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1. Introduction 

Steady-state heat flow and temperature anomalies in the 

earth's crust can be caused by lateral varia tions in heat 

production and thermal cond~tivity. In many respects the 

problem of interpreting thermal anomalies is identical to 

the problem of interpreting gravity and magnEtic anomalies. 

Heat production and thermal conductivity vary with rock 

type, as do density and magnetic susceptibility. As a 

result, geologic features such as folds, faults, and igneous 

intrusions can produce thermal a nomalies in the same way 

that they produce gravity and magnetic anomalie s. There are 

also strong mathematical similarities. Temperatur e fields 

satisfy the same governing equations as do gravity and 

magnetic potentials. Solutions to gravity and magnetic 

problems, then, differ from solutions ta analogous 

temperature field problems only in the nature of the 

boundary conditions imposed and by constant coefficient s. 

In particular, tbe heat flow anomaly caused ty a boJy of 

contrasting heat production is analogous to the graviti onal 

attraction of the same body {Simmons, 1967) . Likew ise, the 

heat flow anomaly caused by a body of contrasting the rmal 

conductivity in a uniform heat 

1 equivalent to the magnetic 

flow field is mathematically 

anomaly caused ty a body of 

-1-



-2-

contrasting susceptibility in a uniform inducing fi e ld 

(Carslav and Jaegar, 1959, p. 425). Temperature anomalies 

caused by bodies of contrasting heat f rcduc t ion and 

conductivity are respectively analogous tc gravimet ric 

potential and gravitational attraction anomalies. 

Because of these similarities it is possible to mod el 

heat flow and temperature anomalies using t he s ame 

techniques used to model gravity and magnetic anomalie s . In 

many cases the same computer programs can be used with onl y 

minor modifications. Simmons (1965), for e xam f le, s uggeste d 

a method based en the gravitational attraction of a 

polygonal lamina (Talwani and Ewing, 1960) for modelin g he a t 

flow anomalies due to heat production contra s ts in a hal f 

space. Thermal modeling techniques of this tyre are faster 

computationally and less cumbersome to implem e nt th a n t he 

numerical techniques such as the methcd of f i n ite 

differences and the method of finite elements. These 

advantages become rarticularly impor t ant in situatio n s which 

require repeated modeling such as in solv ing inverse 

problems by trial-and-error methods. 

The model pr-o posed by Simmons doe s not a ccount for~ t hE'' 

effects of contrasts in thermal conduc t i vit y betw een th e 

anomalous body and the half space. It also dc es not account 

for the effects of a layer of cont r a sti ng conduc tivity 
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overlying the half space. This more general problem is of 

current interest in the exploration for lcw-temperature 

geothermal resources. The objectives of this exploration 

are temperature 

overlying highly 

anomalies in low conductivity sediments 

radiogenic litbologies in thE crystalline 

basement (Costain, Glover, and Sinha, 

the sedimentary layer would act as an 

1979). In principle 

insulator, causing 

higher temperatures to occur closer to the surface. The 

problem is also important ia the interpretation cf beat flow 

determinations made in sea floor sediments. The latter case 

was considered by Lee and Henyey (1974) who used the method 

of finite elements to correct marine heat flow values. An 

analytical treatment of temperature and heat flow anomali es 

in a two-layer half space does not exist in the literatu re . 

A more general modeling technique than that proposed by 

Simmons (1965), based on the gravity and magnetic effects of 

polygonal prisms (Plouff, 1976), is developed in the 

f ollovin9 sections. The technique is suitable for modeling 

temperature and heat flow anomalies associated wi th three-

dimensional bodies of contrasting heat rrcduction and 

conductivity in a two-layered half space. 



2. Theoretical Analysis 

1.0 heat flow unit (HFU)= 1.0 x 10-6 cal/(cm2-sec) 

1.0 heat production unit (HPU)= 1.0 x lo- 13 cal/(cm3-sec) 

1.0 thermal conductivity unit (TCU)= -3 0 1.0 x 10 cal/(cm-sec- C) 

General Definitions 

A = heat production contrast pe r uni t volume tetwee n an 

anomalous body and the surrounding me dium: 

1 a(x,y,z) =heat production at the point (x,y,z) 

G = the vertical gravitational attraction; 

J 2 = the vertical component of the intensity of 

magnetization vector; 

K = th~ thermal conductivity of a homogenou s me d ium; 

M = tht vertical component of thE in d uced 

magnetic field; 

g = the vertical heat flow field; 

q *= the uniform heat flow from the tase of a model 

region: 

~= anomalous vertical heat flow fi e ld due ~ c d body 

with a contra s ting heat production; 

q = anomalous ve rtical heat flow fi e ld du e to a body 
K 

with a contrasting thermal conductivity; 

-4-
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qR= the regional heat flow field which varies only in th e 

vertical direction; 

q 8 = anomalous vertical heat flow field due to a faint 

source of heat; 

s = the heat produced per unit time at a point source; 

T = the temperature field; 

TA= anomalous temperature field due to a body of contrast ing 

heat production; 

TK= anomalous temperature field due to a body of con t rast ing 

thermal conductivity; 

TR= the regional temperature field which varies lin e arly 

with depth; 

T = anomalous temperature field due to a point source of s 

heat; 

(x,y,z)= the coordinates in a right-handed syst e m 

with z increasing downward, at which the field i s to be 

computed; 

(x•,y•,z•)= the coordinates describing the location 

of points in an anomalous region in Sface; 

y = the universal gravitational constant; 

p = density contrast. 
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Assumptions a.ll.Q_!..E.f~oximations 

This study is concerned with the steady-state hea t 

conduction problem for anomalous bodies in a half space 

overlai.n by a layer of contrasting conduct iv.it y (fig. 1). 

In general, both the heat production and thermal 

conductivity of the body differ from that of the surroun d ing 

mediua. Heat enters the system either as uniform ver t ical 

heat flow (q*) from the base of the model region or i s 

generated within the anomalous body and surrcunding medi um. 

Heat production in the surrounding medium extends t o a 

finite depth. The surface of the two-lay~d half s pac€ i s 

maintained at a constant temperature. All ether f actors 

which influence the terrestrial 

ignored. 

temperature fi e ld ar e 

In lieu of an exact solution to this pro Ll Em t he 

temperature and beat flew effects of the bod y ' s hea t 

production and conductivity con t rasts ar e calcul a te d 

seperately and then added. The tempera t ure field is the n 

approximated by the superposition cf three in depEndently 

calculated temperature fields: 1.) the a nomalc us field due 

to a body of contrasting heat production in a t wo -layer half 

spac~ (TA), 2.) the anomalous field due to th e dis~urbance 

in q* by a body of contrasting conduct i vity in a two-layered 

half space (TK), 3.) a regional field which varies only in 

the vertical direction (TR)-
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1 1 
q* 

Figure l Schematic diagram 
arbitrary shape in a two-layered 
heat flow q* enters the system 
region. The surface is held at a 

1 

of an anomalous body of 
half space. The vertical 
at the base of the model 
constant temperatur e T0 • 
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The effects of arbitrarily shaped three-dimensional 

bodies are approximated by summing the effects cf horizontal 

polygonal prisms as in Plouff's (1976) gravity mod elin g 

method. In the following sections expressions fo r the 

temperature and heat-flow anomalies due tc anoma l ous 

polygonal prisms in a uniform space are developed first. 

Expressions for the temperature and beat-flow anomalies in a 

uniform half space and a t~o-layered half space ar e then 

found by the methcd of images, a standard method in heat 

conduction (Carslaw and Jaeger, 1957, p. 27 3) and in 

electrostatics {Kellogg, 1957, page 207). 

Steady-state temperature fields in regicns cf uni form 

conductivity, like gravity and magnetic potentials, satisf y 

Poisson's equation 

2 
I/ T(x,y , z) 1 - Ka(x,y, z ) (l) 

The solution for a point source in a uniform mediu m i s 

given by (Carslaw and Jaeger, 1959, p . 422) 

where 

T (x,y,z) s 
s 

4nRK 

2 2 2 2 R = (x-x') + (y-y') + (z-z'). 

(2) 
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For the case of a uniform heat production A
2 

within a 

region v0 and a uniform heat production A1 outside v
0 

where 

= 

00 00 00 

!!! dx'dy'dz' v0 (x',y',z') R 
-00 -oo -oo 

1 inside the region V 
0 

0 outside the region V 
0 

The heat flow field du~ to the sam€ volume s ourc e i ~ 

found by appling fourier•s law of heat conduction 

where 

qA(x,y,z) 
3TA 

-(-K-) dZ 

00 00 00 

ff JV 
( , , ')(z-z')dx'dy'dz' 

0 x ,y ,z 3 
R 

-oo -co -oo 

and wh~re positive heat flow is tovard the s ur face. 

( 4) 
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The remaining problem is to define X and ~ for the 

desired source element. Expressions £or X and ~ exist in 

the literature for a large number of different source 

geometries. Of these, polygonal prisms are particularly 

well suited for representing three-dimensional geologic 

features. Plouff (1976, eq. (3)) gives the gravitational 

attraction of an n-sided polygonal prism with ver tical 

edges. Using the current study's notation the express ion is 

where 

G(x,y,z) 

n 

Sm ~l [spe(z2-Zl)-Z2(W22-Wl2)+Zl (W21-wll)-PQJ 

s = -1 if the centroid of the prism is atcve th e 
m 

(5) 

fieldpoint and s = 1 if the center of mass is below 
m 

the fieldfoint; 

s = 1 if p is postive, and -1 if P is negative: 
p 

cos e = 

z = z - z• ; 1 . 1 

z• = the vertical coordinate of the top cf the prism; 
1 

z2= z - z 2 ; 
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z~ = the vertical coordinate of the base cf the prism; 

ii = 
ij 

d.Z. 
-1~ 

tan PR .. 
1] 

R2 = x2+Y2+z2 ; 
ij i i j 

di= Xi(X2-Xl)+Yi(Y2-Yl) //(X2-Xl)2+(Y2-Yl)2 

(X
1
,Y

1 
)= (x-x;,y-y~); 

(x~,y1•)= the coordinates of the starting Feint of an 

edge; 

cx
2

,Y
2

) = (x-x;,y-y;> 
<x;,y

2
•)= the coordinates of the ending pcint of an 

edge; 

p = 

Q = 

(XlY2-X2Yl)/ (X2-Xl)2+(Y2-Yl)2 

R22+d2 Rll+dl 
ln 

R2l+d2. Rl2+dl 

Because it is known that x cannot contain terms which 

are independent of z, x can be found by integrating ~ with 

respect to z. All terms included in ~ fer a polygonal 

prism can be written in the forms: 

s ez. p J 
d.Z . 

-1 1 J 
Z. tan 

J PR .. 
1] 

Pln(R .. +d.) 1-J 1 

(6a) 

(6b) 

(6c) 
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Tera (6a), integrated using the power rule, yields 

ls ez~ 
2 p .J (7a) 

Term (6b) is evaluated using integration by parts, 

Dwight's {1957) integral 200.01 and Plouff 1 s (1976) inteqral 

(8a). The result is 

[ 

d. z. ~ 1 2 2 - 1 1 .J 
-2 -(Z.+P )tan -PR .+ Pd.ln(R .. +d.) . 

.J . . 1 1.J 1 
1] 

(7b) 

Term (6c) is integrated using the same method and 

reference integrals as (6b) and yields 

diZ. 
2 -1 ] 

P tan -P- - P(di+z . )ln(R .. +Z.). 
R.. J 1.J J 

1] 

(7c) 

Substituting these integrals into ~ foI a polygonal 

prism, X for the same source volume is given ty 

2 2 2 +2(Y 2s-x2c)Q2-2(Y1s-x1C)Q 1+spe(z2- z1)-Z2(w22-w12 ) 

+z~ (W21-w 11 )J (8) 
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where 

For the special case of a rectangular prism c en te red 

about the fi e ld point, equation (8) reduces tc 

[ 
1 2 -1 YZ x(x,y,z,V0) = YZln(X+R)- zX tan XR + XZln(Y+R) 

1 2 -1 XYJ +XYln(Z+R) - zz tan ZR r2 12 r2 
xl Yl 2 1 

1 2 -1 xz zy tan YR 

(9) 

Equation (9) agrE es with the formul a for: -c.he 

gravitational potential due to a recta n gular pri s m (H a az , 

1953). 

The distortion of a uniform heat fl ow field by a body 

of contrastiny conductivity is mathemat i cally t he sa~c as 

the distortion of a magnetic field b y a body 0£ con trastin q 

magnetic susceptibility. The latter probl e m ha s b e ~ n Je~ lt 
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with by Talwani (1965) and Plouff (1976) .. In thesEi s t 11dies 

the contribution to the magnetic field by an infinitismal 

volume element in the anomalous body is assumed to be the 

same as a similar volume element alone in free space . The 

total effect of the anomalous body is then found by 

integrating the e ffects of all such volume elements which 

make up the body. This is not an e xact s olution becaus 0 the 

magnetic field induced in a qiven volume ele ment will ac t as 

an additional inducing field in neighboring vol ume e l em~nts. 

This interaction between neiqhbo rinq volum e e l ements .is 

ignored. 

The sam e met hod can be applied t o the analogous he a t 

conduction problem .. The tem p~rat ure effEct of a single 

volume element can be found by conside ring the temperaturP 

anomaly due to a sphere of c ontra sting conduct ivi t y, 

centered about (1:',y',z'), in a unifor m heat flow fiel d g* 

(Carslaw and Jaeger , 1959, p. 426) 

tiT(x,y,z) (10) 

where 

r = the radius of t he sph ere; 

Ki= the conductivi t y ot t.h e sur rou nding medium; 

K 2= the conduc t ivity of t ht-: sphe r e. 
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The temperature anomaly due to a spherical volume 

element 6V at an arbitrary position in a region v0 can then 

be written 

* 
L\T(x,y,z) 

3q (K1-K2)(z-z')6V 

3 4irK1R (2K1+K2) 

(11) 

The approximate temperature anomaly associat e d wi t h a 

region V 0 of cont ra:sting cond ucti vit y is then gi v~~n by 

letting 6V become infinitismal and integrating th e & f f~ ct s 

of al 1 such volume elements in v0 : 
00 00 00 

* 3q (KCKz) 

4irK1 (2K1+K2) f f fv0 (x' ,y',z') (z~~') dx'dy'dz' 

-oo -00 -00 

(12) 

Equation (12) is an approxima t ion because, a s in t he 

analogous magnetic problem, the interaction tE ~ w eo n volum e 

elements is iquored. Numerical r esult s from e q ua tion {12) 

are compared with those from exact solutions in sec tion 2. 

