TEMPERATURE AND HEAT FLOW MODELING OF THREF-DIMENSIONAL
BODIES
IN A TWO-LAYERED HALF SPACE
by

John A. Dunbar Jr.

Thesis submitted to the Graduate Faculty of the
Vvirginia Polytechnic Institute and State University
in partial fulfillment of the requirements of the deqgree of

MASTER OF SCIENCE

in
Geophysics
APPROVED:
“J. K. Costain, Chairman E. S. Robinson/ B
7T 3. A. Snoke M. C. Gilbert,

Department Head

December, 1979

Blacksburg, Virginia



Acknowledgments

I would like to thank Dr. J. K. Costain, Professor,
Department of Geological Sciences Virginia Polytechnic
Institute and State University for suggesting this thesis
topic and providing the opportunity to pursue the topic
while employed with the V.P.I. & S.U. Geothermal Program,
DOE contract ET-78-C-05-5648. I am also grateful for
financial support from V.P.I. & S.U. from August 1978 and
Auqust 1979 and for a tuition scholarship for fall 1979,
which made the completion of this thesis possible.

I am indebted to the other members of the faculty and
staff of V.P.I. & S.U. from whom I received help. Dr. J. A.
Snoke helped with the mathematical notation used in the
thesis; Dr. A. H. Cogbill gave useful suggestions during the
development of the computer programs used; Dr. S. S. Farrar,
Dr. J. A. Speer and S. W. Becker provided their qgeologic
insight and Dr. E. S. Robinson read and commented on the
text.

I give special thanks to my parents for the moral and

financial support they have given me.

ii



Table of Contents

Tad 5 SRR S T T 1T S TR PRI ————. 1 1
Ta DDLU LOTA 5.0 5 %0 0 5 5 005 i 8 0 5 5 Tl e 5 48 8 6 S ol Wi B T
2 THEOFRtICA]l ADBLTE LB uummeonumm womwwm e s s nees s messsd
UBikSe s s mnmess 06 esahs &bt sid s st pisywsannsnesns senld
CRnEral DOL IR L iONE. v owwmmn wme moe o wommw s wmw ww o e el
Assumnptions and ApPpProXimatioONSeeesscsewesscccssassccssbd
Heat Production CORtrastS..ccassonsssnsonnsnssnnassssnnnd
Thermal Conductivity CoOntrasStSeevoscsconcsencsncannssosscan 13
Heat Conduction in One- and Two-lLayered Half Spaces.. 16
The Begional Pieldesssscssnssvssssnsssnssnsnssnsssssenlb
3. Comparison of Different SOlUtiONSeecsasencnaccsnnacennslB
Exact Solutions for Bodies With Simple Shape€Scescosoa=28
Comparison With Numerical SOlutioNS.ecceocsccssccwssee3d
Comparison With One-Dimensional SolutionNS.cececoncsacal5
Half Space and Two-Layered Half Space SolutionS......50
4. Interpretation of Heat-flow ANOmMAli€S..cccocnsncaccsnnsll
5« DiSCUSSiONenansonscsssnssssnnssmnennsssnnonneasesnsnnes Il
References Citedeeeeeesoescnsanscasnssacecoancancsacnnaaasl?
Appendix: Computer SuUbroutineS.ccscsscccccavcccsannsssecesl9d
PTMRGE w50 0 i o 0 o 0 0 i, S i 957 i T o 0 o ) s i o e o v o D

QIHAGE...cc....o....s....a.o-oo...n..--.-..-..-.o.---83

iii



THOBRM: cccsccsmcensassannsnsosssosssnosssanessannnsonmonces Bl
CHI o oo mmin mwamsesnsssnsesssesseseedsss s s eees s weneedd
PSlececacoscncecssccncsscscscsassasscscncsscnnacnasnsnssd
OMEGA.c e cesccccsccacsnscnsncssnsanna 5 & R e Se s E s BaREs I
AHGLE . o nnmnnsssese o enesnasse e eesdseessssssensssss e 1OH

Vita---.--........a..---..---o---..-.---o--..----...107

iv



1. Introduction

Steady-state heat flow and temperature ancmalies in the
earth's crust can be caused by lateral variations in heat
production and thermal conductivity. In many respects the
problem of interpreting thermal anomalies is identical to
the problem of interpreting gravity and magnetic anomalies.
Heat production and thermal conductivity vary with rock
type, as do density and magnetic susceptibility. As a
result, geologic features such as folds, faults, and igneous
intrusions can produce thermal anomalies in the same way
that they produce gravity and magnetic ancmalies. There are
also strong mathematical similarities. Temperature fields
satisfy the same governing equations as do gravity and
magnetic potentials. Solutions to gravity and magnetic
problems, then, differ from scluticons to analogous
temperature field problems c¢nly in the npature of the
boundary conditions imposed and by constant ccefficients.
In particular, the heat flow anomaly caused kty a body of
contrasting heat producticn is analogous to the gravitional
attraction of the same body (Simmons, 1967). Likewise, the
heat flow anomaly caused by a body of «contrasting thermal
conductivity in a uniform heat flow field is mathematically

equivalent to the magnetic anomaly caused Ly a body of
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contrasting susceptibility in a uniform inducing field
(Carslaw and Jaegar, 1959, p. 425). Temperature anomalies
caused by bodies of contrasting heat frcduction and
conductivity are respectively analogous tc gravimetric
potential and gravitational attraction anomalies.

Because of these similarities it is possible to model
heat flow and temperature anomalies using the same
techniques used to model gravity and magnetic apomalies. In
many cases the same computer programs can be used with only
minor modifications. Simmons (1965), for examfple, suggested
a method based c¢n the gravitational attraction of a
polygonal lamina (Talwani and Ewing, 1960) for modeling heat
flow anomalies due to heat ©productiocn contrasts in a half
space. Thermal modeling techniques of this tyre are faster
computationally and 1less cumbersome to implement than the
numerical techniques such as the methcd of finite
differences and the method of finite elements. These
advantages become fparticularly important in situations which
require repeated modeling such as in sclving inverse
problems by trial-and-error methods.

The model proposed by Simmons does not account for the
effects of contrasts in thermal «conductivity between the
anomalous body and the half space. It also dces not account

for the effects of a layer of contrasting conductivity
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overlying the half space. This more general problem is of
current interest in the exploration for lcw-temperature
geothermal resources. The objectives of this exploration
are temperature anomalies in low conductivity sediments
overlying highly radiogenic lithologies in the ciystalline
basement (Costain, Glover, and Sinha, 1979). In principle
the sedimentary layer would act as an insulator, causing
higher temperatures to occur closer to the =surface. The
problem is also important in the interpretation of heat flow
determinations made in sea floor sediments. The latter case
was considered by Lee and Henyey (19784) who used the method
of finite elements to correct marine heat flow values. An
analytical treatment of temperature and heat flow anomalies
in a two-layer half space does not exist in the literature.

A more general modeling technique than that proposed by
Simmons (1965), based on the gravity and magnetic effects of
polygonal prisms (Plouff, 1976), 1is develcped in the
following sections. The technique is suitable for modeling
temperature and heat flow anompalies associated with three-
dimensional bodies of contrasting heat frrcduction and

conductivity in a two-layered half space.



2. Theoretical Analysis

Units
1.0 heat flow unit (HFU)= 1.0 % 10v6c31/0m3—se0)
1.0 heat production unit (HPU)= 1.0 x Mde cal/&mﬁ—sec)

1.0 thermal conductivity unit (TCU)= 1.0 x 1073 cal/(cm-sec-°C)

General Definitions

A = heat production contrast per unit volume Lbetween an
anomalous body and the surrounding mediumg

a(x,Y,z) = heat prcduction at the point (x,Yy,2);

G = the vertical gravitational attraction;

J,= the vertical component of the intensity of
magnetization vector;

K = the thermal conductivity of a hLomogenocus medium;

M = the vertical component of the induced
magnetic field;

g = the vertical heat flow field;

g*= the uniform heat flow from the Lase of a mcdel

region;

d, = anomalous vertical heat flow field due +tc a body
with a contrasting heat production;

Gy = anomalous vertical heat flow field due to a body

with a contrasting thermal conductivity;
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qgr= the regional heat flow field which varies only in the

vertical directiong

qg= anomalous vertical heat flow field due to a roint

source of heat;

s = the heat produced per unit time at a

T = the temperature field;

T;= anomalous temperature field due to a
heat production;

T_ = anomalous temperature field due to a
thermal conductivity;

T,.= the regional temperature field which
with depth;

T = anomalous temperature field due to a

heat;

point source;

body of contrasting

body of contrasting

varies linearly

point source of

(X,Y,2)= the coordinates in a right-handed system

with z increasing downward, at which the field is tc

computed;

(x',y',2')= the coordinates describing the location

of points in an anomalous region in sfpace;

o
]

density contrast.

il
L}

the universal gravitational constant;

be



..6..

Assumptions apd Approximations
This study is concerned with the steady-state Leat
conduction problem for anomalous bodies in a half space
overlaim by a layer of contrasting conductivity (fig. 1).
In general, both the heat production and thermal
conductivity of the body differ from that of the surrounding
mediunm. Heat enters the system either as uniform vertical
heat flow (gq*) from the base of the model region or is
generated within the anomalous body and surrcunding mediume.
Heat production in the surrocunding medium extends to a

finite depth. The surface of the two-layed half space 1is

maintained at a ccnstant temperature. All cther factors
which influence the terrestrial temperature field are
ignored.

In lieu of an exact solution to this problem the
temperature and heat flow effects of the Dbody's bheat
production and conductivity contrasts are calculated
seperately and then added. The temperature field 1is then
approximated by the superposition of three independently
calculated temperature fields: 1.) the anomalcus field due
to a body of contrasting heat production in a two-layer half
space (T,). 2.) the anomalous field due to the disturbance
in g* by a body of contrasting conductivity in a two-layered
half space (Ty), 3.) a regional field which varies only in

the vertical direction (TR)-
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Figure 1 Schematic diagram of an anomalous body of
arbitrary shape in a two-layered half space. The vertical
heat flow g¥ enters the system at the base of the model
region. The sur face is held at a constant temperature g
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The effects of arbitrarily shaped +three-diwensional
bodies are approximated by summing the effects ¢f horizontal
polygonal prisms as in Plouff's (1976) gravity modeling
method. In the following sections expressions for the
temperature and heat-flow anomalies due t¢c ancmalous
pclygonal prisms in a uniform space are developed first.
Expressions for the temperature and heat-flow anomalies in a
uniform half space and a two-layered bhalf space are then
found by the methcd of images, a standard method in heat
conduction (Carslaw and Jaeger, 1957, p. 273) and in

electrostatics (Kellogg, 1957, page 207).

Heat Production Contrasts

Steady-state temperature fields in reqgicns c¢f uniform
conductivity, like gravity and magnetic potentials, satisfy

Poisson's equation

VZT(XaY:Z) = - %H(X,y,z) . (l)

The solution for a point source in a uniform mediunm is

given by (Carslaw and Jaeger, 1959, p. 422)

-
TS(ny’Z) - ZHTRK (2)

where

R2= (x—x'f + (y—y')z* (z—z')%
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For the case of a uniform beat producticn A2 within a

region Y and a uniform heat production A1 cutside V

A ;
T,(x,y,2) = Z;ﬁyx(x,y,z,vo) (3)

Vot g
X(x'YerVO) = /[ / VO(x',y"z')i}i_d%*(_i.z__ :

1 inside the reqgion VO

where

0 outside the region VO

The heat flow field due to the same volume source is

found by appling ¥ourier's law of heat conducticn

oT

A A
9, (%,y,2) = —(—KEE”O = Z}~'w(x,y,z,vo) (4)
where
(z-z')dx'dy'dz' ;
s L} ] 1 9
w(X,Y9Z9VO) - VO(X ,y s 2 ) R3

and where positive heat flow 1s toward the surface.
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The remaining problem is to define X and V¥ for the
desired source element. Expressions for X and V¥ exist in
the 1literature for a large number of different source
geometries., Of these, polygonal prisms are particularly
well suited for representing three-dimensional geologic
features. Plouff (1976, eg. (3)) gives the gravitational
attraction of an n-sided pclygonal prism with vertical

edges. Using the current study's notation the expression is

G(x,y:2) = pr(x,y,z,VO) (5)

where

bz, 72 Tg) = By i; [Sp@(zz'zl)"zz(wzz”w12)+zl(wzl‘wll)*PQ} :

S = -1 if the centroid of the prism is akcve the
m

fieldpoint and S = 1 if the center of mass is helow
m

the fieldpoint;

S = 1if P is postive, and -1 if P is negative;
P
X1X2+Y1Y2
BOEHE i 3
V2. .2V 2 2
X1+Y1 X2+Y2
] - "
Z1 Z Z1
z' = the vertical coordinate of the top cf the prism;
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z) = the vertical coordinate of the base cf the prism;
d.Z,
o il
W = tan PR, .
ij ij
B2 = xlyy%4z? 3
ij i i
d = = =
" X, (X=X, )+, (1,-Y,) //(XZ—X1)2+(Y2—Y1)2 ,

= (yx=x? y—vyv?}
(XI.YI) (x=x'.¥7-Y])

(xi,y;)z the coordinates of the starting pcint of an
edge;

X ,Y )= (x-x°* -yt) 3

( )" 2) ( Z:Y Yz)

(x;,y£)= the coordinates of the ending pcint of an

edge;

