $\left\langle r^{\circ}, j, m^{\prime}\right| T^{K}|r, j, m\rangle$ and divide it by

$$
(-1)^{j-m^{\prime}}\left(\begin{array}{ccc}
j & k & j \\
-m^{\prime} & q & m
\end{array}\right)
$$

example:

$$
\begin{gather*}
\langle S|\left|T^{1}(\mathrm{~S})\right||s\rangle=[S(S+1)(2 S+1)]^{1 / 2} \tag{A.5.1}\\
<J^{\prime} K^{\prime}| | \mathbf{D}_{q}^{k}(\theta \phi)| | J K>=\left[\left(2 J^{\prime}+1\right)(2 J+1)\right]^{1 / 2}(-1)^{\prime-K^{\prime}}\left(\begin{array}{ccc}
J^{\prime} & k & J \\
-K^{\prime} & q & K
\end{array}\right) \tag{A.S.2}
\end{gather*}
$$

6) Matrix Elements of coupled tensor operators.
a) Noncommuting tensor operators operating on the same system

$$
\begin{align*}
\left\langle r^{\prime} j^{\prime} \| \mathrm{X}^{k}\right||r j\rangle & =(2 K+1)^{1 / 2}(-1)^{K+j+j^{\prime}} \sum_{r^{\prime} j^{\prime \prime}}\left\{\begin{array}{ccc}
k_{1} & k_{2} & J \\
j & j & K
\end{array}\right\} \tag{A.6.1}\\
& \left.x<r^{\prime} j^{\prime}| | \mathrm{T}^{k_{1}}| | r^{\prime} j^{\prime \prime}\right\rangle\left\langle r^{\prime} j^{\prime \prime}\right|\left|\mathrm{T}^{k_{2}}\right||r j\rangle
\end{align*}
$$

b) Tensor operators operating on different system:

$$
\begin{align*}
\left\langle r^{\prime} j^{\prime} \dot{b}^{\prime}{ }_{2} J^{\prime}\left\|\mathbf{X}^{k}\right\| r j_{2} j\right\rangle= & \sum_{r^{\prime}}\left\langle r^{\prime} j_{1}\right|\left|\mathbf{T}^{k_{1}}\right|\left|r^{\prime} j_{1}\right\rangle\left\langle r^{\prime} j_{2}^{\prime}\right|\left|\mathbf{U}^{k_{2}}\right|\left|r j_{2}\right\rangle \\
& \times\left[\left(2 J^{\prime}+1\right)(2 J+1)(2 K+1)\right]^{1 / 2}\left\{\begin{array}{ccc}
j_{1} & j_{1} & k_{1} \\
j_{2}^{\prime} & j_{2} & k_{2} \\
J^{\prime} & J & K
\end{array}\right. \tag{A.6.2}
\end{align*}
$$

c) Scalar product of two commuting tensor operators:

$$
\begin{align*}
\left\langle r^{\prime} j^{\prime} j^{\prime}{ }_{2} J^{\prime} M^{\prime}\right| \mathrm{T}^{k} \cdot \mathrm{U}^{k}\left|r j_{j} j_{2} J M\right\rangle= & \delta_{J J^{\prime}} \delta_{M M^{\prime}}(-1)^{j_{1}+j^{\prime}{ }_{2}+J}\left\{\begin{array}{ccc}
J & j_{2}^{\prime} & j^{\prime}{ }_{1} \\
k & j_{1} & j_{2}
\end{array}\right\} \tag{A.6.3}\\
& \times \sum_{r^{\prime}}\left\langle r^{\prime} j^{\prime}{ }_{1}\right|\left|\mathrm{T}^{k}\right|\left|r^{\prime} j_{1}\right\rangle\left\langle r^{\prime} j^{\prime}{ }_{2}\right|\left|\mathrm{U}^{k}\right|\left|r_{2}\right\rangle
\end{align*}
$$

d) Single operator in a coupled scheme (only operating on one part of system

$$
\begin{aligned}
\left\langle r^{\prime} j^{\prime} j^{\prime} j^{\prime} J^{\prime}\right|\left|\mathbf{T}^{k}\right|\left|r j_{j} J\right\rangle= & \delta_{j^{\prime} j_{2}}(-1)^{\prime_{1}+j_{2}+J+k}\left[\left(2 J^{\prime}+1\right)(2 J+1)\right]^{1 / 2}\left\{\begin{array}{ccc}
j^{\prime} 1 & J^{\prime} & j_{2} \\
J & j_{1} & k
\end{array}\right\}_{[A .6 .4]} \\
& \left.x<r j^{\prime}:\left|\left|\mathbf{T}^{k}\right|\right| r j_{1}\right\rangle
\end{aligned}
$$

Appendix 8

Selected Wigner 3-j Symbols

$$
\begin{aligned}
& \left(\begin{array}{ccc}
J+1 & J & 1 \\
M & -M-1 & 1
\end{array}\right)=(-1)^{J-M-1}\left[\frac{(J-M)(J-M+1)}{(2 J+3)(2 J+2)(2 J+1)}\right]^{1 / 2} \\
& \left(\begin{array}{ccc}
J+1 & J & 1 \\
M & -M & 0
\end{array}\right)=(-1)^{J-M-1}\left[\frac{(J+M+1)(J-M+1) 2}{(2 J+3)(2 J+2)(2 J+1)}\right]^{1 / 2} \\
& \left(\begin{array}{ccc}
J & J & 1 \\
M-M-1 & 1
\end{array}\right)=(-1)^{J-M}\left[\frac{(J-M)(J+M+1) 2}{(2 J+2)(2 J+1) 2 J}\right]^{1 / 2} \\
& \left(\begin{array}{ccc}
J & J & 1 \\
M & -M & 0
\end{array}\right)=(-1)^{J-M} \frac{M}{[(2 J+1)(J+1)]^{1 / 2}} \\
& \left(\begin{array}{ccc}
J+2 & J & 2 \\
M & -M-2 & 2
\end{array}\right)=(-1)^{J-M}\left[\frac{(J-M-1)(J-M)(J-M+1)(J-\dot{M}+2)}{(2 J+5)(2 J+4)(2 J+3)(2 J+2)(J J+1)}\right]^{1 / 2} \\
& \left(\begin{array}{ccc}
J+2 & J & 2 \\
M & -M-1 & 1
\end{array}\right)=2(-1)^{J-M}\left[\frac{(J+M+2)(J-M+2)(J-M+1)(J-M)}{(2 J+5)(2 J+4)(2 J+3)(2 J+2)(2 J+1)}\right]^{1 / 2} \\
& \left(\begin{array}{ccc}
J+2 & J & 2 \\
M & -M & 0
\end{array}\right)=(-1)^{J-M}\left[\frac{6(J+M+2)(J+M+1)(J-M+2)(J-M+1)}{(2 J+5)(2 J+4)(2 J+3)(2 J+2)(2 J+1)}\right]^{1 / 2} \\
& \left(\begin{array}{ccc}
J+1 & J & 2 \\
M & -M-2 & 2
\end{array}\right)=2(-1)^{J-M+1}\left[\frac{(J-M-1)(J-M)(J-M+1)(J+M+2)}{(2 J+4)(2 J+3)(2 J+2)(2 J+1) 2 J}\right]^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
J+1 & J & 2 \\
M & -M & 1
\end{array}\right)(-1)^{J-M+1} 2(J+2 M+2)\left[\frac{(J-M+1)(J-M)}{(2 J+4)(2 J+3)(2 J+2)(2 J+1) 2 J}\right]^{1 / 2} \\
& \left(\begin{array}{ccc}
J+1 & J & 2 \\
M & -M & 0
\end{array}\right)=(-1)^{J-M+1} 2 M\left[\frac{6(J+M+1)(J-M+1)}{(2 J+4)(2 J+3)(2 J+2)(2 J+1) 2 J}\right]^{1 / 2} \\
& \left(\begin{array}{lll}
J & J & 2 \\
M & -M-2 & 2
\end{array}\right)=(-1)^{J-M}\left[\frac{6(J-M-1)(J-M)(J+M+1)(J+M+2)}{(2 J+3)(2 J+2)(2 J+1) 2 J(2 J-1)}\right]^{1 / 2} \\
& \left(\begin{array}{lll}
J & J & 2 \\
M & -M-1 & 1
\end{array}\right)=(-1)^{J-M}(1+2 M)\left[\frac{6(J+M+1)(J-M)}{(2 J+3)(2 J+2)(2 J+1) 2 J(2 J-1)}\right]^{1 / 2} \\
& \left(\begin{array}{lll}
J & J & 2 \\
M & -M & 0
\end{array}\right)=(-1)^{J-M} \frac{2\left[3 M^{2}-J(J+1)\right]}{[(2 J+3)(2 J+2)(2 J+1) 2 J(2 J-1)]^{1 / 2}}
\end{aligned}
$$

Appendix C

Selected Wigner 6-j Symbols

$$
s=a+b+c
$$

$\left\{\begin{array}{ccc}a & b & c \\ 1 & c-1 & b-1\end{array}\right\}=(-1)^{s}\left[\frac{s(s+1)(s-2 a-1)(s-2 a)}{(2 b-1) 2 b(2 b+1)(2 c-1) 2 c(2 c+1)}\right]^{1 / 2}$
$\left\{\begin{array}{ccc}a & b & c \\ 1 & c-1 & b\end{array}\right\}=(-1)^{s}\left[\frac{2(s+1)(s-2 a)(s-2 b)(s-2 c+1)}{2 b(2 b+1)(2 b+2)(2 c-1) 2 c(2 c+1)}\right]^{1 / 2}$
$\left\{\begin{array}{ccc}a & b & c \\ 1 & c-1 & b+1\end{array}\right\}=(-1)^{s}\left[\frac{(s-2 b-1)(s-2 b)(s-2 c+1)(s-2 c+2)}{(2 b+1)(2 b+2)(2 b+3)(2 c-1) 2 c(2 c+1)}\right]^{1 / 2}$
$\left\{\begin{array}{lll}a & b & c \\ 1 & c & b\end{array}\right\}=(-1)^{s+1} 2 \frac{[b(b+1)+c(c+1)-a(a+1)]}{[2 b(2 b+1)(2 b+2) 2 c(2 c+1)(2 c+2)]^{1 / 2}}$
$\left\{\begin{array}{ccc}a & b & c \\ 2 & c-2 & b-2\end{array}\right\}=(-1)^{s}\left[\frac{(s-2)(s-1) s(s+1)(s-2 a-3)(s-2 a-2)(s-2 a-1)(s-2 a)}{(2 b-3)(2 b-2)(2 b-1) 2 b(2 b+1)(2 c-3)(2 c-2)(2 c-1) 2 c(2 c+1)}\right]^{1 / 2}$
$\left\{\begin{array}{ccc}a & b & c \\ 2 & c-2 & b-1\end{array}\right\}=(-1)^{s} 2\left[\frac{(s-1) s(s+1)(s-2 a-2)(s-2 a-1)(s-2 a)(s-2 b)(s-2 c+1)}{(2 b-2)(2 b-1) 2 b(2 b+1)(2 b+2)(2 c-3)(2 c-2)(2 c-1) 2 c(2 c+1)}\right]^{1 / 2}$
$\left\{\begin{array}{lll}a & b & c \\ 2 & c-2 & b\end{array}\right\}=(-1)^{s}\left[\frac{6 s(s+1)(s-2 a-1)(s-2 b-1)(s-2 a)(s-2 b)(s-2 c+1)(s-2 c+2)}{(2 b-1) 2 b(2 b+1)(2 b+2)(2 b+3)(2 c-3)(2 c-2)(2 c-1) 2 c(2 c+1)}\right]^{1 / 2}$

$$
\begin{aligned}
\left\{\begin{array}{ccc}
a & b & c \\
2 & c-2 & b+1
\end{array}\right\} & =(-1)^{s} 2\left[\frac{(s+1)(s-2 a)(s-2 b-2)(s-2 b-1)(s-2 b)}{2 b(2 b+1)(2 b+2)(2 b+3)(2 b+4)}\right]^{1 / 2} \\
& \times\left[\frac{(s-2 c+1)(s-2 c+2)(s-2 c+3)}{(2 c-3)(2 c-2)(2 c-1) 2 c(2 c+1)}\right]^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\left\{\begin{array}{ccc}
a & b & c \\
2 & c-2 & b+2
\end{array}\right\}= & (-1)^{5}\left[\frac{(s-2 b-3)(s-2 b-2)(s-2 b-1)(s-2 b)}{(2 b+1)(2 b+2)(2 b+3)(2 b+4)(2 b+5)}\right]^{1 / 2} \\
& \times\left[\frac{(s-2 c+1)(s-2 c+2)(s-2 c+3)(s-2 c+4)}{(2 c-3)(2 c-2)(2 c-1) 2 c(2 c+1)}\right]^{1 / 2}
\end{aligned}
$$

$$
\left\{\begin{array}{lc}
a b c & c \\
2 c-1 b-1
\end{array}\right\}=(-1)^{s} \frac{4[(a+b)(a-b+1)-(c-1)(c-b+1)][s(s+1)(s-2 a-1)(s-2 a)]^{1 / 2}}{[(2 b-2)(2 b-1) 2 b(2 b+1)(2 b+2)(2 c-2)(2 c-1) 2 c(2 c+1)(2 c+2)]^{1 / 2}}
$$

$$
\left\{\begin{array}{ccc}
a & b & c \\
2 & c-1 & b
\end{array}\right\}=(-1)^{s} \frac{2\left[(a+b+1)(a-b)-c^{2}+1\right][6(s+1)(s-2 a)(s-2 b)(s-2 c+1)]^{1 / 2}}{[(2 b-1) 2 b(2 b+1)(2 b+2)(2 b+3)(2 c-2)(2 c-1) 2 c(2 c+1)(2 c+2)]^{1 / 2}}
$$

$$
\left\{\begin{array}{ccc}
a & b & c \\
2 & c-1 & b+1
\end{array}\right\}=(-1)^{5} 4[(a+b+2)(a-b-1)-(c-1)(b+c+2)]
$$

$$
\begin{gathered}
\times \frac{[(s-2 b-1)(s-2 b)(s-2 c+1)(s-2 c+2)]^{1 / 2}}{[2 b(2 b+1)(2 b+2)(2 b+3)(2 b+4)(2 c-2)(2 c-1) 2 c(2 c+1)(2 c+2)]^{1 / 2}} \\
x=b(b+1)+c(c+1)-a(a+1)
\end{gathered}
$$

$$
\left\{\begin{array}{lll}
a & b & c \\
2 & c & b
\end{array}\right\}=(-1)^{s} \frac{2[3 X(X-1)-4 b(b+1) c(c+1)]}{[(2 b-1) 2 b(2 b+1)(2 b+2)(2 b+3)(2 c-1) 2 c(2 c+1)(2 c+2)(2 c+3)]^{1 / 2}}
$$

- Appendix D

Selected Wigner 9-j Symbols

$$
\Gamma(a b c)=a(a+1)+b(b+1)-c(c+1)
$$

$$
\left\{\begin{array}{lll}
N & N & 2 \\
S & S & 1 \\
J & J & 1
\end{array}\right\}=\frac{\sqrt{3}[\Gamma(N S J) \Gamma(N J S)+(2 / 3) N(N+1) \Gamma(S J N)]}{[40 N(N+1)(2 N-1)(2 N+3) S(S+1)(2 S+1) J(S+1)(2 J+1)]^{1 / 2}}
$$

$$
\begin{aligned}
\left\{\begin{array}{ccc}
N & N & 2 \\
S & S & 1
\end{array}\right\}= & {\left[\frac{(N-S+J)(N+S-J+1)(-N+S+J)(N+S+J+1)}{30 N(N+1)(2 N-1)(2 N+1)(2 N+3) S(S+1)(2 S+1) J(2 J-1)(2 J+1)}\right]^{1 / 2} } \\
& \left\{\Gamma(S N J)(2 N-1)(2 N+3)+\frac{1}{2 N+1} N^{2}(2 N-1)(N+S+J+2)(N-S+J+1)\right. \\
& \\
& \left.-(N+1)^{2}(2 N+3)(N+S-J)(-N+S+J+1)\right\}\left[\frac{1}{4 N(N+1)}\right]
\end{aligned}
$$

$$
\begin{array}{rl}
\left\{\begin{array}{ccc}
N-2 & N & 2 \\
S & S & 1
\end{array}\right\}= & -\left[\frac{(J+S+N+1)(-J+S+N)(J-S+N)(J+S-N+1)}{16(N-1) N(2 N-3)(2 N-1)(2 N+1) S(S+1)(2 S+1)}\right]^{1 / 2} \\
J+1 & J
\end{array}
$$

$$
\begin{aligned}
\left\{\begin{array}{lll}
N-2 & N & 2 \\
S & S & 1 \\
J & J & 1
\end{array}\right\}= & -\left[\frac{(J+S+N+1)(-J+S+M)(J-S+M)(J+S-N+1)}{16(N-1) N(2 N-3)(2 N-1)(2 N+1) S(S+1)(2 S+1)}\right]^{1 / 2} \\
& {\left[\frac{(J+S+M)(J-S+N-1)(-J+S+N-1)(J+S-N+2)}{J(2 J-1)(2 J+1)}\right]^{1 / 2} }
\end{aligned}
$$

$$
\begin{array}{rl}
\left\{\begin{array}{ccc}
N-2 & N & 2 \\
S & S & 1
\end{array}\right\}= & -\left[\frac{(J+S+N+1)(-J+S+N)(J-S+N)(J+S-N+1)}{16(N-1) N(2 N-3)(2 N-1)(2 N+1) S(S+1)(2 S+1)}\right]^{1 / 2} \\
J-1 & J
\end{array}
$$

Appendix E
Hyperfine Coupling of the Protons on Two Equivalent Methyl Groups

The hyperfine coupling of six equivalent $\not / 2$ spin nuclei has been determined for the two equivalent trifluoromethyl groups in bistrifluoromethyl nitroxide radical. " The matrix elements developed for the hyperfine analysis of the six protons on the two methyl groups on the 2-cyano-2-propyl radical were taken primarily from this study. A brief description of the theory used in the previous study follows.

The trifluoromethyl radical was the first molecule with three equivalent nuclei of nonzero spin and Hund's b type coupling to have its rotational spectrum assigned. ${ }^{2}$ In this spectrum, hyperfine splittings due to three equivalent fluorine nuclei were observed. Matrix elements were derived for their hyperfine analysis. A fit of the spectrum determined that the hyperfine splitting was not dependent on the elements off diagonal in K . In fact, an excellent fit was obtained when these off diagonal elements were set to zero.

It has been shown by Bowater et al. "' that having oniy matrix elements diagonal in K is the same as considering the behavior of all nuclear spins as being equivalent to a single nucleus with a spin equal to the sum of all the nuclei (i.e., $3(k)=1(3 / 2)$).

Following this, White has shown that the number of states of the following two representations must be the same ${ }^{3}$

$$
\begin{equation*}
\sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}}(2 j+1)=\left(2 j_{1}+1\right)\left(2 j_{2}+1\right) \tag{E.1}
\end{equation*}
$$

where j_{1} and j_{2} commute. This has also been determined empirically by spectroscopists before the advent of quantum mechanics. This is called the addition rules of angular moments.

If different angular momenta operators (i.e., nuclear spins) refer to different particles or different properties of the same particle, they commute. A state vector such as $V\left(j_{1} m_{1} j_{2} m_{2}\right)$ may be split into a sum of products of factors relating separate parts of the system.

$$
\begin{equation*}
V\left(j_{1} m_{1} j_{2} m_{2}\right)=\sum_{\alpha_{1} \alpha_{2}} V_{1}\left(\alpha_{1} j_{1} m_{1}\right) V_{2}\left(\alpha_{2} j_{2} m_{2}\right) \tag{E.2}
\end{equation*}
$$

These state vectors are linear combinations of the basis elements of the product representation $D\left(j_{1}\right)_{X D}\left(j_{2}\right)$. The representation of dimension $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$ is reducible. The representation is made up of a number of invariant irreducible subspaces each of which represents a particular value of j. With this, we can consider the nuclear spins of the two identical nuclei to be the sum of the individual spins. This concept was used to characterize proton hyperfine splitting in $\mathrm{NH}_{2}{ }^{1}, \mathrm{PH}_{2}{ }^{3}$ and other radicals. This can be extended to consider groups with resultant spins equal to that of a single nuclei. This was done to assign the hyperfine splitting of fluorine nuclei in bistrifluoromethyl nitoxide
radical and also be used to characterize the proton hyperfine splitting in the 2-cyano-2-propyl radical.

Appendix F
Computer Programs

Moment of Inertia
The program which calculates the principal moments of inertia of a molecule was developed by R.A. Beaudet and N.R. Pauley at University of Southern California. Bond lengths, bond angales and atomic masses are read in as data. The bond lengths and angles are referenced to three arbitrary atoms; 1 is the origin, 2 is the positive x axis and 3 lies in the positive $x y$ quadrant. With all atoms defined in terms of this initial coordinate system, the center of mass is calculated and then taken to be the new origin. This new center of mass coordinate system is then transformed to the principal axis coordinate system. The coordinate of each atom of the molecule in the final coordinate system are used to calculate the pricipal moments of inertia and rotational constants.

Asymmetric Rotor
This program is a modification of one developed by R.A. Beaudet at USC to calculate the frequencies of rotational transition for a molecule given its rotational constants and dipole selection rules. The transition frequencies are calculated by taking the energy differences Detween two appropriate levels. Relative intensities and line strengths may also be calculated given the components and magnitude of the dipole moment in the molecules. The data that is required by the program are: dipole selection rules, magnitude of the dipole moment, upper and lower frequency limits and limits on J quantum numbers (maximum $J=80$).

CDANAL (Semirigid Rotor Fit Program)
This program, developed by Kirchoff, performs an iterative least squares fit of the centrifugal distortion constants in the Watson formulation. With P^{4} and P^{\prime} (first and second order centrifugal distortion), there are ten independent centrifugal distortion terms using this formulation. Adding to this the three rotational constant, there are a maximum of thirteen parameters which can be fit to the spectrum.

For a rigid rotor fit, only the rotational constants are varied. This is often done in molecules where a small number of rotational transitions are assigned. This is valid if the assigned transitions are low in J where the centrifugal distortion is minimal.

The necessary input data consist of the approximate rotational constants, dipole moment, selection rules, experimental frequencies with the $J, K_{-1},+K_{1}$ quantum numbers and the number and type of distortion constants to be included in the fit.

This program was written by Schwendeman" at Michigan State University to adjust internal coordinates of a molecule to fit its experimentally determined moments of intertia by an iterative least squares procedure. Depending on the number of isotopically substituted species studies and the number of experimental moments obtained, values of some structural are assumed and not used in the fit. The program computes the final coordinates of each atom, in the molecule, the moments of inertia, planar second moments and rotational constants. The final coordinates of each atom are used to determine final bond lengths and angles.

The necessary input consists of a trial set of internal coordinates, atomic number of each atom, experimental rotational constants, structural parameters to be fit and necessary constraints of the fit (assumed bond lengths, bond angles, etc.)

Gaussian 80
Gaussian 80 is a further development of Gaussian 70 and Gaussian 76. It is a general purpose program for ab initio molecular orbital calculations. Basis sets involving s, p and d type gaussian functions can be used and Restricted Hartree-Fock, Unrestricted Hartree-Fock and Restricted Open Shell Hartree-Fock wavefunctions are available when using this program. The program calculates the one and two electron integrals and then determines the Hartree-Fock single determinant wave functions and the total energy. This is followed by Mulliken population analysis calculation of electric dipole moment and spin densities on each nucleus in the molecule. The program can be used for geometric optimization by calling a sub-program that computes the first derivative of Hartree-Fock energy with respect to the nuclear coordinates.