The vertical heat-flow anomaly associa t ed with a b~rly 

of contrastinq conductivity is given by 

(13) 
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where 
00 00 00 

w(x,y,z,v0 ) J J J [R
2

-3R(5z-z I )
21 v0 (x' ,y' ,z') J dx'dy'dz' . 

-oo -oo -oo 

The function ~ appears ~n the expression for the 

vertical component of the induced magne t ic fi eld due t o a 

volume V of contrasting 
0 

susceptibility in a vertical 

inducing field. For an n-side d polyqonal pri s m this 

component of the magnetic anomaly is written (Pl ouff, 

eq. 9) 

M(x,y,z) 

where 

n 

L <w22-w21-w12+w11) • 
i=l 

Heat Conduction in One- and Two-La~,fil;:~Q_Balf_d£~~~§ 

1976. 

(14) 

Equations (3), (4), (12) and (13) give temperature and 

h eat-flow anomalies due to anomalous bodies in an otherwise 

uuif arm spacP. for a realistic representation of ~he 

terre strial temperature and heat flow fields, the th9rmal 

effects of the earth's surface must he accounted for. This 

can be done by the method o f images if th e earth is 



-17-

represented by a half space with a constant surface 

temperature. Simply stated, the method of images involv es 

constructing a system of sources and sinks in a medium with 

uniform material properties in such a way as to duplicate 

~he tempera~ure field in a region with discontinuous 

material properties. The com bined €ffect of all the sources 

and sinks i s required to satisfy the governing equation 

throughout the region of interest and to behave in a 

specified manner at the boundaries of thE region. 

The qeometry of the source-sink system for a point 

source at (x',y',z') in a half space with a uniform 

conductivity (one-layered half space) is shown in fig ur e 2. 

The expression for the temperature anomaly is (C a rsl aw, and 

Jaeger, 1959, p. 273) 

when~ 

2 
R = (x-x'f + 

T (x,y,z) s 
_s [l __ l] 
4TIK R R 

2 2 (y-y•) + (z+z'). 

For a volum~ source in a one-layered half space 

TA(x,y,z) 

(15) 

(16) 



sink at (x ',y' ,-z' ) 

fre e space 0 
Kl 

x' 0°C x' 0°C 

z' 1 - Kl 
~r-------~ -:--------

• s our ce at (x ' ,y ' ,z' ) 

Half Space 

Figure 2 Point- source i mage system for temperature in 
a uniform half space. 

source at (x' , y ' ,z' ) 

Equivalent Image 

System for 

z ?: 0 

I 
. I-' 

00 
1 
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where 

Va (x' ,y' ,z•) = Va ex• ,y• ,-z'). 

Likewis~, for a one-layered half space 

(17) 

(18) 

* 3q (K1-K2) 

4ir (2K1+K2 ) 
(19) [w(x,y,z,Va) + w(x,y,z,Va~. 

The uniform half space model of the earth i s no t 

applicable where a layer of contrasting con ductivity 

overlies the source region. Such a situation OCC IJI:'S in t he 

Atlantic Coastal Plain, where the conductivity of t he 

basement complex can be twice that of the ove rlying 

sediments (Costain, et al, 1.212>· The effect s of t h e 

sedimentary layer can be accounted for by placing a laye r of 

thickness h and conductivity Ka over t he unifo r m hal f space 

with conductivity K • The boundary conditions for this two-. 1 

layered earth model are: 

1.) lim T (R) 
R~00 s a 



2.) 

3.) 

4.) 
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T (x,y,O) = 0 s 

- K0 ::s I _ 
z=h 

lirn + ( ) z ~ h Ts x,y,z . 

For a source at an arbitrary location in the r e g io n o f 

conductivity K1, an infinite series of images is re q ui re d to 

satisfy all four conditions simultane ously (fig. 3) . 

The temperature at the pcint (x,y,z) due to a poin t 

source at (x',y',z') is given by 

T (x,y,z) s 

+ I 2 : . 2 )
11 

B (x-x') +(y-y') +(z-2(1+l)h- z') ~ 
0 < z < h 

(20) 

Ts ( x ' y ' 2 ) = 4
8
rr [ K I 2 

1 

2 2 - K BI 2 a 2 2 
1 (x-x') +(y-y') +( z-z') 1 (x- x') +(y-y') +(z-2h+z') 

()() 

i=O z > h where 

K
0

= the conductivity of the laye r over the half space; 
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Figure 3 Point-source image system for temperatures 1n 
a layer over a half space. 
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K1= the conductivity of the half space; 

h = 

13 = 

the thickness of the layer over the half space ; 

KO - Kl 

KO+ Kl. 

For an arbitrary volume source the temperature is 

00 

[
A 1 1 \' i+l i+l ( -TA(x,y,z) = 2TI S x(x,y,z,V0) +a~ (-1) (a/8) x(x,y,z,V1 ) 

i=O 

+ ~ x(x,y,z,Vi+l))J < h 0 < z 
00 

TA(x,y,z) = 4~ [ ~/(x,y,z,v0 ) - BaK/(x,y,z,v0) 4Ko L +-2 
a i=O 

(-l)i+l 

where i+2 - ] •(a/B) x(x,y,z,V1) 

vj (z:',y',z')= Vo (x',y',2jh+z'); z > h 

vj cx•,y•,z•)= v0 tx•,y•,-2jh-z'); 
-v (x',y',z')= v ( x. , y', 2h -z.) • 

j 0 

(21) 

Because each term in equation (21) satisfies Poisson's 

equation, the equation itself must also satisf y Po isson ' s 

equation. Both series in the equation can be shown to 

converge absolutely by the ratio test (Thomas, 1972, p. 805 

and 849) for all physically realizable val ues of thermal 

conductiYity. It can also be seen by i ns pection that 

equation (21) satisfies all fcur of the bounda ry conditions 

placed on it. 
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The errors incurred by truncating the series in 

equation (21 ) are easily estimated. For 

both series are alternating. The truncation error can then 

be no larger in magnitude than the absolute value of the 

first truncated term. For 

the series are either all positive or all neqative. A bound 

for the error resulting from truncating the ser ies after the 

nth term is given by 

R < n 
x(x,y,z,V ) n 

2'TTCI. 

00 

J[ "+I ·+2] (ci./S)J + (a. / S)J 

< x(x,y,z,V ) 
[ (•/B)n+l + (n/B)n+~ n 

2Tia.ln(ci./S) 

R < 
n 

< 

x(x,y,z,Vn)K0 
2 'TTCI. J 

n 

n-2 x(x,y,z,Vn)K0a. 

'TTS 0 +2ln (a. / S) 

00 

7, > h 

o < I a. I < s 

dj 

0 < z < h 

0 < lei. I < s 

(22) 
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R0 : the magnitude of the largest possible error 

caused by truncating the series after n terms; 

In at least two special cases the infinite series vanish 

entirely. For the case in which 

K = K = K 0 1 

equation (21) r::educes to equation (16). 

The case in which h and z' become large wi ~hout bound, 

while the dif ferEnce 

2h - z' 

r::emains constant, is equivalen t to removing the inte rfac fi at 

z = 0. 

Under this condition equation (20) r e duces to 

Ts ( x ' Y ' z) = 4sn [ KO ~Kl I 2 1 2 ' 21 
(x-x') +(y-y') +(z-z ) j 

z < h 

T ( x ' y ' z ) = 4
8
n [ K I 2 

1 

2 2 
s 1 (x-x') +(y-y') +(z-z') (23) 

K1 - KO 1 ·---J 
+ - )I 2 2 2 

Kl(KO+Kl (x-x') +(y-y') +(z-2h+z ') 

z > h ' 
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Equation (23) is identical, in form, to the solution to 

the analogous problem in electrostatics (Kellogg, 1957, p. 

209). 

Up to this point only the problem of heat production in 

a two-Layered half space has been considered. A similar 

development for the proble m of contrasting conductivi ties 

yields 

3q*(K1- K2) 
2'ITK1 (2K1+K2) 

00 

3q*(K1-K2) 
47rK1 (2K1+K2) 

00 

{ 
0 < z < h 

( ~ .p (x,y, z, V i+l)-.p (x, y, z ,\~} 
(24) 

_ 4~0 L 
a i=O 

i+l i+2 - J 
(-1) (o / B) .p(x , y ,z ,ViJ z > h. 

Expressions for heat f l ow in a t wo layered half space 

a r e found by applying Fourier's law of be a t c onduction to 

equations {21) and (24). 
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!he Regional T~11perature Field 

The portion of the temperature field which varies only 

in the vertical direction will be termed the regional fi eld . 

Because it does not vary laterally it is governed by 

Poisson's equation for one-dimensional heat conduction 

1 - K a(z). 
Clz2 

For the case of a two-layered half space the boundary 

conditions are: 

1 • ) 

2.) -K ~:R I 
1 az z=h+ 

3.) >'< q 

The solution is then given b y 

0 < z < h 

(25) 

+ l [ (z-h) q - l A (z-h) 2] + K1 0 2 1 

D > z > h 
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where 

q0 = the regional heat flow at the surface; 

D= the depth to the base of the heat producing layer. 

Equation (25) can be generalized to the case in which 

heat production in the region 

z > h 

varies in a step function manner. If the ith heat producing 

layer is characterized by a heat production A1 and a depth 

to the base of the layer o1 then 

TR(z) = .!. [zq - .!. A z~ + T0 KO 0 2 0 j 0 < z < h 

TR(z) = .!. [ hq - .!. A h
2

] + .!. [ (z-h) • (q0 -A h) - t Alm (z-Dm-l) 
2 

KO 0 2 0 Kl 0 
(26) 

m-1 

- ! ~ Ali (Di-Di+1 )
2
] + D > z > D m - - m-1 

For the general case of a body of contra sting heat 

production and thermal conductivity the approxi mate total 

temperature field is given by the algebraic sum of equations 

(21), (24) and (26) 

(27) 



3. Comparison of Different Solutions 

Exact Solutions_for Bodies With Simple Sha~§ 

Exact solutions to the problem of determining 

temperature in a half space are available for anomalous 

bodies with simple shapes. These soluticns provide an 

independent check on the validity of equation (27) as well 

as on the accuracy of computer programs based on th i s 

equation. 

The expression for the temperature about a spherical 

heat source of radius a and heat production A follows 

directly from equation (15), 

a
3A[ 1 l] TA (x, y, z) = 3K ; - i . R > a (28) 

The vertical heat flow at the surface is then given b y 

qA (x,y,z) 
3 2a Az' 

3R3 ( 29) 

A comparison of values given by equation~ ( 28) an d (29 ) 

with those given by a polygonal prism mode l based on 

equation (27) is shown in figure 4. The geometry of the 

polygonal model is shown in figure 5. Values given by the 

tvo sets of equations agree to within 1i throughout the 

model region. 

-28-



=i 
LL 
I 

lf) 

.-; 

~ I 
~ 5 a: 
" Q 

I 

10 

POLY GONAL PLRTE RPPROXIMRTION EXACT SOLUTION 

-15. 0 - 10. 0 -5. 0 00 5. 0 10. 0 15. 0 20. 
( KM ) ( KM ) 

so 0 c 
2/-1 

\ I 
I 
~ v \0 
I 

100 

150 

200 
I --

Figure 4 Comparison o f the exact solution and polygonal prism approximat ion for 
a spherical heat source . Dashed line indicates the shape approximated by the 
polygonal prism model. The polygonal prism model is shown in figure 5 . 



A 

a 

B 
a 

K = 5 TCU 

I 
I 

\ 

--/ 

0 

-30-

a 

0°C 
. a -- ...... 

\ 
\ 

q*: 1 HFU 

2 4km 

Figure 5 Polygonal prism model of the spheri cal hea t 
source (fig. 4). Part A shows a map view of the model; Part 
B shows a cross-sectional view along line a-a'. 
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This difference can be reduced to an arbitrary level by 

refining the geometry of the polyqonal model and increasing 

the precision of the arithmetic used to evaluate the 

equations. 

Exact solutions for a hemisphere and a horizontal semi-

circular cylinder of contrasting conductivity are given by 

Carslaw and JaegEr (1957, p. 426). Comparisons between 

these solutions and polygonal prism approximations based on 

equation (27) ar,e shown in figures 6 and 8. The 

corresponding polygonal models are shown in figures 1 and 9, 

respectively. 

In both cases the approximate temperature and heat flow 

anomalies a re of the same sign and general shape as the 

exact anomali&s. The superposition of exact and approximate 

heat flow profiles in fiqures 10 and 11 indicate that the 

approximation is poorest over the edges of the anomalous 

body and improves with iucreasing distance from the edges. 

Heat flow values over the center of the hemisphere in the 

exact and approximate solutions (fig. 10) agree to with 

o. 5%. Por the semi-circular cylinder (fig. 11) the 

agreement is within 3.53. These error level s cannot be 

improved to an arbitrary level by refininq the geometry of 

the model and arithmetic precision as in the case of heat 

product ion contrasts. These error levels vary <l.S a 
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Figure 7 Polygonal prism model of the semi-spheroi d of 
contrast ing conductivity (fig . 6). 
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Figur e 12 Normalize.d heat flow as a funct ion of the 
ratio of the conductivity of the medium s urrounding a 
cylinder and that of the cylinder. 
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function of the ratio of the conductivities of the media. 

