
E

U
i

S
A
a

b

c

d

a

A
R
R
A
A

K
E
A
S
B
E

1

m
N
r
a
a
o
a
o
g
c
s
Z

a

(
a

h
1
4

ARTICLE IN PRESSG Model
PIDEM-249; No. of Pages 7

Epidemics xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Epidemics

j ourna l ho me  pa ge: www.elsev ier .com/ locate /ep idemics

sing  data-driven  agent-based  models  for  forecasting  emerging
nfectious  diseases

rinivasan  Venkatramanana,∗,  Bryan  Lewisa,  Jiangzhuo  Chena, Dave  Higdonb,c,
nil  Vullikanti a,d,  Madhav  Marathea,d

Network Dynamics and Simulation Science Laboratory, Biocomplexity Institute of Virginia Tech, United States
Social and Decision Analytics Laboratory, Biocomplexity Institute of Virginia Tech, United States
Department of Statistics, Virginia Tech, United States
Department of Computer Science, Virginia Tech, United States

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 2 July 2016
eceived in revised form 30 January 2017
ccepted 17 February 2017
vailable online xxx

eywords:

a  b  s  t  r  a  c  t

Producing  timely,  well-informed  and  reliable  forecasts  for an  ongoing  epidemic  of  an  emerging  infectious
disease  is a huge  challenge.  Epidemiologists  and  policy  makers  have  to deal  with  poor  data  quality,
limited  understanding  of  the  disease  dynamics,  rapidly  changing  social  environment  and  the  uncertainty
on  effects  of  various  interventions  in place.  Under  this  setting,  detailed  computational  models  provide
a  comprehensive  framework  for integrating  diverse  data  sources  into  a  well-defined  model  of  disease
dynamics  and  social  behavior,  potentially  leading  to  better  understanding  and  actions.  In this  paper,
merging infectious diseases
gent-based models
imulation optimization
ayesian calibration
bola

we  describe  one  such  agent-based  model  framework  developed  for forecasting  the  2014–2015  Ebola
epidemic  in  Liberia,  and  subsequently  used  during  the  Ebola  forecasting  challenge.  We  describe  the
various  components  of  the  model,  the calibration  process  and  summarize  the forecast  performance  across
scenarios  of the  challenge.  We conclude  by  highlighting  how  such  a data-driven  approach  can  be refined
and  adapted  for  future  epidemics,  and  share  the  lessons  learned  over  the  course  of  the  challenge.

© 2017  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article  under  the CC
. Introduction

In the latter half of 20th century, there was a prevailing opti-
ism about humanity’s preparedness against infectious diseases.
obel prize winning virologist F.M. Burnet echoed the opinion of

esearchers and laymen alike, when he said “the most likely forecast
bout the future of infectious disease is that it will be very dull” (Burnet
nd White, 1972). The confidence seemed justified given the devel-
pment of antibiotics and vaccines, recent successes against polio
nd smallpox, etc. However, it was short-lived, with the emergence
f HIV/AIDS in Africa, which has since grown into one of the greatest
lobal health concerns of our time. Less than 20 years into the 21st
entury, we have been impacted by a series of infectious diseases
uch as SARS (2003), H1N1 (2009), Ebola (2014) and more recently
Please cite this article in press as: Venkatramanan, S., et al., Using dat
diseases. Epidemics (2017), http://dx.doi.org/10.1016/j.epidem.2017.0

ika (2016).
With increased global connectivity, intermixing of human and

nimal habitats, and the looming threat of climate change, such
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BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

threats will become more common (Daszak et al., 2000). As in the
case of Ebola, healthcare infrastructure, especially in densely pop-
ulated and developing countries, will be severely stressed (Fauci,
2014). Generating reliable spatio-temporal forecasts, both short
term and long term, will help stimulate and guide global efforts
where and when required. Owing to limited understanding of the
emerging infectious disease, vaccines development may  not be
swift, thus initial responses still need to rely on traditional epi-
demic control measures like isolation of cases and social distancing
to curb the epidemic. The ability to evaluate and compare different
behavioral interventions will be immensely valuable.

