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(ABSTRACT)

The rotational spectra of the 2-cyano-2·propyl and d‘·2·cyano-2-

propyl radicals were observed using a Stark modulated spectrometer. The

radicals were generated in the gas phase by UV irradiation of sublimed

azoisobisbutyronitrile. They were detectable in the cell for

approximately one hour. Thirty-three transitions were assigned for

(CH3)zCCN and twenty-one for (CD3)zCCN. The rigid rotor rotational

constants determined by calculation of the hypothetical unsplit

rotational transitions are A=8276.7, B=3919.7, C=2751.5Mhz for (CH3)zCCN

and A=6241.3, B=3490.7, C=2372.6Mhz for (CD3)zCCN.

A program to calculate the fine splittings and hyperfine splittings

due to the
l‘N

nucleus and six protons was written. The spin rotation

constants determined for the two species were Eaa=—69.9, Ebb=-36.1,

Ecc=2.7Mhz and Eaa=-55.4, Ebb=-32.6 Mhz for (CHJ)2CCN and (CD3)zCCN

respectively. The hyperfine coupling constants for
l°N

are identical

for both isotopic species and were found to be Taa=-17.2, T¤D=-17.1 and

TCC=34.4 Mhz. The proton and deuteron hyperfine splittings were not

resolved. The structural parameters determined from an <r°> fit of the

moments are rCN=l.18A, rCC=1.42A, rCMe=l.50A and CCMe=l19.3°. The C‘N

skeletal framework was found to be planar.
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Chapter I

Introduction

The purpose of this work was to characterize the molecular and

electronic structure of the 2·cyano—2·propyl radical,

CH3\ • ____/C——C:_N

by using data obtained from the rotational spectra of the protonated and

fully deuterated species. The analysis of two isotopic species was

necessary in order to determine the four important structural

parameters. The use of two isotopic species also serves to confirm the

assignment as well as the fine and hyperfine coupling constants.

Analysis of the fine and hyperfine spectral splittings allowed the

components of the spin—rotation and dipole-dipole tensors to be

determined. Using these values, the hypothetical unsplit rotational

transition frequencies were calculated and the principal moments of

inertia determined. From the six moments, four highly correlated

structural parameters were obtained. . A

The planarity of the non-hydrogen skeleton of the molecule was
I

established by the fit of the fine splitting parameters and the

1
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magnitude of the moment differences. If only diagonal components of the

spin·rotation tensor are needed in the fit, a planar structure is most

probable. The position of the orbital of the unpaired electron relative

to the molecular plane can be determined by examining the relative

nagnitudes of the fine splitting parameters.

Spin density on the nitrogen atom can be estimated by considering

the magnitudes of the dipole-dipole coupling constants. The magnitude

of the Fermi contact parameter is related to the hybridization of the

orbital which the lone electron occupies when it is on the nitrogen

nucleus.Hyperfine

splittings due to the six protons or deuterons were not

resolved in this study. These components could have been assigned using

a computer program written for the study if the splittings had been

resolvable. This program considers the interaction of six equivalent

spin % nuclei and a separate nonequivalent spin 1 nucleus. This

assignment could further substantiate assumptions made by Endoz and

white! where the spins of the six nuclei were handled as a single

nucleus with a spin equal to the vector sum of all the individual

nuclei.



Chapter II

Review of Prior Research

This chapter will review three related topics; the development of

high resolution spectroscopy of paramagnetic species, previous studies

of the 2-cyano·2—propyl radical that are relevant to this work and

previous high resolution studies of several multinuclear-spin free

radicals. The particular radicals of interest are NHzl,
CFJI,

and

(CFJ)!N0.3

Identification of the stable free radical triphenylmethyl in the

early 1900*s gave impetus to the study and characterization of these

novel chemical species.‘ Due to the short lifetime of most radicals

their study remains a formidable task. A number of simple free

radicals, mostly diatomics, were identified in flames and discharges by

recording their emission spectra.

In the 1920's and 1930*s, the new quantum theory provided

spectroscopists with a sound theoretical basis for assigning and

interpreting spectra. Development of radar during world war II lead to

the new spectroscopic method of Electron Spin Resonance. This technique

has been successfully applied to examine a number of free radicals

trapped in inert matrices. Carringtons successfully applied it to gas

3
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phase diatomic and linear triatomic free radicals. The hyperfine

coupling constants obtained from these investigations provide

information on transient molecules that is unobtainable from traditional

optical spectroscopy.

Microwave spectroscopy has improved the precision with which

molecular parameters can be determined. It has been applied to a number

of molecules, most of which are stable."7 Townes· succeeded in

’
detecting rotational transitions of the OH radical in 1955. Nine years

later, Powell and Lide’ successfully observed and characterized the SO

radical using microwave spectroscopy.

In the past twenty years, many other techniques have been developed

to characterize radical species spectroscopically. New infrared, laser

and fluorescence techniques along with improvements in microwave

hardware have advanced this type of spectroscopic study to the point

where the limiting factors are generation of the radical or developing

the theoretical basis for assigning and interpreting the spectra.

Developing the theory for a spectroscopic investigation is especially

difficult with a radical possessing many coupled nuclear spins.

The 2-cyano·2-propyl radical has been widely used in initiating

free radical polymerization. It is produced by the thermal or

photolytic decomposition of azobisisobutyronitrile.

CHg\NC"C*—N=N*-C—CN
/ \

CH; CH3 T

The proximity of the CN triple bond with the lone electron makes the

lifetime in solution of this radical similar in magnitude to the benzyl
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radicals.l•
V

Most interest in this radical has been concerned with its

properties in solution. Numerous studies have been performed on its

lifetime in different solutions and its reactivity with a number of

monomers. No gas phase studies were performed, hence only a few sources

concerning this radical were relevant to this study.

The 2-cyano·2—propyl radical is known to recombine to form the

dimer:

N N ‘

CH;-{ — {—CH;
H; H;

and other minor products that form less readily., This includes a

keteneimine compound

H; N

CH;—l=C=N—§—CH;
H;

which dissociates back into the radical and eventually forms the stable

dimer.l° The recombination rate of the radical in 100°C biphenyl

solution has been monitored by ESR by Kerr et al.‘l The second order

rate constant was found to be 5.5x10°M°lsec°l. with a starting

concentration of 5x10°1M, over half of the radical species remained

after 20 minutes. Other worklz has presented rate constants an order of

magnitude less for the recombination of the free radical than that

reported by Kerr.
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Other ESR studies of the 2·cyano-2-propyl radical in liquid and

solid states have yielded much information concerning the electronic

nature of the species.1l’x‘ The Fermi contact parameters for nitrogen

and protons were found to be 9.51.2 and 59.01.6 Mhz, respectively.‘°

The study of this radical in the solid state yielded data concerning the

anisotropic coupling of the nitrogen nucleus. The parallel dipolar

coupling constant was found to be 1312 gauss (3616 Mhz), which indicated

a spin density on the nitrogen nucleus of approximately O.3.l‘

A theoretical study was performed on a series of o-substituted

isopropyl and cyclopropyl free radicals.l5 This study included the 2-

cyano—2·propyl radical. The calculations were performed using a

Restricted Hartree Fock basis set at a 3-216 level of theory and the

"MONSTER6AUSS" program.l‘ The calculations found all ¤·substituted

isopropyl radicals to be nonplanar. The 2·cyano-2-propyl radical

deviated the least from planarity with an out of plane angle of 12.7°.

The same calculations determined the isopropyl radical to deviate from

planarity by 23.1°, however, this radical has been experimentally

determined to be planar.}, For this reason, the author believes that

the most probable structure for the 2·cyano-2-propyl radical is planar

(with the exception of the out of plane protons). This can be

rationalized by the cyano group being a n—acceptor. Donation of the

unpaired electron into the n* orbital on the cyano group would favor a

planar structure.

Structural parameters reported from this theoretical structure were

rc_Me=1.51A and rC_CN=1.4lA. The other structural parameters were not
reported. The total energy (without nuclear repulsion considered) was
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calculated to be -208.20846 Hartrees. Spin densities on each atom were

not reported.

The NH! radical has been characterized by Curl and coworkersl using

a microwave—optical double resonance technique. The theory for

hyperfine splitting due to two equivalent protons and one nitrogen ("N)

was examined in detail. Expressions for the matrix elements of the

hyperfine Hamiltonian were derived in this paper. This particular study

is important to radical spectroscopists since it considers two different

types of nuclei involved in hyperfine splitting. It was found

experimentally that two equivalent protons each with K spin could be

treated theoretically as a single 1-spin system. with this assumption,

a satisfactory spectral fit with reasonable structural and spectroscopic

parameters was obtained.

Endoz and coworkers analyzed the rotational spectrum of the

trifluoromethyl radical. The theory for the hyperfine structure due to

three equivalent fluorine nuclei (E spin) was developed and the matrix

elements of the hyperfine Hamiltonian were derived. The off diagonal

elements in the quantum number K (quantum number for the angular

momentum about the symmetry axis) were neglected in the hyperfine energy

matrix which resulted in no systematic errors in calculated and observed

lines. Matrix elements diagonal in K are identical to those for a

single nucleus with a spin equal to that of the sum of thé three

component spins (here 3x%=3/2). An excellent spectral fit justified

this approximation.

white has taken Endo's approximation one step further.: In the

analysis of the bistrifluoromethyl nitroxide radical the two
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trifluoromethyl groups were treated as two equivalent 3/2 spin systems.

This work extends Endo's approximation to multiple "group spin" systems.

Hhite's approximation is used in this study to characterize the

hyperfine coupling of the protons on the two equivalent methyl groups.

The matrix elements derived by Curl for the NH: redieel ape used gd

calculate the hyperfine splitting due to the
l‘N

nucleus in the 2-cyano-

2—pr0pyl radical.



Chapter III

Review of Theoretical Concepts

This chapter is composed of four parts. The first part will

address the theory used in deriving the pertinent equations involving

the fine and hyperfine splitting in free radicals. The second and third

parts will deal with the description of the moments of inertia and the

asymmetric rigid rotor respectively. The final section will discuss the

symmetry of asymmetric rotor rotational energy levels.

Coupling Theory

It has been shown that an angular momentum eigenfunction ljm> spans

an irreducible representation
D(J)

of R3, the infinite rotation

group.z1’22’z3 In other words, if one rotates the coordinate system but

not the angular momentum state |jm>, its (2j+1) states in the new

coordinate system may be expressed as a linear combination of the (2j+1)

states of the previous coordinate system.

[3-1} Dm=J

where m' refers to the new coordinate system, the d(j)m.m(¤BY) are the

9
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coefficients depending on j, m and m' and on a, B, and Y, the Euler

angles of rotation.

This property is similar to that of the spherical harmonics

Y$(9,¢), where we can say that 2l+l orthonormalized functions Y$(0,¢)

form an invariant subspace under the set of operators D(¤BY).

Premultiplying both sides of equation 3.1 with <jm|, integrating and

applying the orthonormality of the angular momentum eigenfunctions, the

matrix elements of the coordinate transformation can be expressed as

Thus, for a given j, there are (2j+l)z elements in the matrix which

describe this transformation. The general matrix of this kind is called

the Nigner rotation matrix.

The direct product of two independent sets of states |j1ml> and

|jzmz>
consist of (2j‘+1)(2jz+1) product functions |j1ml>|jzmz>

all of

which are eigenfunctions of the operators jlz, jzz, jä and jä. These

product functions are not necessarily eigenfunctions of j2(j2=jä+j2).

However, there exists a unitary transformation that transforms this set

of product functions into another orthogonal set of (2jl+1)(2jz+2)

states which are eigenfunctions of jz along with jä, jä and

jZ(jZ=j1Z+j2Z). The matrix elements connecting these two schemes are

the Clebsch-Gordon Coefficients.2‘

Ij,m, > Ijzmq > —•C1ebsch·Gordon CocfBcicnts—> Ij,j1jm > [33]

or

5} 5} 5,, j2,—•Clebsch caraoa caemcaamw 5} 5} 5} 52 [3.4]
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Clebsch-Gordon coefficients are often called vector-coupling (or VC)

coefficients and will be referred to as VC coefficients in this thesis.

Equation 3.3 can be written in a more explicit form describing the

coupled states and VC coefficients.

U./;Jm> = Z ¢¢.,¢2,t. I1. m. > lm > um
mim:

For convenience, |jlm‘>|jzmz> can be written as |j‘m‘jzmz>. Multiplying

both sides of Equation 3.5 by this quantity and integrating over all

possible states, the expression for the VC coefficient is found.

<!1mlfzm1|fJ;im > [3.6]

From this, one observes that the coefficients are actually scalar

products of the states |jlm‘jzmz> and the state |jljzjm>. The

geometrical interpretation of this result is that one can regard the

state |j‘jzjm> as a vector in a (2jI+l)(2jz+1) subspace spanned by the

orthogonal product states (‘j‘m\jzm2>). This means the contribution of

a state, \jxm\jzmz>, to this vector is the projection of a vector on

this state, or the scalar product of the two states. Using this

concept, equation 2 can be rewritten as

mim:

This can also be found by using the identity operator expressed as
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E: Ij1mlj2”‘2> <jlmL/2”‘2I [$8]
mlm]

and applying it to one side of CHE expression

In order to evaluate the VC coefficients, their properties must

first be examined. The coefficient vanishes unless ml+mz=m and

(j‘+jz) 2 j 2 ljl·jz| (this is called the triangle condition). This

arises as a consequence of rules for vector addition of angular mOm€Htä•

The coefficients are also real and form an orthogonal matrix.

The symmetry of the VC coefficients can be used to simplify their

evaluation. For example:

Ü
‘ 1

which indicates a relationship between two VC coefficients differing

only in the order or sign of their cohstitueht and their m values. This

and similar relationships reduce the number of coefficients it is

necessary to tabulate.

Higher has ihtroduced a symbol that has very simple symmetry

properties and is very closely related to the VC coefficients.i, This

is called a 3-J symbol and is defined by V
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I I I _
- .. . .2 3)=(_l)/x /2 [3.11]

mx mz ma

An even permutation of columns results in an unchanged value for the

symbol,

‘ Ix j2 j3 j2 Ia jl I1 Ix I2
= = [3.12]

mx m2 ma mz ms mx ma mx mz

and an odd permutation results in a symbol multiplied by the factor

(_l).1x + .1:

Iz J1) = (J2 IxJ3)mx
mz ma mz mx ms

The practical and computational advantages of the 3-J symbols are

obvious due to the simplicity of these relationships.

The relationship connecting elements of the rotation matrix is now
S

addressed. It can be shown that:

M';) >
J [3.14]

>‘ <jlmLj2”121jLj2j1(m1 + mz) > dg)r1',+m'2),(ml+ m1)(¢ßY)

Hence, if one takes any element of matrix D(j‘)(¤ßv), and
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multiplies it by any element of matrix D(j‘)(aBv), the result can be

expressed as a linear combination of the matrices Djlaßv) where j can

have values of |jl-jzl up tg jl+_*jz. Equation 3.14 can DE EXpr°ESSEd in a

computationally more convenient form if the VC coefficient are replaced

by 3-J symbolism.

jl I2 ]

my —<m'«+~·¤>) am
X

jzm,

mz —<mi +m¤>

when these angular momenta couple form a resultant total angular

momentum j, the order of the coupling can be carried out in several

different ways. The order of the coupling determines the phase of the

resulting vector. Associated with each of the different coupling

schemes are intermediate values of angular momentum which result in the

same final total angular momentum. These states are independent and

must be distinguishable by these intermediate j values and mode of

coupling. It follows from the development of the VC coefficients that

each mode of coupling must be related by a unitary transformation.

If one couples jl and jl together first, then couples the resulting

vector jl! with the remaining vector jl, the state is symbolized by

Similarly, if jl and js are coupled together first the

corresponding symbol is Ijl(jzj3)jlJjm>. Following the argument

developed for two angular momenta, one can writez‘
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I (jLj2)jl zjljm > —• transformation coefHcients—• Ijl (j2j3)j23jm > [3.16]

UJ21/lljijljlgl/31j23j>expansion
coeflicient

[M7]

where the expansion coefficient is merely the scalar product between

kets taken from the coupling schemes. These coefficients are

independent of M and vanish unless J=J' and M=M'. They are often called

recoupling coefficients since they describe the transformation between

two different coupling schemes.

These expansion coefficients have certain symmetry properties that

may be utilized to simplify their evaluation. A short hand notation can

be employed similar to the 3-J symbolism. It is the 6-J symbolism. It

is related to the expansion coefficients by the following expressionzi

{ii fi Hz [3-18]
Ja J ]23

It should be noted that a 6-J symbol is denoted by a brace and a 3-J

symbol by parenthesis.

A 6-J symbol is unaltered in value by the interchange of any two

rows or columns or by switching the upper and lower members of any two

rows.

{jl j2 j3} = {J4 J5 jl!} = {J2 Ji jf;} 1
[$19]

J4 Js J6 J1 Ji J6 Js J4 J6
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The triangle condition holds for any possible row in a 6-J symbol. The

symbol can also be expressed in terms of 3-J symbols

(/1 /5 /6 )</4 /2 /6)< j4 fs /6)
X

mi ns 'n6 ‘n4 mz me m4 ‘ns m3

Just as recoupling of three angular momenta could be described

using the 6-J symbolism, the recoupling of four leads to the 9-J symbol.

Following the line of reasoning used to obtain the 3-J and 6-J symbols,

any state in a particular coupling scheme can be expressed.z·

Iexpansioncoefiiciem V

The expansion, or recoupling, coefficients are independent and possess

certain symmetry properties. Nigner has replaced the coefficients with

closely related properties with greater symmetry. Nine angular momenta

are required in order to define them, thus they are called 9-J symbols

and are defined by the following relationship.z’

< ULj2)jl2(j3j4}j34jl (jlj3)jI3U2j4)j24j> = [(2/14 +l)(2/14 + l)(2/13 +l)(?-/24 +1)]1/2
jl /2 /12

_ _ _ [3.22]>< {J3 ba 134 V
/13 /24 /

An even permutation of rows or columns or a transposition resultsV
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in an unchanged value for the 9-J symbol. An odd permutation of rows or

columns results in a factor of (-1)x
al] J multiplying the symbol, The

9-J symbols can be expressed in terms of the 6-J symbols and ultimately

in terms of the 3-J symbols.

Having reviewed the method used to describe the coupling of angular

momenta and their behavior upon coordination transformation, the effect

of the symmetrization upon operations will be considered. In

particular, the transformation properties of operators under coordinate

rotations will be addressed.

It is known that functions which transform under coordinate

rotations transform into linear combinations of a closed set of

functions. This concept can be applied to operators as well.’°

Many operators that occur in spectroscopy are built from products

of components of simpler operators. They are called compound operators

or, in this discussion, compound irreducible tensor operators.

Irreducible tensor operators have been defined such that under

coordinate transformations they behave identically to angular momenta.

For this reason, building compound irreducible tensor operators is the

same as coupling angular momenta.
‘ An irreducible tensor operator (“ITO") of rank K is a set of 2K+1

operators, Tä (where q can have values of K to ·K), which under a

coordinate rotation transform according to the relationxl

¤<«ßm§¤"<«ß»> =
Zr§·d;l‘3<¤ß§> ts-231

Under coordinate rotation
D(¤ßY)• the operator Tg is transformed
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into a linear combination of the 2K+l operators, with the expansion

coefficients being elements of the wigner rotation matrices. Note that

the definition concerns itself only with the transformation properties

of the operators and not with the detailed form.

In order to utilize the transformation properties of coupled

angular momenta, the operators which eventually give us the desired

quantities must be written in irreducible tensor form.

— Simple examples of rewriting the operators into the necessary form

will be informative. For example, many operators are scalar, k=0, and

only one operator spans the DO representation.

¤c«ßm3¤"<«ßy> = 1% = 13- 1 = 13 :1-2-11

For k=1, there are three component operators, Tä, Té and Til which form

a first rank irreducible operator. Under coordinate transformation,

they must transform into one another.

D(¤ßv)TÄD—‘(¤ßv) =1ii«1i„ +T&¤1$„ +1*ädé, L1-251

These three·component operators span the representation and they

constitute a vector operator. The simplest example of a vector operator

is the position operator L, having components rx, rY and
rZ.’z

These

components do not, however, transform according to Equation 3.23, thus

they do not satisfy the definition of an irreducible tensor operator.

The component operators rx, rY, rz do not span D(l) in the standard

form. The transformation coefficients in Equation 3.1 are elements of
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the wigner rotation matrices, which are defined in terms of a

transformation of a standard set of basis functions. A suitable

orthogonal transformation of the set {rx,rY,rZ} will result in another

set that spans D(l) in the appropriate standard form.

z E TA. —2"”<¤¤+¤»> E

rl.Theseoperators are proportional to the spherical harmonics Yä (@,¢),

This is not surprising considering the way irreducible tensor operators

are defined in Equation 3.23. This fact will also help in writing

operators into irreducible tensor operator form when the rank is greater

than 0.

Given two irreducible tensor operators of rank k‘ and kl spanning

D(k1) and D(k¢), a direct product can be defined consisting of all the

(2kl+1)(2k!+1) possible products Tg T;. A linear combination of these

products will span the irreducible representation contained in the

product representation
D(k*)xA

simple example at this point will be informative. Consider the

direct product of two first rank irreducible tensor operators, a

compound operator made up of two 1st rank irreducible tensor operator.

The direct product will span the representation:

D‘®0‘=0*+1>‘+1>° [3.27]

In other words, one second rank, one first rank and one scalar tensor

operator are formed.
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T‘®r‘ =T2+T‘
+T° [3.28]

x

Referring back to the theory developed for coupling angular momenta, the

correct linear combination of the three tensor operators on the right of

Equation 3.28 is given by the VC coefficients of ‘j‘m‘> and ‘jzmz> where

jl=jz=1.J‘
It has been shown that the Tg behave under coordinate rotations in

the same way as the spherical harmonics, Yä, and therefore the same as

the states
lkq>.z‘

This allows the coupling of commuting tensor

operators to be mathematically identical to the coupling of angular

momenta. Thus, only transformational and group theoretical properties

of the states or operators are needed.

Having outlined the theory for the coupling for several angular

momenta and compound operators, it remains only to examine the

procedures used to generate the necessary angular momenta matrix

elements. First, a theorem which allows one to separate the physical

part of the problem from the geometric aspect is introduced. This is

called the wigner-Eckert Theorem.), An operator T: operating on a state

|¤jm> transforms under rotations as follows.

D(aßy)[T§ 1 aßv >1 = D<«ß7>T§D" <«ßw>D<«ßw> l wm >
>< l um > mg]

= Zd§€‘3<«ßy>d,€,”„.<«ßi>T’;·l«1»# > i

The (2k+1)(2j+1) products Tä|cjm> transform under rotation as bases for
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the direct product representation
D(k) x D(j). This representation een

be broken up tito subspaces.

[3-30]

The linear combination of the products Tä\¤jm> that transforms according

to a particular component [BJM> (J=k+j . . . |k—jl) of the 2J+1

functions that are basis for a particular representation DJ are given by

the V-C coefficients

1ßyM > = 2 < kqjml kj./M > T'; 1 a;m> [331]

which can be rewritten as

Tg 1 ajm > 2 < kqjml 1qJM > 1ßJM > [3.32]

JM

multiplying both sides of Equation 3.32 by <¤'j'm'l

< „·j·„,· ng 1 ajm > = 2 < kqjm 1 1qJM > < a’j'm’ 1 ßJM > [3-33]
JM

Due to the orthogonality of angular momentum eigenfunctions, the

summation vanishes except when J=j' and
M=m‘.

This makes the value of

the summation independent of m'. Thus, Equation 3.33 can be written

< aj'm’IT§Iajm> = <kqjm1lq7'm' > <a7'l |T"/cl l«j> [3-34]

where <¤'j'“Tk“¤j> is equal to <¤'j'm‘|Bj‘m'> and is called the reduced

matrix element. Equation 3.34 shows that the matrix elements of an
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irreducible tensor operator can be factored into a coupling constant and

a term independent of magnetic quantum numbers.

The VC coefficient in Equation 3.34 can be replaced with the 3-J

symbolism to give an expression which will appear in many matrix

elements in this study.

<„y·m·}T§|„jm> =(-1)""j*’"'(2j'+1)"2(
jl k

j><«7'lIT"lI¤j> [3.35]
-771 q 771

If the value of one reduced matrix element <¤'J'|Tk(aj> is known,

then all of the rest can be evaluated. The values of the reduced matrix

elements of pertinent operators (I, L and S) have been evaluated.3‘

Now that the wigner-Eckert theorem has been introduced, all tools

necessary to generate the matrix elements of ITO°s are present. The

basic steps for deriving the formulas are as follows.J1

1) Functions are constructed such that they form standard basis

functions for the full rotation group.

2) All operators are written in irreducible tensor operator form.

3) The wigner—Eckert theorem is employed to factor matrix elements

into the reduced matrix element (physical component) and the 3-J

symbolism (the geometrical component).

4) If the operator is compound, the reduced matrix element of the

operator is expressed in terms of the component operators. ~In doing

this, 6·J and 9-J symbols are often introduced to signify the recoupling

of several component operators.

This method and the theory behind it is best understood by use of
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examples. For this reason, the expressions for matrix elements of the

fine and hyperfine Hamiltonians for this system will be derived, not
merely shown, in Chapter 4. Useful relations employed in these

derivations are outlined in Appendix A.

Moments of Inertia

The classical angular momentum P of a rigid system of point masses

- is given by

P = ; · w [3.36]
where Q is the angular velocity and Q is the inertial tensor. The

3 I
elements of this tensor are:

/„ = Z140? + Z?) [3-37]
1

1
1„ = Zm1<><12 + y?) [3-39]

1
[xy = [yx = — Zmixiyl [3.40]

I

[Z, = La = — Emma [3-41]
1

Izy = Iyz = — ZffliyizlI

where the summation is over all particles in the system, mi is the mass

of the ith particle and xi, yi and zi are its cartesian coordinates in
the center of mass coordinate system. By rotation of the center of mass

coordinate system, the products of inertia Ixy, IXZ, Iyz can be reduced
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to zero, leaving only nonzero diagonal elements. These elements are

called the principal moments of inertia and are the roots of the cubic

equation

Lu-! lx, lx;

[yx I,v.v“I IN2 = 0 [3*3]

[ZX
I2) [Z2

_]

The axes of this new coordinate system in which the inertial tensor is

diagonal are normally designated by a, b and c, and the principal

moments by IA, IB and IC. By convention, the largest moment is

designated IC, the smallest IA and the intermediate IB.

Rigid Assymetric Rotor

If a molecule possesses no equivalent or zero moments of inertia,

it is classified as an asymmetric top molecule. The rotational

Hamiltonian for such a molecule is given by
3,

P2 Pg pg
>H :12 —¢’—+—+—— [3-44]

f Ia IC

where the Pg are the components of angular momentum along the principal

interital axes (g=a,b,c). To simplify the Hamiltonian, rotational

constants are introduced.

A =.iL. [3.46]
Snzla .
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B :1*1. [3.46]
81'I Ib

C =J. [3.47]6„’1c

The rigid rotor Hamiltonian is now written

H ——‘£[A1>’+ß1>’+c1>2r‘
h a b 6] [3-48]

For an asymmetric top molecule, the energy levels (except for the lowest

states) cannot be expressed in a single algebraic form like those for a

symmetric top molecule. They must be obtained by diagonalization of the

energy matrix. A description of the rotation used to designate the

energy levels of an asyrmietric top molecule relative to those of a

symmetric top molecule will be informative.

For a prolate symmetric top molecule having B=C••A, Equation 3.48

simplifies to

H A 6 P2r- h ( — ) A] [3.49]

and

E, = hB.l(J+ 1) + h(A - B)K2 [3_50]

where J is the quantum number related to the total angular momentum and

K is that related to the projection of the total angular momentum on the

symmetry axis of the molecule. J can have any nonnegative value and K

can have values ranging from -J to +J.
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Similarly, an expression for an oblate top molecule having A=B»C is

@=mwU+m+MC—mK2 ßßü

For an asymmetric top molecule B can have values ranging from A to C,

depending on the asymmetry of the molecule. An asymmetry parameter is

introduced to help describe the energy of this type of rotor.

'< = [3.52]

Note that K=—1 corresponds to the molecule being a prolate symmetric

top, B=C and K=I to its being an oblate symmetric top, B=A. These are

the two limiting cases for K.

In symetric top molecules, the energy levels corresponding to -K

and K are degenerate due to the energy expression containing only
K!

terms. For the symmetric rotor there are J+1 energy levels for a given

value of J. These levels are not degenerate in asymmetric molecules and

there will be 2J+I levels for a particular J value.

For an asymetric top molecule, J and its projection M on an axis

fixed in space are constants of motion and are good quantum numbers.

The K quantum number is not and cannot be used to specify a rotational

state. However, rotational energy levels for an asymmetric rotor are

designated or indexed by a superscript giving the value of J and

subscripts giving those of K (K_l) for the limiting prolate case and K

(Kn) for the limiting oblate case. An alternate method involves the

subscripting of J with 1 where 1 is defined by
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1·=K_)—K) [3.53]

1 has values ranging from ·J to J with increasing energy.