The input necessary for the program include specification of the quantum mechanical procedure to be used (Hartree-Fock, etc.), specification of the basis set (STO-3G, etc.), optimization method employed and relative positions of atoms in the molecule (using the same method as in moment of interia program). The user must specify which bond lengths and angles are to be fixed and those that are varied. Sample input with the program used to call Gaussian 80 are given. An abbreviated listing of resulting output, reproduction of initial data and final data from the last iteration, are also listed.

Gaussian 80 Control Program with Sample Data

```
READ GAUSS80 JCL A1 IRSPEC 05/06/88 10:37:50
//A513XJDG JOB 20F93,GRAYBEAL,REGION=1500R,TIME=120
/*LONGKEY BUTANE
/*PRIORITY IDIE
/*JOBPARM LINES=30
//STEP1 EXEC PGM=G82
//STEPLIB DD DSN=AS1003.G82A.EXE,DISP=SHR
//INT DD UNIT=3380,SPACE= (6233,(3000,3000),,,ROUND),
// DCB=(RECFM=FT,BLKSIZE=23472),
// DISP=(NEW,DEIETE),VOL=SER=WORRO2
//D2E DD UNIT=3380,SPACE=(6233,(3000,3000),,,RCUND),
// DCB=(RECFM=FT,BLKSIZE=23472),
// DISP=(NEW,DEIEIE),VOI=SER=NORKO3
//RWF DD UNIT=3380,SPACE=(6233,(3000,3000),,,ROUND),
// DCB=(RECFM=FT,BLRSIZE=23472),
// DISP=(NEW,DEIETE),VOL=SER=WORKO3
//CHK DD UNIT=SYSDA,SPACE=(6233,(100,30)),
// DCB=(RECFM=F,BLKSIZE=1024),
// DISP=(NEW,DEIETE),VOL=SER=NORKO3
//FT06F001 DD SYSOUT=A
//FTOTFOO1 DD SYSOUT=B
//SNAPDD DD DUMMY
//SYSDUMP DD SYSOUT=A
//FTOSFOO1 DD *
# HF/4-31G OPT=FP
```

(CH3)2-C-CN RADICAL OPTIMIZATION WITH METHYL GROUP OPTIMIZATION

```
O
C
C 11.404172
C 1 1.520108 2 120.546
N 2 1.21682 1 180. 3 0.
C 1 1.520108 2 120.546 3 OOPA
H 5 1.09 1 109.5 2 0.
H 5 1.09 1 109.5 2 120.
H 5 1.09 1 109.5 2 240.
H 3 1.09 1 109.5 2 HANGLE
X 9 1.09 3 109.5 1 HANGLE
H 3 1.09 9 109.5 10 120.
H 3 1.09 9 109.5 10 240.
HANGLE=1.111
OOPA=189.84
```


Gaussian 80 Abbreviated Output

GAUSSIAN 82	IBM－MVS－G82REVH／C2	7 SEPTEMBER 1984
	8－MAY－1988 17：28：28	
大オतホ入大入		

\＃HF／4－31G OPT＝FP

1／／1，2；
2／／2；
$3 / 5=1,11=9,25=11,30=1 / 1,2,3,11$ ；
4／／1；
5／／1，2；
6／／1；
1／／2；
2／／2；
$3 / 5=1,11=9,25=11,30=1 / 1,2,11$ ；
4／5＝5／1；
5／／1，2；
1／／2（－4）；
2／／2；
$3 / 5=1,11=9,25=11,30=1,39=1 / 1,3$ ；
6／／1；
99／／99；
（CH3）2－C－CN RADICAL OPTIMIZATION WITH METHYL GROUP OPTIMIZATION
SYMBOLIC Z－MATRIX：
CHARGE $=0$ MULTIPLICITY $=2$
C
C 11.40417
$\begin{array}{lllll}C & 1 & 1.52011 & 2 & 120.546\end{array}$

N	2	1.21682	1	180

C	1	1.52011	2	120.546

H	5	1.09	1	109.5	2	0.	0
H	5	1.09	1	109.5	2	120.	0
H	5	1.09	1	109.5	2	240.	0
H	3	1.09	1	109.5	2	HANGLEE	0
X	9	1.09	3	109.5	1	HANGLE	0
H	3	1.09	9	109.5	10	120.	0
H	3	1.09	9	109.5	10	240.	0

OOPA
189.84

HANGLE
1.111

FIETCHER－POWELI TOTAL OPTIMIZATION PROGRAM．INITIALIZED AT 17：29：11 ON 5／08／88

Z-MATRIX (ANGSTROMS AND DEGREES)
CD CENT ATOM N1 LENGTH N2 ALPHA N3 BETA J

1	1	C										
2	2	C	1	1.404172	(1)							
3	3	C	1	1.520108	(2)	2	120.546	(12)				
4	4	N	2	1.216820	(3)	1	180.000	(13)	3	0.0	(22)	0
5	5	C	1	1.520108	(4)	2	120.546	(14)	3	189.840	(23)	0
6	6	H	5	1.090000	(5)	1	109.500	(15)	2	0.0	(24)	0
7	7	H	5	1.090000	(6)	1	109.500	(16)	2	120.000	(25)	0
8	8	H	5	1.090000	(7)	1	109.500	(17)	2	240.000	(26)	0
9	9	H	3	1.090000	(8)	1	109.500	(18)	2	1.111	(27)	0
10		X	9	1.090000	(9)	3	109.500	(19)	1	1.111	(28)	0
11	10	H	3	1.090000	10)	9	109.500	(20)	10	120.000	(29)	0
12	11	H	3	1.090000	(11)	9	109.500	(21)	10	240.000	30)	0

Z-MATRIX ORIENTATION:

CENTER	ATOMIC	COORDINATES (ANGSTROMS)		
NUMBER	NUMBER	X	Y	2
1	6	0.0	0.0	0.0
2	6	0.0	0.0	1.404172
3	6	1.309150	0.0	-0.772564
4	7	0.000000	0.0	2.620992
5	6	-1.289890	0.223730	-0.772564
6	1	-2.113149	0.366524	-0.072597
7	1	-1.189310	1.109394	-1.399927
8	1	-1.493447	-0.644072	-1.399927
9	1	2.144602	-0.019922	-0.072763
10	-1	1.763558	-0.053140	0.947924
11	1	1.357919	0.909311	-1.371627
12	1	1.362545	-0.869443	-1.427788

DISTANCE MATRIX (ANGSTROMS):
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$

1	C	0.0				
2	C	1.404172	0.0			
3	C	1.520108	2.540089	0.0		
4	N	2.620992	1.216820	3.637320	0.0	
5	C	1.520108	2.540089	2.608652	3.637320	0.0
6	H	2.145929	2.603956	3.512324	3.443132	1.090000
7	H	2.145929	3.241633	2.804753	4.337396	1.090000
8	H	2.145929	3.241633	2.943291	4.337396	1.090000
9	H	2.145929	2.604045	1.090000	3.443259	3.513521
10	X	2.002878	1.822395	1.780279	2.431484	3.515720
11	H	2.133576	3.221156	1.090000	4.314139	2.799962
12	H	2.156626	3.260745	1.090000	4.359481	2.942747
		6	7	8	9	10

6 H 0.0

7	H	1.779646	0.0			
8	H	1.779646	1.779646	0.0		
9	H	4.275253	3.761873	3.922541	0.0	
10	X	4.030687	3.947572	4.058287	1.090000	0.0
11	H	3.745719	2.555232	3.247166	1.780279	2.543849
12	H	$\begin{aligned} & 3.929963 \\ & 11 \end{aligned}$	$\begin{gathered} 3.229324 \\ 12 \end{gathered}$	2.865006	1.780279	2.543849
11	H	0.0				
12	H	1.779646	0.0			
INTERATOMIC ANGLES:						
C2-C1-C3=120.546				C1-C2-N4=180.		C2-C1-C5=120.546
C3-C1-C5=118. 1963				$\mathrm{C} 1-\mathrm{C} 5-\mathrm{H} 6=109.5$		C1-C5-H7=109.5
H6-C5-H7 $=109.4424$				C1-C5-H8=109.5		$\mathrm{H6}-\mathrm{C} 5-\mathrm{H8}=109.4424$
$\mathrm{H} 7-\mathrm{C} 5-\mathrm{H} 8=109.4424$				$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 9=109.5$		$\mathrm{C} 3-\mathrm{H9}-\mathrm{X10}=109.5$
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 11=108.5333$				H9-C3-H11=109.5		$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H12}=110.3465$
$\mathrm{H} 9-\mathrm{C} 3-\mathrm{H} 12=109.5$				$\mathrm{H} 11-\mathrm{C} 3-\mathrm{H} 12=109.4424$		

FINAL ITERATION

FLETCHER-POWELL OPTIMIZATION TERMINATED. FORCES BELOW THRESHOLD AFTER 2 STEPS.

FINAL POOL OF VARIABLES:

NAME	VALUE	INCREMENT
OOPA	180.07314	1.00000
HANGLE	0.00475	1.00000

FINAL OPTIMIZED VALUE $=-0.2090751355912 \mathrm{D}+03$

		2-MAT	(ANG	OMS AND	REES		
CD CENT ATOM	N1	LENGTH	N2	ALPHA	N3	BETA	J

1	1	C										
2	2	C	1	1.404172	(1)							
3	3	C	1	1.520108	(2)	2	120.546	(12)				
4	4	N	2	1.216820	(3)	1	180.000	(13)	3	0.0	(22)	0
5	5	C	1	1.520108	(4)	2	120.546	(14)	3	180.073	(23)	0
6	6	H	5	1.090000	(5)	1	109.500	(15)	2	0.0	(24)	0
7	7	H	5	1.090000	(6)	1	109.500	(16)	2	120.000	(25)	0
8	8	H	5	1.090000	(7)	1	109.500	(17)	2	240.000	(26)	0
9	9	H	3	1.090000	(8)	1	109.500	(18)	2	0.005	(27)	0
10		X	9	1.090000	(9)	3	109.500	(19)	1	0.005	(28)	0
11	10	H	3	1.090000	(10)	9	109.500	(20)	10	120.000	(29)	0
12	11	H	3	1.090000	(11)	9	109.500	(21)	10	240.000	(30)	0

Z-MATRIX ORIENTATION:

CENTER	ATOMIC	COORDINATES (ANGSTROMS)		
NUMBER	NUMBER	X	Y	z
1	6	0.0	0.0	0.0
2	6	0.0	0.0	1.404172
3	6	1.309150	0.0	-0.772564
4	7	0.000000	0.0	2.620992
5	6	-1.309148	0.001671	-0.772564
6	1	-2.144698	0.002738	-0.072597
7	1	-1.360270	0.891560	-1.399927
8	1	-1.362541	-0.888085	-1.399927
9	1	2.144700	-0.000085	-0.072597
10	-1	1.763794	-0.000227	0.948682
11	1	1. 360137	0.889908	-1.399911
12	1	1. 360156	-0.889738	-1.400151

DISTANCE MATRIX (ANGSTROMS):
$\begin{array}{llll}1 & 2 & 3\end{array}$

1	C	0.0				
2	C	1.404172	0.0			
3	C	1.520108	2.540089	0.0		
4	N	2.620992	1.216820	3.637320	0.0	
5	C	1.520108	2.540089	2.618299	3.637320	0.0
6	H	2.145929	2.603956	3.524064	3.443132	1.090000
7	H	2.145929	3.241633	2.883446	4.337396	1.090000
8	H	2.145929	3.241633	2.884478	4.337396	1.090000
9	H	2.145929	2.603956	1.090000	3.443132	3.524064
10	X	2.002740	1.821659	1.780279	2.430553	3.522168
11	H	2.145148	3.241109	1.090000	4.337000	2.882293
12	H	2.145246	3.241278	1.090000	4.337194	2.883342
6	H	0.0	6	8	8	9
7	H	1.779646	0.0			10
8	H	1.779646	1.779646	0.0		
9	H	4.289400	3.852486	3.853712	0.0	
10	X	4.039719	4.008868	4.009767	1.090000	0.0
11	H	3.851325	2.720407	3.251805	1.780279	2.543849
12	H	3.852651	3.251729	2.722698	1.780279	2.543849
		11	12			
11	H	0.0				
12	H	1.779646	0.0			

INTERATOMIC ANGLES:

C2-C1-C3=120.546
C3-C1-C5=118.908
$\mathrm{H} 6-\mathrm{C} 5-\mathrm{H} 7=109.4424$
H7-C5-H8=109.4424
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 11=109.4385$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 4=180$.
C1-C5-H6=109.5
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{H} 8=109.5$
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 9=109.5$
H9-C3-H11=109.5

C2-C1-C5=120.546
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{H} 7=109.5$
H6-C5-H8 $=109.4424$
C3-H9-X10=109.5
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 12=109.4463$
$\mathrm{H} 9-\mathrm{C} 3-\mathrm{H} 12=109.5 \quad \mathrm{H} 11-\mathrm{C} 3-\mathrm{H} 12=109.4424$
SYMMETRY TURNED OFF BY EXTERNAL REQUEST.
STOICHIOMETRY C4H6N(2)
FRAMEWORK GROUP C1[X(C4H6N)]
DEG. OF FREEDOM 27
FULL POINT GROUP C1 NOP 1
ROTATIONAL CONSTANTS (GHZ): 8.2766091 2.8073717 2.896581
ISOTOPES: $\mathrm{C}-12, \mathrm{C}-12, \mathrm{C}-12, \mathrm{~N}-14, \mathrm{C}-12, \mathrm{H}-1, \mathrm{H}-1, \mathrm{H}-1, \mathrm{H}-1, \mathrm{H}-1, \mathrm{H}-1$
STANDARD BASIS: $4-31 \mathrm{G} \quad(\mathrm{S}, \mathrm{S}=\mathrm{P}, 6 \mathrm{D}, 7 \mathrm{~F})$
57 BASIS FUNCTIONS 124 PRIMITIVE GAUSSIANS
19 ALPHA ELECTRONS 18 BETA ELECTRONS
NUCLEAR REPULSION ENERGY 147.5309522840 HARTREES
RAFFENETTI 2 INTEGRAL FORMAT.
TWO-ELECTRON INTEGRAL SYMMETRY IS TURNED OFF.
ALPHA MOLECULAR ORBITAL COEFFICIENTS

beta molecular orbital coefficients.

				1	2	3	4	5
	EIGENVALUES			-15.55170	-11.27642	-11.25384	-11.22982	-11. 22972
11	C	1 S		-0.00017	-0.01407	-0.99386	-0.00032	0.00922
2			(I)	-0.00100	0.00295	-0.05731	-0.00006	0.00178
3		2PX	(I)	-0.00000	-0.00000	0.00000	-0.00099	-0.00003
4		2PY	(I)	-0.00000	-0.00000	-0.00001	0.00001	-0.00001
5		2 PZ	(I)	0.00061	0.00147	-0.00088	0.00001	-0.00029
6		2 S	(0)	0.02930	-0.03101	0.05367	0.00019	-0.00561
7		2PX	(0)	-0.00000	0.00000	-0.00001	0.01163	0.00040
8		2PY	(0)	-0.00000	0.00002	-0.00000	-0.00004	0.00004
		2PZ	(0)	0.01742	-0.02509	0.00755	-0.00034	0.00970
10	2 C	1 S		0.00057	-0.99285	0.01465	0.00005	-0.00154
11		2 S	(I)	0.00092	-0.05763	0.00375	-0.00006	0.00163
1		2PX	(I)	0.00000	-0.00000	0.00000	-0.00026	-0.00001

ALPHA DENSITY MATRIX.

2	2S (I)	-0.00995	0.11912				
3	2PX (I)	-0.00001	0.00001	0.19538			
4		2PY (I)	-0.00016	0.00022	0.00053	0.31279	
5	2PZ (I)	0.00480	-0.00249	-0.00001	-0.00022	0.18471	
6	2S (O)	-0.15415	0.16846	0.00005	0.00131	-0.04603	
7		2PX (O)	-0.00000	0.00001	0.13511	0.00085	-0.00002
8		2PY (O)	-0.00018	0.00028	0.00067	0.29355	-0.00031
9		2PZ (O)	0.00107	-0.01081	-0.00002	-0.00061	0.08842
10	C	1S		0.00958	-0.02236	0.00000	0.00005
11		2S (I)	-0.02037	0.03184	-0.00000	-0.00010	0.07876
			..$C O N T I N U I N G$.	.			

BETA DENSITY MATRIX.

FULL MULLIKEN POPULATION ANALYSIS.

				1	2	3	4	5
11	C	15		2.04975				
2			(I)	-0.00225	0.22525			
3		2PX	(I)	0.0	0.0	0.35841		
4		2PY	(I)	0.0	0.0	0.0	0.33146	
5		2 PZ	(I)	0.0	0.0	0.0	0.0	0.32514
6		2 S	(0)	-0.04735	0.20283	0.0	0.0	0.0
7		2PX	(0)	0.0	0.0	0.13231	0.0	0.0
8		2PY	(0)	0.0	0.0	0.0	0.17159	0.0
9		2PZ	(0)	0.0	0.0	0.0	0.0	0.08113
102	C	15		0.00000	-0.00047	0.0	0.0	-0.00225
11		2 S	(I)	-0.00042	0.00952	0.0	0.0	0.03302

. .CONTINUING. . .
GROSS ORBITAL POPULATIONS:
$\left.\begin{array}{llllllll} \\ & 1 & \text { C } & \text { 1S } & & 1.99628 & 0.99839 & 0.99790\end{array}\right) 0.00049$

7			2PX		0.30033	0.17444	0.12590	0.04854
8			2PY	(0)	0.43656	0.40029	0.03626	0.36403
9			2PZ	(0)	0.19207	0.12376	0.06831	0.05544
10	2	C	15		1.99623	0.99786	0.99837	-0.00052
11			2 S	(I)	0.63900	0.29309	0.34591	-0.05282
12			2PX	(I)	0.49779	0.13211	0.36568	-0.23357
13			2PY	(I)	0.53829	0.13909	0.39920	-0.26011
14			2PZ	(I)	0.79986	0.37116	0.42870	-0.05754
15			2 S	(0)	0.41345	0.12316	0.29028	-0.16712
16			2PX	(0)	0.43635	0.12139	0.31496	-0.19357
17			2PY	(0)	0.47269	0.12082	0.35187	-0.23105
18			2 PZ	(0)	0.08864	-0.02434	0.11299	-0.13733
19	3	C	15		1.99661	0.99823	0.99838	-0.00016
20			2 S	(I)	0.54603	0.26725	0.27878	-0.01153
21			2PX	(I)	0.61793	0.29265	0.32528	-0.03263
22			2PY	(I)	0.64800	0.31711	0.33089	-0.01379
23			2PZ	(I)	0.64246	0.30981	0.33265	-0.02284
24			2 S	(0)	0.82461	0.39843	0.42617	-0.02774
25			2PX	(0)	0.32187	0.14435	0.17752	-0.03317
26			2PY	(0)	0.45223	0.21347	0.23875	-0.02528
27			2PZ	(0)	0.41508	0.19592	0.21915	-0.02323
28	4	N	15		1.99770	0.99898	0.99872	0.00026
29			2 S	(I)	0.76814	0.39962	0.36852	0.03110
30			2PX	(I)	0.60502	0.43332	0.17170	0.26161
31			2PY	(I)	0.59490	0.49031	0.10459	0.38572
32			2PZ	(I)	0.85556	0.45143	0.40414	0.04729
33			2 S	(0)	1.16286	0.64302	0.51985	0.12317
34			2PX	(0)	0.48307	0.32799	0.15508	0.17290
35			2PY	(0)	0.44419	0.35402	0.09017	0.26384
36			2PZ	(0)	0.46486	0.22696	0.23790	-0.01094
37	5	C	15		1.99661	0.99823	0.99838	-0.00016
38			2S	(I)	0.54603	0.26725	0.27879	-0.01154
39			2PX	(I)	0.61794	0.29265	0.32528	-0.03263
40			2PY	(I)	0.64801	0.31710	0.33091	-0.01381
41			2 PZ	(I)	0.64246	0.30981	0.33265	-0.02284
42			2S	(0)	0.82451	0.39837	0.42614	-0.02777
43			2PX	(0)	0.32190	0.14437	0.17753	-0.03317
44			2PY	(0)	0.45231	0.21351	0.23880	-0.02529
45			2 PZ	(0)	0.41510	0.19593	0.21917	-0.02324
46	6	H	15	(I)	0.53259	0.26856	0.26403	0.00453
47			15	(0)	0.27991	0.14317	0.13673	0.00644
48	7	H	15	(I)	0.53178	0.27666	0.25512	0.02154
49			15	(0)	0.29040	0.15480	0.13560	0.01920
50	8	H	15	(I)	0.53174	0.27660	0.25513	0.02147
51			15	(0)	0.29009	0.15456	0.13553	0.01904
52	9	H	15	(I)	0.53258	0.26856	0.26402	0.00454
53			15	(0)	0.27990	0.14317	0.13673	0.00643
54	410	H	15	(I)	0.53184	0.27695	0.25489	0.02206
55			15	(0)	0.29014	0.15473	0.13541	0.01932
56	611	H	15	(I)	0.53167	0.27630	0.25537	0.02094

IS (0) $\quad 0.29029 \quad 0.15458 \quad 0.13571 \quad 0.01887$ CONDENSED TO ATOMS (ALL ELECTRONS)

1
5.323396
0.338401
0.283818
-0.045385
0.283942
-0.042721
-0.050082
-0.049780
-0.042721
-0.051844
-0.048269
7
2
0.338401
5.004613

3
0.283818
-0.048275 0.634607
0.283942
-0.048250
-0.046292
0.000132
5.105879
0.392474
0.387922
0.387954
0.002670
-0.000782
-0.000774
11
-0.048269
0.001511
0.387781
0.000009
-0.000774
-0.000028
-0.000403
0.002081
-0.023377
-0.029978
0.533411
$-0.023377-0.029978$

1
5.898755
$\begin{array}{lll}1 & C & 5.898302 \\ 2 & C & 5.882302\end{array}$
3 C $\quad 6.464822$
$\begin{array}{lll}4 & \mathrm{~N} & 7.376314\end{array}$
$5 \mathrm{C} \quad 6.464875$
6 H 0.812501
7 H 0.822178
8 H 0.821826
9 H 0.812480
$10 \quad \mathrm{H} \quad 0.821984$
$11 \mathrm{H} \quad 0.821963$
ATOMIC SPIN DENSITIES.

