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(ABSTRACT) 

This dissertation presents a new algorithm for optimal power flow in 

distribution systems. The new algorithm, Discrete Ascent Optimal 

Programming (DAOP), will converge to the same solution as the Lagrange 

multiplier approach as demonstrated by example. An intuitive discussion 

illustrating the path of convergence is presented along with a theorem 

concerning convergence. Because no partial derivatives, solutions of 

simultaneous equations, or matrix operations are required, the DAOP 

algorithm is simple to apply and program. DAOP is especially suited for 

programming with pointers. Advantages of the new algorithm include its 

simplicity, ease of incorporating inequality constraints, and the ability to 

predict the number of steps required to reach a solution. 

In addition to optimal power flow, the algorithm, heuristic in nature, can be 

applied to switch placement design, reconfiguration, and economic dispatch. 

The basic principles of the algorithm have been used to devise a phase 

balancing routine which has been implemented in the Distribution



Engineering Workstation (DEWorkstation) software package sponsored by 

the Electric Power Research Institute (EPRI). 

The new algorithm presented in this dissertation works toward a solution by 

performing a series of calculations within a finite number of steps. At the 

start of the algorithm, the assumption is made that no power is flowing in the 

system. Each step adds a discrete unit of load to the system in such a fashion 

as to minimize loss. As progress toward the solution is made, more and more 

load is satisfied and the losses in the system continue to increase. The 

algorithm is terminated when all system load is satisfied. When the 

algorithm is finished, the sources which should supply each load have been 

identified along with the amount of power delivered by each source. 

Discussion will show that the method will converge to a solution that is 

within the discrete step size of the optimum. 

The algorithm can be thought of as an ascent method because the cost 

(losses) continually increases as more and more load is satisfied. Hence, the 

name Discrete Ascent Optimal Programming (DAOP) has been given to the 

algorithm. 

The new algorithm uses the topology of the power system such that the entire 

system is not considered at each step. Therefore, DAOP is not an exhaustive 

state enumeration scheme. Only those portions of the system containing 

loads most closely connected (via least loss paths) to the sources are first 

considered. As loads become supplied during the course of the solution, other 

loads are considered and supplied until the system is fully loaded.
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Chapter One 

Introduction 
  

1.1 Introduction 

This dissertation outlines the research efforts and software implementation 

of a newly developed optimal power flow algorithm for electrical distribution 

power systems. In addition to optimal power flow, the algorithm, heuristic in 

nature, can be applied to switch placement design, reconfiguration, and 

economic dispatch. The basic principles of the algorithm have been used to 

devise a phase balancing routine which has been implemented in the 

Distribution Engineering Workstation (DEWorkstation) software package 

sponsored by the Electric Power Research Institute (EPRI. 

The objective of the optimal power flow problem is to improve power system 

efficiency by satisfying a set of loads at minimum generation costs and 

transmission losses while satisfying all constraints. The optimum system 

state is achieved when all loads are supplied with power at minimum line 

loss and generation costs. A new algorithm, Discrete Ascent Optimal 

Programming (DAOP), addresses this issue by determining, for each load, 

which substation bus or buses should supply power to that load. 

1.2. The DAOP Algorithm 

The new algorithm presented in this dissertation works toward a solution by 

performing a series of calculations within a finite number of steps. At the 

start of the algorithm, the assumption is made that no power is flowing in the 

system. Each step adds a discrete unit of load to the system in such a fashion 
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as to minimize loss. With each step, the algorithm seeks to answer the 

question: 

Which combination of source and load will 

result in the next increment of load being 
supplied at minimum line loss? 

As progress toward the solution is made, more and more load is satisfied and 

the losses in the system continue to increase. The algorithm is terminated 

when all system load is satisfied. When the algorithm is finished, the 

sources which should supply each load have been identified along with the 

amount of power delivered by each source. 

The algorithm can be thought of as an ascent method because the cost 

(losses) continually increases as more and more load is satisfied. Hence, the 

name Discrete Ascent Optimal Programming (DAOP) has been given to the 

algorithm. | 

Loads are modeled as either constant current or constant power. Thus, the 

discrete steps are either current or power. For constant power loads, 

constant power increments are used, and for constant current loads, constant 

current increments are used. For constant power loads, power flow solutions 

need to be run for each load increment to be evaluated. If the loads are 

treated as constant current, the calculations are greatly simplified, and are 

even amenable to spreadsheet solutions. 

The new algorithm uses the topology of the power system such that the entire 

system is not considered at each step. Only those portions of the system 

containing loads most closely connected (via least loss paths) to the sources 

are first considered. As loads become supplied during the course of the 
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solution, other loads are considered and supplied until the system is fully 

loaded. Therefore, the new algorithm is not an exhaustive state enumeration 

scheme. 

Unlike iterative methods such as Gauss-Seidel and Newton-Raphson, DAOP 

will converge on the optimum without the threat of divergence, with a known 

degree of accuracy in the solution, and in a finite and determinable number 

of computational steps. Given the discrete step size and the total system 

load, the number of steps to reach the solution can be approximated by 

dividing the total load by the step size. Discussion will show that the method 

will converge to a solution that is within the discrete step size of the 

optimum. 

DAOP has some similarities to dynamic programming. A fundamental 

principle of dynamic programming is optimal sub-paths. A sub-path is 

optimal if and only if it lies along the optimal path which extends from the 

initial system state to the final system state. The DAOP algorithm 

progresses through a series of near optimum points until the final system 

state is reached. That is, at each step line losses are minimized for the loads 

considered for that step. The qualifier near is used because the path of 

convergence lies close to the optimum (within the step size) for each step. 

1.3 Dissertation Outline 

The remaining chapters of this thesis are organized as follows. Chapter Two 

provides the results of a literature search on the various topics addressed in 

this dissertation. Chapter Three describes the proposed algorithm and gives 

a graphical interpretation of the path to convergence. This chapter outlines 

the computational mechanics, two rules which are observed, and the 
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sequence of steps for the algorithm. An intuitive discussion followed by a 

theorem of convergence is presented in Chapter Four. Chapter Five 

describes how to adapt DAOP to perform switch placement design. The 

phase balancing variation of the algorithm is defined in Chapter Six along 

with the DEWorkstation implementation. Chapter Seven describes how to 

tailor DAOP to the economic dispatch problem in transmission systems. 

Finally, Chapter Eight gives conclusions concerning the algorithm's 

performance, lists the contributions of this research effort, and outlines 

possible future work. 
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Chapter Two 

Literature Review 
  

2.1 Introduction 

This chapter contains the results of a literature search conducted in the area 

of optimization in electrical power systems. The application of the various 

algorithm types have been applied to optimal power flow, reconfiguration, 

restoration, and economic dispatch. 

Brief descriptions and comparisons between past research efforts and the 

new algorithm described in this dissertation is presented. The new 

algorithm has been named Discrete Ascent Optimal Programming (DAOP) 

and will be described fully in the coming chapters. 

2.2. Optimal Power Flow 

The majority of feeders at the distribution voltage level are operated radially. 

Radial feeders, and their loads, receive power from only one point (direction) 

at any moment in time. However, it is possible to transfer load from one 

feeder to another by opening and closing switches while keeping the system 

radial. In so doing, system losses are reduced and load balancing among the 

feeders can be achieved. 

In most cases, Newton based power flow programs developed for 

transmission networks can solve radially operated systems. However, their 

computational burden with relatively long solution times can be overcome by 

radial specific power flow algorithms. Because the radial power flow 
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algorithms can solve many different configurations in a very short period of 

time, they can be used in automated distribution power operations. 

One of the first published papers addressing the optimal power flow (OPF) 

problem is [2.1]. In this paper, the authors apply a gradient method to 

optimally adjust the control of parameters of a Newton based power flow 

algorithm. 

Another popular OPF technique is the use of quadratic programming. These 

efforts are iterative in nature and minimize a quadratic approximation of the 

classical Lagrangian equation [2.2] [2.3]. Reference [2.4] combines the 

Newton approach with a quadratic approximation. The DAOP algorithm is 

similar to the work in [2.2] in that the OPF problem is divided into the real 

and reactive sub-problems. 

Further developments in the OPF problem incorporate linear programming 

[2.5]. Very much like linear programming, the DAOP algorithm reaches a 

solution in a piecewise-linear segmentation process when solving the 

Lagrange objective (cost) function. 

A different approach to the OPF problem [2.6] simplifies the constraint 

equations by eliminating the voltage angle at each bus and uses a variation 

of the ladder theory power flow solution [2.7]. 

The reference papers [2.8] and [2.9] examine deficiencies in existing OPF 

techniques. From [2.8] three concerns are: 

1). The equivalents now used for OPF problems can cause 
large errors in OPF solutions, 
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2). The methods for handling discrete variables in OPF 
algorithms produce solutions that have _ significantly 

higher costs than optimal solutions, 

3). The number of control actions used in solving OPF 

problems is often too large to be executed on an actual 

system. 

The DAOP algorithm address each of these points as follows. Using DAOP, 

the Lagrange objective function is not approximated. During the DAOP 

solution process, a series of sub-objective functions are processed, none of 

which are approximations. Although DAOP uses a discrete approach, the 

final solution has been proven to be within the discrete step size. Therefore, 

the smaller the step size, the greater the accuracy in the final solution. 

DAOP provides elegant solutions when encountering linear and non-linear 

constraints. Finally, as addressed in [2.9], the final DAOP solution is not 

dependent on a feasible starting solution. In fact, the starting point of the 

algorithm is the same for all systems: completely unloaded. 

The intent of the early OPF research was to reduce system losses. Later 

efforts apply basic OPF theory to energy management systems, namely 

reactive power flow control. The reactive OPF problem is strongly linked to 

voltage control because the power factor, which is a function of the voltage 

angle, determines the amount of reactive power flow. Reference [2.10] 

applies the Newton method to the reactive OPF while [2.11] and [2.12] use 

linear programming. Reference [2.13] is a real time implementation of the 

reactive OPF problem. 

2.38 Reconfiguration 

A popular topic of optimization in electrical distribution systems is 

reconfiguration. Reconfiguration is the process of altering the topological 
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structures of distribution feeders by changing the open/closed status of the 

sectionalizing and tie switches. During normal operating conditions, 

networks are configured to reduce system losses and to balance loading. 

During equipment failure and fault conditions, transferring load, or 

reconfiguring of the system, is often performed to isolate the problem area 

while retaining service to as many customers as possible. This type of action 

is known as restoration. 