For the rigid asymmetric rotor, Equation 3.48 can be rearranged to

give·l

H, = 3% L (A (A - c7H(«>1 [3.54]

where

;~;(„) = P3 + »<P§ —P§ [355]

and

P2 = P2 + Pg + P3 [3-56]

The Hamiltonian cannot be solved directly and a general closed

expression for the wavefunctions cannot be obtained. The asymmetric

rotor wavefunctions must be expressed as linear combinations of

symmetric top function

*;/0,) [357]

where
W0S)n is a normalized set of orthogonal symmetric top

wavefunctions.
A

—Using H?a=EWa with Wa given by Equation 3.57 yields
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Zc„H‘{’„
= EZc„‘Y„ [3.58]

N II

Multiplication by W; and integrating gives

[3.59]
- Il II

Incorporation of the orthogonality of the symmetric top wavefunctions

leads to a set of equations. The criteria for having a solution for

this set of equations is that the determinant vanishes.

1(m1P11n) - 66,,,,,1 = 0 [3.60]

Knowing the matrix elements (mlllln), one can solve for the energies of

an asynvnetric rotor. The nonvanishing matrix elements are

(11011 PZIJKM') = Kh [3.61]

(JKMIPZIJKM) =1(J+ l)h2 [3.62]

(11011 Pi 11101) = 1611* [3.63]

(11011 P} 11101) = (11011 P}, 1 1101) = % [1(1 + 1) - K2]h2 [3.61]
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(JIO·l|P§lJKi ZM) = — (JKMIP§lJKi zw) =
$65

+1)- K(1<j; 1)][J(J + 1) - (k :1)(1<; 2)]}l(2h2 [ 1

The matrix is diagonal in J but has off·diagonal elements in K. It is

Hermitian, thus The matrix is diagonal

in J so each J block may be solved separately. This procedure is

explained in detail in a variety of sources.J·'·•

Symmetry of the Asymmetric Rotor Havefunction.

The symmetry of the total wavefunction depends on the combined

symmetries of each of the component functions.

wr: ‘Y„‘l·',‘Y,‘I’„ [3-66]

where WT is the total wavefunction, We, Wv,Wr and Wn are the electronic,

vibrational, rotational and nuclear functions, respectively.

The asymmetric rotor functions are distinguished by their behavior

with respect to a 180° rotation about the three principal axes (Cg, C2,

CE). The cg and C; operations are all that need be considered since cg

is equivalent to the other two carried out in succession. There are

four different types of rotational levels, ++, +-, —+,
-- where the

first sign refers to the behavior of the corresponding wavefuntion with

respect to the C; operation and the second with respect totheFor

a Czv molecule, if the a axis (corresponding to the least

moment of inertia) is the C2 axis, the rotational eigenfunctions belong



30
I

to type A or B for ++, -+ or +·, -- levels respectively. A type

rotational levels are considered symmetric and B type are considered

antisymmetric. The parity classifications of the rotational levels of a

nonplanar molecules are not of interest in this work and will not be

discussed."

The symmetry of the total wavefunction is also effected by the

nuclear spin quantum numbers, Ii. If two (or more) identical nuclei

exchange upon a C2 rotation, the total wavefunction must obey Bose-

Einstein statistics if I for a single nucleus is integer or Fermi-Divac

statistics if I is half integer. For I being an integer, the total

wavefunctions is symmetric with respect to rotation about the symmetry

axis. If I is half integer, the wavefunction is antisymmetric.

There are (2I+1)z total spin functions for two identical nuclei,

(I+I)(2I+1) are symmetric and I(2I+1) antisymmetric. For two 3/2 spin

nuclei (which obey Fermi Dirac statistics) the symmetric spin functions

(I=3,1) combine only with the antisymmetric rotational levels and

antisymmetric spin functions (I=2,0) combine only with the symmetric

rotational levels when the molecule is in a totally symmetric vibronic

and electronic state.



Chapter IV

Matrix Elements of the Hamiltonian

Using the theory outlined in the previous section, the Hamiltonian

and appropriate matrix elements for the analysis of the microwave

spectrum of the 2·cyano·2·propyl radical were developed. Hund's

coupling case b applies to this molecule as it does to all nonlinear

radicals.‘3 For an asymmetric top radical, the electron spin angular

momentum Q couples to the molecular rotation angular momentum Q to give

a resulting momentum Q. This results in a doubling of each rotational

line producing fine structure in the observed spectrum.

If there exists at least one nucleus with nonzero spin in the

molecule, its nuclear spin L will couple with Q resulting in a total

angular momentum Q. when several such nuclei are present in the

molecule, the introduction of intermediate angular momentum vectors fd

is necessary. Hence, the coupling scheme for the 2-cyano-2—propyl

radical is

where LN is the nuclear spin state of the
HN

nucleus and LH is the _

31
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total nuclear spin state of the six protons.
l‘N

is taken as the first

nucleus coupled with Q strictly for convenience. The order in which

different nuclei are coupled into the system will not effect the

calculated splitting.‘ Splitting of the rotational lines due to nuclear

spin is referred to as hyperfine splitting.

The Hamiltonian needed to analyze the spectrum of the 2-cyano-2-

propyl radical is

H = Hm, +H„
+H,’§}+

H;} [4.1]

where the terms on the right describe molecular rotations, spin-rotation

coupling,
1·N

hyperfine interactions and
\H

hyperfine interactions,

respectively. Hrot is the asymmetric rotor Hamiltonian which was

discussed earlier. The remaining three will be addressed separately.

Spin Rotation

Unpaired electrons produce three types of fine structure

interactions. These are spin-orbit, spin-rotation and spin-spin. Spin-

spin interactions apply only to molecules with more than one unpaired

electron. The spin orbit interaction is generally several orders of

magnitude smaller than spin-rotation interaction in an asymmetric top

radical.‘] This makes spin-rotation the predominant term in the fine

splitting of the 2-cyano-2-propyl radical rotational spectrum.

The Hamiltonian for spin-rotation is given
by‘·

H„ = (1 [4.2]
„,p _
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where ¤,ß=X,Y,Z.. This can be rewritten in terms of spnerical tenger$‘s

2
H„ = (UDZIEÜ(=)Tk(N1 S) + Tk(N1 $)Tk(¤)] [4-3]

k=o

where

— k H2 1 1 1 1 k
Tp(N,S)=(—1)·”(2k+1) §:T„l(mT„2(s)(

>
[4.4]

P1·Pz
pl P2

—p

where T:(6) is an irreducible tensor of rank K composed of the spin

rotation coupling constants. Tk(e) is a second rank tensor and in

general will have nine components. In a molecule with no symmetry, only

six components are independent. The number of independent components

decreases with increasing molecular symmetry. A molecule possessing Czv

symmetry will have a tensor where only the diagonal elements remain.

The matrix elements of the Hamiltonian are evaluated using Hund's

case b basis functions \NKSJMJ>. No contributions due to I or [ are

present in the functions since spin-rotation interaction is independent

of nuclear spins. The rotational parts of these functions are the

symmetric top functions which simultaneously diagonalize the
N2

and N2

operators. They can be expressed by the wigner rotation matrix of rank

NO

2N I I/2 ‘•
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An anomalous sign arises between the commutation relations of angular

momentum operators that are molecule fixed and those that are space-

fixed. Transforming all molecule·fixed components (q) of angular

momenta to space—fixed components (p) alleviates this difficulty This

is done using the Nigner rotation matrix.

T,é‘<¤>
= 2d§„’;"<«»>T$‘<¤>q

Using the spherical tensor operator given in equation 4.3 and the tensor

relations given in Appendix A, the spin rotation matrix elements can be

written.

z

< N’K'SJ'M'Jl H„l NKSJMj> = 6„öM·JMJ2(2k +1)‘(2[$($ + l)(2$ + l)(2N + l)(2N' +1)]]/2

k=o

><N'
N N N' N N

X 2(—1)N'_K'(N' k N) 7:0:)
q

—K’
q K

This equation indicates the spin-rotation Hamiltonian has non-vanishing

matrix elements where AN=O,1l and AK=O,1l,12. The matrix is diagonal in

J. In a molecule possessing Czv symmetry, AK=11 also vanish."

Derivation of the spin-rotation matrix elements has been reported in

several different publications, (Cook and OeLucia" is one of the

better). Thus only an outline was presented here. Other Hamiltonian

matrix elements where the derivation is more informative and less well_
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known will be derived in greater detail.

Hyperfine‘Coupling

interactions involving nuclear spin angular momentum are usually

very small and can only be observed using a high resolution instrument.

In free radicals, the most important hyperfine interactions are magnetic

which are due to the coupling between unpaired electrons and the nuclear

spin in the molecule. This type of coupling can occur with any nucleus

having nonzero spin, unlike nuclear quadrupole coupling which requires

the nucleus to have a spin greater than %. Nuclear quadrupole due to
l‘N

coupling will also be present in the 2-cyano·2-propyl radical, but

the magnitude of its splitting will be below the resolution of the

microwave spectrometer used in this study. Nuclear spin-rotation and

nuclear spin-nuclear spin interaction will also be unresolved since they

are several orders of magnitude smaller than other hyperfine

couplings.•.

The magnetic interactions of the unpaired electron and nuclear

spins is composed of two terms. The first term is the interaction of

electron orbital angular momentum Q and nuclear spin angular momentum L.

This interaction does not exist in nonlinear radicals‘1 and will not be

discussed further. The second term arises from the interaction of the

electron spin angular momentum Q and nuclear spin angular momentum L.

It is composed of two parts, the Fermi contact interaction and the

dipole·dipole interaction. The operators are given respectively as:

H,-= aI,S•I [«i.8]
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where 1 denotes a second rank traceless tensor.

The Fermi contact interaction is due to the finite probability of

finding the lone electron at the nucleus being considered, tnus the

Fermi contact parameter aF is proportional to the expectation value of

the unpaired electron at this nucleus, lw(0)\z. Hence, it is

proportional to the S character of the orbital that the electron

occupies. The parameter can be written:

dp = (8¤/3)g,g~ßß~I $(0) I 2 [4-10]

The remainder of the Fermi contact Hamiltonian is S·I. These are vector

operators and can be written in spherical tensor rotation. Using the

states from Hand's case b coupling (§i§?g, gi;N=§¤) and considering only

the "N nucleus, the matrix elements are initially expressed as:

< 1v'K'$J'1N.FlM'Fl I T2(S) • T2(I) I NKSJINFIMFI >

Operators
T‘(S)

and T‘(I) commute because their eigenfunctions are

independent, i.e. they refer to different parts of the system. The

scalar product of two vectors is a scalar thus, part A.6.3 of Appendix A

applies to this case. The matrix elements now may be written
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< ,v·1<·s1·1„P,.w,„l 1 T1(S) - T1(I) I ~1<s11„F,M,„l > = ( - 1)’+'~ +41 6,.1 ,l6„,Fl MF!
F 1 J' [4.11]N1

J JN ~”m·

where the terms after the 6-J symbol are the reduced matrix elements.

The second reduced matrix element will be zero unless N“=N and K“=K and

can be written

<1v'·1<··1„1 lT1(I)I 11v1<1„> E

<INIThefirst reduced matrix elements in Equation 4.11 involves a tensor

operator working only on part two of a coupled state, as in A.6.4 of

Appendix A. This reduced matrix element can now be written

1 ~+s+1·+1 , 11: S J1 N
<N'1<'s1'I IT (s)1 I1<1vs1> =(-1) [(11+ 1)(2/ +1)]

1 s 1 [4-13]
X <K'N'$I lT‘(S)l IKN$>

and 4

<1<'N's1 IT1(S)I IKNS> = [S(S + 1)(2S + l)]"° - [4-14]

Combining equations 4.11-4.14, the matrix element expression for the

Fermi contact parameter for the nitrogen nucleus is obtained.
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< ,v·1<·S1·1„F,.M',„, I HFI N1<SJI„F,MF, > = 6;,,;,6,,·Fl„f‘ö„„„6K,,(( —1)”"+F( —I)”+S+"+‘

[(2./+ l)(2l' +1)1,„4I„+1)(21„+1)S(S+ 1)(2S + 1)]*/2 [4,5]
F, 1,,, J' S J' NI, , ,„II, S .I«w~>

The second set of nuclei considered in the hyperfine splitting of

‘ the 2-cyano·2-propyl radical are the six equivalent hydrogens. The

hyperfine splitting of six equivalent nuclei with % spins has been

addressed by Nhite‘. It was found that the hyperfine matrix elements of

six equivalent spins can be handled in the same way as a single nucleus

with a spin of the vector sum of the original six. The assumptions and

reasoning behind this is detailed in Appendix E. The proton hyperfine

coupling is calculated for total spin states of 0,1,2, and 3.

For the Fermi interactions for the protons, a different coupled

state, |NKSJINFlIHFMF>, and a slightly different operator,

[aF·T'(S)·T'(IH)], are used to formulate the matrix elements. Following

the same logic as that for the nitrogen nucleus, one obtains an

expression differing only in the first reduced matrix element of

Equation 4.11. The new reduced matrix element will add a factor of

1 F, J

to the original element expression. The second reduced matrix element

now refers to the proton spin state rather than the nitrogen spin

resulting in changing IN to IH in the expression. The final expression
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for the Fermi contact matrix elements of the protons is:

< ,v'1<'SJ'1„FI1„FMFI ap • TRS) • TRI) I NKSJI„F,I„FMF> = (
—1)”‘ THM ‘”$+‘V+'"+ I"

I/2
F IH FI}

· 1 1><[(2F1+I)(?-F1+I)(?J+I)(Z/ +1)/HI 11+I)(2/11+)] {I FI IH [M6]
IN

J,
Fl JV

J,
SXI II IGM

1 F, J 1 S J

Dipole-dipole interactions arise from the interaction of two dipoles

(electron and nuclear spins); consequently the interaction depends upon

their mutual orientation and a tensoral quantity is required to describe

it. Dipole-dipole matrix elements are slightly more involved. The

S·]_·I operator can be rewritten using spherical tensors.

HDD = [T2 X TRI) (4-18]

The matrix elements for the second nucleus were not rigorously derived

for the Fermi contact term. The dipole-dipole matrix elements are now

derived in order to clarify how one obtains the matrix expressions for

the second nucleus. The coupled state used is INKSJINFIIHFMI9.

Equation 4.18 is applied to this coupled state. The two operators,

T'(l) and [lzxT‘(S)]l, operate on different parts of this state, thus

they commute. The expression for the scalar product of commuting tensor

operators, A.6.3 of Appendix A is once again applicable.u

< N'1<'SJ'1„F,PM',i [T2 X T‘(S)]‘ • TRI) I N1<SJ1„F,FM,> = 6FF6I„.III„F( —-1)’°1
+’~+’

F IN F1 I 2 I I I. [4.19]
I F I

<1v1<·sJ·1„F,II[_T XT(s)] II1v1<SJ1,„-F,><1„IIT(I)II1„>
1
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The first reduced matrix element is defined by

<1„I lTl(I)I I1„> = [1„(I„+1)(21„+1)]"2 [4.20]

Since both operators are independent of 1N, they can now be treated as a

single operator in a coupled scheme.‘N Using A.6.4, the second redeuced

matrix element can be rewritten as:

< N'K'SJ’I„F,\ l[T2 X r‘(sn‘ 1 1 -1)** '~*
’”·

*"J'
F 1 . [4.21]

[(2F, +1)(2F, +1)]"*{
‘ N} < N·1<·sJ·1 ILIZ X T‘(S)]‘l 1N1<s1>

F, J 1

The two operators operate on different systems, thus A.6.2 can be

applied to Equation 4.21. This results in

<N’K'$!’| |(T2><T‘($)]‘||NKSJ> = <N'K'| |I2| |NK> <SllT1(S)I Is>
N' N 1

4.22
x[(2J'+l)(7J+ l)]‘/2{S s 1}

[ 3

J' J 2

The fi rst reduced matrix element in Equation 4.22 is simply defined as

<sI IT1(S)l Is> =[S(S+ 1)(2S+ 1)] [4.23]
I

The components of angular momentum in the second reduced matrix element
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of 4.22 are defined in the molecule fixed coordinate system. They are

transformed into space fixed coordinates in the same manner shown

earlier with the spin·r0tation interaction (Equation 4.6). Including

this transformation, the second reduced matrix element is rewritten‘,

I I 2 2 I N'*K·

N,
2 N

k(N1<IIj 1>qIIN1<)=[(2N +l)(2N+l)] (-1) K, K
Tq(AK) [4.24]

- <1

The dipole·dipole matrix elements for the second nuclei can then be

written

X [1„(1„ +1)(2IH +1)S(S + 1)(2s + l)(2N’ +1)(2N + 1)(2/ + 1)(2/' +1)(2F] +1)(2F[ +1)]"’
N· N 1 N 2 N [4.25]

1 J· F FI F ,
’

I" li —Kq

where
‘

T
(7‘

+T )
. g$g„ßß„Tä<C> =—-$—= -—£T”“—L fm]

—T„ i 2iT,,) {4-28]
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The dipole·dipole matrix element expression for the first nuclei is

found in a similar fashion

< N·1<·sJ·1„F,M'D I HDD I NKsJ1„F,M,.l > - ( -1)% +'+^’+’~ +"'

[(2.1* +1)(2/+ 1)(2N' +l)(2N+ l)S(S+ l)(2S+ l)I„(I„+1)(2I„+1)]‘/2
N' N 2 [4.29]

F IN J' N' 2 NHs 6 1}( >v7,<A1<>
1 J IN —K AK K

J' J 1
_

The selection rules for the hyperfine matrix elements are AN=0,i2;

AK=0,11,12 and AJ=O,11. The algebraic expressions for the specific 3-J,

6-J and 9-J symbols used in the fine and hyperfine coupling expressions

are listed in Appendix B, C and D respectively.

A computer program was written to calculate the contributions of

the fine and hyperfine interactions to the splitting of rotational

transition. A detailed description of the program with a copy of the

written code and a sample output is included in Appendix F.



Chapter V

Experimental

The thermolysis and photolysis of azoisobisbutyronitrile (AIBN) to

generate the 2—cyano·2·propyl radical has been used for many years by

polymer chemists to initiate free radical polymerizations„

CH; CH\ / 3 A nv CH;\
NC;C—N=N—C—CN&—> C——C—N + N2\

/“
CH3 CH3 CH3

The same reaction is used to generate the radical for spectroscopic

characterization.

The starting compound (Aldrich Chemical Co.) was recrystallized

from cold methanol to insure purity. The melting point of the resulting

crystals was 104°C, agreeing well with that reported by Aldrich.

The fully deuterated analog was synthesized from d‘-acetone

(Aldrich Chemical Co.) using the following reaction5•

43
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O

CD3—·l£——CD3 + 2NaCN + H2NNH3°°HSO4 -—·—>

NC——C——N——N—·C—CN———>· NC—C·—NlN———C—CN

CD3/
\CD3

The final product was recrystallized twice from cold methanol. The

melting point was 104°C. Proton NMR of the final compound indicated

that no detectable exchange of methyl deuterons with other protons had

occurred.

Thermogravimetric Analysis-Mass Spectrometry was performed on the

proton sample to determine the temperature at which AIBN evaporated and

the resulting decomposition products whicn would be present. At

atmospheric pressure, the compound evaporated at 127°C. The mass

spectrum shown in Figure 5.1, contained the radical ion peak but no

molecular (AIBN) ion peak. This suggests that thermolysis occurs at or

below 127°C.

The 2-cyano-2-propyl radical has been shown to have a significant

lifetime in solution.‘l Its lifetime in the gas phase has not been

measured. A lifetime study of the radical was necessary in order to

establish its presence in the microwave cell for a suitable length of

time.

The first attempt at establishing a lifetime for the radical was

performed using Electron Paramagnetic Resonance. This was not -

successful due to the lack of intense lines. In the gas phase, orbital

angular momentum is quenched and the electron spin angular momemtum §
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decouples from the molecular frame work due to rotation of the molecule.

Thus, only magnetic dipole transitions are possible. This results in

numerous lines of extremely low intensity. For this reason, very few

nonlinear radicals have been studied in the gas phase with EPR." This

is also the reason why no reproducible signal was obtained for the 2-

cyano—2·propyl radical in the gas phase.

A successful lifetime study was performed using gas phase infrared

spectroscopy (Figure 5.2). An apparent ketene-imine (~C=C=N) peak

normalized with respect to the C-H stretch was used to monitor radical

concentration in the IR cell at 130°C. Absence of a N-H, C N or C·N

stretch in the spectra confirmed the ketene-imine peak was due to the

radical.

The ketene-imine peak was observed in the IR spectrum for

approximately 60 minutes before a reduction in its intensity became

apparent. This coincided with the cyano (CEN) stretch becoming stronger

due to the recombination of the radical into 2-2‘dimethyl,2-

2‘dicyanopropane. Extrapolating from this study, once the radical is

generated in the microwave cell, spectra of it could be obtained for at

least 45 minutes. The IR experiment was repeated on the fully

deuterated species with identical results other than expected peak

shifts from D replacement.

The microwave spectrometer used in this study consisted of a

standard Stark cell (three meters in length), a computer controlled

Hewlett Packard 86738 oscillator and a Princeton Applied Research lock-

in amplifier. The Stark modulation frequency used was 35Khz with a

field strength of 750V. Lower Stark fields were attempted but resulted
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in a reduction in intensity of the microwave lines.

The cell is connected to a vacuum manifold through which the sample

is introduced. For this study, the cell was heated to 110°C to prevent

sample condensation in the cell. A schematic of the Stark cell is shown

in Figure 5.3.

Thermal generation of the radical was attempted but due to the

higher vacuum in the manifold of the Stark system as compared to that in

the IR cell in earlier studies, the AIBN sublimed at 100°C. The

resulting spectrum consisted of methanol (solvent used for

recrystallizing original compound) and ammonia (impurity believed to be

present in cell prior to this study). This sample was frozen from the

microwave cell and analyzed. It was determined that the AIBN had not

dissociated into the radical. The absence of any observable rotational

transitions (other than methanol or ammonia) indicated that the AIBN

molecule has no strong microwave lines, thus will not interfere with the

observation of the radical spectrum. This absence of any observable

radical spectrum indicated that UV photodissociation would be necessary

to generate an adequate concentration of the radical in the microwave

cell.

Sublimed AIBN was passed through a quartz adaptor and photolyzed

using a 140 watt Hg UV lamp before entering the microwave cell (Figure

5.4). The spectrum was obtained using sample pressures ranging from 50

to I00 microns. It consisted of many lines which could not be

attributed to methanol or ammonia. These lines disappeared after

approximately two hours (depending on sample pressure in the microwave

cell) indicating their transient nature.
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The lines were broad (4-5 Mhz) due in part to the relatively high

pressure in the cell and in part due to unresolved hyperfine structure.

Some of the lines exhibited fine structure which was impossible to

assign due to noise in the spectrometer system and the possibility of

vibrational satellites resulting from relatively high sample

temperatures.



Chapter VI

Results

The observed microwave spectrum consisted of many lines which were

due to methanol and ammonia in addition to those of the radical. A

spectrum of methanol at 100°C was obtained in the same cell used for the

observation of the radical spectrum. This spectrum of pure methanol was

compared to the radical spectrum to insure that methanol lines were not

erroneously assigned to the radical. Ammonia lines appeared in both the

methanol and radical spectra. It is not known how the ammonia was

introduced into the cell but once in the cell it is exceptionally

difficult to completely remove. As with methanol, however, the lines

were well cataloged and presented no problem other than to mask out an

occasional weak radical transition.

The dimerized radical (2,3 dicyano-2,3·dimethylbutane), (CHl)2CNC·

CCN(CHJ)z, is not commercially available so the compound's microwave

spectrum was not directly observed. A rigid rotor calculation using a

model structure of the gauche form (the only conformer with a dipole

moment) was performed to ascertain the general nature of its microwave

spectrum. No spectral patterns of the types predicted were observed in

the spectrum. This lead to the conclusions that either this compound

52
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was not present in the cell or, more likely, it has a trans conformation

and exhibits no rotational spectrum.

It is beneficial to have a reasonable initial structure when making

an assignment of a microwave spectrum. Since no previous molecular

structure determination of the radical had been performed, a theoretical

study was employed to obtain an initial structure. A previous

theoretical
studyls

was performed using a Restricted Hartree-Fock basis

set at a 3-216 level. This work was discussed in Chapter II.

6aussian
80‘°

calculations were performed using an Unrestricted

Hartree-Fock basis set at STO-36 and 4-316 levels. In the calculations,

rCH was fixed to 1.09A and angle CCH and angle HCH were set to 109.46l°.

All other structural parameters were allowed to vary to obtain the

lowest energy. The CCMe angle, rCN, rcc, rCMe and the out of plane

angle were set as computer program variables. The relative methyl group

conformations were systematically varied on successive calculations.

Six different calculations were performed using the STO-36 basis

sets: the three relative methyl conformations (staggered, eclipsed and

doubly eclipsed) each with planar and nonplanar carbon-nitrogen skeletal

networks as initial structures. The nonplanar cases started with an out

of plane angle of 10°. Only one of the six calculations resulted in a

final nonplanar structure. This nonplanar case had staggered methyl

groups and a nonplanar structure as a starting point. The resulting

energy was 0.3 Hartrees (180 kilocalories per mole) larger than any of

the other five. This calculation is believed to have encountered a

false minimum resulting in an erroneous structure.

At a 4-316 level of theory, calculations were performed on the
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three methyl conformations but only the staggered form was started with

both planar and nonplanar structures. All four calculations resulted in

a planar structure with computational oscillations around the three bond

lengths allowed to vary. The oscillations were on the order of .02A.

The final structure was taken to be the average of these bond lengths.

The energy difference between methyl conformations was theoretically

determined to be 120 cal/mole. Structural parameters from the

calculations are summarized in Table 6.1 and Fig. 6.1.

The 4-316 structure was used as the inital structure to provide a

basis for assigning the microwave spectrum. At best, only three

structural parameters can be obtained from the initial fit since the

spectrum of a single isotopic species provided only three moments of

inertia. Initially, the CCMe angle was set to DE 120.55 and rCN, rcc
and rcM€ were systematically varied until the calculated rigid rotor
rotational lines were brought into proximity with the observed lines.

Once this initial fit of the spectrum was obtained, fine and hyperfine

splitting was considered.

The largest splitting of the 2-cyano-2-propyl rotational lines is

due to the spin rotation interaction (fine splitting). Lines with no

hyperfine structure exist for LN=1H=0. These lines can be assigned to

determine the spin-rotation splitting and the relevant constants

involved. Again, a reasonable starting point is needed.

It has been shown by Curl" that the spin-rotation constants

(eaa,ebb,6cC) are proportional to the corresponding rotational constants

of the molecule. These constants are often reported normalized with

respect to the rotational constant. Molecules of like symmetry have
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Table 6.1

Final Theoretical Structural Parameters Calculated
with Gaussian 80

Basis Set STO-3G 4-31G

rC_N 1.21 A 1.18 A

rc_C 1.40 A 1.38 A

rC_CH’ 1.53 A 1.51 A

rC_H (1.09 A)* (1.09 A)

LCCN 180° 180°

L(Me)CC 120.55 120.55

LCCH (109.5°) (109.5°)

*Quantities in the parenthesis were not allowed to vary
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normalized spin-rotation constants similar in magnitude. The initial

estimates for the spin—rotation constants of the 2-cyano-2·propyl

radical were taken to be the average value of the observed normalized

spin-rotation constants for several molecules possessing CZV symmetry

multiplied by the rotational constant of the radical as determined from

the theoretical study. These parameters are listed in Table 6.2. The

magnitude of the e's were systematically varied until the calculated

— splittings agreed with those observed in the spectrum.

Hyperfine interactions for the two different types of nuclei were

considered separately. Solution ESR work has shown the Fermi contact

parameters to be 59.0 and 9.5 Mhz for
1H

and
1·N

nuclei, respectively.l‘

It was found that the calculated hyperfine splitting was not sensitive

to changes in these parameters, so their values were not varied in the

hyperfine fit. Dipole-dipole coupling parameter Tcc can be estimated

from the spin density on the nucleus of interest." ESR studies

estimate the spin density on the "N to be 0.3. Using the equation

T..;( >g,g„ßß„ < F3 > [6-1]

an initial value of TCG could be estimated. For a radical with the

unpaired electron in an out of plane p orbital, the relative values of _

the diagonal components of the dipole-dipole tensor can be expressed as

(1/2)T„’é —T«a% ·Tbb [92]

Thus all diagonal components of the "N hyperfine tensor can be _
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Table
6.25

Normalized Spin Rotation Constants
Fqr czv Symmetry Molecules

E z z z
aa/A X 10 Ebb/B X 10 ECC/C X 10

NH! -1.3046 -0.3488 0.0049 [52]

PH: -3.0782 -1.0145 -0.0056 [53]

NF -1.3501 -0.7822 0.0443 [54]
2

CHZF -0.57 -0.6003 0.0051 [55]

CHIC] -1.1478 -1.4900 0.0785 [56]

NO! 2.2536 0.0593 -0.7742 [57]
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estimated from the spin density on the nitrogen nucleus.

The protons behave differently compared to the nitrogen nucleus.

Their dipole-dipole coupling is mainly ascribed to the interaction of

the protons with the unpaired electron localized on the atom to which

the protons are attached. Most proton hyperfine coupling has been

neasured in molecules where the electron is predominantly localized on

the atom to which the proton is attached Hyperfine

splitting calculations using the dipole-dipole coupling parameters for
PH2‘J

(which would be expected to be larger than those in the 2-cyano-2-

propyl radical) and the Fermi contact parameter from ESR studies of the

2·cyano·2-propyl radical resulted in a calculated splitting of less than

1 Mhz. This is too small to be resolved with the spectrometer system

using the conditions present in this study.