Figure 12 shows the exact and approximate beat flow over the 

center of the semi-circular cylinder as a function of the 

conductivity ratio (K 1/K 2). The two solutions agree to 

within 5% over the range of conductivity ratios 

Al thouqh the range of 

geometry of the anomalous 

agreement varies with the 

bod.Yr fiqure 12 clearly 

demonstrates that the agreement is closest for conductivity 

ratios near unity. Equation (12) is then a small contrast 

approximation for the disturbance to a linear temperature 

field by a body of contrasting conductivity. 

co 11 par i son .Hi! h N .YJ!lfil;:ifg.L so 1 u t ion.§ 

Fehn et ~1- r ( 1978) used a two-dimensional fi nit e 

difference model, which couples heat transport and fluid 

flow equations, to model the Convay Granite in New 

Hampshire. For the case of an impermeable region, heat 

transport becomes purely conductive. The fclygonal prism 

model of the Conway Granite is shown in figure 13; figure 14 

shovs a comparison of the results of the polygonal prism and 

finite difference models (Fehn et al., 1978, fi g. 2). Fehn 

~1 i!.l· report a maximum temperature at the base of the 
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pluton of 326°c and a maximum surface heat flow of 2.2 HFU. 

The maximum temperature and heat flow anomalies are 140°c 

and 1. 2 HFU. For the same problem the polygonal prism 

solution gives a maximum temperature of 283°c and a heat 

f lov of 1.9 HFa. The maximum temperature and heat flow 

anomalies given by the two methods differ by 40% and 33% 

res pee ti vely. The large difference is attributed to the 

diffences in boundary conditions. The boundary conditions 

for the finite difference version are: 

1.) T(x,y,O) 0 

K _ClT I 0 Clx x=O 
2.) 

- K 1! I 0 
dZ x=60 km 

).) 

K 1! I 1.0 HFU. 
dZ z=lO km 

4.) 

The boundary conditions for the t he pol ygonal prism 

solution are: 

1.) T(x,y,O) 0 

2.) 0 
x -+ 00 
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z -+ 00 

1.0 HFU. 

The uniform flow condition that is placed at the base 

of the pluton in the finite difference model forces heat 

that would normally flow out the base of th e pluton to flow 

toward th e surface. This is unrealistic; it would be mo re 

accurate to place the uniform flow condition at a dept h a t 

which the isotherm s a re nearly horizontal. 

MacK enzie (1965) used the finite differ e nce meth od ~o 

compute tempe ratur e and heat: flow in regions wi t h two-

dimensional variations in conductivi t y. Figure 15 s how s th e 

comparison between th e fini t e differ ence method (MacK enz i e , 

1965, fig. 12 and 14) and the polygonal prism model s hown in 

figure 16. As in the comparison with the exact solu t i ons to 

the conductivity problem, the difference between the tw o 

approximate soluticns is greatest at the boundary bet een t he 

two media and improves with distance from t he boun dary. 

Comparison With One-Dimensional Heat Conduction 

Steady-sta~e heat flow from an infinite s lab of 

thickness D and he at produc t ion A i s gi ve n b y 

q = A D (30) 2 
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Surface heat flow on the axis of a vertical circular 

cylinder of thickness D, radius r, and beat production A is 

given by 

q (31) 

The ratio of the heat flow from the cylinder and from 

the slab can be described by the dimensionless function 

a(T ) , 

A -A [ 
- (r+n)] 

Al ~lD 1 (r2+D2)1/2 + a = 
A2 

2r (32) 
T --n· 

This function provides a useful measure of the degree 

to which a tabular body of finite lateral exten t can be 

considered an infinite slab. It can be used to estimate the 

error introduced by applying one-dimensional theory and as 

an approximate geometric correction factor. Figure 17 shows 

the variation of ah ) for 4 different heat production 

ratios. The aspect ratio required to attain less than 103 

error with one-dimensional theory varies between 0 for a 

ratio of unity to 10 for a vanishing ratio. A similar 

relationship betw een heat flow from two-dimensional sources 

and slabs has been defin€d numerically .for the special case 
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Figure 17 Normalized heat flow as a function o f aspect 
ration for vertical cylinders with different heat production 
ratios. Al= heat production of the surrounding med ium; A2= 
heat production of the cylinder. 
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of a country rock without heat production (Fehn ~! ~.!·, 

1978). 

A similar development can be used to describe the error 

in one-dimensional models resulting from lateral variations 

in conductivity. One-dimensional heat flow is not affected 

by vertical contrasts in conductivity. Hence, for the case 

of heat flow q• entering a layer of thickness D from 

beneath, 

q * q • (33) 

The approximate surface heat flow on the axis of a 

cylinder of contrasting conductivity follows from equation 

( 21) , 

q* -
3q*(K1-K2) [ D 

J (34) q 
(r2+D2)1/2 2K2 + Kl 

where 

K = the conductivity of the half space; 

K = the conductivity of the cylinder .. 

The ratio of equations (34) and (33) defines a function 

</J(r) which describes the error in one-dimensional models as 

a function of aspect ratio, 

(35 ) 
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The f unctioo <jl( T) is graphed in figure 18 for 5 

different conductivity ratios. T.he maximum aspect ratio 

that yields 10~ error or less rnnges from 2 for a 

conductivity ratio of 0.9 to 18 for a conductivity ratio of 

o. 5. 

Figures 17 and 18 indicate that applicability of one-

dimensional theory to three-dimensional sources is governed 

by the aspect ratio of the source and by the heat production 

and conductivity of both the source a. nd the surrounding 

medium. For irregularly shaped bodies polygonal prism 

models can be used to generate sets of curves analogous to 

those in figures 17 and 18. 

Half S{!ace g_.!ill_Two-Layefed Ha1£ SJli!C€ Solution.§ 

The temperature and heat flow fields associated wi t h a 

cube in a half space and a cube in a two-layered half space 

are shown in figure 19. Differences can be seen in both 

temperature and surface beat flow fields. The maximum 

temperature at the depth of 2 km in the t wo-laye red model is 

96. 1oc, which is 30°c higher than t he regional field at 2 

km. For the half space model, the maximum t€m perature at 2 

km is 52.3°c, which is 19°C higher than the regional field 

at that depth. 
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The surface beat flow anomaly over the two-layered 

mode 1, shown in figure 19, is lower in amf;l i tude than the 

anomaly over the half space model by as much as 28~. The 

rate at which heat is produced in the model region and the 

rate at which it flows in from below are tbe same in both 

models. More heat must flo~ laterally and downward in the 

two-layered model because of the insulating effect of the 

low conductivity layer. If the layer has a higher 

conductivity than 

toward the surf ace 

the underlying material more heat flows 

than in the half space model. This 

produces a larger heat flow anomaly over the same anoma lous 

body. An e.xample of this phenomenon is shown in figure 20 

in which heat flow anomalies over the same anomalous body 

are given for different layer conductivities. 



4. Interfretation of a Heat-Flow Ancmaly 

Heat flow anomalies can be modeled by using a trial-

and-error method similar to that used in gravity and 

magnetic modeling. ~he heat production and conductivity of 

the body and surrounding medium and the regional heat flow 

field are normally est imated first. The gecmetry of the 

body is then varied until a satisfactory agreeme nt betwee n 

the observed field and theoretical field is reached. As in 

gravity and magnetic modeling the resulting solut ion is not 

unique, but is a member of a family of possible solutions. 

To illust.rat E the modeling process a fami ly of heat 

flow models has bEen prepared for the Rolesville batholith 

and adjacent Casta lia pluton, in Franklin and Nash Counties 

North Carolina. Both bodies ar <:: coarse-grained granitic 

intrusions emplaced in metamorphic rocks of the Raleigh belt 

(fig. 21). ThE Raleigh belt has been interpreted as a 

south-plunging antiform and has a trend cf increasing 

m etamoi: phic grade from south to nor th (Farrar , 19 80) • Both 

ch aracteristics suggest differential uplift: and erosion 

between the southern and northern portions of the belt. The 

location of 5 heat flow stations in the area are shown in 

figure 22. The h(-: at production, thermal conduc tivity, and 

beat flow at these sites are given in tabl E 1 (Costain .E! 

-54-



-55-

Table 1 Data from heat flov sites in the vicinity of the 
Rolesville batholith and Castalia pluton, from Costain §! 
g_!, 197q). 

Hole Heat Production C onducti vi t y Heat Flow 
------------------------------

CS1 5.6 HPU 7.64 TCO 1. 44 HFU 

RL2 6.0 7.22 1. J() 

RLJ 8.03 1. 13 

RL4 fl. 7 6 ·• 84 1. 05 

SB1 3. 3 8.03 0.94 
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al, 1979).. Because there is no sedimentary layer in the 

region the problem was treated as a one-layered half space 

problem. At the t. i me of this writing data for a two-layered 

case are not available. 

The data in table 1 W€re collected as part of a study 

of heat flow and heat production for plutonic rocks. As a 

result heat production and thermal conductivity are 

relatively well determined for the granites but almost 

unknown for the country rock.. In the current study a range 

of hypoth.atical country rock models was considered in order 

to determine if one-dimensional heat conduction theory 

applies to the region or if the three -dimensional aspects of 

th e granitic bodies (so called edge effects) must be 

considerEd .. 

If the Rolesville batholith was emplaced before or 

duri ng the deformation period, as Farrar (1980) suggests, 

erosion following the differential uplift would cause the 

body to be thickest down plunge. The lack of variat i on of 

heat production and conductivity at the surface of the 

ba thol ith, despite t he proposed different i a l erosion, 

suggests that th~se two parameters are neai:-ly 11nifor:m 

throughout the body. In the heat-flow models toth granites 

have a uniform heat pcoduction of 6.0 HPU and conductivity 

of7 .. 5TCU. 
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(0. 94 HFU) at station SB1 in the 

volcanics of the adjacent Carolina Slate BElt is typical of 

back.ground (country rock) heat flow in the southeastern 

United States (Costain et al, 1979). The heat flow from the 

lower crust and upper mantle in the southeastern United 

States is approximately 0.65 HFU (Costain and Perry, 1979). 

The regional heat flow field was 

of a O. 65 HFU component from 

then assumed to be made up 

the lower crust and upper 

mantle and a 0.29 HFU component derived f~om beat production 

in the upper er ust.. The heat production of non - granitic 

surface samples in the southeastern United States range from 

near 1.0 HPU to near 6.0 HPU (personal communication L. o. 

Perry, 1978). The average country rock heat production was 

assumed to fall in this range. The th er ma 1 cond ucti vi t y if 

the country rock was assumed to be 6. 5 TCU; this is a 

representative value for schist, qneiss, and volcanics 

{Clark, 1966) which ar€ thE dominant r.-oc.k types of the 

Ralei gh belt ccun try rocks. 

Four heat-flow models were developed which are 

consistent vith the surface geology (fig. 21) 

structural in terpretation and bas€d on t.he 4 

heat production models shown in figure 23. 

country rock modEls produces the required 

contribution to th€ n~gional heat: flow. The 

and Fan:ar•s 

ccuntry rock 

Eac h of thE 

0. 29 ffFU 

horizontal 
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Figure 23 Vertical country rock heat production 
distributions for the four heat-flow models of the 
Rolesville batholith and Castalia pluton. 



-61-

ouclines of the prisms which make 

are the same for €ach model {fig. 

up the 4 heat-flow mode ls 

24). Only the vertical 

dimensions of the prisms were changed from model to model. 

Vertical dimensions for the prisms in models 1, 2, 3, and 4 

are given in tables 2, 3, 4, and 5, respEctively. The 

theoretical heat flow fields produced by the 4 models agree 

with the observed heat flow to within 2.5% at the 5 heat 

flow stations. The theoretical heat-flow fi€lds for model s 

1 and 2 arE shown in figures 25 and 26, respectively. 

Theoretical heat flow profiles and temperature cros s-

sect ions alonq 1 in es A-A 1 and B- B • in the second model are 

shown in figurE 27. 

A comparison between the thicknesses of the polyqonal 

prism models and granite thickness estimates based on one-

dimensional heat 

given in table 

conduction (Costain and Perry, 

6. The model thicknesses 

1979) is 

are highly 

dependent on the lateral heat production contrast between 

the qranite and th€ country rock. Heat conduction is then 

three-dimensional in the reqion and e dg e £f f ee ts must be 

considered. 

Model thicknesses are also expected to de pend on the 

conductivity contrast between the granite and the count r:y 

rock. The maximum heat-flow anomaly due to the c onductivity 

contrast of 6.5 TC!J to 7.5 'l'CU, for the 4 mode lE; considn:- ed 
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Table 2 Vertical dimensions of the pclygonal prisms 
which make up heat flow model 1, of the Rolesville bat ho li th 
and Castalia pluton. 

Prism Depth to Top Depth to Base 

1 0 km 1 km 

2 1 10 

3 10 20 

4 0 2 

5 2 8 

6 8 22 
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Table 3 Vertical dimensions of th€ polygonal prisms 
which make up hea~ flow model 2, of the Rolesville batholith 
and Castalia pluton. 

Prism Depth to Top Def th to Base 

----------
1 0 km 1 .km 

2 1 10 

3 10 14 

4 0 2 

5 2 6 

6 6 18 
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Table 4 Vertical dimensions of the polygonal prisms 
which make up heat flow aodel 3, of the Rolesville batholith 
and Castalia pluton. 

Prism Depth to Top Depth to Base 
---

1 0 km 1 km 

2 1 8 

3 8 12 

4 0 2 

5 2 6 

6 6 15 
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Table 5 Vertical dimensions of the polygonal prisms 
which make up heat flow Model 4, of the Rolesville batholith 
and Castalia pluton. 

Prism Depth to Top Def th to Base 

1 

2 4.8 km 20 km 

3 20 30 

4 

5 4.8 15 

6 15 30 
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0 10 20 km 

Figure 25 Theoretical heat flow map for Mode l 1 of the 
Rolesville batholith and Castalia pluton . The vertical 
country rock heat production distrib uti on for Model 1 is 
given in figure 23. The polygonal prism model is shown in 
figure 24. 
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B 

0 1 0 20km 

Figure 26 Theoretical heat flow map for Model 2 of the 
Rolesville batholith and Castalia pluton . Th e vertical 
country rock heat production distr i bution for Model 2 is 
shown in figure 23. The polygonal prism mod e l i s shown in 
figure 24. 
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is 0.11 HFU. If the average conductivity of the country 

rock is gr ea t€r t ban 6. 5 the model thicknesses (ta bl E'; 6) 

would have to be increased to explain the observed heat 

flow. If the av€rage conductivity is less than 6.5 thiner 

models could be used to explain the observed heat flow .. 