		1	2	3	4	5	6
1	C	1.430874	0.051047	-0.066848	-0.011931	-0.066694	-0.003555
2	C	0.051047	-1.248938	0.005335	-0.148609	0.0053 .28	0.001139
3	C	-0.066848	0.005335	-0.170396	-0.000120	0.005015	-0.000094
4	N	-0.011931	-0.148609	-0.000120	1.435493	-0.000120	0.000049
5	C	-0.066694	0.005328	0.005015	-0.000120	-0.170561	0.007282
6	H	-0.003555	0.001139	-0.000094	0.000049	0.007282	0.009434
7	H	-0.018635	-0.000015	0.000440	0.000037	0.014285	-0.001657
8	H	-0.018429	-0.000017	0.000344	0.000037	0.014321	-0.001626

9	H	-0.003554	0.001136	0.007281	0.000049	-0.000094	-0.000002
10	H	-0.019799	-0.000003	0.015077	0.000040	0.000421	-0.000002
11	H	-0.017361	-0.000028	0.013595	0.000034	0.000363	-0.000000
		7	8	9	10	11	
1	C	-0.018635	-0.018429	-0.003554	-0.019799	-0.017361	
2	c	-0.000015	-0. 200017	0.001136	-0.000003	-0.000028	
3	C	0.000440	0.000344	0.007281	0.015077	0.013595	
4	N	0.000037	0.000037	0.000049	0.000040	0.000034	
5	C	0.014285	0.014321	-0.000094	0.000421	0.000363	
6	H	-0.001657	-0.001626	-0.000002	-0.000002	-0.000000	
7	H	0.055369	-0.010358	-0.000004	0.001911	-0.000626	
8	H	-0.010358	0.055021	0.000002	-0.000623	0.001835	
9	H	-0.000004	0.000002	0.009431	-0.001797	-0.001482	
10	H	0.001911	-0.000623	-0.001797	0.056508	-0.010355	
11	H	-0.000626	0.001835	-0.001482	-0.010355	0.053831	
DIPOLE		MOMENT (DEB	E) : $X=0.00$	$18 \mathrm{Y}=-0$.	$0145 \quad z=-4$.0337 TOTAL $=4.0337$	
		CONTACT ANA	SIS (ATOM	UNITS)			

1

1 C 0.280471
2 C -0.272268
3 C $\quad-0.067675$
$4 \mathrm{~N} \quad 0.239584$
5 C -0.067751
6 H 0.003663
7 H 0.018617
8 H 0.018555
9 H 0.003667
$10 \mathrm{H} \quad 0.019129$
11 H 0.018046
1|0|IBM-VT-MVS1|FOPT|UHF|4-31G|C4H6N1(2)|GRAYBEAL|8-MAY-1988|1||\# HF/4 -31G OPT=FP||(CH3)2-C-CN RADICAL OPTIMIZATION WITH METHYL GROUP OPTIMI ZATION||O,2|C|C,1,1.404172|C,1,1.520108,2,120.546|N,2,1.21682,1,180.,3 , $0 ., 0|\mathrm{C}, 1,1.520108,2,120.546,3,00 \mathrm{PA}, 0| \mathrm{H}, 5,1.09,1,109.5,2,0 ., 0 \mid \mathrm{H}, 5,1.09$, $1,109.5,2,120$. , 이H, $5,1.09,1,109.5,2,240 ., 0 \mid H, 3,1.09,1,109.5,2$, HANGLEE, 0|X, $9,1.09,3,109.5,1$, HANGLE, 이H, 3, 1.09, $9,109.5,10,120 .$, 이 H, 3, 1.09, 9,10 $9.5,10,240 ., 0| | O O P A=180.073138 \mid$ HANGLE $=0.00475| |$ VERSION=IBM-MVS-G82REVH $/ \mathrm{C} 2|\mathrm{HF}=-209.0751356| \mathrm{S} 2=1.126|\mathrm{~S} 2-1=0 .|\mathrm{S} 2 \mathrm{~A}=0.852| \mathrm{RMSD}=0.117 \mathrm{D}-09| \mathrm{RMSF}=0.3$ 81D-05|DIP=4.03374|PG=C01||@
everybody needs beauty as well as bread, places to play in and pray in, WHERE NATURE MAY HEAL AND CHEER AND GIVE STRENGTH TO BODY AND SOUL ALIKE.
-- JOHN MUIR
TOTAL JOB TIME: 0 DAYS 1 HOURS 48 MINUTES 48.55 SECONDS
8-MAY-1988 22:19:42
GAUSSIAN 82 DONE
hyperfine
This computer program was written to calculate splittings from spin-rotation, Fermi contact and dipole-dipole interactions. Rather than tediously driving every possible nonzero diagonal and off diagonal matrix element expression, matrix elements were calculated numerically using the expressions for each interaction defined in Chapter 3 and a hierarchy of subroutines and user-defined functions. Thus, the programming logic is easier to follow and the program itself is less susceptable to programmer error.

Data input for the program includes maximum and minimum N values (molecular rotation quantum number), spin-rotation constants and hyperfine coupling constants for both the ${ }^{14} \mathrm{~N}$ and ${ }^{1} \mathrm{H}$ nuclei. The FINE, taken from a similar program written by Richard white ${ }^{3}$, subroutine calculates the spin rotation matrix elements. This entire matrix is then diagonalized by the Jacobi method using the HDIAG subroutine. XORDER orders the diagonal elements of the matrix in ascending order. XORDER and HDIAG were taken from the asymmetric rotor computer program written by R.A. Beaudet. Resulting eigenvalues are assigned to specfic quantum numbers N, K and J by a subroutine called JASSIN.

The hyperfine matrix elements are calculated by a subroutine (HYPER) which calls four other subroutines. The four are FERMI, DIPOLE, FERMIH and DIPOLH and they calculate each contribution cooresponding to the Fermi and dipole-dipole interaction of the ${ }^{14} \mathrm{~N}$ nucleus and ${ }^{1} \mathrm{H}$ nuclei, respectively. All four terms are added together for each matrix element. The matrix is diagonalized in the same manner as the spinrotation matrix. A subroutine called FASSIN assigns the diagonalized
elements to a specific set of quantum numbers, N, K, J, F, and F. ELEVEL COMbines the values of the fine and the hyperfine energy matrices for each I_{N}, I_{H} and F with the same J, N and K. Subroutine FREQP takes the appropriate differences between the energy levels to calculate the splittings. A later version of this program incorporated rigid rotor rotational frequencies to predict the microwave spectrum.

The program increments the spin of the nitrogen (0 and 1) and protons $(0,3)$ to consider the coupling of all possible spin states. The first iteration calculates only the spin-rotation interaction as a results of both spins being zero. Hyperfine splitting due to the ${ }^{14} N$ nucleus can be evaluated when $I_{H}=0$ and $I_{N}=1$. Proton hyperfine coupling is calculated for spins of $0,1,2$ and 3. The assumptions and reasoning behind this were detailed earlier. The program listing, a sample data and a sample output are given.

The first data read in after the header are the minimum and maximum rotational angular momenta quantum numbers (2 and 4 in the printed date file). In the program, these have the variable names NMIN and NMAX. The second line of numbers are the spin-rotation constants and are named $E A A, E B B, E C C, E A B, E B A$, respectively. These correspond to the subscripted $E_{X X}$ values given in the thesis text.

The third and fourth lines of numbers are the ${ }^{14} \mathrm{~N}$ and proton hyperfine coupling constants. The last number in each line is the Fermi contact parameter for each nucleus and the preceding four are the dipole-dipole coupling parameters. These are given in the following order from left to right: $T_{a a}, T_{b b}, T_{c c}, T_{a b}$ where T refers to the nitrogen dipole-dipole tensor and H to the proton dipole-dipole tensor.

These numbers are given variable names from the above description.
The remaining numbers are the $N\left(K_{1}, K_{-1}\right)-N^{\prime}\left(K_{1}^{\prime}, K_{-1}^{\prime}\right)$ of a transition of interest with the calculated rigid rotor frequency. This was used in later adaptation of the program in order to reproduce the spectrum of the 2-cyano-2-propyl radical. This part may be skipped by deleting several lines in the FREQP subroutine.

Hyperfine Computer Program Listing

IMPLICIT REAL (A-H, O-Z)
REAL J1, J, N, GS, GB, BETA, BETAN
INTEGER ARANK, FM, F1M, JM, UFM, UFIM, UJM, UR, URO, UKP, UN, POWR, IH, IN
INTEGER DNPKP
CHARACTER*4 IDENT(20)
C THIS PORTION OF THE PROGRAM IS THE MAIN PROGRAM WHICH CONTROLS
C EXECUTION OF THE SUBROUTINES AND READS IN ALL DATA
DIMENSION EJ ($1: 4,2: 4,0: 4,0: 4)$, EF($0: 10,0: 5,1: 4,2: 4,0: 4,0: 4)$
C THE DATA IS NOW READ IN. THE FIRST CARD IS AN IDENTIFICATION CARD
C WHICH MAY HAVE ANY INFORMATION THE USER WISHES TO USE TO LABEL THE
OUTPUT. FORMAT IS 18A4. THE SECOND CARD CONTAINS THE MINIMUM AND
MAXIMUM VALUES OVER WHICH N, THE ROTATIONAL QUANTUM NUMBER, VARIES
FORMAT IS 2I5. THE THIRD CARD CONTAINS THE SPIN ROTATION COUPLING
CONSTANTS IN MHZ. THE FORMAT IS 2F10.2. THE FINAL CARD CONTAINS
THE HYPERFINE INTERACTION CONSTANTS IN MHZ. THE FORMAT IS 4F10.2.
PROGRAM WAS ALTERED TO INCLUDE ALL N14 COUPLING AS OF 7-14-87
THREE CARDS WERE ADDED TO INCLUDE THE APPROPRIATE CONSTANTS
$\operatorname{READ}(7,10)(\operatorname{IDENT}(\mathrm{I}), \mathrm{I}=1,18)$
10 FORMAT (18A4)
WRITE $(6,10)$ ($\operatorname{IDENT}(\mathrm{I}), \mathrm{I}=1,18)$
c read in the maximum and minimum values of the molecular roational
c quantum numbered desired for the calculation.
READ (7,20) NMIN, NMAX
WRITE $(6,20)$ NMIN, NMAX
20 FORMAT (215)
25 FORMAT (5F10.2)
c read in the spin-rotation parameters
READ (7,25) EAA, EBB, ECC, EAB, EBA
WRITE $(6,25)$ EAA, EBB, ECC, EAB, EBA
30 FORMAT (5F10.2)
c read in the hyperfine splitting parameters for the nitrogen nucleus
c in the order of $a, b b, c c, a b$, and Fermi Contact Parameter
$\operatorname{READ}(7,30) \mathrm{TA}, \mathrm{TB}, \mathrm{TC}, \mathrm{TAB}, \mathrm{AF}$
WRITE $(6,30) \mathrm{TA}, \mathrm{TB}, \mathrm{TC}, \mathrm{TAB}, \mathrm{AF}$
c read in the hyperfine splitting parameters for the protons in the
c same order as those for the nitrogen nucleus
READ (7, 30) HA, HB, HC, HAB, HAF
WRITE $(6,30) \mathrm{HA}, \mathrm{HB}, \mathrm{HC}, \mathrm{HAB}, \mathrm{HAF}$
C THE FINE STRUCTURE ENERGY LEVELS ARE CALCULATED FIRST. THE LOOP
C OVEF J IS begun at Jmin and goes to Jmax.
C ONLY ALTERATION IN FINE ENERGY ROUTINE IS TO INCLUDE MATRIX
C ELEMENTS OFF DIAGONAL IN K BY 1, THOSE IN 2 WERE PREVIOUSLY
C

DO $50 \mathrm{~J}=\mathrm{ABS}($ NMIN -0.5$)$, MMAX +0.5
ARANK $=2 *(2 * J+1)$
NM=ABS (J-0.5)
$N P=J+0.5$

```
        S=0.5
        CALL FINE (ARANK,J, EAA, EBB, ECC, EAB EBA,NM,NP, EJ,NMIN, MMAX)
50 CONTINUE
THE HYPERFINE ENERGY LEVELS ARE NOW CALCULATED. THE LOOP IS OVER
    DO }90\mathrm{ IN=0,1
    DO }80\mathrm{ IH=0,3
    IF (NMIN .LT. 5) THEN
        FMIN=. 5
        ELSE
        FMIN=(NMIN-4.5)
    ENDIF
    DO 70 F=.5,(NMAX+IH+IN+.5)
    ARANK=0
    J1=F+I+1
    NM=NMIN
    FM=F-0.5
    DO 60 J=ABS(F-I),F+I
    ARANK=2*(2*J+1)+ORDER
    IF ((J+0.5) .LE. NMIN) GOTO 60
    IF (J .LE. J1) THEN
    J1=J
    NM=J+0.5
    END IF
    IF ((J-0.5) .LT. NMAX) THEN
    NP=J-0.5
    ELSE
    NP=NMAX
    END IF
6 0 ~ C O N T I N U E ~
    NM1=NM-1
    CALL HYPER(F, IN, IH, ARANR,TA, TB,TC,TAB, AF ,HA, HB , HC , HAB , HF ,NMIN,
    1NMAX,EF)
    CALL EIEVEL (F,IN,IH,NMIN,NMAX,EF,EJ)
70 CONTINUE
    CALL FREQP(NMIN,NMAX,IN,IH, EF,EJ)
80 CONTINUE
90 CONTINUE
    END
    SUBROUTINE FINE (ARANK,J,EAA, EBB, ECC, EAB, EBA,NM,NP, E,NMIN,NMAX)
    IMPLICIT REAL (A-H,O-Z)
    REAL J
C THIS SUBROUTINE CALCULATES THE MATRIX ELEMENTS FOR THE SPIN
C ROTATION INTERACTION. THE RANK OF THE MATRIX IS 2*(NM+NP+1) WHERE
C NM=J-.5 AND NP=J+.5. THE MATRIX EIEMENTS ARE STORED IN THE ARRAY
C NAMED A. THE DIAGONALIZED MATRIX ELEMENTS WHICH ARE THE ENERGY
```

C LEVELS ARE ASSIGNED TO ENERGY LEVELS USING J,N,KP,KO AS THE
C INDICES AND ARE STORED IN THE ARRAY LABELED EJ.
INTEGER DK,ARANK
DIMENSION Q (1000, 1000), E(1:4,2:4,0:4,0:4)
C WRITE $(6,5)$ NM, NP, NMIN, NMAX
5 FORMAT (41HSUBROUTINE FINE WAS CALLED N NP NMIN NMAX, 4I5.1)
DO $10 \mathrm{~L}=1,2^{*}(\mathrm{NM}+\mathrm{NP}+1)$
DO $10 \mathrm{M}=1,2^{*}(\mathrm{NM}+\mathrm{NP}+1)$
$Q(L, M)=0.0$
10 CONTINUE
$\mathrm{L}=0$
DO 150 NPRIME $=\mathrm{NM}, \mathrm{NP}$
DO 150 KPRIME=-NPRIME,NPRIME
$\mathrm{M}=0$
$\mathrm{L}=\mathrm{L}+1$
DO $150 \mathrm{~N}=\mathrm{NM}$, NP
NPN=NPRIME-N
IF (NPN) 20, 20, 140
20 DO $135 \mathrm{~K}=-\mathrm{N}, \mathrm{N}$
KM=KPRIME $-K$
$\mathrm{M}=\mathrm{M}+1$
C WRITE (6,23) J,NPRIME, KPRIME,N,K,L,M
23 FORMAT (6H FINE ,5F5.1,2I5)
IF (M.LT.L) GOTO 135
IF (N) $30,120,30$
30 DK=ABS (KPRIME-K)
IF (DK .GT. 2) GOTO 120
C IF (DK .EQ. 1) GOTO 112
C SINCE THE MATRIX IS hERMITIAN ONLY THOSE MATRIX ELEMENTS TO THE
C RIGHT OF THE MAIN DIAGONAL ARE CALCULATED. THE NEXT LINE
C DETERMINES IF THE CHANGE IN N IS POSITIVE (NOT CALCULATED), ZERO
C OR NEGATIVE AND DIRECTS THE PROGRAM TO THE APPROPRIATE STATEMENT
C STATEMENT.
IF (NPN) 40,80, 150
C THE CHANGE IN K IS NOW DETERMINED AND THE APPROPRIATE MATRIX
C ELEMENT IS CALCULATED.
C PROGRAM WAS ALTERED FROM ORIGINAL FORM TO CALCULATE THE ELEMENTS
C OFF DIAGONAL IN K BY 1 (FOR CS SYMMETRY MOLECULES) FINE SUBROUTIN 40 IF (ABS (KM).EQ.1) GOTO 45

IF (KM) 50,60,70
C LINES 45-47 ARE FOR MOLECULES OF CS SYMMETRY, WHERE K IS OFFDIAG BY 1
45 IF (KM) 47,60,48
$47 \mathrm{~B}=(\mathrm{N}+\mathrm{K}) *(\mathrm{~N}+\mathrm{K}-1)$
$Q(L, M)=-\left(N-2^{*} K+1\right) \star(\operatorname{SQRT}(B)) *(E A B+E B A) /\left(8^{*} N\right)$
C WRITE (6, 125) Q(L, M), EAB, EBA, J, N, NPRIME, K, KPRIME GOTO 130
$48 \mathrm{~B}=(\mathrm{N}-\mathrm{K}) *(\mathrm{~N}-\mathrm{K}-1)$
$Q(L, M)=-(N+2 \star K+1) *(S Q R T(B)) *(E A B+E B A) /\left(8^{*} N\right)$
C WRITE $(6,125)$ Q(L, M), EAB , EBA, J, N, NPRIME, K, KPRIME
GOTO 130

```
    50 B=(N+K)*(N+K-1)*(N+N-2)*(N-K+1)
    Q(L,M)=(EBB-ECC)*SQRT(B)/(8*N)
    GOTO }13
60 B=N*N-K*R
    Q(L,M)=((EBB+ECC)/2.0-EAA)*K*SQRT(B)/(2*N)
    GOTO 130
70 B=(N-K)*(N-K-1)*(N-K-2)*(N+K+1)
    Q(L,M)=(ECC-EBB)*SQRT(B)/(8*N)
    GOTO 130
80 IF (ABS(KM).EQ.1) GOTO }8
    IF (KM) 90,100,110
85 IF (KM) 87,100,88
87 B=(N*(N+1)-K*(K-1))
    Q(L,M)=(N*(N+1)+.75-J*(J+1))*(2*K-1)*(SQRT(B
    1))*(EAB+EBA)/(8*N*(N+1))
    GOTO }13
88 B=(N*(N+1)-K*(K+1))
        Q(L,M)=(N* (N+1)+.75-J*(J+1))*(2*K+1)*(SQRT(B
    1))*(EAB+EBA)/( 8*N*(N+1))
        GOTO }13
    90B=(N*(N+1)-K*(K-1))*(N*(N+1)-(K-1)*(K-2))
        Q(L,M)=(ECC-EBB)*(N* (N+1)+0.75-J*(J+1))*SQRT(B)/(8*N*(N+1))
        GOTO }13
100Q(L,M)=(EAA*K*K+(EBB+ECC)*(N* (N+1)-K*K)/2.0)*(J*(J+1)-N*(N+1)
    1-0.75)/(2.0*N*(N+1))
    GOTO 130
110B=(N*}(N+1)-\mp@subsup{K}{*}{*}(K+1))*(N*(N+1)-(K+1)*(K+2)
    Q(L,M)=(ECC-EBB)*(N* (N+1)+0.75-J*(J+1))*SQRT(B)/(8*N* (N+1))
    GOTO 130
120Q(L,M)=0.0
125 FORMAT (15H FINE ELEMENT =,3F10.2,1F5.1,415)
C 130 WRITE (6,125) Q(L,M),J,N,NPRIME,K,KPRIME
130 Q(M,L)=Q(L,M)
    GOTO }15
135 CONTINUE
140 M=2*N+1
150 CONTINUE
    CALL HDIAG (Q,L,1,L)
    CALL XORDER(Q,L,L)
    CALL JASSIN(NM,NP,Q,L,E)
    RETURN
    END
    SUBROUTINE HDIAG(H,N,IEGEN,NX)
C THIS SUBROUTINE WAS TAKEN FROM THE ASYMMETRIC ROTOR PROGRAM
C WRITTEN BY ROBERT A. BEAUDET. MIHDI3, FORTRAN II DIAGONALIZATION
C OF A REAL SYMMETRIC MATRIX BY THE JACOBI METHOD. MAY 19, }195
C CALLING SEQUENCE FOR DIAGONALIZATION. CALL HDIAG(H,N,IEGEN,U,NR)
C WHERE H IS THE ARRAY TO BE DIAGONALIZED. N IS THE ORDER OF THE
C MATRIX, H. U IS THE UNITARY MATRIX USED FOR FORMATION OF THE
C EIGENVECTORS. NR IS THE NUMBER OF ROTATIONS. IEGEN MUST BE SET
```

