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ABSTRACT

This thesis is concerned with the effects of earthquakes on partially-filled
water tanks. The analysis is applicable to rectangular water tanks, which have
received little attention to date. The analysis is relatively involved and includes
the derivation of the equations of motion for the vibration of the whole of tank by
means of substructure synthesis, a stochastic analysis relating the random
ground motion caused by earthquakes to the random vibration of the tank, a
stochastic characterization of the fluid pressure and computation of the

probability of failure of the tank.

Abstract
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1. INTRODUCTION

There have been many approaches to the analysis and design of fluid
tanks, as described in Housner (ref. 1), Abramson (ref. 2), and Bauer et al (ref. 3).
A great deal of research conducted in the last two decades on fluid/structure
interaction for the purpose of developing new methods for analysis and design
of flexible fluid tanks has been concerned mostly with cylindrical tanks.

In designing a water tank, the hydrodynamic loading is the most
important factor. The hydrodynamic loading is strongly affected by the relation
between the excitation frequencies and the natural frequencies of the structure.
For most typical fluid tanks, fluid surface slosh occurs at frequencies that are
much lower than those of the vibrating elastic tanks. As a result, for low
excitation frequencies, such as in the case of seismic loading, the frequencies of
the fluid slosh modes and the natural frequencies of the tank tend to be well
separated. This suggests that the effects of fluid-structure interaction during
vibration are minimal. Consequently, the fluid slosh forces exerted on the tank
can be computed by regarding the tank walls as rigid.

To date, there seems to be no structural model for the full tank. The basic
approach adopted here is a substructure synthesis (ref. 4), whereby a complex

structure can be regarded as an assemblage of simpler substructures.
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Many random phenomena exhibit statistical regularity. If the excitation
exhibits statistical regularity, so does the response. In such cases it is more
feasible to describe the excitation and response in terms of probability of
occurrence rather than deterministically. We assume here that the random
excitation is Gaussian, which permits us to use tools of random vibration to
compute the probability of failure of the tank due to earthquake excitations.

This thesis covers the effect of earthquakes on partially filled rectangular
water tanks. Modeling of the tank and of the fluid slosh is discussed in Chapter 2.
Dynamics characteristics of the tank and fluid are derived in Chapter 3. Response
of the tank to random excitation is discussed in Chapter 4. Numerical results are
shown in Chapter 5. Chapter 6 contains conclusions and some suggestions for

future work.
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2. MODELING OF THE TANK AND OF THE FLUID SLOSH

2.1 Modeling Techniques

Perhaps the most widely used method for the analysis of complex
structures is the finite element method. But, whereas the finite element method is
very versatile in deriving algebraic eigenvalue problems for complex distributed-
parameter structures, it has the major disadvantage that it often requires a very
large number of degrees of freedom for accurate estimates of the lower natural
frequencies and associated natural modes. In some cases, the required number of
degrees of freedom is so large that other methods of analysis are recommended.
This is often the case when the complex structure can be regarded as an
assemblage of a small numbers of simple substructres. In this case, it is possible
to construct a mathematical model with a substantially smaller number of
degrees of freedom than the finite element method. One such method, developed
by Hurty (ref. 5,6), has come to be known as component-mode synthesis. The
question can be raised as to what constituted component-modes, but in general
one can assume that they are generated by solving some form of substructure
eigenvalue problem. In this regard, it should be noted that both the finite element
method and the component-mode synthesis can be regarded as Rayleigh-Ritz
methods. But, as pointed out by Meirovitch (ref. 7) and Meirovitch and Hale (ref.

8,9), in the spirit of Rayleigh-Ritz, one need use only admissible functions, as

2. Modeling of the tank and of the fluid slosh 3



long as the functions are from a complete set. Although substructure modes are
certainly suitable admissible functions, they represent only a relatively small
subset of the much broader set of admissible functions. To emphasize the
mathematical requirement, and play down the physical implications of the term
“component modes”, we refer to the method whereby the structure is treated as
an assemblage of substructures, each represented by a finite set of suitable

admissible functions, as substructure synthesis.

2.2 Quasi-Comparison Functions

According to the Rayleigh-Ritz theory, in formulating the algebraic
eigenvalue problem by rendering the quotient stationary, where the quotient is
in terms of the energy inner product [W,W] instead of the inner product (W,LW),
the approximation can be constructed from the space of admissible fuctions
rather than comparison functions (ref. 11). The main difference between
admissible functions and comparison functions lies in the fact that admissible
functions need satisfy only the geometric boundary conditions and the
comparison functions must satisfy all the boundary conditions. Of course, there
is also the question of differentiability, but in the classical Rayleigh-Ritz method
this question seldom arises, as the functions used tend to have sufficient
smoothness to ensure the existence of derivatives of high order.

In certain cases, by using admissible functions, the convergence is quite
slow. On the other hand, the use of comparison functions yields relatively fast
convergence. However, the fact that each of the comparison functions must
satisfy all the boundary conditions can be quite a burden. To avoid these

difficulties, a new class of admissible functions was introduced by Meirovitch

2. Modeling of the tank and of the fluid slosh 4



(ref. 10). This is the class of quasi-comparison functions defined as admissible

functions of such a nature that finite linear combinations thereof are capable of

satisfying the natural boundary conditions as accurately as desired. Hence,

quasi-comparison functions are functions that individually act like admissible

functions but in a finite group they behave more like comparison functions. In

essence, quasi-comparison functions can be regarded as being complete in

boundary conditions, in addition to being complete in energy.

