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Graph-based and algebraic codes for error-correction and erasure

recovery

Rutuja Milind Kshirsagar

(ABSTRACT)

Expander codes are sparse graph-based codes with good decoding algorithms. We present

a linear-time decoding algorithm for (C,D, α, γ) expander codes based on graphs with any

expansion factor given that the minimum distances of the inner codes are bounded below. We

also design graph-based codes with hierarchical locality. Such codes provide tiered recovery,

depending on the number of erasures. A small number of erasures may be handled by

only accessing a few other symbols, allowing for small locality, while larger number may

involve a greater number of symbols. This provides an alternative to requiring disjoint

repair groups. We also consider availability in this context, relying on the interplay between

inner codes and the Tanner graph. We define new families of algebraic geometry codes for

the purpose of code-based cryptography. In particular, we consider twisted Hermitian codes,

twisted codes from a quotient of the Hermitian curve; and twisted norm-trace codes. These

codes have Schur squares with large dimensions and hence could be considered as potential

replacements for Goppa codes in the McEliece cryptosytem. However, we study the code-

based cryptosystem based on twisted Hermitian codes and lay foundations for a potential

attack on such a cryptosystem.



Graph-based and algebraic codes for error-correction and erasure

recovery

Rutuja Milind Kshirsagar

(GENERAL AUDIENCE ABSTRACT)

Coding theory finds applications in various places such as data transmission, data storage,

and even post-quantum cryptography. The goal of data transmission is to ensure fast and

efficient information transfer. It is ideal to correct maximum number of errors introduced

during transmission by noisy channels. We provide a new construction of expander codes

(graph-based codes) and provide a linear-time decoding algorithm which corrects a constant-

fraction of errors for these codes given any expansion factor. In this context, channel noise

causes distortion of symbols, so that received symbols may be different than those originally

sent. We are also interested in codes for erasure recovery, meaning those which restore missing

symbols. A recent technique to recover the sent messages is by accesing a small subset of

this received information, called locality. We analyze the locality properties of Tanner codes

equipped with specific inner code. Code-based cryptography is a leading candidate in the

post-quantum setting, meaning it is believed to be secure against quantum algorithms. The

McEliece cryptosystem in which the underlying code is a Goppa code is popularly studied

and is a top candidate in the NIST competition. However, the adoption of this system is not

immediate due to its large key sizes. Code-based cryptosystems based on codes other than

Goppa codes might provide a solution. We provide constructions of a new family of codes,

called twisted algebraic geomtery codes which may provide alternatives of Goppa codes in

the McEliece cryptosystem.
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Chapter 1

Introduction

Coding theory lies at the intersection of various disciplines such as mathematics, computer

science and electrical engineering. Originally, codes were introduced to increase the efficiency

of communication. The idea was to ensure that messages transmitted over a noisy commu-

nication channel are properly received. Reliability of information passing highly depends on

the detection and correction of errors (or recovery of erasures) which are introduced. Error-

correcting (erasure-recovering) codes achieve this by addition of redundancy. Now, codes are

used in a variety of scenarios. For example, Reed-Solomon codes are used to store informa-

tion on CDs, DVDs, and other devices; LDPC codes are used in satellite communications;

Goppa codes are used in cryptography; and regenerating codes are used for distributed data

storage.

In this chapter, we review basic terminology from coding theory and discuss some important

families of codes.

1
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1.1 Linear codes

An [n, k, d] linear code C over a finite field Fq is a k-dimensional subspace of the n-dimensional

vector space Fnq . Note that n represents the length of the code, k represents the dimension of

the code and d represents the minimum distance of the code. Any two elements of C, called

codewords, differ in at least d places, that is

d = min{d(c, c′) : c, c′ ∈ C, c 6= c′}

where d(c, c′) is the Hamming distance, that is

d(c, c′) = |{i : ci 6= c′i}|.

The alphabet for C is Fq. Because all codes considered in this dissertation are linear, we use

the term code to mean linear code.

Note that the Hamming distance d(c, c′) is a metric. It satisfies the following three properties:

• d(c, c′) ≤ d(c, c′′) + d(c′′, c′) for all c, c′, c′′ ∈ F n
q .

• d(c, c′) = d(c′, c) for all c, c′ ∈ Fnq .

• d(c, c′) = 0 if and only if c = c′.

Given a received word in Fnq , the decoding problem can be loosely phrased as finding a

codeword in C within a distance e from the codeword, where e is as small as possible. An

[n, k, d] code is capable of correcting t errors if

d ≥ 2t+ 1.
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To see this, suppose c ∈ C is a sent word, w is the resulting received word and d(c, w) ≤ t.

Consider another codeword c′ ∈ C\{c}. If d(c′, w) ≤ t, then

d(c, c′) ≤ d(c, w) + d(w, c′) ≤ 2t < 2t+ 1

which contradicts the assumption d ≥ 2t+ 1. Therefore c is the unique codeword nearest to

w.

Let [n] := {1, . . . , n}. Suppose w ∈ Fnq is a received word resulting from a sent word c ∈ C

for an [n, k, d] code C. The goal is to determine c. The type of distortion or error depends

on the model of the channel used for transmission. An error-correction model assumes that

some symbols of c may change during the transmission. In such a model, it is assumed that

the location of errors is unknown. The received word is of the form

w = (w1, . . . , wn) ∈ Fnq .

If the distance between the received word w and sent word c satisfies

d(w, c) ≤ bd−1
2
c,

then c can be recovered from w. In the erasure recovery model, it is assumed that some

symbols of c are erased during transmission. In such a model, the received symbols in w

are assumed to be corrrect, and the positions of the erasures are known. Here, the received

word is of the following form:

w ∈ (Fq ∪ {?})n,
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where for all i ∈ [n]

wi =


ci,

?

and ? denotes an erasure. If the distance between the received word w and sent word c

satisfies

d(w, c) ≤ d− 1,

then c can be recovered from w since d(w, c) < d.

The set of all k × n matrices with entries in Fq is denoted as Fk×nq . Since an [n, k, d] code C

is a vector space over Fq, and it has a basis over Fq. Consider a matrix G ∈ Fk×nq whose rows

form a basis of an [n, k, d] code C. Then G is called a generator matrix of C. The matrix

H ∈ F(n−k)×n
q is a parity-check matrix of the code C if and only if for all codewords c ∈ C

HcT = 0.

If G is a generator matrix and H is a parity-check matrix of the code C, then

GHT = HGT = 0.

A code is said to be in the systematic form if it has a generator matrix

G = (Ik|Ḡ),

where Ik is the k × k identity matrix and Ḡ ∈ Fk×(n−k)q . In this case,

H = (−ḠT |In−k)



1.1. Linear codes 5

is a parity-check matrix of the code.

The dual of the code C is the vector space orthogonal to the code, meaning

C⊥ = {x ∈ Fnq : xcT = 0∀ c ∈ C}.

The length of C⊥ is n. The dimension of C⊥ is n− k. Moreover, the dual of dual of a code

is the original code; that is,

(C⊥)⊥ = C.

If G is a generator matrix of C, then G is a parity-check matrix of C⊥. If H is a parity-check

matrix of C, then it is a generator matrix of C⊥ .

Given a vector c ∈ Fnq , the Hamming weight of c is the cardinality of set of all nonzero

coordinates of c, that is

wt(c) =| {i : ci 6= 0} | .

Moreover weight of the code C is

wt(C) := |{i : ci 6= 0∀c ∈ C}|.

Consider two codewords c, c′ ∈ C which differ in d places, that is d(c, c′) = d, the minimum

distance of C. Since C is a linear code, c− c′ ∈ C. Note the following:

wt(c− c′) = |{i : ci − c′i 6= 0}|

= |{i : ci 6= c′i}|

= d(c, c′).

Moreover, d ≥ wt(C). If c′ = 0, then wt(c− c′) = wt(c) ≤ d. Therefore, for a linear code, the
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minimum distance d is equal to the smallest Hamming weight of a codeword in C, meaning

d = min{wt(c) : c ∈ C\{0}}.

Given an [n, k, d] code C and I := {i1, . . . , is} ⊆ [n], a punctured code obtained from C with

respect to I is

C|I := {(ci1 , . . . , cis) : c = (c1, . . . , cn) ∈ C}.

Note that C|I is an [|I|, k − (n− |I|), d′] code, where d′ ≤ d.

Let C1 be an [n1, k1, d1] code and C2 an [n2, k2, d2] code. Then the concatenated code C is

comprised of codewords obtained by placing the codewords of C1 and C2 adjacent to each

other in order. Note that the length of the concatenated code C is n1 + n2, the dimension of

C, denoted dim(C), is at most k1 + k2, and the minimum distance of C, denoted dmin(C), is

min{d1, d2}.

Given an [n, k, d] code C, the support of C is the set of all nonzero coordinates, that is,

supp(C) = {i : ∃ c ∈ C with ci 6= 0}.

The rate of an [n, k, d] code C is

r = k
n
.

The capacity of a channel is the measure of the maximum rate of reliable transmission.

Shannon’s Theorem proves the existence of codes which allow information transmission at

the rate approaching the channel capacity. The relative distance of an [n, k, d] code C is

δ = d
n
.
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The relative distance of a code determines an upper bound on the fraction of errors (or

erasures) that can be corrected (recovered).

Finding the minimum distance of a code is a widely studied problem, but determining the

exact minimum distance of a code is a difficult problem. Several bounds have been given for

the minimum distance of codes. For an [n, k, d] code C, the Singleton Bound states:

d ≤ n− k + 1.

Let C ′ = C|I such that I = {d, . . . , n}. Then C ′ is an [n− d+ 1, k′, d] where k′ = k − d+ 1.

Since k′ ≤ n, we have k − d+ 1 ≤ n, that is d ≤ n− k + 1. Hence

d

n
+
k

n
≤ 1 +

1

n
,

demonstrates the trade off between rate and relative distance. A code C is said to be

maximum distance separable (MDS) if the Singleton bound is attained, in other words

d = n− k + 1.

Consider a finite field Fq and a positive integer n. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fnq

be two vectors. Then the Schur product of the vectors x and y is

x ∗ y := (x1y1, . . . , xnyn) ∈ Fnq .

Let C1, C2 ⊆ Fnq be two linear codes. Then the Schur product of C1 and C2 is

C1 ∗ C2 := 〈c1 ∗ c2 | c1 ∈ C1, c2 ∈ C2〉 ⊆ Fnq ,
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meaning C1 ∗C2 is the span of all vectors of the form c1 ∗c2, where c1 ∈ C1, c2 ∈ C2 consisting

of linear combinations with coefficients in Fq. The Schur square of a linear code C is

C2 := C ∗ C.

Later, codes of interest will be obtained by evaluating sets of functions. Hence, it is useful

to consider the Schur product of sets of polynomials. We use the notation Fq[x1, . . . , xm] to

mean set of all polynomials for the form

f1x1 + · · ·+ fmxm,

where for all i ∈ [m], fi ∈ Fq and xi is an indeterminate. Given B,B′ ⊆ Fq[x, y], let

B ∗B′ := {b · b′ | b ∈ B,b′ ∈ B′} ⊆ Fq[x, y],

and if B = B′,

B ∗B′ = B 2 := B ∗B ⊆ Fq[x, y].

1.2 Important families of linear codes

1.2.1 Reed-Solomon codes

Reed-Solomon (RS) codes are a special type of MDS codes defined in [26]. They are perhaps

the most commonly used error-correcting codes. Consider a finite field Fq. Let α1, . . . , αn

be distinct elements of Fq, so n ≤ q. Reed-Solomon codes can be expressed as evaluations
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of polynomials of degree at most k − 1, at the α′is where k ∈ Z, k < n < q.

CRS := {(f(α1), . . . , f(αn)) : f ∈ Fq[x]≤k−1},

where Fq[x]≤k−1 represents the set of all polynomials of degree at most k − 1 indeterminate

x with coefficients in Fq. Let v1, . . . , vn ∈ Fq\{0}. A generalized Reed-Solomon (GRS) code

is a linear code

CGRS := {(v1f(α1), . . . , vnf(αn)) : f ∈ Fq[x]≤k−1}.

A parity-check matrix of a GRS code is

HGRS =


1 1 ... 1
α1 α2 ... αn
α2
1 α2

2 ... α2
n

...
... ...

...
αn−k−1
1 αn−k−1

2 ... αn−k−1
n

× [ v1 0 ... 0
0 v2 ... 0
...

... ...
...

0 0 ... vn

]
. (1.1)

The length n of the generalized Reed-Solomon code is at most q, the size of the finite field.

Consider an [n, k, n − k + 1] generalized Reed-Solomon code C, then its dual code C⊥ is an

[n, n−k, k+1] generalized Reed-Solomon code. Let the parity-check matrix for C be as given

in equation (1.1). Then the generator matrix of C, which is also the parity-check matrix of

C⊥ is

GGRS =


1 1 ... 1
α1 α2 ... αn
α2
1 α2

2 ... α2
n

...
... ...

...
αk−1
1 αk−1

2 ... αk−1
n

×
 v′1 0 ... 0

0 v′2 ... 0

...
... ...

...
0 0 ... v′n

 ,
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where v′1, . . . , v
′
n ∈ Fq\{0}. Note that

GGRSHT
GRS =


∑n
i=1 v

′
ivi

∑n
i=1 v

′
iviαi ...

∑n
i=1 v

′
iviα

(n−k−1)
i∑n

i=1 v
′
iviαi

∑n
i=1 v

′
iviα

2
i ...

∑n
i=1 v

′
iviα

(n−k)
i

...
... ...

...∑n
i=1 v

′
iviα

(k−1)
i

∑n
i=1 v

′
iviα

k
i ...

∑n
i=1 v

′
iviα

(n−2)
i


=

[
0 0 ... 0
0 0 ... 0
...

... ...
...

0 0 ... 0

]

= 0k×(n−k).

If v1 = . . . = vn = 1, then the generalized Reed-Solomon code is the Reed-Solomon code.

1.3 Local recovery

1.3.1 Locally recoverable codes

The notion of locality was first introduced in [11]. Codes with locality, also called locally

recoverable codes (LRCs), allow recovery of an erasure by accessing few of the surviving

codeword symbols. Formally, LRCs can be defined as follows:

Definition 1.1. An (n, k, r) locally recoverable code C over Fq has locality r if for all

i ∈ {1, . . . , n} there exists a set Ri ⊆ [n]\{i} such that |Ri| ≤ r and there exists a function

φi such that for every codeword c = (c1, . . . , cn) ∈ C

ci = φi({cj : j ∈ Ri}).

The set Ri is called a recovery set of the symbol with index i. Any coordinate can always

be recovered by accesing k other coordinates. Hence, we may assume r ≤ k, where k is the

dimension of C. If there are a such disjoint sets of at most r symbols, the code is said to
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have an availability a and is denoted as an (n, k, r, a) code.

The idea of locality has been widely explored in the literature. Kamath et al extended the

definition of locally recoverable codes to (r, ρ) locality in [19]. These codes allow recovery of

up to ρ− 1 erasures as we will describe now using the notion of punctured codes.

Definition 1.2. An [n, k, d] code C is a locally recoverable code with locality (r, ρ) if for all

i ∈ [n] there exists Ii ⊆ [n]\{i} such that C|Ii∪{i} is an [|Ii|+ 1,≤ r,≥ ρ] code.

Availability τ means that recovery can be accomplished using τ disjoint sets of symbols.

Definition 1.3. An [n, k, d] code C is a locally recoverable code with locality (rj, ρj)1≤j≤τ and

availability τ if for the punctured codes C|I1,i∪{i} , . . . , C|Iτ,i∪{i} such that I1,i, . . . , Iτ,i ⊆ [n]

for all i ∈ [n], the following conditions hold:

• i ∈ supp(C|Ij,i∪{i}),

• C|Ij,i∪{i} is an [|Ij,i|+ 1,≤ rj,≥ ρj] code, and

• the set supp(C|Ij,i∪{i})\
[
∪`∈[τ ],`6=jsupp(C|I`,i∪{i})

]
has dim(C|Ij,i∪{i}) linearly indepen-

dent coordinates of C|Ij,i∪{i}.