Before any system reconfiguration is implemented, a power flow study should 

be performed on each configuration to determine if the system can be 

operated safely. All feeders of the reconfigured system must operate within 

their thermal, current, and voltage limits, and the protection scheme should 

protect against faults. 

This section provides a survey of work dealing with switch operation schemes 

in the area of reconfiguration because publications on true switch placement 

design and phase balancing algorithms are extremely rare. The switching 

schemes researched, however innovative, do not provide recommendations for 

new switch locations. Present load balancing techniques only attempt to 

move load from one circuit to another. The DAOP extension to phase 

balancing recommends to which phases single and two phase laterals should 

connect for improvement in substation imbalance and reduction of losses. 

A number of original switching schemes have been devised to optimally 

reconfigure distribution systems. Heuristic in nature, these methods achieve 

loss reduction by performing switch exchange operations. The work in [2.14] 

and [2.15] involves the operation of switch pairs. Methods are devised to 
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determine, for each pair, which switch to open and which to close for a 

reduction in system losses. The solution schemes in [2.16] and [2.17] start 

with all system switches closed. A radial system is produced by selecting 

which switches to open by using an equivalent linear resistive network 

model. Work in [2.18] is an extension of that in [2.14] by using integer 

programming techniques. This work also includes a method for capacitor 

placement. Work in [2.19] is also an extension of the work in [2.14] but 

converges to a solution independently of the starting solution. These 

research efforts fall into the greedy search techniques class which only accept 

search movements that produce immediate improvements. 

The two part papers [2.20] and [2.21] use a spanning tree type approach: 

Given a graph (.e. nodes of the system), find a spanning tree (radial 

configuration) such that a desired objective function is minimized while 

certain system constraints are satisfied. The work in [2.22] sets up a decision 

tree to represent the various switching operations available. A best first tree 

searching strategy, based on heuristics, is used to evaluate the various 

alternatives. 

Other approaches such as [2.23] convert the optimization problem of 

determining the open/closed status of the system switches into an iterative 

series of continuous quadratic programming sub-problems. The work in 

[2.24] converts the reconfiguration problem into a quadratic simplex problem 

while [2.25] and [2.26] combine a transshipment formulation with quadratic 

costs. These methods create the optimal solution by improving an initial (or 

current) basic solution. 
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The work in [2.27] involves the use of an artificial neural network. The 

researchers adopt the multi-layer feedforward machine developed in [2.28]. 

The multi-layer perception has the ability of not only handling the 

analog/binary input for feeder reconfiguration, but also mapping the complex 

and nonlinear input-output relationship with the hidden layer. The model is 

trained by the error back propagation algorithm, and then the adjustment 

process of the interconnecting weights and thresholds is repeated until the 

appropriate recognition capability is obtained. 

2.4 Economic Dispatch 

At this point in the literature review, the DAOP optimizing technique was 

determined to be unique and no references can be found relating DAOP to 

economic dispatch. Reference [2.30] was used to study, in depth, the 

Lagrange multiplier approach for solving the economic dispatch problem. In 

this book, the authors provide a thorough examination of not only the 

economic dispatch problem but the Lagrange technique as well. Reference 

[2.31] provides an excellent review of recent advances in the area of economic 

dispatch. 

2.5 Conclusions 

After conducting the literature review, it was found that the Discrete Ascent 

Optimal Programming method for optimization presented in this dissertation 

is original. All concepts behind DAOP's ascent philosophy are also original. 

Not only does DAOP provide an optimal power flow technique, but the 

fundamental properties of DAOP can be applied to switch placement design, 

phase balancing, and economic dispatch. 
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Chapter Three 

DAOP Description 
  

3.1 Introduction 

This chapter gives a graphical interpretation of the Discrete Ascent Optimal 

Programming (DAOP) algorithm path to convergence which shows how the 

power system topology is exploited. Definitions of graphical terms are given. 

The computational mechanics of the algorithm, two rules which are followed, 

and the solution steps are also given. 

The graphical interpretation, which offers a pictorial view of the algorithm's 

convergence process, is best understood when demonstrated by example. For 

simplicity, the example uses a DC system. The extension to AC systems is 

straight forward. In either case, the power system loads will be supplied in 

discrete increments. 

3.2 Definition of Terms 

In the description of the solution process, line sections and loads which are 

not carrying power are drawn with dots. Once a line section carries any 

power, it is drawn with a solid line. Partially supplied loads are called 

ending loads and are drawn with dashed arrows. A completely supplied load 

is drawn with a solid arrow [3.1]. 

Figure 3.1 illustrates a DC system with three current sources, seven line 

sections modeled as resistors, and five constant current loads. When DAOP 

starts, all loads are assumed to be unsupplied and all line sections and loads 
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are drawn with dots as shown in Figure 3.2. During the course of the 

algorithm, as the loads become supplied, portions of the system are drawn 

with solid and dashed lines as well as dotted lines as shown in Figure 3.3. In 

Figure 3.3, two loads are fully supplied, two ending loads are partially 

supplied, and one load is completely unsupplied. 

Portions of the system connected with a solid line are referred to as supplied 

graphs while the dotted and dashed portion of the system is termed the 

unsupplied graph. At the start of DAOP, all of the loads are included in the 

unsupplied graph as shown in Figure 3.2. As the algorithm progresses 

toward the solution, separate supplied graphs may exist as shown in Figure 

3.3. In addition, the supplied graphs merge into one another as ending loads 

become fully supplied. At convergence, the entire system is included in a 

single supplied graph as show in Figure 3.1. 

3.3 Exploiting System Topology 

Figures 3.1 - 3.3 illustrate how DAOP processes the power system topology. 

At the start, each source is a member of a supplied graph where each 

supplied graph contains at least one ending load. The first set of ending 

loads are defined as those loads which are most closely connected via the 

least loss path to a suppled graph. Other unsupplied loads are not 

considered until they become an ending load of a supplied graph. This 

technique allows the algorithm to exploit the system topology by breaking the 

system into smaller sub-systems. At each step, DAOP considers all 

subsystems to find the optimal, feasible solution for the next increment of 

load. 
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S3 

Figure 3.3 Example 3.1 During DAOP Solution Process 
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38.4 Computational Mechanics 

With each step, the DAOP algorithm adds the load increment to the source 

which produces the minimum line losses. The line losses increase with each 

supplied load increment, where the calculation of line losses includes the line 

losses due to the new load increment, the previously supplied loads, and the 

ending loads. The DAOP algorithm can be thought of as an ascent method 

because the losses continually increase as more and more load is satisfied. 

As the algorithm progresses, the two rules given below are observed: 

Rule 1: All loads that are supplied must be part of a 
supplied graph with one or more sources. 

Rule 2: A load must be supplied from sources that belong 
to the same supplied graph. 

The load increment may be varied from step to step. Load increments are 

generally selected to be some percentage of the smallest existing ending load 

(from experience, 20% is reasonable). When the amount needed to fully 

supply an ending load is smaller than the existing load increment, the load 

increment may be reduced to the exact amount needed to fully supply that 

particular ending load. The load increment may be reset when a new ending 

load is defined. Once an ending load has been completely supplied, adjacent, 

unsupplied loads, if they exist, become new ending loads. 

With each step, the line losses due to supplying the load increment from 

every source are evaluated. The source and load combination producing the 

minimum increase in line loss is selected. Only one source is incremented by 

the given load increment at the conclusion of each step. In the event that two 

or more sources produce the same minimum increase in line loss, an 

arbitrary choice of which source to increment is made. In the case of such a 
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tie, the explanation given in Chapter 4 will confirm that the final solution is 

not affected by the arbitrary choice. 

When AC systems are analyzed, the real and reactive components are 

considered separately. That is, either the real load increment or the reactive 

load increment that yields the smallest increase in line losses is selected. 

Note that the real and reactive load increments need not be equal. 

The following summarizes the basic steps followed by the DAOP algorithm. 

Step 1: Calculate the line loss associated with supplying 
the next increment of load at each ending load in 
the system. If the load contains both real and 
reactive components, the real load increment is 
considered separately from the reactive load 
increment. 

Step 2: From the results of Step 1, choose the 
combination of source and ending load which 
produces the minimum increase in loss. 

Step 3: If an ending load is completely supplied as a 
result of Step 2, the ending load becomes part of 
a supplied graph. If adjacent loads exist, they 
become new ending loads. 

Step 4: If all loads are fully supplied, the DAOP algorithm 
has converged; otherwise, return to Step 1. 

3.3 Example 3.1; DC System 

The minimum line loss problem for the DC system shown in Figure 3.1 is 

solved using both the Lagrange multiplier approach and the DAOP 

algorithm. The example illustrates the steps of the DAOP algorithm and 

compares the results with the solution obtained from the Lagrange multiplier 

approach. 
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For this system, the optimal power flow problem can be mathematically 

expressed by the following loss function and equality constraints: 

Minimize{ 11,? + 21,’ + 21,’ + 21,7 + 11,? + 21,’ + 11,7} (3.1) 

Subject to: 

I,-1,-1=0 (3.2) 

I,-1,-2=0 (3.3) 

I,-1,-2=0 (3.4) 

L+I.+1,-4=0 (3.5) 

I,-1,+1=0 (3.6) 

Loss function (3.1) provides the total system line loss which is the quantity to 

be minimized. Equations (3.2) - (3.6) represent line flow and load current 

constraints. Using Lagrange multipliers, loss function (3.1) and equality 

constraints (3.2) - (3.6) may be combined as follows: 

F( 1,5 Lys Tos Igy Tes Tqs Typ Ags Ago Age Ago Oe) (3.7) 

= 11,?+ 21,7 + 21,’ + 21,? + 11,7 + 21,’ + 11/7 

+2, (1, -I,-1) 

+ 2, (1, - I, -2) 

+ A, CI, - I, -2 ) 

+2, (1, +1,+1,- 4) 

+2, (1,-L+1) 

To solve for the minimum, partial derivatives of (3.7) with respect to the 

currents and Lagrange multipliers are taken and each of the partials is set 

equal to zero. The resulting system of simultaneous equations may then be 

solved. Performing these operations will yield the solution in Table 3.1. 
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Table 3.1 Lagrange Multiplier and DAOP Solutions for Example 3.1 
  

  

  

Current Lagrange DAOP 

Multiplier Algorithm 

l, 3.2 3.0 

LL 2.2 2.0 

l, 0.2 0.0 

l, -1.8 -2.0 

l, 46 5.0 

ls 1.2 1.0 

L 2.2 2.0 

Total Loss 55.4 56.0 
  

For the DAOP algorithm, a load increment, Lp, must be selected. Let the 

load increment be given by 

Lp = 1 amp. (3.8) 

From Figure 3.1, the total load to be supplied is 10 amps. At each step, 1 

amp of load will be supplied, and thus, ten steps are required for 

convergence. 