2.3 Derivation of Quasi-Comparison Functions for the Tank
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Figure 2.1 Configuration and coordinates of a water tank

2. Modeling of the tank and of the fluid slosh

The tank structure can be regarded as a box in the form of a parallelepiped



anchored to a foundation made of a concrete. Assuming that the foundation is
rigid, the tank can be modeled as four vertical panels clamped at the bottom and
with the sides connected to one another (Figure 2.1) so that the horizontal angle
between any two adjacent panels remains 90 degree at all times. The top of the

panel is reinforced by a bar, as shown in Figure 2.2. In addition, each of the panel

\

Reinforcing bar

|

L |

Figure 2.2 Bar at the top of the tank

is reinforced by one or two vertical ribs. It is assumed that the roof of the tank
does not lend stiffness, so that it is not considered as a structural member. Hence,
for the sake of this analysis, the box is regarded as open at the top. This is a
conservative assumption, as a box clamped or simply-supported at the top is
stiffer than an open one, albeit supported elastically by a bar.

We propose to model the tank structure by substructure synthesis (ref. 1)."
To this end, we use sets of local axes x;y;z; (i=1,2,3,4), as shown in Figure 2.1,
where y; =x,, yo =X3, Y3 =X4, ¥4 =X, and z; =z. We assume that the panels
undergo bending deformations alone and that the displacement of a typical point

on a panel can be expressed

2. Modeling of the tank and of the fluid slosh 6



wixpz0 =3 3 0 (X1, 2)q(D), 1=1,2,3,4 (1)

r=ls=1

where
¢I’S(xi’z) = q)l' (xl )(DS (Z)I l = 192’394 (2)

in which ¢.(x;) and ¢4(z) are admissible functions (ref. 16), also known as shape
functions. In particular, the admissible functions are chosen in the form of quasi-
comparison functions, which are linear combinations of admissible functions
capable of satisfying all the boundary conditions (ref. 11). As quasi-comparison
functions in the y-direction, we choose a linear combination of clamped-clamped
and clamped-free beam shape functions. The clamped-clamped shape functions

have the expression

sinB,b —sinh Bb
cosPB b — coshBb

¢, (z) = cosPgz — coshPBz - (sinByz —sinh B z) (3

where B;b are roots of the characteristic equation
cosPbcoshBb=1 4)

in which b is the height of the panel. Similarly, the clamped-free shape functions

are given by

sinP¢b —sinh B b
cosP b+ coshBb

¢,(z) = cosPz — coshPz + (sinfgz — sinh B z) )

2. Modeling of the tank and of the fluid slosh 7



where Bb satisfy the characteristic equation
cosB bcoshPb=~1 (6)
The quasi-comparison functions ¢.(x;) require a more elaborate

discussion. To this end, we consider a rectangular frame in bending as shown in

Figure 2.3, and propose to solve the eigenvalue problem for the frame. Then,

X2
— az= a, B
X3
Y v
asg=3an \_» - ar
Wy W,
4, y
X4
] a, B
X4

Figure 2.3 Rectangular frame in bending

the resulting eigenfunctions will be taken as quasi-comparison functions for the

tank structure in the x-direction.

Assuming that the mass and stiffness distributions, m and EI, are the same

for all sides, the eigenvalue problem can be defined as
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d4w. X m(!)z .
__dxl~(4 2 ~B*w;(x;)=0, B* T i=12,3,4 )

1

where w; are subject to the boundary conditions

w;(0)=w;(a;)=0, i=12,34 (8a)
dwy| _ dw, | , dw, | _ dw, | , dw, | _ dws| ’ dw,| _ dw,| (8b)
dX4 'a‘ dx1 IO Xm Ial dx2 |O dX2 Iaz dX3 |0 dX3 la3 dX4 IO
d2W4 | - d2W1 | d2W1 ' - d2W2 | d2W2 | - d2W3 I d2W3 ’ _ d2W4 | (SC)
df | dxf ) dxf | dxf | x| ax3 | dx3 | dxj |
The solution of Egs. (7) can be written as
w;(X1) = A sinPx; + A, cosPx; + A;sinhBx; + A4 coshBx;
W, (X,) = By sin3x, + B, cosBx, + B3 sinh x, + B4 cosh Bx, o)

w3(x3) = C;sinPx; + C, cosPxz + C3sinh Bx; + C4 coshBx;,
w4(x4) = D;sinBx4 + D, cosPx4 + D5 sinhBx, + D4 coshPx,

The problem can be simplified by observing that the structure is
symmetric, so that the modes belong to two classes, symmetric and
antisymmetric. In the case of symmetric modes, we have

W3=W) Wy =W, (10)

resulting in
Ci =Ai’ Dl =Bi’ i=1,2,3,4 (11)

2. Modeling of the tank and of the fluid slosh 9



so that there are only eight unknown coefficients. Consistent with this, Eqgs (8)
reduce to

Wi(0)=wi(ai)=0, i=12

(12a)
dw2| _ dwll dwll _ dw2l
dx, la2 dx, Io, dx, |a] dx, |0

(12b)
d2w2| _ d2w1’ d2w1| _ d2w22| | (120)
dX22 laz dx12 IO dX12 |a' dX2 '0
Application of boundary conditions (12a) yields
. sinfa; .
w; = A (sinBx; — — sinhfBx;)
sinhPa,
+A,(cosPx, — coshBx; — —= B:iln;l EZSh B3y Ginh Bx;)
1
(13)
. sinfa, .
w, =B, (sinfx, — sinh%az sinhfBx,)
2