1.4 Algebraic geometry codes

Let X be a curve over a finite field Fqr defined by Fqr(x, y, z) = 0. Throughout this disser-

tation, we consider smooth, projective, absolutely irreducible curves. Let g, h ∈ Fqr [X, Y, Z]

be homogeneous of the same degree. The field of rational functions on X is

Fqr(X ) :=

({
g(X, Y, Z)

h(X, Y, Z)

}
∪ {0}

)
/ ∼
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where
g

h
∼ g′

h′
if and only if gh′ − g′h is a multiple of Fqr(x, y, z). Let Z represent the set of

all integers. A divisor D on the curve X can be represented as

D :=
∑

nPP,

where nP ∈ Z and P is a point on X . The degree of divisor D is

deg(D) :=
∑

nP deg(P )

and the support of D is

supp(D) := {P : np 6= 0}.

Let X and X ′ be two projective curves over Fqr defined by polynomials of degree d and e

respectively. Let P1, . . . , P` be points over Fqr of degrees r1, . . . , r` where X and X ′ intersect.

Then the intersection divisor of the curves is

X ∩ X ′ := P1 + · · ·+ P`.

Consider f :=
g

h
∈ Fqr(X ). Let Xg be the curve defined by g and Xh be the curve defined

by h. The divisor of f is defined as

div(f) :=
∑

P −
∑

Q,

where
∑
P = X ∩ Xg and

∑
Q = X ∩ Xh. Let r ∈ Z+, where Z+ represents the set of all

positive integers. Let G and D := P1 + · · · + Pn be divisors on X such that P1, . . . , Pn are

distinct Fqr -rational points and the support of G does not contain any of the Pi. Consider
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the space of functions

L(G) = {f ∈ Fqr : (f) ≥ −G} ∪ {0}

on X . An algebraic geometric code is of the form

C(D,G) = {ev(f) : f ∈ L(G)} ⊆ Fnqr

where

ev(f) = (f(P1), f(P2), . . . , f(Pn))

and

ev : L(G) → Fnqr

f 7→ (f(P1), . . . , f(Pn)) .

The code C(D,G) is an [n, dim(L(G))− dim(L(G−D)),≥ n− deg(G)] code [32, Theorem

2.2.2]. If degG < n, then dim(L(G)) − dim(L(G − D)) = dim(L(G)) and C(D,G) is an

[n, dim(L(G)),≥ n− deg(G)] code. Since

dimL(G) ≥ deg(G) + 1− g,

according to the Riemann-Roch Theorem, where g is the genus of X ,

dim(C) + d ≥ n+ 1− g.

If 2g − 2 < deg(G) < n, then

dim(C) = deg(G) + 1− g.
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If |supp(G)| = 1 and D is the sum of the remaining Fqr -rational points, the code is called a

one-point code and is denoted by C(G). If G ≤ G′, where G′ is another divisor on X whose

support does not contain any of the Pi, then L(G) ⊆ L(G′) and C(D,G) ⊆ C(D,G′).

The Hasse-Weil Bound provides an upper bound on the number n of Fqr -rational places on

the curve X , r ≥ 1 [32, equation 5.19]. If X has genus g, then

|n− (qr + 1)| ≤ 2gqr/2.

Note that if the number of Fqr -rational points on X with genus g is

n = qr + 1 + 2gqr/2

then the curve X is said to be a maximal curve. Maximal curves support the construction

of long algebraic geometry codes.

Example 1.4. Consider r = 1. The projective line over Fq is

P1(Fq) := (Fq2\{(0, 0)}) / ∼

where (X0, Y0) ∼ (X1, Y1) if and only if there exists α ∈ Fq\{0} such that X1 = αX0 and

Y1 = αY0.

The unique point at infinity on this curve is P∞ := (1 : 0). Consider the divisors G =

(k − 1)P∞; and D to be the sum of all other rational points on X , and the vector space

L(G). Then the algebraic geometry code

C(D,G) = {ev(f) : f ∈ L(G)} ⊆ Fnq
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is an [n, k, d] code. Note that deg(G) = k− 1 and d ≥ n−deg(G), therefore d ≥ n− (k− 1).

By Singleton Bound d ≤ n−k+ 1, we have d = n−k+ 1. That is, C(D,G) is an MDS code.

Therefore Reed-Solomon codes are one-point codes on X = P1(Fq), the projective line. The

alphabet size (cardinality of the field Fq) is at least n; thus, to define a Reed-Solomon code

of length n requires that n ≤ q.

Given n = qr + 1 + 2gqr/2, to construct longer codes over Fqr requires larger genus curves.

This motivates the next family of codes.

1.4.1 Hermitian codes

Beyond Reed-Solomon codes, the best understood algebraic geometry codes are Hermitian

codes. There are a number of excellent references such as [29], [30], [32], or [33] which provide

more comprehensive surveys.

Hermitian codes are special types of algebraic geometry codes based on Hermitian curves.

Consider the Hermitian curve

Xq : yq + y = xq+1

over the finite field Fq2 . Note that Xq has genus

g =
q(q − 1)

2
.

There are q3 affine Fq2-rational points of the form

(a : b : 1) ∈ P2 (Fq2)

where bq +b = aq+1, since for every a ∈ Fq2 there are exactly q values of b ∈ Fq2 which satisfy
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the equation yq + y = aq+1. We call these points the affine points of Xq. Also note that Xq

has a point at infinity, P∞ := (0 : 1 : 0). The number of Fq2-rational points on Xq satisfies

q2 + 1 + 2gq2/2 = q2 + 1 + q(q − 1)q = q2 + 1 + q3 − q2 = q3.

Therefore, the Hermitian curve is a maximal curve. Let

n := q3

and P1, . . . , Pn be the affine points of Xq. Given a vector space V of functions on Xq which

do not have poles at any of the Pi, 1 ≤ i ≤ n, consider the map

evH : V → Fnq2

f 7→ (f(P1), . . . , f(Pn)) .

Then C := evH(V ) is a code of length n. For α ∈ N, where N represents the set of all

nonnegative integers, with 2g − 2 < α < n, consider the space of functions L(αP∞). It can

be shown that

{xiyj : i, j ∈ N, j ≤ q − 1, δH(xiyj) ≤ α}

is a basis for L(αP∞), where

δH(xiyj) := iq + j(q + 1)

is the pole order of xiyj at P∞. The one-point Hermitian code determined by α is the

algebraic geometry code

C(αP∞) = evH (L (αP∞)) .

Note that the length of C(αP∞) is q3. Its dimension is bounded below by α + 1 − g, with

equality achieved when α ≥ 2g − 1, and minimum distance as given in [35]. In general, the
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minimum distance d satisfies the inequality

d ≥ q3 − α.

1.4.2 Codes from a quotient of the Hermitian curve

Next we consider codes on a quotient of the Hermitian curve, given by

Xq,m : yq + y = xm

over the finite field Fq2 where m|q + 1. If m = q + 1, then we get the Hermitian curve. The

genus of Xq,m is

g =
(m− 1)(q − 1)

2
.

As we will see, there are q(m(q − 1) + 1) affine Fq2-rational points of the form

(a : b : 1) ∈ P2 (Fq2)

where bq + b = am. Note that unlike in the case of the Hermitian curve, every a ∈ Fq2 does

not have a corresponding b ∈ Fq2 satisfying a quotient of the Hermitian curve Xq,m since the

order of am must divide q− 1. There are m(q− 1) + 1 choices for a ∈ Fq2 and each one has q

corresponding values of b ∈ Fq2 which satisfies a quotient of the Hermitian curve Xq,m. The

number of Fq2-rational points on Xq,m satisfies

q2 + 1 + 2gq2/2 = q2 + 1 + (m−1)(q−1)q = q2 + 1 +mq2−mq− q2 + q = q(m(q−1) + 1) + 1.
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Therefore a quotient of the Hermitian curve is a maximal curve with (q(m(q− 1) + 1) affine

points and one point at infinity, P∞ := (1 : 0 : 0). Let

n := q(m(q − 1) + 1)

and P1, . . . , Pn be affine points of Xq,m. Given a vector space V of functions on Xq,m which

do not have poles at any of the Pi, 1 ≤ i ≤ n, consider the map

evQH : V → Fnq2

f 7→ (f(P1), . . . , f(Pn)) .

Then C := evQH(V ) is a code of length n, called a code from a quotient of the Hermitian

curve. For α ∈ N with 2g − 2 < α < n, consider the space of functions L(αP∞). It can be

shown that

{xiyj : i, j ∈ N, j ≤ q − 1, δQH(xiyj) ≤ α}

is a basis for L(αP∞) where

δQH(xiyj) := iq + jm

is the pole order of xiyj at P∞. The one-point code from a quotient of the Hermitian curve

determined by α is the algebraic geometry code

C(αP∞) = evQH (L (αP∞)) .

Note that the length of the code C(αP∞) is q(m(q− 1) + 1). Its dimension is bounded below

by α + 1 − g, with equality achieved when α ≥ 2g − 1, and minimum distance as given in

[21].
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1.4.3 Norm-Trace codes

Norm-trace codes are a natural extension of Hermitian codes. These codes based on norm-

trace curves. Consider the norm-trace curve

X r
q : Tr(y) = N(x)

over the finite field Fqr where r ∈ N, where

Tr(y) = yq
r−1

+ yq
r−2

+ · · ·+ y

is the trace of y and

N(x) = x
qr−1
q−1

is the norm of x. If r = 2, then the norm-trace curve is essentially the Hermitian curve. The

genus of the norm-trace curve X r
q is

g =
qr−1

(
qr−1
q−1

)
2

.

There are q2r−1 affine Fqr -rational points of the form

(a : b : 1) ∈ P2 (Fqr)

where bq
r−1

+ bq
r−2

+ · · · + b = a
qr−1
q−1 , since for every a ∈ Fqr there are exactly q values of

b ∈ Fqr which satisfiy the equation Tr(b) = N(a). Unlike the Hermitian curve and a quotient

of the Hermitian curve, the norm-trace curve, X r
q is not maximal; the number of rational
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points of X r
q does not meet the upper limit of the Hasse-Weil bound

(
qr−1

(
qr − 1

q − 1

)
qr/2 + qr + 1

)
.

Let

n := q2r−1

and P1, . . . , Pn be affine rational points of X r
q . Given a vector space V of functions on X r

q

which do not have poles at any of the Pi, 1 ≤ i ≤ n, consider the map

evNT : V → Fnqr

f 7→ (f(P1), . . . , f(Pn)) .

Then C := evNT (V ) is a code of length n, called a norm-trace code. For α ∈ N with

2g − 2 < α < n, consider the space of functions L(αP∞). It can be shown that

{xiyj : i, j ∈ N, j ≤ qr−1 − 1, δNT (xiyj) ≤ α}

is a basis for L(αP∞) where

δNT (xiyj) := i
(
qr−1

)
+ j

(
qr − 1

q − 1

)

is the pole order of xiyj at P∞ := (0 : 1 : 0). The one-point norm-trace code determined by

α is the algebraic geometry code

C(αP∞) = evNT (L (αP∞)) .
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Note that the length of the code C(αP∞) is q2r−1. Its dimension is bounded below by α+1−g,

with equality achieved when α ≥ 2g − 1, and minimum distance as given in [22].



Chapter 2

Constant fraction decoding

2.1 Graph-based codes

2.1.1 LDPC codes

Low density parity-check (LDPC) codes were introduced in [23] by Galleger but were rela-

tively unnoticed until the 1990s when turbo codes were introduced. It was noticed that the

turbo codes have many similarities with LDPC codes, in particular the decoding algorithm

for turbo codes is a special case for the decoding algorithm for LDPC codes. LDPC codes

derive their name from the fact that it has a sparse parity-check matrix. A Tanner graph

of an [n, k, d] binary code C can be constructed using a parity-check matrix H ∈ F(n−k)×n
2 of

the code. Let G = (L∪̇R,E) be a bipartite graph. The nodes in L = {ci : i ∈ [n]} are called

variable nodes whereas nodes in R = {yj : j ∈ [m]} are called check nodes. The graph G is

a Tanner graph of a (wr, wc)-LDPC code, C if it satisfies the following properties:

• Every node in L denotes a codeword symbol and every node in R represents a parity-

22
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check condition given by a row of H. That is, for every i ∈ [n], the neighbors of ci in

R sum up to zero.

• The set {ci, yj} represents an edge in E if and only if the entry in H corresponding to

row j and column i, Hj,i 6= 0.

• If each row of H has wr 1’s and each column of H has wc 1’s, then wc << n and

wr << m.

2.1.2 Tanner codes

A Tanner code (or generalized LDPC codes) is an LDPC code where the check-nodes of the

bipartite graph representing the parity-check matrix are replaced with shorter codes called

inner codes, rather than being treated as simple parity checks.

Definition 2.1. Let G = (L∪̇R,E) be a bipartite graph. Suppose the nodes in L have

degrees which are elements of the set C := {c1, . . . , c`1} for some `1 ∈ Z+, |L| = n, and the

nodes in R have degrees which are elements of the set D := {d1, . . . , d`2} for `2 ∈ Z+, |R| = m.

Given s ∈ [`2], let Cs ⊆ Fds
q be a linear code of length ds. Assume that the neighborhood of

j ∈ R,

N(j) := {i : (i, j) ∈ E} ⊆ L,

is ordered so that for any vector x = (xi)i∈L ∈ Fnq , x|N(j) denotes (xi)i∈N(j). The associated

Tanner code can be defined as follows:

T (G, {C1, . . . , C`2}) = {c : c|N(j) ∈ Cj ∀ j ∈ R} ⊆ Fnq .



24 Chapter 2. Constant fraction decoding

This definition is not standardized in the literature. If

c1 = · · · = c` = c

and

d1 = · · · = d`2 = d,

then we get the standard definition of Tanner codes, where C is the inner code associated

every parity-check node:

T (G, {C}) = {c : c|N(j) ∈ C} ⊆ Fnq .

2.1.3 Expander codes

Expander codes [1] are Tanner codes formed using expander graphs. Let G = (L∪̇R,E)

be a bipartite graph where the nodes in L have degrees which are elements of the set C :=

{c1, . . . , c`1} for some positive integer `1, |L| = n, and the nodes in R have degrees which

are elements of the set D := {d1, . . . , d`2} for some positive integer `2. Given s ∈ [`2], let

Cs ⊆ Fds
q be a linear code of length ds. Assume that the neighborhood of j ∈ R,

N(j) := {i : (i, j) ∈ E} ⊆ L,

is ordered so that for any vector x = (xi)i∈L ∈ Fnq , x|N(j) denotes (xi)i∈N(j). Assume

c1 < · · · < c`1 and d1 < · · · < d`2 .

Definition 2.2. If for every subset of variable nodes, S ⊆ L whose cardinality is bounded

above, that is |S| ≤ γn, the cardinality of set of all neighbors of S in R, |N(S)| is bounded
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below:

|N(S)| ≥ αc1|S|,

then the graph G is called a (C,D, α, γ) expander graph.

Here, α is called the expansion factor of G. If the underlying bipartite graph in a Tanner

code, T (G, {C1, . . . , C`2}) is an expander graph, then the Tanner code is an expander code.

We refer to these codes as (C,D, α, γ) expander codes. If

c1 = · · · = c`1 = c

and

d1 = · · · = d`2 = d,

then we get vertex expander codes as defined in literature. We refer to these codes as

(c, d, γ, α) expander codes.