The observed spectrum did not indicate otherwise. The broadening

of observed transitions can be attributed to this unresolved hyperfine

splitting. Dipole-dipole coupling constants for the protons could not

be determined from this study.

Once initial values for all relevant parameters were obtained, a

first fit was acheived by varying three bond lengths, rCN, rcc, rc_Me„

until calculated lines were brought into proximity of observed lines.

Differences in calculated lines from fine and hyperfine splitting were

compared to observed splittings in the spectrum. Fine and hyperfine

coupling constants were varied until calculated splitting matched these

observed. The assigned transitions are listed in Table 6.3. Initial

and final fine and hyperfine coupling constants are listed in Table 6.4.
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Table 6.3
(CH,)ICCN ASSIGNED TRANSITIONS

N(K1,K_1) - N(K1,K_1) J-J Fl-Fl Obs Freq(Mhz) C-0(Mhz)

3(1,3) - 2(1,2) 2.5-1.5 3.5-2.5 18118.0 -1.3

3.5-2.5 2.5-1.5 18159.0* -1.9

3.5-2.5 18159.0* -1.8

4.5-3.5 17590.9 1.7

3(0,3) - 2(0.2) 2.5-1.5 1.5-0.5 19314.3 -0.6

2.5-1.5 19306.9 1.9

3.5-2.5 2.5-1.5 19242.0 -0.6

3.5-2.5 19242.0 -0.6

3(2,2) - 2(2,1) 2.5-1.5 1.5-0.5 20086.2 -0.4

2.5-1.5 20074.9 -0.1

3.5-2.5 20009.6 -1.9

3.5-2.5 2.5-1.5 20019.1* -2.4

· 3.5-2.5 20019.1* -0.7

3(2,1) - 2(2,0) 2.5-1.5 1.5-0.5 20839.9 1.0

2.5-1.5 20805.0 0.5

2.5-2.5 2.5-1.5 20786.3* 1.7

3.5-2.5 20786.3* -0.1

3(1,2) - 2(1,1) 2.5-1.5 1.5-0.5 21659.8 -1.9

3.5-2.5 21558.0 -1.8

3.5-2.5 2.5-1.5 21612.2 1.5

3.5-2.5 21616.6 -0.3

4.5-3.5 21487.4 -1.6

*adjacent lines unresolved
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Table 6.3

(cont.)

4(I,4) - 3(1,3) 3.5-2.5 2.5-1.5 24117.2 0.9

3.5-2.5 24071.5 -1.8

4.5-3.5 24019.7 1.9

4.5-3.5 3.5-2.5 24031.1* 0.5

4.5-3.5 24031.1* -1.1

5.5-4.5 23792.5 -1.9

4(O,4) - 3(U,3) 3.5-2.5 2.5-1.5 25031.0 0.6

3.5-2.5 24994.4 1.6

4.5-3.5 24913.3 1.9

4.5-3.5 3.5-2.5 24961.0* 0.3

4.5-3.5 24961.0* -1.9
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Table 6.4

Initial and Final Fine and
Hyperfine Coupling Constantsof (CHC)2ccN

Qarameter initial value§Mhz) final value§Mhz)

Eaa -79.5 -69.91.1

Ebb -26.5 -36.11.1

_ ECC 0.9 2.71.1

14 a
aF( N) 9.5 9.5

1 "N 19 0 7 °aal ) - . -1 .2 1.1
II b

Tbb( N) -19.0 -17.11.1
ll

TCc( N) 38.0 34.3 1.1

aF(‘H)
59.0 (-)°

‘ c
Taa( H) - 1.0 (-)

‘ c
Tbb( H) - 4.46 (—)

‘ c
TCc( H) 5.46 (-)

a) Not varied in fit of data

b) Taa and Tbb values can be reversed and identical splitting will

result

c) Proton hyperfine splitting not resolved in this study
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From the observed lines and calculated splittings, a back calculation

was performed to obtain hypothetical unsplit rotational transitions.

These are referred to as centerline frequencies and are listed in Table

6.5.

Using a program developed by Kirchoff‘· (see CDANAL in Appendix F),

the centerline frequencies were fit in order to determine the

experimental rotational constants. If a sufficient number of observed

transitions are available, this program allows the observed transitions

to be fit to a maximum of 13 spectral constants (3 rotation constants

and 10 centrifugal constants). A rigid rotor fit (using only the three

rotational constants to fit the transitions) was performed due to the

relatively small number and the low J values (where centrifugal

distortion will be minimal) of the rotational transitions assigned.

Rotational constants obtained from this spectral fit were used to

determine an experimental structure. The initial (from the theoretical

structure) and final rotational constants are listed in Table 6.6. A

structure fitting program developed by Schwendeman‘5 (see STRFTQ in

Appendix F) was used to vary rCN, rcc and rC_Me through a least squares

reduction scheme to best fit the observed moments. These final

structural parameters, with an assumed C-C·CH3 angle of 120.55, are

listed in Table 6.7.

The microwave spectrum of the fully deuterated species of the 2-

cyano·2-propyl radical was experimentally obtained . This experiment

was performed in order to better characterize the structure of the

radical and to confirm the original assignment of the fully protonated

species. The hyperfine splitting due to the six deuterium atoms will be
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Table 6.5

Theoretical Unsplit Rotational Transitions
· of (CH ) CCN

3 2

Transition Freguency(Mhz)

3(1,3)·2(1,2) 18189.912.0

3(O,3)-2(0,2) 19274.112.0

3(2,2)-2(2,l) 20044.512.0

$(2,1)-2(2,0) 20814.9:2.0

$(1,2)-2(1,l) 21642.912.0

4(1,4)·3(1,3) 24063.612.0

4(O,4)-$(0,3) 24992.712.0
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Table 6.6

Initial and Final Rotational Constants
for (CH3)zCCN

Initial Experimental

A 8274.7Mhz 8276.7:3Mhz

B 3807.7Mhz 3919.71.8Mhz

C 2696.5Mhz 2751.51.4Mhz

K -0.602 -0.577
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Table 6.7

Structural Parameters of (CH:):ccN

Prior to (CD3)zCCN Study

(LCCMe = l20.55° assumed)

Parameter Value

rCN 1.l9A1.01

rcc l.38A1.0l

rCMe 1.48A1.0l

rcH
(1.09A)

L£CMe 120.55°

LCCH 109.5°
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smaller than those due to the protons, thus its spectrum can be analyzed

in the same manner as used for the protonated radical.

The structure from the proton species study was used as an initial

structure for assigning this spectrum. In order for an assignment to be

made, four structural (rcc, rCN, rCCHJ, CCMe angle) parameters were

varied until the calculated rotational transitions were brought into the

_ vicinity of observed lines. Hyperfine and fine splittings were then

added to these lines and compared with those observed in the spectrum.

It must be recognized, in order to fit the deuterated radical

spectrum that the fine splittings observed for the protonated species

will not be identical to those for the deuterated case. Fine splittings

are proportional to the rotational constants. Deuterium substitution

signficantly changes all three moments of inertia in the 2·cyano-2-

propyl radical. This means that the fine splitting parameters will

change upon deuteration of the species. However, the normalized fine

splitting parameters will not. An initial estimate of the fine

splitting parameters for the deuterium species can be calculated from

the normalized parameters taken from the proton species.

with these fine splitting parameters and the initial structure from

the protonated species, the spectrum of (CD3)2CCN was assigned in the

same manner described for (CH3)zCCN. The assigned lines are listed in

Table 6.8. Initial and final fine splitting parameters are found in

Table 6.9. Hyperfine splitting parameters for the two species were

identical, as expected. Using the assigned lines, the fine and the

hyperfine splitting parameters for (CD3)2CCN, the centerlines (listed in
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Table 6.8
‘

(CDl)*CCN ASSIGNED TRANSITIONS

N(K1,K_1) - N(K1,K_1) J-J F;-F. Obs Freq(Mhz) C-0(Mhz)

3(1,2) - 2(1,1) 2.5-1.5 1.5-0.5 19077.5 1.9

2.5-1.5 19068.3 0.1

3.5-2.5 18977.6 0.0

3.5-2.5 2.5-1.5 19141.2 -1.4

3.5-2.5 19041.2 1.1

4(1,4) - 3(1,3) 3.5-2.5 2.5-1.5 20824.1 -2.0

4.5-3.5 20726.0
1

1.6

4.5-3.5 5.5-4.5 20504.1 -0.3

4(O,4) - 3(O,3) 3.5-2.5 2.5-1.5 21370.7 0.0

3.5-2.5 21341.2 -1.1

4.5-3.5 21253.9 0.4

4.5-3.5 3.5-2.5 21307.0 0.5

5.5-4.5 21065.3 1.4

4(Z,3) - 3(2,2) 3.5-2.5 2.5-1.5 23290.0 -2.2

3.5-2.5 23232.4 0.4

4.5-3.5 23134.5 -1.2

4.5-3.5 3.5-2.5 23210.9 -0.2

4.5-3.5 23205.1 -1.1

4(3,2) - 3(3,1) 3.5-2.5 3.5-2.5 23891.2* -1.4

4.5-3.5 3.5-2.5 23891.2* -2.0

4.5-3.5 23884.0 I 1.8

5.5-4.5 23750.0 1.9

*adjacent lines unresolved
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Table 6.9

Final and Initial
» Fine Splitting Parameters

for (CD,)zCCN

Initial*(Mhz) Final(Mhz)

Eaa -52.7 -55.41.1

Ebb -32.1 -32.6:.1

ECC
2.3 2.41.1

* initial values were obtained by taking the normalized spin-rotation

constants of (CH3)zCCN and multiplying them by the theoretical

rotational constants of (CD3)zCCN.
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Table 6.10

Theoretical Unsplit Rotational
Transitions of (CD3)zCCN

Transition Frequency(Mhz)

3(1,2)—2(1,1) 19063.8:2.0

4(I,4)-3(1,3) 20769.6:2.0

4(0,4)·3(0,3) 21332.612.0

4(2,3)-3(2,2) 23233.212.0

4(3,2)-$(3,1) 23897.212.0
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Table 6.10) were calculated and fit using CDANAL to determine the

experimental rotational constants. These constants, along with those

from the protonated species, are listed in Table 6.11.

with a total of six experimental moments from two isotopic species,

it is theoretically possible to determine a maximum of six structural

parameters using STRFTQ. If linear dependencies exist in a structure

fit, then some structural parameters must be held constant at a

reasonable value while others are fit to the moments. This is the case

for the 2-cyano-2-propyl radical and rCH and HCH angle which were held

constant at 1.09A and 109.467°, respectively. Since this occurred for

the fitting of the radical, four structural parameters were determined

giving a unique structure which reproduces the six experimental moments.

It should be emphasized that this structure is a unique structure for

these assumed parameters and only this combination of these four

parameters fit the experimental moments. Table 6.11 compares

experimental rotational constants with those calculated from the final

structure. Good agreement of these constants confirms the original

assignment of (CH:)zCCN. A summary of the final structure is given in

Table 6.12 and Figure 6.2.

Nonplanar structures were considered and their fit to experimental

data was attempted. No reasonable nonplanar structure could be fit to

the experimental moments. The spin rotation splitting parameters

indicate a planar structure (no off diagonal elements necessary in the

fit of either species). For these reasons, it is believed that the

molecule is planar.
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_ Table 6.11

Comparison of Experimental Rotational
Constants and Those Calculated From

the Final Structure

Experimental(Mhz) Calculated(Mhz) Difference

(CHJ)zCCN

A 8276.713.0 8273.8 2.9

_ B 3919.710.8 3918.9 0.8

C 2751.610.4 2751.9 0.3

(CD1)zCCN
A 6241.312.7 6240.6 0.7

B 3490.310.9 3490.4 0.1

C 2372.510.5 2372.7 0.2
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Table 6.12

Final Structural Parameters

rCN 1.221.01A

rcc 1.40:.01A

rCCHJ 1.501.01A

LCCCH3 119.3°1.2
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Figure 6.2 Final Structure Parameters Determined
from the Experimental Moments of Inertia of Both

Isotopic Species



Discussion

The H and D hyperfine splittings were too small to be resolved

under the conditions used in this study. This is not surprising

considering proton hyperfine splitting observed for similar
‘

molecules.ss""‘1

Hyperfine splittings due to protons have been observed in

spectroscopic studies of CHJ0" and CHIFSS radicals. Both compounds

exhibit large proton Fermi contact parameters (-55.55 and -60.7Mhz,

respectively) explained by the lone electron hyperconjugating to the s

orbital on the hydrogen. Proton dipole-dipole interactions are very

small in the CHJ0 radical, probably due to the lone electron being

primarily localized on the oxygen nucleus. The proton dipole-dipole

parameters of CHIF were larger due to the spin density (greater than

0.8) on the C atom. The observed proton hyperfine splitting in CHIF is

less than 10Mhz. The observed splittings in CH30 are so small that they

were only resolved using a laser technique with high sensitivity and

resolution (laser magnetic reasonance).‘. The CHJ0 radical also

exhibits electron orbit-nuclear spin interactions which contribute to

the observed splittings, making the splittings larger than if only Fermi

contact and dipole-dipole interactions were present.

75
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The spin density of the methyl carbons in the 2-cyano-2-propyl

radical is estimated to be 0.17. This value was obtained using the

atomic spin densities obtained from a 4-31G calculations. Considering

this value relative to that of the CHIF radical, it would be expected

that the hyperfine splittings due to the methyl protons of the 2—cyano-

2·propyl radical would be very small.

The nitrogen hyperfine coupling was well resolved. The Fermi

contact parameter taken from EPR studiesll indicates very little s

character in the unpaired electron orbital on the nitrogen nucleus. The

relations Taa+T¤b+TCc=0 accurately describes the relative magnitudes of
the coupling constants. This suggests that the lone electron occupies a

P n orbital perpendicular to the molecular plane. The relative value of

Taa and Tbb could not be explicitly determined. Identical calculated
splitting resulted when their values were exchanged.

The TCC value indicates an approximate spin density on the nitrogen

of .32, agreeing well with that value obtained from solid state EPR of
0.3.ll

This indicates that the unpaired electron spends a substantial

amount of time on the nitrogen. This could lead to the occurrence of

some double bond character between the two non-methyl carbons due to

resonance with the carbon-nitrogen triple bond. This resonance wouldA
also result in a reduction of the bond order of the carbon-nitrogen

bond. _ .

The spin-rotation constants are responsible for the largest part of

the splitting of rotational lines. Strict interpretation of three

parameters includes assumptions concerning other electronic constants

and contributions from excited states‘3, however some information may be
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obtained from them. A satisfactory fit of the spin-rotation splitting

of the lines was achieved for both isotopic species by considering only

diagonal elements of the spin-rotation tensor. Calculated splittings

were very sensitive to the magnitude of thé off·diagonal elements and no

satisfactory fit could be obtained using any off-diagonal component of

substantial magnitude. This suggests a planar structure for the carbon-

nitrogen skeletal network.
’ The general trend aaa < abb < acc observed in other free radicals

was found to hold. The magnitude of acc indicates that the unpaired

electron occupies the p orbital perpendicular to the plane of the

molecule where no one electron excitation can induce a C component.‘J

The predominant reason for perfoming this work was to determine the

structure of the radical. Two isotopic species were studied and six

moments of inertia were obtained. Four structural parameters which were

highly correlated were determined. The lack of any single atom isotopic

substitutions and the correlation of the structural parameters prevented

the use of a Kraitchman analysis. Thus, only an <r0> structure was

determined. The use of some assumed structural parameters was necessary

to obtain a statistically relevant fit. These parameters were rcH, CCH

angle and HCH angle.

The experimentally determined length of {H8 CN bond is longer than

a typical CN triple bond but shorter than a CN double bond. Similarly,

the observed CC bond length is shorter than an aliphatic CC single bond

but longer than a normal double bond. These are shown in Table 6.13.

These determined distances coupled with thé estimated spin density on

the nitrogen nucleus indicate significant resonance of the unpaired
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Table 6.13

Comparison Of rCN and rcc Of

(CHJ)CCN with Other Compounds

Parameter Compound Distance (A)

CEN

CHJCN 1.157 [58}*

CHJCHz=C—CEN 1.157

CN radical 1.177

rCN (CHJ)zCCN 1.22 This study

C=N (CH3S0z)zC-C=N-CH: 1.34

HC=NNH 1.34

(CH3•C=N0H)2 1.27

C-C C2H‘ 1.536

(CH3)zCCHz 1.53

CHJCN 1.458

rcc (CH3)zCCN 1.40 This study

C=C CzH‘ 1.33

CHICCHI 1.309

CHZCHCHCHI 1.34

*all bond lengths other than rCN and rcc from this study were taken from
this source.
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electron with the CN triple bond. This type of structure was predicted

by Kerr et al. from EPR data and Huckel calculations."

The planar carbon-nitrogen skeleton also agrees With the result of

the theoretical calculations. This is also in agreement with the

general trends observed for similar organic radicals that have been

characterized with spectroscopic means. The methyl",

monofluoromethyl‘3, ethylty, and isopropylll radicals have been shown to

be planar. This is indicative of
sp!

hybridization on the center carbon

atom.

A characteristic of
sp!

hybridization is the occurrence of bond

angles of approximately 120° about the central carbon atom. The slight

derivation from this value by the C-C-Me angle is attributed to the

steric interaction between the methyl groups. It is not expected that

this angle will be less than 118° however, since the corresponding angle

is bistrifluormethyl nitroxide radical was found to be 117.2°.J Hence,

the value for this angle agrees well with other experimental

measurements.

Consideration of the inertial defect also provides information

concerning the structure of the molecule. If a molecule is planar and

rigid in its equilibrium configuration, the moments are related by

1,+1,,-1,:0 [631

where c is the pricipal axis perpendicular to the molecular plane. For

a nonrigid molecule vibrational effects will result in a modification of

this relationship to _
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wg

where A is nonzero and is called the inertial defect. It is generally

very small except in molecules with heavy atoms.

The plane of symmetry of the 2·cyano-2—propyl radical contains all

atoms with the exception of two pairs of hydrogen atoms lying above and

below the plane. For a nonplanar molecule of this type, the moments are

related by7°

wg
1

where the mi are the masses of the out of plane atoms and the ci's are

their perpendicular distances from the ab plane. The summation is over

all pairs of atoms lying out of the ab plane. ·

The inertial defect for the radical should be small, thus the

original assignment can be checked by comparing the difference, Ia+Ib-IC

with the theoretical value of the sumnation in Equation 6.3. These

values agree well with one another. The inertial defect can also be
I

compared with that in a similar molecule, acetone, as shown in Table

6.14. These values, for both the deuterated and protonated species,

agree very well.
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Table 6.14

Comparison of Theoretical and Experimental
Intertial Defects of the 2·Cyano-2-Propyl Radical

with that of Acetone

2—Cyano-2-Propyl Radical Acetone"

Calculated Experimental Experimental

X4miciz(amu•Az) Ia+Ib-Ic(amu•Az) Ia+Ib-IC (amu•Az)

H 6.583 6.3 6.3

D 13.166 12.8 12.4
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Conclusions

Two isotopic species of the 2-cyano-2·propyl radical were

characterized using mircowave spectroscopy. The assignment of their

spectra resulted in the calculation of six principal moments of inertia.

These moments were used to determine four structural parameters.

Analysis of the fine and hyperfine splittings provided the 3 spin-

rotation coupling constants and the 4 hyperfine coupling constants of

the nitrogen atom in the molecule. From these parameters, the nature of

the unpaired electron and the spin density on the nitrogen nucleus could

be estimated.

Proton and deuteron hyperfine coupling was not resolved due to

experimental conditions used in this study. These splittings could

probably be resolved using a flow technique with reduced sample

pressures where line widths would be well below 1Mhz. This would allow

the assignment of the hyperfine splitting of tne protons and deuterons

and determine the nature of the interaction of the lone electron with

these six equivalent nuclei. This would also confirm the methods of

Endo' and Nhite‘ in handling multinuclear·spin radicals as valid or

invalid.



Appendix A

Useful Relations in Spherical Tensor Methods

This section utilizes concepts of irreducible tensor operators and
coupling of angular moments discussed in Chapter III to obtain relations
useful in deriving matrix elements in Chapter IV. The derivation of
each relation listed below can be found in Edmonds" and have been
tabulated by Hirota.‘3

1) Spherical tensor rotation of a vector r

ro=Z [14.1.1]

rt = x 2*/2(x i gn [,4.1.2]
2) Coupling of two tensor operators (T and U couple to give Q)

5 5 I05,, = <
—1>’· "="”<2/+ ¤>"’

Z ( )T';„,¤£:,, LA-21
mwu

”H
"b m

3) Scalar product of two tensors

T•U=Z(—l)qTäUIiq [A3]
q

4) The Higher-Eckert Theorem

xa —m' jl k j
·· Tk ‘ ·4<r’j’m'lTq|Um>=(-1)f

<
<r’;|| ||r7> [A-]—m' q m
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where <r'j’HTKHrj> is the reduced matrix element

5) Computation of the reduced matrix elements:
Choose m mk and q so as to give a trivial value for
<r',j,m'[T |r,j,m> and divide it by

-„ J k 1

example:

<$l IT‘(S)l Is> = [$($+ 1)(2$+1)]"* [.4.5.1]

k l/2 J'—K'
JI k J

(-1) ( ) [.4.6.23-K’
q K

6) Matrix Elements of coupled tensor operators.

a) Noncommuting tensor operators operating on the same system

„ K kz 1
</j'I IX"I„.j„

1 1 K [4.6.1]

X <#j'l
I'I‘k‘I 1r'1'> <#7"I lT"=llr_1>

b) Tensor operators operating on different system:

V70j

l jl kl [4.6.2]
¤ uv +1112/+ l><21<+ l)]m{J’z j2 kz}

J J K
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cl Scalar product of two commuting tensor operators:

l W J jl jr

k /‘ /2 [/4.6.3]

d) Single operator in a coupled scheme (only operating on one

part of system

-, . , ..
j' J' '

</J ,/21 I +1: I /2}

J j, k [11.6.4]

>< <//,I IT/‘IIv,>



Appendix B

Selected Higner 3-j Symbols

J+1 J *_ _1,_,„_, (J—M)(J-M+l) */2

M _M_1l
“* ) (2/+3)(2/+2)(2!+l)

J+1 J 1 _ l,_„_, (.1+M+1)(1-M+1)2 */2 1
(M _M 0):** (?J+3)(Z/+2)(U+1)

J J ‘1
_ _I),_„ (1-M)(1+M+1)2 */2

M
_M_1

1
"* (2!+2)(2.l+1)2.l

1 J 1 J M M( )*****° *******
M -M 0 [12/ + 111/

+1>Jl’

J+2 J 2 */2

M _M_2
=* ) (2J+5)(2.I+4)(2.J+3)(2/+2)(2I+1)

- J+2 J 2 1,_„ (J+M+2)(J—M+2)(J—M+l)(J—M) */2
(M _M_1

1):2*-) (2.I+S)(2J+4)(z/+3)(2./+2)(2./+1)

J+2 J 2 _ 6(J+M+2)(J+M+1)(J—M+2)(J—M+1) */2
-

_1)JM
_M 0

‘* (2./+5)(2.l+4)(2J+3)(2./+2)(Z/+1)

„J+1 J 2 _1,_,,,+, (J—M—l)(J—}l·I)(J-M+1)(J+M+2} */2

M _M_2
:*2* 2 (Z!+4)(2l+3)(2.!+2)(2./+1)Zl
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J+* J 2 ,_„ (J-M+1)(1-M) */2

< M
_M 1)-1) +l2(J+2M+2)[ (Zl+4)(l!+3)(2J+2)(Z/+1)Z/]

J+1 J 2 =(_l),_„+,2M 611+.11+ 1)(1-111+ 1) */2

J J 2 _ lJ_M 6(J—-M-1)(J—M)(.l+M+ 1)(J+M+2) U2

(M _M_2 (2./+ 3)(2J+2)(2!+ 1)2J(Z/- 1)

J J 2 1.„ 6<J+M+1)u-M) */2
(M _M_l 1)1)(J

J 2) -111+ 1)J
M —M 0 [(2/+3)(2J+2)°(Zl+1)Z/(2/-1)]]/2



Appendix C

Selected Wlgner 6-j Symbols

:=a+b+c

¤ b <= _l, C(C+1)(C-za-1)(C-2C) */2’( ) (26-1)2b(26+1)(2C—1)2C(2C+1) 2

¤ b */2

{1 c_l
3"V) 2b(2b+1)(2b+2)(2c—l)2c(2c+l)

¤ b <=
1

(C-2b—1)(:—2b)(1—2C+1)(:—2C+2)*/2
{1 c_l b+l}=(-) (2b+1)(2b+2)(2b+3)(2c—1)2c(2c+1)

{11 b L} (-1),+12 [b(b+1)+c(c+l)—a(a+l)]

1 C C :2612b+1><2b+2>2¤<2«=+1><2¤+2>J‘/2

¢ b ¢ 1: (:—2)(:—1)s(:+l)(:-2a—3)(:-2a—2)(:-2a-1)(s-Za) V2

{2 c_2
b_2}°(”)

(2b—3)(2b—2)(2b—l)2b(2b+l)(2c—3)(2c—2)(2c—1)2c(2c+l)

*2 b ¢ 1:2 (:-l).s(:+l)(:—2a—2)(s—2a—i)(:-2a)(:—2b)(:—2c+l) V2

{2 c_2
b_1}°(-) (2b—2)(2b—1)2b(%+1)(2b+2)(2c—3)(2c—2)(2c-1)2c(2c+1)

¤ b */2

{2 c_2 [jd') (Zb-1)2b(2b+l)(2b+2)(2b+3)(2c—3)(2c—2)(2c-1)2c(2c+1)

I
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*2 b ¢ 1,2 (.1*+I)(:-·2a)(:—2b—2)(:—2b—I)(s—2b)
‘/2

{2 C_2
b+l}=(—)

2b(2b+I)(2b+2)(2b+3)(2b+4)

(s- 2c+ I)(.r—2c+ 2)(:-2c+ 3) in
X (2c — 3)(2c — 2)(2c - 1)2c(2c + I)

¤ b ¢
2 _, (s-2b—3)(s—·2b—2)(s-2b- 1)(:—2b) */2

2
c_2

b+
( ) (2b+1)(2b+2)(2b+3)(2b+4)(2b+$)

(: - 2c + 1)(:— 2c+ 2)(: — 2c + 3)(: - 2c + 4) V2
X (2c — 3)(2c — 2)(2c - 1)2c(2c + I)

{a b ¢
}= (

-1), 4[(a + b)(a — b + I) — (c- l)(c - b +1)][:(:»+- l)(:— 2a —1)(:—· 2a)]l/2

2; - 1b — 1 [(2b - 2)(2b - I)2b(2b + I)(2b + 2)‘(2c -2)(2c — I)2c(2c + 1)(2c + 2)]m’

{a b ¢}
(-1),

2[(a + b +1)(a - b)- cz +1][6(s +1)(s — 2a)(s - 2b)(: - 2c+1)]m

2 C-1 b [(2b~I)2b(2b+1)(2b+2)(2b+3)(2c-2)(2c·l)2c(2c+1)(2c+2)]m

a b c

l

{
}=¤(—I)‘°4[(a-+·b+2)(a—b—l)—(c—I)(b+c+2)]

2 c- 1 b+ I

X
[(s—2b-I)(s—2b)(:—2c+ I)(:—2c+2)]‘/2

[2b(2b + 1)(2b + 2)(2b + 3)(2b+ 4)(2c·2)(2c· I)2c(2c+ l)(2c + 2)]‘/2

X=b(b+ 1)+c(c+ 1)—a(a+ 1)

{ez b r}_(
1):

2[3X(X- 1) — 4b(b +1)c(c +1)]

2 c b
—

[(2b — I)2b(2b + I)(2b + 2)(2b + 3)(2c —I)2c(2c + l)(2c + 2)(2c + 3)]‘/F



. Appendix D

Selected Higner 9-j Symbols

l"(abc)=a(a+1)+b(b+1)—c(c+1)

N N 2

{S S 1}-, „/Ö-[I'(NSJ)I'(NJS)+(2/3)N(N+1)I“(SJN)]

[4o!~/(zv + mzzv - mzzv + s)s(s + mzs + 1)!(J + mz! + 1)]*/2 J
J J 1

N N 2 _

S~
S 1

(N—S+J)(N+S—J+1)(—N+S+J)(N+S+J+1) */2

= 30N(N +1)(2N —1)(2N +1)(2N +3)S(S+1)(2S+‘1)./(2/-1)(2/+1)

J-1 J 1
{I‘(SNJ)(2N—1)(2N+3)+?N—ä-N2(2N-I)(N+S+J+2)(N—S+J+1)

—(N+l)2(2N+3)(N+S—J)(—N+S+J+1)}[]

N—2 N 2

S Sl
(J+S+N+1)(—J+S+N)(J—S+A/)(J+S—N+1) */2

{ }=
_

16(N—l)N(2N—3)(2N—l)(2N+l)S(S+l)(2S+I)

J+1 J 1
(-J-1-S+N—2)(—J+S+N—l)(J+S-·N+2)(J+S—N+3) */2

(J+1)(2./+l)(ZI+3)

N—2 N 2

S S 1
(J+S+N+l)(—J+S+N)(J—S+N)(J+S—N+l) */2

= - 16(N—1)N(2N-3)(2N—1)(2N+l)S(S+1)(2S+l)

J J 1
(J+S+N)(J—S+N—l)(—J+S+N—1)(J+S—N+2) */2

J(2!-l)(2/+1)90
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N—2 N 2 °

S S16(N—1)N(2N—3)(2N·1)(2N+1)S(S+1)(2S+l)
J—l J 1

(J+S+N-1)(J+S+N)(J—$+N—2)(J-S+N—1)
‘/Z

. J(2!—1)(2.l+1)



Appendix E

Hyperfine Coupling of the Protons on
Two Equivalent Methyl Groups

The hyperfine coupling of six equivalent K spin nuclei has been

determined for the two equivalent trifluoromethyl groups in

bistrifluoromethyl nitroxide radical.,l The matrix elements developed

for the hyperfine analysis of the six protons on the two methyl groups

on the 2-cyano-2—propyl radical were taken primarily from this study. A

brief description of the theory used in the previous study follows.