Purely data-driven approaches based on the epidemic time
series and other surrogate sources from social media have gained
traction in recent times (Cook et al., 2011) for epidemic forecasting.
However, as Lazer et al. (2014) points out, such big data approaches
often fail to account for the actual disease and social dynamics
on the ground. Their performance is further marred by poor data
quality (especially in developing countries) and mismatch between
social media sentiment and actual prevalence, as is the case for an
a-driven agent-based models for forecasting emerging infectious
2.010

emerging infectious disease. This reiterates the need for a model
based approach to epidemic forecasting.

Standard compartmental models in epidemiology (Anderson
et al., 1992) help produce early forecasts for an ongoing epidemic

e under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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Period Distribution were initially estimated from the patient
report database provided for the test scenario made available
before the challenge. When the actual patient report database was
ARTICLEPIDEM-249; No. of Pages 7
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hanks to their short setup and running time. However, they do not
apture the spatial and social heterogeneity in the real world epi-
emic, and lack the resolution for testing individual level behavioral

nterventions. Further, they cannot take complete advantage of the
iverse data sources and surveillance streams available during the
risis.

Detailed computational models, on the other hand, place equal
mphasis on modeling and real data and are thus increasingly pre-
erred to their statistical and compartmental counterparts. The
ramework of agent-based modeling allows the policymaker to
efine behaviors at the individual and societal level, describe the
haracteristics of the disease pathogen, and simulate the infectious
isease evolution on a realistic synthetic population (Eubank et al.,
004).

Building, testing and refining such detailed models is time con-
uming, and is seldom possible during war time efforts against
n ongoing epidemic. Recently, organizations like CDC and NIH
ave conducted forecasting challenges for infectious diseases such
s Flu, Dengue, etc. which serve as a valuable practice ground
uring the peace time. Ebola challenge was the most recent such
ndeavor, organized under the Research and Policy for Infec-
ious Disease Dynamics (RAPIDD) program at NIH. Competing
eams were required to provide epidemic forecasts for synthetic
bola disease datasets under four different scenarios generated
y a previously published agent-based model (Merler et al., 2015)
alibrated for Liberia. The scenarios represented varying epidemio-
ogical conditions, behavioral changes, intervention measures and
ata availability. The teams were asked to submit county and coun-
ry level forecasts of the disease, both short-term and long-term,
long with estimates of epidemiological parameters at different
imepoints of the simulated epidemic.

In this paper, we describe the efforts of our team from Vir-
inia Tech in the Ebola forecasting challenge, wherein we  used an
gent-based model that was built during the Ebola 2014 outbreak
o provide policy support to decision makers. We  begin by briefly
escribing the construction of the agent-based model and define
he disease model parameters that were used during the challenge
Section 2). The models were calibrated using a combination of sim-
lation optimization and Bayesian calibration based approaches.
e explain our calibration methodology, highlight how we used

he provided synthetic datasets (Section 3) and summarize our
erformance statistics (Section 4). We  finally conclude with dis-
ussions (Section 5) on the limitations and potentials for refinement
f our approach, and share the lessons learned over the course of
he challenge.

. Model description

Agent-based network models designed for infectious diseases
ave three key components: a realistic synthetic population, social
ontact network among the individuals in the population, and an
ppropriate disease model (Eubank et al., 2004).

In our methodology, the synthetic population is generated
ith demographic attributes and household structure consistent
ith the census data. Each individual is then assigned an activ-

ty sequence with geo-locations per activity over the course of a
4-h period. The social contact network is obtained by consider-

ng co-location of individuals, and the edges in the network are
eighted by the duration of co-location (see Fig. 1). The disease
odel is appropriately chosen, which translates the edge weights

n the social contact network into infection probability of the edge
ver the course of a single day.
Please cite this article in press as: Venkatramanan, S., et al., Using dat
diseases. Epidemics (2017), http://dx.doi.org/10.1016/j.epidem.2017.0

We  now briefly describe the specific case of Liberia synthetic
opulation and disease model as used during the course of the chal-

enge. More details on the synthetic population generation process
re provided in Mortveit et al. (2015).
 PRESS
mics xxx (2017) xxx–xxx

2.1. Synthetic population

During the Ebola 2014 outbreak, our group had produced syn-
thetic populations for the affected West African countries using
methods based on the best available data. In the case of Liberia, we
have released four different versions of the synthetic population
available at https://www.bi.vt.edu/ndssl/projects/ebola.

