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ABSTRACT 
 

Over the past few years, denial-of-service (DoS) and distributed denial-of-service 

(DDoS) attacks have become more of a threat than ever.  These attacks are aimed at 

denying or degrading service for a legitimate user by any means necessary.  The need to 

propose and research novel methods to mitigate them has become a critical research issue 

in network security.  Recently, client puzzle protocols have received attention as a 

method for combating DoS and DDoS attacks.  In a client puzzle protocol, the client is 

forced to solve a cryptographic puzzle before it can request any operation from a remote 

server or host.  This thesis presents the framework and design of two different client 

puzzle protocols: Puzzle TCP and Chained Puzzles.  

 

Puzzle TCP, or pTCP, is a modification to the Transmission Control Protocol (TCP) that 

supports the use of client puzzles at the transport layer and is designed to help combat 

various DoS attacks that target TCP.  In this protocol, when a server is under attack, each 

client is required to solve a cryptographic puzzle before the connection can be 

established.   This thesis presents the design and implementation of pTCP, which was 

embedded into the Linux kernel, and demonstrates how effective it can be at defending 

against specific attacks on the transport layer. 

 

Chained Puzzles is an extension to the Internet Protocol (IP) that utilizes client puzzles to 

mitigate the crippling effects of a large-scale DDoS flooding attack by forcing each client 

to solve a cryptographic problem before allowing them to send packets into the network.   



   

This thesis also presents the design of Chained Puzzles and verifies its effectiveness with 

simulation results during large-scale DDoS flooding attacks. 
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CHAPTER 1 
 
 

1. Introduction 
 
 
As the Internet becomes an integral part in many people’s lives, the need to keep servers 

protected, online, and available has become increasingly important.  In recent years, 

denial-of-service (DoS) attacks and distributed DoS (DDoS) attacks have become more 

sophisticated and effective at obstructing this availability.  In 2000, several online 

companies such as eBay, Amazon.com, CNN.com, and Yahoo were all affected by a 

large scale DDoS attack [1].  During this attack, their websites were rendered virtually 

unreachable to many Internet users, resulting in severe financial losses, in addition to the 

many unsatisfied customers.  In 2002, several root Domain Name System (DNS) servers 

were brought down by yet another DDoS attack [2].  This attack demonstrated that 

attackers were becoming more intelligent because critical systems were now being 

attacked.  The general trend in DoS attacks implies that future attacks are likely to 

become much worse and more disruptive, affecting a larger number of Internet users.  In 

addition to these highly publicized attacks, there have been countless other smaller scale 

DoS attacks that have targeted various companies or corporations.  Regardless of their 

scale, DoS attacks have become a serious threat and nuisance throughout the Internet 

because they can directly be used to destabilize the Internet.  Despite the knowledge of 

their existence, an effective defense solution that is both practical to implement and easy 

to deploy has yet to be developed.  This thesis presents a discussion about the current 

research in this area and presents two different novel mitigation techniques that minimize 

the crippling effects of a network-based DoS attack. 
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1.1. Denial-of-Service Attacks 

There are many different types of DoS attacks and the number of them only increases 

with the release of newer protocols and network applications.  In order to gain a better 

understanding of the most common DoS attacks, it is best to separate these attacks into 

two different categories: local and remote (or network-based).  These attacks can be 

further separated into two more subcategories that describe the overall goal of the attack:  

stopping critical services and exhausting system resources [3].   

 

A local DoS attack is typically a form of malicious software that resides on the local 

machine that intends to disrupt the normal operation of the computer’s programs, 

processes, or services. These attacks have the ability to stop these processes from 

executing and cause problems for the current user and possibly other remote users that 

are depending upon that computer’s service.  Besides stopping critical processes on a 

local computer, local DoS attacks can also exhaust system resources such as memory, 

clock cycles, disk space, and even network resources.  Exhausting resources on a local 

system is an effective means to conduct a DoS attack because when the required system 

resources are not available on the local machine, new applications or data can neither be 

executed nor processed.  In this case the attack causes more damage because it does not 

target a specific application or weakness; it prohibits or limits the capabilities of that 

system and prevents users from further and continued use of that machine.  Examples of 

these resource exhaustion attacks are a fork bomb or an application that intentionally 

causes errors to fill up an error log, thus exhausting disk space [3]. 

 

Remote DoS attacks, or network-based DoS attacks, is an attack where the attacker 

attempts to deny, disrupt, or degrade a client’s access to a network service by any means 

necessary via a remote computer.  Network-based DoS attacks can both stop current 

processes and exhaust system resources.  Thus, when an attack is underway, the end host 

or server will be virtually unavailable to other clients.  Examples of a remote attack that 

stops services are the Land attack and the Teardrop attack [3].  Examples of network-

based resource-exhaustion attacks are synflood attacks, Smurf attacks, and Distributed 

DoS flooding attacks [3].  With the increased usage of the Internet and broadband 
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Internet access, network-based resource-exhaustion attacks are becoming more common 

and popular because they are among the easiest to launch and one of the most effective 

forms of a DoS attack.  Unfortunately, these attacks are becoming the most difficult to 

defend against. 

 

A DDoS is similar to a DoS attack, except that it involves the use of several attacking 

computers.  In other words, in a DoS attack there is a single stream of attack traffic, but 

in a DDoS attack there are multiple streams of attack traffic [4].  Sometimes a single 

attacking is computer (i.e. synflood, Land attack).  These attacks are commonly referred 

to as DoS attacks.  Although, when the goal of the attack is primarily to consume 

resources of a victim, the attack will always be more effective with the use of multiple 

attacking computers.  In this case, these attacks are referred to as DDoS attacks.  The 

primary goal of a DDoS attack is to overwhelm the victim server and its secondary goal 

is to consume bandwidth of the network surrounding the victim.  A DDoS attack 

typically consists of an attacker (or multiple attackers), several handler computers, and 

many attack zombies.  During the DDoS attack setup phase, the attacker(s) will 

relentlessly probe many computers looking for various weaknesses in their systems and 

then make attempts to infiltrate them and convert them to handlers or zombies.  If users 

do not properly defend and patch their systems, an attacker has the ability gain access to 

the computer with full privileges, to install tools or programs on their systems so they can 

later be used in an attack.  When an attacker gains control of the computer, it has the 

ability to communicate back with itself and other zombies.  Recent attacks have shown 

that attackers are becoming more sophisticated recruiting zombies and how they are 

commanded following their conversion.  It is conceivable that an attacker could recruit 

zombies over a period of several years, and then when they have accumulated a large 

number, begin flooding packets in the direction of the victim.   

 

When the attack begins, the attackers notify the handlers to invoke the zombies to begin 

flooding useless data towards the victim.  It should be noted that the traffic is not always 

useless data; an attacker may disguise their traffic to resemble legitimate traffic to avoid 

any filtering mechanism that is designed to detect attack packets.  For example, for an 

  



Timothy J. McNevin  Chapter 1:  Introduction 4  

attack on a popular website, it may be best for an attacker to flood the server with false 

HTTP requests.  These requests are disguised and are practically indistinguishable from 

the normal HTTP requests from legitimate clients.  Thus, the attacker can manipulate the 

attack in many ways to bypass any known security mechanism that is already in place.  In 

Figure 1-1, there is an image of a typical DDoS attack scenario.  The victim is the end 

host or the routers that are adjacent to the end host.  Depending on the intensity of the 

attack, the end host may become overwhelmed with incoming traffic, or the adjacent 

routers will become overwhelmed with traffic.  Nonetheless, the victim in the attack is 

the server in addition to the countless number of users that are no longer able to 

communicate with that server due to the severe congestion.  Due to the nature of the 

attack, this attack is commonly referred to as a flooding attack. 

 

 
Figure 1-1: A DDoS attack scenario 
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1.2. An Introduction to DoS Countermeasures 

A comprehensive countermeasure for DoS attacks has four distinct elements: prevention, 

detection, mitigation, and traceback, shown together in Figure 1-2.  Before an attack 

occurs, there should be existing prevention mechanisms that are capable of eliminating 

the threat of the attack.  When the attack does occur, only a successful and timely 

detection of the attack will allow the appropriate mitigation mechanism to be deployed.  

During or following the attack, a method called traceback can be used to determine the 

source of the attack.  In addition, traceback can also help improve future methods for 

detecting and preventing a DoS attack.  The dependence upon all four of these items is 

crucial for a successful DoS countermeasure. 

 

Prevention Detection

MitigationTraceback

 
Figure 1-2: Components of a DoS Countermeasure 

 

In addition to these four items, a DoS countermeasure should be designed to defend 

against attacks on various layers of the Internet stack.  Among the five layers of the 

Internet protocol stack [5], a network-based DoS attack is associated with three of the 

five layers: the application, transport, and network layer.  In order to design the most 

effective countermeasure against DoS attacks, we must address the security 

vulnerabilities at each layer and introduce defense mechanisms that are capable of 

mitigating specific threats at the appropriate layer.  In computer security, there is no 

“magical panacea” for all potential threats.  The only way to defend a computer from 

attacks is to design and employ a number of protection mechanisms that are designed to 

combat a specific threat.  The combined use of all of these mechanisms will provide the 

greatest protection against a wide range of attacks.  The most important aspect to the 

design of a DoS countermeasure is to prevent the countermeasure from becoming the 
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target of a new and unique DoS attack.  All DoS attacks target some kind of vulnerability 

and if the vulnerability exists within the DoS countermeasure, then it needs to be 

redesigned. 

 

1.2.1. Prevention 

Prevention is the first step towards defending a machine from a DoS/DDoS attack.  The 

key to prevention is awareness and vigilance.  System patches and updates are very 

important to protection but they only fix known problems.  Thus, systems are always 

vulnerable to unknown attacks and undiscovered weaknesses.  Therefore, it is necessary 

for many to understand how attacks occur and to always remain aware and watching for 

new potential threats.   

 

Prevention is especially important with DDoS attacks.  Referring back to Figure 1-1, 

many of the machines used in the attack do not physically belong to the attacker.  They 

belong to anyone who has not taken the proper steps to secure and protect their computer.  

Thus, informing users about the security risks and the precautions they should take with 

their computer is one of the key elements to prevention. 

 

1.2.2. Detection 

One of the most important components in designing a DoS countermeasure is to 

determine and establish the optimal methodology to detect an ongoing attack.  Most 

detection mechanisms rely on some form of an application or software that resides on a 

host system or within the network that can observe traffic patterns or resource usage.  

These programs typically are configured to detect anomalies or deviations from normal 

behavior.  When anomalies are detected, alerts are created so that either a system 

administrator or an automated program can quickly determine the type of the attack and 

decide which actions to take to safely minimize the effects of the attack and return the 

system back to its original state.   
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Most attacks are detected by an end host or server.  However, in many cases a DDoS can 

affect the routers within the network.  In the case of a large-scale DDoS flooding attack, 

detecting the attack should be done throughout the network.  To combat a DDoS attack, a 

distributed defense is essential.   In general, the further downstream the detection process 

is implemented, the easier it will be to determine if there is an ongoing attack [6].  The 

study of detecting a DoS attack is a very important area for network security research.  

However, it is beyond the scope of the work for this thesis.  Despite its importance, we 

assume that throughout the remainder of this thesis that there exists a simple and basic 

detection mechanism that will activate the appropriate mitigation mechanism. 

 

1.2.3. Mitigation 

Mitigation is the process of minimizing the effects of an ongoing attack. The simplest and 

easiest form of mitigation is to simply drop packets that belong to an attacker and allow 

packets that belong to a client to reach their destination.  This method is also by far the 

most effective way to mitigate the effects of a DoS attack.  However, the main obstacle 

with this method is how to accurately determine if a packet belongs to an attacker or to a 

legitimate client.  Attackers have shown great sophistication in their ability to disguise 

themselves as legitimate clients, making it virtually impossible to determine if a packet 

belongs to a legitimate client or an attacker.  In this thesis, the mitigation techniques that 

are researched do not necessarily deal with making this distinction.  Instead, the 

techniques presented in this thesis allow each client to prove itself as being legitimate 

before being granted access. 

 

1.2.4. Traceback 

The process of traceback involves the methods used to determine the source of the attack.  

This technique is commonly referred to as IP traceback.  In many previous DoS/DDoS 

attacks, the attackers have demonstrated the ability to spoof the identity of the attack 

packets by selecting a different source IP address than the IP address of the computer that 

  



Timothy J. McNevin  Chapter 1:  Introduction 8  

is actually sending the packet.  This technique is referred to as IP spoofing.  In the past 

few years, there have been several attempts to prevent IP spoofing have been considered, 

such as ingress or egress filtering, which is performed by an Internet Service Provider 

(ISP) [7].  Before a router forwards a packet, it verifies that the source IP address of the 

packet is valid.  A router inside an ISP will know the IP addresses or the IP address range 

of its clients and will be able to filter packets that do not have valid IP addresses.  

However, attackers have also been able to subvert this method by spoofing the IP address 

with an IP address that is valid.  In other words, an attacker uses an IP address that 

belongs to another client on the local subnet.  Thus, despite filtering at the routers, this 

issue still remains a difficult problem to solve.   

 

Common traceback methods involve packet marking, a technique where routers place a 

unique mark within the header of each packet that it forwards.  When a packet traverses 

all the way to the server, each router will have already marked the packet in such a way 

that the combination of all of the marks creates a unique signature that is used to identify 

a client.  Thus, when the end host receives a packet, the total mark will be used to 

differentiate between a client and an attacker.  Therefore, with an effective packet 

marking scheme and the assumption that packets can not be modified between the client 

and the server, a server can identify a client correctly without relying on the correct 

source IP address.  

 

A serious challenge that is facing many researchers in IP traceback is how to determine 

the real attacker, rather than the attack handlers or zombies.  From Figure 1-1, one can 

see that the real attacker hides its identity behind multiple levels of handlers and zombies.  

Current IP traceback methods can determine the point of origin for the attack traffic at the 

zombies, but they do not accurately reveal the identity of the real attacker behind the 

zombie.  Thus, developing methods to trace the attack to the real attacker is a challenging 

topic in network security. 

 

  



Timothy J. McNevin  Chapter 1:  Introduction 9  

1.3. Motivation for Researching Mitigation Techniques 

As recent events have indicated, DoS and DDoS attacks remain to be a severe threat to 

the stability of the Internet.  This research topic has received much attention in the last 

several years because many people believe that these attacks will be a persistent threat in 

the Internet and could undermine the stability and usability of the Internet.  Despite 

methods that are in existence today, the threat of an attack still lingers and future attacks 

will likely be more powerful and the aftermath could be considerably worse. 