Example 2.3. While Figure 2.1 provides a small, toy example, expander graphs on more

vertices are sparse and highly connected meaning that small subsets of L have unique neigh-

bors. Consider the graph G as in Figure 2.1. Let Cj be the inner code associated with

parity-check node yj ∈ R for all j ∈ [6]. The parity-check matrix for the associated Tanner

code, T is:

H =



H(C1) H(C2) 0 0 0 0

H(C1) 0 H(C3) 0 0 0

H(C1) 0 0 H(C4) H(C5) 0

0 H(C2) H(C3) 0 H(C5) 0

0 H(C2) H(C3) 0 0 H(C6)


,

where H(Cj) is the parity-check matrix of the inner code Cj.



26 Chapter 2. Constant fraction decoding

Figure 2.1: A (C = {2, 3, 4},D = {1, 2, 3}, α = 1/2, γ = 3/5) expander graph G.

Expander codes were used to give an asymptotically good family of error-correcting codes

[1]. Given a received word, these codes are known to have linear-time decoding algorithm

that corrects a constant fraction of errors [2]. A linear-time decoding algorithm for (c, d, γ, α)

expander codes is given, provided the expansion factor of G is greater than 3
4

[1]. Several

attempts have been made to find linear-time decoding algorithms for smaller values of α,

that correct a constant fraction of errors, including that of Feldman, Malkin, Servedio, Stein,

and Wainwright who obtained a polynomial-time algorithm decoding a constant factor of

errors for codes based on expander graphs with expansion factor

α >
2

3
+

1

3c
,

where all the variable nodes of the underlying graph have degree c [3]; Chilappagari, Nguyen,

Vasic, and Marcellin’s results giving a linear-time decoding algorithm for codes from graphs
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with expansion factor

α >
`+ 2

2(`+ 1)

using as inner codes generalized parity-check codes with minimum distance at least 2` + 1,

` > 1 [4]; and Viderman’s work [5], which yields a linear-time decoding algorithm for codes

from expander graphs with

α >
2

3
− 1

6c
.

In 2018, Dowling and Gao [6] presented a linear-time decoding algorithm for codes based

on graphs with any expansion factor α > 0 as long as for some positive integer t such that

at most t − 1 errors are corrected and the minimum distance of the inner code is bounded

below by

2t+ c(t− 1)2 − 1,

t > 1/α. In each of these instances, the fraction of errors corrected is described in terms of

γ, given a (c, d, α, γ) expander code.

We generalize the results of [6] to (C,D, γ, α) expander codes which are not required to

satisfy the regularity properties used above and instead allow for multiple left degrees and

multiple right degrees. Given any expansion factor α > 0, we obtain a linear-time decoding

algorithm which corrects a constant fraction of errors. Here C is the set of left degrees; taking

D = {d} and C = {c} recovers the main result of [6]. Table 2.1 places this contribution in

context of prior work.

This study is motivated by that of Richardson, Shokrollahi, and Urbanke [7] in which im-

proved performance of codes designed from irregular bipartite graphs is demonstrated. The

competing demands on the degrees of variable and check nodes in LDPC codes are noted

in [8]. Loosely speaking, variable nodes with high degree receive more information from

the check nodes whereas check nodes with low degree facilitate faster decoding. Irregular
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Expansion Number of Errors Requirements
Requirement Corrected on Cd Expander code Run Time

[1] α > 3
4

(2α− 1)γn parity-check code (c, d) expander code linear

[3] α > 2
3

+ 1
3c

3α−2
2α−1

γn parity-check code (c, d) expander code poly

[4] α > `+2
2(`+1)

γn minimum distance (c, d) expander code linear

at least 2`− 1

[5] α > 2
3
− 1

6c

3α−2+ 1
2c

2
γn parity-check code (c, ε, δ) expander code linear

[6] α > 0 γn minimum distance at least (c, d) expander code linear

2t + c(t− 1)2 − 1
[9] α > 0 γn minimum distance at least (C,D, α, γ) expander code linear

2t + c`1 (t− 1)2 − 1

Table 2.1: Summary of decoding algorithms for various expander codes, where ` > 1, and
t > 1

α
.

graphs allow more flexibility to capitalize on these properties. To the best of our knowledge,

this work is a first step towards writing a linear-time error correction algorithm correcting

a constant fraction of errors in expander codes with arbitrary expansion factors subject to

α > 0. We introduce a bit of notation to describe our results.

Let G = (L∪̇R,E) be a bipartite graph, C := {c1, . . . , c`1}, |L| = n, D := {d1, . . . , d`2},

|R| = m. Assume c1 < · · · < c`1 and d1 < · · · < d`2 . Consider the (C,D, α, γ) expander.

Partition the vertices in L so that

L = L1∪̇L2∪̇ · · · ∪̇L`1

where for each v ∈ Li, deg(v) = ci, and set ni := |Li|. Let

R = R1∪̇R2∪̇ · · · ∪̇R`2

where for each u ∈ Ri, deg(u) = di, and mi := |Ri|.

In this chapter, we present a linear-time decoding algorithm for (C,D, α, γ) expander codes
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where for t > 1
α

the minimum distance of the inner codes is bounded below by

2t+ c`1(t− 1)2 − 1.

2.2 Preliminaries

In this section, we determine the parameters of (C,D, α, γ) expander codes and provide

counting arguements used in the proof of the main theorem. Consider a bipartite graph

G = (L∪̇R,E). Let G be a (C,D, α, γ) expander graph. For every subset of variable nodes

S ⊆ L, Si := S ∩ Li such that |Si| ≤ γni. Since α ≤ 1, we have

α

(
`1∑
i=1

ci|Si|

)
≤ |N(S)|.

For a subset S ⊆ L, its set of neighbors of degree k is

Nk(S) = {v : |N(v) ∩ S| = k} ⊆ N(S)

for k ∈ [d`2 ]. Note that Nk(S) represents the set of all neighbors of S which have exactly k

neighbors in S. Then the set N(S) can then be partitioned as follows

N(S) = N1(S)∪̇N2(S)∪̇ · · · ∪̇Nd`2
(S),

and |N(S)| =
d`2∑
k=1

|Nk(S)|.

Next, we provide lower bounds on the minimum distance and rate of a (C,D, α, γ) expander

code. They depend on the expansion factor of the graph as well as the minimum distances

and rates of the inner codes.
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Lemma 2.4. Consider a (C,D, α, γ) expander graph G = (L∪̇R,E). Let |L| = n.

(a) Assume t > 1
α
. Let S ⊆ L such that |S| ≤ γn,

(tα− 1)c1|S| ≤
d`2∑
k=1

(t− k)|Nk(S)|. (2.1)

(b) Consider the inner code Ci ⊆ Fdi
q , which is a linear code whose minimum distance is

bounded below νi >
1
α
∀ i ∈ [`2]. Then the rate of Tanner code T (G, {C1, . . . , C`2}) ⊆ Fnq

is bounded below by

1− c`1
d1
ωmax

and minimum distance is bounded below by

νminαbγnc c1
c`1
,

where

ωi = di − dim(Ci)∀ i ∈ [`2],

ωmax = max{ω1, ω2, . . . , ω`2}

and

νmin = min{ν1, ν2, . . . , ν`2}.

Proof. (a) Note that

αc1|S| ≤ α

(
`1∑
i=1

ci|Si|

)
≤ |N(S)|.

Consider the number of edges incident with vertices in S. When counted from the

left, number of edges incident with vertices in S is

`1∑
i=1

ci|Si| whereas number of edges
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incident with vertices in S is

d`2∑
k=1

k|Nk(S)| when counted from the right. Thus,

`1∑
i=1

ci|Si| =
d`2∑
k=1

k|Nk(S)|.

It follows that

(tα− 1)c1|S| ≤ (tα− 1)

(
`1∑
i=1

ci|Si|

)

≤ t|N(S)| −
`1∑
i=1

ci|Si|

= t

d`2∑
k=1

|Nk(S)| −
d`2∑
k=1

k|Nk(S)|

=

d`2∑
k=1

(t− k)|Nk(S)|.

(b) For each i ∈ [`2], the codewords of Ci are determined by ωi equations over Fq ∀ i ∈ [`2].

Therefore T (G, {C1, C2, . . . , C`2}) can be defined using at most ωmax|R| equations over

Fq and

dim(T (G, {C1, C2, . . . , C`2}) ≥ n− ωmax|R|.

Note that

d1m ≤
`2∑
i=1

dimi =

`1∑
i=1

cini ≤ c`1n.

Therefore,

m

n
≤ c`1

d1
.
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The lower bound on the rate of (C,D, α, γ) expander code is as follows.

rate(T (G, {C1, C2, . . . , C`2})) ≥
n− ωmax|R|

n

= 1− |R|
|L|

ωmax

≥ 1− c`1
d1
ωmax.

Let c = (ci)i∈L be a non-zero codeword of T (G, {C1, C2, . . . , C`2}) and

S = supp(c) = {i ∈ L : ci 6= 0}.

Given Cj has minimum distance at least νj ∀ j ∈ [`2], thus Nk(S) = 0 for 1 ≤ k ≤ νmin − 1.

Then

c`1|S| ≥
`1∑
i=1

ci|Si| =
d`2∑
k=1

k|Nk(S)|

=

d`2∑
k=νmin

k|Nk(S)|

≥ νmin

d`2∑
k=νmin

|Nk(S)|

= νmin

d`2∑
k=1

|Nk(S)|

= νmin|N(S)|.

If |S| ≤ γn, then we have

|N(S)| ≥ α

(
`1∑
i=1

ci|Si|

)
≥ αc1|S|
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and
`1∑
i=1

ci|Si| ≥ νmin|N(S)| ≥ νminα

(
`1∑
i=1

ci|Si|

)
;

that is, 1 ≥ νminα which is a contradiction, |S| > γn. Let S0 ⊆ S such that |S0| = bγnc.

Note that

|N(S)| ≥ |N(S0)| ≥ αc1|S0| = αc1bγnc

and

c`1|S| ≥ νmin|N(S)| ≥ νminαc1bγnc.

This implies that

|S| ≥ νminαbγnc c1
c`1
.

Since S is the support of an arbitrary nonzero codeword of T (G, {C1, C2, . . . , C`2}), the code

has minimum distance at least

νminαbγnc c1
c`1
.

Better estimates may be used in the proof, but (as we will see) these calculations are sufficient

to prove that the decoding algorithm presented is linear time. For the special case of

c1 = . . . = c`1 = c

and

d1 = . . . = d`2 = d,

we get the result by Dowling and Gao as a corollary [6, Lemma 1].
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2.3 Algorithm and analysis

In this section, we build on [6] to give a decoding algorithm for (C,D, γ, α) expander codes

and prove that it corrects a constant fraction of errors in linear time.

Input:

• (C,D, γ, α) expander graph G = (L∪̇R) such that |L| = n and |C| = `1.

• linear codes Cj ⊆ Fdj
q whose minimum distances are bounded below by 2t+c`1(t−1)2−1

∀j ∈ [`2].

• received word w = (wi)i∈L ∈ Fnq .

• constants τ, τ ′.

Initialize: Set z = w.

Loop: Repeat the following two steps logτ (τ
′n) times.

• local decoding: If for every parity-check node j ∈ R, there exists an associated

codeword c(j) ∈ Cj such that d
(
z|N(j), c

(j)
)
≤ t − 1, then send values of c(j) to nodes

in N(j).

• updating: Set zi = c
(j)
η(i,j) for every variable node i ∈ L, if i receives some value from

its neighbor j ∈ N(i). Randomly choose j if more than one exists. If z is unchanged,

exit Loop and go to Return.

Return: If for some j ∈ R there exists some z|N(j) 6∈ Cj, then output “failure” message.

Else, output return z.

Output: Either a codeword or “failure”.
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Lemma 2.5. Consider a subset of the variable nodes, E ⊆ L such that |E| ≤ γn. Let E

represent the number of errors in the received word z just before any decoding round. Consider

a subset of the variable nodes, E ′ ⊆ L. Let E ′ represent the number of errors in the received

word z just after the decoding round. Then

|E ′|
|E|
≤
(

1− tα− 1

t− 1

c1
c`1

)
. (2.2)

Proof. Consider the following partition of N(E):

• T1 = ∪t−1k=1Nk(E),

• T2 = ∪t+c`1 (t−1)
2−1

k=t Nk(E),

• T3 = ∪d`2k=t+c`1 (t−1)
2Nk(E).

Note that each node in T1 sends only correct values from z, each node in T2 sends no value

from z and each node in T3 may or may not send values from z. If a node in N(E) sends a

value, then it either sends a correct value or an incorrect value from z. We also partition E

into 3 subsets:

• E0, the set of nodes that receives no value from T3 and at least one correct value from

T1,

• E1, the set of nodes that receives at most one value from T3 and at least one correct

value from T1,

• E2 = E\(E0∪̇E1), the set of nodes that received no value from N(E).

Define E3 := {i ∈ L\E : i receives a value from j ∈ T3 and N(i) ∩ L 6= φ}. Note that E3

represents the set of errors in z after the decoding round; E0, E1, E2, E3 are pairwise disjoint
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and

E = E0∪̇E1∪̇E2;

E2∪̇E3 ⊆ E ′ ⊆ E1∪̇E2∪̇E3.

Hence,

|E0∪̇E1| − |E1∪̇E3| ≤ |E| − |E ′|. (2.3)

The set T1 sends values to E0 or E1. The number of values sent is at most equal to the

number of edges which is equal to
t−1∑
k=1

k|Nk(E)|. Write

E0 = E00∪̇ · · · ∪̇E0`1

where ∀vi ∈ E0i, deg(vi) = ci, 1 ≤ i ≤ `1 and

E1 = E10∪̇ · · · ∪̇E1`1

where ∀vi ∈ E1i, deg(vi) = ci, 1 ≤ i ≤ `1. Then

c`1|E0∪̇E1| ≥
`1∑
i=1

ci|E0i∪̇E1i| ≥
t−1∑
k=1

k|Nk(E)|. (2.4)

The set T3 sends at least one incorrect value to E1∪̇E3. Each j ∈ T3 sends at most t − 1

values to E1∪̇E3. Thus,

|E1∪̇E3| ≤ (t− 1)

d`2∑
k=t+c`1 (t−1)

2

|Nk(E)|. (2.5)
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Combining equations (2.3), (2.4) and (2.5) yields

|E| − |E ′| ≥
∑t−1

k=1 k|Nk(E)|
c`1

− (t− 1)

d`2∑
k=t+c`1 (t−1)

2

|Nk(E)|.

Since E ⊆ L such that |E| ≤ γn, by Lemma 2.4,

(tα− 1)c1|E| ≤
t−1∑
k=1

(t− k)|Nk(E)|

=
t−1∑
k=1

(t− k)|Nk(E)|

−
t+c`1 (t−1)

2−1∑
k=t

(k − t)|Nk(E)|

−
d`2∑

k=t+c`1 (t−1)
2

(k − t)|Nk(E)|

=
t−1∑
k=1

(t− k)|Nk(E)|

−
d`2∑

k=t+c`1 (t−1)
2

(k − t)|Nk(E)|.

Note that T2 receives no value from z. Also note that when 1 ≤ k ≤ t− 1,

k ≥ t− k
t− 1

and when k ≥ t+ c`1(t− 1)2,

t− 1 ≤ t− k
c`1(t− 1)

.
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Therefore,

|E| − |E ′| ≥
∑t−1

k=1 k|Nk(E)|
c`1

− (t− 1)

d`2∑
k=t+c`1 (t−1)

2

|Nk(E)|

≥
∑t−1

k=1(t− k)|Nk(E)|
c`1(t− 1)

−

∑d`2
k=t+c`1 (t−1)

2(k − t)|Nk(E)|
c`1(t− 1)

≥ (tα− 1)c1
(t− 1)c`1

|E|.

Thus,
|E ′|
|E|
≤
(

1− tα− 1

t− 1

c1
c`1

)
.

For the special case of

c1 = · · · = c`1 = c

and

d1 = · · · = d`2 = d,

we get the result by Dowling and Gao as a corollary [6, Lemma 2].