+B,(cosPx, — coshBx, — o8 stlizn;l g:sh Pa, sinhBx,)
1pa;

Inserting Egs. (13) into boundary conditions (12b) and (12c), we obtain

Al- s.mBal )= A, cosBa.l—coshBal _B,(cosBa, s.mBaz coshBay)
sinhfa, sinhPa,; sinhPa,

+B,(sinBa, + sinhBa, + OSP22 = coshPay 8. v=0
sinhBa,

A (cospay - 2B

coshPa;)— A,(sinPa; +sinhPa, + cos Ba_l —coshfa, coshfa,)
sinhPa,; sinhfa,

(14)
2. Modeling of the tank and of the fluid slosh
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_B,(1- §1n PBa, )+B, cosBa? —coshfa, -0
sinhBa, sinhfBa,

A, —BysinPa, —B, cosfa, =0
A sinfa; + A,cosPa, —-B, =0

Equations (14) represent four homogeneous equations in the unknowns
A,A,,B;, and B, and the parameter B. Equating the determinant of the
coefficients to zero, we obtain a characteristic equation to be solved numerically
for the eigenvalues f;,B,.,.... Then, inserting each of the eigenvalues into three of
Egs. (14) and letting one of the unknowns be equal to one, say A;=1, it is possible
to solve for the remaining three unknowns and the associated eigenvector. Upon
inserting these values into Egs. (10) and (13), we obtain the frame eigenfunctions.

In the case of antisymmetric modes, we have

W3 =—W{,Wy =—Wy (15)
which implies that
Ci=-A;, D;j=-B;, i=1234 (16)

Boundary conditions (12a) and Eqgs. (13) retain their form. On the other hand,

boundary conditions (12b) and (12c) are replaced by

dw, | =dW]l,dW1l _ dw,| (17a)
dxy |, dx ) dxy],  dxol,

2. Modeling of the tank and of the fluid slosh 11



dwy| _dPwi| dPw| _d’w,|

dx,? le dx,? ’0 dx,? ‘al dx,? Io
Hence, inserting Egs. (13) into Egs. (17), we obtain
A(l- s.m Ba; | A, Ccos Ba.l —coshPa; +B,(cospa, — s?m Ba, coshBa,)
sinhBa, sinhBa; sinhPBa,
B, (sinPa, +sinhPa, + = Ba? —coshPBaz (oeh Ba,)=0
sinhfa,
A (cosPa; — s.m Ba, coshPa;) — A,(sinPa; +sinhPa; + cos Ba,l —coshfa, coshfa,)
sinhfBa, sinha,
(18)

sinPa, +B, 508 Ba, —coshPa,

-B.(1-
1€ sinhPa, 2 sinhBa,

0

A2 + Bl sin Baz + B2 COSBaZ =0

A sinBa; + A,cosPa; -B, =0

Of course, the procedure for evaluating A;,A,,B,B,, and p remains the same.

Table 2.1 Eigenvalues of the rectangular frame

i B; i Bi

1 1.1982275 4 2.0545012
2 1.3698758 5 2.3130423
3 1.8078934 6 2.5334401

2. Modeling of the tank and of the fluid slosh 12



The symmetric and antisymmetric eigenfunctions of the rectangular frame
will be used as the quasi-comparison functions ¢,(x;) (i=1,2,3,4; r=1,2,...,n,)
entering into Eq. (2). Equations (14) and (18) have been solved numerically and
the six lowest eigenvalues and eigenfunctions are shown in Table 2.1 and Figures

2.4 and 2.5, respectively.

Figure 2.4 Symmetric frame modes Figure 2.5 Antisymmetric frame modes

2. Modeling of the tank and of the fluid slosh 13



2.4 Distributed Spring Constants for the Reinforcing Bar at the Roof

We assume that the roof provides no structural support and that the
upper edge of the walls is supported by a bar acting as a distributed spring both
in bending and torsion (Figures 2.6 and 2.7).

The following expressions are used for the spring constant (ref. 17).

270EIL3
kin, = 19a
L™ $2(12x% —1141%%2 +180L%x - 781%) (192)
270EIL3
Kinn = 19
127 %2(30x* - 901x> + 481%x? + 541°x — 421.) (19)
24EIL3
Kow = 19¢
2 2 x% —101%x2 + 163 - 7LY (199)
3
G321 - 2P on B2
kyy=ky=—2—p L 8 3b (19d)
x(2L° +3Lx - 6x°)
A B C D
B ki1 D ke D k() 2
L L L
X X
3m
D E F
A K2b(X) a K2b(X) A
L L
X X
2m

Figure 2.6 Boundary bending distributed spring
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ka®) A k(@ U

=

Figure 2.7 Boundary torsional distributed spring

where E, ], G, and L are Young’s modulus, area moment of inertia, modulus of

rigidity, and the length of the beam, respectivly.