 

Successfully mitigating a DoS attack is a very challenging problem that has not yet been 

completely solved.  The Internet itself is such a complex world and designing a perfect 

countermeasure to thwart these attacks has become difficult.  The need to develop an 

effective, scalable, and resilient countermeasure has become one of the biggest 

challenges facing current researchers in network security.  

 

1.4. Contributions 

The main focus and contribution of this thesis is the design and analysis of a specific 

mitigation technique called client puzzles.  Since distinguishing between an attacker and 

a client has been proven to be difficult, client puzzles is a technique that is used to help 

determine this characteristic for us.  In essence, a client puzzle is a method for a client, 

whether it is a legitimate client or an attacker, to prove its legitimacy by solving a 

moderately hard computational problem that involves the utilization of both the client’s 

system resources and time.  Generally, when referring to client puzzles, the client is 

considered either an attacker (a zombie) or a legitimate client.  The server is considered 

the victim that is being attacked.  Client puzzles do not make a distinction between clients 

and attackers and consider both of them to be the same.  However, all client puzzle 

schemes must make the same important assumption: that attackers exhibit their attacker-

like behavior by making more requests or sending greater amounts of data than any 

legitimate client. 
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In a client puzzle scheme, the difficult problem presented to the client is solved by that 

client before it has access to a remote service or access to a remote server.  Thus, before 

an attacker can send a large number of requests to a server, it has to solve a 

corresponding large number of puzzles.  The exchange of puzzle information (the puzzle 

challenge and the puzzle solution) that is completed before a request can be made is 

commonly referred to as a client puzzle protocol because it describes the actions taken by 

both sides to complete a request.  One of the main contributions in this thesis is the 

design and implementation of Puzzle TCP (pTCP): a client puzzle protocol that is 

embedded into the Transmission Control Protocol (TCP).  As this thesis shows in later 

chapters, pTCP is capable of safeguarding the available resources of a server in the event 

of a DoS attack. 

 

When the attack becomes larger, such as a DDoS flooding attack, the transport layer is 

not the appropriate location to deploy a mitigation scheme.  In this attack the network 

layer is responsible for forwarding packets towards the destination.  Thus, in order to 

combat such an attack, client puzzles must be deployed on the network layer.  This thesis 

also presents a novel framework for a client puzzle protocol embedded into the network 

layer called Chained Puzzles (CP).  In Chained Puzzles, any client, whether it is a zombie 

or legitimate client, is forced to solve a puzzle before sending a packet into the network.  

By doing so, this throttles every user and degrades performance for those wishing to send 

a large amount of data, behavior that is consistent with that of an attacker or a zombie 

involved in a DDoS flooding attack.  A legitimate client will typically not have a 

relatively large number of puzzles to solve and will have slightly limited access to a 

server that would otherwise be unavailable. 

 

1.5. Organization of Thesis 

The remainder of this thesis is organized in the following way:  Chapter 2 presents a 

discussion about the related work in the mitigation of DoS/DDoS attacks.  Specific 

attacks and their respective mitigation techniques are discussed.  In Chapter 3 there is a 
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discussion on the design and implementation details of pTCP.  A performance analysis 

and a summary of the experimental results for pTCP are also presented in Chapter 3.  In 

Chapter 4, the framework for a client puzzle protocol that is embedded into the network 

layer, called Chained Puzzles, is presented.  Chapter 4 presents the design of Chained 

Puzzles, as well as a performance analysis and a discussion of simulation results.  In 

Chapter 5, the work and contributions of this thesis are summarized; the future work for 

both pTCP and CP is presented along with improvements that could be made to each 

protocol.

  



 

 

CHAPTER 2 
  

 

2. Related Work 

 

During the last few years, there has been a sharp increase in the number of network-based 

computer attacks.  This has lead many researchers to study this field in great depth in 

order to develop novel methods that are capable of eliminating this threat from today’s 

computer networks.  This chapter presents a summary of some of the most recent work 

on the mitigation techniques of common DoS and DDoS attacks.  The work that is 

summarized in this chapter deals primarily with attacks on the transport layer, attacks on 

the network layer, and a thorough introduction to the concept of the mitigation technique 

known as client puzzles. 

 

2.1.  Transport Layer Attacks and Defenses 

Several approaches have been proposed to prevent transport layer resource-exhaustion 

attacks on systems.  Occasionally, these attacks are referred to as connection-depletion 

attacks because they consume resources on the server and prevent future clients from 

establishing connections or communicating further with a server.  In these attacks, the 

victim has enough processing resources to handle each incoming packet; the attack 

typically targets a vulnerability that is unique to the transport layer protocol. There have 

been several attempts to counter these attacks such as syncache, syncookies, and client 

puzzles.   
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TCP is an end-to-end transport layer protocol that provides reliable data transmission in a 

connection-oriented fashion [8].  One of the most common attacks on the transport layer 

is the synflood attack [9, 10].  A synflood is accomplished when an attacker sends a large 

number of SYN packets to the victim, thus creating a large number of half-open 

connections that are stored on the server.  The server has limited storage in terms of the 

number of half-open connections it can store.  An attacker can effectively exhaust the 

server’s resources by filling the queue of half-open connections, which denies service to 

future clients wishing to make a connection.  After a timeout period, the server will 

remove the half-open connection from its queue, but as long as the attacker can send 

SYN packets at a high enough rate, the queue for half-open connections will always be 

full.   

 

Syncache [11] was designed to replace the linear chain of pending and incomplete 

connections.  Syncache implements a global hash table that protects a server from 

resource depletion by limiting the size of the table and the amount of time spent 

searching for a pending connection.  Despite this modification, syncache can still suffer 

from connection depletion or synflood attacks because a syncache bucket, or a hash chain 

in the hash table, can still overflow.  Lemon [11] suggests that the syncookies mechanism 

should be used when this occurs. 

 

Syncookies [11, 12] focuses on defending a server solely against a synflood attack.  It 

accomplishes this by removing state information after sending the SYN-ACK packet to 

the potential client.  The sequence number in the SYN-ACK packet is created by 

applying a hash algorithm on the client’s information (destination port, source port, IP 

address, etc.) and a secret key maintained by the server that changes every minute.  The 

client increments this sequence number and sends an acknowledgement back to the 

server.  When the server receives this, it decrements the number (which should yield the 

output of the hash function) and then reapplies the same hash function and compares the 

two values.  If they are the same, the connection is established.  The advantage to this 

scheme is that it requires no modification to the client’s operating system.  The 
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syncookies scheme has a potential vulnerability if an attacker actually completes the TCP 

handshaking procedure.  Such an attack can be carried out by zombies controlled by an 

attacker in a DDoS attack. The zombies would execute an extremely large number of 

TCP handshaking procedures with the server or maintain a large number of connections 

to exhaust resources of the server or of a particular application.   

 

Client puzzles have also been proposed to combat the synflood attack and other resource-

exhaustion attacks that may exist on the transport and application layers.  Due to client 

puzzles being a major theme throughout the work of this thesis, a lengthy discussion on 

client puzzles can be seen in Section 2.3. 

 

2.2. Network Layer Attacks and Defenses 

The resources at the server are not always the only target of an attack.  In most DDoS 

attacks, the victim of the attack can exist in possibly two places: the server and the 

network.  In a DDoS flooding attack, the attackers relentlessly flood the network with 

packets which can overwhelm either the routers in the network near the victim or the 

actual processing resources of the victim itself.  Most current mitigation techniques 

involve filtering the attacker’s packets or rate-limiting the traffic that is suspected to 

belong to an attacker.  Because the effects of the attack may exist in several places, 

researchers have developed several methods to diminish the effects of these attacks that 

reside both at the server and in the network. 

 

2.2.1. End-Host-Based Protection Mechanisms 

Many approaches to defend against DoS attacks have included a filtering mechanism at 

the end host or server.  This location is usually suitable for detecting the attack, but in the 

event of a flooding attack, it is not the ideal place to begin defending against the attack.  

However, when it comes to deployment, these schemes are among the easiest to deploy 

because only the end-host needs to be modified and not the rest of the network.  Recently, 
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a scheme was introduced to filter packets based on the hop-count or the Time to Live 

(TTL) value located within the IP header.  This scheme is called Hop-Count Filtering 

(HCF) [13].  Essentially, in this scheme a server first undergoes a learning phase, where it 

stores a database of mapping of IP addresses to TTL values.  This process creates a 

baseline for this particular system.  During an attack, if the system determines or detects 

anomalies by examining the IP address and the TTL value, it can drop the packet.  The 

idea behind this scheme is that during an attack, packets will often contain spoofed IP 

addresses and when the server receives them it can quickly determine if the IP address 

does not have the corresponding observed TTL value.  Since the database was created 

earlier, the server can drop incoming packets that do not coincide with entries in the 

database.  This scheme suffers when zombies use their correct source IP addresses.  In a 

large-scale DDoS attack with zombies, an attacker does not always need to spoof the IP 

address of the zombie.  As long as the attacker can separate itself from the zombie system 

and cover its tracks so that they are not revealed afterwards, the zombie would be able to 

use its real source IP address. 

 

Many of the current filtering mechanisms rely on the use of IP traceback, which was 

briefly discussed in the first chapter.  Since IP traceback creates a unique signature or 

path identification mark, each packet can be identified and determined if it belongs to the 

source of an attack [14].  In these schemes, each router marks a small unique stamp into 

the packet.  After all routers forward the packet to its destination, the packet has 

accumulated multiple marks from the different routers, and it forms a path identification 

mark or signature.  During a learning phase, and when the system is not under attack, 

these marks are stored in a database.  Following the learning phase, and during an attack, 

the server can identify packet anomalies by examining the mark inside each packet and 

decide if it needs to be discarded.  This scheme, along with other packet marking 

schemes, requires significant changes to routers throughout the Internet for its 

implementation and successful deployment.   
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2.2.2. Network-Based Protection Mechanisms 

As discussed in first chapter, the most effective way to mitigate a DoS attack is to filter 

packets that belong to an attacker.  In recent attacks, the attack programs running on the 

zombies have employed IP spoofing to avoid revealing their identity.  Ingress and egress 

filtering is a technique used to combat IP spoofing [7].  Both of the filtering mechanisms 

rely on routers filtering packets by examining the source IP address of each packet and 

then determine if the IP address was spoofed.  For instance, if a packet that was leaving 

the subnet and had a source IP address that is not in the correct range, the router can 

detect this and drop the packet.  Likewise, a router can drop incoming packets if the 

source IP address matches a client within that subnet.  

 

The disadvantage to both ingress and egress filtering is that they rely on widespread 

deployment.  If certain ISPs do not implement it, attackers are more likely to recruit 

zombies from within that network.  In addition, this technique only filters zombies that 

spoof their IP address with one from another subnet.  It does not prevent a zombie from 

spoofing its IP address with that of one belonging to a client within the same subnet.  

Also, since the attacker hides its identity through several levels of handlers and zombies, 

it may be feasible for the zombies not to employ IP spoofing, since it does not reveal the 

identity of the real attacker.  Despite these issues, ingress and egress filtering can still 

help mitigate the attack because it limits the options of the attacker.   

 

One of the most prominent methods to prevent a DDoS attack was proposed recently 

called Aggregate Congestion Control (ACC) with Pushback [15, 16].  In this scheme, an 

attack is detected by observing the number of dropped packets at a given router.  If the 

number of dropped packets exceeds a given threshold, the router will identify (typically 

by the destination address) the packets that are consuming a large amount of the 

bandwidth, which are referred to as high-bandwidth aggregates.  The router will perform 

rate-limiting on these packets.  The rate-limiting feature is called the ACC mechanism.  If 

the rate-limiting at the current router does not solve the congestion problem, a pushback 

message can be sent to a router upstream.  The message is sent to the routers that are 
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forwarding the traffic that is supposedly from the attacker.  The purpose of this message 

is to invoke the ACC mechanism at the router upstream.  Ideally, these pushback 

messages should propagate as far upstream as possible to the point where the traffic 

enters the network.  Thus, rate-limiting can be performed without affecting the rest of the 

traffic in the network. 

 

The authors of these papers admit that the combination of ACC and Pushback can 

mistakenly diagnose or identify a normal client as an attacker.  Since the decision to rate-

limit a flow of traffic is typically based on the destination IP address.  Thus, traffic from a 

legitimate client destined for that same address will also be rate-limited.  The authors 

identified this as poor traffic; they identify the attack traffic as bad traffic, and the traffic 

belonging to legitimate clients not affected by ACC mechanism as good traffic.  The 

combination of ACC and Pushback is a very promising scheme that has been one of more 

effective methods to defend against DDoS attacks.  However, it requires changes to many 

routers throughout the Internet and the scheme itself is not always perfect in correctly 

identifying attackers.   

 

Overlay networks have recently been proposed as a proactive approach to defend against 

DoS attacks [17, 18].  Overlay networks introduce a system with a protected internal 

network that only allows approved traffic to enter.  To protect the resources of the victim, 

it is placed inside this protected internal network.   Filtering is performed at the edge of 

the protected network so malicious users cannot enter.  When a packet reaches the 

protected network, it is routed through a series of routers until it reaches its final 

destination.  This process is referred to as overlay routing.  The identities of some of the 

routers within the network are hidden so they cannot be targeted unless they enter at the 

network edge.  To enter the network edge, decisions are made based on the credibility of 

the client.  Lakshminarayan et al. identified weaknesses of overlay networks by stating 

that they assume that the list of clients are known in advance and that it does not scale 

very well to the current Internet setting [19].  This certainly holds true, because it is very 

difficult to determine if the client in question is malicious.   
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2.3. Client Puzzles as a Mitigation Technique 

Before discussing client puzzles, it is necessary to define a cryptographic puzzle.  The 

concept of a cryptographic puzzle was first proposed by Merkle in [20].  In this paper, a 

public key cryptosystem is introduced that uses the difficult problem of cryptographic 

puzzles rather than the discrete logarithmic problem used in the Diffie-Hellman 

cryptosystem [21]. 

 

In essence, a cryptographic puzzle is defined by Merkle as a cryptogram that is meant to 

be broken.  In Merkle’s scheme, the cryptogram is encrypted with a strong encryption 

function and a part of the solution is revealed to the solver.  Thus, in this scheme a puzzle 

would consist of a plaintext, a ciphertext, and a part of the key.  The remaining unknown 

bits of the key would be the solution to the puzzle.  In order for the solver to find the 

solution to the puzzle, a brute-force approach must be applied that tries random values for 

the remaining bits of the key and then checks the value of the ciphertext to determine if 

the correct key has been found. 

 

To apply this strategy to a public-key cryptosystem as Merkle did, one person (Bob) 

would create a large number of puzzles.  Each puzzle solution would consist of an ID and 

a key, both of which are random variables.  When a particular person (Alice) wishes to 

communicate with Bob, then Bob would send Alice a large number of previously created 

puzzles. Alice would solve only one puzzle at random to retrieve the ID and the key.  