The trifluoromethyl radical was the first molecule with three

equivalent nuclei of nonzero spin and Hund's b type coupling to have its

rotational spectrum assigned.z In this spectrum, hyperfine splittings

due to three equivalent fluorine nuclei were observed. Matrix elements

were derived for their hyperfine analysis. A fit of the spectrum

determined that the hyperfine splitting was not dependent on the

elements off diagonal in K. In fact. an excellent fit was obtained when

these off diagonal elements were set to zero.

It has been shown by Bowater et
al.‘,

that having only matrix

elements diagonal in K is the same as considering the behavior of all

nuclear spins as being equivalent to a single nucleus with a spin equal

to the sum of all the nuclei (i.e., 3(%)=1(3/2)).

92
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Following this, white has shown that the number of states of the
‘

following two representations must be the same,

J„+h
[E.!]

1= I1. -1,l

where jl and ja commute. This has also been determined empirically by

spectroscopists before the advent of quantum mechanics. This is called

the addition rules of angular moments.

If different angular momenta operators (i.e., nuclear spins) refer

to different particles or different properties of the same particle,

they commute. A state vector such as V(jlmljzmz) may be split into a

sum of products of factors relating separate parts of the system.

V1 laJ

xml)Thesestate vectors are linear combinations of the basis elements of the

product representation
D(j‘)xD(j'). The representation of dimension

(2j\+1)(2j2+l) is reducible. The representation is made up of a number

of invariant irreducible subspaces each of which represents a particular

value of j. with this, we can consider the nuclear spins of the two

identical nuclei to be the sum of the individual spins. This concept

was used to characterize proton hyperfine splitting in
NHzx,

PHI,) and

other radicals. This can be extended to consider groups with resultant

spins equal to that of a single nuclei. This was done to assign the

hyperfine splitting of fluorine nuclei in bistrifluoromethyl nitoxide_
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radical and also be used to characterize the proton hyperfine splitting

in the 2·cyano-2-propyl radical.



Appendix F

Computer Programs

Moment of Inertia

The program which calculates the principal moments of inertia of a

molecule was developed by R.A. Beaudet and N.R. Pauley at University of

Southern California. Bond lengths, bond angales and atomic masses are

read in as data. The bond lengths and angles are referenced to three

arbitrary atoms; 1 is the origin, 2 is the positive x axis and 3 lies in

the positive xy quadrant. with all atoms defined in terms of this

initial coordinate system, the center of mass is calculated and then

taken to be the new origin. This new center of mass coordinate system

is then transformed to the principal axis coordinate system. The

coordinate of each atom of the molecule in the final coordinate system

are used to calculate the pricipal moments of inertia and rotational

constants.

95
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Asymmetric Rotor

This program is a modification of one developed by R.A. Beaudet at

USC to calculate the frequencies of rotational transition for a molecule

given its rotational constants and dipole selection rules. The

transition frequencies are calculated by taking the energy differences

D€tW€€H two appropriate levels. Relative intensities and line strengths

may also be calculated given the components and magnitude of the dipole

moment in the molecules. The data that is required by the program are:

dipole selection rules, magnitude of the dipole moment, upper and lower

frequency limits and limits on J quantum numbers (maximum J=8U).
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CDANAL (Semirigid Rotor Fit Program)

This program, developed by Kirchoff, performs an iterative least

squares fit of the centrifugal distortion constants in the watson

formulation. with
P4

and
P‘

(first and second order centrifugal

distortion), there are ten independent centrifugal distortion terms

using this formulation. Adding to this the three rotational constant,

there are a maximum of thirteen parameters which can be fit to the
_

spectrum.

For a rigid rotor fit, only the rotational constants are varied.

This is often done in molecules where a small number of rotational

transitions are assigned. This is valid if the assigned transitions are

low in J where the centrifugal distortion is minimal.

The necessary input data consist of the approximate rotational

constants, dipole moment, selection rules, experimental frequencies with

the J,K_1,+K1 quantum numbers and the number and type of distortion

constants to be included in the fit.
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STRFTQ

This program was written by Schwendeman‘s at Michigan State

University to adjust internal coordinates of a molecule to fit its

experimentally determined moments of intertia by an iterative least

squares procedure. Depending on the number of isotopically substituted

species studies and the number of experimental moments obtained, values

of some structural are assumed and not used in the fit. THE program

computes the final coordinates of each atom, in the molecule, the

moments of inertia, planar second moments and rotational constants. The

final coordinates of each atom are used to determine final bond lengths

and angles.

The necessary input consists of a trial set of internal

coordinates, atomic number of each atom, experimental rotational

constants, structural parameters to be fit and necessary constraints of

the fit (assumed bond lengths, bond angles, etc.)
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Gaussian 80

Gaussian 80 is a further development of Gaussian 70 and Gaussian

76. It is a general purpose program for BD initio molecular orbital

calculations. Basis sets involving s, p and d type gaussian functions

can be used and Restricted Hartree-Fock, Unrestricted Hartree·Fock and

Restricted Open Shell Hartree-Fock wavefunctions are available when

using this program. The program calculates the one and two electron

integrals and then determines the Hartree-Fock single determinant wave

functions and the total energy. This is followed by Mulliken population

analysis calculation of electric dipole moment and spin densities on

each nucleus in the molecule. The program can be used for geometric

optimization by calling a sub-program that computes the first derivative

of Hartree-Fock energy with respect to the nuclear coordinates.

The input necessary for the program include specification of the

quantum mechanical procedure to be used (Hartree-Fock, etc.),

specification of the basis set (STO-3G, etc.), optimization method

employed and relative positions of atoms in the molecule (using the same

method as in moment of interia program). The user must specify which

bond lengths and angles are to be fixed and those that are varied.

Sample input with the program used to call Gaussian 80 are given. An

abbreviated listing of resulting output, reproduction of initial data

and final data from the last iteration, are also listed.
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Gaussian 80 Control Program
with Sample Data

READ GAUSS80 JCL A1 IRSPEC 05/06/88 10:37:50
//A513XJDG JOB ZOF93,GRAYBEAL,REGION=1500K,TIM£=120
/*LONGKEY_ BUTANE

‘

/*PRIORITY IDLE
/*JOBPARM LINES=30 .
//STEP1 EXEC PGM=G82 · ·

//STEPLIB DD DSN=A51003.G82A.EXE,DISP=SHR
//INT DD UNIT=3380,SPACE=(6233,(3000,3000),,,ROUND),
// DCB=(RECFM=FT,BLKSIZE=23472),
// DISP=(NEW,DELETE),VOL=SER=WORK02
//D2E DD UNIT=3380,SPACE=(6233,(3000,3000),,,ROUND),

// _DCB=(RECFM=FT,BLKSIZE=23472),
// DISP=(NEW,DELETE),VOL=SER=WORK03
//RWF DD UNIT=3380,SPACE=(6233,(3000,3000),,,ROUND),
// DCB=(RECFM=FT,BLKSIZE=23472),
// DISP=(NEW,DELETE),VOL=SER=WORK03
//CHK DD UNIT=SYSDA,SPACE=(6233,(100,30)),
// DCB=(RECFM=F,BLKSIZE=1024),
// DISP=(NEW,DELETB),VOL=SER=WORK03
//FT06F001 DD SYSOUT=A
//FT07FO0l DD SYSOUT=B
//SNAPDD DD DUMMY
//SYSDUMP DD SYSOUT=A
//FT05F001 DD *
# HF/4-31G OPT=FP

(CH3)2·C-CN RADICAL OPTIMIZATION WITH METHYL GROUP OPTIMIZATION

0 2
C
C 1 1.404172
C 1 1.520108 2 120.546
N 2 1.21682 1 180. 3 0.
C 1 1.520108 2 120.546 3 OOPA
H 5 1.09 1 109.5 2 0.
H 5 1.09 1 109.5 2 120.
H 5 1.09 1 109.5 2 240.
H 3 1.09 1 109.5 2 HANGLE

”

X 9 1.09 3 109.5 1 HANGLE
H 3 1.09 9 109.5 10 120.
H 3 1.09 9 109.5 10 240.
HANGLI-Z=1.111
OOPA=189.84
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Gaussian 80 Abbreviated Output

GAUSSIAN 82 IBM·MVS-G82REVH/C2 7 SEPTEMBER 1984
8-MAY·1988 17:28:28

# HF/4·31G OPT=FP

1//1.2;
2//2;
3/5=1,11=9,25=l1,30=1/1,2,3,11;
4//1;
S//1.2;
6//1;
1//2; .
2//2;
3/S=1,11=9,ZS=11,30=1/1,2,11;
4/S=S/1;
5//1,2;
1//2(·4); —

— 2//2;
3/5=1,11=9,25=11,30=1,39=1/1,3;
6//1;
99//99;

(CH3)2·C-CN RADICAL OPTIMIZATION WITH METHYL GROUP OPTIMIZATION

SYMBOLIC Z-MATRIX:
CHARGE = O MULTIPLICITY = 2 _

C .

C 1 1.40417
C 1 1.52011 2 120.546
N 2 1.21682 1 180. 3 0. 0

‘

C 1 1.52011 2 120.546 3 OOPA 0
H _ 5 1.09 1 109.5 2 0. 0
H 5 1.09 1 109.5 2 120. 0
H 5 1.09 1 109.5 2 240. 0
H 3 1.09 1 109.5 2 HANGLE 0
X 9 1.09 3 109.5 1 HANGLE 0
H 3 1.09 9 109.5 10 120. O
H 3 1.09 9

I
109.5 10 240. 0 ·

VARIABLES
OOPA 189.84

‘

HANGLE 1.111
FLETCHER·POWELL TOTAL OPTIMIZATION PROGRAM. INITIALIZED AT 17:29:11 ON 5/08/88
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Z-MATRIX (ANGSTROMS AND DEGREES)
CD CENT ATOM N1 LENGTH N2 ALPHA N3 BETA J

1 1 C
2 2 C 1 1.404172 ( 1)
3 3 C 1 1.520108 ( 2) 2 120.546 ( 12)
4 4 N 2 1.216820 ( 3) 1 180.000 ( 13) 3 0.0 ( 22) 0
5 5 C 1 1.520108 ( 4) 2 120.546 ( 14) 3 189.840 ( 23) 0

6 6 H 5 1.090000 ( 5) 1 109.500 ( 15) 2 0.0 ( 24) 0

7 7 H 5 1.090000 ( 6) 1 109.500 ( 16) 2 120.000 ( 25) 0
8 8 H 5 1.090000 ( 7) 1 109.500 ( 17) 2 240.000 ( 26) 0

9 9 H 3 1.090000 ( 8) 1 109.500 ( 18) 2 1.111 ( 27) 0
10 X 9 1.090000 ( 9) 3 109.500 ( 19) 1 1.111 ( 28) 0
11 10 H 3 1.090000 ( 10) 9 109.500 ( 20) 10 120.000 ( 29) 0

’
12 11 H 3 1.090000 ( 11) 9 109.500 ( 21) 10 240.000 ( 30) O

Z-MATRIX ORIENTATION:

CENTER ATOMIC COORDINATES (ANGSTROMS)
NUMBER NUMBER X Y Z

1 6 0.0 0.0 0.0
2 6 0.0 0.0 1.404172
3 6 1.309150 0.0 -0.772564
4 7 0.000000 0.0 2.620992
5 6 -1.289890 0.223730 -0.772564
6 1 -2.113149 0.366524 -0.072597
7 1 -1.189310 1.109394 -1.399927
8 1 -1.493447 -0.644072 -1.399927
9 1 2.144602 -0.019922 -0.072763

10 -1 1.763558 -0.053140 0.947924
11 1 1.357919 0.909311 -1.371627
12 1 1.362545 -0.869443 -1.427788

DISTANCE MATRIX (ANGSTROMS):
1 2 3 4 5

1 C 0.0
2 C 1.404172 0.0
3 C 1.520108 2.540089 0.0
4 N 2.620992” 1.216820 3.637320 0.0
5 C 1.520108 2.540089 2.608652 3.637320 0.0
6 H 2.145929 2.603956 3.512324 3.443132 1.090000

7 H 2.145929 3.241633 2.804753 4.337396 1.090000
8 H 2.145929 3.241633 2.943291 4.337396 1.090000
9 H 2.145929 2.604045 1.090000 3.443259 3.513521

10 X 2.002878 1.822395 1.780279 2.431484 3.515720
11 H 2.133576 3.221156 1.090000 4.314139 2.799962
12 H 2.156626 3.260745 1.090000 4.359481 2.942747

6 7 8 9 10
6 H 0.0



103 .

7 H 1.779646 0.0
8 H 1.779646 1.779646 0.0
9 H 4.275253 3.761873 3.922541 0.0

10 X 4.030687 3.947572 4.058287 1.090000 0.0
11 H 3.745719 2.555232 3.247166 1.780279 2.543849

12 H 3.929963 3.229324 2.865006 1.780279 2.543849
11 12

11 H 0.0
12 H 1.779646 0.0

INTERATOMIC ANGLES:
C2·C1·C3=120.S46 C1-C2-N4=l80. C2·C1·C5=120.546
C3—C1-C5=1l8.1963 C1-C5—H6=109.5 C1·C5-H7=109.5
H6—C5-H7=109.4424 C1-C5-H8=109.5 H6·CS—H8=109.4424
H7-C5-H8=109.4424 C1·C3·H9=109.5 C3·H9·X10=109.5

C1-C3-H11=108.5333 H9-C3-H11=109.S C1-C3•H12=1l0.3465
H9·C3—H12=109.5 H11-C3·H12=109.4424

****«****«****«****w********«***w****w**«********«***********************

FINAL ITERATION
****«***«**«*«******««**«************w**«***w***********«****************

FLETCHER-POWELL OPTIMIZATION TERMINATED.
FORCES BELOW THRESHOLD AFTER 2 STEPS.

FINAL POOL OF VARIABLES:
NAME VALUE INCREMNT

OOPA 180.07314 1.00000
HANGLE 0.00475 1.00000

FINAL OPTIMIZED VALUE = ·0.2090751355912D+03

Z·MATRIX (ANGSTROMS AND DEGREES)

CD CENT ATOM N1 LENGTH N2 ALPHA N3 BETA J

1 1 C
2 2 C 1 1.404172 ( 1)
3 3 C 1 1.520108 ( 2) 2 120.546 ( 12)

4 4 N 2 1.216820 ( 3) 1 180.000 ( 13) 3 0.0 ( 22) 0
5 S C 1 1.520108 ( 4) 2 120.546 ( 14) 3 180.073 ( 23) 0
6 6 H 5 1.090000 ( 5) 1 109.500 ( 15) 2 0.0 ( 24) 0

7 7 H 5 1.090000 ( 6) 1 109.500 ( 16) 2 120.000 ( 25) 0

8 8 H 5 1.090000 ( 7) 1 109.500 ( 17) 2 240.000 ( 26) 0

9 9 H 3 1.090000 ( 8) 1 109.500 ( 18) 2 0.005 ( 27) 0

10 X 9 1.090000 ( 9) 3 109.500 ( 19) 1 . 0.005 ( 28) 0

11 10 H 3 1.090000 ( 10) 9 109.500 ( 20) 10 .120.000 ( 29) 0

12 11 H 3 1.090000 ( 11) 9 109.500 ( 21) 10 240.000 ( 30) 0
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Z-MATRIX ORIENTATION:

CENTER ATOMIC COORDINATES (ANGSTROMS)

NUMBER „ NUMBER X Y Z

1 6 0.0 0.0 0.0

2 6 0.0 0.0 1.404172
3 6 1.309150 0.0 -0.772564
4 7 0.000000 0.0 2.620992
5 6 -1.309148 0.001671 -0.772564
6 1 -2.144698 0.002738 -0.072597
7 1 -1.360270 0.891560 -1.399927
8 1 -1.362541 -0.888085 -1.399927
9 1 2.144700 -0.000085 -0.072597

10 -1 1.763794 -0.000227 0.948682
11 1 1.360137 0.889908 -1.399911
12 1 1.360156 -0.889738 -1.400151

l
DISTANCE MATRIX (ANGSTROMS):

1 2 3 4 5
1 C 0.0
2 C 1.404172 0.0
3 C 1.520108 2.540089 0.0
4 N 2.620992 1.216820 3.637320 0.0
5 C 1.520108 2.540089 2.618299 3.637320 0.0
6 H 2.145929 2.603956 3.524064 3.443132 1.090000
7 H 2.145929 3.241633 2.883446 4.337396 1.090000
8 H 2.145929 3.241633 2.884478 4.337396 1.090000
9 H 2.145929 2.603956 1.090000 3.443132 3.524064

10 X 2.002740 1.821659 1.780279 2.430553 3.522168
11 H 2.145148 3.241109 1.090000 4.337000 2.882293
12 H 2.145246 3.241278 1.090000 4.337194 2.883342 _

6 7 8 9 10
6 H 0.0 ·

7 H 1.779646 0.0
8 H 1.779646 1.779646 0.0
9 H 4.289400 3.852486 3.853712 0.0

10 X 4.039719 4.008868 4.009767 1.090000 0.0
11 H 3.851325 2.720407 3.251805 1.780279 2.543849
12 H 3.852651 3.251729 2.722698 1.780279 2.543849

11 12
11

H0
0.0

12 H 1.779646 0.0
INTERATOMIC ANGLES:

C2—C1-C3=l20.546 C1-C2-N4=180. C2-C1-C5=120.546
C3-C1-C5=118.908 C1·C5-H6=109.5 C1-C5-H7=109.5
H6-C5-H7=109.4424 C1-C5-H8=109.5 H6-C5-H8=109.4424
H7·C5·H8=109.4424 C1-C3-H9=109.5 C3·H9-X10=109.5

C1-C3-Hl1=109.4385 H9·C3·H11=109.S C1·C3-H12=109.4463
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H9-C3-H12=109.5 H11·C3-H12=109.4424
SYMMETRY TURNED OFF BY EXTERNAL REQUEST.

STOICHIOMETRY C4H6N(2)
FRAMEWORK GROUP C1[X(C4H6N)]
DEG. OF FREEDOM 27

FULL POINT GROUP C1 NOP 1

ROTATIONAL CONSTANTS (GHZ): 8.2766091 3.8073717 2.6965881

ISOTOPES: C-12,0-12,C-12,N-14,C-12,H·1,H-1,H-1,H-1,H-1,H-l
STANDARD BASIS: 4-31G (S, S=P, 6D, 7F)

57 BASIS FUNCTIONS 124 PRIMITIVE GAUSSIANS

19 ALPHA ELECTRONS 18 BETA ELECTRONS
NUCLEAR REPULSION ENERGY 147.5309522840 HARTREES

RAFFENETTI 2 INTEGRAL FORMAT.
TWO-ELECTRON INTEGRAL SYMMETRY IS TURNED OFF.

ALPHA MOLECULAR ORBITAL COEFFICIENTS
1 2 3 4 5

EIGENVALUES -- -15.58805 -11.27978 -11.24966 -11.22572 -11.22562

1 1 C 1S -0.00017 -0.99330 -0.01235 -0.00018 0.00349

2 2S (I) -0.00104 -0.05939 -0.00433 -0.00007 0.00143

3 2PX (I) -0.00000 0.00000 0.00000 -0.00099 -0.00005

4 2PY (I) -0.00000 -0.00001 0.00000 0.00001 -0.00001

5 2PZ (I) 0.00059 -0.00092 -0.00129 0.00001 -0.00029

6 2S (O) 0.02984 0.05036 0.03179 0.00025 -0.00504

7 2PX (0) -0.00000 -0.00001 -0.00000 0.01148 0.00058

8 2PY (0) -0.00000 -0.00000 -0.00002 -0.00004 0.00004

9 ZPZ (0) 0.01777 0.00596 0.02483 -0.00050 0.00972

10 2 C 1S 0.00057 -0.01176 0.99344 0.00015 -0.00286

11 2S (I) 0.00062 0.00227 0.05502 -0.00008 0.00158

. . .CONTINUING. ..

BETA MOLECULAR ORBITAL COEFFICIBNTS.
1 2 3 4 5

EIGENVALUES -- -15.55170 -11.27642 -11.25384 -11.22982 -11.22972

1 1 C 1S -0.00017 -0.01407 -0.99386 -0.00032 0.00922

2 2S (I) -0.00100 0.00295 -0.05731 -0.00006 0.00178

3 2PX (I) -0.00000 -0.00000 0.00000 -0.00099 -0.00003

4 2PY (I) -0.00000 -0.00000 -0.00001 0.00001 -0.00001

5 ZPZ (I) 0.00061 0.00147 -0.00088 0.00001 -0.00029

6 2S (0) 0.02930 -0.03101 0.05367 0.00019 -0.00561

7 2PX (0) -0.00000 0.00000 -0.00001 0.01163 0.00040

8 2PY (O) -0.00000 0.00002 -0.00000 -0.00004 0.00004

9 2PZ (0) 0.01742 -0.02509 0.00755 -0.00034 0.00970

10 2 C 1S 0.00057 -0.99285 0.01465 0.00005 -0.00154

11 2S (I) 0.00092 -0.05763 0.00375 -0.00006 0.00163

12 2PX (I) 0.00000 -0.00000 0.00000 -0.00026 -0.00001

. . .CONTINUING. . .

ALPHA DENSITY MATRIX.
‘

1 2 3 4 5

1 1 C 1S 1.02805
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2 2S (I) -0.00995 0.11912
3 2PX (I) -0.00001 0.00001 0.19538

4 2PY (I) -0.00016 0.00022 0.00053 0.31279

5
‘

2PZ (I) 0.00480 -0.00249 -0.00001 -0.00022 0.18471

6 2S (0) -0.15415 0.16846 0.00005 0.00131 -0.04603

7 ZPX (0) -0.00000 0.00001 0.13511 0.00085 -0.00002

8 2PY (0) -0.00018 0.00028 0.00067 0.29355 -0.00031

9 2PZ (O) 0.00107 -0.01081 -0.00002 -0.00061 0.08842

10 2 C 1S 0.00958 -0.02236 0.00000 0.00005 -0.04776

11 2S (I) -0.02037 0.03184 -0.00000 -0.00010 0.07836
. . .CONTINUING. . .

BETA DENSITY MATRIX.
1 2 3 4 5

1 1 C 1S 1.02170

2 25 (I) -0.00189 0.10613

3 2PX (I) -0.00000 -0.00000 0.16302

4 2PY (I) 0.00007 -0.00015 -0.00050 0.01866

5 2PZ (I) 0.00684 -0.00886 -0.00000 0.00020 0.14043

6 2S (0) -0.10232 0.08150 0.00004 -0.00011 -0.04434

7 2PX (O) -0.00000 0.00001 0.09758 -0.00043 -0.00001

8 2PY (0) 0.00002 -0.00004 -0.00033 0.00823 0.00010
E

9 2PZ (0) 0.00888 -0.02842 -0.00001 0.00007 0.05426

10 2 C 1S 0.00918 -0.02245 0.00000 -0.00003 -0.04239

11 2S (I) -0.01940 0.03149 -0.00000 0.00006 0.07085

. . .CONTINUING. . .

FULL MULLIKEN POPULATION ANALYSIS.
1 2 3 4 5

1 1 C 1S 2.04975

2 2S (I) -0.00225 0.22525

3 2PX (I) 0.0 0.0 0.35841
4 2PY (I) 0.0 0.0 0.0 0.33146

5 2PZ (I) 0.0 0.0 0.0 0.0 0.32514

6 2S (0) -0.04735 0.20283 0.0 0.0 0.0

7 2PX (0) 0.0 0.0 0.13231 0.0 0.0

8 2PY (0) 0.0 0.0 0.0 0.17159 0.0

9 2PZ (O) 0.0 0.0 0.0 0.0 0.08113

10 2 C 1S 0.00000 -0.00047 0.0 0.0 -0.00225

11 2S (I) -0.00042 0.00952 0.0 0.0 0.03302

. . .CONTINUING. . .

GROSS ORBITAL POPULATIONS:
°TOTAL ALPHA BETA SPIN'

1 1 C 1S 1.99628 0.99839 0.99790 0.00049

2 2S (I) 0.57277 0.30090 0.27187 0.02902

3 2PX (I) 0.66092 0.35199 0.30894 0.04305

4 2PY (I) 0.52829 0.48273 0.04556 0.43717

5 2PZ (I) 0.62667 0.34304 0.28364 0.05940

6 2S (O) 0.58486 0.40142 0.18344 0.21798
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7 ZPX (0) 0.30033 0.17444 0.12590 0.04854

8 ZPY (0) 0.43656 0.40029 0.03626 0.36403

9 ZPZ (0) 0.19207 0.12376 0.06831 0.05544

10 2 C 1S 1.99623 0.99786 0.99837 -0.00052

11 ZS (1) 0.63900 0.29309 0.34591 -0.05282

12 ZPX (I) 0.49779 0.13211 0.36568 -0.23357

13 ZPY (I) 0.53829 0.13909 0.39920 -0.26011

14 ZPZ (I) 0.79986 0.37116 0.42870 -0.05754

15 ZS (0) 0.41345 0.12316 0.29028 -0.16712

16 ZPX (O) 0.43635 0.12139 0.31496 -0.19357

17 ZPY (0) 0.47269 0.12082 0.35187 -0.23105

18 ZPZ (0) 0.08864 -0.02434 0.11299 -0.13733

19 3 C 1S 1.99661 0.99823 0.99838 -0.00016

20 ZS (I) 0.54603 0.26725 0.27878 -0.01153

21 ZPX (I) 0.61793 0.29265 0.32528 -0.03263

22 ZPY (I) 0.64800 0.31711 0.33089 -0.01379

23 ZPZ (I) 0.64246 0.30981 0.33265 -0.02284

24 ZS (0) 0.82461 0.39843 0.42617 -0.02774

25 ZPX (0) 0.32187 0.14435 0.17752 -0.03317

26 2PY (O) 0.45223 0.21347 0.23875 -0.02528

27 ZPZ (0) 0.41508 0.19592 0.21915 -0.02323

28 4 N 1S 1.99770 0.99898 0.99872 0.00026

29 ZS (I) 0.76814 0.39962 0.36852 0.03110

30 ZPX (I) 0.60502 0.43332 0.17170 0.26161.

31 2PY (I) 0.59490 0.49031 0.10459 0.38572

32 ZPZ (I) 0.85556 0.45143 0.40414 0.04729

33 25 (0) 1.16286 0.64302 0.51985 0.12317

34 ZPX (0) 0.48307 0.32799 0.15508 0.17290

35 ZPY (0) 0.44419 0.35402 0.09017 0.26384

36 ZPZ (0) 0.46486 0.22696 0.23790 -0.01094

37 5 C 1S 1.99661 0.99823 0.99838 -0.00016

38 ZS (I) 0.54603 0.26725 0.27879 -0.01154

39 ZPX (I) 0.61794 0.29265 0.32528 -0.03263

40 2PY (I) 0.64801 0.31710 0.33091 -0.01381

41 ZPZ (I) 0.64246 0.30981 0.33265 -0.02284

42 ZS (0) 0.82451 0.39837 0.42614 -0.02777

43 ZPX (0) 0.32190 0.14437 0.17753 -0.03317

44 ZPY (0) 0.45231 0.21351 0.23880 -0.02529

45 2PZ (0) 0.41510 0.19593 0.21917 -0.02324

46 6 H 1S (I) 0.53259 0.26856 0.26403 0.00453

47 1S (0) 0.27991 0.14317 0.13673 0.00644

48 7 H 1S (I) 0.53178 0.27666 0.25512 0.02154

49 1S (0) 0.29040 0.15480 0.13560 0.01920

50 8 H 1S (I) 0.53174 0.27660 0.25513 0.02147

51 1S (0) 0.29009 0.15456 0.13553 0.01904

52 9 H 1S (I) 0.53258 0.26856 0.26402 0.00454

53 1S (0) 0.27990 0.14317 0.13673 0.00643

54 10 H 1S (I) 0.53184 0.27695 0.25489 0.02206

55 1S (0) 0.29014 0.15473 0.13541 0.01932

56 11 H 1S (I) 0.53167 0.27630 0.25537 0.02094
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57 1S (0) 0.29029 0.15458 0.13571 0.01887
CONDENSED TO ATOMS (ALL ELECTRONS)

1 2 3 4 5 6

1 C 5.323396 0.338401 0.283818 -0.045385 0.283942 -0.042721
2 C 0.338401 5.004613 -0.048275 0.634607 -0.048250 -0.002251
3 C 0.283818 -0.048275 5.105907 0.000130 -0.046292 0.002670
4 N -0.045385 0.634607 0.000130 6.786501 0.000132 0.000147
5 C 0.283942 -0.048250 -0.046292 0.000132 5.105879 0.392474
6 H -0.042721 -0.002251 0.002670 0.000147 0.392474 0.509255
7 H -0.050082 0.001425 -0.000717 0.000009 0.387922 -0.023468
8 H -0.049780 0.001430 -0.000840 0.000009 0.387954 -0.023443
9 H -0.042721 -0.002250 0.392482 0.000147 0.002670 -0.000094

10 H -0.051844 0.001341 0.388158 0.000008 -0.000782 -0.000040
11 H -0.048269 0.001511 0.387781 0.000009 -0.000774 -0.000028

7 8 9 10 11
1 C -0.050082 -0.049780 -0.042721 -0.051844 -0.048269
2 C 0.001425 0.001430 -0.002250 0.001341 0.001511
3 C -0.000717 -0.000840 0.392482 0.388158 0.387781
4 N 0.000009 0.000009 0.000147 0.000008 0.000009
5 C 0.387922 0.387954 0.002670 -0.000782 -0.000774
6 H -0.023468 -0.023443 -0.000094 -0.000040 -0.000028
7 H 0.535350 -0.029973 -0.000034 0.002151 -0.000403
8 H -0.029973 0.534813 -0.000034 -0.000392 0.002081
9 H -0.000034 -0.000034 0.509089 -0.023397 -0.023377

10 H 0.002151 -0.000392 -0.023397 0.536759 -0.029978
11 H -0.000403 0.002081 -0.023377 -0.029978 0.533411

TOTAL ATOMIC CHARGES.
1

1 C 5.898755
2 C _ 5.882302
3 C 6.464822
4 N 7.376314 ·
5 C 6.464875
6 H 0.812501
7 H 0.822178
8 H 0.821826
9 H 0.812480

10 H 0.821984
11 H 0.821963

ATOMIC SPIN DENSITIES.
1 2 3 4 5 6

1 C 1.430874 0.051047 -0.066848 -0.011931 -0.066694 -0.003555
2 C 0.051047 -1.248938 0.005335 -0.148609 0.005328 0.001139

3 C -0.066848 0.005335 -0.170396 -0.000120 0.005015 -0.000094
4 N -0.011931 -0.148609 -0.000120 1.435493 -0.000120 0.000049
5 C -0.066694 0.005328 0.005015 -0.000120 -0.170561 0.007282
6 H -0.003555 0.001139 -0.000094 0.000049 0.007282 0.009434
7· H -0.018635 -0.000015 0.000440 0.000037 0.014285 -0.001657

8 H -0.018429 -0.000017 0.000344 0.000037 0.014321 -0.001626
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9 H -0.003554 0.001136 0.007281 0.000049 -0.000094 -0.000002
10 H -0.019799 -0.000003 0.015077 0.000040 0.000421 -0.000002
11 H -0.017361 -0.000028 0.013595 0.000034 0.000363 -0.000000

_ 7 8 9 10 11
1 C -0.018635 -0.018429 -0.003554 -0.019799 -0.017361
2 C -0.000015 -0.300017 0.001136 -0.000003 -0.000028
3 C 0.000440 0.000344 0.007281 0.015077 0.013595
4 N 0.000037 0.000037 0.000049 0.000040 0.000034
5 C 0.014285 0.014321 -0.000094 0.000421 0.000363
6 H -0.001657 -0.001626 -0.000002 -0.000002 -0.000000
7 H 0.055369 -0.010358 -0.000004 0.001911 -0.000626
8 H -0.010358 0.055021 0.000002 -0.000623 0.001835
9 H -0.000004 0.000002 0.009431 -0.001797 -0.001482

10 H 0.001911 -0.000623 -0.001797 0.056508 -0.010355
— 11 H -0.000626 0.001835 -0.001482 -0.010355 0.053831

DIPOLE MOMENT (DEBYE): X= 0.0018 Y=-0.0145 Z=-4.0337 TOTAL= 4.0337
FERMI CONTACT ANALYSIS (ATOMIC UNITS).