In all 4 polygonal prism models the Rolesville 

ba tholi th is thickest in the south and thins northward. 

This northward thinning is consistent with the structural 

interpretation given by Farrar (1980). The large difference 

in the thicknesses of the Castalia pluton and the northern 

part of the Rolesville batholith is not SUf[::Orted by the 

gravity expression of the two bodies, however. The Bouguer 

gravity map of t he model region {Cogbill, 1978) (fig. 28) 

shows a -30 mqal anomaly at the site of RL4, where th e heat 

flow is 1. 05 HFU a ud the models are all 1 km thick. The re 

is also a 

heat flow 

thick. 

-30 mgal anomaly at 

is 1. 44 HFU and thE 

Simmons 

t he site of cs 1 , where the 

models are 15 km to 30 km 

vertical heat flow and 

gives the H :: lation.ship betw~en the 

gravity anomalies at the surface, 

caused by volume source s with both contrasting density p and 

heat production A 

q GA/2ny p. 
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Table 6 Thicknesses of one- and three-dimensional 
models of the Rolesville batholith and Castalia pluton at 3 
heat flow stations. The ·thicknesses qiven by one-
dimensoional analysis are from Costain and Perry (1979). 

Model cs 1 
Model Thickness at Stations 

RL2 

---------~--------------

Model 1 22 km 20 km 

Model 2 18 14 

Model 3 15 12 

Model 4 30 30 

1-D Model 1q 11 

RL4 

1 k rn 

1 

1 

1 

6 
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Figure 28 Bouguer gr avity field (contoured in mgal) 
(from Cogbill, 1979) and heat flow (RFU) (from Co s tain and 
Perry, 1979) in the vicinity of the Rolesville . batholith; 
dots indicate locations of heat-flow stations . 
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Heat flov varies significantly between stations RLJ and 

CS 1 but the gravity field does not. It can be concluded 

that variations in gravity and heat flow ever the model 

region cannot be explained by sources with the same shapes. 

A possible explanation ,can be found in the low density 

country rock in which the batholitb was emplaced. In hand 

speciaen, the densities of the dominant 11e tamorphic rock 

types in the Raleigh belt are not significantly different 

from the density of the main phase of the Rolesville 

granite. The gravity field is then indicative of the 

thickness of the entire Raleigh belt rather than the 

thickness of the granite alone. The heat flow field would 

reflect only the thickness of the granite. 



5. Discussion 

New analytical solutions have been d€veloped for 

temperature and hEat-flow anamolies caused by a polygonal 

prism source in a two-layered half space. An approximate 

solution to the problem of a polyqonal prism with 

contrasting conductivity in a two-layered half space was 

also give.n. In S€ction 3 a comparison was made between the 

exact and approximate beat flow over an infinte semi-

circular cylinder of contrasting conductivity. The two heat 

fl ow fields agree to within 5 % for con duet i vi ty ratios 

between 0 .. 25 and 1.5. Comparing this error range with that 

for a semi-spheroid of contrasting conductivity indicates 

that the error level does not change rapidly with changes in 

the shape of the anomalous body. A survey of th erm al 

con d ucti vi ties of different cocks types (Clark , 196 6) 

suggests that this rang€ of conductivity rat ios is 

sufficient for modeling many geologic problems. The 

uncertainty in the 5 h€at flow values (table 1) used in 

section 4 is about O. 05 HPU or approximate! y 10% of the 

total heat flow anomaly in this region. This error level is 

typical of other heat flow determinations made in 

crystalline rocks (Costain and Perry, 1979). The 'i% error 

level in th€ component of heat flow due to contrasts in 

ther-mal conductivity is then not excessive .. 
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In section 4 the modeling technique based on these 

so.lu tions was used to interpret a localized beat flow 

anomaly.. The inter pre ta ti on was carried out in the same way 

a gravity anomaly would be analyzed using Plou.ff's method 

(1976). Temperature on cross-sections through the model 

region was estimated by computing the temferature field 

associated with the heat-flow mod.el. This method of 

estimating the am pli tu de and spacial extent of temperature 

anomalies could be useful in the exploration for low-

t empera tu re geot her ma 1 resources. 

The modeling technique is also applicable to regional 

heat flow studies. In many regional studies (see for 

example Roy ~! gJ:, (1968), Lachenbruch ( 1970), and Costain 

and Perry (1979) ) , one-dimension heat conduction is 

assumed .. 

cond ucti vit y 

conduct ion .. 

Latei:al 

cause 

variations in heat 

deviations from 

p:oduction and 

cne-dimensional 

The modeling technique presented in this study 

can be used to estimate the heat flow effects of variations 

in heat production and conductivity in the v icini<:y of a 

heat flow station.. The heat flow value can then be ad justed 

accordingly. 

These problems can also be solved with numerical 

techniques such as the method of finite diffe rences. The 

disadvantage of these methods is that temperatures must. be 
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f ound everywhEre in the model region simultaneously. As a 

resu.l t computer s tot"age reg uire men ts of de tailed three-

d i mensional models can exceed the space available at most 

computer installations.. As an example, the maximum 

available storage on the IBM 370/158 at V.P.I. & s.u. is 3 

megabytes under nor:mal opera ting conditions. This li111i ts 

the maximum number of nodes that can be considered while 

using the fin it€ difference heat conduction program TRUMP 

(Edwards, 1969) to approximately 4000. The largest thr·ee-

dimensional mesh that can be considered is then 20 by 20 by 

10 nodes. 

prohibitive, 

Computation timE 

particularly 

requirements can also bee() me 

when trial-and-error fitting 

methods are used. In th€ modeling technique presented in 

this study unknowns are calculated at poi,nts cf interest 

only. Storag€ requirements are therefore not a problem. 

The modelinq technique is also computationally efficie nt; 

the heat flow models of the Rolesville batholith and 

Castalia pluton in section 4 required 0.26 msec computation 

time per field point per polygonal edg e o n a n IBM 370/158 

computer. 
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Appendix : Computer Subroutine s 

c---------------------------------------------------------------------c 
SUBROUTINE TIMAGE(L,N,FX,FY,FZ,ZOBS,M,BX , BY,TOP,BASE, 

&H,HPC,QSTAR,KO,Kl,K2,NT,RI,T , Wl,W2,W3) 
c---------------------------------------------------------------------c 
c 
C SUBROUTINE TO COMPUTE THE TEMPERATURE ANOMALY CAUSED 
C BY A POLYGONAL PRISM OF CONTRASTING HEAT PRODUCTION 
C AND THERMAL CONDUCTIVITY IN A TWO-LAYERED HALF SPACE. 
C THE PROGRAM IS BASED ON EQUATIONS ( 21) AND ( 24) • 
c 
c 
C COORDINATE SYSTEM 
c 
C A LEFT HANDED COORDINATE SYSTEM IS USED WITH THE ORIGIN 
C AT THE SURFACE AND THE Z AXIS POSIT IVE DOWN. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
C UNITS 
c 

* 
y * 
* 

* * * * * * x 
z * 

* 
* 

C THE UNITS OF ALL ARGUMENTS ARE ASSUMED TO BE CONS I STENT IN 
C THE DIMENSIONS OF ENERGY, LENGTH , TIME, AND TEMPERATURE. 
C FOR EXAMPLE IF ENERGY IS IN CALORIES, LENGTH IS IN KILOMETERS, 
C TIME IS IN SECONDS, AND TEMPERATURE IN DEGREES CENTIGRADE 
C THEN THERMAL CONDUCTIVITY MUST BE GIVEN IN 
C CAL/KM-SEC-DE GREE C. 
c 
c 
C ARGUMENTS 
c 
C L=THE NUMBE R OF CONDUCTI VITY LAYERS I N THE MODEL , ( 1 OR 2) . 
C N= THE NUMBER OF FIELD POINTS AT WHICH THE TEMPERATURE WILL 
C BE COMPUTED. 
C FX,FY= ARRAYS OF LENGTH N CONTANING THE X, Y COORDINATES 
C OF THE FIELD POINTS . ALL FIELD POINTS ARE ASSUMED TO BE 
C AT A COMMON DEPTH = ZOBS. 
C FZ= A WORK ARRAY OF LENGTH N. 
C BX,BY= ARRAYS OF LENGHT M CONTAINING THE X,Y COORDINATES 
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C OF THE CORNER POINTS IN CLOCKWISE ORDER AROUND THE PRISM . 
C NOTE: THE LAST CORNER POINT MUST COINCIDE WITH THE FIRST; 
C THAT IS, BX(M)=BX(l) AND BY(M)=BY(l). 
C TOP, BASE= THE Z COORDINATE OF THE TOP AND BASE OF THE PRISM. 
C H = THE DEPTH TO THE BASE OF THE FIRST CONDUCTIVITY 
C LAYER. IF L = 1 H IS NOT USED. 
C HPC= THE HEAT PRODUCTION CONTRAST BETWEEN THE PRISM AND THE 
C SURROUNDING MEDIUM. 
C QSTAR= THE UNIFORM HEAT FLOW ENTERING THE BASE OF THE MODEL REGION. 
C KO= THE CONDUCTIVITY OF THE FIRST CONDUCTIVITY LAYER. 
C IF L = 1 KO IS NOT USED. 
C Kl= THE CONDUCTIVITY OF THE SECOND CONDUCTIVITY LAYER. 
C K2= THE CONDUCTIVITY OF THE PRISM. 
C NT= THE NUMBER OF TERMS TO BE KEPTED IN THE SERIES SOLUTION. 
C T== THE DOUBLE PRECISION ARRAY OF LENGTH N IN WHICH THE COMPUTED 
C TEMPERATURE VALUES ARE RETURNED TO THE MAIN PROGRAM . 
C RI= THE MAXIMUM SERIES TRUNCATION ERROR IN THE TEMPERATURE 
C VALUES RETURNED . 
C Wl,W2,W3= DOUBLE PRECISION WORK ARRAYS OF DIMENSION N. 
c 
c 
C SUBROUTINES REQUIRED 
c 
C SUBROUTINE CHI: COMPUTES THE CHI FUNCTION FOR A POLYGONALY PRISM. 
c 
C SUBROUTINE PS I: CUMPUTES THE FUNCTION PSI FOR A POLYGONAL PRISM . 
c 
c 

DOUBLE PRECISION T(N),Wl(N),W2(N) ,W3(N),PI , WlMAX , W2MAX, 
1A , B,C ,C l,C3 , CA , CK 

DIMENSION FX(N) ,FY(N),FZ(N) , BX(M) ,BY(M) 
REAL KO,Kl ,K2 
PI=DATAN(l .OD0)*4.0DO 
CA=HPC/(PI*4 . 0DO) 
CK=3.0DO*QSTAR*DBLE(K2-Kl)/(4 . 0DO*PI* DBLE(2.0*Kl+K2)) 
DO 1 I=l , N 

1 FZ( I )=ZOBS 
C COMPUTE THE EFFECT OF THE SOURCE POLYGON. 

CALL CHI(N,FX,FY,FZ , M,BX,BY,TOP,BASE,Wl,W3) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,TOP,BASE ,W2,W3) 

C NOW ADDED THE EFFECT OF THE CORRECT SERIES OF IMAGE S 
C TO THE EFFECT OF THE SOURCE, TO COMPLETE THE SOLUT ION. 

IF(L.EQ.l) GO TO 100 
IF(KO.EQ.Kl) GO TO 100 

C IF THIS LINE IS REACHED THE MODEL HAS TWO LAYERS. 
H2=H*2.0 
H2M=-H2 
B=DBLE ( KO+K 1 ) 
TEST=H-ZOBS 
IF(TEST.GT.0.0) GO TO 40 
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C START OF THE SERIES FOR THE LOWER LAYER OF THE TWO LAYER CASE. 
A=DBLE(KO-Kl) 
C=l.ODO/DBLE(Kl) 
DO 10 I=l, N 

10 T(I)=C*(CA*Wl(I)+CK*W2(I)) 
CALL CHI(N,FX,FY,FZ,M,BX,BY,H2-TOP,H2-BASE,Wl,W3) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,H2-TOP,H2-BASE,W2,W3) 
Cl=A/B 
C=-C*Cl 
DO 20 I=l,N 

20 T(I)=T(I)+C*(CA*Wl(I)-CK*W2(I)) 
C=4. ODO* DB LE (KO )*Cl/ ( A*A) 
C2=2 .ODO/( A*A*DLOG(DABS(B/ A))) 
Cl=-Cl 
DO 30 I=l,NT 
C2=C2*Cl 
C=C*Cl 
Z=H2M*(I-l) 
CALL CHI(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,Wl,W3) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,W2,W3) 
WlMAX=DABS(Wl(l)) 
W2MAX=DABS(W2(1)) 
DO 30 J=l, N 
IF(WlMAX.LT.DABS(Wl(J))) WlMAX=DABS(Wl(J)) 
IF(W2MAX.LT.DABS(W2(J))) W2MAX=DABS(W2(J)) 

30 T(J)=T(J)+C*(CA*Wl(J)-CK*W2(J)) 
RI=C2*( DABS( CA*WlMAX)+DABS( CK*W2MAX)) 
RETURN 

40 CONTINUE 
C START OF THE SERIES FOR THE UPPER LAYER IN THE TWO LAYER CASE. 

A=DBLE(KO-Kl) 
C=2.0DO/B 
Cl=A/B 
C2=2.0DO/(PI*B*DLOG(DABS(A/B))) 
DO 50 I=l,N 

50 T(I)=C*(CA*Wl(I)+CK*W2(I)) 
CALL CHI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,Wl,W3) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,W2 , W3) 
DO 60 I=l,N 

60 T(I)=T(I)+C*(CK*W2(I)-CA*Wl(I)) 
C=Cl*Cl*2 .0/ A 
DO 90 I=l,NT 
C2=C2*Cl 
Z=H2M*FLOAT( I) 
CALL CHI(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,Wl,W3) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,W2,W3) 
WlMAX=DABS(Wl(l)) 
W2MAX=DABS(W2(1)) 
DO 70 J=l,N 
IF(WlMAX.LT.DABS(Wl(J))) WlMAX=DABS(Wl(J)) 
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IF(W2MAX.LT.DABS(W2(J))) W2MAX=DABS(W2(J)) 
70 T(J)=T(J)+C*( CA*Wl(J)-CK*W2(J)) 