This key would be the private key, or shared key, that is stored by both Alice and Bob.  

After having solved one puzzle, Alice sends the ID back to the server.  Since Bob created 

the puzzles beforehand, it has a table of ID values and private key values.  Thus, a key 

agreement can be established without sending the actual value of the private key.  An 

attacker in between these two would only know the ID value and the N puzzles.  Thus, in 

order to find the private key shared between Alice and Bob; the attacker would have to 

solve N puzzles.  Thus, solving this many puzzles is the difficult problem used for this 
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cryptosystem.  Although this scheme is not widely used in practice, it was one of the first 

attempts to introduce a novel method for public-key cryptography. 

 

2.3.1. Client Puzzles at the Transport Layer 

Juels and Brainard first introduced client puzzles to prevent connection-depletion attacks 

at the transport layer [22].  In addition, client puzzles have been devised to help prevent 

DoS attacks on authentication protocols [23]. Over the past few years, there have been a 

number of variations of client puzzle schemes that have also been proposed [24, 25, 26, 

27, 28, 29, 30].  The basic idea of a client puzzle is that when a server is under attack, it 

sends out a cryptographic puzzle for the client to solve before allocating resources or 

performing an operation for that client.  A cryptographic puzzle is created by taking a 

difficult problem from an appropriate cryptosystem and making it “feasible” by providing 

helpful information that will aid in finding the solution.  This information reduces the 

solution search space so that the puzzle solver can simply apply brute-force techniques to 

find the correct solution.  Therefore, as the name implies, puzzles are solvable problems 

that require both the solvers time and effort.   

 

Since an attacker typically generates a large number of requests, it will have to solve a 

correspondingly large number of puzzles.  In contrast, the legitimate client typically has 

only a small number of puzzles to solve.  This method is effective in separating the 

attackers from the legitimate clients, and also gives the legitimate clients a better chance 

to have its requests completed.  In order for a client to prove that it is legitimate, it must 

use its own resources and time to show that it is not an attacker (by solving a puzzle).  

The ideal characteristics of a client puzzle protocol are summarized below [14, 15, 16]:  

 First, a puzzle should be easy for the server to create and verify, and should be 

much more difficult for the client to solve.  The level of difficulty can be 

parameterized, and can be changed if needed.  However, if the server is not under 

an attack, it should be possible that a puzzle would not be generated at all, 

allowing the client access without solving a puzzle.   
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 Second, it should not be possible for an attacker to keep a table of known puzzles 

and solutions.  

 Third, the client should know that it has the correct answer before submitting it to 

the server.  The puzzle solving process involves a repetitive brute-force task.  The 

client should know when to terminate this process when it has the correct 

solution.     

 Fourth, the server should know what puzzles it has generated and which ones to 

verify.  There must be some type of mechanism in place that prevents an attacker 

from fabricating its own puzzle and sending its own solution to the server.  The 

server needs to store a small amount of information so that it can determine which 

responses from the clients are solutions to valid puzzles.  

The common problem among all of the client puzzle schemes that have been proposed is 

the puzzle verification, which involves the execution of a hash function or an encryption 

function to verify the client’s answer.  As mentioned in the first chapter, when creating a 

DoS resilient protocol, it is imperative that the defense mechanism itself does not become 

the source for another DoS attack.  An attacker can easily attempt to exhaust the 

computing power of a server by forcing it to verify a large number of incorrectly solved 

puzzles.  In this scenario, the attacker does not bother solving the puzzles; it simply 

intends to force the server to waste its resources.  Optimizing the puzzle verification 

mechanism is critical and doing so will undoubtedly improve the server’s performance.   

 

In the vast majority of client puzzles that have been proposed, solving a puzzle involves 

reversing a one-way hash function by brute force.  Depending on how the difficulty of the 

puzzle is set, the puzzle can be trivial or impossible to solve1.  The puzzles presented in 

the related literature use different algorithms but they all require the client to solve the 

puzzle by brute-force [14, 15].  The entire reversal of a one-way hash function is 

considered computationally infeasible, but by revealing a portion of the answer to the 

client, the server creates a puzzle that is solvable.  In hash-based puzzle algorithms, the 

                                                 
1 In general, adjusting the difficulty involves revealing varying degrees of a puzzle’s solution. 
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client has knowledge of an output value and a part of the corresponding input value to a 

hash function. Instead of attempting to reverse the hash function, the client solves the 

puzzle by using a brute-force method to find the rest of the input value.  In a server-

generated puzzle, the server generates the partial hash input and hash output, and 

transmits both pieces of information to the client. An example of a server-generated 

puzzle can be seen below in Figure 2-1.  The solution to the puzzle is the value S.  The 

server provides X, Y, and the hash function h() to the client. 

 

( || )
    
    
 

h X S Y
X puzzle parameter provided by server
Y puzzle parameter provided by server
S puzzle solution

=
−
−
−

 

Figure 2-1: A server-generated puzzle 
 

The difficulty of this puzzle is defined by the size of S in bits.  The greater S is in size, the 

more difficult the puzzle is to solve.  Also, the larger S is the smaller X will be and when 

the puzzle is at the highest difficulty level, there will be no value for X.  The client will be 

responsible for fully reversing the hash function h(), which is considered computationally 

infeasible. 

 

There is another method for creating hash-based puzzles. In this method, the client is only 

given the partial hash input, and it needs to solve for both the rest of the hash input and 

the hash output [15].  We refer to this type of a puzzle as a client-generated puzzle.  The 

difficulty level is set by forcing the first d bits of the output to be zero.  Thus, the server 

only needs to distribute a random number and the client will be responsible for creating 

the puzzle.  In a client-generated puzzle, the server needs to keep only two local variables 

(a nonce and the difficulty level), and respond with these values when a client makes a 

connection request.  An example of a client-generated puzzle can be seen below in Figure 

2-2.  The server provides the value X and the hash function h() to the client.  When the 

server verifies the puzzle solution, it simply concatenates X and S to form the input of the 
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hash function, executes the hash function, and verifies the output satisfies the current 

difficulty level requirement.  

 

0 1 1( || ) 0 0 ...0 0 ||
    

 (    )
  (   )
 

d dh X S Y
X puzzle parameter provided by server
Y puzzle solution not sent to server
S puzzle solution sent to server
d puzzle difficulty

−=

−
−
−
−

 

Figure 2-2: A client-generated puzzle 
 
 

In [24], Wang and Reiter present a client puzzle protocol called a puzzle auction that was 

implemented and embedded into the TCP stack in Linux.  The puzzle auction was 

designed to allow clients, with a modified kernel, to bid for a connection.  The puzzle 

difficulty is the bid, and a higher bid implies a more difficult puzzle to be solved by the 

bidder.  In their incremental bidding scheme, the client bids for a connection by solving a 

puzzle at a certain difficulty and can re-bid for a connection by solving another puzzle of 

a higher difficulty level and retransmit the request.  At the end of bidding, the server 

grants connections to those who have the highest bid, or those who have solved the most 

difficult puzzle.  Allowing a client to set the difficulty level may permit an attacker to 

control a zombie to purposely raise the difficulty level and to outbid other clients.  The 

authors claim that most DDoS tools that execute on zombies are designed to operate 

quietly so that users will not notice their existence.  They assume that solving puzzles 

repeatedly and of incremental difficulty will signal a user that their computer has been 

comprised.  This is not always true, especially if the attack is launched during non-active 

times or using zombies where there is little human interaction with the computer. Another 

assumption relevant to this issue is that the user of the zombie computer is a 

knowledgeable computer user and would take the appropriate actions when he/she 

realizes that his/her computer is being used as a zombie.   Again, this is not always true.  

For the reasons stated above, the difficulty level of a puzzle scheme should always be 

controlled by the server, or the end host distributing the puzzles.   
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For backwards compatibility, the puzzle auction scheme has a method for allowing a 

client with an unmodified kernel to complete a connection during an attack.  

Unfortunately, this implementation has potential vulnerabilities. In the implementation, a 

client with an unmodified kernel does not solve a puzzle.  Instead, when the server 

receives a connection request, it is the server who computes the hash of a nonce, the 

source IP address, the source port, the destination IP address, the destination port, the 

initial sequence number, and another random value.  If the output from the hash function 

meets the difficulty level, the connection is completed.  A client can only establish a 

connection by repeatedly making attempts, and hope that the server can grant it.  They 

call this scheme “Bid and Query”.  This scheme clearly violates the first characteristic of 

an ideal client puzzle protocol mentioned above, because the client and server are both 

required to perform a similar amount of work to complete the connection. This 

vulnerability can be taken advantage of by a malicious client.   

 

Waters et al. [27] propose a new method to outsource client puzzles at the transport layer 

and briefly describe how their implementation could be modified for puzzles at the 

network layer.  In their scheme, they claim that most clients do not wish to wait for a 

puzzle to be solved in order to complete a connection request.  Instead, they introduce a 

complex method to solve puzzles before connection requests are actually made, thereby 

eliminating the time spent waiting for a puzzle to be solved.  In their scheme, puzzles are 

solved in a certain time period, and then the puzzle answers are used in the following 

time period.  The problem is that when a client first connects online it has to wait until 

the next time period to begin in order to use the answers it has computed from the last 

time period.  The authors suggest that this time period be on the order of minutes and 

even use a time period of 20 minutes in their experiments.  This means that a client, who 

had recently just connected online, would need to wait for 20 minutes before making a 

connection with a remote server.  In their paper, one of their main contributions is 

decreasing the puzzle verification time.  Since puzzles are solved in a specific time 

period, the puzzle solutions are stored during that time period and the next time period.  
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During the next time period, verification of a puzzle can simply be done with a table 

look-up.  In terms of verification time, this is the fastest method to verify a puzzle.  

However, storage and complexity are sacrificed at the expense of the puzzle verification 

time. 

 

2.3.2. Client Puzzles at the Application Layer 

Client puzzles have also been proposed to combat attacks that may occur at the 

application layer.  In [26], the authors have modified a webserver to support client 

puzzles.  In TLS, a DoS attack can occur when the attacker targets the CPU of the server.  

When a secure connection is established, the server is required to perform CPU intensive 

RSA decryptions. If malicious users repeatedly force the server to perform these 

operations, the server’s CPU will be exhausted and the server will not be able to service 

other clients.  The authors in this paper propose a client puzzle scheme, where the client 

solves a puzzle before the server performs any work.  Thus, the client puzzle protocol is 

able to shift the cost of the connection to the client, rather than the server.  This client 

puzzle protocol is application specific and was designed to fix an exploit that allowed an 

attacker to exhaust the server’s resources.  By utilizing a client puzzle protocol, it was 

more difficult for the attacker to successfully exhaust those resources. 

 

One of the more promising uses of client puzzles at the application layer is deploying 

them to combat junk e-mail or spam.  The authors of [31] were the first to propose a 

scheme where a user solves a difficult problem before an e-mail is sent.  Since spammers, 

on average, send more mail than legitimate mail users, they argue that forcing each e-

mail sender to solve a cryptographic puzzle for each piece of e-mail, it would throttle the 

malicious users.  In their future work, they have also proposed using a memory-bound 

problem rather than a computational-based problem [32].  Memory-bound problems were 

originally presented in [33].  In their paper, their idea was to develop an improved puzzle 

that forces the client to devote its memory resources to solve moderately difficult 

problems.  Despite the concept of memory-bound problems, very few client puzzle 
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protocols have been proposed that use this kind of problem because they are difficult to 

create. 

 

In addition to researching a proof-of-work protocol like client puzzles within the 

transport layer, Back has considered the possibilities of utilizing such a protocol within 

various applications [34].  The author has proposed a scheme called Hashcash, which can 

be deployed within an application to throttle spam, service requests in a cryptographic 

file system, or USENET flooding.  There are many possibilities for using a proof-of-work 

protocol to prevent a malicious user from undermining the service and possibly denying 

it to legitimate users.  

 

2.3.3. Client Puzzles at the Network Layer 

Recently, there have been two papers [28, 29] published that address the need for IP-layer 

client puzzles.  The basic idea for IP client puzzles is to have each client solve a puzzle 

before they can send traffic into the network.  Thus, IP client puzzles are designed to rate-

limit clients that send large amounts of data to help prevent large-scale DDoS flooding 

attacks. 

 

In Congestion Puzzles by Wang and Reiter [29], each client is responsible for solving a 

number of puzzles before their packets can be forwarded from a congested router.  When 

the clients begin to send packets towards a particular IP address it continuously sends 

separate probe packets, along with the data in normal packets it is sending.  When a 

router downstream detects congestion, it relays the probe packets off the destination by 

changing the ICMP code number to resemble a ping when it reaches the victim.  This 

packet will be modified to contain the puzzle information: a nonce and a difficulty level.  

When the client receives the challenge it begins to continuously solve puzzles and embed 

the solutions in separate ICMP packets.  It takes the nonce it received from the router, 

creates its own nonce and uses those two items to create a hash-based puzzle.  Therefore, 

the client does not need to contact the congested router to get a new puzzle.  Solutions are 
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sent in ICMP packets sent to the destination but are intercepted by the router for puzzle 

verification.  After correct verification of the puzzle, tokens are added into a token bucket 

at the congested router.  When a data packet arrives, tokens are removed from the bucket.  

Therefore, this acts as a rate limiter and only allows the client to send more packets if 

they in turn solve more puzzles.  Periodically, the puzzle information (i.e. a nonce and the 

difficulty level) is refreshed by sending back a puzzle solution with the updated 

information.  Thus, in this scheme, twice as many packets are being sent to a congested 

router.  This can create a potential problem, because an IP-layer puzzle protocol should 

limit the amount of traffic sent to the victim.  Recall that one of the goals of a DDoS 

attack is to consume the bandwidth near the victim.  Another concern in this protocol is 

that an attacker can take advantage of the token bucket design by flooding the network 

with packets (without solving puzzles) and hoping that it removes tokens that were 

supplied earlier by legitimate clients.  The authors are aware of this problem and call it 

the “free-riding” problem.  The authors attempt to fix this problem by introducing an IP-

caching algorithm that allocates a separate token bucket for clients that are sending more 

data than others or for those with a common IP prefix.  However, this adds much 

complexity to their scheme and increases the memory storage overhead at the router.   

 

The protocol presented by Feng et al., called Network Puzzles [28], requires the client and 

congested router to constantly exchange puzzle information for each puzzle.  Unlike 

Congestion Puzzles, each client can only solve a puzzle when it has been presented with 

the puzzle information from the congested router.  During a severe attack, each client 

needs to be rate-limited by solving more puzzles. If a client needed to solve a puzzle per 

packet, it would repeatedly need to request the puzzle information from that congested 

router before it can send its packet.  This scheme does not allow a seamless integration of 

the puzzle protocol into IP because it does not allow the client to create its own puzzles. 