P = (X.Y.-X.Y.)/V/ 7 2
172 7271 (xz—xl) +(Y2—Yl) H

. . Rygtdy Ryt
) R21+d2 R12+dl

Because it is known that x cannot contain terms which
are independent of z, x can be found by integrating ¢y with
respect to 2. All terams included in ¢ fcr a polygonal

prism can be written in the forms:

S 07, : (6a)
p ]
d.Z,
-1 *J
Z.tan PR (6b)
ij

P1n(R, .+d, (6¢c)
ij 1 .
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Term (6a), integrated using the power rule, yields

l-S GZ% .
]

2°p (7a)

Term ({6b) 1is evaluated using integration by parts,
Dwight's (1957) integral 200.01 and Plouff's (1976) inteqgral

{8a). The result is

d.Z,
1 (z224p%)tan™! ~ 2 B 1n(R, .+d.)|- (7b)
2 Gl PRij i ij i

Term (6¢c) is integrated using the same method and

reference integrals as (6b) and yields

dizi

2 -1 -
P tan ﬁiff'— P(di+zj)ln(Rij+2j)' (7c)

1]

Substituting these integrals into ¥ fcr a polygonal

prism, X for the same source volume is given by

=]

1 ZE: [ 2.2 2 2 22 )
x(%,5,2,Vq) = 55 : SCL(Y,-Xo)Fy= (Y] -XIF HH(87=CT) (XY, F =X ¥V, Fy)
1:

2.2 2.2 2.2 2.2 _
+(xzc —2X2YZSC+YZS )(wzz-w21) (ch -2X1Y18C+YIS )(w12 W

11
C 2(Y.S-X.C)Q,+S 9(22—22)—22(w -W..)
+2(Y,5-X,C)Qy=2(Y 8-X, C)Q 45 0(Z2y=2)=2, (Wy,=Wy 9

2
+zl(w21—w11ﬂ (8)
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where

= (Y750 2 2 ;
27D (R, =X ) (T, )

5 = (X,-X,)/Y 2 z
v i | (xz—xl) +(Y2le) -

R, 2,
Fy= ol 5 17 ;

i R

0.= Zzln(Rj2+dj) - len(Rj1+dj) )

For the special case of a rectangular prism cantered

about the field poin*, equation (8) reduces tc

1.2, =1 Yz 1.2, -1 X2
x(x,y,z,VO) = [YZln(X+R)— 2X tan xR + XZ1n(Y+R) - EY tan TR
1.2 -1 XY X2 Y2 ZZ
+XY1n(Z+R) - 52 tan ﬁ] (9)
X1 Y1 Z1
Equation (9) agrees with the formula for rhe

gravitational potential due to a rectangular prism (Haaz,

1953) .

Thermal Conductivity Contrasts

The distortion of a uniform heat flow field by a body
of contrasting conductivity is mathematically the sanc as
the distortion of a magnetic tield by a body of con*rasting

magnetic susceptibilitye. The latter problem has be:zn dealt
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with by Talwani (1965) and Plouff (1976¢). In these studies
the contribution to the magnetic field by an infinitismal
volume element 1in the anomalous body is assumed to be the
same as a similar volume element alone in free space. The
total effect of the anomalous body 1is then found by
integrating the effects of all such volume elements which
make up the body. This is not an exact solution becauss the
magnetic field induced in a given volume element will act as
an additional inducing field in neighboring vclume elem2nts.
This interaction between neighboring vclume elements is
ignored.

The same method can be applied to the analogous teat
conduction problem. The temperature effect of a single
volume element can be found by considering the temperature
anomaly due to a sphere of contrasting conductivity,
centered about (x',y',z'), inm a uniform heat flow field g%
(Carslaw and Jaeger, 1959, p. 426)

% 3 1
ATk, 3, 2) = & T SB=Kyile=2’) (10)

3
KlR (2K1+K2)

where

+he radius of the sphere;

H
1}

K= the conductivity of the surrounding medium;

K,= the conductivity of the sphere.
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The temperature anomaly due to a spherical volume
element AV at an arbitrary position in a region Vo can then

be written

3q*(K1—K2)(z—z')AV ) (11)

AT(x,y,z) = 3
éﬂKlR (2K1+K2)

The approximate temperature anomaly asscciated with a
region VO of contrasting conductivity 1is then given by
letting AV become infipitismal and integrating the effects

of all such volume elements in VO:

3q(K -K,) Cpim Z)
Tp(x,y,2) = Iz (2K +K ) Vo(x'sy'2 )3 dx'dy'dz'

(12)
3q(K -K,)
il m yexy,2,¥0)
Equation (12) is an approximation because, as in the

analogous magnetic problem, the interaction bte=ween volume

elements is ignored. Numerical results from eguation (12)

are compared with those from exact solutions in section 2.
The vertical heat-flow anomaly associated with a body

of contrasting conductivity is given by

*
3q (Kl—K )

(X,Y,Z) ZE??E_IK“Y w(st)z’VO) (13)
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where
R2—3(z-z')2

w(X,YsZ5VO) = VO(X' ,}",Z') _“'RT-’—‘ dX'dY'dZ'

The function ® appears in the expression for the
vertical component of the induced magnetic field due +to a
volume VO of contrasting susceptibility in a vertical
inducing field. For an n-sided polygomal ©prism this
component of the magnetic anomaly is written (Plouff, 1976.

eg. 9)

Mix,y,2) = sz(x,y,z,VO) (14)
where

n
w(XQYQZQV ) = Z (w22—w21-w12+w11)
i=1

Heat Conduction_in One-_and Two-Layered Half Spaces

Equations (3), (4), (12) and {(13) give tempera*ture and
heat-flow anomalies due *o ancmalous bodies in an otherwise
uniform space. For a realistic representation of the
terrestrial temperature and heat flow fields, the thermal
effects of the earth®s surface must be accounted for. This

can be done by the method of images if the earth is
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represented by a half space with a constant surface
temperature. Simply stated, the method of images involves
constructing a system of sources and sinks in a medium with
uniform material properties in such a way as to duplicate
the temperature field in a region with discontinuous
material properties. The combined effect of all the sources
and sinks is required to satisfy the governing equa*tion
throughout the region of interest and to behave in a
specified manner at the boundaries of the region.

The geometry of the source-sink system for a point
source at (x',yt!',z") in a half space with a wuniform
conductivity (one-layered half space) 1is shown in fiqure 2.
The expression for the temperature anomaly is (Carslaw, and

Jaeger, 1959, p. 273)

-.s |1 _1 (15)
Ts(x,y,z - lmK{ ——]

wvhere
2
R = (x-x'f + (Y‘Y'F + (Z*Z'f-

For a volume source in a one-layered half space

_ AT ) = ]
TA(X,y,Z) = 7K [x(x,y,z,VO) x(%,5,2,V,) (16)
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where

Vo (x',y',2') = Vo (x',y',-2").

Likewise, for a one-layered half space

q,(%,y,2) Z%—-[w(x,y,z,vo) . w(x,y,z,vb)] ; (17)

*
3q (Kl—Kz)

Tp(x%,y,2) = ZFEIZEEIIEZ) [W(X,Y,Z,VO) + w(x,Y,Z,VOﬂ 3 (18)

*
3q (KI—KZ)

qK(X9Y>Z) = W [w(x9Y9z9V0) + w(X’YaZ’VO)] . (19)

The uniform half space model of the earth is not
applicable where a layer of contrasting conductivity
overlies the source region. Such a situation occurs in the
Atlantic Coastal Plain, where the conductivity of the
basement complex can be twice that of the overlying

t al, 1979) . The effects of the

sediments (Costain,
sedimentary layer can be accounted for by placing a layer of
thickness h and conductivity KO over the uniform half space
with conductivity K1° The boundary conditions for this two-

layered earth model are:

1. 1lim - .
) Ry Tg(R) = 0
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2.) TS(X9Y9O) =0 5
BTS oT
3.) - KO 3z L - K1 9z z=h+
4.) lim _ _ lim
s > n Lg(Ky.2) = h+ T (x,y,2)

For a source at an arbitrary location in the region of
conductivity K;, an infinite series of images is reguired to
satisfy all four conditions simultaneously (fig. 3).

The temperature at the pcint (x,Y,2) due to a point

source at (x',y',z?% is given by

1

T (x,y,2) = f%’[s/ 2 2 2
(x=x") "+(y-y") +(z-2")

1
i+l i+1
éz(” (a/8) </

i=0 (X—X')2+(y—-y')2+(z+21h+z')2

o
+ 0 <z <h
8" (x=x") 2+ (=3 ') 24 (22 (1+1)hoz ") 2 :ﬂ - —

I (};)7’2) I( 2 I( B 2 2 2
]-‘f(:: —-X ) (Y y ) (Z Z ) 1 /(}: X ) '(V y ) (Z 211 z )

- 1
O 1+1 i+2
2 Ej (a/B)" " p 2 7 J

(x=x") +(y-y"') +(z+2ih+z")

where z > h

KO= the conductivity of the layer over the half space;
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Ki= the conductivity of the half space;
h = the thickness of the layer over the half space;
o0 = -
: KO Kl
B =
KO’ Kl .

For an arbitrary volume source the temperature is

A 1 1 i+l i+l =
TA(x,y,z) =[ﬂ i X(x,y,z,VO) +E Z (-1) (a/B) <x(x,y,z,Vi)

o
+ B x(x,y,z,Vi+l)> 0<z<h (21)

All
TA(x,y,z) - H[ilx(x,y,z,v BK Xx,y,2z, v ) +—— Z - 1)

where -(a/6)1+2x(x,y,z,ViJ
vy (x',y',2")= Vo (x*,y',2Jhez") 3 z > h
Y, (x',y0,20)= Vo (xt,yt,-23h-z0)

Vo (x',y',2")= Vo (x'.yt,2h-z) .

J

Because each term in equatiom (21) satisfies Poisson's
equation, the equation itself must also =satisfy Poisson's
equation. Both series in the equation can be shown to
converge absolutely by the ratio test (Thomas, 1972, p. 80S
and 849) for all physically realizable values of thermal
conductivity. It can also be seen by inspection that

equation (21) satisfies all fcur of the boundary conditions

placed on it.



-23-
The errors incurred by truncating the series in

equation (21) are easily estimated. For

both series are alternating. The truncation error can then
be no larger in magnitude than the absolute value of the

first truncated term. For

the series are either all positive or all negative. A bound
for the error resulting from truncating the series after the
nth term is given by

o

j+ i+2 .
By & Z(ﬁfzii_vn_) [ ey T+ /) ] dj
mo i
0 <z <h
< | xGxy,2,V ) -~ in i
= | Temaerm | BT @B 0 < lo <8
® (22)
R < | X(%¥52,V DK, 342
& = 2 (a/B) dj
™o,
n
n-2
< x(x,y,z,Vn)KOa 7z > h

w8n+21n(a/8)
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where

R = the magnitude of the largest possitle error

caused by truncating the series after n terms;

In at least two special cases the infinite series vanish

entirely. For the case in which

equation (21) reduces to equation (16).
The case in which h and z' become large without bound,

while the difference

2h - z'

remains constant, is equivalent to removing the interface at

Under this condition equation (20) reduces to

1
TS(X,Y)Z) = ZSE[K iK / 2 ZJ z < h
0L ¥ ek 'Y o4 ly~y ") o (2—2")

T (X,Y,2) =-§-[ .
s 2 3 4TT Kl‘/?x_x')2+(y—y')2+(z~z')2 (23)

K. - K 1
s
, 1% } z >

Kl(KO+K1) /(x—x')2+(y—y')2+(z—2h+z')2
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Equation (23) is identical, in form, to the solution to
the amalogous probleam in electrostatics (Kellogg, 1957, pe.
209) .

Up to this point only the problem of heat production in
a two-layered half space has been considered. A similar
development for the problem of contrasting conductivities

yields

39% (K} =K,) 1
TK(x,Y,Z) = EFEITEEIIEEY E'w(x,y,Z,Vo)
0 <z < h

+ %Z [(—1)“‘%/5)1+l <% w(x,y,z,viﬂ)—w(x,y,zﬁiﬁ

i=0
(24)
*
3q (K.l—Kz) 1 o

T (x,y,2) = K
K 4ﬂKl(2Kl+K2) 1

~

o
P

_ 0 i+l(oc/8)i+
a

(_l) zlP(X,y,Z,Vi) z > h.

i=0

Expressions for heat flow in a two layered half space

are found by applying Fourier's law of heat conduction to

equations (21) and {(24).
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The Regional Temperature Field

The portion of the temperature field which varies only
in the vertical direction will be termed the regional field.
Because it does not vary laterally it 1is governed by
Poisson's equation for one-dimensional heat ccnduction
= -la(z).

322 K

For the case of a two-layered half space the boundary
conditions are:

1.)

0 ;
oT [ oT
2‘) - K Q_B* = - K _._B
0 9z il 1 93z z=h+
3') ey K i‘fg = q*
1 %z 2=D
The solution is then given by
1 g 2
- = v 22 0 h
TR(z) Kol:zqo 5 Aoz} + T0 < 8%

(25)

1 1 2 1 i % il
TR(z) = Eoi:hqo -3 AOhJ + X [(z—h)qO 5 Al(z h) } + TO

D >z >h
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where
9,= the regional heat flow at the surface;

= the depth to the base of the heat producing layer.