1
1 C 0.280471
2 C -0.272268
3 C -0.067675
4 N 0.239584
5 C -0.067751
6 H 0.003663
7 H 0.018617
8 H 0.018555
9 H 0.003667

10 H 0.019129
11 H 0.018046
1|0|IBM-VT-MVS1IFOPTIUHF|4-31G|C4H6N1(2)IGRAYBEALIB-MAY-1988|1II# HT/4
-31G OPT=FPII(CH3)2-C-CN RADICAL OPTIMIZATION WITH METHYL GROUP OPTIMI
ZATIONI|0,2|C|C,1,1.404172lC,1,1.520108,2,120.546|N,2,1.21682,1,180.,3
,0.,0|C,1,1.520108,2,120.546,3,00PA,0lH,5,1.09,1,109.5,2,0.,0|H,5,1.09
,1,109.S,2,120.,0|H,5,1.09,1,109.5,2,240.,0|H,3,1.09,1,109.5,2,HANGLE,
0|X,9,1.09,3,109.5,1,HANGLE,0|H,3,1.09,9,109.5,10,120.,0|H,3,1.09,9,10
9.5,10,240.,0||O0PA=180.073138|HANGLE=0.00475l|VERSION=IBM-MVS-G82REVH
/C2|HF=-209.0751356|S2=1.126|S2-1=0.|S2A=0.852lRMSD=0.117D-09|RMSF=0.3
81D-05|DIP=4.03374|PG=C01||@

EVERYBODY NEEDS BEAUTY AS WELL AS BREAD, PLACES TO PLAY IN AND PRAY IN,
WHERE NATURE MAY HEAL AND CHEER AND GIVE STRENGTH TO BODY AND SOUL ALIKE.

-- JOHN MUIR
TOTAL JOB TIM: 0 DAYS 1 HOURS 48 MINUTES 48.55 SECONDS

8-MAY-1988 22:19:42
GAUSSIAN 82 DONE ·
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HYPERFINE

This computer program was written to calculate splittings from

spin-rotation, Fermi contact and dipole-dipole interactions. Rather

than tediously driving every possible nonzero diagonal and off diagonal

matrix element expression, matrix elements were calculated numerically

using the expressions for each interaction defined in Chapter 3 and a

hierarchy of subroutines and user-defined functions. Thus, the

programming logic is easier to follow and the program itself is less

susceptable to programmer error.

Data input for the program includes maximum and minimum N values

(molecular rotation quantum number), spin-rotation constants and

hyperfine coupling constants for both the
l‘N

and
IH

nuclei. The FINE,

taken from a similar program written by Richard white}, subroutine

calculates the spin rotation matrix elements. This entire matrix is

then diagonalized by the Jacobi method using the HDIAG subroutine.

XORDER orders the diagonal elements of the matrix in ascending order.

XORDER and HDIAG were taken from the asymmetric rotor computer program

written by R.A. Beaudet. Resulting eigenvalues are assigned to specfic

quantum numbers N, K and J by a subroutine called JASSIN.

The hyperfine matrix elements are calculated by a subroutine

(HYPER) which calls four other subroutines. The four are FERMI, DIPOLE,

FERMIH and DIPOLH and they calculate each contribution cooresponding to

the Fermi and dipole-dipole interaction of the
x·N

nucleus and
IH

nuclei, respectively. All four terms are added together for each matrix

element. The matrix is diagonalized in the same manner as the spin-

rotation matrix. A subroutine called FASSIN assigns the diagonalized
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elements to a specific set of quantum numbers, N, K, J, Fi and F.

ELEVEL combines the values of the fine and the hyperfine energy matrices

for each IN, IH and F with the same J, N and K. Subroutine FREQP takes

the appropriate differences between the energy levels to calculate the

splittings. A later version of this program incorporated rigid rotor

rotational frequencies to predict the microwave spectrum.

The program increments the spin of the nitrogen (0 and 1) and

protons (0,3) to consider the coupling of all possible spin states. The

first iteration calculates only the spin-rotation interaction as a

results of both spins being zero. Hyperfine splitting due to the "N

nucleus can be evaluated when IH=0 and IN=l. Proton hyperfine coupling

is calculated for spins of 0,1,2 and 3. The assumptions and reasoning

behind this were detailed earlier. The program listing, a sample data

and a sample output are given.

The first data read in after the header are the minimum and maximum

rotational angular momenta quantum numbers (2 and 4 in the printed date

file). In the program, these have the variable names NMIN and NMAX.

The second line of numbers are the spin·rotation constants and are named

EAA, EBB, ECC, EAB, EBA, respectively. These correspond to the

subscripted Exx values given in the thesis text.

The third and fourth lines of numbers are the "N and proton

hyperfine coupling constants. The last number in each line is the Fermi

contact parameter for each nucleus and the preceding four are the

dipole-dipole coupling parameters. These are given in the following

order from left to right: Taa, Tbb, TCC, Tab where T refers to the

nitrogen dipole-dipole tensor and H to the proton dipole-dipole tensor.
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These numbers are given variable names from the above description.

The remaining numbers are the N(Kl,K_l)-N‘(K;,K;l) of a transition

of interest with the calculated rigid rotor frequency. This was used in

later adaptation of the program in order to reproduce the spectrum of

the 2-cyano—2·propyl radical. This part may be skipped by deleting

several lines in the FREQP subroutine.
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Hyperfine Computer Program Listing

IMPLICIT REAL (A-H,O-Z)
REAL J1,J,N,GS,GB,BETA,BETAN
INTEGER ARANK,FM,F1M,JM,UFM,UF1M,UJM,UK,UKO,UKP,UN,POWR,IH,IN
INTEGER DNPKP
CHARACTER*4 IDENT(20)

C THIS PORTION OF THE PROGRAM IS THE MAIN PROGRAM WHICH CONTROLS
C EXECUTION OF THE SUBROUTINES AND READS IN ALL DATA

DIMENSION EJ(l:4,2:4,0:4,0:4),EF(0:10,0:5,1:4,2:4,0:4,0:4)
C THE DATA IS NOW READ IN. THE FIRST CARD IS AN IDENTIFICATION CARD
C WHICH MAY HAVE ANY INFORMATION THE USER WISHES TO USE TO LABEL THE
C OUTPUT. FORMAT IS 18A4. THE SECOND CARD CONTAINS THE MINIMUM AND
C MAXIMUM VALUES OVER WHICH N, THE ROTATIONAL QUANTUM NUMBER, VARIES
C FORMAT IS 2I5. THE THIRD CARD CONTAINS THE SPIN ROTATION COUPLING
C CONSTANTS IN MHZ. THE FORMAT IS 2Fl0.2. THE FINAL CARD CONTAINS
C THE HYPERFINE INTERACTION CONSTANTS IN MHZ. THE FORMAT IS 4F10.2.
C PROGRAM WAS ALTERED TO INCLUDE ALL Nl4 COUPLING AS OF 7-14-87
C THREE CARDS WERE ADDED TO INCLUDE THE APPROPRIATE CONSTANTS

READ (7,10) (IDENT(I),I=l,l8)
10 FORMAT (18A4) _

WRITE (6,10) (IDENT(I),I=l,l8)
c read in the maximum and minimum values of the molecular roational
c quantum numbered desired for the calculation.

READ (7,20) NMIN,NMAX
WRITE (6,20) NMIN,NMAX i

20 FORMAT (2I5)
25 FORMAT (5F10.2)

c read in the spin-rotatiou parameters
READ (7,25) EAA,EBB,ECC,EAB,EBA
WRITE (6,25) EAA,EBB,ECC,EAB,EBA

30 FORMAT (5F10.2)
c read in the hyperfine splitting parameters for the nitrogen nucleus
c in the order of aa, bb, cc, ab, and Fermi Contact Parameter

READ (7,30) TA,TB,TC,TAB,AF
_ WRITE (6,30) TA,TB,TC,TAB,AF

c read in the hyperfine splitting parameters for the protons in the
c same order as those for the nitrogen nucleus

READ (7,30) HA,HB,HC,HAB,HAF
WRITE (6,30) HA,HB,HC,HAB,HAF

C THE FINE STRUCTURE ENERGY LEVELS ARE CALCULATED FIRST} THE LOOP
C OVEB J IS BEGUN AT JMIN AND GOES TO JMAX.
C ONLY ALTERATION IN FINE ENERGY ROUTINE IS TO INCLUDE MATRIX
C ELEMNTS OFF DIAGONAL IN K BY 1, THOSE IN 2 WERE PREVIOUSLY
C INCLUDED. ’

DO 50 J=ABS(NMIN-O.S),NMAX+0.SM
ARANK=2*(2*J+1)
NM=ABS(J—0.5)NP=J+0.5 _ -
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CALL FINEI(ARANK,J,EAA,EBB,ECC,EAB,EBA,NM,NP,EJ,NMIN,NMAX)
50 CONTINUE

C THE HYPERFINE ENERGY LEVELS ARE NOW CALCULATED. THE LOOP IS OVER
C ALL VALUES OF I SINCE THE TRANSITION SPLITTINGS ARE CALCULATED IN
C THIS LOOP. THE LOOP OVER F IS BEGUN AT FMIN AND GOES TO FMAX.
C THE TOTAL ANG. MOM. IS NOW °F°, WHICH IS Fl+IN, WHERE Fl=J+IH

DO 90 IN=0,l
DO 80 IH=0,3
IF (NMIN .LT. S) THEN

FMIN=.S
ELSE
FMIN=(NMIN·4.5)I

ENDIF
DO 70 F=.5,(NMAX+IH+IN+.S)
ARANK=0
J1=F+I+1
NM=NMIN
FM=F·0.5
DO 60 J=ABS(F-I),F+I
ARANK=2*(2*J+l)+ORDER
IF ((J+0.5) .LE. NMIN) GOTO 60 °

IF (J .LE. J1) THEN
J1=J
NM=J+0.5
END IF
IF ((J-0.5) .LT. NMAX) THEN
NP=J-0.5
ELSE
NP=NMAX
END IF

60 CONTINUE
NMl=NM-1
CALL HYPER(F,IN,IH,ARANK,TA,TB,TC,TAB,AF,HA,HB,HC,HAB,HF,NMIN,

1NMAX,EF)
CALL ELEVEL (F,IN,IH,NMIN,NMAX,EF,EJ)

70 CONTINUE
CALL FREQP(NMIN,NMAX,IN,IH,EF,EJ)

80 CONTINUE
90 CONTINUE

END
SUBROUTINE FINE (ARANK,J,EAA,EBB,ECC,EAB,EBA,NM,NP,E,NMIN,NMAX) E

IMPLICIT REAL (A·H,O·Z)
‘

REAL J
C THIS SUBROUTINE CALCULATES THE MATRIX ELEMENTS FOR THE SPIN
C ROTATION INTERACTION. THE RANK OF THE MATRIX IS 2*(NM+NP+1) WHERE

C NM=J-.5 AND NP=J+.5. THE MATRIX ELEMENTS ARE STORED IN THE ARRAY
C NAMED A. THE DIAGONALIZED MATRIX ELEMENTS WHICH ARE THE ENERGY
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C LEVELS ARE ASSIGNED TO ENERGY LEVELS USING J,N,KP,KO AS THE
C INDICES AND ARE STORED IN THE ARRAY LABELED EJ.

INTEGER DK,ARANK
DIMENSION Q(1000,1000),E(1:4,2:4,0:4,0:4)

C WRITE (6,5) NM,NP,NMIN,NMAX
5 FORMAT (41HSUBROUT1NE FINE WAS CALLED N NP NMIN NMAX, 415.1)

DO 10 L=1,2*(NM+NP+1)
DO 10 M=1,2*(NM+NP+1)
Q(L,M)=0.0

10 CONTINUE
L=0
DO 150 NPRIME =NM,NP
DO 150 KPRIME=-NPRIME,NPRIM£
M=O
L=L+1
DO 150 N=NM,NP
NPN=NPRIME-N
IF (NPN) 20,20,140

20 DO 135 K=·N,N
KM=KPRIME-K
M=M+1

C WRITE (6,23) J,NPRIME,KPRIME,N,K,L,M
23 FORMAT (6H FINE ,5F5.l,2I5)

IF (M.LT.L) GOTO 135
IF (N) 30,120,30

30 DK=ABS(KPRIME—K)
IF (DK .GT. 2) GOTO 120

C IF (DK .EQ. 1) GOTO 112
C SINCE THE MATRIX IS HERMITIAN ONLY THOSE MATRIX ELEMENTS TO THE
C RIGHT OF THE MAIN DIAGONAL ARE CALCULATED. THE NEXT LINE
C DETERMINES IF THE CHANGE IN N IS POSITIVE (NOT CALCULATED), ZERO
C OR NEGATIVE AND DIRECTS THE PROGRAM TO THE APPROPRIATE STATEMNT
C STATEMENT.

IF (NPN) 40,80,150
C THE CHANGE IN K IS NOW DETERMINED AND THE APPROPRIATE MATRIX
C ELEMENT IS CALCULATED.
C PROGRAM WAS ALTERED FROM ORIGINAL FORM TO CALCULATE THE ELEMNTS
C OFF DIAGONAL IN K BY 1 ( FOR CS SYMMETRY MOLECULES) FINE SUBROUTIN

40 IF (ABS(KM).EQ.1) GOTO 45
IF (KM) 50,60,70

C LINES 45-47 ARE FOR MOLECULES OF CS SYMMTRY, WHERE K IS OFFDIAG BY 1
45 IF (KM) 47,60,48
47 B=(N+K)*(N+K-1)

Q(L,M)=-(N-2*K+1)*(SQRT(B))*(EAB+EBA)/(8*N)
C WRITE (6,125) Q(L,M),EAB,EBA,J,N,NPRIME,K,KPRIME

GOTO 130
48 B=(N—K)*(N-K-1)

Q(L,M)=·(N+2*K+1)*(SQRT(B))*(EAB+EBA)/(8*N)
C WRITE (6,125) Q(L,M),EAB,EBA,J,N,NPR1ME,K,KPRIME

GOTO 130
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so B=(N+K}*(N+K-l)*(N+K·2)*(N-K+1)
Q(L,M)=(EBB·ECC)*SQRT(B)/(8*N)
GOTO 130

60 B=N*N-K*K
Q(L,M)=((EBB+ECC)/2.0—EAA)*K*SQRT(B)/(2*N)
GOTO 130

70 B=(N-K)*(N·K·l)*(N-K—2)*(N+K+1)
Q(L,M)=(ECC·EBB)*SQRT(B)/(8*N)
GOTO 130

80 IF (ABS(KM).EQ.1) GOTO 85
IF (KM) 90,100,110

85 IF (KM) 87,100,88
87 B=(N*(N+1)-K*(K-1))

Q(L,M)=(N*(N+1)+-75·J*(J+l))*(2*K-1)*(SQRT(B
· 1))*(EAB+EBA)/(8*N*(N+1))

GOTO 130
88 B=(N*(N+1)-K*(K+1))

Q(L,M)=(N*(N+l)+•75·J*(J+1))*(2*K+1)*(SQRT(B
1))*(EAB+EBA)/(8*N*(N+1))

GOTO 130 .

90 B=(N*(N+1)-K*(K·1))*(N*(N+1)-(K-1)*(K·2))
Q(L,M)=(ECC-EBB)*(N*(N+1)+0.75·J*(J+1))*SQRT(B)/(8*N*(N+1))
GOTO 130

100 Q(L,M)=(EAA*K*K+(EBB+ECc)*(N*(N+1) ·K*K)/z, ())*(J*(J+1)-N*(N+1)

1-0.75)/(2.0*N*(N+1))
GOTO 130

110 B=(N*(N+1)-K*(K+1))*(N*(N+1)-(K+1)*(K+2))
Q(L,M)=(ECC-EBB)*(N*(N+1)+O.75-J*(J+1))*SQRT(B)/(8*N*(N+1))
GOTO 130

120 Q(L,M)=0.0
125 FORMAT (15H FINE ELEMNT =,3F10.2,1F5.1,4I5)

C 130 WRITE (6,125) Q(L,M),J,N,NPRIM,K,KPRIME
130 Q(M„L)=Q(L.M)

GOTO 150
135 CONTINUE
140 M=2*N+1
150 CONTINUE

cALL u01A0 (Q,L,1,L)
CALL xoR0ER(Q.L,L)
CALL JASSIN(NM,NP,Q,L,E)
RETURN
END
SUBROUTINE HIAG(H,N,IEGEN,NX)

C THIS SUBROUTINE WAS TAKEN FROM THE ASYMETRIC ROTOR PROGRAM

C WRITTEN BY ROBERT A. BEAUDET. MIHDI3, FORTRAN II DIAGONALIZATION

C OF A REAL SYMMTRIC MATRIX BY TH JACOBI METHOD. MAY 19, 1959

C CALLING SEQUENCE FOR DIAGONALIZATION. CALL HDIAG(H,N,IEGEN,U,NR)

C WHERE H IS THE ARRAY TO BE DIAGONALIZED. N IS THE ORDER OF THE

C MATRIX, H. U IS THE UNITARY MATRIX USED FOR FORMATION OF THE

C EIGENVECTORS. NR IS THE NUMBER OF ROTATIONS. IEGEN MUST BE SET
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C UNEQUAL TO ZERO IF ONLY EIGENVALUES ARE TO BE COMPUTED. IEGEN
C MUST BE SET EQUAL TO ZERO IF EIGENVALUES AND EIGENVECTORS ARE TO
C BE COMPUTED. SUBROUTINE PLACES COMPUTER IN FLOATING TRAP MODE.
C THE SUBROUTINE OPERATES ONLY ON THE ELEMENTS OF H THAT ARE TO THE
C RIGHT OF THE MAIN DIAGONAL. THUS, ONLY A TRIANGULAR SECTION NEED
C BE STORED IN THE ARRAY H.

IMPLICIT REAL (A·H,O-Z)
DIMENSION H(1000,1000),X(1000),IQ(1000)
CALL XUFLOW

C WRITE(6,5)
5 FORMAT (26HSUBROUTINE HDIAG IS CALLED)

IF (IEGEN) 15,10,15
10 DO 14 I=1,N

DO 14 J=1,N
IF (I·J) 12,11,12

11 CONTINUE
GOTO 14

12 CONTINUE -
14 CONTINUE
15 NR=0

IF (N-1) 1000,1000,17 .
C SCAN FOR LARGEST OFF DIAGONAL ELEMENT IN EACH ROW. X(I) CONTAINS
C LARGEST ELEMENT IN ITH ROW. IQ(I) HOLDS SECOND SUBSCRIPT DEFINING
C POSITION OF ELEMENT.

4

17 NMI1=N·1
DO 30 I=1,NMI1
X(I)=0.0
IPL1=I+1
DO 30 J=IPL1,N
IF (X(I)-ABS(H(I,J))) 20,20,30

20 X(I)=ABS(H(I,J))
IQ(I)=J

30 CONTINUE
C SET INDICATOR FOR SHUTOFF. RAP=2**-27, NR=NO. OF ROTATIONS

RAP=0.745OS8059D-08
HDTEST=1.0D38

C FIND MAXIMUM OF X(I)S FOR PIVOT ELEMENT AND TEST FOR END OF
C PROBLEM.

40 DO 70 I=1,NMI1
IF (I—1) 60,60,45

45 IF (XMAX-X(I)) 60,70,70
60 XMAX=X(I)

IPIV=I
JPIV=IQ(I)

70 CONTINUE
C IF MAX. X(I) EQUAL TO ZERO, IF LESS THAN HDTEST, REVISE HDTEST

IF (XMAX) 1000,1000,80
80 IF (HDTEST) 90,90,85

‘

85 IF (XMAX-HDTEST) 90,90,148
90 HDIMIN=ABS(H(1,1))
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DO 110 I=2,N
IF (HDIMIN-ABS(H(I,I))) 110,110,10O

100 HDIMIN=ABS(H(I,I))
110 CONTINUE

HDTEST=HDIMIN*RAP
C RETURN IF MAX. H(I,J) LESS THAN (2**·27)*ABS(H(K,K)·MIN)

IF (HDTEST—XMAX) 148,1000,1000
148 NR=NR+1

C COMPUTE TANGENT SINE AND COSINE, H(I,I), H(J,J)
DENOM=(ABS(H(IPIV,IPIV)—H(JPIV,JPIV))+SQRT((H(IPIV,IPIV)—H(JPIV

1,JPIV))**2+4.0*H(IPIV,JPIV)**2))
IF (DENOM .EQ. 0.0) GOTO 150

149 TANG=SIGN(2.,(H(IPIV,IPIV)-H(JPIV,JPIV)))*H(IPIV,JPIV)/(ABS
1(H(IPIV,IPIV)-H(JPIV,JPIV))+SQRT((H(IPIV,IPIV)-H(JPIV,JPIV))
2**2+4.0*H(IPIV,JPIV)**2))

GOTO 151
150 TANG=0.0
151 COSINE=1.0/SQRT(1.0+TANG**2)

C WRITE (6,151) COSINE
SINE=TANG*COSINE

C WRITE (6,151) SINE
HII=H(IPIV,IPIV)
H(IPIV,IPIV)=COSINE**2*(HII+TANG*(2.0*H(IPIV,JPIV)+TANG*H(JPIV,J

1PIV)))
H(JPIV,JPIV)=COSINE**2*(H(JPIV,JPIV)-TANG*(2.0*H(IPIV,JPIV)·TANG

1*HII))
H(IPIV,JPIV)=0.0

C PSEUDO RANK THE EIGENVALUES. ADJUST SINE AND COS FOR COMPUTATION

C OF H(IK) AND U(IK).
IF (H(IPIV,IPIV)-H(JPIV,JPIV)) 152,1S3,153

152 HTEMP=H(IPIV,IPIV)
H(IPIV,IPIV)=H(JPIV,JPIV)
H(JPIV,JPIV)=HTEMP

C RECOMPUTE SINE AND COS
HTEMP=SIGN(1.0,-SINE)*COSINE
COSINE=ABS(SINE)
SINE=HTEMP

153 CONTINUE
C INSPECT THE IQS BETWEEN I+1 AND N-1 TO DETERMINE WHETHER A NEW

C MAXIMUM VALUE SHOULD BE COMPUTED SINCE THE PRESENT MAXIMUM IS

C IN TH I OR J ROW.
DO 350 I=1,NMI1
IF (I-IPIV) 210,350,20O

200 IF (I-JPIV) 210,350,210 -
210 IF (IQ(I)·IPIV)230,240,230
230 IF (IQ(I)·JPIV)350,240,3S0 _

240 K=IQ(I)
250 HTEMP=H(I,K)

· H(I,K)=0.0
IPL1=I+1
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X(I)=0.0
C SEARCH IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=IPL1,N
IF (X(I)-ABS(H(I,J)))300,300,320

300 X(I)=ABS(H(I,J)) q
IQ(I)=J

320 CONTINUE
H(I,K)=HTEMP

350 CONTINUE
X(IPIV)=0.0
x(JP1v)=o.0

C CHANGE THE OTHER ELEMENTS OF H.
DO 530 I=l,N
IF (I-IPIV)370,530,420

‘ 370 HTEMP=H(I,IPIV)
H(I,IPIV)=COSINE*HTEMP+SINE*H(I,JPIV)
IF (X(I)—ABS(H(I,IPIV)))380,390,390

380 X(I)=ABS(H(I,IPIV))
IQ(I)=IPIV

390 H(I,JPIV)=·SINE*HTEMP+COSINE*H(I,JPIV)
IF (X(I)·ABS(H(I,JPIV)))400,530,$30

400 X(I)=ABS(H(I,JPIV))
IQ(I)=JPIV
GOTO 530

420 IF \I•JPIV)430,530,480
430 HTEhR=H(IPIV,I)

H(IPIV,I)=COSINE*HTEMP+SINE*H(I,JPIV)
IF (X(IPIV)—ABS(H(IPIV,I)))440,4$0,4S0

440 X(IPIV)=ABS(H(IPIV,I))
IQ(IPIV)=I

450 H(I,JPIV)=-SINE*HTEMP+COSINE*H(I,JPIV)
IF (X(I)-ABS(H(I,JPIV)))400,530,530

480 HTEMP=H(IPIV,I)
H(IPIV,I)=COSINE*HTEMP+SINE*H(JPIV,I)
IF (X(IPIV)-ABS(H(IPIV,I)))490,$00,500

490 X(IPIV)=ABS(H(IPIV,I))
IQ(IPIV)=I

500 H(JPIV,I)=-SINE*HTEMP+COSINE*H(JPIV,I)
IF (X(JPIV)-ABS(H(JPIV,I))) $10,530,530

510 X(JPIV)=ABS(H(JPIV,I))
1Q(JP1v)=1

530 CONTINUE
C TEST FOR COMPUTATION OF EIGENVECTORS.

IF (IEGEN) 40,540,40
540 DO 550 I=l,N
$$0 CONTINUE

GOTO 40
1000 RETURN

END
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SUBROUTINE XORDER(ARRAY,LIMIT,NX) .

C THIS SUBROUTINE IN ADDITION TO HDIAG WERE TAKEN FROM THE

C ASYMETRIC ROTOR PROGRAM WRITTEN BY ROBERT A. BEAUDET.

IMPLICIT REAL (A-H,0-Z)
C ROBERT A. BEUDET AI06 ENERGY DIAGONALIZATION
C THIS SUBROUTINE ARRANGES THE EIGENVALUES AND EIGENVECTORS
C IN INCREASING ORDER. HDIAG IS NOT DEPENDABLE IN DOING THIS.