 

In all client puzzle protocols it should be clearly stated that puzzles should only used 

during an ongoing attack.  We realize that there are many applications that rely on the 

speed of certain protocols for performance.  However, the performance of these network 

applications suffers immensely in the presence of a DoS attack.  The additional delays 
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associated with solving puzzles might hinder some applications, but it will be an 

improvement over the side effects that are observed during a DoS attack when puzzles 

are not deployed.  The idea of implementing client puzzles into the transport layer and 

network layer is still relatively new in the research community, as there have been very 

few conceptual designs of such a protocol.   

 

  



 

 

CHAPTER 3 
 
 

3. TCP Client Puzzles 
 
 
In recent years, TCP client puzzles have been proposed to mitigate attacks on the 

transport and application layers.  In this chapter, the design, implementation details, and 

simulation results of Puzzle TCP, pTCP, are presented.  However, before an introduction 

to pTCP is given, it is necessary to define the assumptions that are made.  These 

assumptions are shown in Table 3-1.   
 

Table 3-1:  Assumptions in pTCP 

Assumption 1: Attackers are generally more aggressive and send more requests 
than the average legitimate client. 

Assumption 2: The server under attack can process every incoming packet and 
send responses to each client. 

Assumption 3: If a stateful firewall is protecting the victim server, the puzzle 
mechanism can be embedded into the firewall, or rules can be 
added to the firewall (to allow ACK packets without state 
information to pass through) if the puzzle mechanism is chosen to 
be implemented at the server. 

 

3.1. Overview of pTCP 

In order for client puzzles to be truly effective, they must be placed below the application 

layer.  Feng [30] documented the need to place client puzzles in the TCP or IP-layer.  In 

the following section, we show how client puzzles can be integrated within the TCP stack 
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to prevent resource-exhaustion DoS attacks. This section also gives a detailed description 

on how the client and server interact in pTCP. 

 

The current three-way handshake implemented in TCP has lead to security problems, 

mainly because the server can allocate resources before clients are authenticated. To 

prevent a client from depleting a server’s resources, it is necessary to modify TCP. pTCP 

is a modification to TCP that allows the server to issue a challenge to a potential client.  

Based on the number of pending active connections, the server should be able to 

determine if newer clients are required to solve a puzzle before establishing a connection.  

By placing the client puzzle protocol at the transport layer, we force a client to prove its 

legitimacy by solving a puzzle before a connection is granted. 

 

pTCP implements a similar three-way handshake to establish a connection.  When a 

server receives a packet with the SYN code bit set, it normally replies with a packet with 

the SYN and ACK code bits set (SYN-ACK packet).  However, if the server is 

experiencing heavy traffic (e.g., flash crowd or DoS attack), then it replies with a 

challenge to the client which includes a server nonce and difficulty level embedded into 

the SYN-ACK packet. A server can determine when this is necessary by examining the 

SYN queue. When the queue reaches near its maximum capacity, puzzles can be turned 

on.  When it is necessary for a server to issue a challenge to a client, the server removes 

the state information for that client. Thus, for pending connections there are no resources 

allocated on the server other than the server nonce and current difficulty level, which is 

common to all potential clients.  Therefore, the server is not susceptible to half-open 

attacks designed to consume server resources.  The server nonce is the same for all clients 

during a 60 second time period.  If a client solves a puzzle in the previous time epoch and 

submits the answer in the following time epoch, the answer is considered incorrect. The 

client’s connection will be reset and the client will need to make another attempt to 

complete the connection.  Since most puzzles take less than a few seconds to solve, the 

60 second server nonce period should be adequate.   
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Creating puzzles in pTCP is very fast for the server because server only needs to send the 

server nonce and difficulty level embedded in a SYN-ACK packet.  When the server 

issues this challenge to the client, the client parses the SYN-ACK packet for the server 

nonce and difficulty level, solves the puzzle, and replies with a solution in an ACK 

packet. The server then verifies the correct solution and changes the state of the 

connection to “established”. Figure 3-1 illustrates how a client and a server communicate 

in pTCP.  

 
Figure 3-1: Client-Server interaction in pTCP 

 

In pTCP, the server does not issue puzzle challenges during normal traffic conditions 

(which is indicated by the vacancies in the SYN queue). In this case, the server sends an 

acknowledgement (i.e., a normal SYN-ACK packet) to the client instead of a puzzle 

challenge.  The client replies with an acknowledgement (i.e., a normal ACK packet). This 

flexibility of pTCP will allow clients with unmodified versions of TCP (i.e., TCP without 

puzzle challenge capability) to establish connections with servers using pTCP when the 

SYN queue level is sufficiently low. This feature facilitates backward compatibility with 

puzzle incapable clients and also helps to support the gradual deployment of client 

puzzles in the Internet. In practice, the backward compatibility is very important because 

the implementation of client puzzle protocols require changes in the clients’ software. A 

smooth migration from standard TCP to puzzle capable TCP will require the protocol’s 

backward compatibility. 

 

A problem common to both pTCP and syncookies is the inability of the server to 

retransmit the SYN-ACK packet when this packet is lost en route to the client. Since all 
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state information is removed on the server following the transmission of this packet, 

retransmissions are not possible in either scheme.    

 

3.2. The Client Puzzle for pTCP 

In pTCP, we propose an entirely different puzzle algorithm. Our puzzle algorithm is 

based on a lightweight block cipher. The solution to a given puzzle is found by finding 

the appropriate key given the plaintext that produces a particular pattern in the ciphertext; 

the solution is verified by executing the encryption algorithm using the plaintext and key. 

Our simulation results have shown that our technique enables faster verification of puzzle 

solutions compared to conventional hash-based puzzle algorithms. The efficiency of the 

puzzle verification procedure is vital to the overall effectiveness of the client puzzle 

protocol. In a conventional puzzle algorithm, a server executes a hash function to verify 

the client’s answer. When creating a DoS resilient protocol, it is imperative that the 

defense mechanism itself does not become the basis for another DoS attack.  An attacker 

can easily attempt to exhaust the computing power of a server by forcing it to verify a 

large number of incorrectly solved puzzles.  In this scenario, the attacker does not bother 

solving the puzzles; it simply intends to force the server to waste its resources. The 

computation load of verifying a puzzle solution must be multiple orders of magnitude 

smaller than that required to solve the puzzle. The proposed puzzle algorithm is designed 

to minimize the verification time and enables a server to verify a large volume of puzzles 

rapidly while still maintaining its intended DoS resiliency. 

 

The Tiny Encryption algorithm (TEA) is a block-cipher encryption algorithm that was 

proposed in 1994 by Wheeler and Needham [35, 36].  Both the encryption and decryption 

algorithms are Feistel routines that encrypt or decrypt data by several rounds of addition, 

subtraction, bit-shifting, and exclusive-OR operations.  The goal of the encryption 

algorithm is to create as much diffusion2 as possible by incorporating many rounds or 

iterations of these operations.  After TEA was released, certain minor weaknesses were 

discovered in the encryption algorithm [37].  In response, Wheeler and Needham 

                                                 
2 In TEA, complete diffusion means that a single change in the plaintext propagates to 32 changes in the ciphertext. 
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developed an extension to TEA, called XTEA [38].  For our client puzzle algorithm, we 

use a variation of XTEA which uses 6 iterations.  We call this variation XTEA6.  In this 

encryption scheme, the plaintext is 64 bits long, the key is 128 bits long, and the 

ciphertext is 64 bits long.  The encryption routine allows a parameter to be passed that 

indicates the number of iterations to execute.  We have selected six iterations because 

complete diffusion can be observed with that many rounds. Moreover, the level of 

security provided by six rounds is more than sufficient for a puzzle [38]. Note that in a 

puzzle algorithm, speed and efficiency are more important than robust security.  It should 

be easier to solve the puzzle correctly than perform an extensive cryptanalysis of the 

encryption algorithm to retrieve the puzzle solution. 

 

To the best of our knowledge, TEA was first suggested as a puzzle algorithm by Abadi et 

al. [33], although an implementation of a client puzzle protocol using TEA was not 

attempted.  As a client puzzle, XTEA6 has several advantages over most hash-based 

functions.  As our simulation results will later show, XTEA6 is a much faster algorithm 

than most hash-based functions.  This will allow a server to handle connections faster and 

will decrease the amount of waiting time on connections to complete for legitimate 

clients. 

 

The client puzzle that we have developed is a client-generated puzzle, similar to the 

client-generated hash-based puzzle mentioned in Chapter 2.  When the client requests a 

connection, the server responds with a server nonce, NS, and the level of difficulty for the 

current puzzle.  The server nonce is a 64-bit random number, generated with the Linux 

kernel random number generator.  The server nonce is the same for every potential client 

and is changed for all clients every 60 seconds.  The client uses the server nonce as a part 

of the puzzle that it must create.  When the client receives the server nonce, it uses it as 

the plaintext in the XTEA6 encryption algorithm.  The client must then find part of a 

128-bit key value that will produce a particular ciphertext.  More precisely, to solve a 

puzzle, the client needs to solve for the least significant 32 bits of the key. The rest of the 

key is comprised of the server’s initial sequence number (ISN), the server port, the 

client’s local port, and the client’s IP address.  By using the client’s port and the server 
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ISN, we guarantee that each puzzle will remain unique for each client.  This concept was 

originally used in a puzzle by Wang and Reiter in [24].  The difficulty of the puzzle is 

specified by the number of most significant contiguous bits in the ciphertext that must be 

zero. For example, if the difficulty level is k, then the k most significant bits of the 

ciphertext must be all zeros, the (k+1)-th most significant bit must be a one, and the rest 

of the bits can either be a one or a zero. Therefore, to solve a puzzle, the client needs to 

find a 32-bit portion of the key that will encrypt the given plaintext into a ciphertext that 

satisfies the requirement specified by the difficulty level.  To save communication 

overhead, the client only sends back the 32-bit solution portion of the key to the server. 

Because the plaintext (i.e., server nonce), the difficulty level, and the remaining portion 

of the key are known to the server, the server only needs to receive the 32-bit value to 

verify the correctness of the puzzle solution.  A graphical representation of the puzzle 

algorithm is shown in Figure 3-2.  To compare our puzzle scheme with others that have 

been suggested, in addition to the XTEA6-based pTCP, we also implemented a version of 

pTCP that uses the MD5 hash function [36]. In the MD5-based puzzle, the parameters 

and the size of the parameters are the same as the XTEA6 puzzle. A graphical 

representation of this MD5 puzzle scheme can be seen in Figure 3-3. 
 

3.3. Implementation of pTCP 

The following sections discuss the implementation details of pTCP.  The details and 

algorithms of the design are presented along with other important details including a 

description of the code changes within the Linux kernel and some of the specific 

modifications to the existing TCP stack. 

 

3.3.1. Overview of the Implementation 

pTCP was implemented into the TCP stack in Linux [39].  In pTCP, all of the puzzle 

information (puzzle request, puzzle challenge, and puzzle solution) is passed using the 

TCP header.  Since data is not normally passed in the three-way handshake in TCP, any 

additional data needs to be placed within the TCP header.  The options field in the TCP 

header was utilized to pass the puzzle requests, puzzle challenges, and puzzle answers.  
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Since the options field is of variable length, many different options can be placed within 

this field at the same time as long as the header does not exceed its maximum length.  

The options field in the TCP header is organized into these sections:  the option code 

number, the option size, and the contents of the option.  Normally, many options in the 

header are passed between client and server during the three-way handshake, so the TCP 

stack was manipulated to handle and recognize more options. 

 

 
Figure 3-2: XTEA6 client puzzle 

 
 

The three types of options were given code numbers to avoid conflicting with other 

known TCP options.  The puzzle request, puzzle challenge, and puzzle answer were 

given codes 99, 100, and 101, respectively.  In pTCP, every client sends a puzzle request 

embedded into the initial SYN packet.  If a server supports pTCP, this request will act as 

a signal that this client is capable of solving puzzles.  The contents of the initial SYN 

packet can be seen in Figure 3-4.  When this packet is sent to the server, the server parses 

the options in the header and is ready to reply with a SYN-ACK packet.  If the server 

determines that it is currently under a heavy amount of traffic, by examining the length of 

the SYN queue, it replies with a SYN-ACK challenge packet. 
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Figure 3-3: MD5 client puzzle 

 
 

In a SYN-ACK challenge packet, the current puzzle difficulty level and the current server 

nonce are both embedded into the options field in the header.  The contents of a SYN-

ACK challenge packet can be seen in Figure 3-5.  Following the transmission of a SYN-

ACK challenge packet, the server removes the client information from memory, in the 

exact same way that syncookies removes client information from memory.  Therefore, 

pTCP is resilient to synflood DoS attacks because no state information is stored by the 

server for pending connections. 

   

The client, after having received the challenge packet, parses the options field in the 

header for the puzzle information.  The client takes the 64-bit server nonce it has just 

received, and uses that value as the plaintext for the XTEA6 encryption algorithm.  The 

client then examines the TCP and IP headers for the server ISN, the server port and the 

local port, and the local IP address.  It uses these values as part of the key used for the 

XTEA6 algorithm.  Inside the kernel, the client then solves the puzzle and finds an 

appropriate 32-bit solution.  The pseudocode for the puzzle solving function is shown in 

Figure 3-6. 

 

  



Timothy J. McNevin  Chapter 3:  TCP Client Puzzles 36  

When the client has successfully solved the puzzle, it creates an ACK packet, as it 

normally does in the 3rd step of the handshake, but when it has been challenged it embeds 

the puzzle solution into the options field, as seen in Figure 3-7.  When the server receives 

this packet, it is an ACK packet from an unknown client. The server calls a function to 

verify the puzzle solution.  This function involves calling the XTEA6 encryption function 

only once.  If the puzzle solution is correct, the state of the connection is changed to 

established, thus bypassing the half-open connection state.  If the solution is incorrect, the 

server does not establish the connection with the client. 

 

 
Figure 3-4: Puzzle request packet 

 

 

Since the server accepts anonymous ACK packets with puzzle solutions, this can result in 

another type of an attack.  An attacker could be sniffing packets and discover a solution 

to the puzzle that another computer has already solved.  The attacker could then send this 

puzzle solution as its own. To counteract this, our puzzle uses various parameters from 

the TCP and IP header.  By embedding these values into the puzzle, an attacker cannot 

use previous solutions. A more likely attack is when an attacker could flood the server 

with false puzzle solutions.  This could potentially be another form of a DoS attack that 
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attempts to exhaust the server’s CPU.  It is important to always assume that attackers will 

modify their attack to exploit weaknesses in a modified version of TCP.  In this case, an 

attacker would create an ACKflood tool rather than the traditional synflood tool.  Since 

the client puzzle algorithm is extremely fast, pTCP would be able to discard these false 

answers quickly and efficiently. 