2. Modeling of the tank and of the fluid slosh 15



3. DYNAMIC CHARACTERISTICS OF THE TANK AND FLUID

3.1 The Equations of Motion of the Tank
We assume that, due to ground motion, the tank experiences the rigid-

body displacement
Re =Xci+Y.j (20)

where x_ and y, are assumed to be given. Hence, from Figure 3.1, we can write

? k j

Figure 3.1 Position vector of the tank

3. Dynamic characteristics of the tank and fluid 16



the total position vector of a point on the tank in the form
R;=R,+r;+s; i=12,3,4 (21)
in which
Rot =R~ Li-22j=(x, = i+ (ye — 22)j

4. 4ap. a; .. a ..
Rep =Re+2Hi=kj=(xe + )i+ (ye = 3D)]

a;. as. ajp .. dn .
Res =Re+ 2 i+ 2hj=(xe + )i+ (Ve + D]

(22)
ay. , a, . a.. a; ..
Reg =Re =i+ =1j= (ke =D+ (ye + )]
r =xXi+zk, 1y =X+ 25k, 13 =—x3i+ 23k, ry =-x4j+ 24k
S| =W1j, 82 ==Wal, 83 =-W3], 54 = Wyi
The velocity vector of a point on the tank is
Vi =VCi +éi’ i=1,2,3,4 (23)
or more explicitly
Vi=Xd+¥cj+8i=Xd+(yc +5))]
Vo =Xl +Ycj =81 =X —82)i+¥c] (24)

Vi = Xci+Yycj—83)= Xci + (¥ —53).].
Vy=Xd+Ycj+8ai=(Xc +84)i+Y¢]

3. Dynamic characteristics of the tank and fluid 17



The equation of motion can be obtained by means of the extended

Hamilton's principle, or

[7@T-8v+aW)di=0, dw;=0, i=1234, t=t,t,

(25)

where T is the kinetic energy, V is the potential energy and 8W is the virtual

work. Using Egs. (24), the kinetic energy can be written as

1 & ra, rb,
T=§Z_[0 -[0 pi Vi Vidx;dz;
i=1
1pa, b .0 . . \2 1pa, ¢b . .2 .2
=2 [0 J,PrE + e + ) Jdxydzy +- 17 J,PUCke = W2)? +¥21dx,dz,

1 a, ¢b .2 . . 1 a, rb N . 2 .
+§-[0 JOP[XC+(yc—w3)2]dx3dz3 +—2—jo ‘[Op[(xc+w4) +y§]dx4dz4

The potential energy has the form

Iy [ [P 2y 2 azwi ) Ow; 9w,
V= ZDI i (72w +20 -9 ) ol a7 M
+—zj (kW (x,,b,,t)+k,t[w] }dx,dz;
J ErlbIrxb(a WI) dz, + .[ Enblnb(a Wl) 5 dz,
=3 =3
92 9?
_[ Eppliib (57~ w2) L4z +3 J S T e w3) L 4z3
2 =3
+— j Enblnb( ) Lty j Eannb( ) adz4

2

where

3. Dynamic characteristics of the tank and fluid

(26)

(27)
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Ed3

D=——
12(1-v?) 28)

in which E is the modulus of elasticity, d is the wall thickness and v is the
Poisson’s ratio, V? is the Laplacian operator, k;, are distributed spring constants
in bending due to the reinforcing bar at the top of the wall, k; are distributed
torsional spring constraints of the same bar and E, I;, are rib flexural rigidities.
The virtual work is due to the distributed force p;(x;,z;,t) representing the fluid

pressure in the tank and can be written as

4
dW = 214.[(: J:* p;dw;dx;dz; (29)
i=

Next, we assume that the elastic displacement can be expressed in the form
w(x,z,t) =" (x,2)q(t) (30)

where ¢(x,z) is a vector of quasi-comparison furctions and q(t) is a vector of
generalized coordinates. Implicit in Eq. (30) is the fact that the double subscript
in Eq. (2) is replaced by a single subscript. Equation (30) is valid for all four
panels, and in Egs. (26), (27) and (29) we carried out integrations over the
individual panels. In recognition of that, we express the displacements over each

of the panels as follows:

wi(x;,2i,) = 00T (x;,z;)q(t) i=1,2,3,4 (31)
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where ¢ is the portion of ¢ that extends over panel i. Inserting Egs. (31) into Eq.

(26), we obtain the discretized kinetic energy

1 pa b . <2 . DT - .T T.
T=> [ [P0 + 92 +29:0" 4 +4TeDe T ydxdz,

1 a, b . . . . . .
+2 ] o + 92 - 250 Tq + 4T oD ) pdz,

l a, cb .2 -2_2- 3T - T, (3) (3T d
+2f0 JOP(Xc +Ye—2Y.07q+q 970 q)dxadzy

1¢a, b . ) ) o .
+§Jo .[o plke + e +2%0Tq+q 0D WTg)dx,dz,

= lm(icc2 +y.2)+STq+ %qTMq (32)
where m is the total mass of the tank
S= Yc(_‘z l J(:Pq)(l)dX]le ‘Jj 3 I§p¢(3)dx3dz3)
“e(fy” ;00 Paxadz - [* (06 Pdxdzy) (3)
and
(34)

4 - .
M= 2{'[; Jl:" pdPoWTdx.dz,
1=

is a mass matrix. Introducing Egs. (31) into Eq. (27), we obtain the discretized

potential energy

(35)

1
v=—=q"K
2q q
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where

4
K=¥D J‘;i I;’[qu)(i)vz(b(m
i=1

82¢(i) a2¢(i)T a2¢(i) an)(i)T a2¢(i) a2¢(i)T

+(1-v)(2 dx.dz.
( X axiazi aXiaZi axlz ale azl2 axl2 ) Hov A
3 i i 00 (x;,b;,t) 936D T(x;,b;,t
+j0 [kin®™ (x5, by, 0D (x5, by, 0) + K : (ax' _ a(xl 1 )]dxi
1 1
LELL J.bl 82¢(1) 82¢(1)T TE L. b, a2¢(l) 82¢(1)T
rib®rib J, az2 az2 o rib™rib }o azz azz x=_2ﬁ
3 3
b, 2,(2) 324(2)T b, 2,(3) 32,4(3)T
+EribIn'bJ 2 ¢2 A ) +EribIribI ? ¢2 i ) |
0 dz" dz° | _a 0 9z oz |x=a_,
2 3