Equation ({25) can be generalized to the case in which

heat production in the region
z > h

varies in a step function manner. If the ith heat producing
layer is characterized by a heat production Ag and a depth

to the base of the layer D, then

_1 1, 2
TR(z)—-IZO[qu 2Aozjl + TO 0 <z<h
1 1, .2|,1 o 1 _ 2
TR(z) = Eo[hqo -5 AOh jl + Kl[ (z-h) (qo th) > Alm(z Dm—l)
(26)
m-1
21 j{: A .(D.-D, )2l + T D >z >0D
2 &3 P11t 0 m =% = p-1

Por the general case of a body of contrasting heat
production and thermal conductivity the approximate total
temperature field is given by the algebraic sum of equations

(21), (24) and {26)

T(x,y,2z) = 'I‘A(x,y,z) + TK(x,y,z) + TR(z). 27)



3. Comparison of Different Solutions

Exact Solutions for Bodies With Simple Shapes

Exact solutions to the problem of determining
temperature in a half space are available for anomalous
bodies with simple shapes. These soluticns provide an
independent check on the validity of equation (27) as well
as on the accuracy of computer programs based on this
equation.

The expression for the temperature about a spherical
heat source of radius a and heat production A follows

directly from equation {(15),

3
T, (x,¥,2) = EJQ['l -'l] . R > a (28)
The vertical heat flow at the surface is then given by

3

2 1

q, (x,y,2) = —é—%5~ ‘ (29)
IR

A comparison of values given by equations (28) and (29)
with those given by a polygonal prism model based on
equation (27) 1is shown in fiqure 4. The geometry of the
polygonal model is shown in figure 5. Values given by the
two sets of equations agree to within 1% throughout the

model region.

D=
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Figure 4 Comparison of the exact solution and polygonal prism approximation for

a spherical heat source. Dashed line

indicates the shape approximated by
polygonal prism model.

The polygonal prism model is shown in figure 5.

the
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Figure 5 Polygonal prism model of the spherical heat
source (fig. 4). Part A shows a map view of the model; Part
B shows a cross—-sectional view along line a-a'.
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This difference can be reduced to an arbitrary level by
refining the geometry of the polygonal model and increasing
the precision of the arithmetic used to evaluate the
equations.

Exact solutions for a hemisphere and a horizontal semi-
circular cylinder of contrasting conductivity are given by
Carslaw and Jaeger (1957, p. U426). Comparisons between
these solutions and polygonal prism approximations based on
equation (27) are shown 1in figqures 6 and 8. The
corresponding polygonal models are shown in figures 7 and 9,
respectively.

In both cases the approximate temperature and heat flow
anomalies are of the same sign and general shape as the
exact anomalies. The superposition of exact and approximate
heat flow profiles in fiqures 10 and 11 indicate that the
approximation is poorest over the edges of the anomalous
body and improves with increasing distance from the edges.

Heat flow values over the center of the hemisphere in the

exact and approximate solutions (fig. 10) agree to with
0.5%. For the semi-circular cylinder (fig. 11) the
agreement is within 3.5%. These error levels cannot be

improved to an arbitrary level by refining the geometry of
the model and arithmetic precision as in the case of heat

production contrasts. These error levels vary as a
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Figure 6

for a semi-spheroid with a 2:1 conductivity contrast.
shown in figure 7.

Comparison of the exact solution and the polygonal prism approximation
The polygonal prism model is
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Figure 7 Polygonal prism model of the semi-spheroid of
contrasting conductivity (fig. 6).
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a semi-circular cylinder with a 2:1 conductivity contrast.
is shown in figure 9.

Comparison of the exact solution and polygonal prism approximation for

The polygonal prism model
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Figure 9 Polygonal prism model of the semi-circular
cylinder of contrasting conductivity (fig. 8).
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Figure 11 Superposition of exact and approximate heat-
flow profiles over a semi-circular cylinder of contrasting
conductivity.
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Figure 12 Normalized heat flow as a function of the

ratio of the conductivity of the medium surrounding a
cylinder and that of the cylinder.
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function of the ratio of the conductivities of the media.
Figure 12 shows the exact and approximate heat flow over the
center of the semi-circular cylinder as a function of the
conductivity ratio (K1/Kj)- The two solutions agree to

within 5% over the range of conductivity ratics

0.25 < Kl/K2 < 1.5.

Although the range of agreement varies with the
geometry of the anomalous body, figure 12 clearly
demonstrates that the agreement is closest for conductivity
ratios near unity. Equation (12) is then a small contrast
approximation for the disturbance to a linear temperature

field by a body of contrasting conductivity.

Comparison With Numerical Solutions

Fehn et al., {1978) used a two-dimensional finite
difference model, which couples heat transport and fluid
flow equatioas, to mnodel the Conway Granite in New

Hampshire. For the case of an impermeable region, heat
transport becomes purely conductive. The pclygonal prism
model of the Conway Granite is shown in fiqure 13; figure 14
sho¥s a comparison of the results of the polygonal prism and
finite difference models (Fehn et al., 1978, fig. 2). Fehn

et al. report a maximum temperature at the base of the
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pluton of 326°C and a maximum surface heat flow of 2.2 HFU.
The maximum temperature and heat flow anomalies are 140°C
and 1.2 HFU. For the same problem the polygonal prism
solution gives a maximum temperature of 283°C and a heat
flow of 1.9 HFU. The maximum temperature and heat flow
anomalies given by the two methods differ bLy 40% and 33%
respectively. The large differemce 1is attributed to the
diffences in boundary conditions. The boundary conditions

for the finite difference version are:

1.) T(XQY’O) = 0 ;
2-) = K "gz = O ;
" x=0
30) _ K_g__’ll = 0 ;
Z x=60 km
) - K %3 = 1.0 HFU.
= z=10 km

The boundary conditions for the the pclygomal prism

solution are:

1") T(XsY)O) =0 5
2.) g I -
ox
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Figure 15 Comparison of the
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shown in figure 16.

polygonal prism and finite difference
a buried two-dimensional body with a 2:1 conductivity contrast.

contour interval are arbitrary. The polygonal prism model is
The finite difference model is from MacKenzie (1965).
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Figure 16 Polygonal prism model of the two-dimensional
body of contrasting conductivity (fig. 15).
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The uniform flow <condition that is placed at the base
of the pluton in the finite difference model forces heat
that would normally flow out the base of the pluton to flow
toward the surface. This is unrealistic; it would be more
accurate to place the uniform flow condition at a depth at
which the isotherms are nearly horizontal.

MacKenzie (1965) used the finite difference method to
compute temperature and heat flow in regicons with two-
dimensional variations in conductivity. Figure 15 shows the
comparison between the finite difference method {(MacKenzie,
1965, fig. 12 and 14) and the polygonal prism model shown in
figure 16. As in the comparison with the exact solutions to
the conductivity problem, the difference between the two
approximate soluticns is greatest at the boundary beteen the

two media and improves with distance from the boundary.

Comparison With One-Dimensional Heat Conduction

Steady-state heat flow from an infinite slab of

thickness D and heat production A 1is given by

q = A,D (30)
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Surface heat flow on the axis of a vertical circular
cylinder of thickness D, radius r, and heat production & is
given by

q= (Ay-A)) l:(r2+D2)l/2 . (r+D)} + AD (31)
1
The ratio of the heat flow from the cylinder and from

the slab can be described by the dimensionless function

(1) »
A _-A
21 [ 2 2.1/2 1
g = (r™4D7) - (r+D)] + -
AlD A2
2r (32)
T = 7

This functicn provides a useful measure of the degree
to which a tabular body of finite lateral extent can be
considered an infimite slab. It can be used to estimate the
error introduced by applying one-dimensional theory and as
an approximate geometric correction factor. Figure 17 shows
the variation of (1) for U4 different heat production
ratios. The aspect ratio required to attain less than 10%
error with one-dimensional theory varies between 0 for a
ratio of unity to 10 for a vanishing ratio. A similar
relationship between heat flow from two~dimensional sources

and slabs has been defined numerically for the special case
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Figure 17 Normalized heat flow as a function of aspect
ration for vertical cylinders with different heat production
ratios. Al= heat production of the surrounding medium; A2=
heat production of the cylinder.
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of a country rock without heat production (Fehn et al.,
1978) .

A similar development can be used to describe the error
in one-dimensional models resulting from lateral variations
in conductivity. One-dimensional heat flow is not affected
by vertical contrasts in conductivity. Hence, for the case
of heat flow g* entering a layer of thickness D from

beneath,
q = q~. (33)

The approximate surface heat flow on the axis of a

cylinder of contrasting conductivity follows from eguation

(21),
*
. 3q (Kl—KZ) D
1=9" - 2. 2.1/2 (34)
2K2 + K (r™+D7)
1
where
K = the conductivity of the half space;
K = the conductivity of the cylinder.

The ratio of equations (34) and (33) defines a function
o{1) which describes the error in one~dimensicnal models as
a function of aspect ratio,

3(K,-K.) D
- 12 55 175 _2r
6= 1 - S [ (r2+D2)1/2:l : i G

172
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Figure 18 Normalized heat flow as a function of aspect
ratio for vertical cylinders with different conductivity
ratios. Kl= conductivity of the surrounding medium; k2=
conductivity of the cylinder.
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The function ¢{t) is graphed 1in figure 18 for 5
different conductivity ratios. The mpaximum aspect ratio
that yields 10% error or less ranges from 2 for a
conductivity ratio of 0.9 to 18 for a conductivity ratio of
0.5

Figures 17 and 18 indicate that applicability of one-
dimensional theory to three-dimensional sources is governed
by the aspect ratio of the source and by the heat production
and conductivity of both the source and the surrounding
medium. For irreqularly shaped bodies polygonal prism
models can be used to generate sets of curves analogous to

those in figqures 17 and 18.

Half Space and Two-Layered Half Space Solutions

The temperature and heat flow fields associated with a
cube in a half space and a cube in a two-layered half space
are shown in figure 19. Differences can be seen in both
temperature and surface heat flow fields. The mwmaximum
temperature at the depth of 2 km in the two-layered model is
96.7°C, which is 30°C higher than the regiomal field at 2
kme For the half space model, the paximum temperature at 2
km is 52.3°C, which is 19°C higher than the regional field

at that depth.
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Figure 20 Heat flow anomalies over the two-layered
half space model (fig. 19) for different first layer
conductivities.
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The surface heat flow anomaly over the two-layered
model, shown in figure 19, is lower in amplitude than the
anomaly over the half space model by as much as 28k. The
rate at which heat is produced in the model <region and the
rate at which it flows in from below are the same in both
models. More heat must flow laterally and downward in the
two—layered model because of the 1insulating effect of the
low conductivity layer. If +the layer has a higher
conductivity than +the underlying material more heat flows
toward the surface than in the half space model. This
produces a larger heat flow anomaly over the same anomalous
body. An example of this phenomenon is shown in figqure 20
in which heat flow anomalies over the same anomalous body

are given for different layer conductivities.



4. Intergpretation of a Heat-Flow Ancmaly

Heat flow ancmalies can be modeled by using a trial-
and-error method similar to that wused in gravity and
magnetic modeling. The heat production and conductivity of
the body and surrounding medium and the regional heat flow
field are normally estimated first. The gecmetry of the
body 1s then varied until a satisfactory agreement between
the observed field and theoretical field is reached. As in
gravity and magnetic modeling the resulting sclution is not
unique, but is a member of a family of possible solutions.

To illustrate the modeling process a family of heat
flow models has been prepared for the Rolesville batholith
and adjacent Castalia pluton, in Franklin and Nash Counties
North Carolina. Both bodies are coarse-grained granitic
intrusions emplaced in metamorphic rocks of the Raleigh belt
(fig. 21). The Raleigh belt has bLeen interpreted as a
south-plunging antiform and has a trend <cf increasing
metamorphic grade from south to north (Farrar, 1980). Both
characteristics suggest differential wuplift and erosion
between the southern and northern portions of the belt. The
location of 5 heat flow stations in the area are shown in
figure 22. The heat production, thermal conductivity, and

heat flow at these sites are given in table 1 (Costain et

-54 -
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Table 1 Data from heat flow sites in the vicinity of the
Rolesville batholith and Castalia pluton, from Costain et
g_l.' 1979).

Hole Heat Productiocn Conductivity Heat Flow
CsS1 5.6 HPU 7.64 TCUO 1. 44 HFU
RL2 6.0 Te22 1. 30
RL3 e 8.03 1. 13
RLU 6.7 6.84 105

SB1 3.3 8.03 0.94
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Figure 21 Geologic map of the Rolesville batholith and
vicinity (simplified from Farrar, 1980). Dots indicate
locations of heat—-flow stations.
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Figure 22 Heat flow in the vicinity of the Rolesville
batholith (Costain et al, 1979).
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al, 1979). Because there is no sedimentary layer in the
region the problem was treated as a one-layered half space
problem. At the time of this writing data for a two-layered
case are not available.

The data in table 1 were collected as part of a study
of heat flow and heat production for plutonic rocks. As a
result heat production and thermal conductivity are
relatively well determined for the granites but almost
unknown for the country rock. In the current study a range
of hypothetical country rock models was considered in order
to determine if one-dimensional heat conduction theory
applies to the region or if the three-dimensicnal aspects of
the granitic bodies (so called edge effects) must be
considered.