 
Figure 3-5: Puzzle challenge packet 

 
 

 Plaintext = NS 

Key[0] = Server ISN  
Key[1] = Server Port || Local Port 
Key[2] = Local IP address 

While(Answer is not  found) 
 Key[3] = get_random_bytes( ) 
 Ciphertext = XTEA6(Plaintext,Key) 

If Ciphertext meets difficulty constraint 
   Return 
  Else 
   Continue loop 

 
Figure 3-6: Pseudocode for puzzle solving algorithm 
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Figure 3-7: Puzzle solution packet 

 

3.3.2. pTCP Implementation Details 

pTCP was developed into the 2.4.22-10mdk (Mandrake) version of the Linux kernel [40].  

The code that was modified was located in the IPv4 section of the current TCP 

implementation in Linux.  The first step in modifying the kernel for pTCP, besides 

researching how everything worked together, was to embed specific additional state 

information for puzzles into the tcp_opt data structure, a structure that belongs to the 

larger sock data structure.  The tcp_opt data structure stores most of the state information 

about a TCP connection as well as the information about the client at the other end.  This 

location would be suitable because the puzzle information about each client should reside 

with the rest of connection information.  The variables that were added to the tcp_opt 

structure were the following flags:  PuzzleCapable, PuzzleSolved, and Challenged.  In 

addition, the 64-bit server nonce, 32-bit puzzle solution, and the difficulty level were also 

stored in this structure. 
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When a client wishes to create a connection, the tcp_connect function is called that 

prepares and establishes the client’s information (sequence number, options, etc.) for the 

initial SYN packet.  When the information is established, the function eventually calls the 

transmit_skb function which builds the header and sends the packet to the lower layers of 

the network stack.  A common structure in the TCP stack is the socket buffer structure, 

which is commonly named skb when it is a local variable.  In this function when a SYN 

packet is being created the flag PuzzleCapable is set to one (PuzzleSolved and 

Challenged both remain equal to zero at this stage).  This function calls 

tcp_syn_build_options so that it can further create the TCP header and embed the puzzle 

request.  The tcp_syn_build_options function is used only in the initial three-way 

handshake to embed the additional options that are exchanged in the connection setup 

(Maximum Segment Size, Selective Acknowledge, etc.).  This function was modified to 

build the extra options required for puzzles as well as the normal options that are usually 

exchanged.  Therefore, no functionality was removed in pTCP.  After the client sends the 

SYN packet to the lower layers of the network stack, it will eventually reach the correct 

destination.  Until then, the client waits in the SYN_SENT state. 

 

When the server receives the SYN packet from the client, the function 

tcp_v4_conn_request is called to process the request.  This function calls 

tcp_parse_options which is responsible for parsing the TCP header options.  While 

parsing the TCP options of the current header, the server can discover if the client is 

capable of solving puzzles by observing the Puzzle Request option sent by the client.  

The flag PuzzleCapable inside the tcp_opt structure on the server side is set to one.  

Before sending a SYN-ACK packet, the server examines the size of SYN queue.  If the 

queue is almost full, which implies that there are a lot of connection attempts being made, 

the server will need to send a Puzzle Challenge.  For the Puzzle Challenge, a SYN-ACK 

packet is created with the server nonce and difficulty level embedded into the header.  

Regardless of whether the client is capable of solving puzzles, a Puzzle Challenge is sent.  

We left this option open for future work; because it may be possible for a client to use a 

low-level software application that could interpret the puzzle information and respond 

with a solution.  Nonetheless, the connection will never be established unless the client 
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provides solution.  Following the transmission of the Puzzle Challenge, the state 

information is removed from the server, which makes it resilient to synflood attacks.  If 

the server chooses not to send a Puzzle Challenge, a SYN-ACK packet is constructed 

without the puzzle information and following the transmission of that packet, the state 

information remains on the server. 

 

When the client receives the SYN-ACK packet with a Puzzle Challenge, the 

tcp_rcv_synsent_state_process function is called and the options are parsed again so the 

difficulty level and server nonce can be retrieved.  Once those values are read, they are 

stored in the tcp_opt data structure on the client side.  The Challenged flag inside the 

tcp_opt structure is set to a one.  Meanwhile, the PuzzleSolved flag remains zero.  With 

the puzzle information it has retrieved from the SYN-ACK packet, the client performs a 

brute-force solving strategy to solve the given puzzle.  When the puzzle is solved, the 

PuzzleSolved flag is set to one; the client creates an ACK packet (through the 

transmit_skb function), embeds the solution in the TCP header, and sends this packet to 

the server.  From the client’s perspective, the state of the connection is changed to 

“established”. 

 

When the server receives this packet it currently has no state information stored about 

that client or the connection, so it is normally dropped.  However, a check was placed 

before the packet was discarded to call tcp_parse_options to examine the options field to 

check if it contained a puzzle solution.  If the ACK packet contains a puzzle solution, the 

solution is verified by the server by using the current server nonce and difficult.  If 

correct, the state information is re-initialized, the sequence numbers are initialized and set 

on both ends correctly, and the state of the connection is changed to “established”. When 

the connection is established, the client and server can communicate normally.  If the 

solution is not correct, it is ignored and the connection is not established and the current 

state information is deleted for that particular client.  A modified version of the state-

diagram for TCP can be seen in Figure 3-8 [8, 39]. 
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3.4. Experiments with pTCP 

To ensure that pTCP was operating correctly and performed well during an attack, we 

used the implementation and created a network testbed of several computers with the 

modified kernel to test how well pTCP operated during these attacks.  In this section, we 

discuss some of the experiments that were performed with pTCP and present some of the 

results that were collected. 

 

3.4.1. The Puzzle Algorithm 

An important aspect to pTCP is the selection of the cryptographic algorithm used for the 

client puzzle.  In addition to puzzles using XTEA6 and MD5 [36, 41], we also tested 

SHA-1 [36, 42]. According to our simulation results, the puzzle algorithm based on 

XTEA6 had the fastest solution verification time among the three that were examined.   

MD5 was also faster than SHA-1, so only XTEA6 and MD5 were implemented into the 

kernel.  

 

To directly show how XTEA6 can improve the server’s solution verification 

performance, we measured the amount of time spent verifying puzzle solutions within the 

Linux kernel. Our comparison of XTEA6 pTCP and MD5 pTCP is shown in Figure 3-9. 

These results show the major advantages of using XTEA6 instead of MD5. The MD5 

puzzle scheme can verify 1000 puzzles in around 31,000 microseconds.  Meanwhile, an 

XTEA6 puzzle scheme can verify 1000 puzzles in less than 4,000 microseconds.  Since 

pTCP uses XTEA6 it is far more efficient because it can verify a large number of puzzles 

much faster than any other puzzle scheme. When traffic is heavy, pTCP can improve load 

conditions on the server which can in return reduce the connection times for clients. From 

the results in Figure 3-9, XTEA6 is the best choice for a client puzzle because it will 

increase performance on the server since the puzzle verification time is considerably 

lower than an MD5-based puzzle scheme.  It should be noted that the solve time for the 

XTEA6-based puzzle could be faster than that of puzzles based on MD5 or SHA-1 

(assuming the difficulty level are the same for all three algorithms). This also implies that 
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an attacker may solve the XTEA6-based puzzle faster. This fact should be considered by 

a server when setting the difficulty level of the puzzles.  

 

 
Figure 3-8: pTCP state transition diagram 
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Figure 3-9: Puzzle verification times for pTCP 

 

3.4.2. Modulation of the Puzzle Difficulty Level 

In this simulation experiment, we created an environment that consisted of a server, a 

legitimate client, and an attacker.  This environment will help determine the performance 

of pTCP and how it handles various attack scenarios.  For our first simulation, the 

attacker executed 16 instances of a synflood attack program called synk4 [10].   In the 

standard TCP protocol, it created a sufficient amount of SYN packets to carry out a 

successful DoS attack.  During this attack, a legitimate client could rarely complete a 

connection, if at all.  With pTCP, a large number of half-open connections will signal the 

server to begin distributing puzzles.   

 

In pTCP, an important quantity to measure is the amount of time needed to establish a 

connection versus the puzzle difficulty level.  It is important to verify that increasing the 

difficulty level increases the puzzle solve time, which in turn increases the connection 
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time.  For each connection attempt, the client is solving a puzzle and completing with the 

three-way handshake.  In Figure 3-10, we show the average connection time versus the 

puzzle difficulty when the puzzle mechanism was enabled.  

 

In this figure, one can observe that the client’s connection time increases exponentially as 

the puzzle difficulty level is increased linearly. These results verify the fact that raising 

the difficulty level makes the puzzles more difficult, thus throttling the client’s 

connection attempts.  In addition, one can observe that as the difficulty level increases 

there is very little difference between XTEA6 and MD5 because the transmission time of 

the packet (propagation delay) dominates the differences between the two algorithms. 
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Figure 3-10:  pTCP connection time versus puzzle difficulty 

 

3.4.3. Performance of pTCP during a synflood Attack 

In order to test the effectiveness of pTCP during a synflood attack, we compared the 

protocol against two versions of the TCP protocol—one with syncookies turned on and 
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the other with syncookies turned off.  We also tested both versions of pTCP (puzzles 

based on MD5 and XTEA6). 

 

The same simulation environment from the previous experiment was used again to test 

the performance of pTCP during a synflood attack.  The attacker again executed 16 

instances of the same synflood attack program.  The tcp_syn_max_backlog3 parameter on 

the server was set to the default size of 1024.  The legitimate client made a large number 

of connections and we measured the amount of time it took to complete the connection.  

Our simulation results from this experiment are shown in Figure 3-11. In standard TCP 

with syncookies turned off, a legitimate client could not establish a connection with the 

server at all; every connection attempt had timed out after 5 retries, which from our 

observation is roughly 188 seconds.  However, as expected, with standard TCP with 

syncookies turned on, every connection was completed.  Recall that the syncookies 

scheme was designed to solely defend against synflood attacks.  In our next experiment, 

under the same attack conditions, the server and the legitimate client both used pTCP, 

with the difficulty level set to zero.  Due to the puzzle solve time, the puzzle verification 

time, and the increase in packet size, the connection times for pTCP were slightly greater 

than the connection times for syncookies.  However, we noticed that XTEA6 pTCP was 

very comparable to syncookies because roughly 90% of the connections were completed 

by the same amount of time. The time difference between XTEA6 pTCP and syncookies 

for a connection request to complete is less than 30 microseconds.  This small difference 

is due to the extra data being sent in each packet. The results show that pTCP can be 

effective in defending against synflood attacks and could be considered as an alternative 

to syncookies.  The fact that pTCP can process TCP options (such as the maximum 

segment size) better than syncookies is another important advantage to pTCP.  These 

TCP options are important for increasing performance for certain clients and servers 

where there is a larger amount of bandwidth.  The inability to take full advantage of these 

options can have an impact on the performance of the connection throughout the client’s 

entire session with the server.  Having a mechanism that can prevent these attacks and 

still be able to recover the actions from the three-way handshake is the best choice for 

                                                 
3 The tcp_syn_max_backlog parameter specifies the maximum number of half-open connections the server can store. 
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designing a modification to this protocol.  Syncookies could be fixed to resend the 

options that were lost in the three-way handshake, but it was not done, since it would 

require a change to the client.  We feel that if the operating system of the client is to be 

modified, it would be more appropriate to use pTCP because it can protect the server 

from more attacks.  

 

3.4.4. Performance of pTCP in CPU-Exhaustion Attacks 

A synflood attack is only one example of a resource-exhaustion attack.  Another example 

of an attack is a CPU-exhaustion attack, which is a form of a connection-depletion attack.  

In this attack, the attackers attempt to exhaust the victim’s CPU so that it can no longer 

communicate with other clients.  
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Figure 3-11: Percentage of connections completed versus connection times for pTCP, syncookies, and 

TCP 
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For our next experiment, we used a similar network testbed with 3 computers: a 

legitimate client, a victim, and an attacker. In this attack, the attacker attempts to exhaust 

the computing resources of the victim. This is done by making the victim perform 

expensive and meaningless operations that take up CPU cycles after a connection is 

established—thus the name CPU-exhaustion attack. In this attack, the attacker actually 

completes the three-way handshake.  

 

While a CPU-exhaustion attack was under way, we measured the average time required 

to complete a three-way handshake between the client machine and the victim machine. 

One machine representing the legitimate client generated all the connection requests. 

With TCP with and without syncookies, some of the connection attempts timed-out while 

others simply took too long to complete (greater than 40 seconds).  Due to an increase in 

connection attempts, it appears from the experiment that the half-open connection queue 

had reached its limit at certain times, which explains why syncookies outperformed 

standard TCP. As expected, pTCP outperformed syncookies because the puzzles 

effectively rate limited the connection attempts of the attacker machine. Because the 

attacker was forced to solve a puzzle for every connection attempt, the computation load 

of computing the solutions naturally slowed its connection request rate. This in turn 

mitigated the effect of the attack and allowed the victim to service requests coming from 

the legitimate client. Note that TCP with syncookies prevents the attacker from filling the 

half-open connection queue, but cannot rate limit the attacker’s connection requests. The 

results are shown in Figure 3-12. 

 

When comparing XTEA6 pTCP with MD5 pTCP, there was very little difference 

between the two.  Unlike the synflood attack from the previous experiment, there was a 

moderately difficult puzzle for the client to solve.  In the previous experiment, the 

difficulty level was zero, so it only required each client one trial to find a correct solution.  

As the difficulty level increases it appeared that the differences between the two 

protocols were very small, which is evident from the results in Figure 3-10. 
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In either version of pTCP, when the puzzle mechanism was enabled, the attacker that 

made a large number of connections was overwhelmed with the computational burden of 

solving a large number of puzzles.  Thus, in this attack the utilization of the CPU was 

decreased because the cost of the connection was shifted from the server to the attacker.  

Therefore, pTCP allowed the server to remain available to other clients in spite of the 

attack.   
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Figure 3-12: Percentage of connections completed versus connection times during a CPU Exhaustion 

attack 
 

3.5. Deployment Scheme for pTCP 

Deploying pTCP into the current Internet requires modification to both clients and 

servers.  Unfortunately for all proposed implementations of TCP client puzzles, there 

does not exist any other way around modifying them that does not violate some of the 

key components to a client puzzle protocol discussed in Chapter 2.  However, pTCP was 

designed with backwards compatibility in mind.  When a server that is equipped with 
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pTCP and is not under an attack, a client that is not equipped with pTCP can still 

communicate with that server.  Only during an attack and when a client does not have 

pTCP, that client will not be able to communicate with a server with pTCP.   