Table 3.2 organizes the DAOP algorithm solution. At each step the line 

losses are evaluated by adding the 1 amp load increment to each combination 

of source and ending load in turn. The S,, S,, and S, columns form a matrix 

which indicates the output from each source. This matrix shows how the 

load increment is added to each source (as indicated by the Source column) in 

turn. The A Loss column indicates the additional system loss while the Total 

Loss column gives the total system loss due to the loading condition given in 

the corresponding row of the source output matrix. The <= symbol under the 

Selection column indicates which source increment yields the minimum total 

  

Chapter 3. DAOP Description Virginia Polytechnic Institute and State University Page 20



loss for that particular step. The results from the DAOP algorithm are 

shown in Table 3.1. 

This example shows that the solution currents obtained from the DAOP 

algorithm le within the increment, Lp, of the solution obtained by the 

Lagrange multiplier method. For this example, the total line loss computed 

by the two methods differs by less than 1 watt as shown in Table 3.1. 
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Table 3.2 DAOP Solution Table for Example 3.1 

  

  

  

  

  

  

  

  

  

  

  

Step Source S, S, S, ALoss_ Total Selection 

(Source Output Matrix) Loss 

S, 1 0 0 1 1 <= 

1 S, 0 1 0 1 1 
S, 0 0 1 1 1 
S, 2 0 0 5 6 

2 S, 1 1 0 1 2 <= 
S, 1 0 1 1 2 
S, 2 1 0 5 7 

3 S, 1 2 0 3 5 

S, 1 1 1 1 3 <= 

S, 2 1 1 5 8 

4 Ss, 1 2 1 3 6 <= 

S; 1 1 2 5 8 

S, 2 2 1 5 11 <= 

5 Ss, 1 3 1 5 11 

S, 1 2 2 5 11 
S, 3 2 1 11 22 

6 S, 2 3 1 5 16 <= 

S, 2 2 2 5 16 

S, 3 3 1 11 27 

7 S, 2 4 1 7 23 
S, 2 3 2 5 21 <= 
S, 3 3 2 11 32 

8 S, 2 4 2 9 30 <= 
S, 2 3 3 13 34 

S, 3 4 2 11 41 <= 

) Ss, 2 5 2 15 45 

S, 2 4 3 17 47 

S, 4 4 2 19 60 

10 S, 3 5 2 15 56 <= 

Ss 3 4 3 17 58 Ww 
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Chapter Four 

Convergence of DAOP 
  

4.1 Introduction 

This chapter gives an intuitive discussion of DAOP's convergence path and 

compares the method with the Lagrange multiplier approach using a DC 

power system example. Following the example, a theorem of convergence is 

given. 

4.2 Discussion of Convergence 

For Example 4.1, consider the two source, constant current, DC system in 

Figure 4.1. At each step, a loss function can be developed (see Appendix A) 

in terms of I,. Figure 4.2 is the series of configurations the system undergoes 

during the course of the solution. These configurations may be used to 

develop a series of loss functions, each of which will be referred to as a 

sub-loss function. 

ie) 20 30 30 220 

MINA INAV 

Q) ' ' ' < | S 
1 TA 2A 3A 2A 2 

            

    

  

        
  

Figure 4.1 Example 4.1: DC System 
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Figure 4.2 Series of Configurations of Example 4.1 
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The solution path that is followed by the algorithm passes close to the 

minimum of each of these sub-loss functions. Let F, represent the applicable 

sub-loss function for step 1, F, the sub-loss function for step 2 and so forth. 

The sub-loss functions corresponding to the eight steps for the example DC 

system are given by (4.1) - (4.8) shown below. 

F,d,) = 1 - 21, + 81,’ 

F,(,) =6 - 81, + 51,2 

F,(,) = 17 - 141, + 51,7 

Fd) = 34 - 201, + 51,” 

F,(1,) = 69 - 381, + 81,2 

F,(.,) = 98 - 441, + 81, 

F.(L) = 181 - 741, + 111, 

F,(,) = 249 - 721, + 111 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Note that F, is the loss function that would be used by the Lagrange 

multiplier method. Hence, the sequence of sub-loss functions converges to the 

loss function that would be used by the Lagrange multiplier method. Table 

4.1 indicates the calculation step, the sub-loss function that applies for that 

step, and the sub-figure of Figure 4.2 from which the sub-loss function may 

be derived. 

Table 4.1 Step, Loss Function, and Corresponding Figure Number for 

  

  

  

  

  

Example 4.1 

Step Fi Figure Figure 

1 F, 4.2-A 5 F, 4.2-C 

2 F., 4.2-B 6 F. 4.2-D 

3 F, 4.2-B 7 F, 4.2-D 

4 F 4.2-B 8 F 4.2-D 

»
 oo
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Figure 4.3 shows plots of all eight sub-loss functions on a total loss versus I, 

plane. The cross marks indicate the solution path followed by the algorithm 

while the boxes indicate the actual minimum point for each sub-loss function. 

As shown, the solution path followed by the algorithm passes close (within 

the step size of 1) to the minimum points of the sub-loss functions. Note that 

using a smaller step increases both the accuracy of the solution and the 

number of computational steps required to reach the solution. 

4.3 Convergence Theorem [4.1] 

A theorem of convergence for a loss function of two variables subject to no 

constraints follows. This function can be derived from a three variable 

(source) system in which the constraints have been used to eliminate one 

variable from the loss function. In particular, it is illustrated that the 

scheme will, in a finite number of steps, produce an ordered pair of integers 

(x, y) that gives an integer approximation to the true point of minimization 

(x*, y*) such that 

[x*] <x = [x*] + Lp (4.9) 

[y*] =y = [y*] + Lp, (4.10) 

where the step size Lp = 1. 

Here [x*] denotes the greatest integer less than or equal to the real number 

x*, 

Consider the problem of finding the point (x*, y*) that minimizes the 

quadratic function 

f(x, y) = ax” + by” + cxy - dx - ey. (4.11) 
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Through substitutions, Loss Function (3.1) and equality constraints (3.2) - 

(3.6) may be placed in the form of (4.11). Since (4.11) is an energy function 

representing the losses in the system, it is positive definite [4.2]. 

The problem of finding (x*, y*) is equivalent to minimizing the function 

F(x, y) given by 

F(x, y) = (x, y) A(x, y)" - B(x, y)” (4.12) 
where: 

B = [d,e] (4.13) 

and A is the positive definite matrix 

(4.14) 

2a oc 

A= 

c 2b 

such thata>0,b>0,c=0,d=0,e20, 2a>c, 2b>c,d2=c, ande>c. 

Because A is positive definite, further examination of (4.12) reveals the loss 

function to be an ellipse. In addition, F(x, y) has a unique global minimum 

(x*, y*) [4.3] such that 

V F(x™, y*) = CF Q*, y*), F\(x*, y*) ) = (0,0), (4.15) 

where F,(x*, y*) represents the partial of F(x, y) with respect to x and F,(x*, 

y*) represents the partial of F(x, y) with respect to y evaluated at the optimal 

solution. 

Let the line L in the xy-plane be defined by 

L={(x, y): F.&, y) =F\@ y)}. (4.16) 
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The line L defines the path of equal incremental loss. It follows that 

(x*, y*) € L. 

A single contour plot of the function f(x, y) along with the line L is illustrated 

in Figure 4.4. The shape, rotation, and translation of the ellipse depend on 

the values of the coefficients a, b, c, d, and e in (4.11). 

"I 
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L Fy = Fx (x*, y* 

C1 \. 
yo | 

ea a | 
a ye2 Region | Fy<Fx 

cory 
Alternate 

Path 
|         
  

xy
 

(0,0)   
Figure 4.4 Illustration of Solution Path Followed by DAOP 

As illustrated in Figure 4.4, the line L divides the xy-plane into two half 

planes. The lower half plane contains all points (x, y) satisfying y<mxthb, 

where m is the slope and b, is the y-intercept of the line L. It follows that 

y<mxtb, if and only if F,(, y) < F(x, y). On the other hand, y>mx+b, if and 

only if F(x, y) > F,@, y). Consequently, the following two regions are defined 

in the xy-plane. 

Region I = { (x, y): F(x, y) < F,G, y) \ (4.17) 

Region II = { (x, y): F(x, y) > FG, y)} (4.18) 
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Figure 4.4 also pictures the steps taken by the DAOP algorithm indicated by 

the series of arrows. This path, stair-step in nature because the load 

increment can only be added in the positive x or y (I, or I,) direction, closely 

follows the line of equal incremental loss. 

The starting point for the algorithm is (0,0). If (0,0) is in Region I, 

FG, y) < F(x, y), the algorithm takes k steps in the direction (0,1) such that 

the k+1 step would place (x, y,,,) in Region II. In order to cross into Region 

II, F(x, y,,,) must be less than F(x,,,, y,). If not, the algorithm remains in 

Region I and takes n steps in the (1,0) direction until F(x,,,, y,) > F(,, y,4,)- 

At this point, the algorithm takes a single step in the (0,1) direction causing 

the solution path to cross into Region II. Now in region I, F,(x, y) > F.(, y), 

the algorithm steps in the direction (1,0). As before, the solution path does 

not cross into Region I until the function is not minimized by staying in 

Region II. The procedure is repeated until the solution is reached. The 

solution is within the load increment of the actual optimum given by (x*, y*). 

The only exception to the above described movement is when equal minimum 

loss can be obtained from multiple directions. Consider the points C,, C,, C,, 

and C, shown in Figure 4.4. Let C, =(x,, y,) be a non stopping point on the 

DAOP path to convergence. Also, let the change in losses from C, to C, equal 

the change in losses from C, to C,. Because these changes in loss are equal, 

the DAOP solution path can move to either C, or C,. Each path continues to 

C, in two steps from the point of split at C,. The two paths, via either C, or 

C,, result in the same increase in total system loss. Therefore, when multiple 

directions yield the same minimum increase in loss, an arbitrary choice of 

direction can be made. 
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A theorem concerning the convergence for a function of two variables with no 

constraints 1s now presented. 

THEOREM: 
In k steps, where [x*] + [y*] < k < [x*] + [y*] + 2, 
the algorithm will stop and (x, y) = (x,, y,) with 

Ix,-X"] < 1, ly,-y*] < 1. 