BT b, 82¢(3) 82¢(3)T b, a2¢(4) 82¢(4)T,
+Efivlrip _[0 2 32 | m +Erib1ribjo 2 a2 I a,
X=— X=—

3 2

(36)

Finally, insering Egs. (31) into Eq. (29), we obtain the discretized virtual work

W =PT8q (37)
where
4 a; b (l)
P=-3 [ ' J,pioVdxidz; (38)
i=1

is the generalized force vector due to fluid pressure differential excluding static
pressure. Introducing Egs. (32), (35), and (37) into Eq. (25) and the following the

usual steps, we obtain the equations of motion
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Mi+Kq=Q (39)

where

P-S (40)

(@)
1l

is a generalized force vector due to the pressure differential in the tank and the

rigid-body motion of the support.

3.2 The Tank Eigenvalue Problem

The equations of the motion for the tank are given by Eq. (39), with the
force vector being given by Eq. (40), in which P is a force vector due to the fluid
pressure differential in the tank and —$ is an inertial force vector due to the
ground motion, both forces assumed to represent random processes. To obtain

the solution of Eq. (39), we first solve the eigenvalue problem
Ku = ®*Mu (41)

where K and M are real symmetric matrices. The solution consists of the

eigenvalues o)J2 and eigenvectors u; (j=1,2,...n), where ®; are recognized as the
natural frequencies of the tank and u j are the associated modal vectors; n is the

number of degrees of freedom of the discretized tank. The modal vectors are

orthogonal and are normalized so as to satisfy

ukTMuj = Sjk’ ukTKuj = (0J25]k _],k = 1,2,...,11 (42)
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where 6 is the Kronecker delta. Then, the solution of Eq. (39) can be expressed

in the form of the linear combination

n

q(t) = Y m;(t)y; (43)

=1

where M;(t) are modal coordinates. Introducing Eq. (43) into Eq. (39),
premultiplying both sides of the resulting equation by u; and using Eq. (42), we

obtain the set of independent modal equations
fi;()+ oM =F;t), j=12,...n (44)

where F(t) are modal forces. Before discussing the modal forces, we wish to

establish the relation between the actual displacements and the modal

displacements. The actual displacement is
w(x,z,t) = 0T (x,2)q(t) (45)

where ¢(x,z) is a vector of quasicomparison functions and q(t) is a vector of

generalized coordinates. Now, we insert Eq. (43) into Eq. (45) and write

w(x,z,t) =" (x,2)q(t) = ¢T(X,Z)Z n;(Hu; = ZWj(x,Z)nj(t) (46)
j=1

=1 =

in which
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Wi(x,2)=¢" (x,2)uj, j=12,...,n (47)

are recognized as the eigenfunctions for the full tank structure.

To determine the modal forces, we denote by f(x,z,t) the force density at
any point on the tank, and we observe that f contains contributions from the fluid
pressure differential and the ground motion. Then, using Eq. (43) and Eq. (46),

we can write the virtual work as

oW = J; I(;Jf (x,z,t)0w(x,z,t)dxdz

= Igjsf(x,z,t)giwj(x,zﬁnj (t)dxdz=

= Zle(t)Snj(t) (48)
J:

where

Fi(t)= j:_[(;)f(x,z,t)wj(x,z)dxdz (49)

are the modal forces. As a matter of interest, we wish to relate f(x,z,t) to the
generalized force vector Q, Eq. (40). To this end, we use Eq. (43) and write the

virtual work in the form

SW =Q"8q = QTZ&]j(t)UJ‘ =ZQTuj8]1j ‘ (50)
j=1

=1

so that the desired relation is
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Fi0=Q"; = ['[1(x,2,0Wj(x, 2)dxdz (51)

3.3 Fluid Slosh Frequencies and Relation to Tank Frequencies
Under the assumption of small displacements, the velocity potential
®(x,y,z,t) for the motion of a inviscid fluid satisfies the wave equation (ref.13)
1 °®

Vid=——1 52
cp2 ot? (52)

where c, is the sound velocity and V? is the three-dimensional Laplacian

operator defined as

a’l az 82
ox? * dy’ * 0z°

V= (53)

For low frequencies, the fluid can be assumed to be incompressible. As a result,
the governing equation for the velocity potential, Eq. (52) simplifies to the
Laplace equation

Vo =0 (54)

Moreover, the pressure p(x,y,z,t) is governed by the linearized Bernoulli equation

—+lp+gz=0 (55)
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where p is the mass density of the fluid and g is the gravitational constant. The
velocity potential representing a solution of Eq. (55) must satisfy given boundary
conditions. The free surface condition requires that no fluid particle leave the
surface. In terms of the waveheight function n(x,y,t) of the surface, the following

boundary conditions apply

on 0d

—_———— — 6
ot oz 0 (56)
o0 1

“g+gpo+gﬂ=0 (57)

where p,(x,y,t) is the free surface pressure. At any point of contact between the
fluid and structure, the normal component of the fluid velocity must be equal to

the structure velocity, or

9P _
on

1, (58)
where n is the normal direction. For a rigid rectangular tank of dimensions a;,
a,, and b, the mode shapes n,,, and natural frequencies A, of the free surface

waveheight 1 are given by (ref. 13)