C UNEQUAL TO ZERO IF ONLY EIGENVALUES ARE TO BE COMPUTED. IEGEN
C MUST BE SET EQUAL TO ZERO IF EIGENVALUES AND EIGENVECTORS ARE TO
C BE COMPUTED. SUBROUTINE PLACES COMPUTER IN FLOATING TRAP MODE.
C THE SUBROUTINE OPERATES ONLY ON THE ELEMENTS OF H THAT ARE TO THE
C RIGHT OF THE MAIN DIAGONAL. THUS, ONLY A TRIANGULAR SECTION NEED
C bE STORED IN THE ARRAY H.
IMPLICIT REAL (A-H,0-Z)
DIMENSION H(1000,1000$), \mathrm{X}(1000)$, IQ(1000)
CALL XUFLOW
C $\operatorname{WRITE}(6,5)$
5 FORMAT (26HSUBROUTINE HDIAG IS CALLED)
IF (IEGEN) $15,10,15$
10 DO $14 \mathrm{I}=1, \mathrm{~N}$
DO $14 \mathrm{~J}=1, \mathrm{~N}$
IF (I-J) 12,11,12
11 CONTINUE
GOTO 14
12 CONTINUE
14 CONTINUE
$15 \mathrm{NR}=0$
IF ($\mathrm{N}-1$) $1000,1000,17$
C SCAN FOR LARGEST OFF DIAGONAL ELLEMENT IN EACH ROW. X(I) CONTAINS
C LARGEST ELEMENT IN ITH ROW. IQ(I) HOLDS SECOND SUBSCRIPT DEFINING
C POSITION OF ELEMENT.
17 NMI $=\mathrm{N}-1$
DO $30 \mathrm{I}=1$, NMI 1
$X(I)=0.0$
$\mathrm{IPL} 1=\mathrm{I}+1$
DO $30 \mathrm{~J}=\mathrm{IPL1}, \mathrm{~N}$
IF (X(I)-ABS(H(I,J))) 20,20,30
$20 \mathrm{X}(\mathrm{I})=\mathrm{ABS}(\mathrm{H}(\mathrm{I}, \mathrm{J}))$
$I Q(I)=J$
30 CONTINUE
C SET INDICATOR FOR SHUTOFF. RAP=2**-27, NR=NO. OF ROTATIONS RAP $=0.745058059 \mathrm{D}-08$
HDTEST=1.0D38
C FIND MAXIMUM OF X(I)S FOR PIVOT ELEMENT AND TEST FOR END OF
C PROBLEM.
40 DO $70 \mathrm{I}=1$, NMI 1
IF (I-1) 60,60,45
45 IF (XMAX-X(I)) 60,70,70
60 XMAX=X(I)
IPIV=I
$J P I V=I Q(I)$
70 CONTINUE
IF MAX. X(I) EQUAL TO ZERO, IF LESS THAN HDTEST, REVISE HDTEST
IF (XMAX) 1000,1000,80
80 IF (HDTEST) $90,90,85$
85 IF (XMAX-HDTEST) 90,90,148
$90 \operatorname{HDIMIN}=\operatorname{ABS}(H(1,1))$
DO $110 \mathrm{I}=2, \mathrm{~N}$
IF (HDIMIN-ABS (H(I, I))) $110,110,100$
$100 \mathrm{HDIMIN}=\mathrm{ABS}(\mathrm{H}(\mathrm{I}, \mathrm{I}))$
110 CONTINUE
HDTEST=HDIMIN*RAP
C RETURN IF MAX. H(I,J) LESS THAN (2**-27)*ABS (H(K,K)-MIN)
IF (HDTEST-XMAX) $148,1000,1000$
148 NR=NR+1
C COMPUTE TANGENT SINE AND COSINE, $H(I, I), H(J, J)$
DENOM=(ABS (H (IPIV, IPIV) - H (JPIV, JPIV)) +SQRT ((H (IPIV, IPIV) -H (JPIV
$1, J P I V)) *+2+4.0 * H(I P I V, J P I V) * * 2)$)
IF (DENOM .EQ. O.0) GOTO 150
149 TANG=SIGN(2., (H(IPIV, IPIV)-H(JPIV,JPIV))) $*$ H(IPIV, JPIV)/(ABS
1(H(IPIV, IPIV)-H(JPIV, JPIV))+SQRT((H(IPIV, IPIV)-H(JPIV, JPIV))
$2 * * 2+4.0 * \mathrm{H}($ IPIV, JPIV)**2))
GOTO 151
150 TANG=0.0
$151 \operatorname{COSINE}=1.0 / \operatorname{SQRT}(1.0+T A N G * * 2)$
WRITE $(6,151)$ COSINE
SINE=TANG*COSINE
WRITE $(6,151)$ SINE
HII=H(IPIV,IPIV)
H(IPIV, IPIV) $=$ COSINE** $2 *$ (HII+TANG* (2.0*H (IPIV, JPIV) +TANG*H (JPIV, J
1PIV))
H(JPIV, JPIV) $=$ COSINE**2* (H (JPIV, JPIV)-TANG* (2.0*H(IPIV, JPIV)-TANG
1*HII)
H(IPIV, JPIV) $=0.0$
C PSEUDO RANK THE EIGENVALUES. ADJUST SINE AND COS FOR COMPUTATION
C OF H(IK) AND U(IK).
IF (H(IPIV, IPIV)-H(JPIV, JPIV)) $152,153,153$
152 HTEMP=H(IPIV,IPIV)
H(IPIV, IPIV) $=\mathrm{H}($ JPIV, JPIV $)$
H(JPIV, JPIV)=HTEMP
C RECOMPUTE SINE AND COS
HTEMP=SIGN(1.0,-SINE)*COSINE
COSINE $=A B S$ (SINE)
SINE=HTEMP
153 CONTINUE
C INSPECT THE IQS BETWEEN I+1 AND N-1 TO DETERMINE WHETHER A NEW
C MAXIMUM VALUE SHOULD BE COMPUTED SINCE THE PRESENT MAXIMUM IS
C IN THE I OR J ROW.
DO $350 \mathrm{I}=1$, NMI 1
IF (I-IPIV) $210,350,200$
200 IF (I-JPIV) $210,350,210$
210 IF (IQ(I)-IPIV) $230,240,230$
230 IF (IQ(I)-JPIV) $350,240,350$
$240 \mathrm{~K}=\mathrm{IQ}(\mathrm{I})$
$250 \operatorname{HTEMP}=H(I, K)$
$H(I, K)=0.0$
IPLI=I+1
$X(I)=0.0$
C SEARCH IN DEPLETED ROW FOR NEW MAXIMUM
DO $320 \mathrm{~J}=\mathrm{IPL} 1, \mathrm{~N}$
IF (X(I)-ABS(H(I, J))) $300,300,320$
$300 \mathrm{X}(\mathrm{I})=\mathrm{ABS}(\mathrm{H}(\mathrm{I}, \mathrm{J}))$
$I Q(I)=J$
320 CONTINUE
$\mathrm{H}(\mathrm{I}, \mathrm{K})=\mathrm{HTEMP}$
350 CONTINUE
$X($ IPIV $)=0.0$
$X(J P I V)=0.0$
C CHANGE THE OTHER ELEMENTS OF H.
DO $530 \mathrm{I}=1, \mathrm{~N}$
IF (I-IPIV) $370,530,420$
370 HTEMP=H(I, IPIV)
H(I, IPIV) $=$ COS INE*HTEMP + SINE*H(I, JPIV)
IF (X(I)-ABS (H(I, IPIV)) $380,390,390$
$380 \mathrm{X}(\mathrm{I})=\mathrm{ABS}(\mathrm{H}(\mathrm{I}, \mathrm{IPIV}))$
IQ(I)=IPIV
$390 \mathrm{H}(\mathrm{I}, \mathrm{JPIV})=-$ SINE*HTEMP + COSINE $*$ (I, JPIV $)$
IF (X(I)-ABS (H(I, JPIV)) $400,530,530$
$400 \mathrm{X}(\mathrm{I})=\mathrm{ABS}(\mathrm{H}(\mathrm{I}, \mathrm{JPIV}))$
$I Q(I)=J P I V$
GOTO 530
420 IF ([-JPIV) $430,530,480$
430 HTEM $=$ =H(IPIV,I)
H(IPIV, I) =COSINE*HTEMP+SINE*H(I, JPIV)
IF (X (IPIV)-ABS (H (IPIV, I)) $440,450,450$
440 X(IPIV) $=A B S(H(I P I V, I))$
IQ(IPIV) $=I$
$450 \mathrm{H}(\mathrm{I}, \mathrm{JPIV})=-$ SINE $* \mathrm{HTEMP}+\mathrm{COSINE} * \mathrm{H}(\mathrm{I}, \mathrm{JPIV})$
IF (X (I) -ABS (H(I, JPIV)) $400,530,530$
480 HTEMP=H (IPIV,I)
H(IPIV, I $)=$ COSINE ${ }^{\text {HTEMP }}+$ SINE $*$ H (JPIV, I $)$
IF (X (IPIV)-ABS (H (IPIV, I)) $490,500,500$
$490 \mathrm{X}(\mathrm{IPIV})=\mathrm{ABS}(\mathrm{H}(\mathrm{IPIV}, \mathrm{I}))$
IQ(IPIV)=I
$500 \mathrm{H}(\mathrm{JPIV}, \mathrm{I})=-$ SINE*HTEMP+COSINE*H(JPIV, I)
IF (X(JPIV)-ABS(H(JPIV, I))) 510,530,530
$510 \mathrm{X}(\mathrm{JPIV})=\mathrm{ABS}(\mathrm{H}(\mathrm{JPIV}, \mathrm{I}))$
IQ (JPIV) $=\mathrm{I}$
530 CONTINUE
C TEST FOR COMPUTATION OF EIGENVECTORS.
IF (IEGEN) 40,540,40
540 DO $550 \mathrm{I}=1, \mathrm{~N}$
550 CONTINUE
GOTO 40
1000 RETURN
END

SUBROUTINE XORDER(ARRAY,LIMIT,NX)
THIS SUBROUTINE IN ADDITION TO HDIAG WERE TAKEN FROM THE
C ASYMMETRIC ROTOR PROGRAM WRITTEN BY ROBERT A. BEAUDET.
IMPLICIT REAL (A-H,O-Z)
ROBERT A. BEUDET AIO6 ENERGY DIAGONALIZATION
C THIS SUBROUTINE ARRANGES THE EIGENVALUES AND EIGENVECTORS
IN INCREASING ORDER. HDIAG IS NOT DEPENDABLE IN DOING THIS.
DIMENSION ARRAY (1000,1000)
C WRITE $(6,5)$
5 FORMAT (27HSUBROUTINE XORDER IS CALLED)
30 IF (LIMIT-1) 220, 220,40
40 DO 210 KTEST=2,LIMIT
50 DO 200 JTEST=2,KTEST
ITEST=KTEST+2-JTEST
ITESTM=ITEST-1
IF (ARRAY(ITEST, ITEST)-ARRAY (ITESTM, ITESTM)) 60,210,210
60 XCHAN=ARRAY (ITEST, ITEST)
ARRAY (ITEST, ITEST)=ARRAY (ITESTM, ITESTM)
ARRAY (ITESTM, ITESTM) $=\mathrm{XCHAN}$
DO $70 \mathrm{~L}=1$, LIMIT
70 CONTINUE
200 CONTINUE
210 CONTINUE
220 RETURN
END
SUBROUTINE JASSIN(NM, NP, D, L, C)

$$
\mathrm{C}
$$

THIS SUBROUTINE ASSIGNS THE ORDERED EIGENVALUES TO ENERGY LEVELS
C
C USING THE VALUES OF J,N,KP,KO AS SUBSCRIPTS AND STORES THEM IN
C THE ARRAY EJ.
IMPLICIT REAL (A-H,0-Z)
DIMENSION $D(1000,1000), C(1: 4,2: 4,0: 4,0: 4)$
C WRITE $(6,4)$
4 FORMAT (27 HSUBROUTINE JASSIN IS CALLED)
DO $1 \mathrm{LP}=1, \mathrm{~L}$
$C \quad \operatorname{WRITE}(6,20) \mathrm{LP}, \mathrm{D}(L P, L P)$
1 CONTINUE
LINDEX=1
DO $10 \mathrm{~N}=\mathrm{NM}, \mathrm{NP}$
IF (N .LT. 2) GOTO 5
IF (N.GT. 4) GOTO 5
DO $3 \mathrm{~K}=0, \mathrm{~N}$
$\mathrm{KO}=\mathrm{N}-\mathrm{K}$
C WRITE (6,20) NM, N, K, KO, C(NM,N,K,KO)
$C(N M, N, K, K O)=D($ LINDEX, LINDEX)
C WRITE (6,3) NM, $N, K, K O, C(N M, N, K, K O)$
LINDEX=LINDEX+1
IF (K .EQ. N) GOTO 3
$\mathrm{KP}=\mathrm{K}+1$
$C(N M, N, K P, K O)=D(L I N D E X$, LINDEX)
C $\operatorname{WRITE}(6,20) N M, N, K P, K O, C(N M, N, K P, K O)$

LINDEX=LINDEX+1

3 CONTINUE
GOTO 10
5 LINDEX=2*N+1
10 CONTINUE
20 FORMAT ($2 \mathrm{HD}(, \mathrm{I} 2,2 \mathrm{H})=, \mathrm{E} 10.2$)
RETURN
END
SUBROUTINE HYPER ($F, I N, I H, A R A N K, T A, T B, T C, T A B, A F, H A, H B, H C, H A B, H A F$, 1NMIN, NMAX, EF)
C THIS SUBROUTINE CALCULATES THE HYPERFINE MATRIX ELEMENTS. HDIAG IS THEN CALLED WHICH DIAGONALIZES THE MATRIX. XORDER ORDERS THE DIAGONALIZED MATRIX A AND FASSIGN THEN ASSIGNS THESE EIGENVALUES TO THE ARRAY EF USING I,F,J,N,KP,KO AS THE ASSIGNMENT INDICES.

C THIS SUBROUTINE CALCULATES THE MATRIX ELEMENTS NUMMERICALLY BY
C USING PERTINENT 3-J,6-J AND 9-J FUNCTIONS.
IMPLICIT REAL (A-H,O-Z)
REAL J, JP, JF1, N, NP, K, KP, S, NLOW, PF1, PJ, PN, PK, PKO, PKP, PNL
INTEGER DJ, DNMAX, DN, DFIJ, ADK, ARANK, FM, IH, IN, IHN, L, M, PF1M, PJM
DIMENSION Q $(1000,1000), E F(0: 10,0: 5,1: 4,2: 4,0: 4,0: 4)$
S=. 5
5 FORMAT (6H HYPER,9F5.1,2I5,1F14.6)
6 FORMAT (11H HYPER IHIN,2I5)
WRITE $(6,6)$ IH, IN
7 IF (F . IT. IH) THEN FIHDF $=.5$
ELSE
FIHDF $=A B S(F-I H)$
ENDIF
$11 \mathrm{~L}=0$
DO 301 F1P=FIHDF,F+IH
DO $301 \mathrm{JP}=\mathrm{ABS}(\mathrm{F} 1 \mathrm{P}-\mathrm{IN}), \mathrm{F} 1 \mathrm{P}+\mathrm{IN}$
IF (JP .LT. 1) THEN
NLOW=1
ELSE
NLOW=(JP-0.5)
ENDIF
DO 301 NP=NLOW, JP+0. 5
DO $301 \mathrm{KP}=-\mathrm{NP}, \mathrm{NP}$
$\mathrm{M}=0$
$\mathrm{L}=\mathrm{L}+1$
C
WRITE $(6,5) \mathrm{F}, \mathrm{F} 1 \mathrm{P}, \mathrm{JP}, \mathrm{NP}, \mathrm{KP}, \mathrm{L}, \mathrm{M}$
DO 300 F1=FIHDF,F+IH
DO $300 \mathrm{~J}=\mathrm{ABS}(\mathrm{F} 1-\mathrm{IN}), \mathrm{Fi}+\mathrm{IN}$
IF (J.LT. 1) THEN
NLOW $1=1$
ELSE
NLOW $1=(J-0.5)$
ENDIF

```
            DO 300 N=NLOW1,J+0.5
C NPN=(NP-N
C IF (NPN) 12,12,
        DO 300 K=-N,N
            M=M+1
        12 FORMAT (13H AT HYPER F =, 1F5.1)
C WRITE (6,12) F
            IF (M .LT. L) GOTO 300
            IF (IN) 200,210,200
    200 IF (IH) 220,230,220
    210 IF (IH) 240,250,240
C IN AND IH NOT EQAL TO O
    220 Q(L,M)=AF*FERMI(N,NP,K,KP,S,J,JP,REAL(IN),F1,F1P)+FERMIH(N,NP,K,
        1KP,S , J, JP, REAL(IN , F1, F1P, REAL(IH) , F) *HAF-DIPOLE(N,NP,K,KP,S ,J,
        1JP, REAL(IN) ,F1, F1P, REAL(IH) ,F,TC,TA,TB,TAB)-DIPOLH(N,NP,K,KP,S,
        1J,JP, REAL(IN ) F1,F1P, REAL(IH) ,F,HC,HA,HB,HAB)
C WRITE(6,5) F,F1P,JP,NP,KP,F1,J,N,K,IH,IN,Q(L,M)
            GOTO 300
    225 FORMAT (27HTHE VALUES M,L,Q(L,M) HYPER,2I5,1F10.2)
C IN NOT EQUAL TO ZERO AND IH EQUAL O
    230 Q(L,M)=AF*FERMI(N,NP,K,KP,S,J,JP,REAL(IN) ,F1,F1P)-DIPOLE(N,NP,R,
        1KP,S,J, JP, REAL(IN) , F1, F1P, REAL(IH) , F,TC,TA,TB,TAB)
C WRITE (6,5) F,F1P,JP,NP,KP,F1,J,N,K,IH,IN,Q(L,M)
    GOTO 300
C IN EQUAL TO 0, IH NOT
    240 Q(L,M)=FERMIH(N,NP,K,KP,S,J,JP,REAL(IN ),F1,F1P,REAL(IH) ,F)*HAF-
        IDIPOLH(N,NP,K,KP,S , J, JP, REAL(IN) ,F1,F1P, REAL(IH) ,F,HC,HA , HB ,HAB)
C WRITE (6,5) F,F1P,JP,NP,KP,F1,J,N,K,IH,IN,Q(L,M)
    GOTO 300
C IH,IN=0
    250 Q(L,M)=0
C WRITE(6,5) F,F1P,JP,NP,KP,F1,J,N,K,IH,IN,Q(L,M)
C GOTO 300
C 299 M=2*N+1+M
    300 CONTINUE
    301 CONTINUE
        CALL HDIAG(Q,L,1,L)
        CALL XORDER(Q,L,L)
C DO 305 IL=0,L
C WRITE (6,304) F,L,IL,Q(IL,IL)
C 304 FORMAT (6H HYPER,1F5.1,2I5,1F20.10)
C 305 CONTINUE
            FM=F-0.5
            CALL FASSIN(F,IN,IH,NMIN,NMAX,Q,EF)
    410 RETURN
            END
            SUBROUTINE FASSIN(F,IN,IH,NMIN,NMAX,A,P)
C THIS SUBROUTINE ASSIGNS THE DIAGONALIZED MATRIX ELEMENTS TO
C THE VARIOUS VALUES OF I,F,J,N,KP,KO. THIS SUBROUTINE CONSIDERS
C ALL POSSIBLE PERMUTATION OF QUANTUM NUMBERS F1,J,N THAT WOULD
```

C RESULT IN THE VALUE F BEING CONSIDERED. THE SUBROUTINE ASSUMES
C ROTATION > SPINROTATION >NUCLEAR-ELECTRON SPIN ENERGY ORDER.
C WITH THI,, THE DIAGONALIZED MATRIX LEMENTS WHICH HAVE BEEN
C ORDERED CAN BE ASSIGNED TO THE CORRECT QUANTUM NUMBERS, IMPLICIT REAL (A-H,O-Z)
REAL J, NLOWF
INTEGER FM, F1M, JM, N, K, KO, KP
DIMENSION A(1000,1000$), \mathrm{P}(0: 10,0: 5,1: 4,2: 4,0: 4,0: 4)$
5 FORMAT (27HSUBROUTINE FASSIN IS CALLED, 3F5.1,6I5)
10 LINDEX=1
IF (F . LT. IH) THEN
FIHDF $=.5$
ELSE
$\mathrm{FIHDF}=(\mathrm{F}-\mathrm{IH})$
ENDIF
6 FORMAT (8H F1 LOOP,3F5.1,6I5)
DO 20 F1=FIHDF,F+IH
DO $20 \mathrm{~J}=(\mathrm{ABS}(\mathrm{F} 1-\mathrm{IN})),(F 1+\mathrm{IN})$
IF (J .LT. 1) THEN
NLOWF=1
ELSE
NLOWF=INT(J-.5)
ENDIF
DO $20 \mathrm{~N}=\mathrm{NLOWF}, \mathrm{INT}(\mathrm{J}+.5)$
7 FORMAT (8H NJ LOOP,3F5.1,6I5)
8 FORMAT (6H N IFS, 3F5.1,6I5)
IF (N .LT. NMIN) GOTO 19
IF (N .GT. NMAX) GOTO 19
DO $20 \mathrm{~K}=0, \mathrm{~N}$
9 FORMAT (7H K LOOP,3F5.1,6I5)
$\mathrm{KO}=\mathrm{N}-\mathrm{K}$
$\mathrm{KP}=\mathrm{K}+1$
C $\operatorname{WRITE}(6,9)$ F,F1,J,N,K,KO,KP,IH,IN
FM=INT(F-.5)
F1M=INT(F1-.5)
JM=INT (J-.5)
$P(F M, F 1 M, J M, N, K, K O)=A($ LINDEX, LINDEX)
12 FORMAT (11 H AT FASSIN , 3F5.1,3I5, 1F20.10)
C WRITE (6, 12)F,F1, J, N, K, KO, A(LINDEX, LINDEX)
LINDEX=LINDEX +1
IF (K .EQ. N) GOTO 20
P(FM, F1M, JM, N, KP, KO) =A (LINDEX, LINDEX)
C WRITE (6, 12)F,F1,J,N,KP,KO,A(LINDEX,LINDEX)
LINDEX=LINDEX+1
GOTO 20
19 LINDEX=LINDEX+2*N+1
20 CONTINUE
30 RETURN
END

```
SUBROUTINE ELEVEL(F,IN,IH,NMIN,NMAX,P,E)
C THIS SUBROUTINE COMBINES THE ENERGY IEVELS DETERMINED FROM
C SUBROUTINES HYPER AND FINE AND STORES THEM IN ARRAY EF.
IMPLICIT REAL (A-H,O-Z)
INTEGER FM, F1M, JM, UFM, UF1M, UJM, UN, N, KO, K, KP
REAL J
DIMENSION P(0:10,0:5,1:4,2:4,0:4,0:4),E(1:4,2:4,0:4,0:4)
WRITE (6,5) IN
    5 FORMAT(14H AT ELEVEL IN=,I5)
    10 IF ((F-IH) .LT. 0) THEN
        FIMIN=.5
        ELSE
        F1MIN=(F-IH)
        ENDIF
        DO 20 F1=F1MIN,(F+IH)
        DO 20 J=ABS(F1-IN),F1+IN
        IF (J .LT. 1) THEN
        NLOWA=1
        ELSE
        NLOWA=INT(J-.5)
        ENDIF
        DO 20 N=NLOWA,INT(J+.5)
        IF (N .LT. NMIN) GOTO 20
        IF (N .GT. NMAX) GOTO 20
        DO 20 K=0,N
        KO=N-K
        KP=K+1
        FM=INT(F-.5)
        F1M=INT(F1-.5)
        JM=INT(J-.5)
C WRITE (6, 13) F,F1,J,N,K,KO,E(JM,N,K,KO),P(FM,F1M,JM,N,R,KO)
    13 FORMAT (3F5.1,3I5,2F25.10)
    P(FM,F1M, JM,N,K,KO)=P(FM,F1M,JM,N,K,KO)+E(JM,N,R,KO)
C WRITE (6,15) F,F1,J,N,K,KO,P(FM,F1M,JM,N,K,KO)
    15 FORMAT (3F5.1,3I5,1F20.10)
    IF (K .EQ. N) GOTO 20
C WRITE (6,13)F,F1,J,N,KP,KO,E(JM,N,K,KO),P(FM,F1M,JM,N,KP,KO)
    P(FM,F1M,JM,N,KP,KO)=P(FM,F1M,JM,N,KP,KO)+E(JM,N,KP,KO)
C WRITE (6,15)F,F1,J,N,KP,KO,P(FM,F1M,J,N,KP,KO)
    20 CONTINUE
    30 RETURN
        END
        SUBROUTINE FREQP(NMIN,NMAX,IN,IH,P,E)
        IMPLICIT REAL (A-H,O-Z)
        REAL UJ,J1,J,GS,GB,BETA,BETAN
        INTEGER ARANK,FM,F1M,JM,UFM,UF1M,UJM,UK,UKO,UKP,UN, POWR,IH,IN
        INTEGER DNPKP
        CHARACTER*4 IDENT(20)
        DIMENSION E(1:4,2:4,0:4,0:4), P(0:10,0:5,1:4,2:4,0:4,0:4)
        WRITE (6,4) IH,IN
```

```
    4 FORMAT (37H THE FOLLOWING ARE TRANSITIONS OF IH=,1I5,8H AND IN=,
        11I5)
        IF (IN) 50,5,50
    5 IF (IH) 50,7,50
    7 DO 45 ITRANS=1,7
    READ (7,10) UN,UK,UKO,N, K,KO,ROTA
C WRITE (6,10) UN,UK,UKO,N,K,KO
C IF !((-1)**UK).NE.((-1)**IH).OR.((-1)**K).NE.((-1)**IH)) GOTO 45
    10 FORMAT (6I5,1F8.2)
    DO 40 UJ=ABS(UN-.5),(UN+.5)
        UJM=INT(UJ-.5)
        DO 35 J=ABS(N-.5),(N+.5)
        JM=INT(J-.5)
    13 FORMAT (2F5.1)
C WRITE (6,13) UJ,J
    IF ((INT(UJ-J)) .EQ. 1) GOTO 25
    15 FORMAT (I2,1H(,I2,1H, I2, 2H)-, I2,1H(,I2,1H, ,I2,1H),5X,F4.1,1H-,
    1F4.1,5X,F12.5)
    20 GOTO 35
    25 FREQ=(E(UJM,UN,UK,UKO)-E(JM,N,K,KO))+ROTA
        WRITE(6,15) UN,UK,UKO,N,K,KO,UJ, J, FREQ
    35 CONTINUE
    40 CONTINUE
    45 CONTINUE
        GOTO 105
C PRINT OUT HYPERFINE SPLITTING FREQUENCIES, IH OR IN NE TO O
    50 DO 100 ITRANS=1,7
        READ (7,10) UN, UK, UKO,N, K, KO, ROTA
C WRITE (6,10) UN,UK,UKO,N,K,KO
C IF (((-1)**UK).NE.((-1)**IH).OR.((-1)**K).NE.((-1)**IH)) GOTO 100
    DO 95 UJ=ABS(UN-.5),(UN+.5)
    UJM=INT(UJ-.5)
    DO 90 UFl=(UJ-IN),(UJ+IN)
    IF (IN .EQ. 0) GOTO 90
    UF1M=INT(UF1-.5)
    IF (UF1 . LT. IH) THEN
        UFL=.5
        ELSE
        UFL=(UF1-IH)
    ENDIF
    DO 85 UF=UFL,UF1+IH
    UFM=INT(UF-.5)
    DO 80 J=ABS(N-.5),(N+.5)
    JM=INT(J-.5)
C WRITE (6,13) UJ,J
    IF ((INT(ABS(UJ-J))).NE.1) GOTO 80
    DO 75 Fl=(J-IN),(J+IN)
    F1M=INT(F1-.5)
    IF (INT(ABS(UF1-F1)).NE.1) GOTO 75
    IF (F1 .LT. IH) THEN
```

```
            FL=. 5
            ELSE
            FL=(F1-IH)
            ENDIF
            DO }70\textrm{F}=\textrm{FL},\textrm{F}1+\textrm{IH
            FM=INT(F-.5)
            IF (INT(ABS(UF-F)).NE.1) GOTO 70
            FREQ=(P(UFM,UF1M,UJM,UN,UK,UKO)-P(FM, F1M, JM,N,K,KO))+ROTA
            WRITE (6, 60) UN,UK,UKO,N,K,KO,UJ,J,UF1,F1,UF,F,FREQ
    60 FORMAT (I2,1H(,I2,1H, I I2, 2H)-,I2,1H(,I2,1H, I I2,1H),2X,1F4.1,
            11H-, 1F4.1, 2X, 1F4.1,1H-, 1F4.1, 2X,1F4.1, 1H-, 1F4.1, 5X, 1F12.5)
C 60 FORMAT (6I5,6F5.1,1F20.10)
    70 CONTINUE
    75 CONTINUE
    80 CONTINUE
    85 CONTINUE
    90 CONTINUE
    9 5 ~ C O N T : I N U E ~
    100 CONTINUE
    105 RETURN
        END
C FUNCTIONS DEFINED TO CALCULATE THE CONTRIBUTION OF THE FERMI CONTACT,
C DIPOLE-DIPOLE, AND QUADRUPOLE CONTRIBUTION OF ROTATIONAL ENERGY.
C FERMI,DIPOLE AND QUAD APPLY TO N14, FERMIH AND DIPOLH THE PROTONS
C
            REAL FUNCTION FERMI(N,NP,R,KP,S,J,JP,IN,F1,F1P)
            REAL J,JP,NP,N,J6DIAG,J60DJ1,IN
            INTEGER POWR
            S=. }
            12 FORMAT (15HFERMI IS CALLED)
            POWR=(INT(N+S+JP))
            IF (F1 .NE. F1P) GOTO 30
            IF (N .NE. NP) GOTO 30
            IF (K .NE. KP) GOTO 30
            IF (J .NE. JP) GOTO 20
            FERMI=(((2*J+1)**2)*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1))**. 5*
                    1J6DIAG(F1,REAL(IN),J)*J6DIAG(REAL(N),S,J)*((-1)**(POWR))
            GOTO 40
            20 IF (J.GT.JP) GOTO 21
            FERMI=((2*JP+1)*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1)/(2*J+1))**. 5
            1*J60DJ1(F1, REAL(IN),JP)*J60DJ1(REAL(N),S,JP)*((-1)**(POWR))
            GOTO 40
            21 FERMI=((2*J+1)*S*(S+1)* (2*S+1)*IN* (IN+1)* (2*IN+1)/(2*JP+1))**. 5
    1*J60DJ1(F1, REAL(IN),J)*J60DJ1(REAL(N),S,J)*((-1)**(POWR))
            GOTO 40
    30 FERMI=0.0
    40 RETURN
            END
C
    REAL FUNCTION FERMIH(N,NP,K,KP,S,J,JP,IN,F1,F1P,IH,F)
```