This result requires that the loss function have a unique minimum (x%, y*), a 

characteristic found in functions arising in unconstrained power optimization 

problems as given by (4.12). When applied to the DAOP algorithm, the 

theorem states that the optimum solution will be found in a finite number of 

steps [4.1]. 
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Chapter Five 

Switch Placement Design 
  

5.1 Introduction 

To make an electrical distribution system operate radially, the power 

engineer must determine which switches to open and which to close. Switch 

installations and switching operations are used as control actions to force the 

actual system to operate in a radial fashion. The optimal radial 

configuration may not be possible due to the lack of appropriately or poorly 

placed switching devices. 

A switch placement design algorithm would not only indicate the open/close 

status of all switches in the system but would also indicate where to install 

new switches to realize the optimal radial solution. 

This chapter describes the switch placement application of DAOP for best 

efficiency of operation of a radial distribution system. For a radially operated 

system, the DAOP algorithm must not allow individual loads to be supplied 

from multiple sources, thus placing a constraint on the solution. DAOP's 

ability to handle this constraint is explained. Finally, a switch placement 

design for a system on the Arkansas Power and Light distribution system is 

performed. 

5.2 Radial Power Flow Constraints 

In order to handle the radial constraint, the DAOP algorithm is run 

repeatedly. The switch placement design problem starts by allowing the 
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DAOP algorithm to run in the manner described thus far (normal fashion). 

When the unconstrained optimum is reached, the loads which are fed from 

multiple sources (multi-supplied loads) are identified. This unconstrained 

optimum solution is then used as a starting point for the constrained solution 

where the multi-supplied loads form the only set of unsupplied loads. All 

other loads from the unconstrained solution are treated as supplied loads. 

Thus, at the start of the constrained solution the multi-supplied loads form 

the set of ending loads to be considered. 

Upon completion of the first step of the constrained solution, the source and 

ending load combination which produces the minimum loss from this step is 

identified. From here, the decision is made to allow the identified ending 

load to be entirely supplied by the associated source. For the remainder of 

the solution process, all paths connected to this load bus can only carry power 

away from the bus. This constrained second solution has reduced the 

number of multi-supplied loads by at least one. 

This method, heuristic in nature, is repeated until all loads are supplied from 

a single source. Therefore, the number of times DAOP must be repeated is 

less than or equal to the number of multi-supplied loads that exist in the 

unconstrained solution. When the final solution is reached, the open switch 

locations are identified as those branches which do not carry any power. 

5.8 Example 5.1: Switch Placement Design 

Consider the system of Figure 5.1 provided by Arkansas Power (AP&L) and 

Light. For simplicity, the system has been approximated using a DC 

representation with constant current loads. 
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This particular circuit contains a number of switches which are currently 

used to produce a radial system. Comparisons between different radial 

systems achievable using these switches and the proposed DAOP switch 

locations will be made. Note that the DAOP solution is not an exhaustive 

search among the possible radial configurations using the existing switches. 

To improve performance, a variable load increment will be employed in this 

example. When the unsupplied amount of an ending load is less than the 

load increment, Lp will be adjusted (down) to that amount which will exactly 

supply the ending load in question. When the ending load becomes fully 

supplied, Lp can be reset to 20% of the smallest existing ending load. 

Table 5.1 Switch Placement Design Configurations for Example 5.1 
  

Switch Configuration 1 Configuration 2 Configuration 3 
  

  

SWw1 Closed Closed Closed 

SWw2 Closed Closed Closed 

SW3 Open Open Closed 

SW4 Closed Closed Closed 

SW5 Open Closed Closed 

SW6 Closed Open Open 

SW7 Closed Closed Closed 

A N/A N/A Open 

TotalLoss 97,723.4W 74,418.9 W 60,010.6 W 
  

Switches SW1 - SW7 exist in the system. With these switches, different 

independent, radial system configurations can be made. Table 5.1 presents 

three different configurations. Configurations 1 and 2 can be achieved using 

the existing switches while Configuration 3 is the design result achieved 

using DAOP. From these results, the minimum line loss is achieved if a new 
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switch is installed at position A in Figure 5.1. Table 5.1 gives the total line 

loss for each of the three configurations. 

5.4 Conclusions 

This chapter describes the switch placement design algorithm for electrical 

distribution systems. The algorithm is an extension of the DAOP algorithm. 

The routine has been tested on a real circuit in the Arkansas Power and 

Light distribution system in Hot Springs, Arkansas. Results of these tests 

have been independently verified by AP&L personnel. 
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Chapter Six 

Phase Balancing Application 
  

6.1 Introduction 

To reduce losses in an electrical distribution system, the power engineer will 

distribute the system load evenly across the three phases. Decisions must be 

made as to which phases single and two phase laterals are to connect. A 

phase balancing routine would indicate the phasing of all laterals and 

compute the system losses and imbalance at the substation. A true design 

application would allow the engineer to chose the lateral reconnections and 

present the results. 

This chapter describes how the basic principles of the DAOP algorithm have 

been used to develop a novel approach to phase balancing electrical 

distribution systems. The new phase balancing routine has been 

incorporated as a design application in the Distribution Engineering 

Workstation (DEWorkstation) software package sponsored by the Electric 

Power Research Institute (EPRI) [6.1]. Two phase balancing designs are 

given for circuits taken from the Arkansas Power and Light (AP&L) 

distribution system. A third example, taken from a test system supplied with 

DEWorkstation, gives before and after plots of the system load as a function 

of distance from the substation. 

6.2. Definition of Terms 

The phase balancing application recommends rephasing of single and two 

phase laterals for improvement in load imbalance at the substation. A 
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lateral is defined as all components with the same phasing connected in 

series. Phase balancing does not attempt to rephase the three phase portion 

of the system. In addition, no transposition within a lateral is performed. 

Imbalance is a measure of the load distribution across all phases present for 

a given component. The imbalance is calculated using the formula given in 

Equation 6.1 [6.2]. The imbalance ranges from 0 to 2 where 0 is perfectly 

balanced and 2 is perfectly out of balance. Because of this range, the 

imbalance is normally adjusted to yield a 0% to 100% range as shown. 

imbalance = ( max { deviation } / average ) * 100 / 2 6.1 

where: 

average = (phase a load + phase b load + phase c load) /sNumPh 

sNumPh = number of phases present 

deviation = | ( phase i - average ) | 

i=a,b,c 

Phase balancing calculations can be based on either power (kW) or complex 

power magnitude (kVA). For this application, phase imbalance is calculated 

from line flows which come from a power flow solution. Because 

DEWorkstation has an open architecture platform, power flow results are 

readily available [6.3]. 

6.3 DAOP Modifications for Phase Balancing 

Instead of continually defining a set of ending loads as described in Chapter 

3, the phase balancing adaptation of DAOP starts by locating all laterals in 

the circuit, determines the total flow through each, and disconnects them 

from the rest of the circuit so that only the three phase portion of the circuit 

(the spine) is connected to the substation. Laterals directly connected to the 
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spine are reconnected one at a time. The lateral with the most heavily 

loaded phase is reconnected first. The laterals are added in like manner from 

most to least loaded until all laterals are reconnected to the spine. Next, all 

remaining laterals (single phase laterals connected to two phase laterals) are 

reconnected from most to least loaded. 

The phase balancing scheme does not add a discrete unit of load to the 

system with each step but adds the entire load modeled on a single lateral. 

Therefore, variable step adaptations do not apply to the phase balancing 

routine; however, further research may reveal alternative methods of 

determining the ordering of lateral reconnections. Note that the number of 

computational steps required to reach convergence is simply the number of 

laterals within the system. 

For each lateral reconnection, the phase balancing routine evaluates all 

possible rephasing options and selects that which produces the minimum 

imbalance at the substation. Because this is a phase balancing routine, 

substation imbalance is minimized, not system losses. In most cases, the 

improvement in the imbalance at the substation results in a reduction of 

system loss. 

6.4 Example 6.1: Phase Balancing Mechanics 

Example 6.1 illustrates how the phase balancing routine defines, sets 

reconnection order, and rephases the laterals in a power system. Figure 6.1 

gives the circuit that is used to demonstrate the mechanics of the routine. 

Phasing and loading (in kW) are indicated beside each line section in the 

figure. The example uses real power (kW) to calculate imbalance and losses 

are neglected. 
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Phase balancing locates all laterals in the system, determines the flow 

through each, and detaches them from the rest of the circuit. Figure 6.2 

shows the system with all laterals removed from the system. 
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Figure 6.2 Phase Balancing Lateral Location and Reconnection Order 
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The load at the substation is from the three phase portion of the system. 

Note that lateral © is two line sections connected in series. Thus, the load on 

this lateral is the sum of the load on the two individual line sections. 

Phase balancing connects all laterals connected to the three phase portion of 

the system first. These laterals, © through ® define the set of first level 

laterals. Of the first level laterals, phase balancing reconnects that which 

has the largest loaded phase first. Even though laterals @ through @ have 

more total load than ©, @ has the most heavily loaded phase and is, 

therefore, reconnected first. 

Table 6.1 shows all possible reconnections and the resulting imbalance at the 

substation for lateral ©. The imbalance at the substation before the 

reconnection of lateral © is 0.1176 (5.88%). For this lateral, phase balancing 

recommends moving phase A to C and not moving phase B. Note that 

multiple rephasing options often give the same imbalance at the substation. 

In such cases, phase balancing attempts to move as few phases as possible. 

Table 6.1 Reconnection Choices for Lateral © of Example 6.1 
  

Movement PhaseA PhaseB PhaseC Imbalance % imbalance 
  

A->A, B->B = 430.00 320.00 250.00 0.2900 14.50 

A->A, B->C 430.00 300.00 270.00 0.2900 14.50 

A->C, B->B 300.00 320.00 380.00 0.1400 7.00 * 

A->B, B->A = 320.00 430.00 250.00 0.2900 14.50 

A->B, B->C 300.00 430.00 270.00 0.2900 14.50 

A->C, B->A = 320.00 300.00 380.00 0.1400 7.00 
  

* Rephasing Selection 

After connecting all first level laterals ( © through @ ), phase balancing 

reconnects the remaining laterals referred to as second level laterals. Second 
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level laterals, if they exist, are always single phase laterals connected to two 

phase laterals. For this example, laterals © through @ are second level 

laterals. 