If the Rolesville batholith was emplaced before or
during the deformation period, as Farrar (1980) suggests,
erosion following the differential uplift would cause the
body to be thickest down plunge. The lack of variation of
heat production and conductivity at the surface of the
batholith, despite the proposed differential erosion,
suggests that these two parameters are nearly uniform
throuqghout the body. In the heat-flow models toth granites
have a uniform heat production of 6.0 HPU and conductivity

of 7.5 TCU.
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The heat flow (0.94 HFUO) at station SB1 in the
volcanics of the adjacent Carolina Slate Belt is typical of
backgrocund (country rock) heat flow 1in the southeastern
United States (Costain et al, 1979). The heat flow from the
lower crust and wupper mantle in the southeastern United
States is approximately 0.65 HFU (Costain and Perry, 1979).
The regional heat flow field was then assumed to be made up
of a 0.65 HFU component from the lower crust and upper
mantle and a 0.29 HFU component derived from heat production
in the upper crust. The heat production of non-granitic
surface samples in the southeastern United States range from
near 1.0 HPU to near 6.0 HPU (personal communication L. D.
Perry, 1978). The average country rock heat production was
assumed to fall in this range. The thermal conductivity if
the country rock was assumed to be 6.5 TCU; this is a
representative value for schist, gneiss, and volcanics
(Clark, 1966) which are the dominant rock types of the
Raleigh belt ccuntry rocks.

Four heat-flow nodels were developed which are
consistent with the surface geoclogy (fig. 21) and Farrar's
structural interpretation and based on the 4 ccuntry rock
heat production models shown 1in fiqure 23. Each of the
country rock models produces the required 0.29 HFU

contribution to the regional heat flow. The horizontal
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Figure 23 Vertical country rock heat production
distributions for the four heat-flow models of the
Rolesville batholith and Castalia pluton.
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outlines of the prisms which make up the 4 heat-flow models
are the same for each model (fig. 24). Only the vertical
dimensions of the prisms were changed from mcdel to model.
Vertical dimensions for the prisms in models 1, 2, 3, and 4
are given in tables 2, 3, 4, and 5, respectively. The
theoretical heat flow fields produced by the 4 models agree
with the observed heat flow to within 2.5% at the 5 heat
flow stations. The theoretical heat-flow fields for models
1 and 2 are shown in fiqures 25 and 26, respectively.
Theoretical heat flow profiles and temperature cross-
sections along lines A-A' and B-B' in the second model are
shown in figure 27.

A comparison Dbetween the thicknesses of the polygonal
prism models and granite thickness estimates based on one-
dimensional heat conduction (Costain and Perry, 1979) is
given 1in table 6. The wmodel thicknesses are highly
dependent on the lateral heat production contrast between
the granite and the country rock. Heat conduction is then
three~dimensional in the region and edge ecffects must be
considered.

Model thicknesses are also expected to depend on the
conductivity contrast between the granite and the country
rock. The maximum heat-flow anomaly due to the conductivity

contrast of 6.5 TCU to 7.5 TCU, for the 4 models considevred
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Table 2 Vertical dimensions of the pclygonal prisms
which make up heat flow model 1, of the Rolesville batholith
and Castalia pluton.

Prisn Depth to Top Depth to Base
1 0 km 1 knm
2 1 10
3 10 20
4 0 2
5 2 8
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Table 3 Vertical dimensions of the polygonal prisms
which make up heat flow model 2, of the Rolesville batholith
and Castalia pluton.

Prism Depth to Top Derth to Base
1 0 km 1 km
2 1 10
3 10 14
4 0 2
5 2 6
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Table 4 Vertical dimensions of the pclygonal prisms
which make up heat flow Model 3, of the Rolesville batholith
and Castalia pluton.

Prism Depth to Top Depth to Base
1 0 km 1 km
2 1 8
3 8 12
4 0 2
5 2 6
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Table 5 Vertical dimensions of the polygonal prisms
which make up heat flow Model 4, of the Rolesville batholith
and Castalia pluton.

Prism Depth to Top Depth to Base
1 —_— -
2 4.8 km 20 knm
3 20 30
4 - -
5 4.8 15

6 15 30
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Figure 24 Outlines of the 6 prisms used to represent
the Rolesville batholith and Castalia pluton in all four
heat-flow models.
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Figure 25 Theoretical heat flow map for Model | of the
Rolesville batholith and Castalia pluton. The vertical
country rock heat production distribution for Model 1 is
given in figure 23. The polygonal prism model is shown in
figure 24.
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Figure 26 Theoretical heat flow map for Model 2 of the

Rolesville batholith and Castalia pluton. The vertical
country rock heat production distribution for Model 2 is
shown in figure 23. The polygonal prism model is shown in

figure 24.
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Figure 27 Theoretical heat flow profiles and
temperature cross-sections for Model 2, along lines A-A and
B-B (fig. 22 and 23).
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is 0.11 HFU. If the average conductivity of the country
rock is greater than 6.5 ¢the model thicknesses (table 6)
would have to be increased to explain the cobserved heat
flow. If the average conductivity 1is less than 6.5 thiner
models could be used to explain the observed heat flow.

In all 4 polygonal prism mnpodels the Rolesville
batholith is thickest in the south and thins northward.
This northward thinning is consistent with the structural
interpretation given by Farrar (1980). The large difference
in the thicknesses of the Castalia pluton and the northern
part of +*the Rolesville batholith is not supported by the
gravity expression of the two bodies, hovever. The Bougquer
gravity map of the model region (Cogbill, 1978) (fig. 28)
shows a -30 mgal anomaly at the site of RL4, vwhere the heat
flow is 1.05 HFU and the models are all 1 km thick. There
is also a =-30 mgal anomaly at the site of CS1, where the
heat flow is 1.44 HFU and the models are 15 km to 30 km
thick. Simmons (1967) gives the relationship between the
vertical heat flow and gravity anomalies at the surface,
caused by volume sources with koth contrasting density p and

heat production A

q = GA/2myp.
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Table 6 Thicknesses of one- and three-dinmensional
models of the Rolesville batholith and Castalia pluton at 3
heat flow stations. The +thicknesses given by one-
dimensoional analysis are from Costain and Perry (1979).

Model Thickness at Stations

Model cs1 RL2 RLY
Model 1 22 km 20 ko 1 km
Model 2 18 14 1
Model 3 15 12 1
Model 4 30 30 1

1-D Model 14 11 6
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Figure 28 Bouguer gravity field (contoured in mgal)
(from Cogbill, 1979) and heat flow (HFU) (from Costain and
Perry, 1979) 1in the vicinity of the Rolesville batholith;
dots indicate locations of heat—-flow stations.
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Heat flow varies significantly between stations BL3 and
CS1 but the gravity field does not. It can be concluded
that variations im gravity and heat flow cver the model
region cannot be explained by sources with the same shapes.
A possible explanation can be found in the low demsity
country rock in which the batholith was emplaced. In hand
specimen, the densities of the dominant metamorphic rock
types in the Raleigh belt are not significantly different
from the density of the main phase of the Rolesville
granite. The gravity field is then indicative of the
thickness of the entire Raleigh belt rather than the
thickness of the granite alone. The heat flow field would

reflect only the thickness of the granite.



5. Discussion

New analytical solutions have been developed for
temperature and heat-flow amamolies caused by a polygonal
prism source in a two-layered half space. An approximate
solution to the problem of a polygonal prism with
contrasting conductivity in =a two-layered half space was
also given. In section 3 a comparison was made between the
exact and approximate beat flow over an infinte semi-
circular cylinder of contrasting conductivity. The two heat
flow fields agree to within 5% for coanductivity ratios
between 0.25 and 1.5. Comparing this error range with that
for a semi-spheroid of contrasting conductivity indicates
that the error level does not chanqge rapidly with changes in
the shape of the anomalous body. A survey of thermal
conductivities of different rocks types (Clark, 1966)
suggests that this range of conductivity ratios 1is
sufficient for modeling many geologic prchblenms. The
uncertainty in the 5 heat flow values (table 1) used 1in
section 4 1is about 0.05 HPU or approximately 10% of the
total heat flow ancmaly in this region. This error level is
typical of other heat flow determinations nmade in
crystalline rocks (Costain and Perry, 1979). The 5% error
level in the component of heat flow due +o contrasts in

thermal conductivity is then not excessive.

« Tl
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In sectionm 4 the modeling technique based on these
solutions was used to interpret a localized heat flow
anomaly. The interpretation was carried out in the same way
a gravity anomaly would be analyzed using Plouff's method
(1976) . Temperature on cross—sections through the mnodel
region was estimated by computing the temperature field
associated with the heat-flow model. This method of
estimating the amplitude and spacial extent of temperature
anomalies could be useful in the exploration for low-
temperature geothermal resources.

The modeling technique is also applicable to regional
heat flow studies. In many regional studies (see for

example Roy et al, (1968), Lachenbruch (1970), and Costain

and Perry (1979) ), one-dimension heat conduction is
assunmed. Lateral variations in heat production and
conductivity cause deviations from cne-dimensional
conduction. The modeling technique presented in this study

can be used to estimate the heat flow effects of variations
in heat production and conductivity in the vicini*y of a
heat flow station. The heat flow value can then be adjusted
accordingly.

These prcocblems can also be solved with numerical
techniques such as the method of finite differences. The

disadvantage of these nmethods is that temperatures must be
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found everywhere in the model region simultaneously. As a
result computer storage requirements of detailed three-
dimensional models can exceed the space available at most
computer installations. As an example, the maximum
available storage on the IBM 370,158 at V.P.I. & S.U. 1is 3
megabytes under normal operating conditions. This limits
the maximum number of nodes that «can be considered while
using the finite difference heat conduction gprogram TRUMP
(Edwards, 1969) to approximately 4000. The largest three-

dimensional mesh that can be considered 1is then 20 by 20 by

10 nodes. Computation time requirements can also become
prohibitive, particularly when trial-and-error fitting
methods are used. In the modeling technique presented in

this study unknowns are calculated at points cf interest
only. Storage requirements are therefore not a problem.
The modeling technique is also computationally efficient;
the heat flow models of the Rolesville batholith and
Castalia pluton in section 4 required 0.26 msec computation
time per field point per polygonal edge on an IBM 370/158

computer.
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Appendix: Computer Subroutines

SUBROUTINE TIMAGE(L,N,FX,FY,FZ,ZOBS,M,BX,BY,TOP,BASE,
&H,HPC,QSTAR,KO0,K1,K2,NT,RI,T,Wl,W2,W3)

SUBROUTINE TO COMPUTE THE TEMPERATURE ANOMALY CAUSED
BY A POLYGONAL PRISM OF CONTRASTING HEAT PRODUCTION
AND THERMAL CONDUCTIVITY IN A TWO-LAYERED HALF SPACE.
THE PROGRAM IS BASED ON EQUATIONS (21) AND (24).

COORDINATE SYSTEM

A LEFT HANDED COORDINATE SYSTEM IS USED WITH THE ORIGIN
AT THE SURFACE AND THE Z AXIS POSITIVE DOWN.
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UNITS

THE UNITS OF ALL ARGUMENTS ARE ASSUMED TO BE CONSISTENT IN
THE DIMENSIONS OF ENERGY, LENGTH, TIME, AND TEMPERATURE.

FOR EXAMPLE IF ENERGY IS IN CALORIES, LENGTH IS IN KILOMETERS,
TIME IS IN SECONDS, AND TEMPERATURE IN DEGREES CENTIGRADE
THEN THERMAL CONDUCTIVITY MUST BE GIVEN IN

CAL/KM-SEC-DEGREE C.

ARGUMENTS

L=THE NUMBER OF CONDUCTIVITY LAYERS IN THE MODEL, (1 OR 2).
N= THE NUMBER OF FIELD POINTS AT WHICH THE TEMPERATURE WILL
BE COMPUTED.

FX,FY= ARRAYS OF LENGTH N CONTANING THE X,Y COORDINATES

OF THE FIELD POINTS. ALL FIELD POINTS ARE ASSUMED TO BE
AT A COMMON DEPTH = ZOBS.

FZ= A WORK ARRAY OF LENGTH N.

BX,BY= ARRAYS OF LENGHT M CONTAINING THE X,Y COORDINATES

eNoleNoNoNeNeoNoRoNeoNoNoNoNoNoNoNoNoNoNoNoNeNoNoRoReRoRoRo Ro Ro R R Re R RoRoRo e e Neo R Ne)
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OF THE CORNER POINTS IN CLOCKWISE ORDER AROUND THE PRISM.
NOTE: THE LAST CORNER POINT MUST COINCIDE WITH THE FIRST;

THAT 1S, BX(M)=BX(1) AND BY(M)=BY(1).

TOP, BASE= THE Z COORDINATE OF THE TOP AND BASE OF THE PRISM.

H = THE DEPTH TO THE BASE OF THE FIRST CONDUCTIVITY

LAYER. IF L = 1 H IS NOT USED.

HPC= THE HEAT PRODUCTION CONTRAST BETWEEN THE PRISM AND THE
SURROUNDING MEDIUM.

QSTAR= THE UNIFORM HEAT FLOW ENTERING THE BASE OF THE MODEL REGION.
KO= THE CONDUCTIVITY OF THE FIRST CONDUCTIVITY LAYER.

IF L = 1 KO IS NOT USED.

Kl= THE CONDUCTIVITY OF THE SECOND CONDUCTIVITY LAYER.

K2= THE CONDUCTIVITY OF THE PRISM.

NT= THE NUMBER OF TERMS TO BE KEPTED IN THE SERIES SOLUTION.

T= THE DOUBLE PRECISION ARRAY OF LENGTH N IN WHICH THE COMPUTED
TEMPERATURE VALUES ARE RETURNED TO THE MAIN PROGRAM.

RI= THE MAXIMUM SERIES TRUNCATION ERROR IN THE TEMPERATURE

VALUES RETURNED.

W1,W2,W3= DOUBLE PRECISION WORK ARRAYS OF DIMENSION N.

SUBROUTINES REQUIRED
SUBROUTINE CHI: COMPUTES THE CHI FUNCTION FOR A POLYGONALY PRISM.

SUBROUTINE PSI: CUMPUTES THE FUNCTION PSI FOR A POLYGONAL PRISM.