 

3.6. Shortcomings of pTCP 

pTCP was designed to handle specific resource-exhaustion attacks on the transport and 

application layers.  Although it was not explicitly designed for the application layer, it 

does add a layer of protection for the application because the application layer relies on 

the transport layer.  If weaknesses still exist, designing a client puzzle protocol at the 

application may solve some of the problems that can not be directly solved by pTCP.  In 

these attacks there would not need to be a large number of connections or connection 

attempts, and the vulnerability is introduced by the application. 

 

As the magnitude of the attack increases, the processing resources of the server or the 

bandwidth of the local network may become the target.  In pTCP, we assumed that the 

server can process the incoming packets because we must assume that the server is able 

to send the Puzzle challenge and that each client can receive it.  In a large attack, like a 

DDoS flooding attack, the server may not be able to process all of the incoming packets. 

In addition, the flooding of packets may result in a bandwidth consumption attack where 

the packets may never reach the server.  While pTCP can defend against specific attacks 

at the transport layer, it does not provide a solid defense against large-scale flooding 

attacks.  Since this attack is one of the most common attacks, we present another client 

puzzle protocol that is better suited to combat these attacks in the next chapter. 

  



 

 

CHAPTER 4 

 
 

4. IP Client Puzzles 
 

 

Recently, deploying client puzzles at the IP layer, or IP client puzzles, has been proposed 

to mitigate flooding attacks on the network layer.  IP client puzzles essentially act as a 

rate-limiter to malicious attackers that are flooding packets towards the victim.  The 

common goal among all IP client puzzle protocols is to throttle the attackers so they do 

not overwhelm the victim.  This chapter introduces the unique and novel design and 

simulation results of a network layer client puzzle protocol called Chained Puzzles.  

However, before introducing the specifics to Chained Puzzles, we first outline the 

assumptions in Table 4-1. 

 
Table 4-1: Assumptions in Chained Puzzles 

Assumption 1: Attackers are generally more aggressive and send more packets 
than any legitimate client. 

Assumption 2: During an attack, there are fewer attackers than legitimate clients. 

 

4.1. Technical Challenges in an IP Puzzle Scheme 
 
In any kind of puzzle there are always two sides: the puzzle solver and the puzzle 

generator/verifier.  In a connection-oriented protocol like TCP there are two ends to every 

connection: the client and the server.  Thus, embedding client puzzles into TCP is 

relatively straightforward.  However, in a connection-less protocol such as IP, the 
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realization of the two end points no longer exists.  Thus, the framework for an IP puzzle 

protocol will need to be drastically different from a TCP client puzzle protocol. 

 

An ideal approach is to allow each client to create their own puzzles (with some initial 

input from the puzzle generator) so that each consecutive puzzle is both unpredictable 

and difficult to solve by the client.  Performing a three-way handshake for every puzzle 

will add a significant amount of communication overhead and could possibly lead to 

another DDoS attack itself.  Therefore, the exchange of puzzle information should be 

kept to a minimum.     

 

In an IP-layer client puzzle protocol, intermediate router(s) will be responsible for 

performing the puzzle generation and verification.  Minimizing the computational and 

storage load on the router is of utmost concern.  If this is not taken into consideration, an 

attacker could easily exhaust the storage capacity or the processing resources of the 

router.  Therefore, the state information required by puzzles must be kept to a minimum 

and the puzzle verification should be done as close to line speed as possible so the router 

is not overwhelmed with this additional overhead and can still service other clients. 

 

As discussed in Chapter 2, in the two papers that have proposed IP-layer puzzles, there 

have been two distinct approaches.  Wang and Reiter [29] use two channels, where 

application data and puzzle data are placed in two separate packets. Feng et al. [28] 

employ one channel, where the data and puzzle information are kept together in one 

packet.  In Chained Puzzles, we use one channel to avoid the free-riding problem 

discussed by Wang and Reiter in [29], but we introduce a unique method for puzzle 

creation by solution chaining that transforms a connection-oriented protocol into a 

connection-less for an ideal integration in the IP-layer. 

 

4.2. The Client Puzzle for Chained Puzzles 

The client puzzle used for Chained Puzzles is very similar to the client puzzle that was 

used in pTCP.  It employs the modified block cipher encryption algorithm XTEA6, 
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which uses a 64-bit plaintext, a 128-bit key, and a 64-bit ciphertext.  Since the traffic at 

the network layer could be TCP, UDP, or ICMP, the puzzle was redesigned to handle all 

types of traffic.  In this puzzle, a 64-bit nonce called NR is given to the client by a router 

is initially is used as the plaintext.  In the next puzzle, the plaintext will be that client’s 

previous puzzle solution.  The key is comprised of a 32-bit hash of the client IP address, a 

32-bit hash of the server IP address, and the 64-bit puzzle solution.  By using a hash of 

the client and server IP addresses, we can support both IPv4 and IPv6.  Similar to the 

puzzle from pTCP, the difficulty of the puzzle is controlled by the number of most 

significant bits that are equal to zero.  Figure 4-1 shows a graphical representation of the 

client puzzle. 

 
Figure 4-1: Client puzzle for Chained Puzzles 

 

4.3. Chained Puzzles 

4.3.1. Overview of Chained Puzzles 

As stated earlier, DoS/DDoS mitigation is best performed as close to the source of the 

attack as possible to prevent a large amount of packets from converging onto the victim 

[6].  Therefore, puzzles should be generated and verified at the edge routers or border 

routers of an Internet Service Provider (ISP), rather than in the core of the Internet or at 

the routers closest to the victim.  These routers are located closest to the source of the 

attack and are the optimal locations to perform the attack mitigation.  In our scheme, we 
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are required to modify routers at each end of the network:  the border routers near the 

source of the attack and the border routers near the victim of the attack. Thus, border 

routers will act as “puzzle servers”.  Throughout the remainder of this thesis, these 

routers are referred to as puzzle routers.  Puzzle routers near the victim of the attack are 

simply designed to detect an ongoing attack, but can be used to generate and verify 

puzzles if the source of a different attack is within its own network.  We assume that 

there exists a basic detection mechanism already in place that can determine if a flooding 

attack is underway.  A puzzle router also exists near the source of the attack; this router is 

responsible for generating and verifying puzzles.   Thus, there is a pair of puzzle routers 

at each end of the path that connects a client and a server.  In order to handle puzzle 

generation and verification, the puzzle routers near the source is required to store state 

information.  The puzzle router maintains a Plaintext Table for each client’s flow, where 

each entry contains a 20-bit hash of the concatenated string of the client and server IP 

addresses, and either the initial router nonce, NR, or the client’s previous puzzle solution 

(both 64 bits).  The clients all use NR for the first puzzle, so initially the Plaintext Table is 

empty.  After correct verification of the first puzzle for each client, an entry is created in 

the Plaintext Table.  Thus, before the puzzle router stores state information for that client, 

the client must first solve one puzzle.  This will help avoid attacks that target the storage 

capacity of the router. 

 

Although there are a limited number of clients per puzzle router, to determine feasibility 

we must consider the amount of storage required in each puzzle router.  For example, if 

each puzzle router serviced 10,000 clients with one flow each, then the size of the table 

would be 105 KB, which is small enough to be readily stored in the memory of any 

typical router.  Existing IP-layer puzzle protocols require a puzzle-capable router to store 

a greater amount of state information.  In [29], the authors use a bloom filter stored 

within the router to check for duplicate puzzle solutions from a large number of clients 

and estimate that the size of the filter would be 1.1 MB.   

 

To introduce the specifics of our protocol, we have summarized the steps taken by the 

client and puzzle router in the event of an attack in Table 4-2.   
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Table 4-2:  Overview of Chained Puzzles 

Puzzle Router: 
1. A puzzle router downstream near the victim detects the attack and sends an ICMP 

Congestion Notification upstream to other puzzle routers that may be forwarding 
packets from the attackers, which enables Chained Puzzles. 

2. When puzzles are enabled, the puzzle router near the source sends an ICMP Puzzle 
Challenge Packet embedded with the initial router nonce, NR, and the current 
difficulty level, d to every client serviced by that puzzle router.  NR is initially the 
same for every client and is refreshed for each client periodically through another 
ICMP Puzzle Challenge Packet. 

3. Immediately after puzzles are enabled, the puzzle router will wait for the Puzzle 
Transition Period (PTP) before any new puzzles are verified unless a client sends a 
solution before that time expires (by IP Option 102).  When that time expires, the 
puzzle router will begin to verify puzzles based on a certain probability.  If the puzzle 
is correct or if it is not verified, the current solution is updated in Plaintext Table.  If 
the puzzle is verified and the solution is incorrect, the packet is dropped. 

4. The puzzle router may occasionally receive another ICMP Congestion Notification 
from downstream puzzle routers, which signifies to increase or decrease the difficulty 
level. 

5. When NR or d needs to be refreshed, the puzzle router sends all clients a new ICMP 
Puzzle Challenge Packet.  After sending this packet, the router waits again for the 
Puzzle Transition Period before it verifies another puzzle.  Before that time period has 
expired, it looks for the IP Option 102, which signifies the start of a new chain for that 
client. 

6. The puzzle router may also receive an ICMP Congestion Notification to disable 
puzzles.  The puzzle router then sends a different ICMP message back to each client to 
inform them to disable the puzzle mechanism. 

Client: 
1. If the client receives an ICMP Puzzle Challenge Packet from the puzzle router with 

the puzzle information for the first time, it solves the puzzle using the initial router 
nonce, NR, and sends its next packet with the puzzle solution embedded into the IP 
options field of the header.     

2. For every new packet, the client uses the previous puzzle solution as the plaintext for 
the next XTEA6 puzzle.  The client solves this puzzle and embeds the solution into the 
IPv6 header of the packet, with the IP Option 102.  Doing so, the client will be able to 
create a chain of puzzles.  Every subsequent puzzle will be assigned the IP Option 
101. 

3. Periodically, a client may receive another ICMP Puzzle Challenge Packet from the 
puzzle router with either a new NR or a different difficulty level.  The client uses this 
new information to solve a new chain a puzzles.  If this is the case, a new chain is 
being created and the client must mark this in the next packet by using the IP Option 
102 to signify to the puzzle router that it is starting a new chain. 

4. A client may also receive an ICMP message to stop solving puzzles.  Following this 
message, the next packet is sent without a solution. 
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4.3.2. The Details of Chained Puzzles 

In Chained Puzzles, when a puzzle router downstream detects congestion or heavy packet 

loss it will send an ICMP Congestion Notification message (of type 98) to each of the 

individual clients that it may suspect is involved in the attack.  This packet will traverse 

its way to the client and will be intercepted by the puzzle router upstream.  The puzzle 

router will see this notification and then begin forcing all clients to solve puzzles for 

every packet that it passes through the outbound links of the router.  A similar ICMP 

message (of type 99) can be sent from downstream routers that signals that there is no 

more congestion and that puzzles no longer need to be solved.  This detection method 

assumes that the IP addresses of the clients have not been spoofed.  Since puzzle routers 

are located upstream they can easily perform the egress filtering operations required to 

combat IP spoofing within an ISP.  Thus, a puzzle router will drop packets that do not 

have a correct IP address within the address range of its local network.  Of course, an 

attacker may still spoof its IP address by using a valid one from within the local network.  

Concerns relating to this issue will be discussed later in Section 4.5. 

 

When a puzzle upstream receives the ICMP Congestion Notification, it sends an ICMP 

Puzzle Challenge Packet to each of the clients in that network.  This message contains the 

64-bit initial router nonce, NR, and the puzzle difficulty level, d.  NR is the same for each 

client.  Each client takes this value, creates its own puzzle, as defined in Figure 4-1, and 

solves for the puzzle solution.  For the first puzzle that is solved, the client inserts the 

solution in the IPv6 Hop-by-Hop Options field and gives that option the code 102.  This 

code signifies that the client is starting a new chain of puzzles.  For every following 

packet, the client uses the IP Option code 101.  This option means that there is a puzzle 

solution attached, but that it belongs from the chain from the previous packet.  This 

sequence of events is shown in Figure 4-2. 

 

When the puzzle router enables puzzles, it waits for a certain amount of time before it 

begins to verify puzzles, called the Puzzle Transitional Period (PTP).  This is because 

  



Timothy J. McNevin  Chapter 4:  IP Client Puzzles 56  

packets may be in transit as puzzles are enabled.  Those packets will not contain a 

solution and they should not be dropped because they were sent before the client was 

aware of the puzzle.  The PTP is required to allow a client to receive the ICMP Puzzle 

Message, process it, solve the puzzle, and embed the solution in the next outgoing packet.  

When the router is waiting for this time period to expire, it is in PTP Mode. 

 

 
Figure 4-2: Initial client-router interaction 

 

After enabling puzzles, the puzzle router will wait to verify puzzles until the PTP expires 

or until it receives the first solution from that client.  During this time period, the client 

creates a new chain of puzzles and embeds the first solution in the IP Options field with 

the code number 102.  The puzzle router detects this as the start of the new Plaintext 

Chain and verifies the solution.  When the PTP expires, all puzzles are subject to 

verification. 

 

Periodically, the puzzle router may wish to resynchronize the client with a new NR, or 

increase or decrease the difficulty level of the puzzle.  Whatever the case may be, this 

essentially resets the current chain of puzzles and forces the client to create a new one.  

The puzzle router will need to send another ICMP Puzzle Message to each client with the 

updated puzzle parameters.  When this occurs, the puzzle router does not verify any 

puzzle until the PTP expires, or until it receives a puzzle solution (IP Option 102) from a 

particular client.  This allows for a smooth transition to a new chain of puzzles. 
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The value for PTP needs to be carefully controlled to avoid giving an attacker a window 

of opportunity to flood packets.  Thus, we can approximate the value for this time as 

shown in (4.1). 

 C PRPTP RTT α−= +  (4.1) 

 
In this equation, the value of RTTC-PR is the round-trip time between the client and the 

puzzle router.  This value can be approximated by each puzzle router.  The value of α is 

added to account for any small processing delays observed by either end.  This value will 

likely be determined through experiments with an actual implementation of Chained 

Puzzles. 

 

The client is equipped with a Puzzle Manager software application that is responsible for 

interpreting the ICMP puzzle messages, solving a chain of puzzles, and then stamping 

each outgoing packet with the correct puzzle solution.  Software such as this can be built 

into the operating system or possibly run as a standalone program that executes at a very 

low level.  Wang and Reiter mention a similar application in [27].  They indicate that 

clients would be motivated to install this software if it acted as an incentive that clients 

could receive better performance during an attack. 