We began with the distribution of number of workplaces, house-
holds and schools of various sizes in Liberia. Whenever the data was
not available, we used the data from proxy countries (Nigeria in this
case), which exhibit similar social demographics. ORNL LandScan
data was used to obtain population densities, which were then used
to map  the households and workplaces to spatial cells. A statisti-
cally accurate base population, consistent with the Census data was
constructed with suitable attributes (age and gender). 1 These indi-
viduals were then grouped into household units, which were then
assigned to residence locations.

2.2. Social contact network

The activity locations were restricted to Home, Work and
School/College.2 Daytime location by age distribution was  con-
structed using 2008 National Population and Housing Census and
each individual was  assigned a daytime location, either Home
(same as his household location), Work, School/College. We  also
used the 2010 Liberia Labor Force Survey for generating a collection
of activity sequence templates.

For each individual, a compatible activity sequence was sam-
pled which chronologically lists the activities over a single day, with
start and end times. Individuals were assigned matching locations
based on their activity sequence. The bipartite person-location
graph GPL thus formed, was  used to obtain the social contact net-
work GS. In addition to daily activity patterns, in order to mimic
the inter-regional travel, we  used the FlowMinder data to match
the rates of movement between different counties. In addition to
the base synthetic population, the open release https://www.bi.vt.
edu/ndssl/projects/ebola/ebola-data/synthetic-liberia includes the
synthetic geolocated locations, activities and the person-person
contact graph for a typical day.

2.3. Simulation model

Basic disease model: The basic disease model used for the
challenge is based on the standard stochastic SEIR (Susceptible
→ Exposed → Infected → Recovered) transmission dynamics.
We  used EpiFast (Bisset et al., 2009), a parallel algorithm and
implementation for simulating the SEIR model. Key parame-
ters of the model are Initial Infections, Transmissibility,
Incubation Period Distribution and Infectious Period
Distribution.

Initial Infections are fixed based on the situation report,
and the cases are seeded in the appropriate county. From the second
timepoint, we  calibrated Initial Infections around the given
value, to account for early reporting errors. Transmissibility is
defined as the probability of infection for a susceptible individ-
ual per unit time of contact. Across all scenarios and timepoints,
Transmissibility was calibrated by searching over the range
[3 × 10−5, 8 × 10−5].

Incubation Period Distribution and Infectious
a-driven agent-based models for forecasting emerging infectious
2.010

1 Due to lack of sufficient data, healthcare workers were not explicitly identified.
2 Funeral and Hospital locations were not explicitly modeled.
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Fig. 1. Synthetic population generation process. The key inputs to this pipeline are the census demographics, activity patterns and the geospatial information corresponding
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o  the region. The pipeline outputs (a) synthetic population of individuals and activ
n  activity sequences (c) an edge-weighted social contact network for disease prop

rovided (Scenario 1, all timepoints), and (Scenario 3, timepoint
), we used them instead of that of the test scenario. Figure 6 in
he Supplementary material shows a comparison of the different
istributions estimated during the course of the challenge.

Hospitalization and Funeral:The basic disease model does not
ave explicit states to model Hospitalization and Funeral. In order to

ncorporate the H(Hospitalized) and F(Funeral) states as described
n the SEIHFR model proposed by Legrand et al. (2007), we
mplemented interventions that reduce the transmissibility of an
ndividual (modeled by Efficacy)  for those who comply (modeled
y Compliance) after an appropriate Delay and applicable for an
ppropriate Duration.  For each scenario, for early timepoints when
afe burials were not practiced, the Compliance for Funeral was
et to 0 (no reduction in transmissibility). When not being cali-
rated, the Delay of each intervention was fixed to mean time from
ymptom onset to death/hospital from Team (2014).

Social Mobility: We  included two other parameters which were
argely fixed through the course of the challenge to model how
he intensity on different social edges were weighted. Natural
solation was used to reduce the transmissibility of outgoing
on-household edges of infectious individuals. Travel Reduc-
ion was used to reduce the transmissibility (or completely cut off)

ong range interactions. The latter was done to better mimic  the
nteractions in Merler et al.’s (2015) synthetic population, where
ndividuals’ long range mobility is limited.