C=-C 
Z=H2*FLOAT(I) 
CALL CHI(N,FX,FY,FZ,M,BX,BY,Z+TOP,Z+BASE,Wl,W3) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,Z+TOP,Z+BASE,W2,W3) 
DO 80 J=l, N 

80 T(J)=T(J)+C*(CA*Wl(J)+CK*W2(J)) 
RI=C2*(DABS(WlMAX)+DABS(W2MAX)) 
C=C*Cl 

90 CONTINUE 
RETURN 

100 CONTINUE 
C START OF THE ONE-LAYER CASE. 

C=l. ODO/DBLE( Kl) 
DO 110 I=l, N 

110 T(I)=C*(CA*Wl(I)+CK*W2(I)) 
CALL CHI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,Wl,W3) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,W2,W3) 
DO 120 I=l, N 

120 T(I)=T(I)+C*(CK*W2(I)-CA*Wl(I)) 
RETURN 
END 
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c---------------- -----------------------------------------------------c 
SUBROUTINE QIMAGE(L,N,FX,FY,FZ,ZOBS,M,BX,BY,TOP,BASE, 

&H,HPC,QSTAR,KO,Kl,K2,NT,RI,Q,Wl,W2,W3) 
c---------------------------------------------------------------------c 
c 
C SUBROUTINE TO COMPUTE THE HEAT-FLOW ANOMALY CAUSED 
C BY A POLYGONAL PRISM OF CONTRASTING HEAT PRODUCTION 
C AND THERMAL CONDUCTIVITY IN A TWO-LAYERED HALF SPACE . 
C THE PROGRAM IS BASED ON EQUATIONS (21) AND (24). 
c 
c 
C COORDINATE SYSTEM 
c 
C A LEFT HANDED COORDINATE SYSTEM IS USED WITH THE ORIGIN 
C AT THE SURFACE AND THE Z AXIS POSITIVE DOWN. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
C UNITS 
c 

z 

* 
y * 
* 

****''( 
* x 
* 
* 
* 

C THE UNITS OF ALL ARGUMENTS ARE ASSUMED TO BE CONSISTENT IN 
C THE DIMENSIONS OF ENERGY, LENGTH, TIME, AND TEMPERATURE. 
C FOR EXAMPLE IF ENERGY IS IN CALORIES, LENGTH IS IN KILOMETER S , 
C TIME IS IN SECONDS, AND TEMPERATURE IN DEGREES CENTIGRADE 
C THEN THERMAL CONDUCTIVITY MUST BE GIVEN IN 
C CAL/KM-SEC-DEGREE C. 
c 
c 
C ARGUMENTS 
c 
C L=THE NUMBER OF CONDUCTIVITY LAYERS IN THE MODEL , ( 1 OR 2) . 
C N= THE NUMBER OF FIELD POINTS AT WHICH THE HEAT FLOW WILL 
C BE COMPUTED. 
C FX,FY= ARRAYS OF LENGTH N CONTANING THE X, Y COOR DINATE S 
C OF THE FIELD POINTS. ALL FIELD POINTS ARE ASSUMED TO BE 
C AT A COMMON DEPTH = ZOBS. 
C BX, BY= ARRAYS OF LENGHT M CONTAINING THE X, Y COORDINATES 
C OF THE CORNER POINTS IN CLOCKWISE ORDER AROUND T HE PRISM. 
C NOTE: THE LAST CORNER POINT MUST COINCIDE WITH T HE FIRST ; 
C THAT l S , BX(M)=BX(l) AND BY(M)=BY(l). 
C TOP, BASE= THE Z COORDINATE OF THE TOP AND BASE OF THE PRISM . 
C H = THE DEPTH TO THE BASE OF THE FIRST CONDUCTIV I TY 
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C LAYER. IF L = 1 H IS NOT USED. 
C HPC= THE HEAT PRODUCTION CONTRAST BETWEEN THE PRISM AND THE 
C SURROUNDING MEDIUM. 
C QSTAR= UNIFORM HEAT FLOW ENTERING THE BASE OF THE MODEL REGION. 
C KO= THE CONDUCTIVITY OF THE FIRST CONDUCTIVITY LAYER. 
C IF L = 1 KO IS NOT USED. 
C Kl= THE CONDUCTIVITY OF THE SECOND CONDUCTIVITY LAYER. 
C K2= THE CONDUCTIVITY OF THE PRISM. 
C NT= THE NUMBER OF TERMS TO BE KEPTED IN THE SERIES SOLUTION. 
C Q= THE DOUBLE PRECISION ARRAY OF LENGTH N IN WHICH THE COMPUTED 
C HEAT-FLOW VALUES ARE RETURNED TO THE MAIN PROGRAM. 
C RI= THE MAXIMUM SERIES TRUNCATION ERROR IN THE HEAT FLOW 
C VALUES RETURNED. 
C Wl,W2,W3= DOUBLE PRECISION WORK ARRAYS OF DIMENSION N. 
c 
c 
C SUBROUTINES REQUIRED 
c 
C SUBROUTINE PS I: COMPUTES THE PS I FUNCTION FOR A POLYGONALY PRISM. 
c 
C SUBROUTINE OMEGA: CUMPUTES THE FUNCTION OMEGA FOR A POLYGONAL PRISM. 
c 
c 

DOUBLE PRECISION Q(N) ,Wl(N) ,W2(N) ,W3(N) ,PI, 
1A,B,C,Cl,C3,CA,CK,WlMAX,W2MAX 

DIMENSION FX(N) ,FY(N) ,FZ(N) ,BX(M) ,BY(M) 
REAL KO , K 1 , K2 
PI=DATAN(l.OD0)*4.0DO 
CA=HPC/ ( PI*4. ODO) 
CK=3.0DO*QSTAR*DBLE(Kl-K2)/(4.0DO*PI*DBLE(2.0*Kl+K2)) 
DO 1 I=l,N 

1 FZ(I)=ZOBS 
C COMPUTE THE EFFECT OF THE SOURCE POLYGON. 

CALL PSI(N,FX,FY,FZ,M,BX,BY,TOP,BASE,Wl,W3) 
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,TOP,BASE,W2,W3) 

C NOW ADDED THE EFFECT OF THE CORRECT SERIES OF IMAGES 
C TO THE EFFECT OF THE SOURCE, TO COMPLETE THE SOLUT IO N. 

IF(L.EQ. l) GO TO 100 
IF(KO.EQ.Kl) GO TO 100 

C IF THIS LINE IS REACHED THE MODEL HAS TWO LAYERS. 
H2=H*2.0 
H2M=-H2 
B=DBLE(KO+Kl) 
TEST=H-ZOBS 
IF(TEST.GT.0 . 0) GO TO 40 

C START OF THE SERIES FOR THE LOWER LAYER OF THE TWO LAYER CASE. 
A=DBLE(KO-Kl) 
CA=CA*DBLE ( K 1) 
CK=CK*DBLE ( K 1) 
C=l .ODO /DBLE(Kl) 
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DO 10 I=l, N 
10 Q(I)=C*(CA*Wl(I)+CK*W2(I)) 

CALL PSI(N,FX,FY,FZ,M,BX,BY,H2-TOP,H2-BASE,Wl,W3) 
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,H2-TOP,H2-BASE,W2,W3) 
Cl=A/B 
C=-C*Cl 
DO 20 I=l,N 

20 Q(I)=Q(I)+C*(CA*Wl(I)-CK*W2(I)) 
C=4 .ODO*DBLE(KO)*Cl/(A*A) 
C2=2.0DO/(A*A*DLOG(DABS(B/A))) 
Cl=-Cl 
DO 30 I=l,NT 
C2=C2*Cl 
C=C*Cl 
Z=H2M*( I-1) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,Wl,W3) 
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,W2,W3) 
WlMAX=DABS ( Wl ( 1)) 
W2MAX=DABS(W2(1)) 
DO 30 J=l, N 
IF(WlMAX.LT.DABS(Wl(J))) WlMAX=DABS(Wl(J)) 
IF(W2MAX.LT.DABS(W2(J))) W2MAX=DABS(W2(J)) 

30 Q(J)=Q(J)+C*( CA*Wl(J)-CK*W2(J)) 
RI=C2*( DABS ( CA*WlMAX)+DABS( CK*W2MAX)) 
RETURN 

40 CONTINUE 
C START OF THE SERIES FOR THE UPPER LAYER IN THE TWO LAYER CASE. 

A=DBLE(KO-Kl) 
CA=CA*DBLE (KO) 
CK=CK*DBLE (KO) 
C=2.0DO/B 
Cl=A/B 
C2=2. ODO/ ( PI*B>'<DLOG( DABS( A/ B) ) ) 
DO 50 I=l, N 

50 Q(I)=C*(CA*Wl(I)+CK*W2(I)) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,Wl , W3) 
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,W2,WJ) 
DO 60 I=l , N 

60 Q( I)=Q (I) +C* ( CK*W2 ( I)-CA*Wl( I)) 
C=Cl*Cl*2. 0/ A 
DO 90 I=l, NT 
C2=C2*Cl 
Z=H2M*FLOAT( I) 
CALL PSI(N ,FX,FY,FZ,M,BX,BY,Z-TOP,Z-BASE,Wl,WJ) 
CALL OMEGA(N,FX,FY,FZ,M,BX , BY,Z-TOP,Z-BASE,W2,WJ ) 
WlMAX=DABS(Wl(l)) 
W2MAX=DABS ( W2 ( 1)) 
DO 70 J=l, N 
IF(WlMAX.LT.DABS(Wl(J))) WlMAX=DABS(Wl(J)) 
IF(W2MAX.LT.DABS(W2(J))) W2MAX=DABS(W2(J)) 
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70 Q(J)=Q(J)+C*( CA*Wl(J)-CK*W2(J)) 
C=-C 
Z=H2*FLOAT(I) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,Z+TOP,Z+BASE,Wl,W3) 
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,Z+TOP,Z+BASE,W2,W3) 
DO 80 J=l,N 

80 Q(J)=Q(J)+C*( CA*Wl(J)+CK*W2(J)) 
RI=C2*(DABS(WlMAX)+DABS(W2MAX)) 
C=C*Cl 

90 CONTINUE 
RETURN 

100 CONTINUE 
C START OF THE ONE-LAYER CASE. 

CA=CA*DBLE(Kl) 
CK=CK*DBLE(Kl) 
C=l. ODO/DBLE(Kl) 
DO 110 I=l, N 

110 Q(I)=C*(CA*Wl(I)+CK*W2(I)) 
CALL PSI(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,Wl,W3) 
CALL OMEGA(N,FX,FY,FZ,M,BX,BY,-TOP,-BASE,W2,W3) 
D0120I=l,N 

1 2 0 Q ( I ) =Q ( I ) + C* ( CK>'< W2 ( I)- CA* W 1 ( I ) ) 
RETURN 
END 
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c---------------------------------------------------------------------c 
FUNCTION TNORM(H,KO,Kl,TO,QO,AO,LA,A,D,Z) 

c---------------------------------------------------------------------c 
c 
c 
C SUBROUTINE WHICH COMPUTES TEMPERATURE AT A DEPTH Z IN A 
C ONE-DIMENSIONAL HEAT CONDUCTION OF THE EARTH CONSISTING 
C OF UP TO TWO UNIFORM CONDUCTIVITY LAYERS AND AN ARBITRARY 
C NUMBER OF UNIFORM HEAT PRODUCTION LAYERS . 
c 
c 
C COORDINATE SYSTEM 
c 
C THE ORIGIN IS AT THE SURFACE AND Z IS POSITIVE DOWN. 
c 
c 
C UNITS 
c 
C THE UNITS OF ALL ARGUMENTS ARE ASSUMED TO BE CONSISTENT IN 
C THE DIMENSIONS ENERGY, LENGTH, TIME AND TEMPERATURE. 
c 
c 
C ARGUMENTS 
c 
C H= THE THICKNESS OF THE FIRST CONDUCTIVITY LAYER. H=O . O 
C CORRESPONDS TO THE ONE CONDUCTIVITY LAYER CASE . 
C KO, Kl= THE THERMAL CODUCTIVITY OF THE TWO CONDUCTIVITY LAYERS. 
C IF H=O .0 KO IS NOT USED. 
C TO= THE MEAN ANNUAL SURFACE TEMPERATURE IN THE MODEL REGION . 
C QO= THE SURFACE HEAT FLOW IN THE MODEL REGION • 
C AO= THE HEAT PRODUCTION OF THE FIRST CONDUCTIVITY LAYER. 
C IF H=O . 0 AO IS NOT USED. 
C LA= THE NUMBER OF UNIFORM HEAT PRODUCING LAYERS IN THE 
C SECOND CONDUCTIVITY LAYER. 
C A= ARRAY OF LENGTH LA CONTAINING THE HEAT PRODUCTIONS OF THE 
C LA HEAT PRODUCING LAYERS IN THE SECOND COND UCTIVITY LAYER . 
C D= ARRAY OF LENGTH LA CONTAINING THE Z COORDINATE OF THE BASE 
C OF EACH HEAT PRODUCTION LAYER. 
C Z= THE Z COORDINATE OF THE FIELD POINT AT WHICH TEMPERATURE IS 
C TO BE COMPUTED . 
c 
c 
c 
c 

DIMENSION A(LA ) ,D(LA) 
REAL KO , Kl 
IF(H . GT . O.O) GO TO 10 
Tl=TO 
Ql=QO 
GO TO 30 
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10 DZ=Z-H 
IF(DZ.GT.0.0) GO TO 20 
TNORM=(QO* Z-0. S*AO*Z*Z) /KO+TO 
GO TO 80 