Let Ci ⊆ Fdi
q be a linear code with minimum distance

2t+ c`1(t− 1)2 + 1

for all i ∈ [`2]; let α > 0 and t be an integer such that t > 1
α

. We assume that in a round at

most t− 1 errors can be detected. Let

τ =

(
1− tα− 1

t− 1

c1
c`1

)
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and τ ′ = γ as suggested by the proof of Lemma 2.5. We will now prove the main theorem.

Theorem 2.6. Consider a (C,D, α, γ) expander graph G = (L∪̇R,E). Let

C = {c1, . . . c`1},

D = {d1, . . . , d`2},

α > 0 and |L| = n. Let Cj ⊆ Fdj
q be an inner code whose minimum distance is bounded below

by

2t+ c`1(t− 1)2 − 1

for all j ∈ [`2], where t >
1
α
. Then there exists a linear-time decoding algorithm which corrects

all error patterns whose size is bounded above by γn for the Tanner code T (G, {C1, . . . , C`2}) ⊆

Fnq .

Proof. Note that the algorithm corrects a (positive) constant fraction of errors after every

decoding round, by Lemma 2.5. We consider the set of errors before round k+1 of decoding,

Ek. Each decoding operation takes t1 amount of time. After the first step, the decoder

checks the neighboring constraints of adjusted variable nodes. After every iteration of the

algorithm the number of errors is reduced by a constant factor, so

|Ek|+ |Ek−1| ≤ 2|Ek−1|.

Note that {|Ek−1|}∞k=1 represents a geometric sequence. Therefore, the number of decoding
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operations is bounded above by:

t1|R|+ 2c`1t1

logτ (τ ′n)∑
k=0

|Ek|

≤ t1
c`1n

d1
+ 2c`1t1

logτ (τ ′n)∑
k=0

(
1− tα− 1

t− 1

c1
c`1

)k
|E0|

≤ c`1t1
d1

n+ 2

(
t− 1

tα− 1

c`1
c1

)
γn.

Therefore the number of decoding operations is linear in n.

Vertex in R Neighbors in L
A 1,3,4,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59
B 1,2,4,5,6,8,9,10,12,13,14,16,17,18,20,21,22,24,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59
C 1,2,3,5,6,7,9,10,11,13,14,15,17,18,19,21,22,23,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58
D 2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58

Table 2.2: A ({2, 3}, {35, 36}, 1/2, 1/59) expander graph G = (L∪̇R,E) described in terms
of neighborhoods of vertices of R = {A,B,C,D}

Example 2.7. Let C = {2, 3}, D = {35, 36}, α = 1/2, γ = 1/59, n = 59, m = 4,

and G = (L∪̇R,E) be the (C,D, γ, α) expander graph which neighborhoods of vertices in

R := {A,B,C,D} as given in Table 2.2, where L = {1, . . . , 59}. Let C1 and C2 be codes of

lengths 36 and 35 respectively so that each has minimum distance at least 17, and consider

the resulting expander code T (G, {C1, C2}).

Suppose z = (z1, . . . , z59) is a received word with errors in positions z21 and z52. Assume

that A and B correspond to C1 and that C and D correspond to C2. Then A and B send

the same value σ1 associated with z21. We assume that decoding in this round at A and B

happens in such a way that only the coordinate at z21 is modified. This means that all other

neighbors of A and B receive same value as before from A and B. Assume decoding at C

and D happens such that node 21 receives σ2 and node 52 receives σ3 from C as well as σ4

from D. Let this decoding be such that σ1 = σ2 and σ3 = σ4. Moreover, all coordinates of
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z other than z21 and z52 take the same values before decoding (as a random choice from all

received values). Thus, the new z is a codeword of the (C,D, α, γ) expander code.

For the special case of

c1 = . . . = c`1 = c

and

d1 = . . . = d`2 = d,

we get the result by Dowling and Gao as a corollary of Theorem 2.6 [6, Theorem 1].

2.4 Conclusion

We provide a linear-time decoding algorithm which corrects a constant factor of errors for

(C,D, α, γ) expander codes of any positive expansion factor provided the minimum distance

of inner codes satistfy d ≥ 2t + c`1(t − 1)2 − 1. To our knowledge, this is the first such

decoding algorithm for codes based on graphs with multiple left or multiple right degrees.

It remains a challenge to obtain explicit construction of the underlying expander graphs.



Chapter 3

Graph-based codes for hierarchical

recovery

Hierarchical locally recoverable codes (HLRCs) are linear codes which provide a multi-tier

erasure recover. The hierarchical structure allows for an efficient recovery of small number

of erasures by accessing a small subset of symbols and recover a large number of erasures

by accessing bigger recovery sets. In this chapter, we harness graphical properties and inner

codes of Tanner codes to give rise to hierarchical LRCs. Clearly, any LRC can be expressed as

a graph-based code; in contrast, here we begin with a graph to construct an (H)LRC. Some

of this work was done in collaboration with Allison Beemer [63]. In graph-based message-

passing decoding, stopping sets characterize decoder failure over erasure channels [57]. As

LRCs are designed for the erasure setting, we can express message-passing decoder failure

for HLRCs in each level of the hierarchy as specialized stopping sets within that level. We

show that the minimum size of a stopping set increases with the level of hierarchical repair.

We consider the following definition of Tanner codes throughout this chapter.

Definition 3.1 (Tanner Codes). Let G = (L∪̇R,E) be a bipartite graph where the nodes

42
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in L have degrees

C := {c1, . . . , cn}

such that |L| = n and nodes in R have degrees

D := {d1, . . . , dm}

such that |R| = m. The Tanner code

T (G, {C1, . . . , Cm})

over Fq is defined as follows:

T (G, {C1, . . . , Cm}) = {c : c|N(j) ∈ Cj ∀j ∈ [m]} ⊆ Fnq ,

where the neighborhood N(j) is the set of nodes adjacent to the jth node in R.

Assume that

c1 ≤ c2 ≤ . . . ≤ cn

and

d1 ≤ d2 ≤ . . . ≤ dm.

Moreover,

Cj ⊆ Fdj
q

for all j ∈ [m]. It is possible that for some j, k ∈ [m], j 6= k, dj = dk but Cj 6= Ck.

Recall that the girth of a graph G, denoted g(G), is the minimum length of a cycle contained

within the graph. Because a Tanner code is derived from a bipartite graph, its girth must be
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even. Hierarchical locally recoverable codes (HLRCs) [12, 53] are linear codes that provide

a method of multi-tier erasure recovery; they are defined as follows.

Definition 3.2 (HLRCs, [12]). An [n, k, d] code C is a code with h-level hierarchical locality

with local parameters

[(t1, ρ1), . . . , (th, ρh)]

if

ρ1 ≥ · · · ≥ ρh,

and for every i ∈ [n], there exists a punctured code Ci such that

i ∈ supp(Ci)

and the following conditions hold:

• dim(Ci) ≤ t1,

• dmin(Ci) ≥ ρ1,

• Ci is a code with (h− 1)-level hierarchical locality with local parameters

[(t2, ρ2), . . . , (th, ρh)].

For an HLRC as in Definition 3.2, we refer to the punctured codes Cj with parameters

(tj, ρj)

as belonging to the jth level of hierarchy. Up to ρj − 1 erasures can be corrected using

the jth level of hierarchy based on the minimum distance. Notice that to fully exploit the
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hierarchical structure, we should choose the highest index of a level such that correction is

possible with a code in that level (thus minimizing the dimension of the code Cj); as a result,

level j may be used to correct between ρj+1 and ρj − 1 erasures. The notion of availability

can be extended to HLRCs as follows.

Definition 3.3 (HLRCs with availability). An [n, k, d] code C is code with a h-level hierar-

chical locality with local parameters

[(t1, ρ1), . . . , (th, ρh)]

and availability

τ1, . . . , τh

if the following conditions hold.

• C is an

(t1, ρ1)

LRC with availability τ1.

• Each of the punctured codes

C|Ij1,i∪{i} ∀j1 ∈ [τ1], i ∈ [n]

is a (h− 1)-level HLRC with local parameters

[(t2, ρ2), . . . , (th, ρh)]

and availability

τ2, . . . , τh.
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3.1 Tanner codes for (hierarchical) recovery

In this section, we show how Tanner codes can be considered as (H)LRCs when the inner

codes are chosen to be locally recoverable codes. Let T := T (G = (L∪̇R,E), {C1, . . . , Cm}) ⊆

Fnq . Let |L| = n, C := {c1, . . . , cn} be set of all degrees of nodes in L such that `1 ≤ n are

distinct. Assume ni variable nodes have degree ci ∀i ∈ [`1]. For all j ∈ [ni] given xij ∈ L of

degree ci, neighborhood of xij is

N(xij) = {yij1, . . . , yijci}.

Let the code associated with yij`∈N(xij): Cij` for all 1 ≤ ` ≤ ci. If yij` = yi′j′`′ for some

(i, j, `) 6= (i′, j′, `′); then Cij` = Ci′j′`′ .

3.1.1 Tanner codes as LRCs

We begin the study of Tanner codes as LRCs with repair sets by considering locality prop-

erties to recover a single erasure.

Theorem 3.4. For each xij ∈ L, let Cij` be an

(dij`, kij`, rij`)

LRC with availability

aij`

for all 1 ≤ ` ≤ ci.
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1. If g(G) = 4, T has locality r and availability a given by

r = max
(i,j)

min
` s.t.

yij`∈N(xij)

{rij`}

and

a = min
(i,j)

max
` s.t.

yij`∈N(xij), rij`≤r

{aij`}.

2. If g(G) ≥ 6, T has locality r and availability a given by

r = max
(i,j,`)
{rij`}

and

a = min
(i,j)

ci∑
`=1

aij`.

Proof. 1. Let g(G) = 4 and consider an erased node xij for some i ∈ [`1] and j ∈ [ni]. The

most efficient way to recover xij is to access the neighbor yij` such that the associated

inner code Cij` has minimum locality:

min
` s.t. yij`∈N(xij)

{rij`}.

To ensure that any choice of erased node can be recovered, we maximize over all

possible i, j pairs, yielding the result.

The number of disjoint sets of size at most r that can then recover the erased node xij

is

max
` s.t. yij`∈N(xij), rij`≤r

{aij`}.

The availability must apply to the recovery of any erasure, so we minimize over all
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possible i, j pairs, yielding the result.

2. Now, let g(G) ≥ 6. Since there are no 4-cycles in G, none of the repair groups of xij

associated with different yij`’s intersect. Thus, we may increase availability significantly

by taking the locality r to be a maximum over the neighboring rij`’s. Consider the

erased node xij and its neighboring set

N(S) = {yij1, . . . , yijci}.

Again due to the lack of 4-cycles, xij can now be repaired using

ci∑
`=1

aij`

disjoint repair groups of size at most r. We again minimize over all i, j pairs, yielding

the result.

We now extend the above results to the case of multiple erasures, so that the set of erased

nodes is given by

S = {xi1j1 , . . . , xisjs},

where

|S| = s ≤ c1

and any pair of erased nodes shares at most one common neighbor in R. If the girth of T

is at least 6, then this last condition is guaranteed; in graphs of girth 4 it remains possible

to have such a set S, though not every erasure set of size s ≥ 2 will have this property. The
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neighborhood of S is equal to

N(S) =
s⋃
`=1

N(xi`j`),

a union that is not necessarily disjoint.

Theorem 3.5. For each xij ∈ L, let Cij` be an

(dij`, kij`, rij`)

LRC with availability

aij`

for all 1 ≤ ` ≤ ci. Then T has locality equal to

r = smax
(i,j,`)
{rij`}.

Furthermore,

1. If g(G) = 4, T has availability given by

a = min
(i,j,`)
{aij`}.

2. If g(G) ≥ 6, T has availability given by

a = min
(i,j,`)
{(ci − s+ 1)aij`} .

Proof. Consider the set of erased nodes S such that

|S| = s ≤ c1
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and the intersection of the neighborhoods of any two elements in S has size at most one. The

most efficient way to recover xij would be to access its neighbor yij` such that the associated

inner code Cij` has minimum locality. Unfortunately, there is no guarantee that another

node in this repair group does not also belong to S. However, there are at least

ci − (s− 1) ≥ 1

neighbors of xij that have no other elements of S in its neighborhood. Thus, at most

max
` s.t. yij`∈N(xij)

{rij`}

other nodes need to be contacted to repair xij. To ensure that every erased node can be

recovered, we maximize this over all i ∈ [`1] and j ∈ [ni].

1. Let g(G) = 4. The number of disjoint sets that can recover a single erased node xij

for some i ∈ [`1] and j ∈ [ni] is at least

min
`
{aij`}.

The collection of s erasures is then recovered using s (not necessarily disjoint) recovery

sets, each of size at most

max
(i,j)

max
` s.t. yij`∈N(xij)

{rij`}.

By taking unions comprised of one repair group per bit, we will have at least

a = min
(i,j,`)
{aij`}
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repair groups of size at most

r = smax
(i,j,`)
{rij`}

for the set S.

2. Now, let g(G) ≥ 6, and consider the erased node xij for some i ∈ [`1] and j ∈ [ni] and

its neighboring set

N(xij) = {yij1, . . . , yijci}.

Since G has no 4-cycles, none of the repair groups of xij associated with yij` intersect

with the repair groups of yij`′ , for all ` 6= `′ ∈ [ci]. Recall that at least

ci − s+ 1

of xij’s neighbors are not adjacent to any other element of S. This means that xij can

be repaired using at least

(ci − s+ 1) min
`
{aij`}

different repair groups of size at most

max
(i,j,`)
{rij`}.

As before, by taking unions comprised of one repair group per bit, we will have at least

a = min
(i,j,`)

(ci − s+ 1){aij`}

repair groups of size at most

smax
(i,j,`)
{rij`}

for the set S.
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From the previous two results, we can see that in the case of s erasures, the best that can be

guaranteed by exploiting the inner code LRC structure is that the size of a repair set for the

erasures increases a full s-fold from the size of a repair group for a single erasure in a girth

≥ 6 graph. This motivates the study of Tanner codes as HLRCs for the case of multiple

erasures.

3.1.2 Tanner codes as HLRCs

Next, we show that Tanner codes may be viewed as HLRCs with h = 2 or h = 3 levels by

presenting results on the parameters of h particular choices of inner codes (see the proofs of

Theorems 3.6 and 3.7, respectively).

Theorem 3.6. Let the inner code

Ci := (di, ki, δi)

of Tanner code T be an LRC with locality parameters (ti, ρi) and availability τi for all i ∈ [m].

Then T is an HLRC with 3-level hierarchical locality with locality parameters

[(t̃1, ρ̃1), (t̃2, ρ̃2), (t̃3, ρ̃3)],
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where

(t̃1, ρ̃1) =

(
max
(i,j)

ci∑
`=1

kij`, min
u∈[m]

δu

)
,

(t̃2, ρ̃2) =

(
max
u∈[m]

ku, min
u∈[m]

δu

)
,

(t̃3, ρ̃3) =

(
max
u∈[m]

tu, min
u∈[m]

ρu

)
.

Furthermore, the HLRC has availability

τ̃1 = 1,

τ̃2 = min
j

cj,

τ̃3 = min
u∈[m]

τu

if g(G) ≥ 6 and availability

τ̃1 = 1,

τ̃2 = 1,

τ̃3 = min
u∈[m]

τu

if g(G) = 4.

Proof. Let xij denote an erased node. Consider the code comprised of xij and all variable

nodes distance 2 from xij (i.e. all neighbors of neighbors of xij); this is a punctured code

relative to T . The dimension of this concatenated code is bounded above by

ci∑
`=1

kij`
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and its minimum distance is equal to

min
`∈[ci]

δij`.

The result for the 1st level of hierarchy follows from maximizing the upper bound and min-

imizing the lower bound on minimum distance over all elements of L. For the 2nd level

of hierarchy, consider the set of inner codes associated with neighbors of erased node xij.