Behavioral interventions: For the challenge, we  did not explic-
tly model Ebola Treatment Units (ETU) or contact tracing.
nstead, our model included two abstract behavioral inter-
Please cite this article in press as: Venkatramanan, S., et al., Using dat
diseases. Epidemics (2017), http://dx.doi.org/10.1016/j.epidem.2017.0

entions, intended to reduce the transmissibility of edges
ithin different counties. The Primary Intervention was

riggered when the number of new cases on any given day exceeded
 particular threshold (modeled by Threshold Fraction). The
ations with explicit spatial embedding (b) a person-location bipartite graph based
n. (Courtesy: Mortveit et al. (2015).)

Secondary Intervention was triggered after an appropriate
Action Delay.  Both these interventions also included Efficacy
and Compliance parameters.

Data usage: Across the scenarios, national epicurves were used
for calibration. Epidemics were seeded in the appropriate county
for each scenario. For the data rich scenario, though the regional
(county-wise) epicurves were made available, due to spatial vari-
ations in our social contact network, we  were unable to use it
effectively to improve our results. Incubation and Infectious period
distributions were inferred from the patient database whenever
available. As for interventions, since our model did not explicitly
model safe burials, ETUs or contact tracing, we could not use any of
the quantitative information provided in the situation report. We
however used it qualitatively, to turn on and tune the Efficacy
ranges of our behavioral interventions.

Not all parameters were calibrated for all timepoints. How-
ever, within each timepoint, we used identical configurations for all
scenarios (i.e., which parameters were searched/fixed/estimated).
Table 6 in the Supplementary Material shows the configurations
used for each timepoint.

3. Model calibration

Model calibration is the process of identifying the parameter
configurations for the model that best explain the observed ground
truth. While simple models with fewer parameters can be cali-
brated by a naive parameter sweep, calibration of complex models
require extensive computational effort. In this section, we briefly
a-driven agent-based models for forecasting emerging infectious
2.010

describe the different methodologies that formed part of our cali-
bration and forecasting pipeline. The methods used for calibration
follow two standard philosophies: (a) simulation optimization and
(b) Bayesian calibration.

dx.doi.org/10.1016/j.epidem.2017.02.010
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In the former approach, one poses calibration as an optimiza-
ion problem, by trying to minimize the difference between the
imulated and observed epicurves (Nsoesie et al., 2013). Since the
Please cite this article in press as: Venkatramanan, S., et al., Using dat
diseases. Epidemics (2017), http://dx.doi.org/10.1016/j.epidem.2017.0

unction being optimized does not have an analytical form, and
an be evaluated only through a simulation oracle, these methods
re also known as black-box optimization. The task becomes one of
earching for the minimizer of the loss function in the parameter

ig. 2. Two  approaches to model calibration (a) simulation optimization and (b) Bayesian c
t  al. (2016).
 PRESS
mics xxx (2017) xxx–xxx

space, starting from an initial guess, also referred to as direct search
(Audet, 2014). The obtained minimizer is then used to produce
forecasts.
a-driven agent-based models for forecasting emerging infectious
2.010

In the latter approach, one begins with a prior distribution over
the parameter space, for the possible configurations that may  pro-
duce the observed epicurve. In order to update the belief, one uses
the Bayesian approach (Kennedy and O’Hagan, 2001). This is done

alibration. The calibration framework is described in more detail in Venkatramanan

dx.doi.org/10.1016/j.epidem.2017.02.010
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Table 1
Calibration methods used during the challenge.

Timepoint Method used

1 Optimization (Nelder–Mead)
2  Bayesian (1-phase)
3  Bayesian (2-phase)
ARTICLEPIDEM-249; No. of Pages 7
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y first constructing a response surface based on sampled sim-
lation runs, and using it compute the likelihood function. The
btained posterior distribution is then used for generating fore-
asts. Depending on whether new runs were used for forecasting
r earlier runs were re-weighted, we had two flavors of the Bayesian
alibration, namely 1-phase and 2-phase.

Fig. 2 shows the different steps involved in the calibration pro-
ess for both the methodologies.