DOUBLE PRECISION T(N),WI(N),Ww2(N),W3(N),PI,WIMAX, W2MAX,
1A,B,C,C1,C3,CA,CK
DIMENSION FX(N) ,FY(N),FZ(N),BX(M) ,BY(M)
REAL KO,K1,K2
PI=DATAN(1.0DO)*4 .0DO
CA=HPC/(PI*4.0D0)
CK=3 .0D0*QSTAR*DBLE(K2-K1) /(4 .0DO*PI*DBLE(2.0%K1+K2))
DO 1 I=1,N

FZ(I)=ZOBS

COMPUTE THE EFFECT OF THE SOURCE POLYGON.
CALL CHI(N,FX,FY,FZ,6M,BX,BY,TOP, BASE,Wl,W3)
CALL PSI(N,FX,FY,FZ,M,BX,BY, TOP,BASE,W2,W3)
NOW ADDED THE EFFECT OF THE CORRECT SERIES OF IMAGES
TO THE EFFECT OF THE SOURCE, TO COMPLETE THE SOLUTION.
IF(L.EQ.1) GO TO 100
IF(K0.EQ.K1) GO TO 100
IF THIS LINE IS REACHED THE MODEL HAS TWO LAYERS.
H2=H*2.0

H2M=-H2

B=DBLE (KO+K1)
TEST=H-ZOBS

IF(TEST.GT.0.0) GO TO 40
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START OF THE SERIES FOR THE LOWER LAYER OF THE TWO LAYER CASE.
A=DBLE(K0-K1)

C=1.0D0/DBLE(K1)

DO 10 I=1,N

T(I)=C*(CA*W1(TI)+CK*W2(1))

CALL CHI(N,FX,FY,FZ,M,BX,BY,H2-TOP,H2-BASE,W1l,W3)
CALL PSI(N,FX,FY,FZ,M,BX,BY,H2-TOP, H2-BASE,W2,W3)
Cl=A/B

C=-C*Cl

DO 20 I=1,N

T(I)=T(I)+C*(CA*W1(I)-CK*W2(1))

C=4 .0D0O*DBLE(K0)*C1/(A%A)

C2=2.0D0/( A*A*DLOG(DABS(B/A)))

Ccl=-Cl

DO 30 I=1,NT

C2=C2%Cl

C=C*Cl

Z=H2M*(1-1)

CALL CHI(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,Wl,W3)
CALL PSI(N,FX,FY,FZ,M,BX,BY,Z-TOP, Z-BASE,W2,W3)
WIMAX=DABS(W1(1))

W2MAX=DABS(W2(1))

DO 30 J=1,N

IF(WIMAX.LT.DABS(W1(J))) WIMAX=DABS(WI1(J))
IF(W2MAX . LT.DABS(W2(J))) W2MAX=DABS(W2(J))
T(J)=T(J)+C*(CA*W1(J)-CK*W2(J))

RI=C2*(DABS( CA*W1MAX)+DABS( CK*W2MAX) )

RETURN

CONTINUE

START OF THE SERIES FOR THE UPPER LAYER IN THE TWO LAYER CASE.
A=DBLE(K0-K1)

C=2.0D0/B

Cl=A/B

C2=2.0D0/(PI*B*DLOG(DABS(A/B)))

DO 50 I=1,N

T(I)=C*( CA*W1(I)+CK*W2(1))

CALL CHI(N,FX,FY,FZ,6M,BX,BY,-TOP,-BASE,Wl,W3)
CALL PSI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,W2,W3)
DO 60 I=1,N

T(I)=T(I)+C*(CK*W2(I)-CA*W1(T))

C=C1*Cl1*2.0/A

DO 90 I=1,NT

C2=C2*Cl

Z=H2M*FLOAT(I)

CALL CHI(N,FX,FY,FZ M,BX,BY,Z-TOP,Z-BASE,Wl,W3)
CALL PSI(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,W2,W3)
WIMAX=DABS(W1(1))

W2MAX=DABS(W2(1))

DO 70 J=1,N

IF(WIMAX.LT.DABS(W1(J))) WIMAX=DABS(W1(J))
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IF(W2MAX.LT.DABS(W2(J))) W2MAX=DABS(W2(J))
T(J)=T(J)+C*( CA*W1(J)-CK*W2(J))

c=-C

Z=H2*FLOAT(I)

CALL CHI(N,FX,FY,FZ,M,BX,BY,Z+TOP,Z+BASE,Wl,W3)
CALL PSI(N,FX,FY,FZ,M,BX,BY,Z+TOP, Z+BASE,W2,W3)
DO 80 J=1,N

T(J)=T(J)+C* ( CA*W1(J)+CK*W2(J))
RI=C2*(DABS(WI1MAX)+DABS(W2MAX) )

C=C*Cl

CONTINUE

RETURN

CONTINUE

START OF THE ONE-LAYER CASE.

C=1.0D0/DBLE(K1)

DO 110 I=1,N

T(I)=C*(CA*W1(I)+CK*W2(I))

CALL CHI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,Wl,W3)
CALL PSI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,W2,W3)
DO 120 I=1,N

T(I)=T(I)+C*( CK*W2(I1)-CA*W1(T))

RETURN

END
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SUBROUTINE QIMAGE(L,N,FX,FY,FZ,ZOBS,M,BX,BY, TOP, BASE,
&H,HPC,QSTAR,KO,K1,K2,NT,RI,Q, W1, W2,W3)

SUBROUTINE TO COMPUTE THE HEAT-FLOW ANOMALY CAUSED
BY A POLYGONAL PRISM OF CONTRASTING HEAT PRODUCTION
AND THERMAL CONDUCTIVITY IN A TWO-LAYERED HALF SPACE.
THE PROGRAM IS BASED ON EQUATIONS (21) AND (24).

COORDINATE SYSTEM

A LEFT HANDED COORDINATE SYSTEM IS USED WITH THE ORIGIN
AT THE SURFACE AND THE Z AXIS POSITIVE DOWN.
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UNITS

THE UNITS OF ALL ARGUMENTS ARE ASSUMED TO BE CONSISTENT IN
THE DIMENSIONS OF ENERGY, LENGTH, TIME, AND TEMPERATURE.

FOR EXAMPLE IF ENERGY IS IN CALORIES, LENGTH IS IN KILOMETERS,
TIME IS IN SECONDS, AND TEMPERATURE IN DEGREES CENTIGRADE
THEN THERMAL CONDUCTIVITY MUST BE GIVEN IN

CAL/KM-SEC-DEGREE C.

ARGUMENTS

L=THE NUMBER OF CONDUCTIVITY LAYERS IN THE MODEL, (1 OR 2).
N= THE NUMBER OF FIELD POINTS AT WHICH THE HEAT FLOW WILL
BE COMPUTED.

FX,FY= ARRAYS OF LENGTH N CONTANING THE X,Y COORDINATES

OF THE FIELD POINTS. ALL FIELD POINTS ARE ASSUMED TO BE
AT A COMMON DEPTH = ZOBS.

BX,BY= ARRAYS OF LENGHT M CONTAINING THE X,Y COORDINATES
OF THE CORNER POINTS IN CLOCKWISE ORDER AROUND THE PRISM.
NOTE: THE LAST CORNER POINT MUST COINCIDE WITH THE FIRST;
THAT [S, BX(M)=BX(1) AND BY(M)=BY(1).

TOP, BASE= THE Z COORDINATE OF THE TOP AND BASE OF THE PRISM.
H = THE DEPTH TO THE BASE OF THE FIRST CONDUCTIVITY
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LAYER. IF L = 1 H IS NOT USED.

HPC= THE HEAT PRODUCTION CONTRAST BETWEEN THE PRISM AND THE
SURROUNDING MEDIUM.

QSTAR= UNIFORM HEAT FLOW ENTERING THE BASE OF THE MODEL REGION.
KO= THE CONDUCTIVITY OF THE FIRST CONDUCTIVITY LAYER.

IF L =1 KO IS NOT USED.

Kl= THE CONDUCTIVITY OF THE SECOND CONDUCTIVITY LAYER.

K2= THE CONDUCTIVITY OF THE PRISM.

NT= THE NUMBER OF TERMS TO BE KEPTED IN THE SERIES SOLUTION.

Q= THE DOUBLE PRECISION ARRAY OF LENGTH N IN WHICH THE COMPUTED
HEAT-FLOW VALUES ARE RETURNED TO THE MAIN PROGRAM.

RI= THE MAXIMUM SERIES TRUNCATION ERROR IN THE HEAT FLOW

VALUES RETURNED.

W1,W2,W3= DOUBLE PRECISION WORK ARRAYS OF DIMENSION N.

SUBROUTINES REQUIRED
SUBROUTINE PSI: COMPUTES THE PSI FUNCTION FOR A POLYGONALY PRISM.

SUBROUTINE OMEGA: CUMPUTES THE FUNCTION OMEGA FOR A POLYGONAL PRISM.

DOUBLE PRECISION Q(N),W1(N),w2(N),Ww3(N),PI,
1A,8,C,C1,C3,CA,CK, WIMAX , W2MAX

DIMENSION FX(N),FY(N),FZ(N) ,BX(M) ,BY(M)

REAL KO,K1,K2

PI=DATAN(1 .0DO0)*4 .0D0

CA=HPC/(PI*4 .0DO)

CK=3 .0D0*QSTAR*DBLE(K1-K2) /(4 .0DO*PI*DBLE(2.0*K1+K2))
DO 1 I=1,N

FZ(1)=Z0BS

COMPUTE THE EFFECT OF THE SOURCE POLYGON.

CALL PSI(N,FX,FY,FZ,M,BX,BY, TOP,BASE,Wl,W3)

CALL OMEGA(N,FX,FY,FZ ,M,BX,BY, TOP,BASE,W2,W3)

NOW ADDED THE EFFECT OF THE CORRECT SERIES OF IMAGES
TO THE EFFECT OF THE SOURCE, TO COMPLETE THE SOLUTION.
IF(L.EQ.1) GO TO 100

IF(K0.EQ.K1) GO TO 100

IF THIS LINE IS REACHED THE MODEL HAS TWO LAYERS.
H2=H*2.0

H2M=-H2

B=DBLE(KO0+K1)

TEST=H-ZOBS

IF(TEST.GT.0.0) GO TO 40

START OF THE SERIES FOR THE LOWER LAYER OF THE TWO LAYER CASE.
A=DBLE(K0-K1)

CA=CA*DBLE(K1)

CK=CK*DBLE (K1)

C=1.0D0/DBLE(K1)
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DO 10 I=1,N
Q(I)=C*(CA*W1(I)+CK*W2(I))

CALL PSI(N,FX,FY,FZ,M,BX,BY,H2-TOP,H2-BASE,W1l,W3)
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,H2-TOP,H2-BASE,W2,W3)
Cl=A/B

C=-C*Cl

DO 20 I=1,N

Q(1)=Q(1)+C*(CA*W1(I)-CK*W2(1))
C=4.0DO*DBLE(KO0)*C1/(A*A)
C2=2.0D0/( A* A*DLOG(DABS(B/A)))

cl=-Cl

DO 30 I=1,NT

C2=C2*Cl

C=C*Cl

Z=H2M*(I-1)

CALL PSI(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,Wl,W3)
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,W2,W3)
WIMAX=DABS(W1(1))

W2MAX=DABS(W2(1))

DO 30 J=1,N

IF(WIMAX.LT.DABS(W1(J))) WIMAX=DABS(W1(J))
IF(W2MAX.LT.DABS(W2(J))) W2MAX=DABS(W2(J))
Q(J)=Q(J)+C* (CA*W1(J)-CK*W2(J))

RI=C2*(DABS( CA*WI1MAX)+DABS( CK*W2MAX))

RETURN

CONTINUE

START OF THE SERIES FOR THE UPPER LAYER IN THE TWO LAYER CASE.
A=DBLE(K0-K1)

CA=CA*DBLE (KO0)

CK=CK*DBLE (KO0)

C=2.0D0/B

Cl=A/B

€2=2.0D0/(PI*B*DLOG(DABS(A/B)))

DO 50 I=1,N

Q(1)=C*(CA*W1(I)+CK*W2(1))

CALL PSI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,Wl,W3)
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,W2,W3)
DO 60 I=1,N

Q(1)=Q(1)+C*(CK*W2(1)-CA*W1(1I))

C=C1*C1*2.0/A

DO 90 I=1,NT

C2=C2*C1

Z=H2M*FLOAT(I)

CALL PSI(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,Wl,W3)
CALL OMEGA(N,FX,FY,FZ,M,BX,BY, Z-TOP,Z-BASE,W2,W3)
WIMAX=DABS(W1(1))

W2MAX=DABS(W2(1))

DO 70 J=1,N

IF(WIMAX.LT.DABS(W1(J))) WIMAX=DABS(W1(J))
IF(W2MAX.LT.DABS(W2(J))) W2MAX=DABS(W2(J))
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Q(J)=Q(J)+C*(CA*W1(J)-CK*W2(J))

Cc=-C

Z=H2*FLOAT(I)

CALL PSI(N,FX,FY,FZ,M,BX,BY,Z+TOP, Z+BASE,Wl,W3)
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,Z+TOP,Z+BASE,W2,W3)
DO 80 J=1,N

Q(J)=Q(J)+C*(CA*W1(J)+CK*W2(J))
RI=C2%(DABS(WI1MAX)+DABS(W2MAX) )

C=C*Cl

CONTINUE

RETURN

CONTINUE

START OF THE ONE-LAYER CASE.