REAL J, JP, JF1, IH, IN, N, NP, J6DIAG, J60DJ1, J60DJF
12 FORMAT (34H FERMIH N NP K KP J JP FI F1P IH S,11F5.1)
FERFAC $=((-1) \star+(\operatorname{INT}(2 \star F 1+F+2 \star J P+S+N+I N+I H+2)))$
C WRITE (6,12)N,NP, K, KP, J, JP, F1,F1P, IH, S, FERFAC
$D J=(J-J P)$
DF1=(F1-F1P)
$S=.5$
IF (DJ .GT. 0 . AND. DF1 .LT. 0) THEN $J F 1=1$ ELSE IF (DJ .LT. 0 . AND. DF1 .GT. 0) THEN JF1=-1 ELSE JF1=0
ENDIF
50 IF (N .NE. NP) GOTO 100
IF (K .NE. KP) GOTO 100
IF (J .NE. JP) GOTO 75
IF (F1 . NE. F1P) GOTO 60
C $\operatorname{WRITE}(6,12) \mathrm{F}, \mathrm{IH}, \mathrm{F} 1$
FERMH=FERFAC* $((2 * F 1+1) * * 2) *((2 * J+1) * * 2) * S *(S+1) *(2 * S+1) * I H *(I H$
$1+1) *(2 * I H+1)) * * .5$
C WRITE $(6,53)$ FERMH
53 FORMAT (25H PRE SUBROUTINE FACTOR IS,1F10.5)
FH=FERMH*J6DIAG(F,REAL(IH),F1)
FIH=FH*J6DIAG(REAL(IN), J,F1)
FERMTH=FIH*J6DIAG(REAL(N) ,S,J)
GO TO 110
C FI OFF DIAGONAL BY ONE
60 IF (F1 .LT.F1P) THEN
PASS $=F 1$
$F 1=F 1 P$
$F 1 P=P A S S$
ENDIF
C A FACTOR OF 2*F1P+1 WAS TAKEN OUT THAT CANCELLED WITH PART OF THE
C J6ODJ1 EXPRESSION, INORDER TO PREVENT 0 DENOMINATOR IN JGODJI
FERMIH=FERFAC* $(((2 * J+1) * * 2) *(2 * F 1+1) * S *(S+1) *(2 * S+1) * I H$
$1 *(I H+1) *(2 * I H+1) /(2 * F P+1)) * * .5 * J 60 D J 1(F, R E A L(I H), F 1) *$
2J60DJ1(REAL(IN), J, F1)*J6DIAG(N, S , J)
GOTO 110
C J OFF DIAGONAL BY ONE
75 IF (J .LT. JP) THEN
PASS $=J$
$J=J P$
$J P=P A S S$
END IF
IF (F1 . NE. F1P) GOTO 85
FERMIH=FERFAC* $\left((2 * J+1) *((2 * F 1+1) * * 2) * S^{*}(S+1) *(2 * S+1) * I H /(2 * J P+1) *\right.$
$1 *(I H+1) *(2 * I H+1)) * * .5 * J 6 D I A G(F, \operatorname{REAL}(I H), F 1) * J 60 D J 1(R E A L(I N), F 1, J) *$
2J60DJ1(REAL(N), S,J)/((2*JP+1)**.5)

GOTO 110
C BOTH FI AND J ARE OFF DIAGONAL BY ONE
85 IF (JF1) 90, 95, 91
C $\quad \mathrm{F} 1+1, \mathrm{~J}-1$
90 FERMIH=FERFAC* $((2 * J+1) *(2 * F 1+1) * S *(S+1) *(2 * S+1)$ $\left.1^{*} \mathrm{IH}^{*}(\mathrm{IH}+1) *(2 * \mathrm{IH}+1)\right) * * .5 * J 60 \mathrm{DJ} 1(\mathrm{~F}, \mathrm{REAL}(\mathrm{IH}), \mathrm{Fi}) *$ 2J60DJ1(N, S, J)*J60DJF(REAL(IN) , J, F1)
GOTO 110
C $\quad \mathrm{F} 1-1, \mathrm{~J}+1$
91 FERMIH=FERFAC* $\left((2 * \mathrm{~J}+1) *(2 * \mathrm{~F} 1+1) * \mathrm{~S}^{*}(\mathrm{~S}+1) *(2 * \mathrm{~S}+1)\right.$
$\left.1^{*} \mathrm{IH}^{*}(\mathrm{IH}+1) *(2 * \mathrm{IH}+1)\right) \star * .5 * \mathrm{~J} 60 \mathrm{DJ} 1(\mathrm{~F}, \operatorname{REAL}(\mathrm{IH}), \mathrm{F} 1)$
$2 \star J 60 \mathrm{DJ} 1(\mathrm{~N}, \mathrm{~S}, \mathrm{~J}) * \mathrm{~J} 60 \mathrm{JFP}(\mathrm{REAL}(\mathrm{IN}), F 1, \mathrm{~J})$
GOTO 110
C J-1,F1-1 OR J+1, F1+1
95 IF (F1 . LT. F1P) THEN
PASS $=\mathrm{F} 1$
$\mathrm{F} 1=\mathrm{F} 1 \mathrm{P}$
$F 1 P=P A S S$
ENDIF
FERMIH=FERFAC* $\left((2 * J+1) *(2 * F 1+1) * S^{*}(S+1) *(2 * S+1)\right.$
$\left.1^{*} \mathrm{IH}^{*}(\mathrm{IH}+1) *(2 * \mathrm{IH}+1)\right)^{* *} .5 * \mathrm{~J} 60 \mathrm{DJ} 1(\mathrm{~F}, \mathrm{REAL}(\mathrm{IH}), \mathrm{F} 1) *$
2J60DJF(REAL(IN), J, F1)*J60DJ1 (REAL(N), S, J)
GOTO 110
100 FERMIH=0. 0
105 FORMAT (9H FERMIH $=$, F40.20)
C 110 WRITE $(6,105)$ FERMIH
110 RETURN
END
C
C
REAL FUNCTION DIPOLE (N,NP, K, KP, S, J, JP, IN, F1, F1P, IH, F, TC, TA, TB, TAB)
REAL J, JP, JF1, IN, IH, N, NP, K, KP, J6DIAG, J9DIAG, J3DIAG, J30DR1
REAL J30DK2, J30DN2, J60DJ1, J90DJ1, J90DJN, J90JPN, J90DN2, J60JFP
REAL J60DJF
INTEGER DNPKP,DKAY,POWR
C WRITE $(6,12)$
12 FORMAT (16HDIPOLE IS CALLED) POWR $=\mathrm{INT}(\mathrm{JP}+\mathrm{IN}+\mathrm{F} 1)$
DIPFAC $=((-1) * * \operatorname{INT}($ POWR $)) *(5 * * .5)$
DKAY $=\operatorname{INT}((\operatorname{ABS}(K-K P))-2)$
DNPKP $=\mathrm{INT}(\mathrm{NP}-\mathrm{KP})$
$\mathrm{DN}=\mathrm{INT}(\mathrm{N}-\mathrm{NP})$
DJ=INT (J-JP)
IF (DN .GT. O .AND. DJ .LT. O) THEN
$\mathrm{NJ}=1$
ELSE IF (DN .LT. 0 .AND. DJ .GT. 0) THEN
$\mathrm{NJ}=-1$
ELSE
$\mathrm{NJ}=0$
END IF

```
    111 IF (NJ .NE. 0) GOTO 112
        IF (N .ITT. NP) THEN
            PASS=NP
            NP=N
            N=PASS
        ENDIF
        IF (J .LT. JP) THEN
            PASS=NP
            NP=N
            N=PASS
        ENDIF
    112 IF (F1 .NE. F1P) GOTO 200
    IF (J .NE. JP) GOTO 160
    IF (N .NE. NP) GOTO 120
    113 DPFAC=DIPFAC*(((2*J+1)**2)*((2*N+1)**2)*S*(S+1)*(2*S+1)*IN*
        1(IN+1)*(2*IN+1)*J6DIAG(F1,IN,J)*J9DIAG(N,S,J))
        IF (K .NE. KP) GOTO 115
        DIPOLE=(DPFAC*((-1)**INT((DNPKP)))*J3DIAG(N,K)*TC)
C OFF DIAGONAL IN K BY 1
    115 IF (DKAY .EQ. 0) GOTO 117
    116 DIPOLE=(DPFAC*((-1)**(INT(DNPKP)))*J3ODK1(N,K)*TAB)
        GOTO
            118
C OFF DIAGONAL IN K BY 2
    117 DIPOLE=DPFAC* ((-1)**(INT(DNPKP)))*J3ODK2(N,K)*(TA-TB)
    118 RETURN
C
C OFF DIAGONAL IN N BY 2, AS WELL AS THE THREE DIFFERENT R ELEMENTS
    120 DPFAC=DIPFAC* ( (2*J+1)**2* (2*N+1)* (2*NP+1)*J6DIAG(F1,IN,J)*
        1J90DN2(N,S,J))*S*(S+1)*(2*S+1)*IN* (IN+1)*( 2*IN+1)
            IF (K .NE. KP) GOTO 125
            DIPOLE=DPFAC*((-1)**(INT(DNPKP)))*J3ODN2(N,K)*TC
            RETURN
    125 DIPOLE=0.000
    137 RETURN
C
C J OFF DIAGONAL BY ONE, ALONG WITHOTHER OFFDIAGONALS OF N AND R
    160 IF (N .NE. NP) GOTO 180
    163 DPFAC=DIPFAC*((2*J+1)*((2*N+1)**2)*J60DJ1(F1,REAL(IN),J)*
        1J90DJ1(N,S,J)*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1))
            IF (R .NE. KP) GOTO }16
            DIPOLE=DPFAC*((-1)**(INT(DNPKP)))*J3DIAG(N,K)*TC
            GOTO 175
    165 IF (DKAY .EQ. 0) GOTO 172
    170 DIPOLE=DPFAC*((-1)**(INT(DNPKP)))*J3ODK1(N,K)*TAB
            GOTC 175
    172 DIPOLE=DPFAC*((-1)**(INT(DNPKP)))*J3ODK2(N,K)*(TA-TB)
    175 RETURN
C
C N OFF DIAGONAL BY 2, LONG WITH J BY 1
```

```
    180 IF (NJ) 182, 181, 183
C N-2, J-1
    181 DPFAC=DIPFAC*((2*J+1)*(2*N+1)*(2*NP+1)*J60DJ1(F1,IN,J)*
        1J90DJN(N,S,J))*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1)
        GOTO 184
C N+2, J-1
    182 DPFAC=DIPFAC*((2*J+1)*(2*N+1)*(2*NP+1)*J60DJ1(F1,IN,J)*
        1J90JPN(NP,S,JP))*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1)
        GOTO 184
C N-2, J+1
    183 DPFAC=DIPFAC*((2*J+1)*(2*N+1)*(2*NP+1)*J60DJ1(F1,IN,J)*
    1J90JPN(N,S,J))*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1)
    184 IF (K .NE. KP) GOTO 200
    DIPOLE=DPFAC*((-1)**(INT(DNPKP)))*J3ODN2(N,K)*TC
195 RETURN
200 DIPOLE=0.000
201 RETURN
    END
C
C FFUNCTION THAT CALCUATES THE PROTON CONTRIBUTION FROM DIPOLE-DIPOL
    REAL FUNCTION DIPOLH(N,NP,K,KP,S,J,JP, IN, F1, F1P, IH, F, HC , HA , HB , HAB)
    REAL J,JP,N,NP,IN,IH,K,KP,J6DIAG,J9DIAG,J3DIAG, J9ODN2
    REAL J30DK1,J30DK2,J30DN2,J90DJ1,J90DJN, J90JPN,J60DJ1
    REAL J6ODJF,J60JFP,S
    INTEGER POWR,DNPKP,DKAY,DN,DJ,DF1,NJ,JF1
    12 FORMAT (29H DIPOLH N K NP KP J JP FI F1P,8F5.1)
    POWR=INT(2*F1+F+JP+S+NP+IN+IH)
    DIPFAC=((-1)**(POWR))
    DKAY=INT((ABS(K-KP))-2)
    DNPKP=INT(NP-KP)
    DN=INT(N-NP)
    DJ=INT(J-JP)
    DF1=INT(F1-F1P)
C WRITE (6,12)N,R,NP,KP,J,JP,F1,F1P
    IF (DN .GT. O .AND. DJ .LT. 0) THEN
        NJ=1
        ELSE IF (DN .LT. O .AND. DJ .GT. 0) THEN
        NJ=-1
        ELSE
        NJ=0
    ENDIF
203 IF (DJ .GT. 0 .AND. DF1 .LT. 0) THEN
        JF1=1
        ELSE IF (DJ .LT. 0 .AND. DF1 .LT. 0) THEN
        JF1=-1
        ELSE
        JF1=0
    ENDIF
        IF (NJ .NE. O) GOTO 205
        IF (N .LT. NP) THEN
```

```
            PASS=NP
            NP=N
            N=PASS
        ENDIF
        IF (J .LT. JP) THEN
            PASS=JP
            JP=J
            J=PASS
        ENDIF
    205
    IF (NFI .NE. O) GOTO 208
        IF (N .LT. NP) THEN
            PASS=NP
            NP=N
            N=PASS
        ENDIF
        IF (F1 . LT. F1P) THEN
        PASS=F1P
        F1P=F1
        F1=PASS
        ENDIF
        208 IF (F1 .NE. F1P) GOTO 300
        IF (J .NE. JP) GOTO 250
        IF (N .NE. NP) GOTO 225
        209 DPFAC=DIPFAC*(((2*F1+1)**2)*((2*J+1)**2)*S*(S+1)*(2*S+1)*IH*
        1(IH+1)*(2*IH+1)*((2*N+1)**2))**. 5*J6DIAG(F,REAL(IH),F1)*
        2J6DIAG(REAL(IN),J,F1)*J9DIAG(N,S,J)
            IF (K .NE. KP) GOTO 210
            DIPOLK=DPFAC*J3DIAG(N,K)*((-1)**INT(DNPKP))*HC
            GOTO 224
        210 IF (DKAY .EQ. 0) GOTO 220
        215 DIPOLH=DPFAC*J3ODK1(N,K)*((-1)**INT(DNPKP))*HAB
        GOTO 224
        20 DIPOLH=DPFAC*J3ODK2(N,K)*((-1)**INT(DNPKP))*(HA-HB)
        221 FORMAT (9H ALL DIAG,1F20.10)
C 224 WRITE (6,221)DIPOLH
        224 GOTO 395
C
C N OFF DIAGONAL BY 2
    225 DPFAC=DIPFAC*(( (2*F1+1)**2)*((2*J+1)**2)*S*(S+1)*(2*S+1)*IH*
        1(IH+1)*(2*IH+1)*(2*N+1)*(2*NP+1))**. 5*J6DIAG(F,REAL(IH),F1)*
        2J6DIAG(REAL(IN),J,F1)*J9ODN2(N,S,J)
            IF (K .NE. KP) GOTO 230
C WRITE (6,229) DNPKP,HC
    229 FORMAT (9H DNPKP,HC,I5,1F5.1)
    DIPOLH=DPFAC*J3ODN2(N,K)*((-1)**INT(DNPKP))**HC
        GOTO 245
    230 DIPOLH=0.000
    239 FORMAT (7H N BY 2,1F20.10)
C 245 WRITE (6,239) DIPOLH
```