Table 6.2 shows all possible reconnections and the resulting imbalance at the 

substation for the most heavily loaded second level lateral, ©. Phase 

balancing recommends leaving lateral © as phase A. One must be aware 

that first order laterals, to which second order laterals connect, may have 

been rephased. For this reason, the rephasing choices for second level 

laterals may not be intuitive by examining the original system configuration. 

Table 6.2 Reconnection Choices for Lateral © of Example 6.1 

  

Movement PhaseA PhaseB PhaseC’ Imbalance % Imbalance 

A->A 570.00 500.00 560.00 0.0798 3.99* 

A->B 520.00 500.00 610.00 0.1227 6.14 

* Rephasing Selection 
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Figure 6.3 Rephased Design System of Example 6.1 
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Figure 6.3 shows the rephased design system produced by phase balancing. 

The imbalance at the substation of the original system is 0.4371 (21.86%). 

After rephasing, the design system has an imbalance of 0.0299 (1.50%), an 

improvement of 93.16%. Appendix B contains the spreadsheet used to solve 

Example 6.1. 

6.3 DEWorkstation Overview 

The Electric Power Research Institute (EPRI) sponsored Distribution 

Engineering Workstation (DEWorkstation) is a software package which 

provides the power engineer with an integrated data and applications 

environment. Because DEWorkstation uses a standardized data scheme 

(database), engineering application modules access and exchange database 

data through common data areas. The engineering applications are analysis, 

design, and operation modules [6.1]. 

In addition to providing a set of graphical user interface (GUI) functions, 

DEWorkstation is based on an open architecture platform [6.3]. The open 

architecture platform allows the engineering applications to invoke and 

obtain results from other modules. In addition, users can add, delete, and 

replace the application modules [6.4]. 

The phase balancing algorithm described in this chapter is one of two design 

applications provided with DEWorkstation Version 1.0. A design application 

differs from an analysis application in that it produces results as the user 

experiments with model parameters. Although the phase balancing module 

will recommend the rephasing of all laterals, the user can attach (rephase) 

the laterals in any desired configuration. Figure 6.4 is an example of a 

dialog box which allows the user to pick the rephasing of a two phase lateral. 
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Select Phase Connection Menu 

  

4>4,N0B,C>C 
4>4,N0 8B, C->B 
A>B. NOB, CC a 
42C.N0OB.C->A Recommended | 
A>C,NOB,C->B 
A>B. NOB, C34               
    

  

  

Figure 6.4 Phase Balancing Rephasing Dialog Box 

Note that the user has the option of selecting the recommended rephasing or 

can select any other physically allowable rephasing. Not choosing the 

recommended rephasing for a particular lateral affects the remaining lateral 

rephasing recommendations and possibly the choices. This feature allows 

the user to develop and experiment with multiple designs. 

6.6 Example 6.2: Hot Springs North 

The DEWorkstation model of the Hot Springs North circuit on the Arkansas 

Power and Light power system is show in Figure 6.5. The model contains 48 

line sections (15 laterals), 4 capacitors, and 2 reclosers. The total system load 

is 6,822.3 kW and the imbalance at the substation before rephasing is 0.1714 

(8.57%). The phase balancing routine produced a design with a substation 

imbalance of 0.0450 (2.25%) which is an improvement of 73.75%. An output 

report generated by phase balancing containing all lateral movements can be 

found in Appendix C. 
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Figure 6.5 AP&L North DEWorkstation Model 

6.7 Example 6.3: Hot Springs Carpenter 

The DEWorkstation model of the Hot Springs Carpenter circuit on the 

Arkansas Power and Light power system is show in Figure 6.6. The model 

contains 56 line sections (15 laterals), 8 capacitors, and 1 recloser. The total 

system load is 12,246.35 kW and the imbalance at the substation before 

rephasing is 0.1044 (5.22%). The phase balancing routine produced a design 

with a substation imbalance of 0.0154 (0.77%) which is an improvement of 

85.25%. An output report generated by phase balancing containing all 

lateral movements can be found in Appendix C. 

  

  

    

Figure 6.6 AP&L Carpenter DEWorkstation Model 
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6.8 Example 6.4: VA Tech Demo System 

The purpose of this example is to create plots of the system load as a function 

of distance to the substation before and after phase balancing. The 

DEWorkstation model of the VA Tech Demo System, a fictitious system 

supplied with the software for demonstration purposes, will be used and is 

shown in Figure 6.7. 

anya: a DB rare are mo ay ee 

      
    
    

Figure 6.7 VA Tech Demo System DEWorkstation Model 

Using DEWorkstation, all application results can be plotted against either 

time or distance. Plots of data made against distance are not commonplace 

but can give a great deal of information when appropriate. One such use is 

plotting loading conditions on a system before and after running phase 

balancing. When creating a load versus distance plot, the user must pick a 

component from which the load is to be plotted. From this component, the 

path from which the component receives power from the substation is traced. 
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The load is summed from the selected component back to the substation 

along this path. This data allows a load versus distance to the substation 

plot to be created. 

The arrow on the system model in Figure 6.7 indicates the component from 

which the load plots are made. Figures 6.8 and 6.9 are plots of the load from 

this component to the substation before and after phase balancing the 

system, respectively. 

  

Figure 6.8 Load Versus Distance Before Phase Balancing 

008:VA Tech Demo Syster 

  

Figure 6.9 Load Versus Distance After Phase Balancing 
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For comparison purposes, both of these graphs have the same scale on both 

axes. Note how the phase load curves are more tightly grouped for the 

rephased circuit. This indicates that the component loads are more evenly 

distributed across the phases. 

6.9 Conclusions 

This chapter describes a new phase balancing algorithm for electrical 

distribution systems. The algorithm uses basic principles of the DAOP 

algorithm. Implemented as a design module in the EPRI DEWorkstation 

software package, the routine has been tested on real circuits in the 

Arkansas Power and Light distribution system in Hot Springs, Arkansas. 

Results of these tests have been independently verified by AP&L personnel. 
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Chapter Seven 

Economic Dispatch 
  

7.1 Introduction 

In this chapter the application of DAOP to the economic dispatch problem is 

demonstrated. Originally developed for optimal power flow solutions in 

distribution systems, DAOP must consider system constraints such as 

generation and transmission limits to solve the economic dispatch problem. 

A three part economic dispatch example problem is solved. Part (a) of this 

example solves the economic dispatch problem considering only generation 

costs. Part (b) includes generation limits while Part (c) includes transmission 

line (security) limits. Parts (a) and (b) compare the results from the 

Lagrange multiplier approach to those of the DAOP algorithm. Discussion of 

the incorporation of transmission losses into the economic dispatch problem 

and the DAOP algorithm is given. A second example involving transmission 

losses is given in Appendix D. 

7.2 Economic Dispatch Problem Statement 

When operating a power system, not only must the power demands of 

customers be met, but they should be met while minimizing the cost of 

supplying the system load. The problem of determining the most economical 

configuration of the generators to supply the system load is known as 

economic dispatch [7.1]. 
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Each generating unit has an operating cost rate, F, defined by the 

generating unit heat rate and fuel cost among other costs such as the fixed 

and variable operating and maintenance costs. The total operating cost rate 

for the entire power system, Ft, is the sum of the cost rates of the individual 

generating units. Reduced to its simplest form, the only constraint the 

economic dispatch problem must meet states that total generation for the 

entire power system, Pt, must equal the total load, Pr. The total generation, 

Pt, is the sum of the power outputs of the individual generating units, P.. 

Therefore, the optimal economic dispatch of the generating units is reached 

by minimizing Ft while supplying the total system load as shown in (7.1) 

through (7.4). 

Pt=P,+P,+P,+...+P, (7.1) 

Ft(Pt) = F,(P,) + F,,) + F,@,) +... +F.@.) (7.2) 

Minimize Ft(Pt) (7.3) 

Subject to: Pr - Pt =0 (7.4) 

The minimization problem can be solved using the Lagrange multiplier 

approach. To form the Lagrange function, £, the constraint equation is 

multiplied by the Lagrange multiplier, 2, and added to the objective function 

as shown in (7.5). 

£=Ftt+ Ar - Pt) (7.5) 

To solve for the minimum, partial derivatives of (7.5) with respect to each of 

the independent variables (P,) and 4 are taken and set equal to zero. The 

resulting system of simultaneous equations may then be solved. The 

Lagrange multiplier, A, represents the incremental cost rate of the generating 

units. 
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Using DAOP to solve the economic dispatch problem is very similar to the 

procedure described in Chapter 3. When DAOP starts, all of the generating 

units are assumed to be completely unloaded. From this starting point, the 

algorithm determines the operating point of each generating unit such that 

the system load is supplied in a least cost fashion by adding the chosen load 

increment to the unit which produces the minimum cost at each step. Note 

that the cost is a combination of line losses and generation costs. 

7.3 Incorporating Generating Unit Limits 

There are additional hmiting constraints to consider when formulating the 

economic dispatch problem, one of which is generating capacity limits. That 

is, the power output from each generating unit must not exceed the 

maximum power output permitted by that particular unit. In addition, there 

may be lower generation limits as well. Generating capacity limits take the 

form of inequality constraints as shown in (7.6). 

P. win = P, SP, (7.6) 
1 max 

When considering system inequality constraints on generation levels, the 

final solution reached by the Lagrange multiplier approach, as presented in 

the previous section, may include generation levels for the individual units 

which are outside of the allowable operating range. 

When generating limits have been violated, an iterative process must be 

initiated which includes clamping the offending independent variables at 

their limits when using the Lagrange multiplier approach to reach a solution. 

From this point on, not all generating units will operate at the same 

incremental cost rate. Therefore, incremental cost rates must be defined for 

each generating unit, given by A,. Only those generating units which are 
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operating within their respective operating ranges will operate at the same 

incremental cost rate, referred to as the system 4. At the conclusion of each 

iteration, the individual incremental cost rates are compared to the system i. 

The individual incremental cost rates, A, , can be used to determine the cost 

to operate the generating units with respect to each other. The cost to 

operate those generating units which initially exceeded their maximum 

operating capacity and have been clamped to their maximum is less than 

those defining the system A. For these units, A, is less than the system A. 

Conversely, the cost to operate those generating units initially operated 

below their minimum operating capacity and have been forced to their 

minimum is greater than those defining the system 4. For these units, A, is 

greater than the system A. 

When using the DAOP algorithm, additional computational steps (iterations) 

are not required when system constraints are encountered. The constraints 

are never violated during the DAOP solution process thereby guaranteeing 

that the final answer, if feasible, is within the chosen step size of the 

optimum. When DAOP encounters a constraint, the algorithm continues to 

converge on the optimum by avoiding solution paths which violate the 

constraint. In so doing, additional iterations are not required to adjust 

intermediate solutions which violate the system constraints. In fact, the 

DAOP computational burden may decrease as constraints are met. 