N = 2 ZAmn cosm—n(2x+a1)cosﬂ(2y+a2) (59)
m=0n=0 23‘1 232
A2 =gk tanh(k,h) (60)

where the constant k,,, is defined by
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m n
k2, = (—5 +—)n’ (61)

and h is the height of the fluid. When the excitation is parallel to the x-axis, the
natural frequency A, of the nth mode of the free surface waveheight can be

obtained from

_ 2n+Dm gtanh @n+)xw h

A,
4 a;

(62)
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4. RESPONSE OF THE TANK TO RANDOM EXCITATION

4.1 The Principal Stresses Probability Density Function
We define the cross-correlation function between modal forces (ref. 12) as

follows:

T
1t
ReF, ()= Th_lgﬁj_zg Fi(OF (t+T)dt
. 1 I apeb arb . A . n .
= lim — [2r[f) [ 0 2.OWj(x, 2)dxdzl ) [ PG 2, 0W . (%, 2)dRd2 K
2

[ Pw arbe 2 sy IIf o s
_.[0-[0 j(x,z){JO_[O k(x,z)[Tl_I)Il ?J‘_ZEF (x,z,t)f(X,Z,t)dt]dxdZ}dxdz

arbpearpb . n . L
- Io.[o .[0 .[0 W;(x,2)W (X,2)R 3 (x,2,X,Z,T)dXdzdxdz (63)
where

T
R (x28,27)= lim %jﬁz% £(x,z,)f (.2, Ot (64)

is the distributed cross-correlation function between the distributed forces f(x,z,t)

and f(X,z,t). The cross-spectral density function is defined as the Fourier

transform of R G OF
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SFJ.Fk (w)= J‘°° RF F, C—imd‘t
= r [I _[ _[ I W;(x,2)W (%,2)R 2 (x,2,%,2, T)dkd2dxdz]e” otqy
= MO JO JOW j(x’z)wk(X,Z)[I_%ff(x,z,i,i,t)e"imd‘c]df(didxdz

bea b . a o L
= I(?jo.[o .'-0 W;(x,2)Wy (X,2)S 2 (x,2,X,Z,w)dXdzdxdz (65)

where

S (%,2,%,2,0) = j_li ; (x,2,%,2,7)e "t (66)

is the distributed cross-spectral density function between the excitation process
f(x,z,t) and f(X,z,t).

The cross-correlation function between the principal stress at x, z and X, Z
has the form

T
R, 5(%,2,%,2,7) = lim l_[lrcs(x,z,t)o()‘(,i,t+1:)dt
Toe T-=

T n n
= Jim = [ 713 % (x, 2 O, Ty (R 2 ¢+ D
—e 7T =l k=1

n M:s

2 %2R 2)R  (T) (67)
in which

82w(x zZ,t) N 02w (x,z,t)

0z° )

0(x,z,t) = 2 D+ vy
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azw(x,z,t) azw(x,z,t) 2 *w(x,z,t) 5
1- — A Sl A
+( v)\/( 2 ) - +4( 2 )] (68a)
3D *W.(x,2) 9°W.(x,2)
zj(x,z)=d—2[(1+v)( a:& + aiz )
*W.(x,2) 3*W.(x,2) 9*W .(x,2)
1-— J _ J 2 JAesN2
+( V)\/( > ™, )" +4( 32 )] (68b)
T
ank = Tlgrl %_[_21 M; (DM (t+T)dt (68¢)
2

where D is the flexural rigidity of the plate, and d is the thickness of the plate.
At this point, we wish to relate the principal stresses cross-correlation

function with the excitation cross-spectral density function. To this end, we

denote the modal impulse response by g;(t) and the modal frequency response

by G j(®), where from Eq. (44)

1 .
GJ((D)=“)2—?, _]=1,2,...,1’1 (69)

J

The frequency response is related to the impulse response by the convolution

integral
M0 =[_gpFjt-4pd;, j=12,..n (70)

where Y is a dummy variable. Inserting Eq. (70) into Eq. (68), we obtain

T
Ry, (0)= lim %j}l [ g Fit—-)dp |~ gy (u)Fic(t+T—py)dpy Jde
2
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=L gmpecor lim %Fja—uj)Fk(m—uk)dt]dujduk (71)

Assuming that the excitation is ergodic, and hence stationary, and using Eq. (63),

we can write

T T
N N
Tlg;gﬁj_zg Fj(t— )Py (t+T—py)dt = ggr:o;J_ngj<t)Fk(t+ THL — pydt
=RpF, (t+1; —Hy) (72)
so that Eq. (71) becomes
Ry, (D= J'jw_[;gj (j)gk (ORE F, (T4 R = Ky )dpduy (73)

which relates the cross-correlation functions of the principal stress to the cross-
correlation functions of the modal excitations.
Next, we write the cross-spectral density function associated with the

modal response of the Fourier transform

Snn, @ =] Ry (1™ dr

= [T [T giupecOREp, T+ - )dpduyJdt (74)
Moreover, Rg g, be expressed as the inverse Fourier transform

1 poe i .
Rep, (T+Uj—Hy)= EI_NSFij (@) "4 (75)
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where Spg is the cross-spectral density function associated with the modal
excitation process F;(t) and Fy (t}. Inserting Eq. (75) into Eq. (74) and considering

Eq. (69), we can write

iO(T+Y,

o0 —i o0 o0 1 (- -] — «
Snyn, @)= [ e [T g0l [ Sk, (@e Hdeldu dpy dt
oo . 1 o0 .5} “DH, 00 ] . .