DIMENSION ARRAY(lO00,lO0O)
C WRITE (6,5)

5 FORMAT (27HSUBROUTINE XORDER IS CALLED)
30 IF (LIMIT-1) 220,220,40
40 DO 210 KTEST=2,LIMIT
50 DO 200 JTEST=2,KTEST

ITEST=KTEST+2-JTEST
ITESTM=ITEST-1
IF (ARRAY(ITEST,ITEST)-ARRAY(ITESTM,ITESTM)) 60,210,210

60 XCHAN=ARRAY(ITEST,ITEST)
ARRAY(ITEST,ITEST)=ARRAY(ITESTM,ITESTM)
ARRAY(ITESTM,ITESTM)=XCHAN
DO 70 L=1,LIMIT

70 CONTINUE
200 CONTINUE
210 CONTINUE
220 RETURN

END
SUBROUTINE JASSIN(NM,NP,D,L,C)

C THIS SUBROUTINE ASSIGNS THE ORDERED EIGENVALUES TO ENERGY LEVELS

C USING THE VALUES OF J,N,KP,KO AS SUBSCRIPTS AND STORES THEM IN

C THE ARRAY EJ.
IMPLICIT REAL (A-H,O-Z)
DIMNSION D(1000,l000),C(1:4,2:4,0:4,0:4)

C WRITE (6,4)
4 FORMAT (27HSUBROUTINE JASSIN IS CALLED)

DO 1 LP=1,L
C WRITE (6,20) LP,D(LP,LP)

1 CONTINUE
LINDEX=1
DO 10 N=NM,NP

4
IF (N .LT. 2) GOTO 5
IF (N .GT. 4) GOTO 5
DO 3 K=0,N
K0=N—K

C WRITE (6,20) NM,N,K,KO,C(NM,N,K,K0)
C(NM,N,K,KO)=D(LINDEX,LINDEX) °

C WRITE (6,3) NM,N,K,KO,C(NM,N,K,KO)
LINDEX=LINDEX+1 -
IF (K .EQ. N) GOTO 3

KP=K+1 -
4 C(NM,N,KP,KO)=D(LINDEX,LINDEX)

C WRITE(6,20) NM,N,KP,KO,C(NM,N,KP,KO)
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LINDEX=LINDEX+l ·
3 CONTINUE-

GOTO 10
5 LINDEX=2*N+1

10 CONTINUE
20 FORMAT ( 2HD(,I2,2H)=,El0.2)

RETURN
END
SUBROUTINE HYPER(F,IN,IH,ARANK,TA,TB,TC,TAB,AF,HA,HB,HC,HAB,HAF,

1NMIN,NMAX,EF)
C THIS SUBROUTINE CALCULATES THE HYPERFINE MATRIX ELEMENTS. HDIAG
C IS THEN CALLED WHICH DIAGONALIZES THE MATRIX. XORDER ORDERS THE
C DIAGONALIZED MATRIX A AND FASSIGN THEN ASSIGNS THESE EIGENVALUES
C TO THE ARRAY EF USING I,F,J,N,KP,KO AS THE ASSIGNMENT INDICES.

C THIS SUBROUTINE CALCULATES THE MATRIX ELEMENTS NUMMRICALLY BY
C USING PERTINENT 3·J,6-J AND 9-J FUNCTIONS.

IMPLICIT REAL (A-H,O·Z)
REAL J,JP,JF1,N,NP,K,KP,S,NLOW,PF1,PJ,PN,PK,PKO,PKP,PNL
INTEGER DJ,DNMAX,DN,DFIJ,ADK,ARANK,FM,IH,IN,IHN,L,M,PF1M,PJM
DIMENSION Q(1000,l000),EF(0:10,0:S,1:4,2:4,0:4,0:4)
S=.5

S FORMAT (6H HYPER,9F5.1,2I5,1Fl4.6)
6 FORMAT (11H HYPER IHIN,2I5)

WRITE (6,6) IH,IN
7 IF (F .LT. IH) THEN

FIHDF=. 5
ELSE
FIHDF=ABS(F-IH)

ENDIF
11 L=0

DO 301 F1P=FIHDF,F+IH
DO 301 JP=ABS(F1P-IN),FlP+IN
IF (JP .LT. 1) THEN

NLOW=1
ELSE
NLOW=(JP-0.5)

ENDIF
DO 301 NP=NLOW,JP+0.S
DO 301 KP=-NP,NP
M=0
L=L+1

C WRITE (6,5) F,F1P,JP,NP,KP,L,M
DO 300 F1=FIHDF,F+IH
DO 300 J=ABS(F1-IN),F1+IN
IF (J .LT. 1) THEN

NLOW1=1
‘

ELSE
NLOWl=(J-0.5)

ENDIF
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DO 300 N=NLOW1,J+0.5
C NPN=(NP-N)
C IF (NPN) 12,12,

DO 300 K=-N,N
M=M+1

12 FORMAT (13H AT HYPER F =,lFS.1)

C WRITE (6,12) F
IF (M .LT. L) GOTO 300

IF (IN) 200,210,2OO
200 IF (IH) 220,230,22O
210 IF (IH) 240,250,24O

C IN AND IH NOT EQAL TO 0
220 Q(L,M)=AF*FERMI(N,NP,K,KP,S,J,JP,REAL(IN),F1,F1P)+FERMIH(N,NP,K,

1KP,S,J,JP,REAL(IN),F1,F1P,REAL(IH),F)*HAF-DIPOLE(N,NP,K,KP,S,J,
” 1JP,REAL(IN),F1,FlP,REAL(IH),F,TC,TA,TB,TAB)-DIPOLH(N,NP,K,KP,S,

1J,JP,REAL(IN),F1,FlP,REAL(IH),F,HC,HA,HB,HAB)
C WRITE(6,S) F,F1P,JP,NP,KP,F1,J,N,K,IH,IN,Q(L,M)GOTO 300 —

225 FORMAT (27HTHE VALUES M,L,Q(L,M) HYPER,2I5,1Fl0.2)
C IN NOT EQUAL TO ZERO AND IH EQUAL 0

230 Q(L,M)=AF*FERMI(N,NP,K,KP,S,J,JP,REAL(IN),Fl,F1P)·DIPOLE(N,NP,K,
lKP,S,J,JP,REAL(IN),F1,F1P,REAL(IH),F,TC,TA,TB,TAB)

C WRITE(6,5) F,F1P,JP,NP,KP,F1,J,N,K,IH,IN,Q(L,M)
GOTO 300

C IN EQUAL TO 0, IH NOT
240 Q(L,M)=FERMIH(N,NP,K,KP,S,J,JP,REAL(IN),F1,F1P,REAL(IH),F)*HAF·

1DIPOLH(N,NP,K,KP,S,J,JP,REAL(IN),F1,F1P,REAL(IH),F,HC,HA,HB,HAB)
C WRITE(6,5) F,F1P,JP,NP,KP,F1,J,N,K,IH,IN,Q(L,M)

GOTO 300
C IH,IN=0

250 Q(L,M)=0
C WRITE(6,5) F,F1P,JP,NP,KP,F1,J,N,K,IH,IN,Q(L,M)
C GOTO 300
C 299 M=2*N+1+M

300 CONTINUE
301 CONTINUE

CALL HDIAG(Q,L,1,L)
CALL XORDER(Q,L,L)

C DO 305 IL=0,L
C WRITE (6,304) F,L,IL,Q(IL,IL)
C 304 FORMAT (6H HYPER,1FS.1,2I5,1F20.10)
C 305 CONTINUE

FM=F-0.5
CALL FASSIN(F,IN,IH,NMIN,NMAX,Q,EF)

410 RETURN
END
SUBROUTINE FASSIN(F,IN,IH,NMIN,NMAX,A,P)

C THIS SUBROUTINE ASSIGNS THE DIAGONALIZED MATRIX ELEMENTS TO

C THE VARIOUS VALUES OF I,F,J,N,KP,KO. THIS SUBROUTINE CONSIDERS
C ALL POSSIBLE PERMUTATION OF QUANTUM NUMBERS F1,J,N THAT WOULD
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C RESULT IN THE VALUE F BEING CONSIDERED. THE SUBROUTINE ASSUMES

C ROTATION > SPINROTATION >NUCLEAR-ELECTRON SPIN ENERGY ORDER.

C WITH THI,, THE DIAGONALIZED MATRIX LEMENTS WHICH HAVE BEEN
C ORDERED CAN BE ASSIGNED TO THE CORRECT QUANTUM NUMBERS,

IMPLICIT REAL (A-H,O-Z)
REAL J,NLOWF
INTEGER FM,FlM,JM,N,K,KO,KP
DIMENSION A(l000,1000),P(0:l0,0:5,1:4,2:4,0:4,0:4)

S FORMAT (27HSUBROUTINE FASSIN IS CALLED,3F5.1,6IS)
10 LINDEX=1

IF (F .LT. IH) THEN
FIHDF=.5
ELSE
FIHDF=(F-IH)

ENDIF
6 FORMAT (8H F1 LOOP,3FS.1,6I5)

DO 20 Fl=FIHDF,F+IH
DO 20 J=(ABS(F1-IN)),(F1+IN)
IF (J .LT. 1) THEN

NLOWF=1
ELSE
NLOWF=INT(J-.5)

ENDIF
DO 20 N=NLOWF,INT(J+.S)

7 FORMAT (SH NJ LOOP,3F5.1,6I5)
8 FORMAT (6H N IFS,3F5.1,6I5)

IF (N .LT. NMIN) GOTO 19
IF (N .GT. NMAX) GOTO 19
DO 20 K=0,N

9 FORMAT (7H K LOOP,3F5.1,6IS)
K0=N-K
KP=K+1

C WRITE (6,9) F,F1,J,N,K,KO,KP,IH,IN
FM=INT(F-.5)
F1M=INT(F1-.5)
JM=INT(J-.5)
P(FM,FlM,JM,N,K,KO)=A(LINDEX,LINDEX)

12 FORMAT (11H AT FASSIN ,3FS.1,3IS,1F20.10)
C WRITE (6,12)F,F1,J,N,K,K0,A(LINDEX,LINDEX)

LINDEX=LINDEX+1
IF (K .EQ. N) GOTO 20
P(FM,F1M,JM,N,KP,KO)=A(LINDEX,LINDEX)

C WRITE (6,l2)F,F1,J,N,KP,K0,A(LINDEX,LINDEX)
LINDEX=LINDEX+1
GOTO 20

19 LINDEX=LINDEX+2*N+1
'

20 CONTINUE
30 RETURN

END
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SUBROUTINE ELEVEL(F,IN,IH,NMIN,NMAX,P,E)
C THIS SUBROUTINE COMBINES THE ENERGY LEVELS DETERMINED FROM
C SUBROUTINES HYPER AND FINE AND STORES THEM IN ARRAY EF.

IMPLICIT REAL (A·H,O·Z)
INTEGER FM,FIM,JM,UFM,UF1M,UJM,UN,N,KO,K,KP
REAL J
DIMENSION P(0:10,0:5,1:4,2:4,0:4,0:4),E(l:4,2:4,0:4,0:4)

C WRITE (6,5) IN
5 FORMAT(l4H AT ELEVEL IN=,I5)

10 IF ((F-IH) .LT. O) THEN
FlMIN=.5
ELSE
F1MIN=(F-IH)

ENDIF
DO 20 F1=F1MIN,(F+IH)
DO 20 J=ABS(F1-IN),Fl+IN
IF (J .LT. 1) THEN

NLOwA=1
ELSE
NLOWA=INT(J-.5)

ENDIF
DO 20 N=NLOWA,INT(J+.5)
IF (N .LT. NMIN) GOTO 20

I

IF (N .GT. NMAX) GOTO 20
DO 20 K=0,N
K0=N-K
KP=K+1
FM=INT(F·.5)
F1M=INT(F1-.5)
JM=INT(J·.5)

C WRITE (6,13) F,F1,J,N,K,KO,E(JM,N,K,KO),P(FM,FlM,JM,N,K,KO)
13 FORMAT (3F5.1,3I5,2F25.10)

P(FM,F1M,JM,N,K,KO)=P(FM,F1M,JM,N,K,KO)+E(JM,N,K,K0)
C WRITE (6,15) F,F1,J,N,K,KO,P(FM,F1M,JM,N,K,KO)

15 FORMAT (3F5.1,3I5,lF20.l0)
IF (K .EQ. N) GOTO 20

C WRITE (6,13) F,F1,J,N,KP,KO,E(JM,N,K,KO),P(FM,F1M,JM,N,KP,KO)
P(FM,FlM,JM,N,KP,KO)=P(FM,F1M,JM,N,KP,KO)+E(JM,N,KP,KO)

C WRITE (6,15)F,F1,J,N,KP,KO,P(FM,F1M,J,N,KP,KO)
20 CONTINUE
30 RETURN

END
SUBROUTINE FREQP(NMIN,NMAX,IN,IH,P,E)
IMPLICIT REAL (A-H,O-Z)
REAL UJ,J1,J,GS,GB,BETA,BETAN
INTEGER ARANK,FM,FlM,JM,UFM,UF1M,UJM,UK,UKO,UKP,UN,POWR,IH,IN
INTEGER DNPKP
CHARACTER*4 IDENT(20)
DIMENSION E(1:4,2:4,0:4,0:4),P(0:l0,0:S,1:4,2:4,0:4,0:4)
WRITE (6,4) IH,IN
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4 FORMAT (37H THE FOLLOWING ARE TRANSITIONS OF IH=,115,8H AND IN=,
1115)
IF (IN) 50,5,50

5 IF (IH) 50,7,50
7 DO 45 ITRANS=1,7

READ (7,10) UN,UK,UKO,N,K,KO,ROTA
C WRITE (6,10) UN,UK,UKO,N,K,KO
C IF '_((-1)**UK).NE.((-1)**IH).0R.((-1)'^'*K).NE.((-1)**1H)) GOTO 45

10 FORMAT (6I5,1F8.2)
DO 40 UJ=ABS(UN-.5),(UN+.5)
UJM=INT(UJ-.5)
DO 35 J=ABS(N—.5),(N+.5)
JM=INT(J-.5)

13 FORMAT (2F5.1)
C WRITE (6,13) UJ,J

IF ((INT(UJ-J)) .EQ. 1) GOTO 25
15 FORMAT (I2,1H(,I2,1H,,12,2H)-,I2,1H(,I2,lH,,I2,1H),5X,F4.1,1H·,

1F4.1,5X,Fl2.5)
20 GOTO 35
25 FREQ=(E(UJM,UN,UK,UKO)-E(JM,N,K,KO))+ROTA

WRITE(6,l5) UN,UK,UKO,N,K,KO,UJ,J,FREQ
35 CONTINUE
40 CONTINUE
45 CONTINUE

GOTO 105
C PRINT OUT HYPERFINE SPLITTING FREQUENCIES, IH OR IN NE TO 0

50 DO 100 ITRANS=l,7
READ (7,10) UN,UK,UKO,N,K,KO,ROTA

C WRITE (6,10) UN,UK,UKO,N,K,KO
C IF (((-1)**UK).NE.((-1)'^’*IH).OR.((-1)**K).NE.((-1)**IH)) GOTO 100

DO 95 UJ=ABS(UN-.5),(UN+.5)
UJM=INT(UJ-.5)
DO 90 UF1=(UJ-IN),(UJ+IN)

‘

IF (IN .EQ. 0) GOTO 90
UF1M=1NT(UF1—.5)
IF (UF1 .LT. IH) THEN

UFL=.S
ELSE

' UFL=(UF1·IH)
ENDIF
DO 85 UF=UFL,UF1+IH
UFM=1NT(UF·.5)
DO 80 J=ABS(N-.5),(N+.5)
JM=1NT(J—.5) - '

C WRITE (6,13) UJ,J
IF ((INT(ABS(UJ-J))).NE.1) GOTO 80 .
DO 75 F1=(J-IN),(J+1N)
F1M=INT(F1—.5)

' IF (INT(ABS(UF1-F1)).NE.l) GOTO 75
IF (F1 .LT. IH) THEN
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FL=.5 ·
ELSE

”

FL=(F1-IH)
ENDIF
DO 70 F=FL,F1+IH
FM=INT(F-.5)
IF (INT(ABS(UF-F)).NE.1) GOTO 70
FREQ=(P(UFM,UF1M,UJM,UN,UK,UKO)-P(FM,F1M,JM,N,K,KO))+ROTA
WRITE (6,60) UN,UK,UKO,N,K,KO,UJ,J,UF1,F1,UF,F,FREQ

60 FORMAT (I2,1H(,I2,1H,,I2,2H)-,I2,lH(,I2,1H,,I2,1H),2X,1F4.1,
11H-,1F4.1,2X,1F4.1,1H-,1F4.l,2X,1F4.1,1H-,1F4.1,5X,1Fl2.5)

C 60 FORMAT (6I5,6FS.1,lF20.l0)
70 CONTINUE
75 CONTINUE

- 80 CONTINUE
85 CONTINUE
90 CONTINUE
95 CONTINUE

100 CONTINUE
105 RETURN

END
C FUNCTIONS DEFINED TO CALCULATE THE CONTRIBUTION OF THE FERMI CONTACT,
C DIPOLE-DIPOLE, AND QUADRUPOLE CONTRIBUTION OF ROTATIONAL ENERGY.

C FERMI,DIPOLE AND QUAD APPLY TO N14, FERMIH AND DIPOLH THE PROTONS

C
REAL FUNCTION FERMI(N,NP,K,KP,S,J,JP,IN,F1,F1P)
REAL J,JP,NP,N,J6DIAG,J6ODJ1,IN
INTEGER POWR
S=.5

12 FORMAT (15HFERMI IS CALLED)
POWR=(INT(N+S+JP))
IF (F1 .NE. F1P) GOTO 30 _

IF (N .NE. NP) GOTO 30
IF (K .NE. KP) GOTO 30
IF (J .NE. JP) GOTO 20
FERMI=(((2*J+1)**2)*S*(S+1)*(2*S+l)*IN*(IN+1)*(2*IN+1))**.5*

1J6DIAG(F1,REAL(IN),J)*J6DIAG(REAL(N),S,J)*((•1)**(POWR))
_ GOTO 40

20 IF (J.GT.JP) GOTO 21
FERMI=((2*JP+1)*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1)/(2*J+1))**.5

1*J60DJ1(F1,REAL(IN),JP)*J6ODJ1(REAL(N),S,JP)*((•1)**(POWR))
GOTO 40

21 FERMI=((2*J+1)*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1)/(2*JP+1))**.S
1*J6ODJ1(F1,REAL(IN),J)*J6ODJ1(REAL(N),S,J)*((•1)**(POWR))

GOTO 40
30 FERMI=0.0

‘

40 RETURN
_ END

C
REAL FUNCTION FERMIH(N,NP,K,KP,S,J,JP,IN,F1,F1P,IH,F)
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REAL J,JP,JF1,IH,IN,N,NP,J6DIAG,J6ODJ1,J6ODJF
12 FORMAT (34H FERMIH N NP K KP J JP F1 F1P IH S,11F5.1)

FERFAC=((•1)**(INT(2*F1+F+2*JP+S+N+IN+IH+2)))
C WRITE (6,12)N,NP,K,KP,J,JP,F1,F1P,IH,S,FERFAC

DJ=(J-JP)
DF1=(F1·F1P)
S=.5
IF (DJ .GT. 0 .AND. DF1 .LT. 0) THEN

JF1=1
ELSE IF (DJ .LT. 0 .AND. DFI .GT. O) THEN
JF1=-1
ELSE
JF1=0

- ENDIF
50 IF (N .NE. NP) GOTO 100

IF (K .NE. KP) GOTO 100

IF (J .NE. JP) GOTO 75
IF (F1 .NE. FIP) GOTO 60

C WRITE (6,12) F,IH,F1
FERMH=FERFAC*(((2*Fl+1)**2)*((2*J+1)**2)*S*(S+1)*(2*S+1)*IH*(IH

1+1)*(2*IH+1))**.5
C WRITE (6,53) FERMH

53 FORMAT (2SH PRE SUBROUTINE FACTOR IS,1F10.5)
FH=FERMH*J6DIAG(F,REAL(IH),F1)
FIH=FH*J6DIAG(REAL(IN),J,F1)
FERMIH=FIH*J6DIAG(REAL(N),S,J)
GO TO 110

C F1 OFF DIAGONAL BY ONE
60 IF (F1 .LT.F1P) THEN

PASS=F1
F1=F1P
F1P=PASS

ENDIF
C A FACTOR OF 2*F1P+1 WAS TAKEN OUT THAT CANCELLED WITH PART OF TH
C J6ODJ1 EXPRESSION, INORDER TO PREVENT 0 DENOMINATOR IN J6ODJ1

FERMIH=FERFAC*(((2*J+1)**2)*(2*F1+1)*S*(S+1)*(2*S+1)*IH
1*(IH+1)*(2*IH+1)/(2*FP+l))**.5*J6ODJl(F,REAL(IH),F1)*
2J6ODJ1(REAL(IN),J,F1)*J6DIAG(N,S,J)

GOTO 110
C J OFF DIAGONAL BY ONE

75 IF (J .LT. JP) THEN
PASS=J
J=JP
JP=PASS

END IF
IF (F1 .NE. F1P) GOTO 85
FERMIH=FERFAC*((2*J+1)*((2*F1+1)**Z)*$*(5+1)*(2*3+1)*IH/(2*Jp+1)*

1*(IH+1)*(2*IH+1))**.S*J6DIAG(F,REAL(IH),Fl)*J6ODJ1(REAL(IN),F1,J)*
2J6ODJ1(REAL(N),S,J)/((2*JP+1)**.5)
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GOTO 110
C BOTH F1 AND J ARE OFF DIAGONAL BY ONE

85 IF (JF1) 90, 95, 91
C F1+1,J-1

90 FERMIH=FERFAC*((2*J+1)*(2*F1+1)*S*(S+1)*(2*S+1)
1*IH*(IH+1)*(2*IH+1))**.5*J6ODJ1(F,REAL(IH),F1)*
2J6ODJ1(N,S,J)*J60DJF(REAL(IN),J,F1)

GOTO 110
C F1-1,J+l

91 FERMIH=FERFAC*((2*J+l)*(2*F1+1)*S*(S+1)*(2*S+1)
1*IH*(IH+1)*(2*IH+1))**.5*J60DJ1(F,REAL(IH),F1)
2*J6ODJ1(N,S,J)*J6OJFP(REAL(IN),F1,J)

GOTO 110
C J-1,Fl-1 OR J+1,F1+1

95 IF (F1 .LT. FIP) THEN
PASS=F1
F1=F1P
F1P=PASS

ENDIF
FERMIH=FERFAC*((2*J+1)*(2*F1+1)*S*(S+1)*(2*S+1)

1*IH*(IH+1)*(2*IH+1))**.S*J6ODJ1(F,REAL(IH),F1)*
2J6ODJF(REAL(IN),J,F1)*J6ODJ1(REAL(N),S,J)

GOTO 110
100 FERMIH=0.0
105 FORMAT (9H FERMIH =,F&0.20)

C 110 WRITE (6,105) FERMIH
110 RETURN

END
C
C

REAL FUNCTION DIPOLE(N,NP,K,KP,S,J,JP,IN,F1,F1P,IH,F,TC,TA,TB,TAB)
REAL J,JP,JF1,IN,IH,N,NP,K,KP,J6DIAG,J9DIAG,J3DIAG,J30DK1
REAL J3ODK2,J30DN2,J6ODJ1,J90DJ1,J9ODJN,J9OJPN,J9ODN2,J60JFP
REAL J6ODJF
INTEGER DNPKP,DKAY,POWR

C WRITE (6,12)
12 FORMAT (16HDIPOLE IS CALLED)

POWR=INT(JP+IN+F1)
DIPFAC=((·1)**INT(POWR))*(5**.5)
DKAY=INT((ABS(K-KP))-2)
DNPKP=INT(NP-KP)
DN=INT(N-NP)
DJ=INT(J—JP)
IF (DN .GT. 0 .AND. DJ .LT. 0) THEN

NJ=1
ELSE IF (DN .LT. 0 .AND. DJ .GT. 0) THEN _
NJ=-1
ELSE
NJ=0

END IF
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111 IF (NJ .NE. 0) GOTO 112
IF (N .LT. NP) THEN

PASS=NP”
NP=N
N=PASS

ENDIF
IF (J .LT. JP) THEN

PASS=NP
NP=N
N=PASS

ENDIF
112 IF (F1 .NE. F1P) GOTO 200

IF (J .NE. JP) GOTO 160 .
IF (N .NE. NP) GOTO 120

113 DPFAC=DIPFAC*(((2*J+1)**2)*((2*N+l)**2)*S*(S+1)*(2*S+1)*IN*
1(IN+1)*(2*IN+1)*J6DIAG(F1,IN,J)*J9DIAG(N,S,J))
IF (K .NE. KP) GOTO 115
DIPOLE=(DPFAC*((•1)**INT((DNPKP)))*J3DIAG(N,K)*TC)

C OFF DIAGONAL IN K BY 1
‘

115 IF (DKAY .EQ. O) GOTO 117
116 DIPOLE=(DPFAC*((·l)**(INT(DNPKP)))*J3ODK1(N,K)*TAB)

GOTO 118
C OFF DIAGONAL IN K BY 2

117 DIPOLE=DPFAC*((-1)**(INT(DNPKP)))*J30DK2(N,K)*(TA-TB)
118 RETURN

C
C OFF DIAGONAL IN N BY 2, AS WELL AS THE THREE DIFFERENT K ELEMENTS

120 DPFAC=DIPFAC*((2*J+1)**2*(2*N+1)*(2*NP+1)*J6DIAG(F1,IN,J)*
1J9ODN2(N,S,J))*S*(S+1)*(2*S+l)*IN*(IN+1)*(2*IN+1)
IF (K .NE. KP) GOTO 125
DIPOLE=DPFAC*((-1)**(INT(DNPKP)))*J30DN2(N,K)*TC
RETURN

125 DIPOLE=0.000
137 RETURN

C
C J OFF DIAGONAL BY ONE, ALONG WITHOTHER OFFDIAGONALS OF N AND K

160 IF (N .NE. NP) GOTO 180
163 DPFAC=DIPFAC*((2*J+1)*((2*N+1)**2)*J6ODJ1(F1,REAL(IN),J)*

1J9ODJ1(N,S,J)*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1))
IF (K .NE. KP) GOTO 165
DIPOLE=DPFAC*((-1)**(INT(DNPKP)))*J3DIAG(N,K)*TC
GOTO 175

165 IF (DKAY .EQ. 0) GOTO 172
170 DIPOLE=DPFAC*((-1)**(INT(DNPKP)))*J3ODK1(N,K)*TABGOTO 175 E
172 DIPOLE=DPFAC*((·1)**(INT(DNPKP)))*J3ODK2(N,K)*(TA-TB)

175 RETURN
C
C N OFF DIAGONAL BY 2, LONG WITH J BY 1
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180 IF (NJ) 182, 181, 183
C N-2, J-1

181 DPFAC=DIPFAC*((2*J+1)*(2*N+l)*(2*NP+1)*J6ODJl(F1,IN,J)*
1J9ODJN(N,S,J))*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1)

GOTO 184
C N+2, J-1

182 DPFAC=DIPFAC*((2*J+1)*(2*N+1)*(2*NP+1)*J6ODJ1(F1,IN,J)*
1J9OJPN(NP,S,JP))*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+l)

GOTO 184
C N-2, J+1

183 DPFAC=DIPFAC*((2*J+1)*(2*N+l)*(2*NP+1)*J6ODJl(F1,IN,J)*
1J9OJPN(N,S,J))*S*(S+1)*(2*S+1)*IN*(IN+1)*(2*IN+1)

184 IF (K .NE. KP) GOTO 200
DIPOLE=DPFAC*((-1)**(INT(DNPKP)))*J3ODN2(N,K)*TC

195 RETURN
200 DIPOLE=0.000
201 RETURN

END
C .
C FFUNCTION THAT CALCUATES THE PROTON CONTRIBUTION FROM DIPOLE-DIPOL

REAL FUNCTION DIPOLH(N,NP,K,KP,S,J,JP,IN,F1,FlP,IH,F,HC,HA,HB,HAB)
REAL J,JP,N,NP,IN,IH,K,KP,J6DIAG,J9DIAG,J3DIAG,J90DN2
REAL J3ODK1,J3ODK2,J3ODN2,J90DJ1,J9ODJN,J9OJPN,J6ODJ1
REAL J6ODJF,J6OJFP,S
INTEGER POWR,DNPKP,DKAY,DN,DJ,DF1,NJ,JF1

12 FORMAT (29H DIPOLH N K NP KP J JP F1 F1P,8F5.1)
POWR=INT(2*F1+F+JP+S+NP+IN+IH)
DIPFAC=((·1)**(POWR))
DKAY=INT((ABS(K-KP))-2)
DNPKP=INT(NP-KP)
DN=INT(N-NP)
DJ=INT(J-JP) _
DF1=INT(F1-F1P)

C WRITE (6,12)N,K,NP,KP,J,JP,F1,F1P
IF (DN .GT. 0 .AND. DJ .LT. 0) THEN

NJ=1
ELSE IF (DN .LT. 0 .AND. DJ .GT. 0) THEN
NJ=-1l
ELSE
NJ=O

ENDIF
203 IF (DJ .GT. 0 .AND. DF1 .LT. 0) THEN

JF1=1
ELSE IF (DJ .LT. 0 .AND. DF1 .LT. 0) THEN °

JF1=·1
ELSE -
JF1=0

ENDIF—
IF (NJ .NE. 0) GOTO 205
IF (N .LT. NP) THEN
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- PASS=NP ·
NP=N
N=PASS