For each step, DAOP must determine if the load increment may be supplied 

by each individual generating unit without violating the maximum capacity 

limit of the generating unit. Violation occurs when the output of a unit 

exceeds its maximum when the load increment is added. In such a case, the 
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output of this generating unit remains at its maximum and is no longer 

considered a candidate for incrementation. Thus, the final solution does not 

allow a generating unit to exceed its allowable maximum capacity. Note that 

the computational burden of DAOP decreases as generating units reach their 

maximum output. When minimum generation output levels are considered, 

the DAOP algorithm must be modified. One method is to assume that all 

generating units are to be dispatched. With this assumption, the initial 

DAOP starting point is no longer a completely unloaded system. Instead, 

DAOP starts with every unit set to its minimum output level. 

7.4 Example 7.1: Economic Dispatch 

This example, is divided into three parts in which the first two are solved 

using both the Lagrange multiplier approach and the DAOP algorithm. Part 

(a) considers only the cost of generation. Part (b) shows how the two solution 

methods behave when generation constraints are encountered. Finally, 

transmission line constraints are imposed in Part (c). 
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"p 

Figure 7.1 Economic Dispatch Test System 

Both economic dispatch examples solved in this chapter use the DC system 

approximation shown in Figure 7.1. The total load to be supplied is 850 MW. 

All transmission lines are 100 miles in length and have an impedance of 

0.03 + j0.3 ohms/mile. 
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Table 7.1 Generating Unit 1 Specifications 
  

Type of Generation Coal-Fired Steam 
  

  

  

Maximum Output 600 MW 

Minimum Output 150 MW 
Fuel Cost 1.1 $/MBtu 
    Input-Output Curve   H,(P,) = 510.0 + 7.20P, + 0.00142P,*_ MBtu/Hr 
  

Table 7.2 Generating Unit 2 Specifications 
  

Type of Generation Oil-Fired Steam 
  

  

  

Maximum Output 400 MW 

Minimum Output 100 MW 

Fuel Cost 1.0 $/MBtu 
    Input-Output Curve   H.(P,) = 310.0 + 7.85P, + 0.00194P,? MBtu/Hr 
  

Table 7.3. Generating Unit 3 Specifications 
  

Type of Generation Oil-Fired Steam 
  

  

  

Maximum Output 200 MW 
Minimum Output 50 MW 
Fuel Cost 1.0 $/MBtu 
    Input-Output Curve   H.(P,) = 78.0 + 7.97P, + 0.00482P,? MBtu/Hr 
  

  

  

  
The three generating units taken from [7.1] are described in Tables 7.1 

through 7.3 where the functions H,(P,) are input-output curves. The input- 

output curves are multiplied by the fuel cost to give the cost rate curves, 

F(P,), as shown in (7.7). 

F(P,) = H,(,) * Fuel Cost (7.7) 

From the input-output curves and the fuel costs, the cost rate equations for 

the three generating units are given by 

  

F @,) = 1.1 (510.0 + 7.20P, + 0.00142 P,”) (7.8) 

F.(P.) = 1.0 (310.0 + 7.85P, + 0.00194P,? ) (7.9) 

F,(P.) = 1.0 (78.0 + 7.97P, + 0.00482P.”) . (7.10) 
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Part (a): Cost of Generation 

The economic dispatch problem is mathematically expressed by 

Minimize F,(P,) + F,(P,) + F,(P,) (7.11) 

Subject to: 

P, +P, + P, = 850.0 (7.12) 

150.0 = P, = 600.0 (7.13) 

100.0 = P, = 400.0 (7.14) 

50.0 = P, = 200.0. (7.15) 

Using the Lagrange multiplier approach to solve the problem in (7.11) 

through (7.15), the Lagrange function is written: 

£ = 949.0 + 7.92P, + 0.001562P,” (7.16) 

+ 7.85P, + 0.00194P,? 

+ 7.97P, + 0.00482P,? 

+ 2.(850.0-P,-P,-P,). 

Taking the partial derivatives of (7.16), setting them equal to zero, and 

solving the resulting set of equations yields the results given in Table 7.4. 

Note that the generation inequality constraints are not violated. 

Table 7.4 Lagrange Multiplier and DAOP Solutions for Example 7.1 Part (a) 
  

Generating Unit Lagrange Multiplier DAOP Algorithm 

  

P, 393.17 400 

P, 334.61 325 

P, 122.23 125 

Total Cost $/Hr 8, 194.36 8,194.64 
  

For the DAOP algorithm, a load increment, Lp, must be selected. Let the 

load increment be given by 

Lp = 25.0 MW . (7.17) 
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Given the total system load and using a fixed load increment, the number of 

computational steps to reach the solution may be calculated by dividing the 

total load by the step size. At each step 25.0 MW of load will be supplied; 

thus, 34 steps are required to reach the solution. Table 7.5, giving only a few 

of the 34 steps, organizes the DAOP algorithm solution. The ACost column 

indicates the additional system cost due to supplying the load increment by 

the corresponding generating unit as indicated under the Generating Unit 

column. The TJotal Cost column gives the total system cost. The <= symbol 

under the Selection column indicates which generating unit output 

increment yields the minimum total cost for that particular step. The results 

from the DAOP algorithm are given in Table 7.4. 

Table 7.5 DAOP Solution Table for Example 7.1 Part (a) 
  

Step Generating A Cost Total Cost Selection Generation 

  

  

  

  

  

  

Unit $/Hr $/Hr Level MW 

1 1 1,147.98 1,147.98 25 

2 1,146.46 1,146.46 <= 

3 1,151.20 1,151.26 

2 1 198.98 1,345.44 <= 50 

2 199.98 1,346.35 

3 202.26 1,348.72 
3 1 200.93 1,546.37 75 

2 199.89 1,545.33 <= 

3 202.26 1,547.70 

33 1 228.26 7,968.08 825 

2 226.56 7,966.38 <= 

3 232.39 7,972.21 

34 1 228.26 8,194.64 <= 850 

2 228.99 8,195.37 

3 232.39 8,198.77 
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Table 7.4 shows that the power outputs from the generating units obtained 

from the DAOP algorithm lie within the increment Lp of the solution 

obtained by the Lagrange multiplier method. For this example, the total 

generation cost computed by the two methods differs by 0.28 $/Hr. The 

accuracy of the DAOP algorithm is dependent only on the load increment, all 

else being equal. As the load increment decreases the accuracy of the 

solution increases. Thus, it can be shown that using a load increment of 

0.01 MW, the DAOP solution will equal the Lagrange multiplier solution to 

two decimal places. 

The DAOP algorithm can be defined on a spread sheet. To reach a spread 

sheet solution, first assign a column to each generating unit. Next, define 

each cost rate curve on separate columns as a function of the corresponding 

generating unit column. Finally, define a single column as the sum of the 

cost rate curve rows. This column is the total system cost. By manually 

incrementing the generating unit columns, the minimum cost at each step 

can be identified. To continue to the next step, the appropriate generating 

unit column is incremented. The process stops once the total system load is 

met. 

Part (b): Generation Constraints 

This part of the example shows how the Lagrange multiplier method and 

DAOP algorithm behave when the generating inequality constraints are 

encountered and how the DAOP algorithm does not require additional 

computational steps. Suppose the cost of fuel for generating Unit 1 decreases 

to 0.9 $/MBtu. The first iteration of the Lagrange multiplier method yields 

the results given in Table 7.6. Note that generating units 1 and 3 violate 

their respective generation inequality constraints. 
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Table 7.6 First Iteration Results of the Lagrange Multiplier 
for Example 7.1 Part (b) 
  

Generating Unit | Lagrange Multiplier 
  

P, 704.60 
P, 111.80 
P, 32.60 
  

To reach a feasible solution, Unit 1 is forced to operate at its maximum 

operating capacity, 600 MW, Unit 3 is forced to operate at its minimum 

operating capacity, 50 MW, and Unit 2 is computed to be 200 MW. Since 

Unit 2 is operating within its limits, the incremental cost for Unit 2, 2,, must 

now be calculated by setting it equal to the incremental cost of Unit 2 at 

200 MW. i, and A, are also calculated for the other two units at their 

adjusted outputs and compared to 2,. These values are given below. 

h, = 8.016 (7.18) 

A, = 8.626 (7.19) 

dy = 8.452 (7.20) 
Thus, the incremental cost to run Unit 1 is less than Unit 2 which means 

that Unit 1 is correctly set at its maximum. The incremental cost to run Unit 

3 is also less than Unit 2. Because the output of Unit 3 is less than Unit 2, 

their outputs must be recomputed using the Lagrange multiplier approach. 

The final solution is given in Table 7.7. 

Table 7.7 Lagrange Multiplier and DAOP Solutions for Example 7.1 Part (b) 
  

Generating Unit _ Lagrange Multiplier DAOP Algorithm 
  

  

P, 600.00 600 
P, 187.10 175 
P,- 62.90 15 

Total Cost $/Hr 7,292.11 7,253.10 
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This part of the example will now be solved using the DAOP algorithm with 

the load increment given by (7.17). Table 7.8 organizes the DAOP solution 

and demonstrates a few of the steps. 

Note that on step 25, Unit 1 has reached its maximum output. Subsequent 

steps will no longer attempt to add the load increment to this unit. This 

allows DAOP to converge on the optimum by avoiding solutions paths which 

violate the constraint. From this point, the DAOP algorithm will determine 

how the balance of the system load will be met by the remaining units. 

Even though generation constraints have been added to the economic dispatch 

problem, the number of computational steps to reach the solution remains 

fixed. In addition, the number of computations per step decreases once the 

constraint on Unit 1 is encountered. 

Table 7.8 DAOP Solution Table for Example 7.1 Part (b) 

Step Generating A Cost $/Hr 
  

Total Cost Selection Generation 

  

  

  

  

  

  

  

Unit S/Hr Level MW 
1 1 1,009.80 1,009.80 <= 25 

2 1,044.46 1,044.46 

3 1,049.26 1,049.26 

2 1 164.39 1,174.19 <= 50 

2 197.46 1,207.26 

3 202.26 1,212.06 - 

25 1 199.54 5,392.54 <= 625 

2 199.89 5,392.89 

3 202.26 5,395.26 

26 2 199.89 5,592.43 <= 650 

3 202.26 5,594.80 

34 2 214.44 7,253.23 850 

3 214.31 7,253.10 <= 
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Again, it can be shown that the DAOP solution will approach the Lagrange 

multiplier solution more accurately as the load increment is reduced. 