245 GOTO 395

C
C J OFF DIAGONAL BY ONE 250 IF (N .NE. NP) GOTO 275
251 DPFAC=DIPFAC* $((2 * F 1+1) * * 2) *(2 * J+1) * S *(S+1) *(2 * S+1) *$ $\left.1 \mathrm{IH} *(\mathrm{IH}+1) *(2 * \mathrm{IH}+1) *(2 * \mathrm{~N}+1) *\left(2^{*} \mathrm{NP}+1\right)\right)^{* *} .5^{*} \operatorname{J6DIAG}(\mathrm{~F}, \operatorname{REAL}(\mathrm{IH}), \mathrm{F} 1) *$ 2J60DJ1(REAL(IN), F1, J)*J90DJ1 (N, S, J)
IF (K .NE. KP) GOTO 255
DIPOLH=DPFAC*J3DIAG (N,K)*HC
GOTO 270
255 IF (DKAY .EQ. 0) GOTO 265
260 DIPOLH=DPFAC*J3ODK1 $(\mathrm{N}, \mathrm{K}) *$ HAB GOTO 270
265 DIPOLH=DPFAC*J3ODK2 $(\mathrm{N}, \mathrm{K}) *(\mathrm{HA}-\mathrm{HB})$
269 FORMAT (7H J BY 1,1F20.10)
C 270 WRITE $(6,269)$ DIPOLH
270 GOTO 395
C
C ELEMENTS OFF DIAGONAL IN J AND N SIMULTANEOUSLY
$275 \mathrm{IF}(\mathrm{NJ}) 277,276,278$
C IF N-2,J-1; $276 \mathrm{~N}-2, \mathrm{~J}+1 ; 277 \mathrm{~N}+2, \mathrm{~J}-1 ; 278$
276 DPFAC=DIPFAC* $((2 * F 1+1) *(2 * F 1 P+1) *(2 * J+1) * S *(S+1) *$ $1(2 * \mathrm{~S}+1) * \mathrm{IH} *(\mathrm{IH}+1) *(2 * \mathrm{IH}+1) *(2 \star \mathrm{~N}+1) *(2 * \mathrm{NP}+1)) \star * .5 *$ 2J6DIAG(F, REAL(IH) , F1)*J60DJ1 (REAL(IN) , F1, J)*J90DJN(N, S, J) GOTO 27y
277 DPFAC=DIPFAC* $((2 * F 1 \mathrm{P}+1) *(2 * F 1+1) *(2 * J+1) * S *(\mathrm{~S}+1) *$ $1(2 * \mathrm{~S}+1) \star \mathrm{IH} *(\mathrm{IH}+1) *(2 * \mathrm{IH}+1) *(2 \star \mathrm{~N}+1) *(2 * \mathrm{NP}+1))^{* *} .5^{*}$ 2J6DIAG(F, REAL(IH) , F1)*J60DJ1(REAL(IN) ,F1, J)*J90JPN(N, S, J) GOTO 279
278 DPFAC=DIPFAC*($2 *$ F1P +1$) *(2 * F 1+1) *(2 * J+1) * S *(S+1) *$ $\left.1(2 * \mathrm{~S}+1) * \mathrm{IH}^{*}(\mathrm{IH}+1) *(2 * \mathrm{IH}+1) *(2 * \mathrm{~N}+1) *(2 * \mathrm{NP}+1)\right) \star * .5 *$ $2 \mathrm{~J} 6 \mathrm{DIAG}(F, \operatorname{REAL}(I H), F 1) * J 60 \mathrm{DJ} 1(\mathrm{IH}, \mathrm{F} 1, \mathrm{~J}) * J 90 \mathrm{JPN}(N P, S, J P)$ IF (K .NE. KP) GOTO 280
279 DIPOLH=DPFAC*J3ODN2(N,K)*((-1)**(INT(DNPKP)))*HC GOTO 295
280 DIPOLH $=0.000$
289 FORMAT (8 H N AND J, 1F20.10)
C 295 WRITE (6,289)DIPOLH 295 GOTO 395
C
C ELEMENTS OFF DIAGONAL IN F1
300 IF (J .NE. JP) GOTO 350
IF (N .NE. NP) GOTO 325
DPFAC $=$ DIPFAC* $((2 * F 1+1) *(2 * J+1) *(2 * J P+1) *(2 * N+1) *(2 * N P$
$1+1) * \mathrm{IH} *(\mathrm{IH}+1) *(2 * \mathrm{IH}+1) /(2 * \mathrm{~F} 1 \mathrm{P}+1)) * * .5 * \mathrm{~J} 60 \mathrm{DJ} 1$ ($\mathrm{F}, \mathrm{REAL}(\mathrm{IH}), F 1) *$ 2J60DJ1(REAL(IN), J, F1)*J9DIAG(N, S, J)*S* (S+1)*(2*S+1)
IF (K .NE. KP) GOTO 305
DIPOLH=DPFAC*J3DIAG(N,K)*((-1)**(DNPKP))*HC
GOTO 320
305 IF (DKAY .EQ. 0) GOTO 315

```
    310 DIPOLH=DPFAC*J3ODK1(N,K)*((-1)**(DNPKP))*HAB
    GOTO 320
    315 DIPOLH=DPFAC*J3ODK2(N,K)*((-1)**(DNPKP))*(HA-HB)
    317 FORMAT (8H F1 BY 1,1F20.10)
C 320 WRITE (6,317)DIPOLH
    320 GOTO 395
C
C ELEMENTS OFF DIAGONAL IN N AND FI
    325 DPFAC = ((2*F1+1)*(2*N+1)*(2*NP+1)* (2*J+1)*(2*JP+1)/(2*F1P+1))
        1**.5*J60DJ1(F,REAL(IH),F1)*J60DJ1(REAL(IN),J,F1)*
        2J90DN2(N,S,J)*DIPFAC
            IF (K .NE. KP) GOTO 330
            DIPOLH=DPFAC*J3DIAG(N,K)*((-1)**(DNPKP))*HC
            GOTO }34
    330 IF (DKAY .EQ. O) GOTO 340
    335 DIPOLH=DPFAC*J3ODK1(N,K)*((-1)**(DNPKP))*HAB
        GOTO }34
    340 DIPOLH=DPFAC*J3ODK2(N,K)*((-1)**(DNPKP))*(HA-HB)
    341 FORMAT (9H N AND F1,1F20.10)
C 345 WRITE (6,341)DIPOLH
    345 GOTO 395
C
C ELEMENTS OFF DIAGONAL IN J AND F1
    350 IF (N .NE. NP) GOTO 375
        IF (JF1) 351, 352, 353
    351 DPFAC=DIPFAC*((2*F1+1)*(2*N+1)*(2*NP+1)*(2*J+1)*
        1(2*JP+1))**.5*J60DJ1(F,REAL(IH),F1)*J60JFP(REAL(IN),F1,J)*
        2J90DJ1(N,S,J)
            GOTO }35
    352 DPFAC=DIPFAC*((2*F1+1)*(2*N+1)*(2*NP+1)*( 2*J+1)*
        1(2*JP+1))**. 5*J60DJF(REAL(IN),J,F1)*J9ODJ1(N,S,J)*
        2J60DJ1(F,REAL(IH),F1)
            GOTO }35
    353 DPFAC=DIPFAC*((2*F1+1)*(2*N+1)*(2*NP+1)*(2*J+1)*
        1(2*JP+1))**.5*J60JFP(REAL(IN),J,F1)*J90DJ1(N,S,J)*
        2J60DJ1(F,REAL(IH),F1)
    354 IF (K .NE. KP) GOTO 355
        DIPOLH=DPFAC*J3DIAG(N,K)*((-1)**(DNPKP))*HC
        GOTO 370
    355 IF (DKAY .EQ. 0) GOTO 365
    360 DIPOLH=DPFAC*J3ODK1(N,K)*((-1)**(DNPKP))*HAB
        GOTO 370
    365 DIPOLH=DPFAC*J3ODK2(N,K)*((-1)**(DNPKP))*(HA-HB)
    369 FORMAT (9H J AND F1,1F20.10)
C 370 WRITE (6,369)F,F1P JP,NP, KP, F1, J,N, K, DIPOLH
    370 GOTO 395
C
C ELEMENTS OFF DIAGONAL IN J,N,AND F1
    375 DPFAC=DIPFAC*((2*F1+1)*(2*N+1)*(2*NP+1)*(2*J+1)*
    1(2*JP+1))**.5*J60DJ1(F,REAL(IH),F1)
```

```
    1(2*B*(2*B+1)*(2*B+2)*2*C*(2*C+1)*(2*C+2))**.5)
            J6DIAG=(-1)**(INT(A+B+C))*(J6DAG)
            GOTO 2O
            J6DIAG=0.0
C 20 WRITE (6,5) J6DIAG
20 RETURN
    END
C
        REAL FUNCTION J3DIAG(A,B)
            DNOM=((2*A+3)*(2*A+2)*(2*A+1)*2*A*(2*A-1))
            IF (DNOM .LE. 0) GOTO 10
            J3DIAG=(-1)**(INT(B-A))*2*(3*B*B-A*(A+1))/((DNOM)**.5)
            GOTO 20
            J3DIAG=0.0
                        FORMAT (8H J3DIAG=,1F10.3)
C 20 WRITE (6,15) J3DIAG
    RETURN
        END
C
C A=J,B=K
        REAL FUNCTION J3ODN2(A,B)
            REAL J3DN2
            IF (A .EQ. 1) GOTO 10
            J3DN2=(6*(A+B+2)*(A+B+1)*(A-B+2)*(A-B+1))/
        1((2*A+5)* (2*A+4)*(2*A+3)*(2*A+2)*(2*A+1))
C WRITE (6,5) A, B, J3DN2
    5 FORMAT(14H K AT J3ODN2 =,1F9.5)
        IF (J3DN2 .LT. 0) GOTO 10
            J30DN2=(-1)**(INT(A-B))*((J3DN2)**.5)
            GOTO 20
        JO J3ODN2=0.0
C 20 WRITE (6,5) J3ODN2
    20 RETURN
        END
C
        REAL FUNCTION J6ODJ1(A,B,C)
                        REAL J6DJ1
C WRITE (6,5) A,B,C
        F FORMAT (3F5.1)
            IF (B .LT. .1) GOTO 10
        J6DJ1=(2*(A+B+C+1)*(B+C-A)*(A+C-B)*(A+B-C+1))/((2*B)*(2*B+1)*
        1(2*B+2)*(2*C)*(2*C+1))
C WRITE (6,12) J6DJ1
    12 FORMAT ( 8H J6DJ1 =,1F20.10)
            IF (J6DJ1 .LT. 0) GOTO 10
    J60DJ1=((-1)**(INT(A+B+C)))*(J6DJ1**.5)
    GOTO 2O
    10 J60DJ1=0.0
    15 FORMAT (21H THE VALUE OF J6ODJ1=,1F9.5)
C 20 WRITE (6,15) J60DJ1
```

```
    376 IF(JF1) 377, 378, 379
    377 IF(NJ) 380, 381, 382
    378 IF(NJ) 383, 384, 385
    379 IF(NJ) 386, 387, 388
C J+1,J-1,N+1,F1-1; JF1=-1, NJ=-1
    380 DPOFAC=0.0000
        GOTO }38
C J-1,N-1,J+1,F-1 OR J+1,N+2,J+1,F-1 ; JF1=-1,NJ=0
    381 DPOFAC=DPFAC*J60JFP(REAL(IN),F1,J)*J9ODJN(N,S,J)
            GOTO }38
C JF1=-1,NJ=1,N+2,J-1,F1+1
    382 DPOFAC=DPFAC*J6OJFP(REAL(IN),J,F1)*J9OJPN(NP, S, JP)
            GOTO }38
C JF1=0, NJ=-1, J-1,F1-1,N+2,J-1; J+1,F1+1,N+1,J-1
    383 DPOFAC=DPFAC*J6ODJF(REAL(IN),J,F1)*J9OJPN(NP,S,JP)
    GOTO }38
C JF1=0, NJ=0
    384 DPOFAC=DPFAC*J60DJF(REAL(IN),J,F1)*J9ODJN(N,S,J)
    GOTO }38
C JF1=0, NJ=1; J-1,F1-1, N-2,J+1; J+1,F1+1,N-1,J+1
    385 DPOFAC=DPFAC*J6ODJF(REAL(IN),J,F1)*J9OJPN(N,S,J)
    GOTO }38
C JF1=1,NJ=-1; J-1,F+1,J-1,N+1
    386 DPOFAC=DPFAC*J60JFP(REAL(IN),J,F1)*J9OJPN(NP,S,JP)
    GOTO }38
C JF1=1,NJ=0; J-1,F+1,J-1,N-1
    387 DPOFAC=DPFAC*J6OJFP(REAL(IN),J,F1)*J9ODJN(N,S,J)
    GOTO }38
C JF1=1,NJ=0; J-1,F+1,J+1,N-1
    388 DPOFAC=0.000
    389 IF (K .NE. KP) GOTO 390
    DIPOLH=DPOFAC*J3DIAG(N,K)*((-1)**(INT(DNPKP)))*HC
    391 FORMAT (7H F1 N J,1F20.10)
C WRITE (6,391)DIPOLH
    GOTO 395
    390 DIPOLH=0.000
C WRITE (6,394)DIPOLH
    394 FORMAT (9H SKIP ALL,1F20.10)
    395 RETURN
    END
C THIS ENDS FUNCTIONS THAT CALCULATE MATRIX ELEMENTS
C
C
C FUNCTIONS DEFINING SPECIFIC 3J,6J AND 9J SYMBOLS
                REAL FUNCTION J6DIAG(A,B,C)
                    REAL J6DAG
C
                        WRITE (6,4) A,B,C
        4 FORMAT(3F5.1)
        5 FORMAT (23H THE VALUE OF J6DIAG IS,1F20.10)
            J6DAG=(2* (B* (B+1)+C* (C+1)-A* (A+1))/
```

END
C
REAL FUNCTION J9DIAG(N,S,J)
REAL N,S,J
J9DIAG $=((3) * * .5) *\left(\left(N^{*}(N+1)+\mathrm{S}^{*}(\mathrm{~S}+1)-\mathrm{J} *(\mathrm{~J}+1)\right) *(\mathrm{~N} *(\mathrm{~N}+1)+\mathrm{J} *(\mathrm{~J}+1\right.$

1) $\left.\left.-S^{*}(S+1)\right)+(2 / 3) * N^{*}(N+1) *\left(S *(S+1)+J *(J+1)-N^{*}(N+1)\right)\right) /\left(40 * N^{*}(N+\right.$
21)*(2*N-1)*(2*N+1)*(2*N+3)*S*(S+1)*(2*S+1)*J*(J+1)*(2*J+1))**.5 (2)
C VRITE $(6,5)$ J9DIAG
5 FORMAT (8 H J9DIAG $=, 1 \mathrm{~F} 10.3$)
RETURN
END
SUBROUTINE FOR 9J WITH J-1
REAL FUNCTION J9ODJ1 (N,S,J)
REAL J,N,S
IF (J .EQ. .5) GOTO 10
5 FORMAT (6 H N S J, 3F5.1)
NMERAT=($(\mathrm{N}-\mathrm{S}+\mathrm{J}) *(\mathrm{~N}+\mathrm{S}-\mathrm{J}+1) *(\mathrm{~S}+\mathrm{J}-\mathrm{N}) *(\mathrm{~N}+\mathrm{S}+\mathrm{J}+1))$
If (NMERAT .LT. 0) GOTO 10
DENOM $=\left(30^{*} \mathrm{~N}^{*}(\mathrm{~N}+1) *(2 * \mathrm{~N}-1) *(2 * \mathrm{~N}+1) *(2 * \mathrm{~N}+3) * \mathrm{~S}^{*}(\mathrm{~S}+1) *\right.$
$1(2 * S+1) * J *(2 * J-1) *(2 * J+1))$
IF (DENOM .LE. 0) GOTO 10
GAM $=\left(S^{*}(S+1)+N^{*}(N+1)-J *(J+1)\right) *(2 * N-1) *(2 * N+3)$
BTRM $=\left(\mathrm{N}^{* *} 2^{*}(2 * \mathrm{~N}-1) *(\mathrm{~N}+\mathrm{S}+\mathrm{J}+2) *(\mathrm{~N}-\mathrm{S}+\mathrm{J}+1)\right)$
$\operatorname{LTRM}=((N+1) * * 2 *(2 * N+3) *(N+S-J) *(S+J-N+1))$
J90DJ1 $=((($ NMERAT $) * * .5) /(($ DENOM $) * * .5 * 4 * N *(N+1)) *($ GAM $+($
1BTRM-LTRM)/(2*N+1)))
GOTO 20
10 J90DJ1=0.0
C 20 WRITE $(6,25)$ J9ODJ1
C 25 FORMAT (8 H J9ODJ1 $=, 1 F 10.4$)
C WRITE (6,5) N,S,J
20 RETURN
END
C SUBROUTINE FOR 9J WITH J+1, N-2
REAL FUNCTION J9OJPN($\mathrm{N}, \mathrm{S}, \mathrm{J}$)
RFAL J,N,J9JPN,S
IF (N .LE. 1) GOTO 10
J9JPN $=((\mathrm{J}+\mathrm{S}+\mathrm{N}+1) *(\mathrm{~S}+\mathrm{N}-\mathrm{J}) *(\mathrm{~J}-\mathrm{S}+\mathrm{N}) *(\mathrm{~J}+\mathrm{S}-\mathrm{N}+1) *(\mathrm{~S}+\mathrm{N}-\mathrm{J}-2$
2) ${ }^{(S+N-J-1) *(J+S-N+2) *(J+S-N+3)) /(16 *(N-1) * N *(2 * N-3) *(2 * N-1) *(2 * ~}$ $\left.2 \mathrm{~N}+1) * \mathrm{~S}^{*}(\mathrm{~S}+1) *(2 * \mathrm{~S}+1) *(\mathrm{~J}+1) *(2 * \mathrm{~J}+1) *(2 * \mathrm{~J}+3)\right)$

IF (J9JPN .LT. 0) GOTO 10
J90JPN=-(J9JPN**.5)
GOTO 20
10 J90JPN=0.0
15 FORMAT (8 H J90JPN $=, 1$ 1F10.4)
C 20 WRITE $(6,15)$ J90JPN
20 RETURN
END
C SUBROUTINE FOR 9J WITH N-2
REAL FUNCTION J9ODN2(N,S,J)
REAL J9DN2,N,J
C WRITE $(6,5) \mathrm{N}, \mathrm{S}, \mathrm{J}$
5 FORMAT (18HVALUE OF N, S, J ARE, 3F5.1)
IF ((N .LE. 1) .OR. (J .LT. 1.0)) GOTO 10

```
                                    J9DN2=((J+S+N+1)*(S+N-J)*(J+N-S)*(J+S-N+1)*(S+N+J)
            1*(J+N-S-1)*(N+S-J-1)*(J+S-N+2))/((16*(N-1)*N*(2*N-3)*(2*N-1)*
            2(2*N+1)*S*(S+1)*(2*S+1)*(J)*(2*J+1)*(2*J-1)))
C WRITE \((6,7)\) JgDN2
    7 FORMAT (8H J9ODN2=,1F10.4)
            IF (J9DN2 .LT. 0) GOTO 10
        J9ODN2=-(J9DN2**.5)
        GOTO 20
        10 J90DN2=0.0
C 20 WRITE (6,7) J9ODN2
        20 RETURN
            END
C SUBROUTINE FOR 9J WITH J-1,N-2
            REAL FUNCTION JMODJN(N,S,J)
                    REAL N,S,J,J9DJN
                    IF ((N .IE. 1) .OR. (J .EQ. .5)) GOTO 10
                    J9DJN=((J+S+N+1)*(S+N-J)*(J+N-S)*(J+S-N+1)*(J+S+N
            1-1)*(J+S+N)*(J-S+N-1)*(S-J+N-1)*(J+S -N+2))/(16*(N-1)*N*(2*N-3)*
            2(2*N-1)*(2*N+1)*S*(S+1)*(2*S+1)*J*(2*J-1)*(2*J+1))
                IF (J9DJN .LT. 0) GOTO 10
                J90DJN=-(J9DJN**(.5))
            GOTO 20
    10 J90DJN=0.0
    15 FORMAT (8H J9ODJN=,1F10.4)
C 20 WRITE (6,15) J9ODJN
    20 RETURN
        END
C SUBROUTINE FOR 6J WITH J-1,F-1
            REAL FUNCTION JGODJF(N,J,F)
                REAL J6DJF,J,N
            IF ((J .LT. . 5) .OR. (F .LT. .5)) GOTO 10
            J6DJF=(((N+J+F)*(N+J+F+1)*(J+F-N-1)*
            1(J+F-N))/((2*J-1)*2*J*(2*J+1)*(2*F-1)*2*F*(2*F+1)))
            IF (J6DJF .LT. 0) GOTO 10
```



```
            GOTO 20
            FORMAT (22H THE VALUE OF J6ODJF =,1F9.5)
            5 FORMAT (22H
C 20 WRITE (6,5) J60DJF
    20 RETURN
```

END
C SUBROUTINE FOR 6J WITH J-1, F+1
REAL FUNCTION J6OJFP (N, J, F)
REAL J6JFP,N,J
IF (J .EQ. .5) GOTO 10
J6JFP $=((\mathrm{N}+\mathrm{J}-\mathrm{F}-1) *(\mathrm{~N}+\mathrm{J}-\mathrm{F}) *(\mathrm{~N}+\mathrm{F}-\mathrm{J}+1)$ *
$1(\mathrm{~N}+\mathrm{F}-\mathrm{J}+2)) /((2 * \mathrm{~F}+1) *(2 * \mathrm{~F}+2) *(2 * \mathrm{~F}+3) *(2 * \mathrm{~J}-1) *(2 * \mathrm{~J}) *(2 * \mathrm{~J}+1))$
IF (J6JFP .LT. 0) GOTO 10
J60JFP $=((-1) * *(\operatorname{INT}(N+J+F))) *(J 6 J F P * * .5)$
GOTO 20
$10 \quad \mathrm{~J} 60 \mathrm{JFP}=0.0$
15 FORMAT (8H J60JFP=,1F10.4)
C 20 WRITE $(6,15)$ J60JFP
20 RETURN
END
C SUBROUTINE FOR 3J WITH K-1
REAL FUNCTION J3ODK1 (N,K)
REAL J3DK1,N,K
C
WRITE $(6,15)$ J30DK1 IF (N .LT. O.1) GOTO 10
J3DK1 $=\left(\left(6^{*}(N+K+1) *(N-K)\right) /((2 * N+3) *(2 *\right.$
$1 * \mathrm{~N}+2) *(2 * \mathrm{~N}+1) *(2 * \mathrm{~N}) *(2 * \mathrm{~N}-1)))$
IF (J3DK1 .LT. 0) GOTO 10
J30DK1=((-1)**(INT(N-K)))*(J3DK1**.5)*(1+2*K)
GOTO 20
10 J3ODK1=0.0
15 FORMAT (8 H J3ODK1=,1F10.4)
C 20 WRITE $(6,15)$ J3ODK1
20 RETURN
END
C SUBROUTINE FOR 3J WITH K-2
REAL FUNCTION J3ODK2 (N,K)
REAL J3DR2,N,K
C
WRITE $(6,15)$ J3ODK2
IF (N .LT. 1) GOTO 10
J3DK2 $=(((\mathrm{N}-\mathrm{K}-1) *(\mathrm{~N}-\mathrm{K}) *(\mathrm{~N}+\mathrm{K}+1) *(\mathrm{~N}+\mathrm{K}+2)) /((2 *$
$1 \mathrm{~N}+3) \star(2 \star \mathrm{~N}+2) *(2 \star \mathrm{~N}+1) \star 2 \star \mathrm{~N} \star(2 \star \mathrm{~N}-1)))$
IF (J3DK2 .LT.0) GOTO 10
J30DK2 $=(-1) * *($ INT $(N-K)) *(J 3 D K 2 * * .5)$
GOTO 20
$10 \quad \mathrm{~J} 30 \mathrm{DK} 2=0.0$
15 FORMAT (8 H J3ODK2 $=$, 1F10.4)
C 20 WRITE $(6,15)$ J3ODK2
20 RETURN
END
END
FINAL RUN HYPERFINE PROTONATED
24 maximum and minimum N $\begin{array}{lllll}-69.9 & -36.1 & 2.7 & 0.00 & 0.00 \\ \text { spin-rotation values }\end{array}$
$\begin{array}{lllll}-17.1 & -17.2 & 34.3 & 0.00 & 9.50 \\ \text { nitrogen hyperfine }\end{array}$

		-4.46			5.46	0.00	-59.0 proton hyperfine
3	1	3	2	1		18189.90	
3	0	3	2	0	2	19274.10	$\mathrm{n}, \mathrm{k} 1, \mathrm{k}-1, \mathrm{n}^{\prime}, \mathrm{kl}{ }^{\prime}, \mathrm{k}-1^{\prime}$, freq
3	2	2	2	2	1	20044. 50	for transitions so that the
3	2	1	2	2	0	20814.9	spectrum can be reproduced
3	1	2	2	1	1	21642.9	instead of only differences
4	1	4	3	1	3	24063.6	being calculated
4	0	4	3	0	3	24992.70	
3	1	3	2	1	2	18189.90	
3	0	3	2	0	2	19274.10	
3	2	2	2	2	1	20044.50	
3	2	1	2	2	0	20814.9	
3	1	2	2	1	1	21642.9	
4	1	4	3	1	3	24063.6	
4	0	4	3	0	3	324992.70	
3	1	3	2	1	2	18189.90	
3	0	3	2	0	2	219274.10	
3	2	2	2	2		120044.50	
3	2	1	2	2	0	20814.9	
3	1	2	2	1		121642.9	
4	1	4	3	1	3	34063.6	
4	0	4	3	0	3	324992.70	
3	1	3	2	1	2	18189.90	
3	0	3	2	0	2	19274.10	
3	2	2	2	2		120044.50	
3	2	1	2	2		- 20814.9	
3	1	2	2	1		121642.9	
4	1	4	3	1	3	324063.6	
4	0	4	3	0	3	324992.70	
3	1	3	2	1	2	218189.90	
3	0	3	2	0		219274.10	
3	2	2	2	2		120044.50	
3	2	1	2	2	0	20814.9	
3	1	2	2	1		121642.9	
4	1	4	3	1		324063.6	
4	0	4	3	0		324992.70	
3	1	3	2	1		218189.90	
3	0	3	2	0		219274.10	
3	2	2	2	2		120044.50	
3	2	1	2	2		0 20814.9	
3	1	2	2	1		121642.9	
4	1	4	3	1		324063.6	
4	0	4	3	0		324992.70	
3	1	3	2	1		218189.90	
3	0	3	2	0		219274.10	
3	2	2	2	2		120044.50	
3	2	1	2	2		0 20814.9	
3	1	2	2	1		121642.9	
4	1	4	3	1		324063.6	
4	0	4	3	0		324992.70	

3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	324063.6	
4	0	4	3	0	324992.70	
3	1	3	2	1	218189.90	
3	0	3	2	0	219274.10	
3	2	2	2	2	120044.50	
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90

3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	324063.6	
4	0	4	3	0	324992.70	
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10

3	2	2	2	2		20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2		20044.50

3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70
3	1	3	2	1	2	18189.90
3	0	3	2	0	2	19274.10
3	2	2	2	2	1	20044.50
3	2	1	2	2	0	20814.9
3	1	2	2	1	1	21642.9
4	1	4	3	1	3	24063.6
4	0	4	3	0	3	24992.70

Sample Output from Hyperfine

FINAL RUN

2	4			
-69.90	-36.10	2.70	0.00	0.00
-15.90	-16.00	34.30	0.00	9.50
8.04	-16.00	13.92	0.00	-59.00