CA=CA*DBLE(K1)

CK=CK*DBLE(K1)

C=1.0D0/DBLE(K1)

DO 110 I=1,N

Q(I)=C*(CA*W1(I)+CK*W2(1))

CALL PSI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,Wl,W3)
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,-TOP,~BASE,W2,W3)
DO 120 I=1,N

Q(1)=Q(T)+C*( CK*W2(1)-CA*W1(T))

RETURN

END



SUBROUTINE WHICH COMPUTES TEMPERATURE AT A DEPTH Z IN A
ONE-DIMENSIONAL HEAT CONDUCTION OF THE EARTH CONSISTING
OF UP TO TWO UNIFORM CONDUCTIVITY LAYERS AND AN ARBITRARY
NUMBER OF UNIFORM HEAT PRODUCTION LAYERS.

COORDINATE SYSTEM

THE ORIGIN IS AT THE SURFACE AND Z IS POSITIVE DOWN.

UNITS

THE UNITS OF ALL ARGUMENTS ARE ASSUMED TO BE CONSISTENT IN
THE DIMENSIONS ENERGY, LENGTH, TIME AND TEMPERATURE.

ARGUMENTS

H= THE THICKNESS OF THE FIRST CONDUCTIVITY LAYER. H=0.0
CORRESPONDS TO THE ONE CONDUCTIVITY LAYER CASE. '
KO, Kl= THE THERMAL CODUCTIVITY OF THE TWO CONDUCTIVITY LAYERS.
IF H=0.0 KO IS NOT USED.

TO= THE MEAN ANNUAL SURFACE TEMPERATURE IN THE MODEL REGION.
Q0= THE SURFACE HEAT FLOW IN THE MODEL REGION.

A0= THE HEAT PRODUCTION OF THE FIRST CONDUCTIVITY LAYER.

IF H=0.0 A0 IS NOT USED.

LA= THE NUMBER OF UNIFORM HEAT PRODUCING LAYERS IN THE

SECOND CONDUCTIVITY LAYER.

A= ARRAY OF LENGTH LA CONTAINING THE HEAT PRODUCTIONS OF THE
LA HEAT PRODUCING LAYERS IN THE SECOND CONDUCTIVITY LAYER.

D= ARRAY OF LENGTH LA CONTAINING THE Z COORDINATE OF THE BASE
OF EACH HEAT PRODUCTION LAYER.

Z= THE Z COORDINATE OF THE FIELD POINT AT WHICH TEMPERATURE IS
TO BE COMPUTED.

DIMENSION A(LA),D(LA)
REAL KO ,K1
IF(H.GT.0.0) GO TO 10
T1=TO

Q1=Q0

GO TO 30
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DZ=Z-H
IF(DZ.GT.0.0) GO TO 20
TNORM=(Q0* Z—0 . 5%A0*Z*Z) /KO+TO

GO TO 80

Q1=Q0-A0*H

T1=(Q0*H-0 . 5% AO*H*H) /K0+T0

M=0

DO 40 I=1,LA

IF(Z.GT.D(I)) M=I

IF(M.EQ.0) GO TO 70
DT=0.5*A(1)*(D(1)-H)*(D(1)-H)

IF(LA.EQ.1) GO TO 60

DO 50 I=2,M
DT=DT+0.5%A(1)*(D(1)-D(I-1))*(D(1)-D(I-1))
IF(M.EQ.LA) GO TO 60

TNORM=T1+( Z-H)*Q1-DT-0.5%A(M+1)*( Z-D(M) )*(Z-D(M) )
GO TO 80

TNORM=T1+( Z-H)*Q1-DT

GO TO 80

TNORM=T1+( Z-H)*Q1-0.5%A(1)*( Z-H)*(Z-H)
CONTINUE

RETURN

END
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SUBROUTINE TO CUMPUTE THE FUNCTION CHI FOR A POLYGONAL PRISM.
THE PROGRAM IS BASED ON EQUATION (8).

ARGUMENTS

N= THE NUMBER OF FIELD POINTS AT WHICH THE FUNCTION IS TO BE

COMPUTED.

FX,FY,FZ= ARRAYS CONTAINING THE N COORDINATES OF THE FIELD POINTS.

M= ONE PLUS THE NUMBER OF CORNER POINTS OF THE POLYGONAL PRISM.

BX,BY= ARRAYS CONTAINING THE X,Y COORDINATES OF THE CORNER

CORNER POINTS IN CLOCKWISE ORDER AROUND THE POLYGONAL PRISM.
NOTE: THE LAST CORNER POINT MUST COINCIDE WITH THE FIRST;
THAT IS, BX(M)=BX(1) AND BY(M)=BY(1).

TOP, BASE= THE Z COORDINATE OF THE TOP AND BASE OF THE

POLYGONAL PRISM.

U= THE DOUBLE PRECISION ARRAY OF THE LENGTH N IN WHICH THE

VALUES OF TH CHI FUNCTION ARE RETURNED TO THE CALLING PROGRAM.

DS= A DOUBLE PRECISION WORK ARRAY.

SUBROUTINE REQUIRED

DOUBLE PRECISION FUNCTION ANGLE

DIMENSION FX(N),FY(N),FZ(N),BX(M) ,BY(M)

DOUBLE PRECISION U(N),DS(M)

REAL K

DOUBLE PRECISION X1,X2,Yl,Y2,R1Z1,R2Z1,R2Z2,R1Z2,R1SQ,R25Q,
1T1,T12,T3,T4,T5,T6,DX,DY,DZ,ZERO, EPS,TWO,Z1,Z2,DZSQ, 215Q,
27228Q,Al1,A2 ,A3,A4,P,S,S5Q,sC,C,CsQ,D1,D2,DTEST,F1,F2,Q1,Q2,W11l,W12,
3W22,W21,X18Q,X2SQ,Y15Q,Y2SQ, HALF ,AZ1,AZ2,ANGLE,
4A,SIGN,X1Y1,X2Y2,ABSP,V(400)

DATA ZERO/0.0DO/,EPS/1.0D-5/ ,HALF/0.5D0/,TWO/2.0D0/
COMPUTE THE LENGTH OF EACH SIDE AND STORE IN ARRAY DS
MM=M-1

DO 10 I=1,MM

J=I+1

DX=DBLE(BX(J)-BX(I))

DY=DBLE(BY(J)-BY(I))

DS(I)=DSQRT(DX*DX+DY*DY)

START THE LOOP FOR EACH FIELD POINT

DO 110 LF=1,N

U(LF)=ZERO
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Z1=DBLE(TOP-FZ(LF))
Z2=DBLE(BASE-FZ(LF))
AZ1=DABS(Z1)

AZ2=DABS(Z2)

IF(AZ1.GT.Z1 .AND.AZ2.GT.Z2) GO TO 30
IF(AZ1.NE.Z1.0R.AZ2.NE.Z2) GO TO 20
IF(AZ1.LT.AZ2) GO TO 15

Z1=AZ2

Z2=AZ1

CONTINUE

NPOLY=1

GO TO 40

CONTINUE

IF THIS LINE IS REACHED THE POLYGON IS SPLIT INTO TWO
POLYGONS ALONG THE Z=FZ(LF) PLANE AND THE EFFECTS ARE
COMPUTED SEPERATELY AND ADDED.
NPOLY=2

Z1=ZERO

22=AZ2

GO TO 40

NPOLY=1

IF(AZ2.LT.AZ1) GO TO 35

Z1=AZ1

Z2=AZ2

GO TO 40

Z1=AZ2

Z2=AZ1

DO 110 IPOLY=1,NPOLY

T1=ZERO

T2=ZERO

T3=ZERO

T4=ZERO

T5=ZERO

T6=ZERO

IF(IPOLY.EQ.2) Z2=AZl

DZ=22-Z1

DZSQ=DZ*DZ

Z1SQ=21*Z1

22SQ=22%72

INITALISE R TERMS
X2=DBLE(BX(1)-FX(LF))
Y2=DBLE(BY(1)-FY(LF))
R2SQ=X2*X2+Y2%Y2
R2Z1=DSQRT(R2SQ+Z15Q)
R2Z2=DSQRT(R2SQ+Z25Q)
A1=R272+22

A4=R2Z1+7Z1

START THE LOOP FOR EACH SIDE
DO 100 LB=1,MM

J=LB+1



a6 o

oNeoNoNoNoNS!

60

I T s

MAKE THE SECOND POINT OF THE LAST SIDE THE FIRST POINT
OF THE CURRENT SIDE

X1=X2

Y1=Y2

R1Z1=R2Z1

R1Z2=R2Z2

X2=DBLE(BX(J)-FX(LF))

Y2=DBLE(BY(J)-FY(LF))

DX=X2-X1

DY=Y2-Y1

X18Q=X1*X1

X2SQ=X2*X2

YISQ=Y1*Y1

Y2SQ=Y2*Y2

X1Y1=X1*Y1

X2Y2=X2*Y2

P=(X1*Y2-X2*Y1)/DS(LB)

ABSP=DABS(P)

S=DX/DS(LB)

$SQ=5*S

C=DY/DS(LB)

CSQ=C*C

SC=8*C

D1=X1%S+Y1*C

D2=X2%S+Y2*C

R25Q=X25Q+Y2SQ

R2Z1=DSQRT(R25Q+Z1SQ)

R2Z2=DSQRT(R2SQ+Z225Q)

DTEST, THE SMALLEST DISTANCE THAT CAN BE RESOLVED FOR THIS
SIDE IS DEFINED AS THE LENGTH OF THE SIDE TIMES 1.0E-N
WHERE N IS THE NUMBER OF SIGNIFICANT DIGITS REQUIRED
DTEST=EPS*DS(LB)

NOW READY TO COMPUTE PRINCIPAL TERMS

COMPUTE THE LOG(R+Z) TERM

THIS TERM IS UNSTABLE WHEN THE FIELD POINT IS NEARLY
UNDER A CORNER POINT OF THE POLYGON

Al=R1Z1+Z1

A2=R172+72

A3=R2Z2+7Z2

A4=R2Z1+Z1

IF(Al.LT.DTEST) Al=DTEST

IF(A2.LT.DTEST) A2=DTEST

IF(A3.LT.DTEST) A3=DTEST

IF(A4.LT.DTEST) A4=DTEST

F1=DLOG(A2/A1l)

F2=DLOG(A3/A4)

COMPUTE THE LOG(R+D) TERM

THIS TERM IS UNSTABLE WHEN THE FIELD POINT IS NEAR AN
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EDGE OF THE POLYGON
Al1=R1Z1+D1

A2=R1Z2+D1

A3=R2Z2+D2

A4=R2Z1+D2

IF(Al.LT.DTEST) Al=DTEST

IF(A2.LT.DTEST) A2=DTEST

IF(A3.LT.DTEST) A3=DTEST

IF(A4.LT.DTEST) A4=DTEST

Q1=Z2*DLOG(A2)-Z1*DLOG(Al)

Q2=22*DLOG( A3)~-Z1*DLOG(A4)

COMPUTE THE ARCTANGENT TERM

THIS TERM GOES TO ZERO FOR P (THE PERPENDICULAR DISTANCE
BETWEEN THE FIELD POINT AND A LINE ALONG THE VERTICAL
PROJECTION OF THE EDGE) NEAR ZERO

W11=ZERO

W12=ZERO

W22=ZERO

W21=ZERO

IF(ABSP.LE.DTEST) GO TO 90

W11=DATAN(Z1%*D1/(P*R1Z1))

W12=DATAN(Z2*D1/(P*R1Z2))

W22=DATAN(Z2*D2/(P*R2Z2))

W21=DATAN(Z1*D2/(P*R2Z1))

FINISHED COMPUTING THE PRINCIPAL TERMS

NOW COMBINE THEM TO FORM THE 6 ELEMENTS OF THE POTENTIAL
T1=T1+SC*((Y2SQ-X2SQ)*F2-(Y1SQ-X1SQ)*F1)
T2=T2+(SSQ-CSQ)*(X2Y2*F2-X1Y1*F1)
T3=T3+(X2SQ*CSQ-TWO*X2Y2*SC+Y2SQ*SSQ)*(W22-W21)
T4=T4-(X1SQ*CSQ-TWO*X1Y1*SC+Y1SQ*SSQ)*(W12-W11)
T5=T5+TWO*( (Y2*S-X2*C)*Q2-(Y1*S-X1%*C)*Ql)
T6=T6-Z2SQ*(W22-W12)+Z1SQ*(W21-W1l)

T6=T6-ANGLE ( BX, BY,M,FX(LF) ,FY(LF) )*(Z25Q-215Q)

END OF LOOP FOR EACH SIDE

ACCOMULATE THE POTENTIAL
U(LF)=U(LF)+HALF*(T1+T2+T3+T4+T5+T6)

END OF LOOP FOR EACH FIELD POINT

RETURN

END
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SUBROUTINE WHICH COMPUTES THE PSI FUNCTION FOR A POLYGONAL PRISM.
THE PROGRAM IS BASED ON A GRAVITY MODELING PROGRAM 'PSI"

PREPARED BY A. H. COGBILL AT VPI&US. EQUATIONS PRESENTED BY
PLOUFF (1976), GEOPHYSICS, VOL. 41 (4) PAGES 727-741, ARE USED.