Each of these inner codes is a punctured code obtained from the 1st level concatenated code

associated with xij, the dimension of each is bounded above by

max
u∈[m]

ku,

and the minimum distance of each is bounded below by

min
u∈[m]

δu.

The 3rd level of hierarchy is associated with the locality of each of the inner codes. In

particular, the punctured codes associated with the recovery set of each inner code are have

dimension at most

max
u∈[m]

tu

and the minimum distance is at least

min
u∈[m]

ρu.

Regardless of g(G), the availability at the 1st level of hierarchy is 1 because a single punctured

code associated with the recovery set of each inner code at this level consists of all (distance

2) variable node neighbors of an erased node. When g(G) ≥ 6, availability at the 2nd level
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of hierarchy is

min
j

cj,

since any inner code associated with any neighbor of an erased node can be used for recovery

and the neighborhoods of the check node neighbors of an erased node are pairwise disjoint.

The availability at the 3rd level of hierarchy in this case is

τ̃3 = min
u∈[m]

τu

because we may only look at a punctured code associated with the recovery set of a particular

inner code per Definition 3.3. Thus, the availability is given by the minimum availability of

an inner code LRC. Now, suppose g(G) = 4. The availability at the 2nd level of hierarchy

is 1 because the inner code associated with any neighbor of an erased node can be used for

recovery, but we can no longer guarantee that the neighborhoods of these check nodes are

disjoint. The availability at the 3rd level of hierarchy is again

min
u∈[m]

τu.

We can also consider T as an HLRC with two levels of hierarchy, as described in the next

theorem. The two level recovery offers an advantage in terms of availability over the three

level recovery above given g(G) ≥ 6. The availability in the 2nd level (3rd level of three

tier recovery) is larger due to the larger punctured codes (the 1st level) containing the 2nd

level. This means that we can simultaneously access the locality of any inner code in the

neighborhood of the erased symbol. It is always ideal to eliminate small cycles in graph-

based codes and hence the improvement in availability for Tanner codes based on graphs
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with g(G) ≥ 6 is meaningful.

Theorem 3.7. Let the inner code

Ci := (di, ki, δi)

of Tanner code T be an LRC with locality parameters (ti, ρi) and availability τi for all i ∈ [m].

Then T is an HLRC with 2-level hierarchical locality with locality parameters

[(t̃1, ρ̃1), (t̃2, ρ̃2)],

where

(t̃1, ρ̃1) =

(
max
`∈[m]

ci∑
`=1

kij`, min
u∈[m]

δu

)

(t̃2, ρ̃2) =

(
max
u∈[m]

tu, min
u∈[m]

ρu

)
Furthermore, the HLRC has availability

τ̃1 = 1,

τ̃2 = min
(i,j)

ci∑
`=1

τij`

if g(G) ≥ 6 and availability

τ̃1 = 1,

τ̃2 = min
u∈[m]

τu

if g(G) = 4.

Proof. The proof follows from the proof of Theorem 3.6 by letting the 1st level of the 3-level
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HLRC be the 1st level of the 2-level HLRC, and the 3rd level of the 3-level HLRC be the

2nd level of the 2-level HLRC. Notice that the availability at the 3rd level in a 3-level HLRC,

that is 2nd level of the 2-level HLRC, has increased for the case g(G) ≥ 6. This is because

we may take all punctured codes associated with the recovery sets of all inner codes within

the entire concatenated 1st level code, and are not limited to a single inner code. In the

case where g(G) ≥ 6, the neighborhoods of the check node neighbors of an erased node are

pairwise disjoint and each punctured codes associated with the recovery sets of each inner

code can be considered.

3.2 Stopping Sets & Local Recovery

A significant advantage of giving graph-based codes an (H)LRC structure is the opportunity

to implement graph-based message-passing decoding algorithms, which have low implemen-

tation complexity when operating on sparse graphs. Over an erasure channel, a so-called

peeling decoder, which iteratively “peels off” erasures by contacting neighboring check nodes,

is used [58]. Stopping sets of Tanner codes where each inner code is a simple parity-check

(e.g. in the case of low-density parity-check codes) are patterns that cause iterative decoder

failure over an erasure channel [57]. Formally, a stopping set is a subset S of variable nodes

such that every check node adjacent to S is adjacent to at least two elements of S, stopping

sets completely characterize erasure patterns where a peeling decoder will get stuck. In the

case where each check node acts as its own (nontrivial) inner code on a subset of variable

nodes (i.e. Tanner codes), the definition of stopping sets generalizes. Several previous works

take the generalization of two to be

dmin(C),
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where C is an inner code [59]. However, it is not necessarily the case that every word of

weight

dmin(C)

is a codeword, and thus some such erasure patterns remain correctable with this definition.

Hence for our application we adopt the following:

Definition 3.8. Consider a Tanner code with graph G = (L∪̇R,E). A generalized stopping

set is a nonempty subset S ⊆ L of variable nodes such that the support of the variable nodes

in S adjacent to any check node j contains the support of a codeword of Cj, the inner code

at check node i.

Notice that a codeword whose values are erased at a generalized stopping set could be

corrected by each adjacent inner code in at least two distinct ways; hence, the peeling

decoder will be stuck. Conversely, if the peeling decoder gets stuck, the erased set must

form a generalized stopping set. In the case of our 3-level graph-based HLRCs, we define

hierarchical stopping sets in order to characterize message-passing decoder failure at each

level.

Definition 3.9. 1. A 3rd level stopping set, φ 6= S ⊆ L is contained within a single inner

code Cj such that the punctured code obtained by restriction to each recovery set of

the LRC Cj contains the support of a codeword of that punctured code.

2. A 2nd level stopping set is a nonempty subset S of variable nodes contained within the

neighborhood of a single check node such that S contains the support of a codeword

of the associated inner code (i.e. S is a generalized stopping set within a single inner

code of the 2nd level of the HLRC).

3. A 1st level stopping set is a nonempty subset S of variable nodes contained within a

concatenated code associated with the 1st level of the HLRC such that the intersection
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of S with the neighborhood of each check node of the concatenated code contains the

support of a codeword of the associated inner code (i.e. S is a generalized stopping set

within a single concatenated code of the 1st level of the HLRC).

One important parameter of a given graphical representation G of a code C is the minimum

size of a stopping set, smin(G). Note that in any code C fewer than smin(G) erasures are

guaranteed to be correctable by the peeling decoder. This value is referred to as the stopping

distance or stopping number of the representation [60, 61, 62]. Considering that the support

of any codeword of C must form a stopping set in any representation, we observe that

smin(G) ≤ dmin(C).

Importantly, the inequality may be strict. The fact that a peeling decoder is being used

is paramount: stopping sets indicate where iterative decoders fail, not necessarily where

any decoder would fail. This is comparable to the failure of local recovery not necessarily

implying failure of global recovery in an LRC.

Theorem 3.10. Let

smin(Gj)

denote the minimum size of a jth level stopping set for j ∈ [3], and let ρj denote the minimum

distance of the LRC inner code Cj. Then,

min
j
ρj ≤ smin(G3) ≤ smin(G2) = min

j
dmin(Cj) ≤ smin(G1)

Proof. Any 2nd level stopping set associated with inner code Cj has weight lower bounded

by

dmin(Cj),
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and a minimum weight codeword of Cj is a 2nd level stopping set. In other words,

smin(G2) = min
j
dmin(Cj).

Consider a minimum 2nd level stopping set S; by the above argument,

|S| = min
j
dmin(Cj).

Consider a node j ∈ R so that S is contained in the neighborhood of the associated inner

code Cj and

|S| = dmin(Cj).

By definition, S forms the support of a codeword of LRC Cj, so the intersection of S with any

punctured code associated with a recovery set of Cj must either be empty or must contain at

least ρj elements by the definition of the minimum distance of the punctured code associated

with a recovery set of Cj. Thus, S forms a 3rd level stopping set, and

smin(G3) ≤ |S| = smin(G2).

For the lower bound on smin(G3), notice that the intersection of any 3rd level stopping set

associated with LRC inner code Cj with each punctured code associated with a recovery set

of Cj must be a codeword of the punctured code associated with a recovery set of an inner

code. Thus, the minimum distance of a punctured code associated with a recovery set of an

inner code of Cj, ρj, gives a lower bound on the stopping set size. We then minimize over

all inner codes. Finally, consider a minimum 1st level stopping set S, and the intersection of

S with the neighborhood of some check node yj that is adjacent to a vertex in S. Call this

subset S ′. By definition of a 1st level stopping set, it must be the case that S ′ contains the
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support of a codeword of Cj, where Cj the inner code associated with yj; in other words, S ′

is a 2nd level stopping set. Then,

smin(G2) ≤ |S ′| ≤ |S| = smin(G1).

Remark 3.11. Notice that

dmin(C),

where C is the code defined by the entire Tanner graph, gives an upper bound on

smin(G1)

since the support of any codeword of C restricted to any concatenated code (such that the

result is nonempty) must result in codewords at each of the constituent inner codes.

Remark 3.12. A natural question is when the inequalities of Theorem 3.10 are met with

equality. First observe that the collection of 2nd level stopping sets is contained in the

collection of 3rd level stopping sets: any codeword of an inner code Cj satisfies each of the

recovery sets of Cj. Strict set inclusion occurs exactly when the punctured code associated

with a recovery set of an inner code does not completely define Cj (i.e. when more checks

beyond the code checks are needed). If the punctured code associated with a recovery set of

an inner code does define the code, we have

smin(G3) = smin(G2);
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otherwise the inequality may be strict. Next, consider a 1st level stopping set S of size

smin(G1),

and suppose

smin(G1) = min
j
dmin(Cj).

Then the intersection of S with the neighborhood of each constituent check node of its

associated concatenated code must be equal to S. As long as c1 > 1, this can only occur if

min
j
dmin(Cj) = 1

or g(G) = 4. Otherwise,

smin(G2) < smin(G1).

Recall that we iteratively correct erasures in an HLRC using punctured codes within the

Tanner codes, i.e. by decreasing the level index. Increasing the level of hierarchy needed for

correction is detrimental in terms of locality, but may be necessary if a higher number of

erasures must be corrected. Theorem 3.10 and Remark 3.12 imply that decreasing the level

index of an HLRC from a Tanner code does not decrease the number of correctable erasures,

and in fact can give an erasure correction advantage in many cases, even when restricting to

a message-passing peeling decoder.

3.3 Conclusion

In this chapter, we study local erasure recovery in Tanner codes. Establishing some inde-

pendent results that were built upon in joint work with Allison Beemer. We provide bounds
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on the locality and availability of Tanner codes when the inner codes are locally recoverable

codes. Moreover, we show that in this setting the Tanner codes allow hierarchical local re-

covery. This analysis results in insights about the behaviour of tiered stopping sets of Tanner

code HLRCs.

We are currently comparing our bounds on the locality and availability of Tanner codes

where the underlying inner codes are LRCs with bounds on the locality and availability of

existing (H)LRC constructions.



Chapter 4

Twisted algebraic geometry codes

In this chapter, we modify the construction of twisted Reed-Solomon codes given by [16] and

twisted Hermitian codes [31] for codes on a quotient of the Hermitian curve and norm-trace

codes to yield new families of codes, with the goal of producing codes which have large Schur

squares. We focus on one-point algebraic geomtry codes.

4.1 Code-based cryptography

Post-quantum cryptography uses classical techniques to secure information from quantum

attacks. Some major topics in post-quantum cryptography include lattice-based, supersingu-

lar elliptic curve isogeny-based, code-based, etc. Here we consider code-based cryptography.

A typical cryptosystem can be defined using 3 main algorithms: key generation, encryption

and decryption. A code-based cryptosystem can be defined as follows:

• Key Generation: Consider an [n, k, d] code C over a finite field Fq capable of cor-

recting at least t errors. Let G ∈ Fk×nq be a generator matrix of C. Let P ∈ Fk×kq a

64
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random permutation matrix. Choose a random nonsingular matrix S ∈ Fk×kq and a

permutation matrix P ∈ Fn×nq . The public key is

Gpub := SGP.

The private key is

(S,D, P )

where D is a suitable decoding algorithm of C.

• Encryption: Given a message m ∈ Fkq , Alice chooses a random vector z ∈ F1×n
q such

that wt(z) < t, and sends

c = mGpub + z = mSGP + z

to Bob.

• Decryption: On receiving c, Bob computes

cP−1 = mSG+ zP−1,

recovers mS using the decoding algorithm D and computes

mSS−1

to retrieve m.
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4.1.1 McElice cryptosystem

The McElice cryptosystem is a code-based cryptosystem introduced in [10]. The underlying

code is a binary Goppa code.

Figure 4.1: McEliece Cryptosystem

To maintain security, the underlying code C must not be revealed. This is ensured by choosing

random linear codes whose decoding is an NP-hard problem, as shown in [24]. The McEliece

cryptosystem is thought to be resistant to the existing attacks (including quantum attacks).

The key size of the McEliece cryptosystem is very large and this makes practical adoption

of the cryptosystem harder. Therefore, variants of the McEliece cryptosystem are studied

by replacing the underlying Goppa codes with other linear codes [25], [48]. However, the

additional structure can cause vulnerabilities and thus lead to attacks on the cryptosystem

[27], [15], [36].

Schur products were originally used to define error-locating pairs [13] and now arise in several

applications, such as secret sharing [14] and code-based cryptography [15]. It is difficult to
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find codes whose Schur squares have a high dimension. Beelen, Puchinger, and Nielsen [16],

introduced twisted Reed-Solomon codes, drawing upon ideas from the twisted Gabidulin

codes of Sheekey [17]. These codes have high Schur square dimensions. In prior work,

we extended these ideas to construct twisted Hermitian codes [31] whose Schur square has

large dimension and could be considered as a replacement of Goppa codes in the McEliece

cryptosystem. Later we consider an attack on this cryptosystem. The results are summarized

in the next two sections.

We employ a few basic results from additive number theory (the notion of a Sidon set) to

determine the lower bound on Schur squares of twisted algebraic geometry codes.

Definition 4.1. A set A ⊆ N is a finite Sidon set provided it is finite and ∀a, b, c, d ∈ A,

a+ b = c+ d if and only if (a, b) = (c, d) or (a, b) = (d, c).

Erdös and Turan show in [43] that every subset of a Sidon set is itself a Sidon set and

that every nonempty subset of N contains a Sidon set. For finite and nonempty A ⊆ N,

let S[A] denote the largest subset of A that is a Sidon set. Gowers shows in [44] that

| S[A] |≤ 2
√
| A |.

Given an algebraic geometry code C(αP∞) on the curve X . Consider c = evQH(f), c′ =

evQH(f ′) ∈ C(αP∞) with f, f ′ ∈ L (αP∞). Then

c ∗ c′ = evQH(f) ∗ evQH(f ′) = evQH(ff ′).

Since (f) ≥ −αP∞ and (f ′) ≥ −αP∞,

(ff ′) = (f) + (f ′) ≥ −2αP∞.

Thus ff ′ ∈ L (2αP∞), that is C(αP∞)2 ⊆ C(2αP∞), and equality is achieved when α ≥ 2g+1.
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In this case, C(αP∞) has dimension α + 1− g and

dim C(αP∞)2 = dim C(2αP∞) = 2α + 1− g <<

(
(α + 1− g) + 1

2

)
; (4.1)

see also [37] for details. Note the following proposition where given a code C of dimension k,

it is desirable for C2 to have dimension close to
(
k+1
2

)
or quadratic in k. This is in contrast to

that seen in (4.1) where the dimension is linear in k. This serves as motivation to consider

twisted algebraic geometry codes.

Proposition 4.2. [[14, Theorem 2.3]] Let n : N → N be such that n(k) ≥
(
k+1
2

)
. Then for

some positive real number δ and k large enough,

Pr

[
dim C2 =

(
k + 1

2

)]
≥ 1− 2−δ(n(k)−(k+1

2 )) (4.2)

where C is chosen uniformly at random from the family of all [n(k), k, d] codes over Fq whose

generator matrices are in systematic form.