THE FOLLOWING ARE TRANSITIONS OF $I H=0$ AND $I N=0$

$J^{\prime}\left(K^{\prime}, K^{\prime}\right)-N(K, K)$	$J^{\prime}-J$	FREQ
$3(0,3)-2(0,2)$	$2.5-1.5$	19308.88670
$3(0,3)-2(0,2)$	$3.5-2.5$	19241.36720
$3(2,2)-2(2,1)$	$2.5-1.5$	20075.01560
$3(2,2)-2(2,1)$	$3.5-2.5$	20018.41410
$3(2,1)-2(2,0)$	$2.5-1.5$	20805.51170
$3(2,1)-2(2,0)$	$3.5-2.5$	20786.07420
$4(0,4)-3(0,3)$	$3.5-2.5$	25001.04690
$4(0,4)-3(0,3)$	$4.5-3.5$	24959.07810

$N^{\prime}\left(K^{\prime}-K^{\prime}\right)-N(R, K) \quad J^{\prime}-J \quad F 1^{\prime}-F 1 \quad F^{\prime}-F$
FREQ
THE FOLLOWING ARE TRANSITIONS OF IH= 1 AND IN= 0

| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $1.5-0.5$ | 18206.68360 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $2.5-1.5$ | 18207.83590 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $3.5-2.5$ | 18207.65620 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 18157.73440 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 18157.31640 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 18158.12500 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $1.5-0.5$ | 21646.81250 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $2.5-1.5$ | 21647.53910 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $3.5-2.5$ | 21647.12110 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 21616.29690 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 21616.46090 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 21616.09770 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 24069.36330 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 24069.96870 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 24069.41410 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $3.5-2.5$ | 24030.00780 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $4.5-3.5$ | 24030.05080 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $5.5-4.5$ | 24028.79300 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $1.5-0.5$ | 18206.68360 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $2.5-1.5$ | 18207.83590 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $3.5-2.5$ | 18207.65620 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 18157.73440 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 18157.31640 |

1, 3)-2(1,2)	3.5-2.5	3.5-2.5	4.5-3.5	18158. 12500
THE FOLLOWING ARE	NSITIONS	IH=	AND IN=	
$3(2,2)-2(2,1)$	2.5-1.5	2.5-1.5	1.5-0.5	20077.04690
$3(2,2)-2(2,1)$	2.5-1.5	2.5-1.5	2.5-1.5	20077.73830
$3(2,2)-2(2,1)$	2.5-1.5	2.5-1.5	3.5-2.5	20076.05080
3(2, 2)-2(2,1)	2.5-1.5	2.5-1.5	4.5-3.5	20075.94920
$3(2,2)-2(2,1)$	3.5-2.5	3.5-2.5	1.5-0.5	20017.94140
$3(2,2)-2(2,1)$	3.5-2.5	3.5-2.5	2.5-1.5	20019.75780
$3(2,2)-2(2,1)$	3.5-2.5	3.5-2.5	3.5-2.5	20018.91020
3(2, 2)-2(2,1$)$	3.5-2.5	3.5-2.5	4.5-3.5	20018.41800
$3(2,2)-2(2,1)$	3.5-2.5	3.5-2.5	5.5-4.5	20019.58980
$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	1.5-0.5	20807.54690
$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	2.5-1.5	20808.51170
$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	3.5-2.5	20806.59370
$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	4.5-3.5	20805.65620
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	1.5-0.5	20785.05860
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	2.5-1.5	20787.41800
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	3.5-2.5	20786.67190
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	4.5-3.5	20786.21870
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	5.5-4.5	20785.53120
$4(0,4)-3(0,3)$	3.5-2.5	3.5-2.5	1.5-0.5	24999.66800
$4(0,4)-3(0,3)$	3.5-2.5	3.5-2.5	2.5-1.5	25002.57030
4(0,4)-3(0,3)	3.5-2.5	3.5-2.5	3.5-2.5	25001.71870
$4(0,4)-3(0,3)$	3.5-2.5	3.5-2.5	4.5-3.5	25001.46870
4(0,4)-3(0,3)	3.5-2.5	3.5-2.5	5.5-4.5	25000.61330
$4(0,4)-3(0,3)$	4.5-3.5	4.5-3.5	2.5-1.5	24958.47270
$4(0,4)-3(0,3)$	4.5-3.5	4.5-3.5	3.5-2.5	24959.72660
4(0,4)-3(0,3)	4.5-3.5	4.5-3.5	4.5-3.5	24959.72270
4(0,4)-3(0,3)	4.5-3.5	4.5-3.5	5.5-4.5	24959.50780
4(0, 4) - 3(0, 3)	4.5-3.5	4.5-3.5	6.5-5.5	24957.75000
3(0,3) - 2 0,2)	2.5-1.5	2.5-1.5	1.5-0.5	19309.64840
$3(0,3)-2(0,2)$	2.5-1.5	2.5-1.5	2.5-1.5	19311.85550
$3(0,3)-2(0,2)$	2.5-1.5	2.5-1.5	3.5-2.5	19310.48830
3(0, 3)-2(0, 2)	2.5-1.5	2.5-1.5	4.5-3.5	19309.47660
$3(0,3)-2(0,2)$	3.5-2.5	3.5-2.5	1.5-0.5	19243.32810
$3(0,3)-2(0,2)$	3.5-2.5	3.5-2.5	2.5-1.5	19242.29690
$3(0,3)-2(0,2)$	3.5-2.5	3.5-2.5	3.5-2.5	19242.73440
$3(0,3)-2(0,2)$	3.5-2.5	3.5-2.5	4.5-3.5	19241.99610
$3(0,3)-2(0,2)$	3.5-2.5	3.5-2.5	5.5-4.5	19242.46870
3(2, 2)-2(2,1$)$	2.5-1.5	2.5-1.5	1.5-0.5	20077.04690
3(2, 2)-2(2,1$)$	2.5-1.5	2.5-1.5	2.5-1.5	20077.73830
3(2, 2)-2(2,1)	2.5-1.5	2.5-1.5	3.5-2.5	20076.05080
3(2, 2)-2(2,1)	2.5-1.5	2.5-1.5	4.5-3.5	20075.94920
$3(2,2)-2(2,1)$	3.5-2.5	3.5-2.5	1.5-0.5	20017.94140
3(2, 2)-2(2,1)	3.5-2.5	3.5-2.5	2.5-1.5	20019.75780
3(2, 2)-2(2,1)	3.5-2.5	3.5-2.5	3.5-2.5	20018.91020
3(2, 2)-2(2,1)	3.5-2.5	3.5-2.5	4.5-3.5	20018.41800
3(2, 2)-2(2,1$)$	3.5-2.5	3.5-2.5	5.5-4.5	20019.58980
$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	1.5-0.5	20807.54690
$3(2,1)=2(2,0)$	2.5-1.5	2.5-1.5	2.5-1.5	20808.51170

$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	3.5-2.5	20806.59370
$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	4.5-3.5	20805.65620
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	1.5-0.5	20785.05860
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	2.5-1.5	20787.41800
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	3.5-2.5	20786.67190
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	4.5-3.5	20786.21870
3(2, 1)- 2(2,0)	3.5-2.5	3.5-2.5	5.5-4.5	20785.53120
THE FOLLOWING ARE	NSITIONS	OF $\mathrm{IH}=3$	AND IN=	
3(1, 2) - $2(1,1)$	2.5-1.5	2.5-1.5	1.5-0.5	21651. 11720
$3(1,2)-2(1,1)$	2.5-1.5	2.5-1.5	2.5-1.5	21651.07810
$3(1,2)-2(1,1)$	2.5-1.5	2.5-1.5	3.5-2.5	21650.13670
3(1, 2)-2(1, 1)	2.5-1.5	2.5-1.5	4.5-3.5	21649.16020
$3(1,2)-2(1,1)$	2.5-1.5	2.5-1.5	5.5-4.5	21647.14450
$3(1,2)-2(1,1)$	3.5-2.5	3.5-2.5	1.5-0.5	21616.89840
3(1, 2)-2(1, 1)	3.5-2.5	3.5-2.5	2.5-1.5	21618.82420
3(1, 2)-2(1, 1)	3.5-2.5	3.5-2.5	3.5-2.5	21619.64450
$3(1,2)-2(1,1)$	3.5-2.5	3.5-2.5	4.5-3.5	21617.76950
3(1, 2)-2(1, 1)	3.5-2.5	3.5-2.5	5.5-4.5	21616.32030
3(1, 2)-2(1, 1)	3.5-2.5	3.5-2.5	6.5-5.5	21617.74220
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	1.5-0.5	24072.81640
4(1, 4)-3(1,3)	3.5-2.5	3.5-2.5	2.5-1.5	24070.95700
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	3.5-2.5	24072.22660
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	4.5-3.5	24071.62500
4(1, 4)-3(1,3$)$	3.5-2.5	3.5-2.5	5.5-4.5	24070.71480
4(1, 4)-3(1,3$)$	3.5-2.5	3.5-2.5	6.5-5.5	24069.66020
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	1.5-0.5	24030.50390
4(1, 4)-3(1,3)	4.5-3.5	4.5-3.5	2.5-1.5	24032.26950
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	3.5-2.5	24032.73050
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	4.5-3.5	24030.84370
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	5.5-4.5	24030.93750
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	6.5-5.5	24031.22660
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	7.5-6.5	24026.44920
3(1,3$)-2(1,2)$	2.5-1.5	2.5-1.5	1.5-0.5	18213.40230
3(1,3$)-2(1,2)$	2.5-1.5	2.5-1.5	2.5-1.5	18211.37110
3(1,3$)-2(1,2)$	2.5-1.5	2.5-1.5	3.5-2.5	18209.98830
3(1, 3)-2(1,2$)$	2.5-1.5	2.5-1.5	4.5-3.5	18209.20310
$3(1,3)-2(1,2)$	2.5-1.5	2.5-1.5	5.5-4.5	18208.16410
3(1, 3)-2(1, 2)	3.5-2.5	3.5-2.5	1.5-0.5	18158.66800
$3(1,3)-2(1,2)$	3.5-2.5	3.5-2.5	2.5-1.5	18159.49610
$3(1,3)-2(1,2)$	3.5-2.5	3.5-2.5	3.5-2.5	18160.50780
$3(1,3)-2(1,2)$	3.5-2.5	3.5-2.5	4.5-3.5	18159.32420
$3(1,3)-2(1,2)$	3.5-2.5	3.5-2.5	5.5-4.5	18157.21480
$3(1,3)-2(1,2)$	3.5-2.5	3.5-2.5	6.5-5.5	18160.49220
3(1, 2)-2(1, 1)	2.5-1.5	2.5-1.5	1.5-0.5	21651.11720
3(1, 2)-2(1,1)	2.5-1.5	2.5-1.5	2.5-1.5	21651.07810
$3(1,2)-2(1,1)$	2.5-1.5	2.5-1.5	3.5-2.5	21650.13670
3(1, 2)-2(1, 1)	2.5-1.5	2.5-1.5	4.5-3.5	21649.16020
$3(1,2)-2(1,1)$	2.5-1.5	2.5-1.5	5.5-4.5	21647.14450
$3(1,2)-2(1,1)$	3.5-2.5	3.5-2.5	1.5-0.5	21616.89840
3(1, 2)-2(1,1$)$	3.5-2.5	3.5-2.5	2.5-1.5	21618.82420

3(1, 2)-2(1,1)	3.5-2.5	3.5-2.5	5-2.5
3(1,2$)-2(1,1)$	3.5-2.5	3.5-2.5	4.5-3.5
$3(1,2)-2(1,1)$	3.5-2.5	3.5-2.5	5.5-4.5
$3(1,2)-2(1,1)$	3.5-2.5	3.5-2.5	6.5-5.5
4(1, 4)-3(1,3)	3.5-2.5	3.5-2.5	1.5-0.5
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	2.5-1.5
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	3.5-2.5
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	4.5-3.5
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	5.5-4.5
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	6.5-5.5
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	1.5-0.5
4(1, 4)-3(1,3)	4.5-3.5	4.5-3.5	2.5-1.5
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	3.5-2.5
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	4.5-3.5
$4(1,4)-3(1,3)$	4.5-3.5	4.5-3.5	5.5-4.5
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	6.5-5.5
4(1,4)-3(1,3)	4.5-3.5	4.5-3.5	7.5-6.5
THE FOLLOWING ARE	ANSITIONS	F $\mathrm{IH}=0$	AND IN=
4(0,4$)-3(0,3)$	3.5-2.5	2.5-1.5	2.5-1.5
$4(0,4)-3(0,3)$	3.5-2.5	3.5-2.5	3.5-2.5
4(0,4$)-3(0,3)$	3.5-2.5	4.5-3.5	4.5-3.5
$4(0,4)-3(0,3)$	4.5-3.5	3.5-2.5	3.5-2.5
4(0, 4)-3(0,3)	4.5-3.5	4.5-3.5	4.5-3.5
4(0, 4)-3(0,3)	4.5-3.5	5.5-4.5	5.5-4.5
$3(0,3)-2(0,2)$	2.5-1.5	1.5-0.5	1.5-0.5
3(0,3$)-2(0,2)$	2.5-1.5	2.5-1.5	2.5-1.5
$3(0,3)-2(0,2)$	2.5-1.5	3.5-2.5	3.5-2.5
$3(0,3)-2(0,2)$	3.5-2.5	2.5-1.5	2.5-1.5
$3(0,3)-2(0,2)$	3.5-2.5	3.5-2.5	3.5-2.5
$3(0,3)-2(0,2)$	3.5-2.5	4.5-3.5	4.5-3.5
$3(2,2)-2(2,1)$	2.5-1.5	1.5-0.5	1.5-0.5
3(2, 2)-2(2,1)	2.5-1.5	2.5-1.5	2.5-1.5
3(2, 2)- $2(2,1)$	2.5-1.5	3.5-2.5	3.5-2.5
$3(2,2)-2(2,1)$	3.5-2.5	2.5-1.5	2.5-1.5
3(2, 2)-2(2,1$)$	3.5-2.5	3.5-2.5	3.5-2.5
$3(2,2)-2(2,1)$	3.5-2.5	4.5-3.5	4.5-3.5
$3(2,1)-2(2,0)$	2.5-1.5	1.5-0.5	1.5-0.5
$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	2.5-1.5
$3(2,1)-2(2,0)$	2.5-1.5	3.5-2.5	3.5-2.5
$3(2,1)-2(2,0)$	3.5-2.5	2.5-1.5	2.5-1.5
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	3.5-2.5
$3(2,1)-2(2,0)$	3.5-2.5	4.5-3.5	4.5-3.5
4(0,4)-3(0,3)	3.5-2.5	2.5-1.5	2.5-1.5
4(0,4)-3(0,3)	3.5-2.5	3.5-2.5	3.5-2.5
4(0,4)-3(0,3)	3.5-2.5	4.5-3.5	4.5-3.5
$4(0,4)-3(0,3)$	4.5-3.5	3.5-2.5	3.5-2.5
$4(0,4)-3(0,3)$	4.5-3.5	4.5-3.5	4.5-3.5
0, 4)-3(0, 3)	4.5-3.5	5.5-4.5	5.5-4.5

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $1.5-0.5$ | $2.5-1.5$ | 21648.37890 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $1.5-0.5$ | 21643.87890 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $2.5-1.5$ | 21646.81250 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $3.5-2.5$ | 21647.51560 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $3.5-2.5$ | $2.5-1.5$ | 21646.84370 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $3.5-2.5$ | $3.5-2.5$ | 21646.81250 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $3.5-2.5$ | $4.5-3.5$ | 21678.28520 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $2.5-1.5$ | $1.5-0.5$ | 21609.44140 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $2.5-1.5$ | $2.5-1.5$ | 21616.25000 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $2.5-1.5$ | $3.5-2.5$ | 21616.47660 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 21616.45700 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 21616.25000 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 21616.36720 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $4.5-3.5$ | $3.5-2.5$ | 21616.25000 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $4.5-3.5$ | $4.5-3.5$ | 21616.25000 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $4.5-3.5$ | $5.5-4.5$ | 21439.67190 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $2.5-1.5$ | $1.5-0.5$ | 24071.26950 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $2.5-1.5$ | $2.5-1.5$ | 24069.73440 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $2.5-1.5$ | $3.5-2.5$ | 24069.93750 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 24070.57030 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 24069.73440 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 24069.74220 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $4.5-3.5$ | $3.5-2.5$ | 24069.75000 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $4.5-3.5$ | $4.5-3.5$ | 24069.73440 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $4.5-3.5$ | $5.5-4.5$ | 23991.39450 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $3.5-2.5$ | $2.5-1.5$ | 24082.35160 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $3.5-2.5$ | $3.5-2.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $3.5-2.5$ | $4.5-3.5$ | 24030.08590 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $3.5-2.5$ | 24030.03520 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $4.5-3.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $5.5-4.5$ | 24030.26560 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $5.5-4.5$ | $4.5-3.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $5.5-4.5$ | $5.5-4.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $5.5-4.5$ | $6.5-5.5$ | 23812.41020 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $1.5-0.5$ | $1.5-0.5$ | 18214.61720 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $1.5-0.5$ | $2.5-1.5$ | 18209.10550 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $1.5-0.5$ | 18204.68750 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $2.5-1.5$ | 18207.11330 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $3.5-2.5$ | 18207.94530 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $3.5-2.5$ | $2.5-1.5$ | 18207.11720 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $3.5-2.5$ | $3.5-2.5$ | 18207.11330 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $3.5-2.5$ | $4.5-3.5$ | 18238.73050 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $2.5-1.5$ | $1.5-0.5$ | 18151.37890 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $2.5-1.5$ | $2.5-1.5$ | 18157.16410 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $2.5-1.5$ | $3.5-2.5$ | 18157.40620 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 18157.35550 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 18157.16410 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 18157.14450 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $4.5-3.5$ | $3.5-2.5$ | 18157.16410 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $4.5-3.5$ | $4.5-3.5$ | 18157.16410 |
| 3 | | | | |

3(1,3)-2(1,2) 3.5-2.5 4.5-3.5 5.5-4.5
THE FOLLOWING ARE TRANSITIONS OF IH= 2 AND IN= 1

| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $1.5-0.5$ | $1.5-0.5$ | 20805.78520 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $1.5-0.5$ | $2.5-1.5$ | 20806.86330 |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $1.5-0.5$ | $3.5-2.5$ | 20806.97660 |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $2.5-1.5$ | $1.5-0.5$ | 20805.51170 |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $2.5-1.5$ | $2.5-1.5$ | 20805.83590 |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $2.5-1.5$ | $3.5-2.5$ | 20805.92190 |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $2.5-1.5$ | $4.5-3.5$ | 20806.55470 |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $3.5-2.5$ | $1.5-0.5$ | 20805.61330 |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $3.5-2.5$ | $2.5-1.5$ | 20805.51170 |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $3.5-2.5$ | $3.5-2.5$ | 20805.51170 |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $3.5-2.5$ | $4.5-3.5$ | 20805.53520 |
| $3(2,1)-2(2,0)$ | $2.5-1.5$ | $3.5-2.5$ | $5.5-4.5$ | 20805.00780 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $2.5-1.5$ | $1.5-0.5$ | 20786.07420 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $2.5-1.5$ | $2.5-1.5$ | 20786.12500 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $2.5-1.5$ | $3.5-2.5$ | 20786.21090 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $2.5-1.5$ | $4.5-3.5$ | 20786.89450 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $3.5-2.5$ | $1.5-0.5$ | 20786.87500 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 20786.07420 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 20786.07420 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 20786.08590 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $3.5-2.5$ | $5.5-4.5$ | 20785.94530 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $4.5-3.5$ | $2.5-1.5$ | 20786.23830 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $4.5-3.5$ | $3.5-2.5$ | 20786.07420 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $4.5-3.5$ | $4.5-3.5$ | 20786.07420 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $4.5-3.5$ | $5.5-4.5$ | 20786.05080 |
| $3(2,1)-2(2,0)$ | $3.5-2.5$ | $4.5-3.5$ | $6.5-5.5$ | 20674.34370 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $2.5-1.5$ | $1.5-0.5$ | 25001.04690 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $2.5-1.5$ | $2.5-1.5$ | 25001.07030 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $2.5-1.5$ | $3.5-2.5$ | 25001.16410 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $2.5-1.5$ | $4.5-3.5$ | 25001.54690 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $3.5-2.5$ | $1.5-0.5$ | 25002.26170 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 25001.04690 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 25001.04690 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 25001.05080 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $3.5-2.5$ | $5.5-4.5$ | 25001.13670 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $4.5-3.5$ | $2.5-1.5$ | 25001.55080 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $4.5-3.5$ | $3.5-2.5$ | 25001.04690 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $4.5-3.5$ | $4.5-3.5$ | 25001.04690 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $4.5-3.5$ | $5.5-4.5$ | 25001.05080 |
| $4(0,4)-3(0,3)$ | $3.5-2.5$ | $4.5-3.5$ | $6.5-5.5$ | 25009.60160 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $3.5-2.5$ | $1.5-0.5$ | 24972.53910 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $3.5-2.5$ | $2.5-1.5$ | 24959.07810 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $3.5-2.5$ | $3.5-2.5$ | 24959.07810 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $3.5-2.5$ | $4.5-3.5$ | 24959.12110 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $3.5-2.5$ | $5.5-4.5$ | 24959.21090 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $4.5-3.5$ | $2.5-1.5$ | 24959.98830 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $4.5-3.5$ | $3.5-2.5$ | 24959.07810 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $4.5-3.5$ | $4.5-3.5$ | 24959.07810 |

| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $4.5-3.5$ | $5.5-4.5$ | 24959.10550 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $4.5-3.5$ | $6.5-5.5$ | 24959.54690 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $5.5-4.5$ | $3.5-2.5$ | 24959.21870 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $5.5-4.5$ | $4.5-3.5$ | 24959.07810 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $5.5-4.5$ | $5.5-4.5$ | 24959.07810 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $5.5-4.5$ | $6.5-5.5$ | 24959.17190 |
| $4(0,4)-3(0,3)$ | $4.5-3.5$ | $5.5-4.5$ | $7.5-6.5$ | 24721.13670 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $1.5-0.5$ | $1.5-0.5$ | 19311.49610 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $1.5-0.5$ | $2.5-1.5$ | 19312.27340 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $1.5-0.5$ | $3.5-2.5$ | 19312.57810 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $2.5-1.5$ | $1.5-0.5$ | 19308.88670 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $2.5-1.5$ | $2.5-1.5$ | 19309.37890 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $2.5-1.5$ | $3.5-2.5$ | 19309.64060 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $2.5-1.5$ | $4.5-3.5$ | 19310.18360 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $3.5-2.5$ | $1.5-0.5$ | 19308.91410 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $3.5-2.5$ | $2.5-1.5$ | 19308.88670 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $3.5-2.5$ | $3.5-2.5$ | 19308.88670 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $3.5-2.5$ | $4.5-3.5$ | 19309.01950 |
| $3(0,3)-2(0,2)$ | $2.5-1.5$ | $3.5-2.5$ | $5.5-4.5$ | 19242.48440 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $2.5-1.5$ | $1.5-0.5$ | 19241.36720 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $2.5-1.5$ | $2.5-1.5$ | 19241.69140 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $2.5-1.5$ | $3.5-2.5$ | 19241.73050 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $2.5-1.5$ | $4.5-3.5$ | 19242.47270 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $3.5-2.5$ | $1.5-0.5$ | 19241.85160 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 19241.36720 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 19241.36720 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 19241.41410 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $3.5-2.5$ | $5.5-4.5$ | 19241.55470 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $4.5-3.5$ | $2.5-1.5$ | 19241.47660 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $4.5-3.5$ | $3.5-2.5$ | 19241.36720 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $4.5-3.5$ | $4.5-3.5$ | 19241.36720 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $4.5-3.5$ | $5.5-4.5$ | 19241.34770 |
| $3(0,3)-2(0,2)$ | $3.5-2.5$ | $4.5-3.5$ | $6.5-5.5$ | 19035.43750 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $1.5-0.5$ | $1.5-0.5$ | 20076.48050 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $1.5-0.5$ | $2.5-1.5$ | 20076.50780 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $1.5-0.5$ | $3.5-2.5$ | 20076.62500 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $2.5-1.5$ | $1.5-0.5$ | 20075.01560 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $2.5-1.5$ | $2.5-1.5$ | 20075.43750 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $2.5-1.5$ | $3.5-2.5$ | 20075.43360 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $2.5-1.5$ | $4.5-3.5$ | 20076.19140 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $3.5-2.5$ | $1.5-0.5$ | 20075.08200 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $3.5-2.5$ | $2.5-1.5$ | 20075.01560 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $3.5-2.5$ | $3.5-2.5$ | 20075.01560 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $3.5-2.5$ | $4.5-3.5$ | 20075.03520 |
| $3(2,2)-2(2,1)$ | $2.5-1.5$ | $3.5-2.5$ | $5.5-4.5$ | 20074.32420 |
| $3(2,2)-2(2,1)$ | $3.5-2.5$ | $2.5-1.5$ | $1.5-0.5$ | 20018.41410 |
| $3(2,2)-2(2,1)$ | $3.5-2.5$ | $2.5-1.5$ | $2.5-1.5$ | 20018.50780 |
| $3(2,2)-2(2,1)$ | $3.5-2.5$ | $2.5-1.5$ | $3.5-2.5$ | 20018.55080 |
| $3(2,2)-2(2,1)$ | $3.5-2.5$ | $2.5-1.5$ | $4.5-3.5$ | 20019.22660 |
| $3(2,2)-2(2,1)$ | $3.5-2.5$ | $3.5-2.5$ | $1.5-0.5$ | 20019.16410 |
| 3 | | | | |