 

In addition to the client-side software that needs to be modified, the firmware of the 

routers needs to be upgraded as well.  The design of the puzzle router is slightly more 

complex, with the Plaintext Table, the PTP, and the handling of ICMP puzzle messages.  

A simple block diagram is shown in Figure 4-3 that depicts the actions taken by a puzzle 

router when a packet arrives.   

 

When a new packet arrives at the puzzle router, it first determines if puzzles have been 

enabled by the downstream puzzle routers.  If puzzles are disabled, the packet is placed in 

the output queue.  If the puzzles are enabled, the router checks to see if it is in PTP Mode. 

When the puzzle router is in PTP Mode, it looks for an IP Option 102 to signal the start 

of a new chain.  If the puzzle router discovers a packet with IP Option 102, it verifies the 
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puzzle with the most recent versions of NR and d.  If the packet does not contain a puzzle 

solution, it is forwarded by the puzzle router.   

 

After the PTP has expired, the puzzle router will then need to verify every puzzle.  First, 

it checks for a puzzle solution.  If there is no solution, it drops the packet and sends an 

ICMP Puzzle Challenge packet with the current values of NR and d.  If the client supplied 

a solution in the packet, the puzzle router then checks to see if the chain needs to be reset 

by sending each client a new NR or d.  If the puzzle router determines that the chain needs 

to be reset, it sends the new puzzle information and enters the PTP Mode. 

 

 

Figure 4-3: The forwarding process for incoming packets at a Puzzle Router 
 

If the puzzle router does not reset the chain, it verifies the puzzle before forwarding the 

packet.  If there is no entry in the Plaintext Table, NR is selected as the plaintext in the 

XTEA6 puzzle.  If that puzzle is correct, an entry is created in the Plaintext Table and the 

solution is placed in the table.  This will help limit an attacker from filling up the 

Plaintext Table with false entries.  Otherwise, if there is an entry in the Plaintext Table 

for that client, this value is used as the plaintext in the XTEA6 puzzle.  If that puzzle 

solution is correct, the Plaintext chain is updated by placing the correct solution in the 
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Plaintext Table.  Next, the packet is placed in the output queue to be forwarded by the 

router.  If the puzzle solution is incorrect, an entry in the Plaintext Table is not created 

nor is the entry updated if one exists.  Any packet with an incorrect solution will be 

dropped.   

 

4.4. The Effectiveness of Chained Puzzles 

A client puzzle at the IP layer is purposely designed to throttle any potential attackers 

when an attack is underway.  In order to determine how effective Chained Puzzles would 

be we need to first examine the behavior of a typical attacker.  The attacker, or the 

zombie, will on average make a larger number of requests than any single legitimate 

client.  In a client puzzle protocol, the attacker has two realistic choices: to solve the 

puzzle or to supply a random solution and hope that it is correct.  An attacker may 

alternate this behavior to create a more effective attack.  Thus, we can define a hybrid 

zombie and the probability that it solves the puzzle as Q.  A summary of all of the users in 

Chained Puzzles is shown in Table 4-3. 

When the zombie solves a puzzle per packet, its sending rate is reduced significantly.  

The factor by which this rate is reduced is defined in (4.2).  In this equation, k is the time 

it takes for the puzzle solver to execute the XTEA6 encryption function once and d is the 

difficulty level of the current puzzle.  The function S(k, d) is defined as the puzzle solve 

time. 
Table 4-3:  Classes of users in Chained Puzzles 

Category Description of User 
Legitimate Client A user that solves a puzzle for every 

packet. 
Solving Zombie An attacker that solves a puzzle for 

every packet. 
Guessing Zombie An attacker that guesses puzzle 

solutions. 
Hybrid Zombie An attacker that alternates between 

solving and guessing puzzle solutions. 
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 ( , ) 2dS k d k= ⋅  (4.2) 

 

If we let tp be the average processing time required to generate a regular packet, we can 

define the sending rate of a puzzle solver P in (4.3).  In this equation, we assume that the 

time it takes to solve a puzzle will be much larger than the time it takes to generate a 

packet.  
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 (4.3) 

 

Thus, every puzzle solving user in Chained Puzzles will have the sending rate defined in 

(4.2).  Unfortunately, this includes legitimate clients as well as the puzzle-solving 

attackers.  When an attacker attempts to flood the network with packets, its sending rate 

will be severely reduced to the rate shown in (4.3).  Thus, even if the attacker wants to 

send at a higher rate, it will be reduced to sending at a rate controlled by the difficulty 

level.  Meanwhile, a legitimate client will notice a similar reduction in their sending rate, 

but it will not be quite as significant.    In fact, if the client is sending at a slower rate than 

the rate shown in (4.3), it will not notice any delay in sending data.  The only difference it 

may notice is the change in CPU utilization due to the puzzles. 

 

If we let tr be the average time it takes to process a packet by the router, the router’s 

service rate R will be reduced as shown in (4.4).  In this equation, k is again defined as 

the time it takes the puzzle router to execute XTEA6 once.  
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If the zombie does not solve a puzzle and supplies a random solution to a puzzle, its 

sending rate is not reduced.  Therefore, the probability of the packet reaching the victim 

depends on the probability that an attacker solves the puzzle correctly and the probability 

that the attacker does not solve the puzzle, but guesses the correct solution.  Correctly 
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guessing a solution depends solely on the difficulty level of the puzzle.  With the puzzle 

difficulty of d, the attacker has on average probability 2-d of guessing a correct puzzle 

solution.  Thus, we can define the probability of an attacker having a single packet sent 

downstream (pD) to the victim, which is shown in (4.5). 

  

2 (1 2(1 )2 dd
D Q Qp Q − )d−− + = + −= −  (4.5) 

 

From (4.5), when the difficulty level of the puzzle is low, regardless of the value of Q, 

the probability of an attacker’s packet reaching the victim approaches one.  Thus, it is in 

the best interest of the puzzle router to keep the difficulty level sufficiently high.  

However, when Q is zero, the probability of the packet reaching the victim solely 

depends on the difficulty level.  Thus, if the difficulty level is high, it is in the best 

interest of the attacker to solve the puzzle.  Conversely, if the difficulty is low, an 

attacker can modulate Q to create a more effective attack.   

 

4.5. Security Concerns of Chained Puzzles 

An important issue in Chained Puzzles is to prevent the protocol from becoming the 

source a new attack.  In other words, this protocol should be resilient against future DoS 

attacks that may exist due to the newly implemented countermeasure.  In Chained 

Puzzles, there are a few areas for concern that need to be addressed.  These areas are the 

authentication of ICMP Congestion Notification messages sent to puzzle routers to 

enable or disable puzzles, the authentication of ICMP Puzzle Challenge messages sent 

from puzzle routers to the clients to begin or stop solving puzzles, and the nonce 

synchronization between the client and the router. 

 

In our scheme, we rely on the puzzle routers downstream to be able to detect heavy 

congestion or packet loss and send the ICMP Congestion Notifications upstream to the 

other puzzle routers.  For our scheme to work properly, these messages need to be 

authenticated.  An attacker could easily spoof a router’s identity and send ICMP 

Congestion Notification messages to several puzzle routers.  This could cause puzzle 
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routers to enable puzzles, when it is not needed, and would decrease throughput for all 

clients beneath that puzzle router.   In addition to the congestion notification messages, 

routers downstream can also send messages telling the puzzle routers to disable puzzles.  

If an attacker could forge this message then it could bypass the client puzzle mechanism 

altogether and proceed with its DDoS attack.  Thus, control messages sent between 

puzzle routers need to be authenticated.   

 

In a DDoS attack, an attacker has the ability to spoof the IP address of the zombies used 

in the attack, thus making it is difficult to discover the real source of the attack.  In 

Chained Puzzles, the congestion notification messages need to be sent to the correct 

puzzle routers.   If an attacker spoofs the IP address of its packets, then the congestion 

notification messages may be sent to the wrong router and its clients, the ones with the IP 

addresses that were spoofed.  Therefore, we need to ensure that when a puzzle router 

downstream detects congestion it sends an ICMP message to the correct router.  One way 

to solve this is to have each puzzle router upstream mark its IP address into the packet 

being sent downstream.  When a router downstream detects congestion, it will know the 

correct location of the puzzle router for each packet it is receiving and then be able to 

successfully send the congestion notification message.  However, as ingress and egress 

filtering are being implemented in networks more often, this will become less of a 

problem.  This filtering process can even be built into the puzzle routers that forward the 

traffic. 

 

In addition to the ICMP messages sent to the puzzle router, the puzzle router itself sends 

ICMP Puzzle Challenge messages to each client to notify them that they need to begin (or 

stop) solving puzzles.  If an attacker can forge this message, it can send the same message 

to a client and force the client to solve puzzles when it is not needed.  Thus, control 

messages sent to clients from puzzle routers also need to be authenticated.  An 

authentication method for this can be done somewhat easily if we use a technique 

described in [16].  Since the puzzle router and the client are one-hop away from each 

other, the TTL value can be set to 255 when the puzzle router sends a packet to the client.  

Thus, the client will know that this message came from the puzzle router by examining 
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the TTL field.  An attacker could not forge this message because the TTL would be 

decremented as it traversed through the network. 

 

When puzzles are enabled, each client and the router are synchronized with a plaintext 

value.  Originally this value is NR, and afterwards it is the previous puzzle solution for 

that client.  This value is used for the next packet because it represents the next plaintext 

to be used for the next puzzle.  The router updates this value after forwarding each packet 

and the client updates this value after sending each packet.  If the Plaintext Chain is 

broken, the legitimate client could be denied access for its subsequent packets, which 

causes another unique DoS attack.  If the difficulty level is low, an attacker could guess a 

puzzle solution and spoof its IP address of one belonging to a real client within the local 

network and use the same destination IP address as that client, it would cause the 

plaintext value to change in the puzzle router’s Plaintext Table.  It is possible to spoof an 

IP address of another client on the same subnet.  Recall that this is one of the weaknesses 

in ingress filtering.  We call this attack a Spoofed IP Guessing Attack; similar to the 

Guessing Attack mentioned in Section 4.3, except it employs intelligent IP spoofing (i.e. 

it knows the correct range of source IP addresses to spoof and the correct destination IP 

address).  One way to combat this is to ensure that the difficulty level is high enough to 

prevent an attacker from guessing puzzle solutions on behalf of another client.  An 

attacker can guess a correct puzzle solution with probability of 2-d; for example, if the 

difficulty level was set to five, the probability of an attacker guessing a correct solution is 

1/32. 

  

An extension to Chained Puzzles could be to utilize Probabilistic Puzzle Verification 

[29], where puzzles are verified at the router with a certain probability.  This helps 

improve the processing resources of the router, but it may also give an advantage to an 

attacker.  If Chained Puzzles were to employ Probabilistic Puzzle Verification, the 

Plaintext Chain can be easily broken when the puzzle router does not verify a puzzle 

solution.  For example, if the router is only verifying 80 percent of the puzzles, an 

attacker can spoof an IP address of a real client within the local subnet, select the same 

destination IP address that the client is sending data towards, and send a random solution.  
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If the puzzle is not verified, the solution is updated in the Plaintext Table.  Thus, the 

attacker has a 20 percent chance of breaking the chain between that client and the puzzle 

router.  When the router verifies the next puzzle for the “real client”, the solution will 

likely be incorrect.  Therefore, a DoS attack can occur by targeting a single client rather 

than targeting the server.  The impact of this attack can still have negative and averse 

effects if it is widespread.  If an attacker recruited zombies spread out across the Internet, 

then began to deny each individual client access, it would still result in a large-scale 

DDoS attack. 

 

When the Plaintext Chain has been broken, it will result in a sequence of incorrect 

puzzles for that client.  One potential solution to this problem may be to resynchronize 

that client with a new NR following the receipt of a sequence of incorrect puzzles.  Of 

course, we must consider that an attacker could spoof the IP address of a client and then 

send incorrect random solutions as fast as possible, causing the client to be continuously 

resynchronized with the puzzle router.  An attack such as this would be just as effective 

as a flooding attack because clients would not be allowed to access the server.  Thus, the 

resynchronization of the Plaintext Chain should be carefully controlled.   

 

4.6. Implementation Details of Chained Puzzles 

Chained Puzzles was simulated using the Network Simulator NS-2 [43].  The NS-2 

simulator code was modified to support the simulation experiments.  The code that was 

modified was located within the address classifier object of an NS-2 node.  With standard 

NS-2, when a client creates and packet and sends it to a server, it goes from the 

Application Agent, to the Transport Layer Agent, and then into the address classifier of 

the source node.  Typically, the packet is destined for another node, so when the packet 

reaches the address classifier it is sent out onto the link to the next hop.  If the destination 

of the packet matches the current node, it is sent to a port classifier and then to the 

Transport Layer Agent. A layout of an NS-2 node can be seen in Figure 4-4. 
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The address classifier was designed in such a way to store packets in a queue before 

sending them out onto the link.  If the node was generating the packet, it would delay the 

transmission of the packet until waiting for S(k, d) seconds.  Thus, with the legitimate 

client, each packet was delayed by that time before it was sent out on to the link.  In the 

case of an attacker, the attacker would solve the puzzle with a given probability Q and 

delay the transmission of the packet.  With probability 1-Q, the attacker did not solve the 

puzzle and the packet was immediately sent to the next hop. 

 

Figure 4-4: NS-2 node 
 

The puzzle router is the “first-hop” router that receives the packet from the legitimate 

client or the attacker.  Upon receiving that packet, the puzzle is verified and the router 

will delay sending the packet to the next hop for S(k, 0) seconds, which is equal to k.  If 

either the client or the attacker did solve the puzzle, the packet is sent to the next hop 

after k seconds.  If the attacker did not solve the puzzle, the packet has a probability of 2-d 

that it will be sent to the next hop.  Thus, when the difficulty level is sufficiently high 

enough, the packet will most likely be dropped.  Regardless of the puzzle solution being 

correct or incorrect, the puzzle router will need to wait for k seconds before it can process 

the next packet because time was spent verifying the solution. 

 

NS-2 was useful for simulating basic networks with a fair amount of traffic.  However, as 

the size of the network increased and the amount of traffic increased, the time required to 
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run the simulation and gather results afterwards became too long.  Thus, we began to 

experiment with OPNET to see if these results could be improved and if it were possible 

to simulate more complex and larger networks. 

 

In addition to the modification of NS-2, Chained Puzzles was also simulated using 

OPNET Modeler [44].  OPNET was primarily used to simulate networks with a larger 

number of legitimate clients and attackers, which allowed us to determine the scalability 

of Chained Puzzles.  Modifications were made, very similar to ones discussed with NS-2, 

to each client and first-hop router to emulate the puzzle mechanism.  Simulations in 

OPNET proved to be more efficient because it decreased the amount of processing time 

required with NS-2, especially for very large networks.   