20 Ql=QO-AO*H 
Tl=(QO*H-0.S*AO*H*H)/KO+TO 

30 M=O 
DO 40 I=l, LA 

40 IF(Z.GT.D(I)) M=I 
IF(M.EQ.0) GO TO 70 
DT=O.S*A(l)*(D(l)-H)*(D(l)-H) 
IF(LA.EQ.l) GO TO 60 
DO SO 1=2, M 

SO DT=DT+O.S*A(I)*(D(I)-D(I-l))*(D(I)-D(I-1)) 
IF(M.EQ . LA) GO TO 60 
TNORM=T 1 +( Z-H)*Q 1-DT-O . S*A( M+ 1) >'•( Z-D( M) )*( Z-D( M)) 
GO TO 80 

60 TNORM=Tl+(Z-H)*Ql-DT 
GO TO 80 

70 TNORM=Tl+(Z-H)*Ql-0.S*A(l)*(Z-H)*(Z-H) 
80 CONTINUE 

RETURN 
END 



-89-

c---------------------------------------------------------------------c 
SUBROUTINE CHI(N,FX,FY,FZ,M,BX,BY,TOP,BASE,U,DS) 

c---------------------------------------------------------------------c 
c 
c 
C SUBROUTINE TO CUMPUTE THE FUNCTION CHI FOR A POLYGONAL PRISM. 
C THE PROGRAM IS BASED ON EQUATION ( 8) • 
c 
c 
C ARGUMENTS 
c 
C N= THE NUMBER OF FIELD POINTS AT WHICH THE FUNCTION IS TO BE 
C COMPUTED. 
C FX,FY,FZ= ARRAYS CONTAINING THE N COORDINATES OF THE FIELD POINTS. 
C M= ONE PLUS THE NUMBER OF CORNER POINTS OF THE POLYGONAL PRISM. 
C BX,BY= ARRAYS CONTAINING THE X, Y COORDINATES OF THE CORNER 
C CORNER POINTS IN CLOCKWISE ORDER AROUND THE POLYGONAL PRISM. 
C NOTE: THE LAST CORNER POINT MUST COINCIDE WITH THE FIRST; 
C THAT IS, BX(M)=BX(l) AND BY(M)=BY(l). 
C TOP, BASE= THE Z COORDINATE OF THE TOP AND BASE OF THE 
C POLYGONAL PRISM. 
C U= THE DOUBLE PRECISION ARRAY OF THE LENGTH N IN WHICH THE 
C VALUES OF TH CHI FUNCTION ARE RETURNED TO THE CALLING PROGRAM . 
C DS= A DOUB LE PRECISION WORK ARRAY. 
c 
c 
C SUBROUTINE REQUIRED 
c 
C DOUBLE PRECISION FUNCTION ANGLE 
c 
c 

DIMENSION FX(N) ,FY(N) ,FZ(N) ,BX(M) ,BY(M) 
DOUBLE PRECISION U(N),DS(M) 
REAL K 
DOUBLE PRECISION Xl,X2,Yl,Y2,R1Zl,R2Zl,R2Z2,RlZ2,RlSQ,R2SQ, 

1Tl,T2,T3,T4,T5,T6,DX,DY,DZ,ZERO,EPS,TWO,Zl,Z2,DZSQ,ZlSQ, 
2Z2SQ,Al,A2,A3,A4,P , S,SSQ,SC,C,CSQ,Dl,D2,DTEST,Fl,F2 ,Ql,Q2,Wll,Wl2, 
3W22,W21,XlSQ,X2SQ,YlSQ,Y2SQ,HALF ,AZl,AZ2,ANGLE, 
4A, SIGN, Xl Y 1 , X2Y2, ABSP, V(400) 

DATA ZERO/O.ODO/ ,EPS/l.OD-5/ ,HALF/0.SDO/ ,TW0/2 . 0DO/ 
C COMPUTE THE LENGTH OF EACH SIDE AND STORE IN ARRAY DS 

MM=M-1 
DO 10 I=l, MM 
J=I+l 
DX=DBLE(BX(J)-BX(I)) 
DY=DBLE(BY(J)-BY(I)) 

10 DS( I )=DSQRT( DX*DX+DY*DY) 
C START THE LOOP FOR EACH FIELD POINT 

DO 110 LF=l, N 
U(LF)=ZERO 



Zl=DBLE(TOP-FZ(LF)) 
Z2=DBLE(BASE-FZ(LF)) 
AZl=DABS(Zl) 
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AZ2=DABS(Z2) 
IF(AZ1.GT.Zl.AND.AZ2.GT.Z2) GO TO 30 
IF(AZ1.NE . Zl.OR.AZ2.NE.Z2) GO TO 20 
IF(AZ1.LT . AZ2) GO TO 15 
Zl=AZ2 
Z2=AZ1 

15 CONTINUE 
NPOLY=l 
GO TO 40 

20 CONTINUE 
C IF THIS LINE IS REACHED THE POLYGON IS SPLIT INTO TWO 
C POLYGONS ALONG THE Z=FZ(LF) PLANE AND THE EFFECTS ARE 
C COMPUTED SEPERATELY AND ADDED. 

NPOLY=2 
Zl=ZERO 
Z2=AZ2 
GO TO 40 

30 NPOLY=l 
IF(AZ2. LT.AZ1) GO TO 35 
Zl=AZl 
Z2=AZ2 
GO TO 40 

35 Zl=AZ2 
Z2=AZ1 

40 DO 110 IPOLY=l ,NPOLY 
Tl=ZERO 
T2=ZERO 
T3=ZERO 
T4=ZERO 
T5=ZERO 
T6=ZERO 
IF(IPOLY . EQ . 2) Z2=AZ1 
DZ=Z2-Zl 
DZSQ=DZ*DZ 
ZlSQ=Zl*Zl 
Z2SQ=Z2*Z2 

C INITALISE R TERMS 
X2=DBLE(BX( l )-FX(LF)) 
Y2=DBLE(BY(l)-FY(LF)) 
R2SQ=X2*X2+Y2*Y2 
R2Zl=DSQRT(R2SQ+ZlSQ) 
R2Z2=DSQRT(R2SQ+Z2SQ) 
Al=R2Z2+ Z2 
A4=R2Zl+Zl 

C START THE LOOP FOR EACH SIDE 
50 DO 100 LB=l , MM 

J=LB+l 
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C MAKE THE SECOND POINT OF THE LAST SIDE THE FIRST POINT 
C OF THE CURRENT SIDE 

Xl=X2 
Yl=Y2 
R1Zl=R2Zl 
RlZ2=R2Z2 
X2=DBLE(BX(J)-FX(LF)) 
Y2=DBLE (BY( J )-FY( LF)) 
DX=X2-Xl 
DY=Y2-Yl 
Xl SQ=Xl *Xl 
X2SQ=X2*X2 
Yl SQ=Y 1*Y1 
Y2SQ=Y2*Y2 
XlYl=Xl *Yl 
X2Y2=X2*Y2 
P=(Xl *Y2-X2*Y 1) /DS (LB) 
ABSP=DABS(P) 
S=DX/DS(LB ) 
SSQ=S*S 
C=DY/DS ( LB) 
CSQ=C*C 
SC=S*C 
Dl=Xl*S+Yl*C 
D2=X2*S+Y2* C 
R2SQ=X2SQ+Y 2SQ 
R2Zl=DSQRT(R2SQ+ZlSQ) 
R2Z2=DSQRT ( R2SQ+Z2SQ) 

C DTEST, THE SMALLEST DISTANCE THAT CAN BE RESOLVED FOR THIS 
C SIDE IS DEFINED AS THE LENGTH OF THE SIDE TIMES 1. OE-N 
C WHERE N IS THE NUMBER OF SIGNIFICANT DIGITS REQUIRED 

DTEST=EPS* DS(LB) 
c 
C NOW READY TO COMPUTE PRINCIPAL TERMS 
c 
C COMPUTE THE LOG( R+Z) TERM 
C THIS TERM IS UNSTABLE WHEN THE FIELD POINT IS NEARLY 
C UNDER A CORNER POINT OF THE POLYGON 

Al=RlZl+Zl 
A2=RlZ 2+Z2 
A3=R2Z2+Z2 
A4=R2Zl+Zl 
IF(Al.LT.DTEST) Al=DTEST 
IF(A2 . LT . DTEST ) A2=DTEST 
IF(A3 . LT . DTE ST) A3=DTEST 
IF(A4 . LT.DTEST) A4=DTEST 

60 Fl=DLOG(A2/Al ) 
F2=DLOG(A3/ A4) 

C COMPUTE THE LOG ( R + D) TE RM 
C THIS TERM IS UNS TABLE WHEN THE FIELD POINT IS NEA R AN 



C EDGE OF THE POLYGON 
Al=RlZl+Dl 
A2=RlZ2+Dl 
A3=R2Z2+D2 
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A4=R2Zl+D2 
IF(Al.LT.DTEST) Al=DTEST 
IF(A2.LT.DTEST) A2=DTEST 
IF(A3.LT.DTEST) A3=DTEST 
IF(A4.LT.DTEST) A4=DTEST 

80 Ql=Z2*DLOG(A2)-Zl*DLOG(Al) 
Q2=Z2*DLOG(A3)-Zl*DLOG(A4) 

C COMPUTE THE ARCTANGENT TERM 
C THIS TERM GOES TO ZERO FOR P (THE PERPENDICULAR DISTANCE 
C BETWEEN THE FIELD POINT AND A LINE ALONG THE VERTICAL 
C PROJECTION OF THE EDGE) NEAR ZERO 

Wll=ZERO 
Wl2=ZERO 
W22=ZERO 
W2l=ZERO 
IF(ABSP.LE.DTEST) GO TO 90 
Wll=DATAN(Zl*Dl/(P*RlZl)) 
Wl2=DATAN(Z2*Dl/(P*RlZ2)) 
W22=DATAN(Z2*D2/(P*R2Z2)) 
W2l=DATAN(Zl*D2/(P*R2Zl)) 

C FINISHED COMPUTING THE PRINCIPAL TERMS 
C NOW COMBINE THEM TO FORM THE 6 ELEMENTS OF THE POTENTIAL 

90 Tl=Tl+SC*((Y2SQ-X2SQ)*F2-(YlSQ-XlSQ)*Fl) 
T2=T2+(SSQ-CSQ)*(X2Y2*F2-X1Yl*Fl) 
T3=T3+(X2SQ*CSQ-TWO*X2Y2*SC+Y2SQ*SSQ)*(W22-W21) 
T4=T4-(XlSQ*CSQ-TWO*XlYl*SC+YlSQ*SSQ)*(Wl2-Wll) 
TS=TS+TWO*((Y2*S-X2*C)*Q2-(Yl*S-Xl*C)*Ql) 

100 T6=T6-Z2SQ*(W22-Wl2)+ZlSQ*(W21-Wll) 
T6=T6-ANGLE(BX,BY,M,FX(LF) ,FY(LF))*(Z2SQ-ZlSQ) 

C END OF LOOP FOR EACH SIDE 
C ACCOMULATE THE POTENTIAL 

110 U(LF)=U(LF)+HALF*(Tl+T2+T3+T4+T5+T6) 
C END OF LOOP FOR EACH FIELD POINT 

RETURN 
END 
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c---------------------------------------------------------------------c 
SUBROUTINE PSI(N,FX,FY,FZ,M,BX,BY,TOP,BASE,U,WORK) 

c---------------------------------------------------------------------c 
c 
c 
C SUBROUTINE WHICH COMPUTES THE PS I FUNCTION FOR A POLYGONAL PRISM. 
C THE PROGRAM IS BASED ON A GRAVITY MODELING PROGRAM "PSI" 
C PREPARED BY A. H. COGBILL AT VPI&US. EQUATIONS PRESENTED BY 
C PLOUFF (1976), GEOPHYSICS, VOL. 41 (4) PAGES 727-741, ARE USED. 
c 
c 
C ARGUMENTS 
c 
C N= THE NUMBER OF FIELD POINTS AT WHICH THE PS I FUNCTION IS TO BE 
C COMPUTED. 
C FX, FY, FZ= ARRAYS OF LENGTH N CONTAINING THE COORDINATES OF THE 
C FIELD POINTS. 
C M= THE NUMBER OF CORNER POINTS IN THE POLYGONAL PRISM PLUS ONE. 
C BX, BY= ARRAYS OF LENGTH M CONTAINING THE X, Y COORDINATES OF THE 
C CORNER POINTS IN CLOCKWISE ORDER AROUND THE PR ISM. 
C NOTE: THE LAST CORNER MUST COINCIDE WITH THE FIRST; THAT IS 
C BX(M)=BX(l) AND BY(M)=BY(l). 
C TOP, BASE= THE Z COORDINATES OF THE TOP AND BASE OF THE PRISM. 
C U= THE DOUBLE PRECISION ARRAY OF LENGTH N IN WHICH THE COMPUTED 
C VALUES OF PSI WILL BE RETURNED TO THE CALLING PROGRAM. 
C WORK= DOUBLE PRECISION WORK ARRAY OF LENGTH N. 
c 
c 
C SUBROUTINE REQUIRED 
c 
C DOUBLE PRECISION FUNCTION ANGLE 
c 
c 

REAL FX(N) ,FY(N) ,FZ(N) ,BX(M) ,BY(M) 
REAL SUM,SNGL 
LOGICAL FLAG 
DOUBLE PRECISION U(N) ,WORK(N) 
DOUBLE PRECISION DSUM,DBLE,DABS,DMINl,DMAXl,DSQRT, DLOG,DATAN2 
DOUBLE PRECISION ONE, HALF, FOURTH, DZ ERO, DTOLER , EPS , ARG , ANGLE 
DOUBLE PRECISION DX,DY,DS,PTEST,DTEST,ZTEST,ZT 
DOUBLE PRECISION XO,YO,ZO,Xl,Yl,Zl,X2 ,Y2,Z2 , ZlSQ,Z2SQ,Rl,R2, 

* RDZl ,RDZ2, Rl 1, Rl2, R22 ,R21 , Dl, D2, DDl , DD2, 
* A,B,C,S,P,PH,GL,Tl,T2 , T3,DTOP,DBASE 

EQUIVALENCE (SUM,EPSS),(DSUM,ZT) 
DATA ONE/I.ODO/, HALF/O.SDO/ , FOURTH/0.25DO/ 
DATA DZERO/O.ODO/ 

C LUN= THE LOCAL UNIT NUMBER ON WHICH ERROR STATEMENTS ARE WRITTE N 
DATA LUN/8/ 

c 
c "EPS" IS USED PRINCIPALLY TO CALCULATE THE 



c 
c 
c 
c 

c 
c 
c 
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LOGARITHMS OF SUMS OF DIFFERENT SIGNS AND 
VERY DIFFERENT MAGNITUDES (THE LOG TERMS MAY 
HA VE NEGATIVE ARGUMENTS WITHOUT THIS PRECAUTION). 