.1. Simulation optimization

We  use the standard Nelder–Mead (NM) direct search method
Nelder and Mead, 1965; Python, 2016) for calibrating the output
f our agent-based model to the given national epidemic curve. A
rucial design choice for the optimization approach is the loss func-
ion that measures the error between the simulated replicates and
he observed epicurve. We  tested various objective functions, such
s the normalized versions of L1 norm, L2 norm and weighted-L1
orm (with different exponential weights). If Y = {Yi}T

1 denotes the
arget time series until week T, and X = {Xi}T

1 denotes the corre-
ponding output of our simulation, then these respectively can be
ritten down as follows:

L1 norm : d(X, Y) =
∑T

i=1
|Xi − Yi|∑T

i=1
|Xi|

; L2 norm : d(X, Y) =
∑T

i=1
(Xi − Yi)

2

∑T

i=1
X2

i

weighted-L1 norm with decay factor  ̨ : d(X, Y) =
∑T

i=1
˛T−i|Xi − Yi|∑T

i=1
˛T−i|Xi|

This methodology was tested both using the incremental and
umulative version of the epidemic curves. From our experience,
e observe that using the incremental epidemic curve, with a
eighted-L1 norm and reasonably high decay (  ̨ = 0.4) performed

ery well during calibration. The mean dissimilarity for a given iter-
tion of search was obtained by averaging across several stochastic
eplicates (ranging from 10 to 30). The search algorithm terminates
f the mean dissimilarity falls below a tolerance value or if it exceeds
he maximum number of iterations (set to 300). Once we get a con-
ergent parameter configuration, we run the simulation forward
for 400 days) with 100 stochastic replicates and use it to generate
he required predictions.

.2. Bayesian calibration

While the simulation optimization approach is faster (requiring
ewer simulation runs), given the dimensions of the search space it
as two primary drawbacks: (a) the search may  converge to a local
inimum of the loss function (b) the forecasts only capture the

tochasticity of the simulation and not the parameter uncertainty.
o account for these, we also experimented with a Bayesian setup
ollowing the procedure outlined in Higdon et al. (2008).

To begin with, a Latin Hypercube Sample (McKay and Beckman,
000) of size 100 is taken over the parameter space, and simulations
re carried out (with 100× replication) to produce a digital library
DL). The prior distribution of the parameter vector � is assumed
o be uniform over a pre-specified rectangle. A response surface
s fit to this DL producing a mapping from the model parameters
o the simulated epidemic curve, giving the number of infected by
eek. Using this response surface, the likelihood of the observed

picurve Yi can be evaluated as a function of the model parameter
etting. Here the data are assumed to be normal, with a standard
eviation of 10%, and independent over each time period. Thus the

og-likelihood is given by
Please cite this article in press as: Venkatramanan, S., et al., Using dat
diseases. Epidemics (2017), http://dx.doi.org/10.1016/j.epidem.2017.0

(�|Y) = const − 1
2

T∑

i=1

|Xi(�) − Yi|2
0.1 · Xi(�)
4  Optimization (Nelder–Mead)
5  Bayesian (1-phase)

Bayes 1-phase vs 2-phase: In order convert the obtained pos-
terior distribution into an ensemble of epicurves to be used for
forecasting, we tested out two  different approaches: (a) use the
posterior distribution to appropriately reweight the curves present
in the Digital Library. (b) Sample parameter configurations from
the posterior distribution and run fresh simulations to produce the
epicurves. We  call these approaches based on DL reweighting and
sampling & running the agent-based simulation as 1-phase and
2-phase respectively.

As a learning exercise, we tested out the different methods dur-
ing the course of the challenge. Table 1 shows which calibration
method was  used to generate the submitted forecasts for various
timepoints.

4. Model forecasts

4.1. Generating predictions

Both our calibration techniques finally produce an ensemble
of 100 epicurves, which are then used to calculate various pre-
dictions. We  follow the same procedure for short-term forecasts,
long-term forecasts and estimation of epidemic parameters. For
instance, consider the quantity of interest to be peak size. The peak
size is calculated for each of the epicurves in the ensemble, and the
predictions are produced as the median, 25th and 75th percentiles
of the vector of peak sizes.

While predictions based directly on the epicurve such as short-
term incidence estimates, peak size and timing, and final size are
straightforward to calculate, estimation of epidemic parameters is
highly dependent on the underlying model. In fact, the definitions
and usage of parameters such as case fatality rate (CFR), reproduc-
tion number R0 and serial interval vary across models. We  briefly
describe below how these were estimated for our submissions.