ARGUMENTS

N= THE NUMBER OF FIELD POINTS AT WHICH THE PSI FUNCTION IS TO BE
COMPUTED.
FX, FY, FZ= ARRAYS OF LENGTH N CONTAINING THE COORDINATES OF THE
FIELD POINTS.
M= THE NUMBER OF CORNER POINTS IN THE POLYGONAL PRISM PLUS ONE.
BX, BY= ARRAYS OF LENGTH M CONTAINING THE X,Y COORDINATES OF THE
CORNER POINTS IN CLOCKWISE ORDER AROUND THE PRISM.
NOTE: THE LAST CORNER MUST COINCIDE WITH THE FIRST; THAT IS
BX(M)=BX(1) AND BY(M)=BY(1).
TOP, BASE= THE Z COORDINATES OF THE TOP AND BASE OF THE PRISM.
U= THE DOUBLE PRECISION ARRAY OF LENGTH N IN WHICH THE COMPUTED
VALUES OF PSI WILL BE RETURNED TO THE CALLING PROGRAM.
WORK= DOUBLE PRECISION WORK ARRAY OF LENGTH N.

SUBROUTINE REQUIRED

DOUBLE PRECISION FUNCTION ANGLE

REAL FX(N),FY(N),FZ(N),BX(M) ,BY(M)

REAL SUM, SNGL

LOGICAL FLAG

DOUBLE PRECISION U(N),WORK(N)

DOUBLE PRECISION DSUM,DBLE,DABS,DMINI,DMAX],DSQRT,DLOG,DATAN2

DOUBLE PRECISION ONE,HALF,FOURTH,DZERO,DTOLER,EPS,ARG,ANGLE

DOUBLE PRECISION DX,DY,DS,PTEST,DTEST,ZTEST,ZT

DOUBLE PRECISION X0,Y0,Z0,X1,Y1,21,X2,Y2,22,Z1SQ,Z22SQ,R1,R2,
RDZ1,RDZ2,R11,R12,R22,R21,D1,D2,DD1,DD2,
A,B,C,S,P,PH,GL,Tl,T2,T3,DTOP, DBASE

EQUIVALENCE (SUM,EPSS),(DSUM,ZT)

DATA ONE/1.0DO/, HALF/0.5D0/, FOURTH/0.25D0/

DATA DZERO/0 .0DO/

LUN= THE LOCAL UNIT NUMBER ON WHICH ERROR STATEMENTS ARE WRITTEN

DATA LUN/8/

"EPS'" IS USED PRINCIPALLY TO CALCULATE THE



aOaOaon aoaooae

aoa

R ol R o]

O Y @ Y

il s
LOGARITHMS OF SUMS OF DIFFERENT SIGNS AND

VERY DIFFERENT MAGNITUDES (THE LOG TERMS MAY
HAVE NEGATIVE ARGUMENTS WITHOUT THIS PRECAUTION).

FLAG=.FALSE.

ZERO THE VECTOR U(I) BEFORE PERFORMING ANY COMPUTATIONS.

10
20

30

35

40

60

IF (N.LE.O) GO TO 200
DO 20 I=1,N
U(1)=0.0D0

COMPUTE MACHINE DOUBLE PRECISION -

DTOLER=HALF
DTOLER=HALF*DTOLER
EPS=ONE+DTOLER

IF (EPS.GT.ONE) GO TO 30
DTOLER=DTOLER+DTOLER
EPS=DSQRT(DTOLER)
EPS=HALF*DSQRT(EPS)

USE "DSQRT" TWICE TO AVOID LOADING "'X**Y"
NOW COMPUTE MACHINE SINGLE PRECISION -

TOLER=0.5
TOLER=0.5*TOLER

EPSS=1.0+TOLER

IF (EPSS.GT.1.0) GO TO 35

TOLER=TOLER+TOLER

IF (M.LT.4) GO TO 210

M1=M-1

IF (ABS(TOP-BASE) .LT.TOLER* (ABS(TOP)+ABS(BASE))) GO TO 240
IF (ABS(BX(M)-BX(1)).GT.TOLER*ABS(BX(M)+BX(1))) GO TO 220
IF (ABS(BY(M)-BY(1)).GT.TOLER*ABS(BY(M)+BY(1))) GO TO 220
1F (FLAG) GO TO 260

DTOP=DBLE( TOP)

DBASE=DBLE ( BASE)

DETERMINE THE SHORTEST POLYGONAL SIDE.
TAKE SPECIAL CARE TO ACCOUNT FOR THE
POSSIBILITY THAT ALL VERTICES ARE COINCIDENT

PTEST=DZERO
L=0
L=L+1
IF (L.GT.M1) GO TO 90
DX=DBLE ( BX(L+1)-BX(L))
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DY=DBLE (BY(L+1)-BY(L))
DS=DX*DX+DY*DY
IF (DS.GT.DZERO) GO TO 70
WORK(L)=DZERO
WRITE (LUN,1030) L,BX(L),BY(L)
GO TO 60
DS=DSQRT(DS)
WORK (L)=DS
IF (L.GT.1) GO TO 80
PTEST=DS
GO TO 60
IF (PTEST.EQ.DZERO) GO TO 60
PTEST=DMINI1(PTEST,DS)
GO TO 60

IF (PTEST.EQ.DZERO) GO TO 250

"PTEST'" WILL BE THE VALUE BELOW WHICH
ALL HORIZONTAL DISTANCES ARE CONSIDERED ZERO.

PTEST=DTOLER*PTEST
ZTEST=DSQRT(DTOLER)*DBLE( (ABS(TOP)+ABS(BASE)))
CM=0.5%(TOP+BASE)

BEGIN MAIN LOOP FOR ALL FIELD POINTS -

DO 180 L=1,N
X0=DBLE(FX(L))
YO=DBLE(FY(L))
Z0=DBLE(FZ(L))
Z1=DABS(DTOP-Z0)
22=DABS(DBASE-Z0)

IF (Z1.LT.Z2) GO TO 100
2T=71

21=22

22=7T

IF (Z1.GT.ZTEST) GO TO 110
Z1=ZTEST

Z1SQ=21%Z1

228Q=22%72

X2=DBLE (BX(1))-X0
Y2=DBLE(BY(1))-Y0
R2=X2%X2+Y2%Y2
R21=DSQRT(R2+Z1SQ)
R22=DSQRT(R2+Z2SQ)
DSUM=DZERO

PROCEED AROUND THE POLYGONAL PRISM,
SUMMING THE CONTRIBUTION FROM EACH SIDE.

DO 170 K=1,Ml
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X1=X2

Y1=Y2

R1=R2

R11=R21

R12=R22
X2=DBLE ( BX(K+1))-X0
Y2=DBLE (BY(X+1))-Y0
R2=X2*X2+Y2%*Y2
R21=DSQRT(R2+Z1SQ)
R22=DSQRT(R2+2Z25Q)
DX=X2-X1

DY=Y2-Y1

DS=WORK(K)

IF (DS.LT.PTEST) GO TO 170
P=(X1%Y2-X2*Y1)/DS

IF (P.EQ.DZERO) GO TO 170
C=DY/DS

S=DX/DS

D1=X1%S+Y1*C
D2=X2*S+Y2%C

CALCULATE THE LOG (R+D) TERMS -

PH=P*P+Z1SQ
RDZ1=R11+D1

IF (D1.GE.DZERO) GO TO 140

1F (D2.GT.DZERO) GO TO 130

GL=(R21-D2)/(R11-D1)

GO TO 160

DTEST=PH/(D1*D1)

DD1=DABS(D1)

IF (DTEST.LT.EPS) RDZ1=HALF*DD1*DTEST*( ONE-FOURTH*DTEST)
RDZ2=R21+D2

IF (D2.GE.DZERO) GO TO 150

DTEST=PH/(D2*D2)

DD2=DABS(D2)

IF (DTEST.LT.EPS) RDZ2=HALF*DD2*DTEST* (ONE~FOURTH*DTEST)
GL=RDZ1/RDZ2

T3=-P*DLOG(GL*(R22+D2) /(R12+D1))

COMPUTE THE ARCTANGENT TERMS -

A=72%D1/(P*R12)
B=-72%D2/(P*R22)
C=ONE-A*B
T1=Z2*DATAN2((A+B),C)
A=71%D1/(P*R11)
B=-Z1%D2/(P*R21)
C=ONE-A*B
T2=-Z1*DATAN2((A+B) ,C)
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FINISHED WITH THE LOOP OF THE POLYGONAL SIDES -
T1,T2 = ARCTANGENT TERMS, T3 = LOG TERM.

DSUM=DSUM+T1+T2+T3
170 CONTINUE
DSUM=DABS(DSUM)
ARG=ANGLE ( BX, BY ,M,FX(L) ,FY(L))
IF (ARG.EQ.DZERO) GO TO 180
DSUM=ARG*( Z2-Z1)-DSUM

'""ANGLE'" COMPUTES THE SUM OF THE
INTERIOR ANGLES OF THE POLYGONAL
PRISM: IT USES A WINDING NUMBER ALGORITHM.

180 U(L)=DSUM*DBLE(SIGN(1.0,CM-FZ(L)))

GO TO 270
INITIATE ERROR PROCESSING HERE -

200 WRITE (LUN,1000) N
FLAG=.TRUE .
GO TO 10
210 WRITE (LUN,1010) M
FLAG=.TRUE.
GO TO 40
220 WRITE (LUN,*) BX(1),BX(M),BY(1),BY(M)
230 WRITE (LUN,1050)

GO TO 260
240 WRITE (LUN,1060) TOP,BASE
GO TO 270
250 WRITE (LUN,1040)
GO TO 270
260 WRITE (LUN,1100)
270 RETURN
1000 FORMAT (47HOQ#%%%% NUMBER OF FIELD POINTS IS § 1: N = ,
1 I4,1H.)
1010 FORMAT (46HOQ¥*%%%* NUMBER OF BODY POINTS IS § 4: M = ,I4,1H.)
1030 FORMAT (17HQ%*** WARNING:
1 47HDUPLICATE BODY POINTS AT INDICES "L" AND "L+1.",/,
2 7X ,4HL = ,13,1H.,/,7X,8HBX(L) = ,G16.7,/,7X,
3 8HBY(L) = ,G16.7)
1040 FORMAT (49HO**%*  WARNING: POLYGONAL VERTICES ALL COINCIDE.,/,
1 7X,27HFIELD OF PRISM SET TO ZERO.,/,
2 7X , 29HWARNING ISSUED FROM "PSI.")

1050 FORMAT (' ERROR FIRST AND LAST CORNER POINTS DO NOT COINSIDE')
1060 FORMAT (45HO¥***  WARNING: POLYGONAL PRISM IS TOO THIN.,/,

1 7X,14HTOP OF BODY = ,Gl16.7,/,

2 7X,15HBASE OF BODY = ,Gl6.7,/,
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3 7X ,27HFIELD OF PRISM SET TO ZERO.,/,
4 7X , 29HWARNING ISSUED FROM "PSI.")

1100 FORMAT (11X,29HERROR(S) DETECTED IN "PSI")
END
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SUBROUTINE TO CUMPUTE THE FUNCTION OMEGA FOR A POLYGONAL PRISM.
THE PROGRAM IS BASED ON EQUATION (8).

ARGUMENTS

N= THE NUMBER OF FIELD POINTS AT WHICH THE FUNCTION IS TO BE

COMPUTED .

FX,FY,FZ= ARRAYS CONTAINING THE N COORDINATES OF THE FIELD POINTS.

M= ONE PLUS THE NUMBER OF CORNER POINTS OF THE POLYGONAL PRISM.

BX,BY= ARRAYS CONTAINING THE X,Y COORDINATES OF THE CORNER

CORNER POINTS IN CLOCKWISE ORDER AROUND THE POLYGONAL PRISM.
NOTE: THE LAST CORNER POINT MUST COINCIDE WITH THE FIRST;
THAT IS, BX(M)=BX(1) AND BY(M)=BY(1l).

TOP, BASE= THE Z COORDINATE OF THE TOP AND BASE OF THE

POLYGONAL PRISM.

U= THE DOUBLE PRECISION ARRAY OF THE LENGTH N IN WHICH THE

VALUES OF TH OMEGA FUNCTION ARE RETURNED TO THE CALLING PROGRAM.

DS= A DOUBLE PRECISION WORK ARRAY.

SUBROUTINE REQUIRED

DOUBLE PRECISION FUNCTION ANGLE

REAL FX(N) ,FY(N),FZ(N),BX(M) ,BY(M) ,U(N)

REAL ABS, SNGL

DIMENSION DIST(M)

LOGICAL WARN,FATAL

DOUBLE PRECISION A,B,C,C2,P,S,W,CI,CM,DS,DX,DY,D1,D2,D12,
sc,SD,SI,T1,T2,
X0,X1,X2,Y0,Y1,Y2,
zT,71,7Z2,CSQ,DD1,DD2,EPS,
DIST,EPS1,RDZ1,RDZ2,R1SQ,R25Q,R1Z1,R2Z1,
R1Z2,R2Z2,21SQ, 22SQ,DTEST ,PTEST, SMALL, ZSMALL

DOUBLE PRECISION DZERO,HALF,ONE,TEN

DOUBLE PRECISION DCOS,DSIN,DLOG,DATAN,DATAN2,DSQRT,DABS,DBLE

EQUIVALENCE (EPS1,ZT)

DATA HALF/5.0D-1/, ONE/1.0DO/, TEN/1.0D+1/

DATA LUN/9/

DATA ZERO/0 .0/, DZERO/0.0DO/

WARN=. FALSE .

FATAL=.FALSE.