ENDIF
IF (J .LT. JP) THEN

PASS=JP
JP=J
J=PASS

ENDIF
205 IF (NF1 .NE. O) GOTO 208

IF (N .LT. NP) THEN
PASS=NP
NP=N
N=PASS_

ENDIF
IF (F1 .LT. F1P) THEN

PASS=F1P
F1P=F1
F1=PASS

ENDIF
’

208 IF (F1 .NE. FIP) GOTO 300
IF (J .NE. JP) GOTO 250

IF (N .NE. NP) GOTO 225
209 DPFAC=DIPFAC*(((2*F1+1)**2)*((2*J+l)**2)*S*(S+1)*(2*S+1)*1H*

1(IH+1)*(2*IH+1)*((2*N+1)**2))**.5*J6DIAG(F,REAL(IH),F1)*
2J6DIAG(REAL(IN),J,F1)*J9DIAG(N,S,J)
IF (K .NE. KP) GOTO 210
DIPOLH=DPFAC*J3DIAG(N,K)*((-1)**INT(DNPKP))*HC
GOTO 224

210 IF (DKAY .EQ. 0) GOTO 220
215 DIPOLH=DPFAC*J3ODK1(N,K)*((·1)**INT(DNPKP))*HABGOTO 224 '
220 DIPOLH=DPFAC*J30DK2(N,K)*((-1)**INT(DNPKP))*(HA·HB)
221 FORMAT (9H ALL DIAG,lF20.10)

C 224 WRITE (6,221)DIPOLH
224 GOTO 395

C
C N OFF DIAGONAL BY 2

225 DPFAC=DIPFAC*(((2*F1+1)**2)*((2*J+1)**2)*S*(S+1)*(2*S+1)*1H*
l(IH+1)*(2*IH+1)*(2*N+l)*(2*NP+1))**.5*J6DIAG(F,RBAL(IH),F1)*
2J6DIAG(REAL(IN),J,F1)*J90DN2(N,S,J)
IF (K .NE. KP) GOTO 230

C WRITE (6,229) DNPKP,HC °

229 FORMAT (9H DNPKP,HC,I5,1F5.1)
DIPOLH=DPFAC*J30DN2(N,K)*((-1)**INT(DNPKP))*HC
GOTO 245

230 DIPOLH=0.000
239 FORMAT (7H N BY 2,1F20.10)

C 245 WRITE (6,239) DIPOLH
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265 GOTO 395 '
°

C
C J OFF DIAGONAL BY ONE

250 IF (N .NE. NP) GOTO 275
251 DPFAC=DIPFAC*(((2*F1+1)**2)*(2*J+l)*S*(S+1)*(2*S+1)*

1IH*(IH+1)*(2*IH+1)*(2*N+l)*(2*NP+1))**.5* J6DIAG(F,REAL(IH),F1)*
2J6ODJl(REAL(IN),F1,J)*J90DJ1(N,S,J)
IF (K .NE. KP) GOTO 255
DIPOLH=DPFAC*J3DIAG(N,K)*HC
GOTO 270

255 IF (DKAY .EQ. 0) GOTO 265
260 DIPOLH=DPFAC*J3ODK1(N,K)*HAB

GOTO 270
265 DIPOLH=DPFAC*J30DK2(N,K)*(HA-HB)

° 269 FORMAT (7H J BY 1,1F20.lO)
C 270 WRITE (6,269)DIPOLH

270 GOTO 395
C .

C ELEMENTS OFF DIAGONAL IN J AND N SIMULTANEOUSLY
275 IF(NJ) 277, 276, 278

C IF N-2,J-1; 276 N-2,J+1;277 N+2,J-1; 278
276 DPFAC=DIPFAC*((2*F1+1)*(2*FlP+1)*(2*J+1)*S*(8+1)*

1(2*S+1)*IH*(IH+l)*(2*IH+1)*(2*N+1)*(2*NP+1))**.5*
2J6DIAG(F,REAL(IH),F1)*J60DJ1(REAL(IN),Fl,J)*J90DJN(N,S,J)

GOTO 279
277 DPFAC=DIPFAC*((2*F1P+l)*(2*Fl+1)*(2*J+1)*S*(S+1)*

1(2*S+1)*IH*(IH+1)*(2*IH+1)*(2*N+1)*(2*NP+1))**.5*
2J6DIAG(F,REAL(IH),F1)*J6ODJ1(REAL(IN),F1,J)*J90JPN(N,S,J)

GOTO 279
278 DPFAC=DIPFAC*((2*F1P+l)*(2*F1+1)*(2*J+1)*S*($+1)*

1(2*S+1)*IH*(IH+1)*(2*IH+1)*(2*N+1)*(2*NP+1))**.5*
2J6DIAG(F,REAL(IH),Fl)*J60DJ1(IH,F1,J)*J9OJPN(NP,S,JP)
IF (K .NE. KP) GOTO 280

279 DIPOLH=DPFAC*J3ODN2(N,K)*((·1)**(INT(DNPKP)))*HC
GOTO 295

280 DIPOLH=0.000
289 FORMAT (8H N AND J,1F20.10)

C 295 WRITE (6,289)DIPOLH
295 GOTO 395

C
C ELEMENTS OFF DIAGONAL IN F1

300 IF (J .NE. JP) GOTO 350
IF (N .NE. NP) GOTO 325
DPFAC=DIPFAC*((2*Fl+1)*(2*J+l)*(2*JP+1)*(2*N+1)*(2*NP

1+1)*IH*(IH+1)*(2*IH+1)/(2*F1P+1))**.5*J60DJl(F,REAL(IH),F1)*
2J6ODJ1(REAL(IN),J,F1)*J9DIAG(N,S,J)*S*(S+1)*(2*S+1)
IF (K .NE. KP) GOTO 305
DIPOLH=DPFAC*J3DIAG(N,K)*((·1)**(DNPKP))*HC
GOTO 320

305 IF (DKAY .EQ. 0) GOTO 315
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310 DIPOLH=DPFAC*J3ODK1(N,K)*((·1)**(DNPKP))*HAB
GOTO 320

315 DIPOLH=DPFAC*J30DK2(N,K)*((·1)**(DNPKP))*(HA·HB)
317 FORMAT (8H F1 BY 1,1F20.l0)

C 320 WRITE (6,317)DIPOLH
320 GOTO 395

C
C ELEMENTS OFF DIAGONAL IN N AND F1

3251**.5*J6ODJ1(F,REAL(IH),F1)*J6ODJ1(REAL(IN),J,F1)*
2J90DN2(N,S,J)*DIPFAC

IF (K .NE. KP) GOTO 330
DIPOLH=DPFAC*J3DIAG(N,K)*((-1)**(DNPKP))*HC
GOTO 345

330 IF (DKAY .EQ. 0) GOTO 340
335 DIPOLH=DPFAC*J30DK1(N,K)*((-1)**(DNPKP))*HAB

GOTO 345
340 DIPOLH=DPFAC*J3ODK2(N,K)*((-1)**(DNPKP))*(HA·HB)
341 FORMAT (9H N AND F1,1F20.10)

C 345 WRITE (6,341)DIPOLH
345 GOTO 395

C
C ELEMENTS OFF DIAGONAL IN J AND F1

350 IF (N .NE. NP) GOTO 375
IF (JF1) 351, 352, 353

351 DPFAC=DIPFAC*((2*F1+1)*(2*N+1)*(2*NP+1)*(2*J+1)*
1(2*JP+1))**.5*J6ODJ1(F,REAL(IH),Fl)*J60JFP(REAL(IN),F1,J)*
2J90DJ1(N,S,J)

GOTO 354
352 DPFAC=DIPFAC*((2*F1+1)*(2*N+1)*(2*NP+1)*(2*J+1)*

1(2*JP+1))**.5*J6ODJF(REAL(IN),J,F1)*J9ODJ1(N,S,J)*
2J6ODJ1(F,REAL(IH),Fl)

GOTO 354
353 DPFAC=DIPFAC*((2*F1+1)*(2*N+1)*(2*NP+1)*(2*J+1)*

1(2*JP+1))**.5*J6OJFP(REAL(IN),J,Fl)*J9ODJ1(N,S,J)*
2J6ODJ1(F,REAL(IH),F1)

354 IF (K .NE. KP) GOTO 355
DIPOLH=DPFAC*J3DIAG(N,K)*((-1)**(DNPKP))*HC
GOTO 370

355 IF (DKAY .EQ. 0) GOTO 365
360 DIPOLH=DPFAC*J3ODK1(N,K)*((-1)**(DNPKP))*HAB

GOTO 370
365 DIPOLH=DPFAC*J3ODK2(N,K)*((-1)**(DNPKP))*(HA·HB)

369 FORMAT (9H J AND F1,1F20.10)
C 370 WRITE (6,369)F,FlP JP,NP,KP,F1,J,N,K,DIPOLH

370 GOTO 395
C
C ELEMENTS OFF DIAGONAL IN J,N,AND F1

375 DPFAC=DIPFAC*((2*F1+1)*(2*N+1)*(2*NP+l)*(2*J+1)*
1(2*JP+1))**.5*J6ODJ1(F,REAL(IH),F1)
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1(2*B'^‘( 2*B+1)*( 2*B+2)*2*C'^’( 2'^‘C+1)*( 2*C+2) )**. 5)
J6DIAG=(-1)**(INT(A+B+C))*(J6DAG)
GOTO 20

10
‘ J6DIAG=0.0

C 20 WRITE (6,5) J6DIAG
20 RETURN

END
C

REAL FUNCTION J3DIAG(A,B)
DNOM=((2*A+3)*(2*A+2)*(2*A+1)*2*A*(2*A-1))
IF (DNOM .LE. 0) GOTO 10
J3DIAG=(-1)**(INT(B-A))*2*(3*B*B·A*(A+l))/((DNOM)**.5)
GOTO 20

10 J3DIAG=0.0
15 FORMAT (8H J3DIAG=,1F10.3)

C 20 WRITE (6,15) J3DIAG
20 RETURN

END
C .
C A=J,B=K

REAL FUNCTION J3ODN2(A,B)
REAL J3DN2
IF (A .EQ. 1) GOTO 10
J3DN2=(6*(A+B+2)*(A+B+1)*(A-B+2)*(A-B+1))/

1((2*A+5)*(2*A+4)*(2*A+3)*(2*A+2)*(2*A+1))
C WRITE (6,5) A,B,J3DN2

S FORMAT(14H K AT J30DN2 =,1F9.5)
IF (J3DN2 .LT. 0) GOTO 10
J3ODN2=(—1)**(INT(A·B))*((J3DN2)**.5)
GOTO 20

10 J3ODN2=0.0
C 20 WRITE (6,5) J3ODN2

20 RETURN
END

C
REAL FUNCTION J6ODJ1(A,B,C)

REAL J6DJ1
C WRITE (6,5) A,B,C

5 FORMAT (3F5.1)
IF (B .LT. .1) GOTO 10

J6DJ1=(2*(A+B+C+1)*(B+C-A)*(A+C·B)*(A+B-C+1))/((2*B)*(2*B+1)*
1(2*B+2)*(2*C)*(2*C+1))

C WRITE (6,12) J6DJ1
12 FORMAT (8H J6DJ1 =,1F20.10)

IF (J6DJ1 .LT. 0) GOTO 10
J6ODJ1=((-1)**(INT(A+B+C)))*(J6DJ1**.5)
GOTO 20

10 J6ODJ1=0.0
15 FORMAT (21H THE VALUE OF J6ODJ1=,1F9.5)

C 20 WRITE (6,15) J6ODJ1
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376 IF(JF1) 377, 378, 379
377 IF(NJ) 380, 381, 382
378 IF(NJ) 383, 384, 385
379 IF(NJ) 386, 387, 388

C J+1,J-1,N+1,F1-1; JF1=-1, NJ=-1
380 DPOFAC=0.0000

GOTO 389
C J-1,N—1,J+1,F·1 OR J+1,N+2,J+1,F-1 ; JF1=·1, NJ=0

381 DPOFAC=DPFAC*J6OJFP(REAL(IN),Fl,J)*J90DJN(N,S,J)
GOTO 389

C JF1=-1,NJ=1, N+2,J-1,F1+1
382 DPOFAC=DPFAC*J6OJFP(REAL(IN),J,F1)*J9OJPN(NP,S,JP)

GOTO 389
C JF1=0, NJ=-1, J-1,F1·l,N+2,J-1; J+1,F1+1,N+1,J·1

383 DPOFAC=DPFAC*J6ODJF(REAL(IN),J,F1)*J9OJPN(NP,S,JP)
GOTO 389

C JF1=0, NJ=0
384 DPOFAC=DPFAC*J6ODJF(REAL(IN),J,F1)*J90DJN(N,S,J)

GOTO 389
C JF1=O, NJ=l; J-1,F1-1, N-2,J+1; J+1,Fl+1,N—1,J+1

385 DPOFAC=DPFAC*J6ODJF(REAL(IN),J,F1)*J9OJPN(N,S,J)
GOTO 389

C JF1=1,NJ=—1; J·1,F+1,J-1,N+1
386 DPOFAC=DPFAC*J60JFP(REAL(IN),J,F1)*J9OJPN(NP,S,JP)

GOTO 389
C JF1=1,NJ=O; J-1,F+1,J·1,N-1

387 DPOFAC=DPFAC*J6OJFP(REAL(IN),J,F1)*J9ODJN(N,S,J)
GOTO 389

C JF1=1,NJ=0; J-1,F+1,J+1,N·1
388 DPOFAC=0.000
389 IF (K .NE. KP) GOTO 390

DIPOLH=DPOFAC*J3DIAG(N,K)*((·1)**(INT(DNPKP)))*HC
391 FORMAT (7H F1 N J,1F20.10)

C WRITE (6,391)DIPOLH
GOTO 395

390 DIPOLH=0.000
C WRITE (6,394)DIPOLH

394 FORMAT (9H SKIP ALL,lF20.10)1
395 RETURN

END
C THIS ENDS FUNCTIONS THAT CALCULATE MATRIX ELEMENTS
C
C
C FUNCTIONS DEFINING SPECIFIC 3J,6J AND 9J SYMBOLS °

REAL FUNCTION J6DIAG(A,B,C)
REAL J6DAG

C WRITE (6,4) A,B,C
4 FORMAT(3FS.1)

- 5 FORMAT (23H THE VALUE OF J6DIAG IS,1F20.10)
J6DAG=(2*(B*(B+l)+C*(C+1)-A*(A+1))/



· 136

20 RETURN
‘

END
C
C

REAL FUNCTION J9DIAG(N,S,J)
REAL N,S,J

1)-S*(S+1))+(2/3)*N*(N+l)*(S*(S+1)+J*(J+1)·N*(N+l)))/(40*N*(N+
2l)*(2*N-1)*(2*N+l)*(2*N+3)*S*(S+1)*(2*S+1)*J*(J+1)*(2*J+1))**.5

C WRITE (6,5) J9DIAG
5 FORMAT (BH J9DIAG=,lF10.3)

RETURN
END

' C SUBROUTINE FOR 9J WITH J-1
REAL FUNCTION J9ODJl(N,S,J)
REAL J,N,S
IF (J .EQ. .5) GOTO 10

5 FORMAT (6H N S J,3F5.1)
NMERAT=((N—s+J)*(N+s-J+1)*(s+J~N)#(u+s+5+1))
IF (NMERAT .LT. 0) GOTO 10

DENOM=(30*N*(N+1)*(2*N-l)*(2*N+1)*(2*N+3)*S*(S+1)*
1(2*S+l)*J*(2*J-1)*(2*J+1))

IF (DENOM .LE. O) GOTO 10
GAM=(S*(S+1)+N*(N+l)°J*(J+1))*(Z*N'1)*(Z*N+3)
BTRM=(N**2*(2*N-1)*(N+S+J+2)*(N-S+J+1))
LTRM=((N+1)**2*(2*N+3)*(N+S-J)*(S+J-N+1))

J9ODJ1=(((NMERAT)**.5)/((DENOM)**.5*4*N*(N+1))*(GAM+(
1BTRM·LTRM)/(2*N+1)))

GOTO 20
10 J90DJ1=0.0

C 20 WRITE (6,25)J9ODJ1 ·
C 25 FORMAT (BH J9ODJ1=,1F10.4)
C WRITE (6,5) N,S,J

20 RETURN
END

C SUBROUTINE FOR 9J WITH J+1, N-2
REAL FUNCTION J9OJPN(N,S,J)
RFAL J,N,J9JPN,S
IF (N .LE. 1) GOTO 10

J9JPN=((J+S+N+1)*(S+N·J)*(J-S+N)*(J+S-N+l)*(S+N-J-2
1)*(S+N-J-1)*(J+S—N+2)*(J+S·N+3))/(16*(N-1)*N*(2*N-3)t(2*N-1)*(2*
2N+1)*S*(s+1)*(2*s+1)*(J+1)*(2*J+1)*(2*J+3))

IF (J9JPN .LT. 0) GOTO 10
J9OJPN=-(J9JPN**.5)

”

GOTO 20
10 J9OJPN=0.0
15 FORMAT (BH J9OJPN=,1F10.4)

C 20 WRITE (6,15) J9OJPN
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20 RETURN '

END
C SUBROUTINE FOR 9J WITH N-2

REAL FUNCTION J9ODN2(N,S,J)
REAL J9DN2,N,J

C WRITE (6,5) N,S,J
5 FORMAT(18HVALUE OF N,S,J ARE,3F5.1)

IF ((N .LE. 1) .OR. (J .LT. 1.0)) GOTO 10
J9DN2=<(J+s+N+1)*<S+N-J)*(J+N-s)*(J+s-N+1)*(s+N+J)

1*(J+N-S-1)*(N+S-J-l)*(J+S-N+2))/((16*(N-1)*N*(2*N-3)*(2*N—1)*
2(2*N+1)*S*(S+1)*(2*S+1)*(J)*(2*J+1)*(2*J·1)))

C WRITE(6,7) J9DN2
7 FORMAT (SH J9ODN2=,lFl0.4)

_ IF (J9DN2 .LT. O) GOTO 10
J9ODN2=-(J9DN2**.5)
GOTO 20

10 J9ODN2=0.0
C 20 WRITE (6,7) J9ODN2

V

20 RETURN
END

C SUBROUTINE FOR 9J WITH J-1,N-2
REAL FUNCTION J9ODJN(N,S,J)

REAL N,S,J,J9DJN
IF ((N .LE. 1) .0R. (J .EQ. .5)) GOTO 10
J9DJN=((J+S+N+l)*(S+N-J)*(J+N—S)*(J+S·N+1)*(J+S+N

1-l)*(J+S+N)*(J-S+N-1)*(S-J+N-1)*(J+S-N+2))/(16*(N·1)*N*(2*N•3)*
2(2*N-1)*(2*N+1)*S*(S+1)*(2*S+1)*J*(2*J·1)*(2*J+1))

IF (J9DJN .LT. 0) GOTO 10
J9ODJN=-(J9DJN**(.5))

GOTO 20
10 J9ODJN=0.0
15 FORMAT (SH J9ODJN=,1F10.4)

C 20 WRITE (6,15) J9ODJN
20 RETURN

END
C SUBROUTINE FOR 6J WITH J-1,F-1

REAL FUNCTION J6ODJF(N,J,F)
REAL J6DJF,J,N
IF ((J .LT. .5) .0R. (F .LT. .5)) GOTO 10
J6DJF=(((N+J+F)*(N+J+F+1)*(J+F·N—1)*

l(J+F-N))/((2*J·l)*2*J*(2*J+1)*(2*F-1)*2*F*(2*F+1)))
IF (J6DJF .LT. 0) GOTO 10
J6ODJF=((•1)**(INT(N+J+F)))*(J6DJF**.5)
GOTO 20

5 FORMAT (22H THE VALUE OF J6ODJF =,1F9.5)

10 J60DJF=0.0
A

C 20 WRITE (6,5) J6ODJF
20 RETURN
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END-
C SUBROUTINE FOR 6J WITH J-1,F+l

REAL FUNCTION J6OJFP(N,J,F)
REAL J6JFP,N,J
IF (J .EQ. .5) GOTO 10
J6JFP=((N+J-F-1)*(N+J-F)*(N+F-J+1)*

l(N+F·J+2))/((2*1-’+l)*(2*F+2)*(2*F+3)*(2*J—l)*(2*J)*(2*J+l))
IF (J6JFP .LT. 0) GOTO 10
J6OJFP=((-1)**(INT(N+J+F)))*(J6JFP**.5)
GOTO 20

10 J6OJFP=0.0
15 FORMAT (8H J6OJFP=,1F10.4)

C 20 WRITE (6,15) J6OJFP
20 RETURN

END
C SUBROUTINE FOR 3J WITH K-1

REAL FUNCTION J3ODKl(N,K)
REAL J3DK1,N,K

C WRITE (6,15) J30DKl
IF (N .LT. 0.1) GOTO 10

J3DK1=((6*(N+K+1)*(N-K))/((2*N+3)*(2*
1*N+2)*(2*N+1)*(2*N)*(2*N-1)))

IF (J3DK1 .LT. 0) GOTO 10
J3ODK1=((-1)**(INT(N-K)))*(J3DKl**.5)*(1+2*K)
GOTO 20

10 J3ODK1=0.0
15 FORMAT (8H J3ODK1=,1F10.4)

C 20 WRITE (6,15) J30DK1
20 RETURN

END
C SUBROUTINE FOR 3J WITH K-2

REAL FUNCTION J3ODK2(N,K)
REAL J3DK2,N,K

‘

C WRITE (6,15) J3ODK2
IF (N .LT. 1) GOTO 10
J3DK2=(((N-K-1)*(N-K)*(N+K+1)*(N+K+2))/((2*

lN+3)*(2*N+2)*(2*N+1)*2*N*(2*N-1)))
IF (J3DK2 .LT.O) GOTO 10
J3ODK2=(-1)**(INT(N-K))*(J3DK2**.5)
GOTO 20

10 J3ODK2=0.0
15 FORMAT (8H J30DK2=,1F10.4)

C 20 WRITE (6,15) J3ODK2
20 RETURN

END
END _

FINAL RUN HYPERFINE PROTONATED
2 4 maximum and minimum N
-69.9 -36.1 2.7 0.00 0.00 spin·1·otatiou values
-17.1 -17.2 34.3 0.00 9.50 nitrogen hyperfine
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·1.00 ‘ -4.46 5.46 0.00 -59.0 proton hyperfine
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10 n,k1,k·1,n°,k1°,k-1°,freq
3 *2 2 2 2 1 20044.50 for transitions so that the
3 2 1 2 2 0 20814.9 spectrum can be reproduced
3 1 2 2 1 1 21642.9 instead of only differences
4 1 4 3 1 3 24063.6 being calculated
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 O 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9 g
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9

„ 4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50 ~
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
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3 1
”

3 2 1 2 18189.90
3 O 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10

_ 3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90 _
3 0 3 2

‘0
2 19274.10

3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9

‘

3 1 2 2 1 1 21642.9
_ 4 1 4 3 1 3 24063.6

4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
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3 0 ° 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 O 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90

' 3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 O 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50

_ 3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10 _

3 2 2 2
A2

1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9 '

4 1 4 3 1 3 24063.6
_4 0 4 3 0 3 24992.70

3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
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3 2 6 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 O 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 O 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 O 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70 ·
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
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3 2 ‘ 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 -0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 O 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
3 1 3 2 1 2 18189.90
3 0 3 2 0 2 19274.10
3 2 2 2 2 1 20044.50
3 2 1 2 2 0 20814.9
3 1 2 2 1 1 21642.9
4 1 4 3 1 3 24063.6
4 0 4 3 0 3 24992.70
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Sample Output from Hyperfine

FINAL RUN
2 4
-69.90 -36.10 2.70 0.00 0.00
-15.90 -16.00 34.30 0.00 9.50

8.04 -16.00 13.92 0.00 -59.00
THE FOLLOWING ARE TRANSITIONS OF IH= 0 AND IN= 0

J'(K',K')—N (K ,K ) J' -J FKLQ

3( 0, 3)- 2( 0, 2) 2.5- 1.5 19308.8867O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 19241.3672O
3( 2, 2)- 2( 2, 1) 2.5- 1.5 20075.0156O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 20018.41410
3( 2, 1)- 2( 2, O) 2.5- 1.5 20805.5117O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 20786.0742O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 25001.0469O
4( 0, 4)- 3( 0, 3) 4.5- 3.5 24959.0781O

N'(K°-K')-N( K, K) J'- J F1'- 1-*1 F' - F FREQ

THE FOLLOWING ARE TRANSITIONS OF IH= 1 AND IN= 0

3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 1.5- 0.5 18206.6836O
3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 2.5- 1.5 18207.8359O
3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 3.5- 2.5 18207.6562O
3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 2.5- 1.5 18157.7344O
3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 3.5- 2.5 18157.3164O
3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 4.5- 3.5 18158.12SOO
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 1.5- 0.5 21646.8125O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 2.5- 1.5 21647.5391O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 3.5- 2.5 21647.1211O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 2.5- 1.5 21616.2969O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 3.5- 2.5 21616.46090
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 4.5- 3.5 21616.0977O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 2.5- 1.5 24069.3633O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 3.5- 2.5 24069.9687O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 4.5- 3.5 24069.4l410
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 3.5- 2.5 24030.0078O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 4.5- 3.5 24030.0508O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 5.5- 4.5 24028.7930O
3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 1.5- 0.5 18206.6836O
3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 2.5- 1.5 18207.8359O
3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 3.5- 2.5 18207.6562O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 2.5- 1.5 18157.7344O
3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 3.5- 2.5 18157.3164O
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3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 4.5- 3.5 18158.1250O
THE FOLLOWING ARE TRANSITIONS OF IH= 2 AND IN= O

3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 1.5- 0.5 20077.0469O
3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 2.5- 1.5 20077.7383O
3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 3.5- 2.5 20076.0508O
3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 4.5- 3.5 20075.9492O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 1.5- 0.5 20017.9414O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 2.5- 1.5 20019.7578O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 3.5- 2.5 20018.9102O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 4.5- 3.5 20018.4180O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 5.5- 4.5 20019.5898O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 1.5- 0.5 20807.5469O
3( 2, 1)- 2( 2, O) 2.5- 1.5 2.5- 1.5 2.5- 1.5 20808.5117O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 3.5- 2.5 20806.5937O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 4.5- 3.5 20805.6562O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 1.5- 0.5 20785.0586O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 2.5- 1.5 20787.4180O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 3.5- 2.5 20786.6719O
3( 2, 1)- 2( 2, O) 3.5- 2.5 3.5- 2.5 4.5- 3.5 20786.2187O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 5.5- 4.5 20785.5312O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 3.5- 2.5 1.5- 0.5 24999.6680O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 3.5- 2.5 2.5- 1.5 Z5002.57030
4( 0, 4)- 3( 0, 3) 3.5- 2.5 3.5- 2.5 3.5- 2.5 25001.7187O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 3.5- 2.5 4.5- 3.5 25001.4687O
4( 0, 4)- 3( O, 3) 3.5- 2.5 3.5- 2.5 5.5- 4.5 25000.6133O
4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 2.5- 1.5 24958.4727O
4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 3.5- 2.5 24959.7266O
4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 4.5- 3.5 Z4959.72270
4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 5.5- 4.5 Z4959.50780
4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 6.5- 5.5 Z4957.75000
3( 0, 3)- 2( 0, 2) 2.5- 1.5 2.5- 1.5 1.5- 0.5 19309.6484O

3( 0, 3)- 2( 0, 2) 2.5- 1.5 2.5- 1.5 2.5- 1.5 19311.8555O

3( O, 3)- 2( 0, 2) 2.5- 1.5 2.5- 1.5 3.5- 2.5 19310.4883O

3( 0, 3)- 2( 0, 2) 2.5- 1.5 2.5- 1.5 4.5- 3.5 19309.4766O
3( 0, 3)- 2( O, 2) 3.5- 2.5 3.5- 2.5 1.5- 0.5 19243.3281O

3( 0, 3)- 2( 0, 2) 3.5- 2.5 3.5- 2.5 2.5- 1.5 19242.2969O

3( O, 3)- 2( O, 2) 3.5- 2.5 3.5- 2.5 3.5- 2.5 19242.7344O

3( 0, 3)- 2( 0, 2) 3.5- 2.5 3.5- 2.5 4.5- 3.5 19241.9961O

3( 0, 3)- 2( 0, 2) 3.5- 2.5 3.5- 2.5 5.5- 4.5 19242.4687O

3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 1.5- 0.5 20077.0469O

3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 2.5- 1.5 ZO077.73830
3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 3.5- 2.5 20076.0508O

3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 4.5- 3.5 ZO075.94920
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 1.5- 0.5 20017.9414O

3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 2.5- 1.5 20019.7578O

3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 3.5- 2.5 20018.9102O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 4.5- 3.5 20018.4180O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 5.5- 4.5 20019.5898O

3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 1.5- 0.5 20807.5469O

3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 2.5- 1.5 20808.S1170
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3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 3.5- 2.5 20806.5937O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 4.5- 3.5 20805.6562O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 1.5- 0.5 20785.0586O