4.1.2 Code-based cryptosystem based on twisted Hermitian codes

Consider the set

B(αP∞) :=
{
xiyj : i, j ∈ N, j ≤ q − 1, δH(xiyj) ≤ α

}
,

and the vector space L(αP∞) := 〈B(αP∞)〉 on the Hermitian curve

Xq : yq + y = xq+1.
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Let α = uq + v(q + 1) ≥ q2 − q − 1 where u, v ∈ N. Let ` ∈ Z+,

t = ((r1, s1), . . . , (r`, s`)) ∈
(
(Z \ {0})2

)`
be a vector whose coordinates are ` pairwise distinct ordered pairs of nonzero integers, and

h = ((a1, b1), . . . , (a`, b`)) ∈
(
Z2
)`

be a vector whose coordinates are ` pairwise distinct ordered pairs of integers such that

akq + bk(q + 1) ≤ uq + v(q + 1) < (u+ rk)q + (v + sk)(q + 1) < q3

for k = 1, . . . , `. Let

η = (η1, . . . , η`) ∈ (Fq2 \ {0})` .

The set of (t,h,η)-twisted bivariate polynomials is

Bt,h,η(αP∞) =

(
B(αP∞) \

⋃̀
k=1

{
xakybk

})
∪
⋃̀
k=1

{
xakybk + ηkx

u+rkyv+sk
}
.

Let Lt,h,η(αP∞) = 〈Bt,h,η(αP∞)〉. The twisted Hermitian code Ct,h,η(αP∞) is

Ct,h,η(αP∞) := evH (Lt,h,η) ⊆ Fnq2 .

We consider the potential use of twisted Hermitian codes in a code-based cryptosystem.

First, we abstract the key elements of the McEliece cryptosystem for use with an arbitrary

linear code (in place of the Goppa code in [10]). Then we consider the role of squares in

attacking the resulting system, noting how the twisted codes avoid direct distinguisher attack.
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This section concludes with considerations prompted by the recent attack of Lavauzelle and

Renner [28] on a twisted Reed-Solomon code-based cryptosystem.

The Schur square distinguisher is an attack applied to the McEliece cryptosystem imple-

mented with Reed-Solomon codes in [36]. Though the attacker does not know the linear

code C underlying GPUB, the distinguisher may allow the attacker to know dim C2. Schur

squares of Reed-Solomon and Hermitian codes have low dimensions. Therefore, dim C2 can

be used to distinguish these codes from a random linear code. This is demonstrated in [36]

where generalized Reed-Solomon codes are considered; Schur products are used to identify

C2 within the family from which it is drawn; and the Sidelnikov and Shestakov algorithm

may then be used to identify C. See also [47] for other approaches involving generalized

Reed-Solomon codes. Since dim C2 can be an identifying characteristic of the family of codes

from which C is drawn, the attacker may then use a family-specific structural attack on

intercepted messages. Both twisted Reed–Solomon and twisted Hermitian codes may avoid

a direct application of this attack if constructed to have large dimensional squares.

Based on the attacks described above, it is desirable to implement this code-based cryptosys-

tem with a family of codes whose Schur squares are indistinguishable from those of random

codes. With this in mind twisted Reed-Solomon codes were introduced in [16] and can be

defined as follows.

Definition 4.3. Let α1, . . . , αn ∈ Fq be pairwise distinct field elements, and fix 1 ≤ k ≤ n,

` ≥ 1. Let

t ∈ {1, . . . , n− k}`,

h ∈ {0, · · · , k − 1}`,

and

η ∈ (Fq\{0})`.



4.1. Code-based cryptography 71

Let

f ∈

{
k−1∑
i=0

aix
i +
∑̀
j=1

ηjahjx
k−1+tj : ai ∈ Fq

}
.

A twisted Reed-Solomon code of length n and dimension k is:

Ct,h,η(k) = {(f(α1), · · · , f(αn))} .

Consider the evaluation map

evα : Fq[x] → Fnq

f 7→ (f(α1), · · · , f(αn)) .

Let q0 be a prime, and q = q` = q2
`

0 . Lavazuelle and Renner showed in [28] that the subfield

subcode Csub = Ct,h,η(k) ∩ Fnq0 of Ct,h,η(k) is given by

Csub =
〈
evα(xi) : i ∈ {0, 1, · · · , k − 1}\{h1, h2, · · · , h`}

〉
Fq0

.

Given that Csub is not a Reed-Solomon code, the Sidelnikov-Shestakov attack cannot be

directly applied. However, for ` ≤ 1
2
(
√
n− 3) the Schur square C2sub is a Reed-Solomon code.

The length of C2sub is n and its dimension is 2k− 1. This idea forms the basis for an efficient

key-recovery attack on the code-based cryptosystem employing twisted Reed-Solomon codes.

The similarity in construction of twisted Hermitian codes and twisted Reed-Solomon codes

suggests a possible attack on the cryptosystem based on the twisted Hermitian codes. We

now consider the possible components of such an attack. The code Ct,h,η(αP∞) over Fq2 ,

where

Fq20 = Fs0 $ Fs1 $ · · · $ Fs` = Fq2 ,
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and consider the subfield subcode

Ct,h,η(αP∞) ∩
(
F2
q0

)n
where h = ((a1, b1), . . . , (a`, b`)) ∈

(
Z2
)`

.

Lemma 4.4. Let f ∈ 〈M〉Fq2 ⊆ Fq2 [x, y] and P1, . . . , Pn ∈ Xq20(Fq20). Then evH(f) ∈ Fn
q20

if

and only if f ∈ 〈M0〉F
q20

where

M0 :=
{
xiyj : i, j ∈ N, 0 ≤ i ≤ q20 − 1, 0 ≤ j ≤ q0 − 1

}
.

Proof. Suppose f ∈ 〈M0〉F
q20

and P1, . . . , Pn ∈ Xq20(Fq20). Then it is clear that evH(f) ∈ Fn
q20

.

Conversely, consider c := evH(f) ∈ Fn
q20

where f ∈ 〈M〉Fq2 ⊆ Fq2 [x, y]. According to [46,

Lemma 6], there exists

p =
∑
α∈F

q20

∏
α′∈F

q20
\{α}

x− α′

α− α′

∑
β∈Bα

γα,β
∏

β′∈Bα\{β}

y − β′

β − β′


such that evH(p) = c. Notice that p ∈ 〈M0〉F

q20

⊆ 〈M〉Fq2 . Since evH : 〈M〉Fq2 → Fnq2 is an

injective map and

c = evH(p) = evH(f),

it follows that

f = p ∈ 〈M0〉F
q20

.
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Proposition 4.5. Given a twisted Hermitian code C = Ct,h,η(αP∞) and P1, . . . , Pn ∈ Xq20(Fq20),

C ∩ Fnq20 =

evH(f) : f ∈

〈
B(αP∞) \

⋃̀
k=1

{
xakybk

}〉
F
q20

 .

Proof. Consider evH(f) where f ∈
〈
B(αP∞) \

⋃`
k=1

{
xakybk

}〉
F
q20

. Then evH(f) ∈ C ∩ Fn
q20

as each Pi ∈ Xq0(Fq20). On the other hand, suppose that evH(f) ∈ C ∩ Fn
q20

. Then Lemma 4.4

applies so that

f ∈

〈
B(αP∞) \

⋃̀
k=1

{
xakybk

}〉
F
q20

.

This result prompts the conjecture that the Schur square of the subfield subcode of a twisted

Hermitian code in Proposition 4.5 is a Hermitian code. This is related to [27, Conjecture

19]. Positive resolution of these conjectures would lay the groundwork for an attack on a

twisted Hermitian code-based cryptosystem.

4.2 Twisted codes from a quotient of the Hermitian

curve

Codes over a quotient of the Hermitian curve are studied because they can have better code

parameters (such as rate or relative distance) as compared to those of the Hermitian code.

In this section, we look at the twisted codes from a quotient of the Hermitian curve which

may offer similar advantages over the twisted Hermitian codes.
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Consider the set

B(αP∞) :=
{
xiyj : i, j ∈ N, j ≤ q − 1, δQH(xiyj) ≤ α

}
,

and the vector space L(αP∞) := 〈B(αP∞)〉 from a quotient of the Hermitian curve

Xq,m : yq + y = xm

such that m ∈ N and m|(q + 1). Let

α = uq + vm ≥ (m− 1)(q − 1)− 1

where u, v ∈ N. Let ` ∈ Z+,

t = ((r1, s1), . . . , (r`, s`)) ∈
(
(Z \ {0})2

)`
be a vector whose coordinates are ` pairwise distinct ordered pairs of nonzero integers, and

h = ((a1, b1), . . . , (a`, b`)) ∈
(
Z2
)`

be a vector whose coordinates are ` pairwise distinct ordered pairs of integers satisfying

akq + bkm ≤ uq + vm < (u+ rk)q + (v + sk)m < q(m(q − 1) + 1)

for k = 1, . . . , `. Let η = (η1, . . . , η`) ∈ (Fq2 \ {0})`. The set of (t,h,η)-twisted bivariate
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polynomials is

Bt,h,η(αP∞) =

(
B(αP∞) \

⋃̀
k=1

{
xakybk

})
∪
⋃̀
k=1

{
xakybk + ηkx

u+rkyv+sk
}
.

Let Lt,h,η(αP∞) = 〈Bt,h,η(αP∞)〉. The twisted code from a quotient of the Hermitian curve

Ct,h,η(αP∞) is

Ct,h,η(αP∞) := evQH (Lt,h,η) ⊆ Fnq2 .

Note that Ct,h,η(αP∞) has the same length as the one-point code from a quotient of the

Hermitian curve C(αP∞). The dimension of the twisted code from a quotient of the Hermitian

curve is

dim Ct,h,η(αP∞) = dimLt,h,η(αP∞) = |Bt,h,η(αP∞)| = |B(αP∞)| = dim C(αP∞),

and a generator matrix of the twisted code from a quotient of the Hermitian curve is

Gt,h,η(αP∞) =



evQH(f1)

evQH(f2)

...

evQH(fk)


where Bt,h,η(αP∞) = 〈f1, f2, . . . , fk〉 . Let us consider an example of twisted code from a

quotient of the Hermitian curve.

Example 4.6. Let q = 3, m = 2 and α = 1(q) + 1(m) = 5. Consider a quotient of the

Hermitian curve X3,2 : y2 + y = x2 over a finite field of order q2 = 9, F9 = {0, 1, 2, a, a +

1, a+ 2, 2a, 2a+ 1, 2a+ 2} ∼= Z3[x]/〈x2+1〉. Consider the set

B(5P∞) = {1, x, y, x2, xy}.
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The q(m(q − 1) + 1) = 15 affine rational points on X3,2 are:

P1 = (0 : 0 : 1)

P2 = (0 : a : 1)

P3 = (0 : 2a : 1)

P4 = (1 : 2 : 1)

P5 = (1 : a+ 2 : 1)

P6 = (1 : 2a+ 2 : 1)

P7 = (2 : 2 : 1)

P8 = (2 : a+ 2 : 1)

P9 = (2 : 2a+ 2 : 1)

P10 = (a : 1 : 1)

P11 = (a : a+ 1 : 1)

P12 = (a : 2a+ 1 : 1)

P13 = (2a : 1 : 1)

P14 = (2a : a+ 1 : 1)

P15 = (2a : 2a+ 1 : 1).

Let ` = 2,

t = ((1, 0), (2, 0)) ,

h = ((2, 0), (1, 1)) ,

and

η = (1, a) .
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Then
2⋃

k=1

{xakybk} = {x2, xy},

and
2⋃

k=1

{xakybk + ηkx
u+rkyv+sk} = {x2 + x2y, xy + ax3y}

so that

Bt,h,η(5P∞) = {1, x, y, x2 + x2y, xy + ax3y}.

We get the following vector space by applying evQH to B(5P∞)

Lt,h,η(5P∞) = 〈Bt,h,η(5P∞)〉.

The resulting twisted code from a quotient of the Hermitian curve is

Ct,h,η(5P∞) = evQH (Lt,h,η(5P∞)) .

A generator matrix Gt,h,η(5P∞) for the twisted code from a quotient of the Hermitian curve

may be obtained by evaluating each element of Bt,h,η(5P∞) at each of the Pi, 1 ≤ i ≤ 15, to

obtain Gt,h,η(5P∞) =



P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x 0 0 0 1 1 1 2 2 2 a a a 2a 2a 2a

y 0 a 2a 2 a+ 2 2a+ 2 2 a+ 2 2a+ 2 1 a+ 1 2a+ 1 1 a+ 1 2a+ 1

x2+x2y 0 0 0 0 a 2a 0 a 2a 1 2a+ 1 a+ 1 1 2a+ 1 a+ 1

xy+ax3y 0 0 0 a+ 2 2a 1 2a+ 1 a 2 a+ 1 2a 2 2a+ 2 a 1


.

However, twisted codes from quotient of the Hermitian curve differ from codes from a quo-

tient of the Hermitian curve. They have the same length and dimension. However, the
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distinction can be shown by considering the largest code from quotient of the Hermitian

curve containing the twisted code of quotient of the Hermitian curve and the smallest code

from quotient of the Hermitian curve contained in the twisted code from quotient of the

Hermitian curve. Note that

t = ((r1, s1), . . . , (r`, s`)) ∈
(
(Z \ {0})2

)`
and

h = ((a1, b1), . . . , (a`, b`)) ∈
(
Z2
)`
.

Let

α′ = min {aiq + bim : i = 1, . . . , `} − 1

and

α′′ = α + max {riq + sim : i = 1, . . . , `} .

Then

L(α′P∞) ⊆ Lt,h,η(αP∞) ⊆ L(α′′P∞)

and

C(α′P∞) ⊆ Ct,h,η(αP∞) ⊆ C(α′′P∞).

Furthermore, dim C(α′P∞) =

|
{
xiyj ∈ B(αP∞) | δQH(xiyj) < min {aiq + bim : i = 1, . . . , `}

}
|< k,

and

akq + bkm ≤ uq + vm
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for all 1 ≤ k ≤ l, and the (ak, bk) are distinct, and

dim C(α′′P∞) = (α + max {rkq + skm | k = 1, . . . , `}) + 1− g ≥ k + q.

This shows that twisted codes from this quotient of the Hermitian curve are not codes from

this quotient of the Hermitian curve. This observation helps in determining bounds on the

minimum distance of twisted codes from this quotient of the Hermitian curve.

Consider a twisted code from this quotient of the Hermitian curve Ct,h,η(αP∞) with

t = ((r1, s1), . . . , (r`, s`)) ∈
(
(Z \ {0})2

)`
and

h = ((a1, b1), . . . , (a`, b`)) ∈
(
Z2
)`
.

Then

C(α′P∞) $ Ct,h,η(αP∞) $ C(α′′P∞)

where

α′ = min {aiq + bim : i = 1, . . . , `} − 1

and

α′′ = α + max {riq + sim : i = 1, . . . , `} .

In the case that 2g − 2 < α′ and α′′ < n, as given in [21], we have that

n− α′′ ≤ d (C(α′′P∞)) ≤ n− α′.
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Therefore, the minimum distance d of Cn,kt,h,η(αP∞) satisfies

n− α′′ ≤ d (C(α′′P∞)) ≤ d ≤ d (C(α′P∞)) .

Example 4.7. Consider the twisted code Ct,h,η(9P∞) from the quotient of the Hermitian

curve y3 + y = x2 with q = 3, m = 2, α = 9,

t = ((1, 0), (0, 1)) ,

h = ((1, 2), (0, 3)) ,

and η = (η1, η2), where η1, η2 ∈ F9. Then

α′′ = 9 + max{riq + sim : i = 1, 2} = 12

and

α′ = min{aiq + bim : i = 1, 2} − 1 = 5

from which it follows that

C(5P∞) $ Ct,h,η(9P∞) $ C(12P∞).