Part (c): Transmission Line Constraints 

Another type of constraint which may be considered in the economic dispatch 

problem is transmission line capacities. Transmission line constraints, which 

indicate the maximum allowable current or power capacity, take the form of 

inequality constraints as given in (7.21). 

Ps, < Ps (7.21) 
1max 

When using DAOP, these constraints are handled in the same manner as the 

upper generating capacity limits as described earlier. For each step, DAOP 

must determine if the load increment may be supplied by each individual 

generating unit without violating the maximum capacity limit of the 

transmission lines. Violation occurs when the amount of current or power on 

a transmission line exceeds its carrying capacity when the load increment is 

added. In such a case, the load increment cannot be added to the selected 

generating unit. Thus, the final solution does not allow a transmission line 

to exceed its allowable maximum capacity. 

This part of the example incorporates transmission line inequality 

constraints, Ps. With the system as described in Part (a) of this example, let 

us impose a transmission limit of 375 MW on each transmission line section. 

The economic dispatch problem is mathematically expressed by 

Minimize F,(P,) + F,@,) + F,(3) (7.22) 

Subject to: 

P, +P, +P, = 850.0 (7.23) 
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150.0 < P, < 600.0 (7.24) 

100.0 < P, < 400.0 (7.25) 

50.0 <P, < 200.0 (7.26) 

Ps < 375.0, i=1,7. (7.27) 

The results from the DAOP algorithm using step sizes of 25 MW and 

0.01 MW are given in Table 7.9. | 

Table 7.9 DAOP Solutions Using Two Different Load 
increments for Example 7.1 Part (c) 

Generating Unit Lp=25MW _ Lp=0.01 MW 
  

  

  

P, 375 375.00 
P, 350 347.56 
P, 125 127.44 

Total Cost $/Hr 8,195.37 8,195.33 
  

The transmission limit on line section Z, restricts Unit 1 to an output of 375 

MW instead of 393.17 MW as in Part (a). Consequentially, this difference in 

generation must be made up by units 2 and 3. This transmission limit 

increases the total system cost by 0.97 $/Hr. 

Even though transmission line constraints have been added to the economic 

dispatch problem, the number of computational steps to reach the solution 

remains fixed. In addition, the number of computations per step decreases 

once the constraint on line section Z, is encountered. 

7.5 Incorporating Transmission Line Losses 

Another system cost to consider when formulating the economic dispatch 

problem is transmission line losses. An incremental change in generation 

causes an incremental change in total system line losses. The inclusion of 
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transmission losses into the economic dispatch problem increases the 

difficulty in finding a solution using traditional methods. However, 

preliminary studies using the DAOP algorithm to solve this problem indicate 

that the computations are straight forward. An economic dispatch problem 

including transmission line losses is given in Appendix D. 

7.6 Conclusions 

This chapter describes the application of DAOP to the economic dispatch 

problem in electrical transmission systems. Discussion and examples have 

demonstrated how DAOP can incorporate generation costs, generation limits, 

and transmission line limits. Additionally, the incorporation of transmission 

losses into the objective function and how DAOP handles this non-linear 

constraint has been shown. 

Examples of the DAOP algorithm have shown that additional computational 

steps are not required when incorporating system constraints, unlike when 

using the Lagrange multiplier approach. Furthermore, the computational 

burden may decrease as constraints are encountered. 

For comparison purposes, data for the test circuits has been taken from a text 

book respected in the area of economic dispatch [7.1]. Results of the routine 

have been compared and verified against results obtained by the Lagrange 

multiplier approach. 
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Chapter Eight 

Conclusions 
  

8.1 Introduction 

This dissertation presents the development work of the Discrete Ascent 

Optimal Programming (DAOP) method, a new algorithm for optimization in 

electrical power systems. Originally developed as an optimal power flow 

technique, the fundamental properties of DAOP have successfully been 

applied to switch placement design, phase balancing, and economic dispatch. 

8.2 Contributions 

This dissertation describes the switch placement design algorithm for 

electrical distribution systems. The switch placement algorithm is an 

extension of the DAOP algorithm. The routine has been tested on a real 

circuit in the Arkansas Power and Light (AP&L) distribution system in Hot 

Springs, Arkansas. Results of these tests have been independently verified 

by AP&L personnel. This dissertation is not only the first report of applying 

DAOP to the switch placement design problem but is also the first report of 

an optimal switch placement design algorithm. Future work can take the 

switch placement design one step further into the realm of reconfiguration 

and restoration. 

This dissertation describes a new phase balancing algorithm for electrical 

distribution systems. The algorithm uses basic principles of the DAOP 

algorithm. Implemented as a design module in the Electric Power Research 

Institute (EPRI) Distribution Engineering Workstation (DEWorkstation) 
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software package, the routine has been tested on real circuits in the AP&L 

distribution system in Hot Springs, Arkansas. Results of these tests have 

been independently verified by AP&L personnel. This dissertation is the 

first report of applying DAOP to the phase balancing design problem. 

This dissertation describes the adaptation of DAOP on the economic dispatch 

problem in electrical transmission systems. The adaptations of DAOP to 

include generation costs, generation limits, and transmission line limits into 

the economic dispatch problem have been demonstrated. DAOP test results 

have been verified against solutions obtained by the Lagrange multiplier 

approach. DAOP has been successfully tested on economic dispatch problems 

which have incorporated transmission line losses, a non-linear constraint. 

This dissertation is the first report of applying DAOP to the economic 

dispatch problem. 

8.3 Conclusions 

Research and testing have proven that the Discrete Ascent Optimal 

Programming algorithm is well suited to solve a number of optimization 

problems in power systems. For the unconstrained problem, a proof of 

convergence has been developed which shows DAOP to converge to the 

correct solution in a finite and determinable number of steps without the 

threat of divergence. The proof also shows that the final solution reached by 

DAOP is within the discrete step size used. Therefore, the degree of accuracy 

desired can be attained with proper step size selection. Comparisons of 

DAOP results with those of established solving techniques verify DAOP's 

convergence to the correct solution. Tests have shown that the computational 

burden of DAOP is far less than that of the Lagrange multiplier technique 

when solving the economic dispatch problem with transmission line losses. 
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Appendix A 

Sub-Loss Function Derivations 
  

The sub-loss functions (eqs. (4.1) through (4.8)) can be derived from Figure 

4.1 by combining basic network analysis techniques with the circuit topology 

that applies at each step of the DAOP solution process. For this example, a 

step size, Lp, of 1 amp is used. When the solution process begins, only 1 amp 

of load will be supplied. Therefore, only the 1 amp and 2 amp loads drawn 

with dashed lines in Figure 4.2 (a) will be considered. The sub-loss function 

can be derived from the following two equations. 

F,(,, 1.) = Dd)’ + @d,)" (A.1) 

IL+I,=1 (A.2) 

Combining Equations (A.1) and (A.2) yields Equation (4.1), repeated below. 

F,d,) = 1 - 21, + 31,7 (4.1) 

The derivation of the next sub-loss function depends on the DAOP solution of 

Equation (4.1). The solution specifies source S, to supply 1 amp and source 

S, to supply 0 amps of load. Examining the system topology, the 1 amp load 

becomes completely supplied and the adjacent 2 amp load becomes a new 

ending load. Hence, step two of the DAOP solution process uses the system 

configuration of Figure 4.2 (b). The second sub-loss function can be derived 

from the following two equations. 

F.d,, 1) = Md)’ + @)d,-D? + @)d,” (A.3) 

I, + I, =92 (A.4) 
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Combining Equations (A.3) and (A.4) yields Equation (4.2), repeated below. 

Fd) = 6 - 81, + 51,’ (4.2) 

The remaining sub-loss functions can be derived in like manner. 
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Appendix B 

Example 6.1 Spreadsheet Solution 
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Appendix C 

Phase Balancing Design Reports 
  

C.1 AP&L Hot Springs North 
Virginia Tech's Phase Balancing 

Start of circuit information: 

Local Name: Y423. 

The Start of Circuit Position: X=1331913 Y=2372822 

System loss information 

Before Phase Balancing 
Total kW = 7420.53 

kW Load = 6822.30 
kW Losses = 598.24 

After Phase Balancing 

NOTE: THE SAVE THE CIRCUIT OPTION IS NOT AVAILABLE IN 

DEWORKSTATION VERSION 1.0. IN ADDITION, CIRCUIT LOSSES 

ARE NOT COMPUTED FOR THE REPHASED CIRCUIT 

Imbalance Information at the start of circuit 

Before Phase Balancing 

Imbalance = 0.17 ( 8.57 %) 

At Time: 

Month: January 
Day: Weekday 

Hour: 12am 

After Phase Balancing 

Imbalance = 0.05 ( 2.25 $) 
At Time: 

Month: January 
Day: Weekday 
Hour: l2am 
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Maximum Imbalanced Component BEFORE Phase Balancing 

The component is a 3-Phase Line 

Local Name: 1976.3779. 

The Component Position: X=1331863 Y=2372822 

Imbalance = 0.17 ( 8.57 $%) 

At Time: 
Month: January 

Day: Weekday 

Hour: l2am 

Maximum Imbalanced Component AFTER Phase Balancing 

The component is a 3-Phase Line 

Local Name: 1976.3779. 

The Component Position: X=1331863 Y=2372822 

Imbalance = 0.05 ( 2.25 $) 

At Time: 

Month: January 

Day: Weekday 
Hour: 12am 

Lateral Reconnections 

The component at the start of the lateral is a: 2-Phase Line 

Local Name: 1964.3757. 
Lateral is number 1 of 15 

Lateral position is: X=1328293 Y=2367422 

The Phase Movements are: 

Phase A moved to Phase B 

Phase B moved to Phase A 

Phase C was not present 

The component at the start of the lateral is a: 2-Phase Line 
Local Name: 1970.3759. 

Lateral is number 2 of 15 

Lateral position is: X=1330106 Y=2367889 

The Phase Movements are: 

Phase A moved to Phase B 

Phase B was not present 
Phase C did not move 
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The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1998.3768. 
Lateral is number 3 of 15 

Lateral position is: X=1338563 Y=2369987 

The Phase Movements are: 

Phase A was not present 

Phase B moved to Phase A 

Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 

Local Name: 1993.3765. 
Lateral is number 4 of 15 
Lateral position is: X=1337050 Y=2369274 

The Phase Movements are: 
Phase A was not present 

Phase B did not move 

Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 2000.3783. 