FLAG=. FALSE. 

C ZERO THE VECTOR U( I) BEFORE PERFORMING ANY COMPUTATIONS. 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 
c 

IF ( N. LE • 0) GO TO 200 
10D020I=l,N 
20 U(I)=O.ODO 

COMPUTE MACHINE DOUBLE PRECISION -

DTOLER=HALF 
30 DTOLER=HALF*DTOLER 

EPS=ONE+DT OLER 
IF ( EPS. GT. ONE) GO TO 30 
DTOLER=DTOLER+DTOLER 
EPS=DSQRT(DTOLER) 
EPS=HALF*DSQRT (EPS) 

TOLER=O . 5 

USE "DSQRT" TWICE TO AVOID LOADING "X**Y" 
NOW COMPUTE MACHINE SINGLE PRECISION -

35 TOLER=0.5*TOLER 
EPSS=l. O+TOLER 
IF (EPSS.GT.1.0) GO TO 35 
TOLER=TOLER+TOLER 
IF (M.LT.4) GO TO 210 

40 Ml=M-1 
IF (ABS(TOP-BASE).LT.TOLER*(ABS(TOP) +ABS(BASE )) ) GO TO 240 
IF (ABS(BX(M)-BX(l)).GT.TOLER*ABS(BX(M)+BX(l))) GO TO 220 
IF (ABS(BY(M)-BY(l)).GT.TOLER*ABS(BY(M)+BY(l))) GO TO 220 
IF (FLAG) GO TO 260 
DTOP=DBLE( TOP) 
DBASE=DBLE (BASE) 

DETERMINE THE SHORTEST POLYGONAL SIDE. 
TAKE SPECIAL CARE TO ACCOUNT FOR THE 
POSSIBILITY THAT ALL VERTICES ARE COINCIDENT 

PTEST=D ZERO 
L=O 

60 L=L+l 
IF ( L. GT. Ml) GO TO 90 
DX=DBLE (BX( L+ 1 )-BX(L)) 



c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 
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DY=DBLE(BY(L+l)-BY(L)) 
DS=DX*DX+DY*DY 
IF (DS.GT.DZERO) GO TO 70 
WORK(L)=DZERO 
WRITE (LUN,1030) L,BX(L) ,BY(L) 
GO TO 60 

70 DS=DSQRT(DS) 
WORK(L)=DS 
IF ( L . GT. 1 ) GO TO 80 
PTEST=DS 
GO TO 60 

80 IF (PTEST.EQ.DZERO) GO TO 60 
PTEST=DMINl(PTEST,DS) 
GO TO 60 

90 IF (PTEST.EQ.DZERO) GO TO 250 

"PTEST" WILL BE THE VALUE BELOW WHICH 
ALL HORIZONTAL DISTANCES ARE CONSIDERED ZERO. 

PTEST=DTOLER*PTEST 
ZTEST=DSQRT(DTOLER)*DBLE( (ABS(TOP)+ABS(BASE))) 
CM=0 .5*(TOP+BASE) 

BEGIN MAIN LOOP FOR ALL FIELD POINTS -

DO 180 L=l, N 
XO=DBLE(FX(L)) 
YO=DBLE(FY(L)) 
ZO=DBLE ( FZ( L)) 
Zl =DABS ( DTOP-ZO) 
Z2=DABS(DBASE-ZO) 
IF (Zl.LT.Z2) GO TO 100 
ZT=Zl 
Zl=Z2 
Z2=ZT 

100 IF (Zl.GT.ZTEST) GO TO 110 
Zl =ZTE ST 

110 ZlSQ=Zl*Zl 
Z2SQ=Z2*Z2 
X2=DBLE ( BX(l))-XO 
Y2=DBLE(BY(l))-YO 
R2=X2>'<X2+Y2*Y2 
R2l=DSQRT(R2+ZlSQ) 
R22=DSQRT(R2+Z2SQ) 
DSUM=DZERO 

PROCEED AROUND THE POLYGONAL PR ISM, 
SUMMING THE CONTRIBUTION FROM EACH SIDE. 

DO 170 K=l,Ml 



c 
c 
c 

c 
c 
c 
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Xl=X2 
Yl=Y2 
Rl=R2 
Rll=R21 
Rl2=R22 
X2=DBLE(BX(K+l))-XO 
Y2=DBLE(BY(K+l))-YO 
R2=X2*X2+Y2*Y2 
R2l=DSQRT(R2+ZlSQ) 
R22=DSQRT(R2+Z2SQ) 
DX=X2-Xl 
DY=Y2-Y 1 
DS=WORK(K) 
IF (DS.LT.PTEST) GO TO 170 
P= (Xl *Y2-X2*Yl) /DS 
IF (P.EQ.DZERO) GO TO 170 
C=DY/DS 
S=DX/DS 
Dl=Xl*S+Yl*C 
D2=X2*S+Y2*C 

CALCULATE THE LOG ( R+D) TERMS -

120 PH=P*P+ZlSQ 
RDZl=Rll+Dl 
IF ( D 1. GE. DZ ERO) GO TO 140 
IF (D2.GT.DZERO) GO TO 130 
GL=(R21-D2)/(Rll-Dl) 
GO TO 160 

130 DTEST=PH/(Dl*Dl) 
DDl=DABS(Dl) 
IF (DTEST.LT.EPS) RDZl=HALF*DDl*DTEST*(ONE-FOURTH*DTEST) 

140 RDZ2=R2l+D2 
IF (D2.GE.DZ ERO) GO TO 150 
DTEST=PH/ ( D2*D2) 
DD2=DABS( D2) 
IF (DTE ST. LT. EPS) RDZ 2=HALF*DD2*DTEST* ( ONE-FOURTH*DTEST) 

150 GL=RDZ1/RDZ2 
160 T3=-P*DLOG(GL*(R22+D2) /( Rl2+Dl)) 

COMPUTE THE ARCTANGENT TERMS -

A=Z2*Dl I ( P*Rl2) 
B=-Z2*D2/ ( P*R22) 
C=ONE-A*B 
Tl=Z2*DATAN2((A+B) ,C) 
A=Zl*Dl/(P*Rll) 
B=-Zl *D2/ ( P•~R21) 
C=ONE-A*B 
T2=-Zl*DATAN2((A+B) ,C) 



c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 

c 
c 
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FINISHED WITH THE LOOP OF THE POLYGONAL SIDES -

Tl,T2 =ARCTANGENT TERMS, T3 =LOG TERM. 

DSUM=DSUM+Tl+T2+T3 
1 70 CONTINUE 

180 

DSUM=DABS ( DSUM) 
ARG=ANGLE(BX , BY,M,FX(L),FY(L)) 
IF (ARG.EQ . DZERO) GO TO 180 
DSUM=ARG*(Z2-Zl)-DSUM 

"ANGLE" COMPUTES THE SUM OF THE 
INTERIOR ANGLES OF THE POLYGONAL 
PRISM: IT USES A WINDING NUMBER ALGORITHM. 

U(L)=DSUM*DBLE(SIGN(l.0,CM-FZ(L))) 

GO TO 270 
INITIATE ERROR PROCESSING HERE -

200 WRITE ( LUN, 1000) N 
FLAG=. TRUE. 
GO TO 10 

210 WRITE (LUN, 1010) M 
FLAG=. TRUE. 
GO TO 40 

220 WRITE (LUN,*) BX(l), BX( M) , BY(l) , BY( M) 
230 WRITE (LUN, 1050) 

GO TO 260 
240 WRITE (LUN, 1060) TOP,BASE 

GO TO 270 
250 WRITE (LUN,1040) 

GO TO 270 
260 WRITE (LUN,1100) 
270 RETURN 

1000 FORMAT (47HO>'<**** NUMBER OF FIELD POINTS IS § 1: N = 
1 I4, lH.) 

, 

1010 FORMAT (46HO***** NUMBER OF BODY POINTS IS§ 4: M= , I4,1H. ) 
1030 FORMAT (l 7HO*** WARNING: 

1 4 7HDUPLICATE BODY POINTS AT INDICES "L" AND "L+ 1." ,/ , 
2 7X ,4HL = ,13,lH.,/ ,7X,8HBX(L) = ,Gl6.7,/ ,7X, 
3 8HBY(L) = ,Gl6.7) 

1040 FORMAT (49HO*** WARNING: POLYGONAL VERTICES ALL COINCIDE . ,/, 
1 7X, 27HFIELD OF PRISM SET TO ZERO.,/, 
2 7X,29HWARNING ISSUED FROM "PSI.") 

1050 FORMAT (' ERROR FIRST AND LAST CORNER POINTS DO NOT COINS IDE') 
1060 FORMAT (45HO**''< WARNING: POLYGONAL PRISM IS TOO THIN.,/, 

1 7X,14HTOP OF BODY= ,Gl6.7, /, 
2 7X, 15HBASE OF BODY = , Gl6. 7 ,/, 
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3 7X, 27HFIELD OF PRISM SET TO ZERO.,/, 
4 7X, 29HWARNING ISSUED FROM "PSI. 11

) 

1100 FORMAT (11 X,29HERROR(S) DETECTED IN 11 PSI 11
) 

END 
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c---------------------------------------------------------------------c 
SUBROUTINE OMEGA(N,FX,FY,FZ,M,BX,BY,TOP,BASE,U,DIST) 

c---------------------------------------------------------------------c 
c 
c 
C SUBROUTINE TO CUMPUTE THE FUNCTION OMEGA FOR A POLYGONAL PRISM. 
C THE PROGRAM IS BASED ON EQUATION ( 8) • 
c 
c 
C ARGUMENTS 
c 
C N= THE NUMBER OF FIELD POINTS AT WHICH THE FUNCTION IS TO BE 
C COMPUTED. 
C FX,FY,FZ= ARRAYS CONTAINING THE N COORDINATES OF THE FIELD POINTS. 
C M= ONE PLUS THE NUMBER OF CORNER POINTS OF THE POLYGONAL PRISM. 
C BX,BY= ARRAYS CONTAINING THE X,Y COORDINATES OF THE CORNER 
C CORNER POINTS IN CLOCKWISE ORDER AROUND THE POLYGONAL PRISM. 
C NOTE : THE LAST CORNER POINT MUST COINCIDE WITH THE FIRST; 
C THAT IS, BX( M)=BX(l) AND BY(M)=BY(l). 
C TOP, BASE= THE Z COORDINATE OF THE TOP AND BASE OF THE 
C POLYGONAL PRISM. 
C U= THE DOUBLE PRECISION ARRAY OF THE LENGTH N IN WHICH THE 
C VALUES OF TH OMEGA FUNCTION ARE RETURNED TO THE CALLING PROGRAM. 
C DS= A DOUBLE PRECISION WORK ARRAY. 
c 
c 
C SUBROUTINE REQUIRED 
c 
C DOUBLE PRECISION FUNCTION ANGLE 
c 
c 

REAL FX(N) ,FY(N) ,FZ(N) ,BX(M) ,BY (M) ,U(N) 
REAL ABS, SNGL 
DIMENSION DIST(M) 
LOGICAL WARN,FATAL 
DOUBLE PRECISION A,B,C,C2,P,S,W,CI,CM,DS,DX,DY,Dl,D2,Dl2, 

1 SC , SD,SI ,Tl,T2, 
2 XO,Xl,X2,YO,Yl,Y2, 
3 ZT,Zl,Z2,CSQ ,DD1,DD2,EPS, 
4 DIST ,EPSl, RDZ 1, RDZ2, RlSQ, R2SQ, RlZ 1, R2Zl, 
5 RlZ2, R2Z2, Zl SQ, Z2SQ, DTE ST, PTEST , SMALL, ZSMALL 

DOUBLE PRECISION DZ ERO, HALF, ONE, TEN 
DOUBLE PRECISION DCOS,DSIN,DLOG ,DATAN,DATAN2,DSQRT ,DABS ,DBLE 
EQUIVALENCE (EPSl ,ZT) 
DATA HALF/ 5 . OD-1 /, ONE/ 1 . ODO/ , TEN/ 1 . OD+ 1/ 
DATA LUN/9 / 
DATA ZER0/0. Of, DZERO/O .ODO/ 
WARN=. FALSE. 
FATAL=. FALSE. 
DO 1 LF=l ,N 



c 
c 
c 

c 
c 
c 

c 
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1 U(LF)=ZERO 
IF ( N. LT. 1) GO TO 170 

10 IF (M.LT.4) GO TO 180 
20 Ml=M-1 

CALCULATE DOUBLE-PRECISION MACHINE TOLERANCE 

EPS=HALF 
30 EPS=EPS*HALF 

EPSl=ONE+EPS 
IF (EPS l.GT.ONE) GO TO 30 
EPSl=DSQRT(EPS) 
SMALL=HALF*DSQRT ( EPSl) 
EPSl=EPS 1 +EPSl 

SET "ZSMALL" TO SMALL* ABS( TOP-BASE) 

ZSMALL=TEN*SMALL*DABS(DBLE(TOP-BASE)) 
L=O 

C MAKE CERTAIN THAT THE THICKNESS OF THE SLAB IS NON-ZERO. 
C IF THE PRISM IS EXTREMELY THIN, SET OMEGA 
C TO ZERO AND WRITE A WARNING MESSAGE. 
c 

c 
c 
c 
c 

IF (ABS( TOP-BASE) .GT. SNGL( ZSMALL)) GO TO 40 
GO TO 200 

40 L=L+l 

DETERMINE THE LENGTH ( tO) OF THE SHORTEST 
POLYGONAL SEGMENT. 