3(2, 2)-2(2, 1)	3.5-2.5	3.5-2.5	2.5-1.5	20018.41410
3(2,2$)-2(2,1)$	3.5-2.5	3.5-2.5	3.5-2.5	20018.41410
3(2, 2)-2(2,1)	3.5-2.5	3.5-2.5	4.5-3.5	20018.44140
3(2, 2)-2(2,1$)$	3.5-2.5	3.5-2.5	5.5-4.5	20018.30080
3(2, 2)-2(2,1)	3.5-2.5	4.5-3.5	2.5-1.5	20018.56250
3(2,2$)-2(2,1)$	3.5-2.5	4.5-3.5	3.5-2.5	20018.41410
3(2, 2)-2(2,1)	3.5-2.5	4.5-3.5	4.5-3.5	20018.41410
3(2, 2)-2(2,1)	3.5-2.5	4.5-3.5	5.5-4.5	20018.38670
$3(2,2)-2(2,1)$	3.5-2.5	4.5-3.5	6.5-5.5	19907.10160
$3(2,1)-2(2,0)$	2.5-1.5	1.5-0.5	1.5-0.5	20805.78520
3(2, 1)-2(2,0)	2.5-1.5	1.5-0.5	2.5-1.5	20806.86330
3(2,1$)-2(2,0)$	2.5-1.5	1.5-0.5	3.5-2.5	20806.97660
$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	1.5-0.5	20805.51170
$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	2.5-1.5	20805.83590
$3(2,1)-2(2,0)$	2.5-1.5	2.5-1.5	3.5-2.5	20805.92190
3(2,1$)-2(2,0)$	2.5-1.5	2.5-1.5	4.5-3.5	20806.55470
3(2, 1)-2(2,0)	2.5-1.5	3.5-2.5	1.5-0.5	20805.61330
$3(2,1)-2(2,0)$	2.5-1.5	3.5-2.5	2.5-1.5	20805.51170
$3(2,1)-2(2,0)$	2.5-1.5	3.5-2.5	3.5-2.5	20805.51170
$3(2,1)-2(2,0)$	2.5-1.5	3.5-2.5	4.5-3.5	20805.53520
3(2, 1)- $2(2,0)$	2.5-1.5	3.5-2.5	5.5-4.5	20805.00780
$3(2,1)-2(2,0)$	3.5-2.5	2.5-1.5	1.5-0.5	20786.07420
$3(2,1)-2(2,0)$	3.5-2.5	2.5-1.5	2.5-1.5	20786. 12500
$3(2,1)-2(2,0)$	3.5-2.5	2.5-1.5	3.5-2.5	20786.21090
$3(2,1)-2(2,0)$	3.5-2.5	2.5-1.5	4.5-3.5	20786.89450
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	1.5-0.5	20786.87500
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	2.5-1.5	20786.07420
3(2, 1)-2(2,0)	3.5-2.5	3.5-2.5	3.5-2.5	20786.07420
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	4.5-3.5	20786.08590
$3(2,1)-2(2,0)$	3.5-2.5	3.5-2.5	5.5-4.5	20785.94530
$3(2,1)-2(2,0)$	3.5-2.5	4.5-3.5	2.5-1.5	20786.23830
$3(2,1)-2(2,0)$	3.5-2.5	4.5-3.5	$3.5-2.5$	20786.07420
3(2, 1)-2(2,0)	3.5-2.5	4.5-3.5	4.5-3.5	20786.07420
$3(2,1)-2(2,0)$	3.5-2.5	4.5-3.5	5.5-4.5	20786.05080
$3(2,1)-2(2,0)$	3.5-2.5	4.5-3.5	6.5-5.5	20674.34370
THE FOLLOWING ARE	ANSITIONS	OF $\mathrm{IH}=3$	AND IN=	
4(1, 4)-3(1,3)	3.5-2.5	2.5-1.5	1.5-0.5	24069.73440
4(1,4$)-3(1,3)$	3.5-2.5	2.5-1.5	2.5-1.5	24069.82030
4(1,4$)-3(1,3)$	3.5-2.5	2.5-1.5	3.5-2.5	24070.14450
4(1,4$)-3(1,3)$	3.5-2.5	2.5-1.5	4.5-3.5	24070. 12500
4(1,4$)-3(1,3)$	3.5-2.5	2.5-1.5	5.5-4.5	24070.46480
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	1.5-0.5	24069.73440
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	2.5-1.5	24069.73440
$4(1,4)-3(1,3)$	3.5-2.5	3.5-2.5	3.5-2.5	24069.77340
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	4.5-3.5	24069.95700
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	5.5-4.5	24070.15230
4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	6.5-5.5	24069.76560
4(1,4$)-3(1,3)$	3.5-2.5	4.5-3.5	1.5-0.5	24070.08200
4(1, 4)-3(1,3$)$	3.5-2.5	4.5-3.5	2.5-1.5	24069.73440
4(1,4) - 3(1,3$)$	3.5-2.5	4.5-3.5	3.5-2.5	24069.73440

| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $4.5-3.5$ | $4.5-3.5$ | 24069.73440 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $4.5-3.5$ | $5.5-4.5$ | 24069.80470 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $4.5-3.5$ | $6.5-5.5$ | 24069.69140 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $4.5-3.5$ | $7.5-6.5$ | 23991.58200 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $3.5-2.5$ | $1.5-0.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $3.5-2.5$ | $2.5-1.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $3.5-2.5$ | $3.5-2.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $3.5-2.5$ | $4.5-3.5$ | 24030.13280 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $3.5-2.5$ | $5.5-4.5$ | 24030.34770 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $3.5-2.5$ | $6.5-5.5$ | 24030.42970 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $1.5-0.5$ | 24031.37500 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $2.5-1.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $3.5-2.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $4.5-3.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $5.5-4.5$ | 24030.03520 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $6.5-5.5$ | 24029.89060 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $4.5-3.5$ | $7.5-6.5$ | 24030.58980 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $5.5-4.5$ | $2.5-1.5$ | 24030.59370 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $5.5-4.5$ | $3.5-2.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $5.5-4.5$ | $4.5-3.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $5.5-4.5$ | $5.5-4.5$ | 24029.98050 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $5.5-4.5$ | $6.5-5.5$ | 24029.98440 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $5.5-4.5$ | $7.5-6.5$ | 24030.32030 |
| $4(1,4)-3(1,3)$ | $4.5-3.5$ | $5.5-4.5$ | $8.5-7.5$ | 23810.82420 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $1.5-0.5$ | $1.5-0.5$ | 18208.12500 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $1.5-0.5$ | $2.5-1.5$ | 18209.99220 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $1.5-0.5$ | $3.5-2.5$ | 18210.93750 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $1.5-0.5$ | $4.5-3.5$ | 18210.66410 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $1.5-0.5$ | 18207.33980 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $2.5-1.5$ | 18207.86720 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $3.5-2.5$ | 18208.41020 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $4.5-3.5$ | 18208.28120 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $2.5-1.5$ | $5.5-4.5$ | 18208.94140 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $3.5-2.5$ | $1.5-0.5$ | 18207.11330 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $3.5-2.5$ | $2.5-1.5$ | 18207.11330 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $3.5-2.5$ | $3.5-2.5$ | 18207.22270 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $3.5-2.5$ | $4.5-3.5$ | 18207.41020 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $3.5-2.5$ | $5.5-4.5$ | 18207.71870 |
| $3(1,3)-2(1,2)$ | $2.5-1.5$ | $3.5-2.5$ | $6.5-5.5$ | 18239.31250 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $2.5-1.5$ | $1.5-0.5$ | 18157.16410 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $2.5-1.5$ | $2.5-1.5$ | 18157.58980 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $2.5-1.5$ | $3.5-2.5$ | 18157.73050 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $2.5-1.5$ | $4.5-3.5$ | 18157.85940 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $2.5-1.5$ | $5.5-4.5$ | 18158.23830 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $1.5-0.5$ | 18157.16410 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 18157.16410 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 18157.23440 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 18157.42580 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $5.5-4.5$ | 18157.60940 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $3.5-2.5$ | $6.5-5.5$ | 18157.31250 |

| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $4.5-3.5$ | $1.5-0.5$ | 18157.22270 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $4.5-3.5$ | $2.5-1.5$ | 18157.16410 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $4.5-3.5$ | $3.5-2.5$ | 18157.16410 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $4.5-3.5$ | $4.5-3.5$ | 18157.17580 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $4.5-3.5$ | $5.5-4.5$ | 18157.24610 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $4.5-3.5$ | $6.5-5.5$ | 18157.15230 |
| $3(1,3)-2(1,2)$ | $3.5-2.5$ | $4.5-3.5$ | $7.5-6.5$ | 17982.51560 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $1.5-0.5$ | $1.5-0.5$ | 21647.71090 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $1.5-0.5$ | $2.5-1.5$ | 21649.32420 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $1.5-0.5$ | $3.5-2.5$ | 21649.07420 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $1.5-0.5$ | $4.5-3.5$ | 21649.02730 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $1.5-0.5$ | 21647.03910 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $2.5-1.5$ | 21647.47270 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $3.5-2.5$ | 21648.07420 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $4.5-3.5$ | 21647.58980 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $2.5-1.5$ | $5.5-4.5$ | 21648.36330 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $3.5-2.5$ | $1.5-0.5$ | 21646.81250 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $3.5-2.5$ | $2.5-1.5$ | 21646.81250 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $3.5-2.5$ | $3.5-2.5$ | 21646.91800 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $3.5-2.5$ | $4.5-3.5$ | 21647.10940 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $3.5-2.5$ | $5.5-4.5$ | 21647.35160 |
| $3(1,2)-2(1,1)$ | $2.5-1.5$ | $3.5-2.5$ | $6.5-5.5$ | 21678.77730 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $2.5-1.5$ | $1.5-0.5$ | 21616.25000 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $2.5-1.5$ | $2.5-1.5$ | 21616.64060 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $2.5-1.5$ | $3.5-2.5$ | 21616.80080 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $2.5-1.5$ | $4.5-3.5$ | 21616.87500 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $2.5-1.5$ | $5.5-4.5$ | 21617.25000 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $1.5-0.5$ | 21616.25000 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 21616.25000 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 21616.30860 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 21616.51170 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $5.5-4.5$ | 21616.71480 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $3.5-2.5$ | $6.5-5.5$ | 21616.34770 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $4.5-3.5$ | $1.5-0.5$ | 21616.31250 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $4.5-3.5$ | $2.5-1.5$ | 21616.25000 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $4.5-3.5$ | $3.5-2.5$ | 21616.25000 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $4.5-3.5$ | $4.5-3.5$ | 21616.25390 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $4.5-3.5$ | $5.5-4.5$ | 21616.33980 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $4.5-3.5$ | $6.5-5.5$ | 21616.23050 |
| $3(1,2)-2(1,1)$ | $3.5-2.5$ | $4.5-3.5$ | $7.5-6.5$ | 21441.53910 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $2.5-1.5$ | $1.5-0.5$ | 24069.73440 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $2.5-1.5$ | $2.5-1.5$ | 24069.82030 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $2.5-1.5$ | $3.5-2.5$ | 24070.14450 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $4.5-3.5$ | 24069.95700 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $5.5-4.5$ | 24070.15230 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $2.5-1.5$ | $4.5-3.5$ | 24070.12500 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $2.5-1.5$ | $5.5-4.5$ | 24070.46480 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $1.5-0.5$ | 24069.73440 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $2.5-1.5$ | 24069.73440 |
| $4(1,4)-3(1,3)$ | $3.5-2.5$ | $3.5-2.5$ | $3.5-2.5$ | 24069.77340 |
| $4(1$ | | | | |

4(1,4$)-3(1,3)$	3.5-2.5	3.5-2.5	6.5-5.5	24069.76560
4(1, 4)-3(1,3)	3.5-2.5	4.5-3.5	1.5-0.5	24070.08200
4(1, 4)-3(1, 3)	3.5-2.5	4.5-3.5	2.5-1.5	24069.73440
4(1, 4)-3(1,3)	3.5-2.5	4.5-3.5	3.5-2.5	24069.73440
4(1, 4)-3(1,3)	3.5-2.5	4.5-3.5	4.5-3.5	24069.73440
4(1, 4)-3(1,3)	3.5-2.5	4.5-3.5	5.5-4.5	24069.80470
4(1,4$)-3(1,3)$	3.5-2.5	4.5-3.5	6.5-5.5	24069.69140
4(1,4$)-3(1,3)$	3.5-2.5	4.5-3.5	7.5-6.5	23991.58200
4(1,4$)-3(1,3)$	4.5-3.5	3.5-2.5	1.5-0.5	24029.98050
4(1,4$)-3(1,3)$	4.5-3.5	3.5-2.5	2.5-1.5	24029.98050
4(1,4$)-3(1,3)$	4.5-3.5	3.5-2.5	3.5-2.5	24029.98050
4(1,4$)-3(1,3)$	4.5-3.5	3.5-2.5	4.5-3.5	24030.13280
4(1,4$)-3(1,3)$	4.5-3.5	3.5-2.5	5.5-4.5	24030.34770
4(1,4$)-3(1,3)$	4.5-3.5	3.5-2.5	6.5-5.5	24030.42970
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	1.5-0.5	24031.37500
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	2.5-1.5	24029.98050
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	3.5-2.5	24029.98050
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	4.5-3.5	24029.98050
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	5.5-4.5	24030.03520
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	6.5-5.5	24029.89060
4(1,4$)-3(1,3)$	4.5-3.5	4.5-3.5	7.5-6.5	24030.58980
4(1,4$)-3(1,3)$	4.5-3.5	5.5-4.5	2.5-1.5	24030.59370
4(1,4$)-3(1,3)$	4.5-3.5	5.5-4.5	3.5-2.5	24029.98050
4(1,4$)-3(1,3)$	4.5-3.5	5.5-4.5	4.5-3.5	24029.98050
4(1,4$)-3(1,3)$	4.5-3.5	5.5-4.5	5.5-4.5	24029.98050
4(1,4$)-3(1,3)$	4.5-3.5	5.5-4.5	6.5-5.5	24029.98440
4(1,4$)-3(1,3)$	4.5-3.5	5.5-4.5	7.5-6.5	24030.32030
4(1,4$)-3(1,3)$	4.5-3.5	5.5-4.5	8.5-7.5	23810.82420

1) Cook, J.M., Hills, G.W. and Curl, R.F., J. Chem. Phys. 67, 1450 (1977).
2) Y. Endo, C. Yamada, S. Saito and E. Hirota, J. Chem. Phys. 77, 3376, (1982).
3) White, R.M., Dissertation at VPI\&SU 1986.
4) G. Herzberg, "Spectra to Structures of Simple Free Radicals, An Introduction to Molecular Spectroscopy", Cornell Press, NY, 1971.
5) Carrington, A. "Mircowave Molecular Spectra", Academic Press, London, 1974.
6) Gordy, W. and Cook, R.L., "Mircowave Molecular Spectra", Interscience Publishers, NY, 1970.
7) Townes, C.H. and Schaulow, A.C., "Microwave Spectroscopy", McGraw Hill, NY, 1955.
8) Dousmanis, G.C., Sanders, T.C., Touner, C.H., Phys. Rev. 100, 1735, (1955).
9) Powell, F.X., Lide, D.R., J. Chem. Phys. 41, 1413, (1964).
10) Tulât-Erben, M. and Bywater, S., J. Am. Chem. Soc. 17, 3710, (1955).
11) Bullock, A.J., Burnette, G.M., Kerr, C.M.L., European Polymer Journal, 7, 1011-1019, (1971).
12) Bichutinski, A.A., Prokofiev, A.I. and Shabalkin, V.A., Russ J. Phys. Chem. 38, 534, (1964).
13) Livingston, R., Zeldes, H. J. Mag. Res., 1(1), 169-77 (1969).
14) Moriuchi, S., Junkichi, S., Molecular Physics, 21(2) 369-371 (1971).
15) Lien, M.H., Hopkinson, A.C., Journal of Computational Chemistry, 6(4) 274-281 (1985).
16) Peterson, M.R., Puirier, R.A., MONSTERGAUSS, University of Toronto (1980).
17) Criller, D., Marriott, P.R., Preston, K.F., J. Chem. Phys. 71, 3703, (1979).
18) Bowater, I.C., Brown, J.M., and A. Carrington, "Proc. R. Soc. London, Sev, A333, 265, (1973).
19) Wigner, E.P. (1940), "On the Matrices Which Reduce the Kronecker Products of Representations of Spin-Rotation Groups", Reprinted in "Quantum Theory of Angular Momentum", L.C. Biedenham and H. VanDam, Editors, Academic Press N.Y., 1965.
20) Buckmaster, H.A., Chatterjee, R. and Shing, Phys. Stat. Sol.A. 13(9) 1972.
21) Wigner, E.P. "Group Theory and its Application to Quantum Mechanics of Atomic Spectra", Academic Press, NY, 1959.
22) V. Heine "Group Theory in Quantum Mechanics", Pergamon, Oxford, 1960.
23) M. Tinkham, "Group Theory and Quantum Mechanics", McGraw Hill, New York, 1964.
24) Silver, B.L. "Irreducible Tensor Methods, An Introduction for Chemists", Academic Press, New York, 1976.
25) Silver, p.40.
26) Edmunds, A.R. "Angular Momentum in Quantum Mechanics", Princeton University Press, Princeton, 1957, p.91.
27) Wigner, E.P. "Group Theory", Academic Press, 1959.
28) Edmonds, p. 100.
29) Silver, p.84.
30) Dirac, P.A.M., "Principles of Quantum Mechanics", Oxford, 1947.
31) Silver, p.52.
32) Condon and Shortly, "Theory of Atomic Spectra, Cambridge, 1955.
33) Silver, p.58.
34) Silver, p. 58
35) Eckert, C., "The Application of Group Theory to Quantum Dynamic of Monatomic Systems", Rev. Mod. Physics, 2, 305-380 (1930).
36) Edmonds, p.76.
37) Silver, p. 88
38) Gordy, W., and Cook, R.L., p.8.
39) Harmony, M.D. "Introduction to Molecular Energies and Spectra", Holt, Rhinehart and Winston, New York, (1972).
40) Townes, C.H. and Scnawlow, A.C., p. 26.
41) King, G.W., Harrier, R.M., Cross, P.C., J. Chem. Phys. 11, 27, (1943).
42) Herzberg, G. "Electronic Spectra of Polyatomic Molecules", Van Nostrund Rneinhold, New York, 1966.
43) Hirota, E., "High Resolution Spectroscopy of Transient Molecules", Springer-Verlag, New York, 1985, p. 20.
44) Van Vleck, J.H., Rev. Mod. Phys., 23, 213, (1951).
45) Hirota, E., p.26.
46) Brown, J.M. and T.J. Sears, J. Mol. Spectrosc. 25, 111, (1979).
47) Cook, R.L. and Delucia, F.C., Am. J. Phys., 39, 1433, (1971).
48) Hirota, E. P. 34.
49) Curl, R.L., Private Communication.
50) Rabjohn, J. (Chief Editor) "Organic Synthesis, Collective Volume $4^{\prime \prime}$, John Wiley \& Sons, New York, 1963, p.274, 66.
51) Wertz, J.E. and Bolton, J.R., "Electron Spin Resonance", Chapman and Hall, New York, 1986, p.349.
52) Hills, G.W., Cook, J.M., J. Molec. Spectosc. 94, 456 (1982).
53) Davies, P.B., Russell, D.K., Thrush, B.A. and Radford, H.E., Chem. Phys. 44, 42 (1979).
54) Brown, R.D., Burden, F.R., Godfrey, P.D. and Gillard, I.R., J. Mole. Spectrosc. 52, 301, (1974).
55) Endo, Y., Yamada, C., Saito, S. and Hirota, E., J. Chem. Phys, 79 1605 (1983).
56) Endo, Y., Saito, S., Hirota, E., Canadian J. Physics, 62, 1347 (1984).
57) Bowman, W.C., DeLucia, F.C., J. Chem. Phys. 75, 5256, (1981).
58) Sutton, L.E. (Chief Editor), "Tables of Interatomic Distances and Configurations in Molecules and Ions", Burlington House, London, 1965.
59) Swalen, J.D., Constain, C.C., J. Chem. Phys. $31(0) 1562$ (1959).
60) Gaussian 80, Binkley, JU.S., whiteside, R.A., Krishman, R., Seeger, R., DeFrees, D.J., Schlegel, H.B., Topiol, S., Kann, L.R. and Pople, J.A., Dept. Of Chemistry, Carnegie Mellon Univ., (1980).
61) Curl, R.F., Mol. Phys. 9, 585, (1965).
62) Morton, J.R., Preston, K.F., J. Mag. Res. 30, 577, (1978).
63) Endo, Y., Saito, S. Hirota, E. J. Molec. Spectrosc. 91, 204 (1983).
64) Kirchoff, W.H. J. Molec. Spectrosc., 41, 333 (1972).
65) Schwendemann, R.H. "Critical Evaluation of Chemical and Physical Structural Information", National Academy of Sciences, Washington, D.C. 1974.
66) Y. Endo, S. Saito, E. Hirota: J. Chem. Phys. 81, 122 (1984).
67) Russell, D.K., Radford, H.E., J. Chem. Phys. 72, 2750 (1980).
68) H.E. Radford, D.K. Russell, J. Chem. Phys. 66, 2222 (1971).
69) Yamada, Y. Hirota, E., Kawaguchi, K., J. Chem. Phys. 75, 5256 (1981).
70) Laurie, V.W., J. Chem. Phys. 28704 (1958).
71) Swalen, J.C., Constain, C.C., J. Chem. Phys. $31(6)$, 1562 (1959).

The vita has been removed from the scanned document

[^0]: *adjacent lines unresolved

[^1]: *adjacent lines unresolved