3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 2.5- 1.5 20787.4180O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 3.5- 2.5 20786.6719O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 4.5- 3.5 20786.2187O
3( 2, 1)- 2( 2, O) 3.5- 2.5 3.5- 2.5 5.5- 4.5 20785.5312O
THE FOLLOWING ARE TRANSITIONS OF IH= 3 AND IN= 0
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 1.5- 0.5 21651.1172O

3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 2.5- 1.5 21651.0781O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 3.5- 2.5 21650.1367O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 4.5- 3.5 21649.1602O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 5.5- 4.5 21647.1445O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 1.5- 0.5 21616.8984O

‘ 3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 2.5- 1.5 21618.8242O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 3.5- 2.5 21619.6445O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 4.5- 3.5 21617.7695O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 5.5- 4.5 21616.3203O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 6.5- 5.5 21617.7422O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 1.5- 0.5 24072.8164O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 2.5- 1.5 24070.9570O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 3.5- 2.5 24072.2266O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 4.5- 3.5 24071.6250O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 5.5- 4.5 24070.7148O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 6.5- 5.5 24069.6602O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 1.5- 0.5 24030.5039O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 2.5- 1.5 24032.2695O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 3.5- 2.5 24032.7305O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 4.5- 3.5 24030.8437O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 5.5- 4.5 24030.9375O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 6.5- 5.5 24031.22660
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 7.5- 6.5 Z4026.44920
3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 1.5- 0.5 18213.4023O
3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 2.5- 1.5 18211.3711O
3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 3.5- 2.5 18209.9883O
3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 4.5- 3.5 18209.2031O
3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 5.5- 4.5 18208.1641O
3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 1.5- 0.5 18158.6680O
3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 2.5- 1.5 18159.4961O
3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 3.5- 2.5 18160.50780
3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 4.5- 3.5 18159.3242O
3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 5.5- 4.5 18157.2148O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 6.5- 5.5 18160.4922O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 1.5- 0.5 21651.1172O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 2.5- 1.5 21651.0781O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 3.5- 2.5 21650.1367O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 4.5- 3.5 21649.1602O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 5.5- 4.5 21647.1445O

3( 1, Z)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 1.5- 0.5 21616.8984O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 2.5- 1.5 21618.8242O
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3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 3.5- 2.5 21619.6445O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 4.5- 3.5 21617.7695O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 5.5- 4.5 21616.3203O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 6.5- 5.5 21617.7422O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 1.5- 0.5 24072.8164O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 2.5- 1.5 24070.957OO

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 3.5- 2.5 24072.2266O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 4.5- 3.5 24071.6250O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 5.5- 4.5 24070.7148O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 6.5- 5.5 24069.6602O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 1.5- 0.5 Z4030.50390

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 2.5- 1.5 24032.2695O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 3.5- 2.5 24032.7305O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 4.5- 3.5 24030.8437O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 5.5- 4.5 24030.9375O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 6.5- 5.5 24031.22660

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 7.5- 6.5 24026.4492O

THE FOLLOWING ARE TRANSITIONS OF IH= O AND IN= 1
4( 0, 4)- 3( 0, 3) 3.5- 2.5 2.5- 1.5 2.5- 1.5 25031.6250O

4( 0, 4)- 3( 0, 3) 3.5- 2.5 3.5- 2.5 3.5- 2.5 25003.6836O

4( 0, 4)- 3( O, 3) 3.5- 2.5 4.5- 3.5 4.5- 3.5 24915.2422O

4( 0, 4)- 3( 0, 3) 4.5- 3.5 3.5- 2.5 3.5- 2.5 24960.7461O

4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 4.5- 3.5 24963.7266O

4( 0, 4)- 3( 0, 3) 4.5- 3.5 5.5- 4.5 5.5- 4.5 24719.75000

3( 0, 3)- 2( 0, 2) 2.5- 1.5 1.5- 0.5 1.5- 0.5 19313.6797O

3( 0, 3)- 2( 0, 2) 2.5- 1.5 2.5- 1.5 2.5- 1.5 19314.8281O

3( 0, 3)- 2( 0, 2) 2.5- 1.5 3.5- 2.5 3.5- 2.5 19220.0586O

3( 0, 3)- 2( 0, 2) 3.5- 2.5 2.5- 1.5 2.5- 1.5 19241.3672O

3( 0, 3)- 2( 0, 2) 3.5- 2.5 3.5- 2.5 3.5- 2.5 19189.6289O

3( 0, 3)- 2( 0, 2) 3.5- 2.5 4.5- 3.5 4.5- 3.5 19036.8633O

3( 2, 2)- 2( 2, 1) 2.5- 1.5 1.5- 0.5 1.5- 0.5 20086.1914O

3( 2, 2)- 2( 2, 1) 2.5- 1.5 2,5- 1.5 2.5- 1.5 20075.9766O

3( 2, 2)- 2( 2, 1) 2.5- 1.5 3.5- 2.5 3.5- 2.5 Z0007.73050

3( 2, 2)- 2( 2, 1) 3.5- 2.5 2.5- 1.5 2.5- 1.5 20016.6914O

3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 3.5- 2.5 20020.1992O

3( 2, 2)- 2( 2, 1) 3.5- 2.5 4.5- 3.5 4.5- 3.5 19853.2734O

3( 2, 1)- 2( 2, 0) 2.5- 1.5 1.5- 0.5 1.5- 0.5 20840.9531O

3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 2.5- 1.5 20805.5117O

3( 2, 1)- 2( 2, O) 2.5- 1.5 3.5- 2.5 3.5- 2.5 20740.2578O

3( 2, 1)- 2( 2, 0) 3.5- 2.5 2.5- 1.5 2.5- 1.5 20788.0469O

3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 3.5- 2.5 20782.6445O

3( 2, 1)- 2( 2, 0) 3.5- 2.5 4.5- 3.5 4.5- 3.5 20628.6250O

4( 0, 4)- 3( 0, 3) 3.5- 2.5 2.5- 1.5 2.5- 1.5 25031.6250O

4( 0, 4)- 3( 0, 3) 3[5- 2.5 3.5- 2.5 3.5- 2.5 ,25003.68360

4( 0, 4)- 3( 0, 3) 3.5- 2.5 4.5- 3.5 4.5- 3.5 24915.2422O

4( 0, 4)- 3( 0, 3) 4.5- 3.5 3.5- 2.5 3.5- 2.5 24960.7461O

4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 4.5- 3.5 24963.7266O

4(_0, 4)- 3( O, 3) 4.5- 3.5 5.5- 4.5 5.5- 4.5 24719.75000

THE FOLLOWING ARE TRANSITIONS OF IH= 1 AND IN= 1 =
3( 1, 2)- 2( 1, 1) 2.5- 1.5 1.5- 0.5 1.5- 0.5 21652.8516O
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3( 1, 2)- 2( 1, 1) 2.5- 1.5 -1.5- 0.5 2.5- 1.5 21648.3789O

3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 1.5- 0.5 21643.87890
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 2.5- 1.5 21646.8125O

3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 3.5- 2.5 21647.5156O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 3.5- 2.5 2.5- 1.5 21646.8437O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 3.5- 2.5 3.5- 2.5 21646.81250
3( 1, 2)- 2( 1, 1) 2.5- 1.5 3.5- 2.5 4.5- 3.5 21678.2852O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 2.5- 1.5 1.5- 0.5 21609.4414O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 2.5- 1.5 2.5- 1.5 21616.25000

3( 1, 2)- 2( 1, 1) 3.5- 2.5 2.5- 1.5 3.5- 2.5 21616.4766O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 2.5- 1.5 21616.4570O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 3.5- 2.5 21616.25000

3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 4.5- 3.5 21616.3672O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 4.5- 3.5 3.5- 2.5 21616.25000

’ 3( 1, 2)- 2( 1, 1) 3.5- 2.5 4.5- 3.5 4.5- 3.5 21616.25000
3( 1, 2)- 2( 1, 1) 3.5- 2.5 4.5- 3.5 5.5- 4.5 21439.6719O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 1.5- 0.5 24071.2695O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 2.5- 1.5 24069.7344O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 3.5- 2.5 24069.93750

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 2.5- 1.5 Z4070.57030

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 3.5- 2.5 24069.7344O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 4.5- 3.5 Z4069.74220

4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 3.5- 2.5 24069.75000

4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 4.5- 3.5 24069.7344O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 5.5- 4.5 23991.3945O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 2.5- 1.5 24082.3516O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 3.5- 2.5 Z4029.98050

4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 4.5- 3.5 24030.0859O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 3.5- 2.5 Z4030.03520

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 4.5- 3.5 24029.9805O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 5.5- 4.5 24030.26560

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 4.5- 3.5 24029.9805O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 5.5- 4.5 Z4029.98050

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 6.5- 5.5 23812.4102O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 1.5- 0.5 1.5- 0.5 18214.6172O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 1.5- 0.5 2.5- 1.5 18209.10550

3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 1.5- 0.5 18204.6875O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 2.5- 1.5 18207.11330

3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 3.5- 2.5 18207.9453O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 3.5- 2.5 2.5- 1.5 18207.1172O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 3.5- 2.5 3.5- 2.5 18207.1133O
3( 1, 3)- 2( 1, 2) 2.5- 1.5 3.5- 2.5 4.5- 3.5 18238.730SO

3( 1, 3)- 2( 1, 2) 3.5- 2.5 2.5- 1.5 1.5- 0.5 18151.3789O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 2.5- 1.5 2.5- 1.5 18157.16410

3( 1, 3)- 2( 1, 2) 3.5- 2.5 2.5- 1.5 3.5- 2.5 18157.4062O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 2.5- 1.5 18157.3555O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 3.5- 2.5 18157.1641O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 4.5- 3.5 18157.14450

3( 1, 3)- 2( 1, 2) 3.5- 2.5 4.5- 3.5 3.5- 2.5 18157.1641O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 4.5- 3.5 4.5- 3.5 18157.1641O
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3( 1, 3)- 2( 1, 2) 3.5- 2.5 4.5- 3.5 5.5- 4.5 17980.5547O
THE FOLLOWING ARE TRANSITIONS OF IH= 2 AND IN= 1
3( 2, 1)- 2( 2, 0) 2.5- 1.5 1.5- 0.5 1.5- 0.5 20805.7852O
3( 2, 1)- 2( 2, O) 2.5- 1.5 1.5- 0.5 2.5- 1.5 20806.8633O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 1.5- 0.5 3.5- 2.5 20806.9766O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 1.5- 0.5 20805.5117O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 2.5- 1.5 20805.8359O

3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 3.5- 2.5 20805.9219O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 4.5- 3.5 20806.5547O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 3.5- 2.5 1.5- 0.5 20805.6133O
3( 2, 1)- 2( 2, O) 2.5- 1.5 3.5- 2.5 2.5- 1.5 20805.5117O

3( 2, 1)- 2( 2, O) 2.5- 1.5 3.5- 2.5 3.5- 2.5 20805.5117O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 3.5- 2.5 4.5- 3.5 20805.5352O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 3.5- 2.5 5.5- 4.5 20805.0078O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 2.5- 1.5 1.5- 0.5 20786.0742O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 2.5- 1.5 2.5- 1.5 20786.1250O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 2.5- 1.5 3.5- 2.5 20786.2109O

3( 2, 1)- 2( 2, 0) 3.5- 2.5 2.5- 1.5 4.5- 3.5 20786.8945O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 1.5- 0.5 20786.8750O
3( 2, 1)- 2( 2, O) 3.5- 2.5 3.5- 2.5 2.5- 1.5 20786.0742O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 3.5- 2.5 20786.0742O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 4.5- 3.5 20786.0859O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 5.5- 4.5 20785.9453O

3( 2, 1)- 2( 2, 0) 3.5- 2.5 4.5- 3.5 2.5- 1.5 20786.2383O
3( 2, 1)- 2( 2, O) 3.5- 2.5 4.5- 3.5 3.5- 2.5 20786.0742O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 4.5- 3.5 4.5- 3.5 20786.0742O
3( 2, 1)- 2( 2, O) 3.5- 2.5 4.5- 3.5 5.5- 4.5 20786.0508O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 4.5- 3.5 6.5- 5.5 20674.3437O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 2.5- 1.5 1.5- 0.5 25001.0469O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 2.5- 1.5 2.5- 1.5 25001.0703O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 2.5- 1.5 3.5- 2.5 25001.1641O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 2.5- 1.5 4.5- 3.5 25001.5469O
4( 0, 4)- 3( O, 3) 3.5- 2.5 3.5- 2.5 1.5- 0.5 25002.2617O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 3.5- 2.5 2.5- 1.5 25001.0469O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 3.5- 2.5 3.5- 2.5 25001.0469O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 3.5- 2.5 4.5- 3.5 25001.0508O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 3.5- 2.5 5.5- 4.5 25001.1367O
4( O, 4)- 3( 0, 3) 3.5- 2.5 4.5- 3.5 2.5- 1.5 25001.5508O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 4.5- 3.5 3.5- 2.5 25001.0469O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 4.5- 3.5 4.5- 3.5 25001.0469O
4( 0, 4)- 3( 0, 3) 3.5- 2.5 4.5- 3.5 5.5- 4.5 25001.0508O
4( O, 4)- 3( 0, 3) 3.5- 2.5 4.5- 3.5 6.5- 5.5 2S009.60160

4( O, 4)- 3( 0, 3) 4.5- 3.5 3.5- 2.5 1.5- 0.5 24972.5391O
4( 0, 4)- 3( O, 3) 4.5- 3.5 3.5- 2.5 2.5- 1.5 24959.078lO
4( 0, 4)- 3( 0, 3) 4.5- 3.5 3.5- 2.5 3.5- 2.5 24959.0781O
4( 0, 4)- 3( 0, 3) 4.5- 3.5 3.5- 2.5 4.5- 3.5 24959.1211O
4( 0, 4)- 3( 0, 3) 4.5- 3.5 3.5- 2.5 5.5- 4.5 _ 24959.2109O
4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 2.5- 1.5 24959.9883O
4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 3.5- 2.5 24959.0781O
4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 4.5- 3.5 24959.0781O
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4( 0, 4)- 3( O, 3) 4.5- 3.5 4.5- 3.5 5.5- 4.5 24959.105SO
4( 0, 4)- 3( 0, 3) 4.5- 3.5 4.5- 3.5 6.5- 5.5 Z4959.54690
4( 0, 4)- 3( 0, 3) 4.5- 3.5 5.5- 4.5 3.5- 2.5 24959.2187O
4( 0, 4)- 3( O, 3) 4.5- 3.5 5.5- 4.5 4.5- 3.5 24959.0781O
4( 0, 4)- 3( 0, 3) 4.5- 3.5 5.5- 4.5 5.5- 4.5 24959.0781O
4( O, 4)- 3( 0, 3) 4.5- 3.5 5.5- 4.5 6.5- 5.5 24959.1719O
4( O, 4)- 3( 0, 3) 4.5- 3.5 5.5- 4.5 7.5- 6.5 24721.1367O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 1.5- 0.5 1.5- 0.5 19311.4961O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 1.5- 0.5 2.5- 1.5 19312.2734O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 1.5- 0.5 3.5- 2.5 19312.5781O
3( O, 3)- 2( 0, 2) 2.5- 1.5 2.5- 1.5 1.5- 0.5 19308.8867O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 2.5- 1.5 2.5- 1.5 19309.3789O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 2.5- 1.5 3.5- 2.5 19309.6406O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 2.5- 1.5 4.5- 3.5 19310.1836O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 3.5- 2.5 1.5- 0.5 19308.9141O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 3.5- 2.5 2.5- 1.5 19308.8867O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 3.5- 2.5 3.5- 2.5 19308.8867O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 3.5- 2.5 4.5- 3.5 19309.0195O
3( 0, 3)- 2( 0, 2) 2.5- 1.5 3.5- 2.5 5.5- 4.5 19242.4844O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 2.5- 1.5 1.5- 0.5 19241.3672O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 2.5- 1.5 2.5- 1.5 19241.6914O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 2.5- 1.5 3.5- 2.5 19241.7305O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 2.5- 1.5 4.5- 3.5 19242.4727O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 3.5- 2.5 1.5- 0.5 19241.8516O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 3.5- 2.5 2.5- 1.5 19241.3672O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 3.5- 2.5 3.5- 2.5 19241.3672O
3( O, 3)- 2( 0, 2) 3.5- 2.5 3.5- 2.5 4.5- 3.5 19241.4141O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 3.5- 2.5 5.5- 4.5 19241.5547O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 4.5- 3.5 2.5- 1.5 19241.4766O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 4.5- 3.5 3.5- 2.5 19241.3672O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 4.5- 3.5 4.5- 3.5 19241.3672O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 4.5- 3.5 5.5- 4.5 19241.3477O
3( 0, 3)- 2( 0, 2) 3.5- 2.5 4.5- 3.5 6.5- 5.5 19035.4375O
3( 2, 2)- 2( 2, 1) 2.5- 1.5 1.5- 0.5 1.5- 0.5 20076.48050
3( 2, 2)- 2( 2, 1) 2.5- 1.5 1.5- 0.5 2.5- 1.5 20076.50780
3( 2, 2)- 2( 2, 1) 2.5- 1.5 1.5- 0.5 3.5- 2.5 20076.6250O
3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 1.5- 0.5 20075.01560
3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 2.5- 1.5 Z0075.43750
3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 3.5- 2.5 20075.4336O
3( 2, 2)- 2( 2, 1) 2.5- 1.5 2.5- 1.5 4.5- 3.5 20076.1914O
3( 2, 2)- 2( 2, 1) 2.5- 1.5 3.5- 2.5 1.5- 0.5 20075.0820O
3( 2, 2)- 2( 2, 1) 2.5- 1.5 3.5- 2.5 2.5- 1.5 20075.0156O

3( 2, 2)- 2( 2, 1) 2.5- 1.5 3.5- 2.5 3.5- 2.5 20075.01560

3( 2, 2)- 2( 2, 1) 2.5- 1.5 3.5- 2.5 4.5- 3.5 Z0075.03520
3( 2, 2)- 2( 2, 1) 2.5- 1.5 3.5- 2.5 5.5- 4.5 20074.3242O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 2.5- 1.5 1.5- 0.5 20018.4141O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 2.5- 1.5 2.5- 1.5 20018.5078O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 2.5- 1.5 3.5- 2.5 20018.5508O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 2.5- 1.5 4.5- 3.5 20019.2266O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 1.5- 0.5 20019.1641O
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3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 2.5- 1.5 20018.4141O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 3.5- 2.5 20018.4141O
3( 2. 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 4.5- 3.5 20018.4414O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 3.5- 2.5 5.5- 4.5 20018.3008O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 4.5- 3.5 2.5- 1.5 20018.5625O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 4.5- 3.5 3.5- 2.5 20018.4141O

3( 2, 2)- 2( 2, 1) 3.5- 2.5 4.5- 3.5 4.5- 3.5 20018.4141O

3( 2, 2)- 2( 2, 1) 3.5- 2.5 4.5- 3.5 5.5- 4.5 20018.3867O
3( 2, 2)- 2( 2, 1) 3.5- 2.5 4.5- 3.5 6.5- 5.5 19907.1016O
3( 2, 1)- 2( 2, O) 2.5- 1.5 1.5- 0.5 1.5- 0.5 20805.7852O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 1.5- 0.5 2.5- 1.5 20806.8633O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 1.5- 0.5 3.5- 2.5 20806.9766O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 1.5- 0.5 20805.5117O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 2.5- 1.5 20805.8359O

‘ 3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 3.5- 2.5 20805.9219O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 2.5- 1.5 4.5- 3.5 20806.5547O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 3.5- 2.5 1.5- 0.5 20805.6133O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 3.5- 2.5 2.5- 1.5 20805.5117O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 3.5- 2.5 3.5- 2.5 20805.5117O

3( 2, 1)- 2( 2, 0) 2.5- 1.5 3.5- 2.5 4.5- 3.5 20805.5352O
3( 2, 1)- 2( 2, 0) 2.5- 1.5 3.5- 2.5 5.5- 4.5 20805.0078O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 2.5- 1.5 1.5- 0.5 20786.0742O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 2.5- 1.5 2.5- 1.5 20786.125OO
3( 2, 1)- 2( 2, 0) 3.5- 2.5 2.5- 1.5 3.5- 2.5 20786.2109O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 2.5- 1.5 4.5- 3.5 20786.8945O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 1.5- 0.5 20786.8750O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 2.5- 1.5 20786.0742O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 3.5- 2.5 20786.07420
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 4.5- 3.5 20786.0859O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 3.5- 2.5 5.5- 4.5 20785.9453O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 4.5- 3.5 2.5- 1.5 20786.2383O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 4.5- 3.5 3.5- 2.5 20786.0742O

3( 2, 1)- 2( 2, 0) 3.5- 2.5 4.5- 3.5 4.5- 3.5 20786.0742O
3( 2, 1)- Z( 2, O) 3.5- 2.5 4.5- 3.5 5.5- 4.5 20786.0508O
3( 2, 1)- 2( 2, 0) 3.5- 2.5 4.5- 3.5 6.5- 5.5 20674.3437O

THE FOLLOWING ARE TRANSITIONS OF IH= 3 AND IN= 1
4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 1.5- 0.5 24069.7344O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 2.5- 1.5 24069.8203O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 3.5- 2.5 24070.1445O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 4.5- 3.5 24070.1250O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 5.5- 4.5 24070.4648O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 1.5- 0.5 24069.7344O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 2.5- 1.5 24069.7344O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 3.5- 2.5 Z4069.77340

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 4.5- 3.5 24069.9570O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 5.5- 4.5 24070.1523O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 6.5- 5.5 24069.7656O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 1.5- 0.5 24070.0820O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 2.5- 1.5 24069.7344O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 3.5- 2.5 24069.7344O
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4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 4.5- 3.5 24069.7344O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 5.5- 4.5 24069.8047O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 6.5- 5.5 24069.6914O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 7.5- 6.5 23991.5820O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 1.5- 0.5 24029.9805O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 2.5- 1.5 24029.9805O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 3.5- 2.5 24029.9805O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 4.5- 3.5 24030.1328O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 5.5- 4.5 24030.3477O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 6.5- 5.5 24030.42970

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 1.5- 0.5 24031.37500

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 2.5- 1.5 24029.9805O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 3.5- 2.5 24029.9805O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 4.5- 3.5 24029.9805O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 5.5- 4.5 24030.03520
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 6.5- 5.5 24029.8906O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 7.5- 6.5 24030.5898O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 2.5- 1.5 24030.5937O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 3.5- 2.5 24029.9805O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 4.5- 3.5 24029.9805O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 5.5- 4.5 24029.9805O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 6.5- 5.5 24029.9844O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 7.5- 6.5 Z4030.32030

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 8.5- 7.5 23810.8242O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 1.5- 0.5 1.5- 0.5 18208.1250O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 1.5- 0.5 2.5- 1.5 18209.9922O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 1.5- 0.5 3.5- 2.5 18210.9375O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 1.5- 0.5 4.5- 3.5 18210.6641O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 1.5- 0.5 18207.3398O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 2.5- 1.5 18207.8672O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 3.5- 2.5 18208.4102O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 4.5- 3.5 18208.2812O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 2.5- 1.5 5.5- 4.5 18208.9414O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 3.5- 2.5 1.5- 0.5 18207.1133O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 3.5- 2.5 2.5- 1.5 18207.1133O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 3.5- 2.5 3.5- 2.5 18207.2227O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 3.5- 2.5 4.5- 3.5 18207.4102O

3( 1, 3)- 2( 1, 2) 2.5- 1.5 3.5- 2.5 5.5- 4.5 18207.7187O
V3(

1, 3)- 2( 1, 2) 2.5- 1.5 3.5- 2.5 6.5- 5.5 18239.3125O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 2.5- 1.5 1.5- 0.5 18157.1641O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 2.5- 1.5 2.5- 1.5 18157.5898O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 2.5- 1.5 3.5- 2.5 18157.7305O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 2.5- 1.5 4.5- 3.5 18157.8594O

3( 1, 3)- 2( 1, 2) 3:5- 2.5 2.5- 1.5 5.5- 4.5 I8158.23830

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 1.5- 0.5 18157.164lO

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 2.5- 1.5 18157.164lO

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 3.5- 2.5 18157.2344O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 4.5- 3.5 18157.4258O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 5.5- 4.5 18157.6094O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 3.5- 2.5 6.5- 5.5 18157.3125O
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3( 1, 3)- 2( 1, 2) 3.5- 2.5 4.5- 3.5 1.5- 0.5 18157.2227O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 4.5- 3.5 2.5- 1.5 18157.1641O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 4.5- 3.5 3.5- 2.5 18157.1641O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 4.5- 3.5 4.5- 3.5 18157.1758O
3( 1, 3)- 2( 1, 2) 3.5- 2.5 4.5- 3.5 5.5- 4.5 18157.2461O

3( 1, 3)- 2( 1, 2) 3.5- 2.5 4.5- 3.5 6.5- 5.5 18157.1523O
3( 1, 3)- 2( 1, 2) 3.5- 2.5 4.5- 3.5 7.5- 6.5 17982.5156O

3( 1, 2)- 2( 1, 1) 2.5- 1.5 1.5- 0.5 1.5- 0.5 21647.7109O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 1.5- 0.5 2.5- 1.5 21649.3242O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 1.5- 0.5 3.5- 2.5 21649.0742O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 1.5- 0.5 4.5- 3.5 21649.0273O

3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 1.5- 0.5 21647.0391O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 2.5- 1.5 21647.4727O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 3.5- 2.5 21648.0742O

· 3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 4.5- 3.5 21647.5898O

3( 1, 2)- 2( 1, 1) 2.5- 1.5 2.5- 1.5 5.5- 4.5 21648.3633O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 3.5- 2.5 1.5- 0.5 21646.8125O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 3.5- 2.5 2.5- 1.5 21646.8125O

3( 1, 2)- 2( 1, 1) 2.5- 1.5 3.5- 2.5 3.5- 2.5 21646.918OO
3( 1, 2)- 2( 1, 1) 2.5- 1.5 3.5- 2.5 4.5- 3.5 21647.10940

3( 1, 2)- 2( 1, 1) 2.5- 1.5 3.5- 2.5 5.5- 4.5 21647.3516O
3( 1, 2)- 2( 1, 1) 2.5- 1.5 3.5- 2.5 6.5- 5.5 21678.7773O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 2.5- 1.5 1.5- 0.5 21616.25000
3( 1, 2)- 2( 1, 1) 3.5- 2.5 2.5- 1.5 2.5- 1.5 21616.6406O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 2.5- 1.5 3.5- 2.5 21616.8008O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 2.5- 1.5 4.5- 3.5 21616.8750O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 2.5- 1.5 5.5- 4.5 21617.25000

3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 1.5- 0.5 21616.25000

3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 2.5- 1.5 21616.25000

3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 3.5- 2.5 21616.3086O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 4.5- 3.5 21616.5117O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 5.5- 4.5 21616.7148O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 3.5- 2.5 6.5- 5.5 21616.3477O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 4.5- 3.5 1.5- 0.5 21616.3125O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 4.5- 3.5 2.5- 1.5 21616.25000

3( 1, 2)- 2( 1, 1) 3.5- 2.5 4.5- 3.5 3.5- 2.5 21616.25000

3( 1, 2)- 2( 1, 1) 3.5- 2.5 4.5- 3.5 4.5- 3.5 21616.2539O
3( 1, 2)- 2( 1, 1) 3.5- 2.5 4.5- 3.5 5.5- 4.5 21616.3398O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 4.5- 3.5 6.5- 5.5 21616.2305O

3( 1, 2)- 2( 1, 1) 3.5- 2.5 4.5- 3.5 7.5- 6.5 21441.5391O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 1.5- 0.5 24069.7344O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 2.5- 1.5 24069.8203O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 3.5- 2.5 24070.1445O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 4.5- 3.5 24070.1250O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 2.5- 1.5 5.5- 4.5 24070.4648O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 1.5- 0.5 24069.7344O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 2.5- 1.5 24069.7344O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 3.5- 2.5 24069.77340

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 4.5- 3.5 24069.9570O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 5.5- 4.5 24070.1523O
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4( 1, 4)- 3( 1, 3) 3.5- 2.5 3.5- 2.5 6.5- 5.5 24069.7656O
a( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 1.5- 0.5 24070.0820O

4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 2.5- 1.5 24069.7344O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 3.5- 2.5 24069.7344O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 4.5- 3.5 24069.7344O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 5.5- 4.5 24069.8047O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 6.5- 5.5 24069.6914O
4( 1, 4)- 3( 1, 3) 3.5- 2.5 4.5- 3.5 7.5- 6.5 23991.5820O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 1.5- 0.5 24029.9805O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 2.5- 1.5 24029.98OSO
4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 3.5- 2.5 24029.9805O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 4.5- 3.5 24030.1328O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 5.5- 4.5 24030.3477O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 3.5- 2.5 6.5- 5.5 24030.4297O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 1.5- 0.5 24031.375OO
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 2.5- 1.5 24029.9805O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 3.5- 2.5 24029.9805O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 4.5- 3.5 24029.9805O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 5.5- 4.5 24030.0352O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 6.5- 5.5 24029.8906O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 4.5- 3.5 7.5- 6.5 24030.5898O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 2.5- 1.5 Z4030.59370
4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 3.5- 2.5 24029.9805O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 4.5- 3.5 24029.9805O

4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 5.5- 4.5 Z4029.98050
4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 6.5- 5.5 24029.9844O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 7.5- 6.5 24030.3203O
4( 1, 4)- 3( 1, 3) 4.5- 3.5 5.5- 4.5 8.5- 7.5 23810.8242O
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