According to [32, Theorem 2.2.2], d (C(5P∞)) = 10 and d (C(12P∞)) = 3 so that

3 ≤ d (Ct,h,η(9P∞)) ≤ 10.

We now show that the twisted code Cn,kt,h,η(αP∞) from a quotient of the Hermitian curve may

have a Schur square with much larger dimension in comparison to the square of the code
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from a quotient of the Hermitian curve itself. Consider the set of bivariate polynomials

M :=
{
xiyj : i, j ∈ N, 0 ≤ i ≤ m(q − 1), 0 ≤ j ≤ q − 1

}
⊆ Fq2 [x, y].

Let the domain of evQH be restricted to 〈M〉 as described above. Assume that 0 6= p(x, y) ∈

〈M〉 such that evQH(p(x, y)) = 0 ∈ Fnq2 . Then every rational affine point (x : y : 1) of a

quotient of the Hermitian curve Xq,m also satisfies p(x, y) = 0. Fix a ∈ Fq2 . There are

m(q−1)+1 choices of a such that there is a corresponding b value where (a : b : 1) satisfies a

quotient of the Hermitian curve Xq,m. Then the univariate polynomial p(a, y) has q distinct

zeros in Fq2 , despite the fact that deg(p(a, y)) ≤ q− 1. Hence p(a, y) ≡ 0 for all a ∈ Fq2 . On

the other hand,

p(x, y) =

q−1∑
j=0

m(q−1)∑
i=0

aijx
i

 yj =

q−1∑
j=0

qj(x)yj

where qj(x) =

m(q−1)∑
i=0

aijx
i and qj(a) = 0 for all a ∈ Fq2 . This implies the univariate poly-

nomial qj(x) has m(q − 1) + 1 zeros in Fnq2 , despite the fact that deg(qj) ≤ m(q − 1). As a

result, p(x, y) ≡ 0, which is a contradiction. Then the evaluation map evQH : 〈M〉 → Fnq2 is

an injective mapping.

Definition 4.8. Suppose i, j ∈ N are such that 0 ≤ i ≤ 2m(q − 1) and 0 ≤ j ≤ q − 1. We

define

xiyj :=

 xiyj if 0 ≤ i ≤ m(q − 1)

xi−m(q−1)yj otherwise.

For f(x, y) =
∑

ckx
ikyjk ∈ Fq2 [x, y], we define

f :=
∑

ckxikyjk . (4.3)
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It follows immediately that for f =
∑

ckx
ikyjk and g =

∑
dhx

ihyjh ∈ L(αP∞),

evQH(f · g) = evQH(f · g).

Given f(x, y) =
n∑
k=1

ckx
ikyjk ∈ Fq2 [x, y],

δQH(f) := max {ikq + jkm : k = 1, . . . , n} . (4.4)

If B = {f1, . . . , fm} ⊆ Fq2 [x, y], then

δQH (B) := {δQH (fk) : k = 1, . . . ,m} . (4.5)

Lemma 4.9. Let Ct,h,η(αP∞) be a twisted code from a quotient of the Hermitian curve.

Then

dim Ct,h,η(αP∞)2 ≥| D |

where D := {δQH(f · g) | f, g ∈ L(αP∞)}.

Note that dim Ct,h,η(αP∞)2 can be made large by choosing t,h,η to maximize the size of D.

Given M = {xiyj : i, j ∈ N, 0 ≤ i ≤ m(q − 1), 0 ≤ j ≤ q − 1}, set

M2 :=

{
xiyj ∈M : δQH(xiyj) ≤

⌈
max δQH (M)

2

⌉}
.

Observe that for any prime power q,

⌈
max δQH (M)

2

⌉
=

⌈
m(q − 1)q + (q − 1)m

2

⌉
≥ 2g + 1.
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It follows that

M ⊆M
2
2.

We make use of this observation in the following lemma.

Lemma 4.10. Let A ⊆ F[x, y] be a set of elements with distinct pole orders such that

δQH (A) ⊆ δQH (M2). Then | δQH (A2) \ δQH (M) |≤ g.

Proof. Since M ⊆M
2
2, δQH (M) ⊆ δQH(M2). Observe that

| δQH(M2
2)\δQH(M) |=| δQH

(
M

2
2

)
| − | δQH (M) |=

[
(mq2 −m− 1) + 1− g

]
−(mq2−mq−q) = g.

Since δQH(A2) ⊆ δQH(M2
2), it follows that | (δQH (A2) \ δQH (M)) |≤ g.

Consider the map

φq : N → Z2

w 7→ (mbw
q
c − w,w − qbw

q
c).

Theorem 4.11. For a given prime power q0, let α ∈ δQH (M) be such that

α ≤ mq2 −mq − q + 2
√
mq2 −mq − q + 1 + 1

4

and

P :=
{
δQH(xiyj) : xiyj ∈M, δQH(xiyj) ≤ α

}
T :=

{
δQH(xiyj) : xiyj ∈M, δQH(xiyj) > α

}
= {t1, . . . , t`}

H := P \ S[P ] = {h1, . . . , h`}
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satisfying ` :=| H |≤| T |. Let

h = (φ(h1), . . . , φ(h`)) ;

t = (φ(t1)− (u, v), . . . , φ(t`)− (u, v)) ;

s1, . . . , s` be prime powers such that

Fq20 = Fs0 $ Fs1 $ · · · $ Fs` = Fq2 ; (4.6)

and η = (η1, . . . , η`) be such that ηi ∈ Fsi \ Fsi−1
for i = 1, . . . , `. Then

dim Ct,h,η(αP∞)2 ≥
(
k + 1

2

)
− g

where k := dim Ct,h,η(αP∞).

Proof. Let

B =
{
xiyj : δQH(xiyj) ∈ S[P ]

}
and

Bt =
{
xamybm + ηmx

u+rmyv+sm : m = 1, . . . , `
}
.

Then

Ct,h,η(αP∞) = evQH〈B ∪Bt〉

and

Ct,h,η(αP∞)2 = evQH〈(B ∪Bt)
2〉.

Note that B ∪Bt is a set of functions with distinct pole orders. We claim that (B ∪Bt)
2 is
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a linearly independent set. Consider

fm := ximyjm ∈ B

and

f ′m := xamybm + ηmx
u+rmyv+sm ∈ Bt.

Then (B ∪Bt)
2 can be written as

(B ∪Bt)
2 = A ∪ C ∪D

where

A := {fmfm′ : δQH(fm), δQH(fm′) ∈ S[P ]} ,

C := {fmf ′m′ : δQH(fm) ∈ S[P ],m′ = 1, . . . , `} ,

and

D := {f ′mf ′m′ : m,m′ = 1, . . . , `} .

Notice that if

δQH(xi+i
′
yj+j

′
) = δQH(xi

′′+i′′′yj
′′+j′′′)

for xi+i
′
yj+j

′
, xi

′′+i′′′yj
′′+j′′′ ∈ A, then

δQH(xiyj) = δQH(xi
′′
yj
′′
)

(in which case δQH(xi
′
yj
′
) = δQH(xi

′′′
yj
′′′

)) or

δQH(xiyj) = δQH(xi
′′′
yj
′′′

)
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(in which case δQH(xi
′
yj
′
) = δQH(xi

′′
yj
′′
)) follows from the properties of the Sidon set. In

the first case, this fact implies that i = i′′ and j = j′′. In the second, i = i′′′ and j = j′′′.

As a result, all elements of A have distinct pole orders. Furthermore, no pole order of an

element of A is that of an element of C or D as

δQH(fmfm′) ≤ α ≤ δQH(f)

for all fmfm′ ∈ A and f ∈ C ∪D. Continuing in this way, we see that

| (B ∪Bt)
2 | =

(
| B | + | Bt | +1

2

)
=

(
k + 1

2

)

and

| δQH ((B ∪Bt))
2 \ δQH (M) |≤ g

which implies that at most g elements of δQH (B ∪Bt)
2 are not in M. Then at least

(
k+1
2

)
−g

elements of δQH
(
(B ∪Bt)

2) lie in M; i.e.,

dim evQH〈(B ∪Bt)
2〉 ≥

(
k + 1

2

)
− g.

Thus,

dim Ct,h,η(αP∞)2 ≥
(
k + 1

2

)
− g.

This particular subfamily achieves a large Schur square dimension by first maximizing the

size of D as seen in Theorem 4.9 and then forcing linear independence by choosing coefficients

according to the nested field structure shown in equation 4.6.
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4.3 Twisted norm-trace codes

Norm-trace are studied because they can have better code parameters (such as rate or relative

distance) as compared to those of the Hermitian code. In this section, we look at the twisted

norm-trace codes which offer similar advantages over the twisted Hermitian codes. Consider

the set

B(αP∞) :=
{
xiyj : i, j ∈ N, j ≤ qr−1 − 1, δNT (xiyj) ≤ α

}
,

and the vector space L(αP∞) := 〈B(αP∞)〉 from the norm-trace curve

X r
q : yq

r−1

+ yq
r−2

+ · · ·+ y = x
qr−1
q−1

where r ∈ N. Let

α = u(qr−1) + v

(
qr − 1

q − 1

)
≥ (qr−1 − 1)

(
qr − 1

q − 1
− 1

)
− 1

where u, v ∈ N. Let ` ∈ Z+,

t = ((r1, s1), . . . , (r`, s`)) ∈
(
(Z \ {0})2

)`
be a vector whose coordinates are ` pairwise distinct ordered pairs of nonzero integers, and

h = ((a1, b1), . . . , (a`, b`)) ∈
(
Z2
)`

be a vector whose coordinates are ` pairwise distinct ordered pairs of integers satisfying

ak(q
r−1)+ bk

(
qr − 1

q − 1

)
≤ u(qr−1)+v

(
qr − 1

q − 1

)
< (u+rk)(q

r−1)+(v+sk)

(
qr − 1

q − 1

)
< q2r−1
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for k = 1, . . . , `. Let η = (η1, . . . , η`) ∈ (Fqr \ {0})`. The set of (t,h,η)-twisted bivariate

polynomials is

Bt,h,η(αP∞) =

(
B(αP∞) \

⋃̀
k=1

{
xakybk

})
∪
⋃̀
k=1

{
xakybk + ηkx

u+rkyv+sk
}
.

Let Lt,h,η(αP∞) = 〈Bt,h,η(αP∞)〉. The twisted norm-trace code Ct,h,η(αP∞) is

Ct,h,η(αP∞) := evNT (Lt,h,η) ⊆ Fnqr .

Note that Ct,h,η(αP∞) has the same length as the one-point norm-trace code C(αP∞). The

dimension of the twisted norm-trace code is

dim Ct,h,η(αP∞) = dimLt,h,η(αP∞) = |Bt,h,η(αP∞)| = |B(αP∞)| = dim C(αP∞),

and a generator matrix of the twisted norm-trace code is

Gt,h,η(αP∞) =



evNT (f1)

evNT (f2)

...

evNT (fk)


where Bt,h,η(αP∞) = 〈f1, f2, . . . , fk〉 . Let us consider an example of twisted norm-trace code.

Example 4.12. Let q = 2, r = 3 and α = 2(qr−1)+1
(
qr−1
q−1

)
= 15. Consider the norm-trace

curve X 3
2 : y4 + y2 + y = x7 over a finite field of order q3 = 8, F8 = {0, 1, a, a + 1, a2, a2 +

1, a2 + a, a2 + a+ 1} ∼= Z2[x]/〈x3+x+1〉. Consider the set

B(15P∞) = {1, x, y, x2, y2, x3, xy, x2y}.
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The q2r−1 = 32 affine rational points on X 3
2 are:

P1 = (0 : 0 : 1)

P2 = (0 : a : 1)

P3 = (0 : a2 : 1)

P4 = (0 : a2 + a : 1)

P5 = (1 : 1 : 1)

P6 = (1 : a+ 1 : 1)

P7 = (1 : a2 + 1 : 1)

P8 = (1 : a2 + a+ 1 : 1)

P9 = (a : 1 : 1)

P10 = (a : a+ 1 : 1)

P11 = (a : a2 + 1 : 1)

P12 = (a : a2 + a+ 1 : 1)

P13 = (a+ 1 : 1 : 1)

P14 = (a+ 1 : a+ 1 : 1)

P15 = (a+ 1 : a2 + 1 : 1)

P16 = (a+ 1 : a2 + a+ 1 : 1)

P17 = (a2 : 1 : 1)

P18 = (a2 : a+ 1 : 1)

P19 = (a2 : a2 + 1 : 1)

P20 = (a2 : a2 + a+ 1 : 1)

P21 = (a2 + 1 : 1 : 1)

P22 = (a2 + 1 : a+ 1 : 1)

P23 = (a2 + 1 : a2 + 1 : 1)

P24 = (a2 + 1 : a2 + a+ 1 : 1)

P25 = (a2 + a : 1 : 1)
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P26 = (a2 + a : a+ 1 : 1)

P27 = (a2 + a : a2 + 1 : 1)

P28 = (a2 + a : a2 + a+ 1 : 1)

P29 = (a2 + a+ 1 : 1 : 1)

P30 = (a2 + a+ 1 : a+ 1 : 1)

P31 = (a2 + a+ 1 : a2 + 1 : 1)

P32 = (a2 + a+ 1 : a2 + a+ 1 : 1).

Let ` = 2,

t = ((1, 0), (2, 0)) ,

h = ((2, 0), (1, 1)) ,

and

η = (1, a) .

Then
2⋃

k=1

{xakybk} = {x2, xy},

and
2⋃

k=1

{xakybk + ηkx
u+rkyv+sk} = {x2 + x2y, xy + ax3y}

so that

Bt,h,η(15P∞) = {1, x, y, x2 + x2y, y2, x3, xy + ax3y, x2y}.
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We get the following vector space by applying evNT to B(15P∞) :

Lt,h,η(15P∞) = 〈Bt,h,η(15P∞)〉.

The resulting twisted norm-trace code is

Ct,h,η(15P∞) = evNT (Lt,h,η(15P∞)) .

A generator matrix Gt,h,η(15P∞) for the twisted norm-trace code may be obtained by eval-

uating each element of Bt,h,η(15P∞) at each of the Pi, 1 ≤ i ≤ 32, to obtain, to obtain

Gt,h,η(15P∞) =



P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x 0 0 0 0 1 1 1 1 a a a a a+ 1 a+ 1 a+ 1 a+ 1 a2 a2 a2 a2 a2 + 1 a2 + 1 a2 + 1 a2 + 1 a2 + a a2 + a a2 + a a2 + a a2 + a+ 1 a2 + a+ 1 a2 + a+ 1 a2 + a+ 1

y 0 a a2 a2 + a 1 a+ 1 a2 + 1 a2 + a+ 1 1 a+ 1 a2 + 1 a2 + a+ 1 1 a+ 1 a2 + 1 a2 + a+ 1 1 a+ 1 a2 + 1 a2 + a+ 1 1 a+ 1 a2 + 1 a2 + a+ 1 1 a+ 1 a2 + 1 a2 + a+ 1

x2+x2y 0 0 0 0 0 a a2 a2 + a 0 a+ 1 a2 + a 0 a2 1 a a+ 1 0 a2 + a+ 1 a2 + 1 a 0 a2 + 1 1 a2 0 a2 a+ 1 a2 + a+ 1 0 a2 + a a2 + a+ 1 1

y2 0 a2 a2 + a a 1 a2 + 1 a a+ 1 1 a2 + 1 a a+ 1 1 a2 + 1 a a+ 1 1 a2 + 1 a a+ 1 1 a2 + 1 a a+ 1 1 a2 + 1 a a+ 1

x3 0 0 0 0 1 1 1 1 a+ 1 a+ 1 a+ 1 a+ 1 a a a a a a2 + 1 a2 + 1 a2 + 1 a2 + 1 a2 a2 a2 a2 a2 + a+ 1 a2 + a+ 1 a2 + a+ 1 a2 + a+ 1 a2 + a a2 + a a2 + a a2 + a

xy+ax3y 0 0 0 0 a+ 1 a2 + 1 a2 1 a2 a2 + a+ 1 a 1 0 1 a2 + a a+ 1 a2 + 1 a2 a+ 1 a2 + a a2 + a 1 a+ 1 a2 a+ 1 a2 + 1 a2 a 0 0 0 0

x2y 0 0 0 0 1 a+ 1 a2 + 1 a2 + a+ 1 a2 a2 + a+ 1 a a2 a2 + 1 a2 a2 + a+ 1 a2 + a a2 + a 1 a+ 1 a2 a2 + a+ 1 a a2 + a a+ 1 a a2 + a 1 a2 + 1 a+ 1 a2 + 1 a2 a



.