= .[:f’ e [ﬁ _“:O-G-j (w)Gk(m)SFij (m)eimdm]d‘t (76)

where G;(0)=G;(-0) is the complex conjugate of G;(w). Comparing Eq. (74)

and Eq. (76) and recognizing that the modal response cross-correlation function

Ry, () must be equal to the inverse Fourier transform of the modal response

cross-spectral density function Snjnk (®), we conclude that
S, (®) = G;(@)Gy (0)Sk F, () (77)

and

1 (e -
Rn,m (1) = ﬁ.[_w Sn,m (0)e'do

- %fw G;(®@)Gy ()Sg , (@)e"de> (78)

represent a Fourier transform pair. Inserting Eq. (78) into Eq. (67), we obtain the
cross-correlation function between the principal stress at x, z and X, Z in the

form
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A A ]- 2 Z A A o = i
Rys5(x,2,%,2,7) = Eszzizj(x,z)zk(x,z) J‘_w Gj(@)Gy (®)Spp, e do  (79)
J: =

where the modal excitation cross-spectral density function Sk F, (@) is related
to the actual excitation cross-spectral density function S.(x,z,%,2,0) by Eq. (65).

For X =x, Z=z, the principal stresses cross-correlation function, Eq. (79)

reduces to the principal stresses autocorrelation function

1 n n o0 i
Ro(x,2,7)= Ezlk)_jlzj (x2)Z(x,2)[_G(@)G(@)Spp e do  (80)
)=1k=

Finally, letting t=0 in Eq. (80), we obtain the principal stresses mean square value

Ry (x,2,0) = -21;2 Y Zi(x2)Z(x.2)[_Gj(@)Gy (@)Sg f, dw (81)
j=lk=1

The square root of o(x,z,0) is the standard deviation associated with the

probability density function of 6(x,z,t). Hence, for a given actual excitation cross-
spectral density function Sf%(x,z,i,i,m), Eq. (65) yields the modal excitation

cross-spectral function Sk F, (©), which can be used in conjunction with Eq. (81)

to compute the principal stresses mean square value, thus defining the principal
stresses probability density function. That permits us to predict the probability of

failure of the tank by using maximum principal stress theory (ref. 14).
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4.2 Spectral Densities for the Fluid Pressure
The velocity potential ®(x,y,z,t) and fluid pressure p(x,y,z,t) can be
obtained from Eq. (56) - (58). The fluid pressure distribution p({,t) on a given

wall can be expressed as

p&.t)=-pgl+h(,1) (82)

where pg is the weight density of the fluid, h({,t) is the dynamic fluid pressure

and ( is the depth of the fluid measured from the free surface.

For a stationary random process, the cross-correlation function R, . (& (Z,T)

is given by

T
A . 1 ¢= ~
R (G50 = lim -T-j_zé h(C,H)h(G,t + T)dt (83)

and the cross-spectral density S, &t w) is
Shﬁ (C’ &,Cﬂ) = J‘j:o Rhfl (C’ a, ’C)e—imd’c (84)

Consequently, the cross-correlation function R, . (¢,£,7) can also be obtained by

taking the inverse Fourier transform of the cross-spectral density S, . &Lo) as

follows

A 1 oo S i
R GEm =5 S ¢ Loy "dr (85)
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When the tank is subjected to stationary random excitations in the

directions parallel to the x-axis and the y-axis, the power spectral densities of the
dynamic fluid pressure Sh ; (C,?:,m) acting on walls A and C (normal to the x-

axis) and Sh,ﬁy (C,é, ®) acting on walls B and D (normal to the y-axis) are given by

S5 GL0)= [2 Zﬂm(C)%(C)HX,,(w)me(co)ls (®) (86a)
n=0m=0

S5, & Cow)= [2 Zﬂyn(mym(C)Hyr.(w)Hym(w)]s (@) (86Db)
n=0m=0

where Q({) and H,(®) are the shape and frequency response of the nth normal

mode of the fluid pressure, respectively, and Sic () and Sic (w) are the power
spectral densities for the base accelerations X and J, in the x- and y-directions,

respectively. The functions Q({) and H, () are defined as

g (2ot

Q@)= a7 (872)
xn s/ 7t2(2n + 1)2 cos (2n + D1 h
4
. (2na+ Dr C+h)
— 2 2
Q0= 2 2n+1) o COF DT (87Db)
a
1
H ()= N (87¢)

n

where a;, a,, and h are the dimensions of the tank along the x- and y-axes and
the height of the fluid, respectively, and A, is the nth natural slosh frequency.

The transformation between { and z is

{=z-h (88)
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5. NUMERICAL RESULTS

5.1 Slosh Frequencies and Tank Vibration Frequencies
The tank is assumed to be isotropic with the following material elastic

properties:

Young's modulus : E = 1250kgf / mm?
Poison's ratio :v=0.3

Specific weight  : pg=1820kg/m>

The slosh frequencies of a rectangular tank are given by Eq. (62). Table 5.1
lists the first sixteen slosh frequencies for the tank shown in Fig. 2.1 for two water
levels h. The tank has the dimensions a;=3.0m, a,=2.0m, b=2.0m, and is
subjected to horizontal excitation parallel to the x-axis. It is seen that the slosh
frequencies corresponding to the given two water levels, h=1.0m and h=1.8m are
nearly identical, except for the lowest frequency.