DO 1 LF=1,N
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U(LF)=ZERO

IF (N.LT.1) GO TO 170
IF (M.LT.4) GO TO 180
M1=M-1

CALCULATE DOUBLE-PRECISION MACHINE TOLERANCE

EPS=HALF
EPS=EPS*HALF

EPS1=ONE+EPS

IF (EPS1.GT.ONE) GO TO 30
EPS1=DSQRT(EPS)
SMALL=HALF*DSQRT(EPS1)
EPS1=EPS1+EPS1

SET "ZSMALL" TO SMALL*ABS(TOP-BASE)

ZSMALL=TEN* SMALL*DABS(DBLE( TOP-BASE))
1L=0

MAKE CERTAIN THAT THE THICKNESS OF THE SLAB IS NON-ZERO.
IF THE PRISM IS EXTREMELY THIN, SET OMEGA
TO ZERO AND WRITE A WARNING MESSAGE.

IF (ABS(TOP-BASE) .GT.SNGL(ZSMALL)) GO TO 40
GO TO 200

DETERMINE THE LENGTH (f0) OF THE SHORTEST
POLYGONAL SEGMENT.

L=L+1
IF (L.GT.M1l) GO TO 70
X1=DBLE(BX(L))
X2=DBLE(BX(L+1))
Y1=DBLE(BY(L))
Y2=DBLE(BY(L+1))
DX=DABS(X2-X1)
DY=DABS(Y2-Y1)
IF (DX.CT.EPS*DABS(X1+X2)) GO TO 50
IF (DY.GT.EPS*DABS(Y1+Y2)) GO TO 50
DTEST=DZERO
DIST(L)=DZERO
GO TO 40
DS=DSQRT (DX*DX+DY*DY)
DIST(L)=DS
IF (L.GT.1) GO TO 60
DTEST=DS
GO TO 40
DTEST=DMIN1(DS,DTEST)
GO TO 40
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70 IF (DTEST.EQ.DZERO) GO TO 200

90

100

IF (FATAL) GO TO 190
PTEST=EPS1*DTEST

"PTEST" = THE LENGTH BELOW WHICH HORIZONTAL
DISTANCES ARE ASSUMED TO BE ZERO.

START MAIN LOOP FOR EACH FIELD POINT -

DO 160 LF=1,N
Z1=DBLE(TOP-FZ(LF))
Z2=DBLE ( BASE-FZ(LF))
CM=HALF*(Z1+Z2)
Z1=DABS(Z1)
Z2=DABS(Z2)
718Q=21*21
Z2SQ=22%272
X0=DBLE(FX(LF))
YO=DBLE (FY(LF))
X2=DBLE (BX(2))-X0
Y2=DBLE(BY(2))-Y0
X1=DBLE(BX(1))-X0
Y1=DBLE(BY(1))-Y0
R1SQ=X1%*X1+Y1%Y1
R25Q=X2%X2+Y2%Y2
R1Z1=DSQRT(R1SQ+Z1SQ)
R2Z1=DSQRT(R2SQ+Z1SQ)
R1Z2=DSQRT(R1SQ+Z25Q)
R2Z2=DSQRT(R2SQ+Z25Q)

START LOOP TO CALCULATE THE CONTRIBUTION FROM
EACH POLYGONAL SIDE: THERE ARE (M-1) SIDES.

LB=1
DX=X2-X1
BY=Y 2-Y1

IF THE LENGTH OF A SIDE IS § "PTEST",
NEGLECT THE CONTRIBUTION FROM THAT SIDE.

DS=DIST(LB)

IF (DS.LT.PTEST) GO TO 150
C=DY/DS

$=DX/DS

SC=S*C

CSQ=C*C

CALCULATE PERPENDICULAR DISTANCE "P" OF FIELD POINT
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TO THE POLYGONAL LINE SEGMENT (OR ITS EXTENSION).
IF "P" IS VERY SMALL, SET "P" TO ZERO.

P=(X1*Y2-X2*Y1)/DS
IF (DABS(P).GT.PTEST) GO TO 110
P=DZERO
D1=X1*S+Y1*C
D2=X2%S+Y2*C
DD1=DABS(D1)
DD2=DABS(D2)
IF (DD1.GT.PTEST) GO TO 120
D1=DZERO
IF (DD2.GT.PTEST) GO TO 130
D2=DZERO
D12=D1*D2
P =0, Z1 §= ZSMALL, AND D12 §= 0: MOVE THE FIELD
POINT AWAY FROM THE FACE OF THE PRISM.

Z1=ZSMALL
Z18Q=21%21
R1Z1=DSQRT(R1SQ+Z1SQ)
R2Z1=DSQRT(R2SQ+Z1SQ)

CALCULATE THE ARCTANGENT TERMS -

W=DZERO
IF (P.EQ.DZERO) GO TO 140
A=72%D2/(P*R2Z2)
B=-22*D1/(P*R1Z2)
C2=0ONE—-A*B

T1=DATAN2( (A+B),C2)
A=Z1*D1/(P*R1Z1)
=-71%D2/(P*R2Z1)
C2=0ONE—-A*B

T2=DATAN2( (A+B) ,C2)

FINISHED WITH THE ARCTANGENT TERMS -
NOW SUM THE CONTRIBUTIONS.

W=T1+T2
U(LF)=U(LF)+W

PREPARE FOR THE NEXT POLYGONAL SEGMENT -

LB=LB+1

IF (LB.GT.M1) GO TO 160
X1=X2

Y1=Y2

R1Z1=R2Z1

R1Z2=R2Z2

R18Q=R2SQ
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X2=DBLE ( BX(LB+1))-X0
Y2=DBLE (BY(LB+1))-YO
R2SQ=X2%X2+Y2%Y2
R2Z1=DSQRT(R2SQ+Z1SQ)
R2Z2=DSQRT(R2SQ+Z2SQ)

GO TO 100
¢
C END LOOP OF POLYGONAL SEGMENTS -
C
160 CONTINUE
GO TO 200
170 WRITE (LUN,1000) N
FATAL=.TRUE .
GO TO 10
180 WRITE (LUN,1010) M
FATAL=.TRUE.
GO TO 20
190 WRITE (LUN,1030)
200 IF (WARN.AND..NOT.FATAL) WRITE (LUN,1060)
RETURN
1000 FORMAT (4 7HOQ#* %%k NUMBER OF FIELD POINTS IS § 1: N = ,
1 I4,1H.)
1010 FORMAT ('#wsk NUMBER OF BODY POINTS IS § 4: NBODY = ',
1 14,1H.)

1030 FORMAT (11X,'ERROR(S) DETECTED IN "OMEGA"')
C 1040 FORMAT (48HO***  WARNING: DUPLICATE BODY POINTS AT INDEX ,
1 13,1H.,/,7X,15HX-COORDINATE = ,Gl16.7,/,
2 7X,15HY-COORDINATE = ,Gl6.7)
1050 FORMAT (38HO***  WARNING: FIELD POINT TOO CLOSE,
29H TO THE TOP OR BASE OF PRISM.,/,7X,
42HFIELD POINT WILL BE MOVED AWAY FROM PRISM.,/,7X,
24HDISTANCE TO PRISM NOW = ,D16.7,/,7X,
24HNEW DISTANCE TO PRISM = ,D16.7,//,7X,
32H--- FIELD POINT PARAMETERS ---,/,12X,8HINDEX
14,1H.,/,12X,10HX-COORD = ,G16.7,/,12X,10HY-COORD
7 G16.7,/,12X,10HZ-COORD = ,G16.7)
1060 FORMAT (7X,'--- WARNING MESSAGES ISSUED FROM '"OMEGA" ---')

END

i

W

eRelleloele el el e



cNeNoNoNoNeoNeNoNeoNoRoNoNoNoNoNoNoNoNeNoNoNeoNo o NoNoRoRoRoRoRoNe R R o Ro R Re R e

00 00

INTEGER S, T, UP

REAL X(™) ,Y(M) ,X0,Y0,DET,FLOAT, SQRT
DOUBLE PRECISION DZERO,DBLE,PI,TWOPI

INPUT PARAMETERS -

X,Y -

X0

YO

PURPOSE -

REAL ARRAYS OF LENGTH "M'" CONTAINING

THE POLYGONAL VERTICES: THE LAST POINT
(X(M),Y(M)) MUST COINCIDE THE FIRST POINT,
(x(1),v(1)).

- LENGTH OF THE ARRAYS X,Y.

- X-COORDINATE OF POINT FOR WHICH THE INTERIOR
ANGLE IS DESIRED.

~ Y-COORDINATE OF POINT FOR WHICH THE INTERIOR
ANGLE IS DESIRED.

"ANGLE" CALCULATES THE SUM OF THE INTERIOR
ANGLES OF A POLYGON DEFINED BY THE VERTICES
(x(L),Y(L), L=1,M) WITH RESPECT TO THE POINT
(X0,Y0). THIS ANGLE IS DEFINED AS FOLLOWS:

(1)
(2)

(3)
(4)

"ANGLE" = TWOPI IF (X0,Y0) IS OVER POLYGON,
"ANGLE" = 0 IF (X0,Y0) IS NOT

OVER POLYGON OR ITS EDGE,

"ANGLE" = PI IF (X0,Y0) IS OVER EDGE OF
POLYGON BUT NOT OVER A VERTEX,

"ANGLE" = THE INTERIOR ANGLE SUBTENDED

BY THE ADJACENT SIDES IF OVER A VERTEX.

CODE BASED UPON THE WINDING NUMBER ALGORITHM OF

LELEND, KENNETH 0. (1975) AN ALGORITHM FOR WINDING
NUMBERS FOR CLOSED POLYGONAL PATHS,
MATHEMATICS OF COMPUTATION, VOL. 29(130),554-558.

CODE PREPARED BY A. H. COGBILL.

DATA PI/3.141592653589793D0/, TWOPI/6.283185307179586D0/
DATA DZERO/0.0DO/, ZERO/0.0/, HALF/0.5/, ONE/1.0/
DATA PI/3.1415926535898/, TWOPI/6.2831853071796/

MACHINE DEPENDENT CONSTANTS ARE "PI" AND " TWOPI'".
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$=0
M1=M-1
X2=x(1)-X0
Y2=Y(1)-YO
K=0
K=K+1
IF (K.GT.M1) GO TO 60
UP=0
T=0
X1=X2
Y1=Y2
X2=X(K+1)-X0
Y2=Y(K+1)-Y0
IF (X1.EQ.ZERO .AND. Y1.EQ.ZERO) GO TO 90
IF (Y2.EQ.ZERO) GO TO 15
IF (Y2.GT.ZERO) GO TO 20
Y2 § 0
IF (Y1.LT.ZERO) GO TO 30
Yl t=0, Y2 § O.
UP=1
GO TO 40
IF (X2.EQ.ZERO) GO TO 10
IF (Y1.GE.ZERO) GO TO 30
Y2 t=0, Y1 § O.
UpP=-1
GO TO 40
END STEP 1; BEGIN STEP 2.
IF (Y1.NE.ZERO) GO TO 10
IF (Y2.NE.ZERO) GO TO 10
IF (X2.EQ.ZERO) GO TO 10
IF (SIGN(ONE,X1).NE.SIGN(ONE,X2)) GO TO 80
GO TO 10
END STEP 2; BEGIN STEP 3.
DET=X2*Y1-X1%Y2
IF (DET.EQ.ZERO) GO TO 80
IF (FLOAT(UP)*DET.GT.ZERO) GO TO 50
T=-UP
S=S+T
GO TO 10
IF (S.EQ.0) GO TO 70

ANGLE=TWOPI
RETURN
ANGLE=DZERO
RETURN
ANGLE=PI
RETURN

AT A VERTEX: "ANGLE" = THE ANGLE SUBTENDED

BY ( (X(K-1),Y(R-1)), (X(K),Y(K)), (X(R+1),Y(k+1)) ).
BRANCH TO THIS CODE OCCURS ONLY WHEN X1=Y1=0.
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IF (K.GT.1) GO TO 100
X1=X(M1)-X0

Y1=Y(M1)-YO

GO TO 110

X1=X(K-1)-X0

Y1=Y(K-1)-YO
R1SQ=X1*X1+Y1*Y1
R2SQ=X2*X2+Y2*Y2
R3SQ=(X2-X1)*%2 + (Y2-Y1)*%2
CTHETA=HALF* (R1SQ+R2SQ-R3SQ) / SQRT(R1SQ*R2SQ)
ANGLE=DBLE ( ARCOS(CTHETA) )
ANGLE=ACOS( CTHETA)

RETURN

END
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TEMPERATURE AND HEAT FLOW MODELING OF THREE-DIMENSIONAL
BODIES
IN A TWOC-LAYERED HALF SPACE
by
John A. Dunbar, Jr.

{ABSTERACT)

A theoretical analysis was made of steady-state
temperature and heat flow anomalies in the earth's crust
caused by contrasts in heat production and thermal
conductivity. Exact expressions were derived for the
temperature and heat flow anomalies caused by polygonal
prism heat sources in a half space overlain by a layer of
contrasting conductivity. Expressions were also developed
for the approximate thermal effects of polygonal prisms of
contrasting conductivity. A comparison was made between the
exact and apprroximate heat flow over an infinite semi-
circular cylinder of contrasting conductivity. The two heat
flow fields agree to within 5% for conductivity radios (the
ratio of the conductivity of the medium and the conductivity
of +the cylinder) which are between 0.25 and 1.5.
Comparisons were also made between polygonal prism and

finite differnce nodels, three~dimensional and one-



dimensional

space models.

rodels, and half space and two-layered half

To illustrate the interpretation of heat flow anomalies

a heat flow model was prepared for the Rolesville batholith

and Castalia
Carolina.
surface heat

explained by

pluton, in Nash and Franklin Counties, North
It was shown that the observed variation in
flow over these two granitic intrusions can be

variations in the thickness of the granite from

1 km to 30 km.
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