IF ( L. GT. Ml) GO TO 70 
Xl=DBLE(BX(L)) 
X2=DBLE (BX( L+ 1)) 
Yl=DBLE(BY(L)) 
Y2=DBLE (BY( L+ 1)) 
DX=DABS(X2-Xl) 
DY=DAB S(Y2-Y 1) 
IF (DX . GT.EPS*DABS(Xl+X2)) GO TO 50 
IF (DY .GT.EPS*DABS(Yl+Y2)) GO TO 50 
DTE ST=DZERO 
DIST(L )=DZERO 
GO TO 40 

50 DS=DSQRT(DX*DX+DY*DY) 
DIST (L)=DS 
IF ( L. GT. 1) GO TO 60 
DTEST=DS 
GO TO 40 

60 DTEST=DMINl(DS,DTEST) 
GO TO 40 



c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
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70 IF (DTEST.EQ.DZERO) GO TO 200 
IF (FATAL) GO TO 190 
PTEST=EPSl *DTE ST 

"PTEST" = THE LENGTH BELOW WHICH HORIZONTAL 
DISTANCES ARE ASSUMED TO BE ZERO. 

START MAIN LOOP FOR EACH FIELD POINT -

DO 160 LF=l, N 
Zl=DBLE(TOP-FZ(LF)) 
Z2=DBLE(BASE-FZ(LF)) 
CM=HALF*( Zl +Z2) 
Zl=DABS( Zl) 
Z2=DABS( Z2) 

9 0 z 1 s Q= z 1*z1 
Z2SQ=Z2*Z2 
XO=DBLE ( FX( LF)) 
YO=DBLE (FY( LF)) 
X2=DBLE(BX(2))-XO 
Y2=DBLE(BY(2))-YO 
Xl=DBLE(BX(l))-XO 
Yl=DBLE(BY(l))-YO 
RlSQ=X 1 *Xl +Y 1 >'<Yl 
R2SQ=X2*X2+Y2*Y2 
RlZl=DSQRT(RlSQ+ZlSQ) 
R2Z l=DSQRT( R2SQ+ZlSQ) 
RlZ2 =DSQRT(RlSQ+ Z2SQ) 
R2Z2=DSQRT( R2SQ+Z2SQ) 

LB=l 

START LOOP TO CALCULATE THE CONTRIBUTION FROM 
EACH POLYGONAL SIDE: THERE ARE (M-1) SIDES. 

100 DX=X2-Xl 
DY=Y 2-Y 1 

IF THE LENGTH OF A SIDE IS § "PTEST", 
NEGLECT THE CONTRIBUTION FROM THAT SIDE. 

DS=DIST(LB) 
IF (DS.LT.PTEST) GO TO 150 
C=DY /DS 
S=DX/DS 
SC=S*C 
CSQ=C*C 

CALCULATE PERPENDICULAR DISTANCE "P" OF FIELD POINT 



c 
c 
c 
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TO THE POLYGONAL LINE SEGMENT (OR ITS EXTENSION). 
IF "P" IS VERY SMALL , SET "p" TO ZERO. 

P=(Xl *Y2-X2*Yl) /DS 
IF (DABS(P) .GT.PTEST) GO TO 110 
P=DZERO 

110 Dl=Xl*S+Yl*C 
D2=X2*S+Y2*C 
DDl=DABS(Dl) 
DD2=DABS(D2) 
IF (DDl.GT.PTEST) GO TO 120 
Dl=DZERO 

120 IF (DD2.GT.PTEST) GO TO 130 
D2=DZERO 

130 Dl2=Dl*D2 
C P = 0, Zl §= ZSMALL, AND Dl2 §= 0: MOVE THE FIELD 
C POINT AWAY FROM THE FACE OF THE PRISM . 
c 

c 
c 

c 
c 
c 
c 

c 
c 
c 

Zl=ZSMALL 
Zl SQ=Z 1 *Zl 
RlZ 1 =DSQRT( RlSQ+ZlSQ) 
R2Z l=DSQRT( R2SQ+ZlSQ) 
CALCULATE THE ARCTANGENT TERMS -

W=DZERO 
IF ( P . EQ. DZERO) GO TO 140 
A=Z2*D2/ ( P*R2Z2) 
B=-Z2~'<D 1/ ( P*RlZ2) 
C2=0NE-A*B 
Tl=DATAN2( (A+B) ,C2) 
A=Zl *Dl/ ( P*RlZl) 
B=-Zl *D2 / ( P*R2Zl) 
C2=0NE-A*B 
T2=DATAN2( (A+B) ,C2) 

FINISHED WITH THE ARCTANGENT TERMS -
NOW SUM THE CONTRIBUTIONS. 

W=Tl+T2 
140 U(LF)=U(LF)+W 

PREPARE FOR THE NEXT POLYGONAL SEGMENT -

150 LB=LB+l 
IF (LB.GT . Ml) GO TO 160 
Xl=X2 
Yl=Y 2 
R1Zl=R2Zl 
RlZ 2=R2Z2 
RlSQ=R2SQ 



c 
c 
c 
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X2=DBLE (BX( LB+ 1) )-XO 
Y2=DBLE (BY( LB+ 1) )-YO 
R2SQ=X2*X2+Y2*Y2 
R2Zl=DSQRT(R2SQ+ZlSQ) 
R2Z2=DSQRT(R2SQ+Z2SQ) 
GO TO 100 

END LOOP OF POLYGONAL SEGMENTS -

160 CONTINUE 
GO TO 200 

170 WRITE (LUN,1000) N 
FATAL=. TRUE. 
GO TO 10 

180 WRITE (LUN, 1010) M 
FATAL=. TRUE. 
GO TO 20 

190 WRITE (LUN,1030) 
200 IF (WARN. AND • • NOT. FATAL) WRITE ( LUN, 1060) 

RETURN 
1000 FORMAT (4 7H0**7'** NUMBER OF FIELD POINTS IS § 1: N = 

1 I4,1 H.) 
1010 FORMAT ( '***** NUMBER OF BODY POINTS IS § 4: NBODY = ' 

1 I4' lH.) 
1030 FORMAT (llX,'ERROR(S) DETECTED IN "OMEGA"') 

C 1040 FORMAT (48HO*** WARNING: DUPLICATE BODY POINTS AT INDEX , 
C 1 I3,1H . ,/ ,7X,15HX-COORDINATE = ,Gl6 . 7 ,/, 
C 2 7X, 15HY-COORDINATE = , Gl6. 7) 
C 1050 FORMAT (38HO*** WARNING: FIELD POINT TOO CLOSE, 
C 1 29H TO THE TOP OR BASE OF PRISM.,/, 7X, 
C 2 42HF IELD POINT WILL BE MOVED AWAY FROM PRISM ., /, 7X, 
C 3 24HDISTANCE TO PRISM NOW = , Dl6. 7, /, 7X, 
C 4 24 HNEW DISTANCE TO PRISM = , Dl6. 7, / /, 7X, 
C 5 32H--- FIELD POINT PARAMETERS --- , /, l 2X, 8HINDEX 
C 6 I4,1H.,/,12X,10HX-COORD = ,G l6.7 , /,12X,10HY- COORD =, 
C 7 Gl6.7,/,12X,10HZ-COORD = ,Gl6.7) 

1 060 FORMAT ( 7X, ' --- WARNING MESSAGES ISSUED FROM "OMEGA" --- ' ) 
END 
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c--------------------------------------------------------------------c 
DOUBLE PRECISION FUNCTION ANGLE (X,Y,M,XO,YO) 

c--------------------------------------------------------------------c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

INTEGER S, T, UP 
REAL X(M) ,Y(M) ,XO,YO,DET,FLOAT,SQRT 
DOUBLE PRECISION DZ ERO, DBLE, PI, TWO PI 

INPUT PARAMETERS -

X, Y - REAL ARRAYS OF LENGTH "M" CONTAINING 
THE POLYGONAL VERTICES: THE LAST POINT 
(X(M), Y(M)) MUST COINCIDE THE FIRST POINT, 
(X(l),Y(l)). 

M - LENGTH OF THE ARRAYS X, Y. 

XO - X-COORDINATE OF POINT FOR WHICH THE INTERIOR 
ANGLE IS DESIRED . 

YO - Y-COORDINATE OF POINT FOR WHICH THE INTERIOR 
ANGLE IS DESIRED. 

PURPOSE - "ANGLE" CALCULATES THE SUM OF THE INTERIOR 
ANGLES OF A POLYGON DEFINED BY THE VERTICES 
(X(L) ,Y(L), L=l ,M) WITH RESPECT TO THE POINT 
(XO , YO). THIS ANGLE IS DEFINED AS FOLLOWS : 

(1) "ANGLE" = TWOPI IF (XO, YO) IS OVER POLYGON, 
(2) "ANGLE"= 0 IF (XO,YO) IS NOT 

OVER POLYGON OR ITS EDGE, 
( 3) "ANGLE" = PI IF (XO, YO) IS OVER EDGE OF 

POLYGON BUT NOT OVER A VERTEX, 
(4) "ANGLE" = THE INTERIOR ANGLE SUBTENDED 

BY THE ADJACENT SIDES IF OVER A VERTEX. 

C CODE BASED UPON THE WINDING NUMBER ALGORITHM OF 
c 
C LELEND, KENNETH 0. (197 5) AN ALGO RITHM FOR WINDING 
C NUMBERS FOR CLOSE D POLYGONAL PATHS , 
C MATHEMATICS OF COMPUTATION, VOL . 29(130 ) ,5 54-558 . 
c ========================== 
C CODE PREPARED BY A . H. COGB I LL . 
c 

DATA PI/3 . 141592653589 793DO/ , TWOPI/6. 2831 85 307 1 79 586DO/ 
DATA DZERO/O.ODO/ , ZER0/0. 0 / , HALF/0 . 5/ , ONE/ 1.0 / 

C DATA PI/ 3. 141592 65 35898/, TWOPI / 6. 2831853071 796 / 
c 
c 
c 

MACHINE DEPENDENT CONSTANTS ARE "PI" AND "TWOPI". 



S=O 
Ml=M-1 
X2=X( 1 )-XO 
Y2=Y(l)-YO 
K=O 

10 K=K+ 1 
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IF ( K. GT. Ml) GO TO 60 
UP=O 
T=O 
Xl=X2 
Yl=Y2 
X2=X(K+l )-XO 
Y2=Y(K+ 1 )-YO 
IF (Xl. EQ.ZERO .AND. Yl.EQ.ZERO) GO TO 90 
IF (Y2. EQ. ZERO) GO TO 15 
IF (Y2.GT.ZERO) GO TO 20 

C Y2 § 0 
IF (Yl. LT. ZERO) GO TO 30 

C Yl t= 0, Y2 § 0. 

c 

c 

c 

c 
c 
c 
c 

15 
20 

30 

40 

UP=l 
GO TO 40 
IF (X2. EQ. ZERO) GO TO 10 
IF (YI.GE.ZERO) GO TO 30 

Y2 t = 0, Y 1 § 0. 
UP=-1 
GO TO 40 

END STEP 1; BEGIN STEP 2. 
IF (Yl. NE. ZERO) GO TO 10 
IF ( Y 2 . NE . ZERO) GO TO 10 
IF (X2. EQ. ZERO) GO TO 10 
IF (SIGN(ONE,Xl).NE.SIGN(ONE,X2)) GO TO 80 
GO TO 10 

END STEP 2; BEGIN STEP J. 
DET=X2*Y 1-Xl *Y2 
IF (DET.EQ.ZERO) GO TO 80 
IF (FLOAT(UP)*DET.GT.ZERO) GO TO 50 
T=-UP 

50 S=S+T 
GO TO 10 

60 IF ( S. EQ. 0) GO TO 70 
ANGLE=TWOPI 
RETURN 

70 ANGLE=DZERO 
RETURN 

80 ANGLE=PI 
RETURN 

AT A VERTEX: "ANGLE" = THE ANGLE SUBTENDED 
BY ( (X(K-l),Y(K-1)), (X(K),Y(K)), (X(K+l),Y(K+l)) ). 
BRANCH TO THIS CODE OCCURS ONLY WHEN Xl=Yl=O. 



c 
90 IF (K.GT .1) GO TO 100 

}O=X(Ml )-XO 
Yl=Y( Ml )-YO 
GO TO 110 

100 Xl=X(K-1)-XO 
Yl=Y(K-1 )-YO 

110 RlSQ=Xl*Xl+Yl*Yl 
R2SQ=X2*X2+Y2*Y2 

-106-

R3SQ=(X2-Xl )**2 + (Y2-Yl )**2 
CTHETA=HALF*( Rl SQ+R2SQ-R3SQ) / SQRT(RlSQ*R2SQ) 
ANGLE=DBLE (ARCOS( CTHETA)) 

C ANGLE= AC OS ( CTHETA) 
RETURN 
END 
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TEMPERATURE AND HEAT FLOW MODELING OF THREE-DHIENSIONA L 

BODIES 

IN A TWO-LAYE RED HALF SPACE 

by 

John A . Dunbar, Jr. 

(ABSTPACT) 

A i:.heoretical analysis was made of steady-state 

temperature and heat flow anomalies in the earth's crust 

caused by contrasts in heat production and t hermal 

con duct iv it y. Exact expressions were derived for the 

tt=:mperature an<l heat flow anomalies caused by polygonal 

prism heat sources in a half space overlain by a laye r of 

contrasting conductivity. Expressions were also developed 

for t he a ppr ox ima t e therma 1 effects of polygonal pr ism .s of 

contrasting conductivity. A comparis on ·'1 as mad e bet ween the 

e xact and apprroximate heat flow over an infinite semi-

circular cylinder of contrasting conductivity. The two heat 

flow fields aqree to within 5% for conductivity radios {the 

ratio of the conductivity of the medium and the conducti vity 

of +: he cylinder) which are bet.ween 0.25 and 1.5. 

Comparisons were also made betveE:n polygonal pris m and 

fini~e differnce models, three-dimensional an d one-



dimensional models, and half space and two-layered 

space models. 

half 

To illustrate the interpretation of heat flow anomalies 

a heat flow model was prepared for thE Rolesville bat ho li th 

and Castalia pluton, in Nash and Franklin Counties, North 

Carolina. It was sh own that the obser:-ved varia~ion in 

surface heat flow over these two qranitic intrusions can be 

explained by variations in the thickness of the granite from 

1 km to JO km. 
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