Table 5.2 and Figure 5.1-5.6 lists the first six natural frequencies and the
vibration modes for the entire tank.

A comparison of Tables 5.1 and 5.2 shows that the slosh frequencies of the
tank and the vibration frequencies of the tank are well separated. This suggests

that the effects of fluid-structure interaction during vibration are minimal.
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Consequently, the fluid slosh forces exerted on the tank can be computed by

regarding the tank walls as rigid. Of course, the forces act on an elastic tank.

Table 5.1 Slosh frequencies (Hz)

h=1.0m

i Ai i Ai

1 0.4507 9 2.1029
2 0.8817 10 2.2232
3 1.1404 11 2.3372
4 1.3494 12 2.4460
5 1.5301 13 2.5501
6 1.6916 14 2.6502
7 1.8389 15 2.7466
8 1.9753 16 2.8397

h=1.8m

i Ai i Ai

1 0.4984 9 2.1029
2 0.8834 10 2.2232
3 1.1405 11 2.3372
4 1.3494 12 2.4460
5 1.5301 13 2.5501
6 1.6916 14 2.6502
7 1.8389 15 2.7466
8 1.9753 16 2.8397

Table 5.2 Natural frequencies (Hz) for the entire tank

i O | i o;

1 11.221702 4 19.126770
2 12.098619 5 29.656633
3 18.459779 6 30.239724

5. Numerical results
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5.2 Probability of Failure of the Tank

For a given base accerelation, we can generate the principal stress mean
square value at any point of the tank by means of Eq. (81). Once the principal
stress probability density function has been derived, maximum principal stress
theory is used to calculate the probability of failure by calculating the area to the
right of the allowable stress in the Gaussian probability density function.

We use the data corresponding to an earthquake of intensity 6.9 on the
Richter scale that took place on Mar 27, 1963 in Osaka, Japan. The tensile stress
for the material is 3.18 kg/ mm?. Table 5.3 shows the probability of failure at
certain points (Figure 5.7) of a tank of dimensions a;=3m, a,=2m, b=2m, for a

water level of 2m.

Figure 5.7 Points for which the probability of failure is predicted
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Table 5.3 Probability of failure at certain points of the tank

number failure(%) location | number failure(%) location
1 0.0 (0.0,2.0) 18 0.0 (1.0,0.0)
2 0.0 (0.5,2.0) 19 0.0167997 (1.5,0.0)
3 0.0 (1.0,2.0) 20 0.0 (0.0,2.0)
4 0.0 (1.5,2.0) 21 0.0 (0.5,2.0)
5 0.0 (0.0,1.5) 22 0.0 (1.0,2.0)
6 0.0 (0.5,1.5) 23 0.0 (0.0,1.5)
7 0.0 (1.0,1.5) 24 0.0 (0.5,1.5)
8 0.0 (1.5,1.5) 25 0.0 (1.0,1.5)
9 0.0 (0.0,1.0) 26 0.0 (0.0,1.0)
10 0.0 (0.5,1.0) 27 0.0002930 (0.5,1.0)
11 0.0 (1.0,1.0) 28 0.0 (1.0,1.0)
12 0.0 (1.5,1.0) 29 0.0 (0.0,0.5)
13 0.0 (0.0,0.5) 30 0.0 (0.5,0.5)
14 0.0 (0.5,0.5) 31 0.0 (1.0,0.5)
15 0.0 (1.0,0.5) 32 0.0022614 (0.5,0.0)
16 0.0000033 (1.5,0.5) 33 0.0 (1.0,0.0)
17 0.0019544 (0.5,0.0)

Note that the pobability of failure is zero at the upper ring and at the ribs.
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6. SUMMARY AND SUGGESTIONS FOR FURTHER WORK

6.1 Summary

The tank has been modeled by substructure synthesis (ref. 4), whereby a
complex structures can be regarded as an assemblage of a number of simpler
structures. This method yielded a model with a relatively small number of
degrees of freedom. Figures 5.1-5.6 show the first six vibration mode shapes of a
tank, and note that the four panels have been unfolded for easy visualization.
The top of the panel and the ribs seem to have undergone insignificant
displacements.

The excitation forces are assumed to represent Gaussian random
processes, defined by the mean value and standard deviation, in particular the
latter. Because the relationship between the displacement and the stress is
independent of time, the response principal stress is also Gaussian. Once we can
derive the response principal stress, we can predict the probability of failure of
the tank by means of the maximum principal stress theory (ref. 14).

Table 5.3 shows the probability of failure at certain points of the tank, and
we note that the weakest points of the tank are at the bottom, i.e., points 17,19,
and 32. As the maximum probability of failure is about 0.017%, which occurs at

point 19, we can conclude that the entire tank is relatively strong. Still, to
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decrease the probability of failure further, it is advisable to place a reinforcing

ring at the bottom.

6.2 Suggestions for Further Work

We assumed that the earthquake motion is only in the horizontal
direction. If we consider earthquake motions in the vertical direction, then the
roof of the tank may present a problem.

The fluid pressure was treated as a one-dimensional problem. The
treatment of the fluid problem is significantly more rigorous than in other
investigations (e.g., ref. 1). More accuracy can be gained by regarding the
problem as three-dimensional. The gains in accuracy, however , may not justify

the effort.
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