Reproduction number R0: The basic reproduction number is
defined as the number of secondary infections produced by a pri-
mary case in a completely susceptible population. In our case, for
each of the observed epicurves, we extracted the corresponding
disease transmission tree. We  reported the effective reproduction
number at week k as the average out-degree of individuals infected
in the four weeks prior to week k. Let Ik,4 correspond to the set of
nodes infected in weeks [k − 3, k], and dout

i
be the out-degree of

node i:

R0 =
∑

i ∈ Ik,4
dout

i

|Ik,4|
Serial interval: Serial Interval is defined as the time between suc-

cessive cases in a chain of transmission. Similar to R0, serial interval
is estimated across the last four weeks prior to week k, by averag-
ing the difference between infection times across the edges in the
transmission tree T.  If Ti denotes the time of infection of node i,

S.I. =
∑

i ∈ Ik,4,(i,j) ∈ T(Tj − Ti)∑
a-driven agent-based models for forecasting emerging infectious
2.010

i ∈ Ik,4
dout

i

Case fatality rate (CFR): CFR measures the proportion of deaths
among the reported confirmed cases. Since our epidemic model

dx.doi.org/10.1016/j.epidem.2017.02.010


ARTICLE IN PRESSG Model
EPIDEM-249; No. of Pages 7

6 S. Venkatramanan et al. / Epidemics xxx (2017) xxx–xxx

Fig. 3. Forecast Performance Summary. (a) Submitted predictions for Scenario 1: (top to bottom, left to right) short-term forecasts, peak case count, final epidemic size,
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eak  timing, case fatality rate (CFR), reproduction number (R0), serial interval. The
re  shown for each of the five timepoints. (b) Incidence error measures for all scen
,  Mean Absolute Error (MAE), Mean Square Error (MSE) and Mean Absolute Perce
nally the score across all scenarios.

oes not explicitly differentiate between individuals who  die or
ecover with immunity, CFR was estimated from the given time
eries until the current week k.

FR = #  of deaths until week k

# of confirmed cases until week k − 1

The one week lag between deaths and confirmed cases was
euristically chosen based on estimated mean infectious duration.

.2. Performance statistics

Fig. 3 depicts the submitted predictions for the data-rich sce-
ario (Scenario 1). The corresponding figures for Scenario 2–4 are
rovided in the Supplementary Material. Of the four scenarios, the
ational epicurve of Scenario 1 exhibited the most “standard” tra-

ectory, followed by Scenario 2. While Scenario 3 exhibited a sharp
ecline of cases after reaching the peak, Scenario 4 had the epidemic

ncreasing even beyond the 5th timepoint. As a result, the best
erformance of our predictive model was observed in Scenario 1.

This can also be seen from the various error measures com-
uted for incidence predictions across scenarios (Fig. 3). Scenario

 predictions have the highest score for R2 and Pearson’s R, both
f which measure correlation between the submitted and the
bserved curve, and are thus positively oriented (higher the score,
he better). Further, Scenario 1 predictions have the lowest value
Please cite this article in press as: Venkatramanan, S., et al., Using dat
diseases. Epidemics (2017), http://dx.doi.org/10.1016/j.epidem.2017.0

or the negatively oriented error metrics (lower the score, the
etter) such as RMSE (Root Mean Squared Error), MAE  (Mean
bsolute Error), Mean Squared Error (MSE) and MAPE (Mean
bsolute Percentage Error).
/grey lines represent the ground truth, and submissions with confidence interval
top to bottom, left to right): R-squared, Root Mean Square Error (RMSE), Pearson’s
Error (MAPE). Scores shown for each scenario (in order) across all timepoints, and

The greater the difference between RMSE and MAE  implies
greater variance in the individual errors in the sample. By this
metric, Scenario 2 submissions have lower variance in the error in
comparison to Scenario 1. Scenario 3 performance ranks the low-
est when considering correlation metrics such as R2 and Pearson’s
R. While Scenario 4 has the worst performance according to most
error metrics (RMSE, MSE  and MAE), in terms of percentage error
(MAPE), Scenario 3 ranks the lowest. It is interesting to observe
that even for incidence predictions from the same model, varying
the error metrics leads to different performance rankings. Fairly
evaluating and ranking predictive models across epidemic measures
and error metrics while accounting for the diversity among the models
is an interesting open challenge.