Lateral is number 5 of 15 
Lateral position is: X=1339202 Y=2373621 

The Phase Movements are: 

Phase A was not present 

Phase B moved to Phase C 

Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1996.3791. 

Lateral is number 6 of 15 

Lateral position is: X=1338016 Y=2375573 

The Phase Movements are: 

Phase A was not present 

Phase B moved to Phase C 
Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1992.3762. 
Lateral is number 7 of 15 

Lateral position is: X=1336741 Y=2368550 

The Phase Movements are: 

Phase A was not present 

Phase B was not present 

Phase C moved to Phase A 
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The component at the start of the lateral is a: 1-Phase Line 

Local Name: 2032.3767. 
Lateral is number 8 of 15 
Lateral position is: X=1348804 Y=2369645 

The Phase Movements are: 

Phase A was not present 

Phase B moved to Phase A 
Phase C was not present 

The component at the start of the lateral is a: 2-Phase Line 

Local Name: 2048.3761. 
Lateral is number 9 of 15 
Lateral position is: X=1353610 Y=2368143 

The Phase Movements are: 

Phase A moved to Phase C 

Phase B was not present 

Phase C moved to Phase A 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 2100.3806. 

Lateral is number 10 of 15 

Lateral position is: X=1369374 Y=2378918 

The Phase Movements are: 

Phase A did not move 
Phase B was not present 

Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 

Local Name: 2053.3769. 
Lateral is number 11 of 15 

Lateral position is: X=1355135 Y=2370070 

The Phase Movements are: 

Phase A was not present 
Phase B was not present 

Phase C did not move 

The component at the start of the lateral is a: 2-Phase Line 
Local Name: 2029.3738. 

Lateral is number 12 of 15 
Lateral position is: X=1347833 Y=2362618 

The Phase Movements are: 

Phase A did not move 

Phase B moved to Phase C 

Phase C was not present 
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The component at the start of the lateral is a: 1-Phase Line 
Local Name: 2045.3745. 

Lateral is number 13 of 15 
Lateral position is: X=1352670 Y=2364270 

The Phase Movements are: 

Phase A moved to Phase C 

Phase B was not present 

Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 2024.3735. 
Lateral is number 14 of 15 
Lateral position is: X=1346319 Y=2361904 

The Phase Movements are: 

Phase A was not present 

Phase B moved to Phase A 
Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 

Local Name: 2045.3749. 
Lateral is number 15 of 15 

Lateral position is: X=1352579 Y=2365241 

The Phase Movements are: 

Phase A moved to Phase C 

Phase B was not present 

Phase C was not present 
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C.2 AP&L Hot Springs Carpenter 
Virginia Tech's Phase Balancing 

Start of circuit information: 

Local Name: Z405. 

The Start of Circuit Position: X=1331334 Y=2345360 

System loss information 

Before Phase Balancing 
Total kW = 12773.35 
kW Load = 12246.35 
kW Losses = 527.00 

After Phase Balancing 

NOTE: THE SAVE THE CIRCUIT OPTION IS NOT AVAILABLE IN 

DEWORKSTATION VERSION 1.0. IN ADDITION, CIRCUIT LOSSES 

ARE NOT COMPUTED FOR THE REPHASED CIRCUIT 

Imbalance Information at the start of circuit 

Before Phase Balancing 
Imbalance = 0.10 { 5.22 $) 

At Time: 

Month: January 
Day: Weekday 

Hour: 12am 

After Phase Balancing 
Imbalance = 0.02 ( 0.77 $) 

At Time: 
Month: January 

Day: Weekday 

Hour: 12am 

Maximum Imbalanced Component BEFORE Phase Balancing 

The component is a 3-Phase Line 

Local Name: 1975.3666. 
The Component Position: X=1331284 Y=2345360 

Imbalance = 0.10 ( 5.22 $) 
At Time: 

Month: January 
Day: Weekday 
Hour: 12am 
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Maximum Imbalanced Component AFTER Phase Balancing 

The component is a 3-Phase Line 
Local Name: 1975.3666. 

The Component Position: X=1331284 Y=2345360 

Imbalance = 0.02 ({ 0.77 &) 

At Time: 

Month: January 
Day: Weekday 

Hour: 12am 

Lateral Reconnections 

The component at the start of the lateral is a: 2-Phase Line 
Local Name: 1970.3645. 

Lateral is number 1 of 15 
Lateral position is: X=1329824 Y=2340231 

The Phase Movements are: 

Phase A was not present 
Phase B did not move 

Phase C did not move 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1963.3652. 
Lateral is number 2 of 15 

Lateral position is: X=1327731 Y=2341950 

The Phase Movements are: 

Phase A was not present 

Phase B did not move 
Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 

Local Name: 1945.3645. 
Lateral is number 3 of 15 
Lateral position is: X=1322285 Y=2340308 

The Phase Movements are: 

Phase A was not present 
Phase B moved to Phase C 

Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1964.3631. 
Lateral is number 4 of 15 
Lateral position is: X=1327980 Y=2336852 

The Phase Movements are: 

Phase A was not present 

Phase B was not present 
Phase C moved to Phase A 
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The component at the start of the lateral is a: 2-Phase Line 
Local Name: 1941.3622. 

Lateral is number 5 of 15 
Lateral position is: X=1321021 Y=2334741 

The Phase Movements are: 

Phase A moved to Phase C 

Phase B was not present 
Phase C moved to Phase A 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1925.3623. 
Lateral is number 6 of 15 
Lateral position is: X=1316198 Y=2335034 

The Phase Movements are: 

Phase A was not present 

Phase B was not present 
Phase C moved to Phase A 

The component at the start of the lateral is a: 1-Phase Line 

Local Name: 1916.3630. 
Lateral is number 7 of 15 
Lateral position is: X=1313501 Y=2336761 

The Phase Movements are: 

Phase A moved to Phase C 

Phase B was not present 
Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1928.3645. 

Lateral is number 8 of 15 
Lateral position is: X=1317159 Y=2340362 

The Phase Movements are: 

Phase A was not present 

Phase B was not present 
Phase C moved to Phase B 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1923.3643. 

Lateral is number 9 of 15 
Lateral position is: X=1315646 Y=2339893 

The Phase Movements are: 
Phase A was not present 
Phase B was not present 
Phase C did not move 
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The component at the start of the lateral is a: 2-Phase Line 
Local Name: 1889.3624. 

Lateral is number 10 of 15 

Lateral position is: X=1305342 Y=2335394 

The Phase Movements are: 

Phase A did not move 

Phase B did not move 

Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1871.3619. 
Lateral is number 11 of 15 
Lateral position is: X=1299900 Y=2334241 

The Phase Movements are: 

Phase A was not present 

Phase B moved to Phase A 

Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 

Local Name: 1856.3564. 
Lateral is number 12 of 15 

Lateral position is: X=1295225 Y=2320948 

The Phase Movements are: 

Phase A moved to Phase B 

Phase B was not present 
Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 

Local Name: 1969.3680. 

Lateral is number 13 of 15 
Lateral position is: X=1329609 Y=2348725 

The Phase Movements are: 

Phase A moved to Phase B 

Phase B was not present 
Phase C was not present 

The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1978.3705. 
Lateral is number 14 of 15 
Lateral position is: X=1332384 Y=2354763 

The Phase Movements are: 

Phase A was not present 

Phase B moved to Phase A 

Phase C was not present 
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The component at the start of the lateral is a: 1-Phase Line 
Local Name: 1976.3708. 

Lateral is number 15 of 15 
Lateral position is: X=1331788 Y=2355497 

The Phase Movements are: 

Phase A was not present 

Phase B was not present 

Phase C did not move 
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Appendix D 

Transmission Line Losses 
  

D.1 Introduction 

For this discussion, only real power will be considered. However, the reactive 

component can readily be incorporated. To solve for transmission losses, the 

current magnitude in each branch, I,, must be calculated, squared, and 

multiplied by the branch impedance, R,. The losses in each branch are 

summed together to determine the total transmission losses, Pl, as shown in 

.1). 

PI=Z1,2*R, (.1) 

When formulating the economic dispatch problem to include transmission 

line losses, a constant, c, must be used to convert the transmission line losses 

to dollars. Once the losses are in terms of dollars, the objective function is 

modified as shown in (D.2). Note that when including transmission line 

losses, the total generation, Pt, must equal both the total load, Pr, and the 

losses, Pl. The equality constraint equation is modified to include Pl as 

shown in (D.3). 

Minimize: Ft(Pt) +c * Pl (D.2) 

Subject to: Pr+ Pl- Pt=0 (D.3) 

D.2 Example D.1: Transmission Line Losses 

This example incorporates transmission line losses into the economic 

dispatch problem of Example 7.1. The new objective function and new 

constraints are shown below. 
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Minimize F,(P,) + F,(P,) + F,(@,) +c * Pl (.4) 

Subject to: 

P, +P, + P, = 850.0 + Pl .5) 

150 =P, = 850.0 (D.6) 

100 = P, = 600.0 (D.7) 

50 = P, = 400.0 (D.8) 

Ps, = 375.0, i=1,7 (D.9) 

PI=lP,*R,, k=1,7 (D.10) 

The load increment, Lp, is chosen to be 25 MW as given in (7.17). To convert 

transmission line losses into dollars, conversion factor, c, in (D.11) is used. 

c = 20.0 $/MW - Hr (D.11) 

Table D.1 organizes the DAOP solution by showing a few of the 

computational steps. The final solution is given in Table D.2. 

Table D.1 DAOP Solution Table for Example D.1 
  

Step Generating ACost$/Hr Total Cost Selection Generation 

  

  

  

  

  

  

Unit $/Hr Level MW 
1 1 1,147.98 1,148.78 25 

2 1,146.46 1,147.26 <= 

3 1,151.20 1,152.06 

2 1 198.98 1,347.04 <= 50 

2 199.98 1,350.36 

3 202.26 1,350.32 

3 1 200.93 1,550.38 15 

2 199.89 1,549.34 <= 

3 202.26 1,550.10 

33 1 228.26 8,353.42 825 

2 226.56 8,351.62 <= 

3 232.39 8,372.29 

34 1 228.26 8,609.74 <= 850 

2 228.99 8,614.37 

3 232.39 8 632.62 
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Table D.2_ DAOP Solution for Example D.1 
  

Generating Unit Output   

P, 350 
P, 350 
p 150 
  

Total Cost $/Hr 8 609.74 
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