However, twisted norm-trace codes differ from norm-trace codes. They have the same length

and dimension. However, the distinction can be shown by considering the largest norm-trace

code containing the twisted norm-trace code and the smallest norm-trace code contained in

the twisted norm-trace code. Note that

t = ((r1, s1), . . . , (r`, s`)) ∈
(
(Z \ {0})2

)`
and

h = ((a1, b1), . . . , (a`, b`)) ∈
(
Z2
)`
.

Let

α′ = min

{
aiq

r−1 + bi

(
qr − 1

q − 1

)
: i = 1, . . . , `

}
− 1
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and

α′′ = α + max

{
riq

r−1 + si

(
qr − 1

q − 1

)
: i = 1, . . . , `

}
.

Then

L(α′P∞) ⊆ Lt,h,η(αP∞) ⊆ L(α′′P∞)

and

C(α′P∞) ⊆ Ct,h,η(αP∞) ⊆ C(α′′P∞).

Furthermore, dim C(α′P∞) =

∣∣∣∣{xiyj ∈ B(αP∞) | δNT (xiyj) < min

{
aiq

r−1 + bi

(
qr − 1

q − 1

)
: i = 1, . . . , `

}}∣∣∣∣ < k,

and

akq
r−1 + bk

(
qr − 1

q − 1

)
≤ uqr−1 + v

(
qr − 1

q − 1

)
for all 1 ≤ k ≤ l, and the (ak, bk) are distinct, and

dim C(α′′P∞) =

(
α + max

{
rkq

r−1 + sk

(
qr − 1

q − 1

)
| k = 1, . . . , `

})
+ 1− g ≥ k + q.

This shows that twisted norm-trace codes are not norm-trace codes. This observation helps

in determining bounds on the minimum distance of twisted norm-trace codes.

Consider a twisted norm-trace code Ct,h,η(αP∞) with

t = ((r1, s1), . . . , (r`, s`)) ∈
(
(Z \ {0})2

)`
and

h = ((a1, b1), . . . , (a`, b`)) ∈
(
Z2
)`
.
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Then

C(α′P∞) $ Ct,h,η(αP∞) $ C(α′′P∞)

where

α′ = min

{
aiq

r−1 + bi

(
qr − 1

q − 1

)
: i = 1, . . . , `

}
− 1

and

α′′ = α + max

{
riq

r−1 + si

(
qr − 1

q − 1

)
: i = 1, . . . , `

}
.

In the case that 2g − 2 < α′ and α′′ < n, as given in [22] we have that

n− α′′ ≤ d(C(α′′P∞)) ≤ n− α′.

Therefore, the minimum distance d of Cn,kt,h,η(αP∞) satisfies

n− α′′ ≤ d (C(α′′P∞)) ≤ d ≤ d (C(α′P∞)) .

Example 4.13. Consider the twisted norm-trace code Ct,h,η(15P∞) with q = 2, r = 3,

α = 15,

t = ((1, 0), (0, 1)) ,

h = ((1, 2), (0, 3)) ,

and η = (η1, η2), where η1, η2 ∈ F8. Then

α′′ = 15 + max

{
riq

r−1 + si

(
qr − 1

q − 1

)
: i = 1, 2

}
= 22

and

α′ = min

{
aiq

r−1 + bi

(
qr − 1

q − 1

)
: i = 1, 2

}
− 1 = 17
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from which it follows that

C(17P∞) $ Ct,h,η(15P∞) $ C(22P∞).

According to [32, Theorem 2.2.2], d (C(17P∞)) = 15 and d (C(22P∞)) = 10 so that

10 ≤ d (Ct,h,η(15P∞)) ≤ 15.

We now show that the twisted norm-trace code Cn,kt,h,η(αP∞) may have a Schur square with

much larger dimension in comparison to the square of the code itself. Consider the set of

bivariate polynomials

M :=
{
xiyj : i, j ∈ N, 0 ≤ i ≤ qr−1 − 1, 0 ≤ j ≤ qr − 1

}
⊆ Fqr [x, y].

Let the domain of evNT be restricted to 〈M〉 as described above. Assume that 0 6= p(x, y) ∈

〈M〉 such that evNT (p(x, y)) = 0 ∈ Fnqr . Then every rational affine point (x : y : 1) of

the norm-trace curve X r
q also satisfies p(x, y) = 0. Fix a ∈ Fqr . Then there are then qr−1

distinct bi ∈ Fqr such that (a : bi : 1) is a rational point on the norm-trace curve X r
q .

Then the univariate polynomial p(a, y) has qr−1 distinct zeros in Fqr , despite the fact that

deg(p(a, y)) ≤ qr−1 − 1. Hence p(a, y) ≡ 0 for all a ∈ Fqr . On the other hand,

p(x, y) =

qr−1−1∑
j=0

(
qr−1∑
i=0

aijx
i

)
yj =

qr−1−1∑
j=0

qj(x)yj

where qj(x) =
∑qr−1

i=0 aijx
i and qj(a) = 0 for all a ∈ Fqr . This implies the univariate

polynomial qj(x) has qr zeros in Fnqr , despite the fact that deg(qj) ≤ qr − 1. As a result,

p(x, y) ≡ 0, which is a contradiction. Then the evaluation map evNT : 〈M〉 → Fnqr is an
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injective mapping.

Definition 4.14. Suppose i, j ∈ N are such that 0 ≤ i ≤ 2(qr − 1) and 0 ≤ j ≤ qr−1 − 1.

We define

xiyj :=

 xiyj if 0 ≤ i ≤ qr − 1

xi−(q
r−1)yj otherwise.

For f(x, y) =
∑

ckx
ikyjk ∈ Fqr [x, y], we define

f :=
∑

ckxikyjk . (4.7)

It follows immediately that for f =
∑

ckx
ikyjk and g =

∑
dhx

ihyjh ∈ L(αP∞),

evNT (f · g) = evNT (f · g).

Given f(x, y) =
n∑
k=1

ckx
ikyjk ∈ Fqr [x, y],

δNT (f) := max

{
ikq

r−1 + jk

(
qr − 1

q − 1

)
: k = 1, . . . , n

}
. (4.8)

If B = {f1, . . . , fm} ⊆ Fqr [x, y], then

δNT (B) := {δNT (fk) : k = 1, . . . ,m} . (4.9)

Lemma 4.15. Let Ct,h,η(αP∞) be a twisted norm-trace code. Then

dim Ct,h,η(αP∞)2 ≥| D |
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where D := {δNT (f · g) | f, g ∈ L(αP∞)}.

Note that dim Ct,h,η(αP∞)2 can be made large by choosing t,h,η to maximize the size of D.

Given M = {xiyj : i, j ∈ N, 0 ≤ i ≤ qr−1 − 1, 0 ≤ j ≤ qr − 1}, set

M2 :=

{
xiyj ∈M : δNT (xiyj) ≤

⌈
max δNT (M)

2

⌉}
.

Observe that for any prime power q,

⌈
max δNT (M)

2

⌉
=


(qr − 1)qr−1 + (qr−1 − 1)

(
qr−1
q−1

)
2

 ≥ 2g + 1.

It follows that

M ⊆M
2
2.

We make use of this observation in the following lemma.

Lemma 4.16. Let A ⊆ F[x, y] be a set of elements with distinct pole orders such that

δNT (A) ⊆ δNT (M2). Then | δNT (A2) \ δNT (M) |≤ g.

Proof. Since M ⊆M
2
2, δNT (M) ⊆ δNT (M2). Observe that

| δNT (M2
2) \ δNT (M) | =| δNT

(
M

2
2

)
| − | δNT (M) |

=

[
(qr − 1)qr−1 + (qr−1 − 1)

(
qr − 1

q − 1

)
+ 1− g

]
− q2r−1

= g.

Since δNT (A2) ⊆ δNT (M2
2), it follows that | (δNT (A2) \ δNT (M)) |≤ g.
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Consider the map

φq : N → Z2

w 7→ (
(
qr−1
q−1

)
bw
q
c − w,w − qr−1bw

q
c).

Theorem 4.17. For a given prime power q0, let α ∈ δNT (M) be such that

α ≤ q2r−1 + 2
√
q2r−1 + 1 + 1

4

and

P :=
{
δNT (xiyj) : xiyj ∈M, δNT (xiyj) ≤ α

}
T :=

{
δNT (xiyj) : xiyj ∈M, δNT (xiyj) > α

}
= {t1, . . . , t`}

H := P \ S[P ] = {h1, . . . , h`}

satisfying ` :=| H |≤| T |. Let

h = (φ(h1), . . . , φ(h`)) ;

t = (φ(t1)− (u, v), . . . , φ(t`)− (u, v)) ;

s1, . . . , s` be prime powers such that

Fqr0 = Fs0 $ Fs1 $ · · · $ Fs` = Fqr ; (4.10)

and η = (η1, . . . , η`) be such that ηi ∈ Fsi \ Fsi−1
for i = 1, . . . , `. Then

dim Ct,h,η(αP∞)2 ≥
(
k + 1

2

)
− g
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where k := dim Ct,h,η(αP∞).

Proof. Let

B =
{
xiyj : δNT (xiyj) ∈ S[P ]

}
and

Bt =
{
xamybm + ηmx

u+rmyv+sm : m = 1, . . . , `
}
.

Then

Ct,h,η(αP∞) = evNT 〈B ∪Bt〉

and

Ct,h,η(αP∞)2 = evNT 〈(B ∪Bt)
2〉.

Note that B ∪Bt is a set of functions with distinct pole orders. We claim that (B ∪Bt)
2 is

a linearly independent set. Consider

fm := ximyjm ∈ B

and

f ′m := xamybm + ηmx
u+rmyv+sm ∈ Bt.

Then (B ∪Bt)
2 can be written as

(B ∪Bt)
2 = A ∪ C ∪D

where

A := {fmfm′ : δNT (fm), δNT (fm′) ∈ S[P ]} ,

C := {fmf ′m′ : δNT (fm) ∈ S[P ],m′ = 1, . . . , `} ,
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and

D := {f ′mf ′m′ : m,m′ = 1, . . . , `} .

Notice that if

δNT (xi+i
′
yj+j

′
) = δNT (xi

′′+i′′′yj
′′+j′′′)

for xi+i
′
yj+j

′
, xi

′′+i′′′yj
′′+j′′′ ∈ A, then

δNT (xiyj) = δNT (xi
′′
yj
′′
)

(in which case δNT (xi
′
yj
′
) = δNT (xi

′′′
yj
′′′

)) or

δNT (xiyj) = δNT (xi
′′′
yj
′′′

)

(in which case δNT (xi
′
yj
′
) = δNT (xi

′′
yj
′′
)) follows from the properties of the Sidon set. In the

first case, this fact implies that i = i′′ and j = j′′. In the second, i = i′′′ and j = j′′′. As a

result, all elements of A have distinct pole orders. Furthermore, no pole order of an element

of A is that of an element of C or D as

δNT (fmfm′) ≤ α ≤ δNT (f)

for all fmfm′ ∈ A and f ∈ C ∪D. Continuing in this way, we see that

| (B ∪Bt)
2 | =

(
| B | + | Bt | +1

2

)
=

(
k + 1

2

)

and

| δNT ((B ∪Bt))
2 \ δNT (M) |≤ g
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which implies that at most g elements of δNT (B ∪Bt)
2 are not in M. Then at least

(
k+1
2

)
−g

elements of δNT
(
(B ∪Bt)

2) lie in M; i.e.,

dim evNT 〈(B ∪Bt)
2〉 ≥

(
k + 1

2

)
− g.

Thus,

dim Ct,h,η(αP∞)2 ≥
(
k + 1

2

)
− g.

This particular subfamily achieves a large Schur square dimension by first maximizing the size

of D as seen in Theorem 4.15 and then forcing linear independence by choosing coefficients

according to the nested field structure shown in equation 4.10.



Chapter 5

Conclusions

This work studies error correction and erasure recovery in graph-based codes. Moreover, we

design new family of algebraic geometry codes which can be possible replacements of Goppa

codes in the McEliece cryptosystem.

In Chapter 2, we generalize the construction of standard to (C,D, γ, α) expander codes.

These codes are constructed using bipartite graphs and shorter codes, called inner codes.

Given the minimum distance and rate of the inner codes, we determine lower bounds on the

minimum distance and rate of (C,D, γ, α) expander codes. Furthermore, we study the de-

coding abilities of (C,D, γ, α) expander codes. We provide a linear-time decoding algorithm

that corrects a constant fraction of errros and allows for any expansion factor.

Expander graphs are hard to construct. Some popular examples of regular expander graphs

include Ramanujan graphs, Cayley graphs, etc. Explicit constructions of irregular expander

graphs would provide more insights. Our algorithm uses a random choice of coordinates in

the ‘updating’ step of the algorithm. We would like consider a structured approach while

choosing coordinate assignment and its impact on the efficiency of the decoding algorithm.

101
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We provide a worst-case analysis of the decoding algorithm. It would be interesting to

study the efficiency of the decoding algorithm under an average-case analysis. There exist

linear-time encoding algorithms have (c, d, γ, α) expander codes [1], [3], [4], [5], [6]. We are

currently studying encoding algorithms for (C,D, γ, α) expander codes.

In Chapter 3, we study erasure recovery in Tanner codes: reviewing our independent results

and including some results obtained in collaboration with Allison Beermer. We show that

any locally recoverable code can be expressed as a modified Tanner code. We provide bounds

on the locality and availability of modified Tanner codes when the inner codes are replaced

with locally recoverable codes. Moreover, we show that in this setting the modified Tanner

codes allow hierarchical local recovery. This analysis results in insights about the behaviour

of stopping sets of modified Tanner codes.

We are curently comparing bounds on the locality and availability of modified Tanner codes

where the underlying inner codes are locally recoverable codes, with the existing bounds on

the locality and availability of existing locally recoverable code constructions.

In Chapter 4, we provide constructions of new algebraic geometry codes. We call them

twisted algebraic geometry codes. In particular, we study properties of twisted Hermitian

codes, twisted codes from a quotient of the Hermitian curve and twisted norm-trace codes.

We show that these codes have Schur squares with high dimension and hence can be consid-

ered as suitable candidates to replace Goppa codes in the McEliece cryptosystem. Further-

more, we explicitly studied the code-based cryptosystem based on twisted Hermitian codes.

We lay the foundations for an attack on a twisted Hermitian code-based cryptosystem.

We provide bounds on the minimum distance of twisted algebraic geometry codes in order to

distinguish them from ordinary algebraic geometry codes. It would be interesting to provide

better bounds on the minimum distance for twisted algebraic geometry codes and compare
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them with the minimum distance of ordinary algebraic geometry codes. Given a code C, it is

said to have a linear complimentary dual if C ∩ C⊥ = {0}. We are also interested in proving

some of the conjectures used to show an attack on the code-based cryptosystem based on

twisted Hermitian codes. Furthermore, we would like to study the code-based cryptosystem

based on twisted codes from a quotient of the Hermitian curve and twisted norm-trace codes

as well as attacks on these cryptosystems.
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