 

Thus, with modifications to both simulators we can accurately simulate how a network 

would operate during a DDoS flooding attack with Chained Puzzles.  The next step is to 

design a network and create a sufficient DDoS attack while using the standard IP and 

show how the conditions could be significantly improved by using Chained Puzzles.  In 

the next section, the simulation results from these experiments are presented. 

 

4.7. Simulation Results 

To further investigate how effective Chained Puzzles would be in the event of a DDoS 

flooding attack, we first simulated such an attack using the modified and unmodified 

versions of NS-2.  In our simulation, a tree network was created with 100 clients and 40 

attackers.  Because the network size was fairly small, we scaled the sending rates of the 

attackers and clients, along with capacity of each link.  The bandwidth of the victim was 

less than the total combined bandwidth of all the legitimate clients and attackers, which 

will allow us to create a DDoS flooding attack.  The attackers sent UDP traffic at a rate of 

10,000 kbps, which was the maximum rate allowed by the attacker’s link.  The legitimate 

clients sent UDP traffic at a rate of 1,000 kbps.  We randomly set the time clients began 

sending data, and synchronized the attackers to begin sending data at the same time.  In 
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this topology, the attackers are spread out across the network, which means that every 

legitimate client is forced to solve puzzles.   

 

In Figure 4-5, we have shown the Normal Packet Survival Ratio (NPSR), a measurement 

that has been described in previous literature [6], for the legitimate clients in this 

experiment.  The NPSR simply means the number of legitimate packets that actually 

reach the victim divided by the total number of packets that were generated by the 

legitimate clients.  In our simulations, we varied the value of Q, the probability that an 

attacker solves the puzzle.  As the difficulty level increases, the congestion from the 

attack is alleviated because the number of dropped packets belonging to the clients 

approaches zero, because the NPSR reaches one.  

 

In this experiment, it appeared from Figure 4-5 that level ten was optimal to defend 

against the attack in this network.  At this level, there were very few packets being 

dropped and the client’s throughput remained fairly high.  With standard IP, there was a 

77% packet loss for the legitimate clients.  With Chained Puzzles at difficulty level ten, 

there was less than 1% packet loss.  However, at higher difficulty levels the client’s 

throughput dropped significantly.  Figure 4-6 shows the total number of legitimate 

packets generated during the simulation.  It shows that when the difficulty level had 

reached eleven or twelve, the sending rate of the client had reduced significantly.   

 

During an attack, the difficulty level should be adjusted by the downstream routers 

(through more ICMP Congestion Notification packets) to alleviate the congestion.  When 

the downstream puzzle routers are still detecting congestion even after puzzles are 

enabled, it can send an ICMP Congestion Notification that signals to the upstream puzzle 

routers to increase the difficulty level.  Conversely, when there is no congestion, a puzzle 

router can send a similar message to decrease the difficulty level.  This can be repeated 

until the puzzle mechanism is disabled.  Thus, the puzzle will only be as difficult as 

necessary to sustain the availability of the server.  In this network, with a difficult level of 

ten, the legitimate clients received better service when compared to standard IP, despite 

the small decrease in their sending rate. 
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Figure 4-5: Normal Packet Survival Ratio for legitimate clients 
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Figure 4-6: Total number of legitimate packets generated 
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For our next experiment, we utilized the implementation in OPNET to simulate a much 

larger network.  This network consisted of 735 legitimate clients and 294 attackers 

(zombies).  Again, the topology resembled a tree because the clients and zombies were 

the leaf nodes of the tree and the victim server was the root of the tree.  The topology in 

this attack is considered to be a worst-case scenario, because the zombies are spread out 

across the network, meaning that every legitimate client is forced to solve puzzles.  The 

bandwidth and sending rates for this experiment are the exact same as the previous 

experiment, only the size of the network is different.  In this experiment, the NPSR was 

calculated versus the puzzle difficulty level and the number of legitimate client packets 

that were generated was recorded.  The results of this experiment are shown in Figure 4-7 

and Figure 4-8.  When comparing the results from this experiment with the previous one, 

the difficulty level where the NPSR value reached one is much larger with a bigger 

network.  In the larger network, a difficulty level of 16 alleviated the congestion near the 

victim.  This was expected because the attack was considerably stronger.  With standard 

IP, the NPSR was less than 0.02, which means that 98% of the legitimate packets were 

dropped.  However, achieving an NPSR value equal to one did come with a cost.  Figure 

4-8 shows the total number of packets that were generated by legitimate clients.  With a 

very high difficulty level, the total number of packets generated by legitimate clients was 

reduced significantly. 

 

Thus, in Chained Puzzles there is a tradeoff between the throughput of the legitimate 

clients and the number of its packets that are dropped.  When the client is not in the same 

subnet as the zombie, its sending rate would not be reduced due to the absence of the 

puzzle mechanism.  However, when legitimate clients are in the same subnet as a zombie, 

their sending rate may be reduced.  Despite this observation, Chained Puzzles still 

outperformed standard IP because the NPSR value was increased.  However, the issue of 

the tradeoff mentioned between these two items still requires investigation and is 

discussed in more detail in Chapter 5.  
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Figure 4-7: Normal Packet Survival Ratio for legitimate clients (Larger Network) 
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Figure 4-8: Total number of legitimate packets generated (Larger Network) 
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4.8. Deployment Scheme for Chained Puzzles 

In order to deploy Chained Puzzles in the Internet, a pair of edge routers within ISPs or 

organizations needs to be upgraded to support the puzzle mechanism.  Also, each client 

will need to install the Puzzle Manager software that will allow the client to support the 

puzzle mechanism.  Wang and Reiter in [29] discuss the incentives for clients to install 

the software needed for puzzles.  They claim that all Internet users would want this 

software if it meant that they would receive better service during an attack.  Installing 

software on clients seems feasible if it is presented in that manner, but one of the main 

challenges that remains is to modify the edge routers throughout the Internet.  If there 

exists an entry point into the network that does not pass through a puzzle router, an 

attacker will pursue clients in this network for their attack because they would not be 

affected by the puzzle mechanism.  The downside to this scheme, and all client puzzle 

protocol schemes, is the need to modify existing devices in the Internet.  However, 

Chained Puzzles requires only slight modifications.  Changes are not required to any of 

the core Internet routers that link every system together.  Thus, we believe that it is 

possible to implement Chained Puzzles in the Internet since the change required is 

minimal when compared to some of the other previously mentioned schemes.  Since there 

needs to be a puzzle router upstream and downstream, companies or ISPs can install them 

together in pairs.  Since puzzles are only deployed during an attack, it allows for gradual 

deployment.  However, similar to pTCP, if a client cannot solve a puzzle, it will suffer 

during an attack.  

  



 

 

CHAPTER 5 

 
 

5. Conclusions and Future Work 
In this thesis, various mitigation techniques for network-based DoS and DDoS attacks 

have been researched and studied.  In particular, the topic of client puzzles has been 

researched more in-depth and has been applied at two different layers of the Internet 

stack: the transport and network layer.  In recent literature, the concept of client puzzles 

has been explored in detail and has shown promise in mitigating the effects of an attack.  

This thesis has furthered the research performed in this area by designing, implementing, 

and experimenting with two different novel client puzzle protocols. 

 

This thesis has presented the design and implementation details of pTCP, a client puzzle 

protocol that was integrated within the current TCP stack in Linux.  The implementation 

allowed for realistic experiments with actual systems and in typical attack scenarios.  By 

using pTCP, advantages were shown over standard TCP and other types of puzzle 

protocols during certain resource-exhaustion attacks.  Experiments with pTCP were 

successful because they demonstrated that pTCP was capable of preserving the 

availability of the server and allowed clients to access the victim in spite of the attack. 

 

This thesis has also presented the design and simulation of Chained Puzzles, a novel 

client puzzle protocol integrated into the network layer.  The primary goal of Chained 

Puzzles was to defend a server against large-scale DDoS flooding attacks.  By simulating 

this protocol with NS-2 and OPNET, the effects from DDoS attacks were alleviated and 



Timothy J. McNevin  Chapter 5:  Conclusions and Future Work 73  

the server remained available to legitimate clients when an attack was underway.  In 

contrast, with standard IP the server was unavailable to clients because of the severe 

congestion. 

 

Mitigating DoS attacks has always been a challenging and ongoing research topic in 

network security.  The research that has been presented in this thesis could always be 

furthered to make improvements or new discoveries.  The following sections present a 

summary of future work with pTCP, Chained Puzzles, and the general design of client 

puzzle protocols. 

 

5.1. Future Work with pTCP 
 
The solve time for a computational puzzle will always depend upon the processing power 

of the computer that is solving the puzzle.  In such a scheme, a more powerful client will 

always have the upper hand over less powerful clients. This drawback is shared by most 

puzzle schemes, including pTCP.  As part of our future work, we plan to explore methods 

that are able to adjust the level of difficulty for each potential client.  By “customizing” 

the difficulty level for each client, we can prevent more powerful clients (possibly 

malicious ones) from having an unfair advantage [30].  This concept is known as fairness.  

The notion of fairness is an important research issue in client puzzles, because more 

effective protection against DoS attacks can be provided by distributing harder puzzles to 

clients that demonstrate attacker-like behavior.  In all client puzzle protocols, the puzzles 

may become too difficult to solve for weaker legitimate clients and could create a DoS in 

return, causing weaker clients to spend more time solving a puzzle.   pTCP could be 

extended if it could be designed to distribute puzzles of varying difficulty levels based on 

a reputation from that client. 

   

Another area for future work with pTCP would be to research how well it performs with 

various applications.  As stated in Chapter 2, puzzles have also been proposed to combat 

spam mail.  Since pTCP places a cost on the connection for each client, it is conceivable 
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that pTCP could be used to limit the effects of spam mail.  In addition to spam mail, there 

are several other application layer vulnerabilities that could be protected with pTCP.  The 

work that is presented in this thesis could be extended by different experiments with the 

protocol and different applications. 

 

5.2. Future Work with Chained Puzzles  

This thesis has presented a novel framework for IP layer client puzzles called Chained 

Puzzles and has presented simulation results during a DDoS flooding attack.  However, 

there is much more work that could be done with this protocol to the test its scalability.  

Simulations can be furthered by simulating this protocol in a realistic network with many 

more attackers and legitimate clients.  Simulations such as this would greatly enhance the 

results that were gathered.  In addition, an implementation of Chained Puzzles within a 

small network testbed would allow further consideration of certain issues such as the 

maximum size of the Plaintext Table, the length of the PTP, transitioning issues of the 

resynchronization of the Puzzle Chain, and determining the time between nonce 

resynchronization. 

 

As stated before with pTCP, an issue of concern in Chained Puzzles is if the difficulty 

level of the puzzles can become too high for legitimate clients to solve.  For instance, is 

having a NPSR value close to one considered an improvement if the throughput of the 

client is reduced significantly.  DoS attacks do not only involve dropping packets, they 

can be just as effective when they degrade the service by significantly reducing the 

client’s throughput.  Improvements can certainly be made if the issue of fairness was 

considered.  In Chained Puzzles, fairness needs to be researched and investigated 

thoroughly, especially for larger networks, so that Chained Puzzles can still maintain the 

availability of the victim while still granting better service to the legitimate clients. 
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5.3. Future Work with Client Puzzles 

In all client puzzle protocols to date, the solve time of a puzzle is always relative to the 

processing power of the client’s CPU.  Future work with client puzzles will most likely 

involve designing new and different types of puzzles.   As mentioned earlier in Chapter 2, 

memory-bound puzzles have been proposed as a better approach than the traditional 

computation-based puzzles.  A claim with memory-bound puzzles is that the solve time is 

not as widely distributed as computational puzzles among computers of varying power.  

In other words, having more memory may not help improve the chances of solving the 

puzzle faster, when compared to a weaker to a client with less memory.  An interesting 

research topic would be to modify the two schemes presented in this thesis with memory-

bound puzzles and then simulate attacks with both attackers and clients of varying 

strengths to determine if memory-bound puzzles would make a significant improvement.  

 

Another way to improve the design of a client puzzle is to have the difficulty level 

increase the hardness of the puzzle in a linear fashion.  The puzzles based on XTEA6 that 

have been introduced grow exponentially difficult with a linearly increasing difficulty 

level.  This is evident from the results shown in Figure 3-10 in Chapter 3.  Having a 

linearly-difficult puzzle would allow for a broader range of difficulty levels that could be 

used before the puzzle became too difficult to solve.  One of the most interesting methods 

to improve puzzle design is to investigate time-lock puzzles that were originally 

presented by Rivest [45].  A time-lock puzzle would allow for more accurate and difficult 

puzzles and the server would not have to consider the processing power or the amount of 

memory of any given client.  However, the scheme presented in this paper requires the 

expensive generation of two large distinct prime numbers.  At the present time, there is 

no known time-based cryptosystem that is efficient enough to be used in a client puzzle 

protocol.  However, investigating a new kind of puzzle that does not rely on making 

assumptions about the power of the adversary is a topic of future work for all client 

puzzle protocols. 
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5.4. Conclusions 

Client puzzles is a novel method to defend against DoS attacks, but their scalability is an 

issue that would greatly benefit from further research.  If an attacker has a large amount 

of resources and computing power by possessing a large number of zombies, the 

effectiveness of client puzzles may not be as great as originally expected.  However, as 

this thesis has shown, client puzzle protocols did improve the resiliency of a server 

during certain types of attacks.  The idea behind client puzzle protocols, or a proof-of-

work protocol, is a promising topic that may lead to improvements and advances in 

computer networking and security in the future. 

 

As mentioned in the first chapter, mitigation is only one facet of a DoS countermeasure.  

Defeating DoS attacks involves studying various vulnerabilities in computer networks 

and designing a number of mechanisms that can prevent all of these problems from 

surfacing.  Although, the real key to defending systems from network-based attacks is 

constant vigilance and awareness.  Devising countermeasures will always help thwart 

known attacks, but since DoS attacks are only limited by the imagination of the attacker, 

combating DoS attacks requires an in-depth knowledge and a technical understanding of 

the fundamental problems in computer and network security.  In addition to the 

mitigation techniques that have been presented in this thesis, defeating DoS attacks also 

involves preventing machines from being converted to handlers or zombies.  It requires 

the accurate detection of attacks, and then having an efficient methodology to perform 

forensics following an attack.  The combination of these methods will prove to be the 

most effective means to combat the serious threat of DoS attacks and to allow the Internet 

to become more reliable, useful, and secure. 
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