Considering the long-term forecasts, we  observe from Fig. 3 that
the median predictions of our model are quite close to the ground
truth, at least for scenario 1. For the peak predictions, we predict
within a margin of 200 cases (peak case count) and 2–3 weeks (peak
timing) as early as timepoint 1. Though our estimates for final size
alternate between under and over-estimation, they are centered
around the observed final size. This is remarkable considering that
we tested various calibration techniques across timepoints, and
used several variants of the disease model. This demonstrates the
predictive power of a well-calibrated detailed computational model,
and its utility in aiding early decision-making.

Note on post-peak predictions: One may  observe that the model
a-driven agent-based models for forecasting emerging infectious
2.010

continues to miss the exact peak week, even after having observed
the peak in the epidemic curve. This is because the peaks of the
calibrated epidemic curves will not generally coincide with the
observed epidemic curve (or with each other). Since the observed

dx.doi.org/10.1016/j.epidem.2017.02.010
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pidemic curves are inherently noisy, we must seek a plausible ensem-
le of epidemic trajectories on which to evaluate actions for combating
nd managing the epidemic. Note on confidence intervals: Across
imepoints, the submissions for timepoint 3 show a wider confi-
ence interval. We  believe this was primarily due to the 2-phase
ariant of Bayesian calibration method. This was  further exacer-
ated by the fact that short-term evolution at timepoint 3 (being
lose to the peak in three of the scenarios) is often tough to pre-
ict well. Producing reliable confidence intervals that account for noisy
ata, model uncertainty, parameter uncertainty and inherent stochas-
icity of the system requires further systematic investigation.

. Discussion

In conclusion, we have described a data-driven agent-based
odeling framework targeted at epidemic forecasting. We have

rovided an overview of the model construction, calibration and
orecasting stages, and summarized its performance in the Ebola
orecasting challenge.

Despite the strong performance, we still see lots of scope for
efining and improving our approach. For instance, we  found that
espite (or perhaps, due to) the inherent spatial heterogeneity,
eproducing the county-wise epicurves was found to be difficult.
alibrating an agent-based model across spatial scales remains an
pen question to be addressed. We  also continue to refine the syn-
hetic population by adding more attributes, updating the data
ources and incorporating aspects specific to the dynamics of an
merging epidemic.

It must be noted that the two agent-based modeling approaches
ours and Merler et al.’s (2015) used by the organizers) have dif-
erences in the underlying population, social network construction
nd the details of the disease model. Each captures different aspects
f real world dynamics better. For instance, healthcare workers
nd ETU are explicitly modeled in Merler et al. (2015), while our
ynthetic population has a better representation of work/school
ctivities and long range mobility. While they use an MCMC
pproach for calibration, we employ approaches based on simula-
ion optimization and Bayesian inference. We  find that, in general,
ualitative and quantitative comparison of two  different agent-
ased modeling frameworks is in itself quite a challenge, and is
utside the scope of this paper.

An interesting hurdle one faces when employing a highly-
etailed model as ours is the huge number of parameters that need
stimation or calibration. Calibrating a complex model in the pres-
nce of limited data will lead to parameter identifiability issues.

 rigorous method to address this issue would be to perform a
horough sensitivity analysis of the model, and calibrating only the
mportant parameters. Due to the evolving nature of the challenge,

e instead resorted to calibrating different subset of parameters
cross timepoints, and fixing the parameters which did not vary
uch during the calibration process.
However, there is no denying that, an advantage of the structural

gent-based modeling approach is the incorporation of qualita-
ive data into the modeling framework. Oftentimes, when data is
imited, these pieces of qualitative information is all decision mak-
rs have. Including this information into a quantitative simulation
latform is a big step forward for enabling real-time simulation
upport for epidemic response.

The practical usage of a detailed computational model also
peaks to the ever-increasing role played by high performance
omputing, efficient parallel algorithms and large scale data man-
Please cite this article in press as: Venkatramanan, S., et al., Using dat
diseases. Epidemics (2017), http://dx.doi.org/10.1016/j.epidem.2017.0

gement in real-time critical decision making. Such model excels
oth in its descriptive, predictive and prescriptive capability, and
how how a rigorous approach to data-driven modeling can benefit
oth modelers and policymakers.
 PRESS
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