
  

Chapter 4  

Decomposition of Superimposed TDR Reflections 

4.1 Introduction 

The experience with the TDR-response based identification of subscriber loops in the previous 

chapter indicates the need for an algorithm that can decompose a linear combination of closely spaced, 

strongly overlapping pulses of similar shape.  This chapter presents two variations of the so called 

method of direction estimation (MODE) algorithm [21], [22], which employs advanced signal 

processing techniques to resolve overlapping pulses.  The MODE algorithm is a type of eigenanalysis 

method [23] — also known as subspace methods [24] — and is closely related to such algorithms as 

Pisarenko’s, MUSIC, and ESPRIT [23], [24].  The two MODE-based algorithms used are the MODE 

algorithm with the weighted Fourier transform and relaxation (WRELAX) algorithm (referred to 

hereafter as the MODE-WRELAX algorithm) [25] and the MODE-type algorithm [26].  

The first part of the chapter covers the analysis, implementation, and application of the MODE-

WRELAX algorithm, which was used first in the course of this research.  The following sections 

constitute the first part:  

• Problem formulation (Section 4.2), 

• MODE-WRELAX algorithm (Section 4.3), and 

• Application of MODE-WRELAX algorithm in TDR reflection decomposition  (Section 4.4). 

The performance of the MODE-WRELAX algorithm is limited when the overlapping TDR 

reflections are dissimilar due to the dispersive behavior of the TP.  To accommodate the dispersion 

effect of TP, the MODE-type algorithm was investigated next.  The second half of the chapter is 

devoted to studying the latter algorithm and its application to TDR reflection separation: 

• Problem reformulation — TP analysis for dispersion modeling (Section 4.5), 

• MODE-type algorithm (Section 4.6), 
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• Application of MODE-type algorithm in TDR reflection decomposition (Section 4.7). 

The compatibility of the signal model, used in the MODE-type algorithm, with general TDR 

reflections is verified in Section 4.5.1. 

4.2 Formulation of  Problem 

The MODE-WRELAX algorithm resolves closely spaced overlapping pulses described in the 

continuous-time domain by: 
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There are L pulses, defined by the known reference signal s(t), and the corresponding scaling factors 

 and time-delays τ .  The sampled version of y(t) can be written as  la l
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where Ts is the sampling period.  Furthermore, assuming time-domain aliasing can be ignored, the N-

point DFT Yk of the above equation can be expressed as  
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Note that (4-3) can also be obtained by sampling the continuous-time Fourier transform of (4-1).    

Equation (4-3) can be rewritten in matrix form as follows. 

  (4-5) SEay =
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where 

 [ T
NNN YYY 12122 −+−−= Ly ]  (4-6) 

 12122 −+−− NNN ,,,= SSSdiag LS

[ ]Taaa L=a

 (4-7) { }

  (4-8) L21

and 

 ( ) ( ) ( )[ ]Lωωω eeeE L21=  (4-9) 

with 

 ( ) ( ) ( ) ( )[ TNjNjNj
l

lll eee 12122 −+−−= ωωωω Le ]  (4-10) 

The operator ( )T⋅  is the matrix transpose operator.  

It is important to note that the algorithm does not require all of the DFT points.  Subsets of the 

DFT samples can be masked (the information is not considered at all) or weighted (to express varying 

degrees of confidence in measurements at different frequencies) before being applied in the MODE-

WRELAX routine. 

4.3 MODE-WRELAX Algorithm 

The MODE-WRELAX algorithm is a two-fold approach to resolving closely spaced overlapping 

signals of the same shape.  Both stages, namely the MODE and the WRELAX algorithm, are 

approximations of the maximum likelihood method [23], [24], [27], [22].  Both algorithms aim at 

obtaining an optimal solution by minimizing the criterion ( )ωa,1C  

 ( ) 2

,1,
minarg,minarg SEayωa

ωaωa
−=C  (4-11) 
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where  and .  For fixed ω , we can minimize the 

above expression with respect to a by solving a nonlinear least squares problem, with as formal 

solution 

[ ]T
Laaa L21=a [ T

Lωωω L21=ω ]

  (4-12) ( ) ySESESEa HHHH 1−
=

where ( )H⋅  is the Hermitian transpose (conjugate transpose) operator.  Therefore, if we can find the 

solution for ω , we can find the corresponding solution for a, from (4-12), in straightforward fashion. 

The above facilitates turning the criterion in (4-11) into one where only ω  is unknown. Substituting 

(4-12) into (4-11) yields  
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After further simplification, the criterion becomes 

 ( )[ ]yEEEEIy HHHC 1
1

−
−=  (4-14) 

where SEE = .  Notice that  

 ( ) HH EEEEPE

1−
=  (4-15) 

and 

 ( ) HH EEEEIPE

1−⊥ −=  (4-16) 

are projectors onto { }Eps  (the span of the columns of E ) and onto its orthogonal complement, 

respectively. 

While the objective of both the MODE and WRELAX algorithms is to minimize the criterion in 

(4-11), the algorithms approach the problem differently.  The MODE algorithm, based on an 
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eigenanalysis technique, determines the optimal solution such that it minimizes the projection of y 

onto ⊥
EP : 

 { } { }yPy Eωaωa

⊥= H
MODEC

,,
minargminarg  (4-17) 

The WRELAX algorithm, on the other hand, maximizes the projection of y onto EP

{ }

 through a series 

of iterations: 

 Eωaωa
WRELAX ,,

 (4-18) { }yPy HC maxargmaxarg =

The MODE-WRELAX algorithm combines the efforts of both the MODE and WRELAX 

algorithms, aiming for improved accuracy and efficiency.  The result of the MODE algorithm, the first 

stage, is expected to provide a good initialization for the WRELAX stage, which attempts to improve 

the MODE estimates. 

4.3.1 MODE Algorithm 

To proceed with the minimization defined in (4-17), we aim to find a matrix B such that 

 ( ) ( ) HHHH BBBBEEEEIPE

11 −−⊥ =−=  (4-19) 

or 

 ( ) ( ) IEEEEBBBB =+
−− HHHH 11  (4-20) 

To fulfill such a relationship between B  and E , B  must be a full-rank matrix of dimension 

, and the following must hold [28]: )( LNN −×

 H =B E 0  (4-21) 

We can interpret (4-21) as a solution to a polynomial B(z) with its roots at e  for l , i.e. ljω L:1=
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Furthermore, multiplying (4-23) left and right by e we have the following: nj lω

 0  (4-24) =∑
k

kj
k

nj ll ebe ωω

for all l , assuming bL:1= k = 0 for k < 0 and for k > L, and any arbitrary n. Writing (4-24) for 

2
Nn −= , in matrix form, using E, yields  

  (4-25) [ 0 0 0Lb b =E 0L L ]

Writing (4-24) for 12 +−= Nn  produces 

  (4-26) [ 00 0 0Lb b =E 0L L ]

Equations (4-24) and (4-26) begin to look like (4-21); the vector [ ]000 LL Lbb  can be used 

to define the Hermitian transpose of a full-rank N  matrix.  The matrix B)( LN −× H can in fact be 

defined as a Toeplitz matrix with the above vector as its first row: 
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  (4-28) H =B E 0

From (4-21) and (4-28) — with some matrix algebra — we can conclude 

 BSB H−=  (4-29) 

We can substitute for the matrix B  in the CMODE criterion of (4-17) 

 
( )( 1

H
MODE

H H H

C ⊥

−

=

=

Ey P y

y B B B B y)  (4-30) 

Since the projection matrix ⊥
EP  is both Hermitian and idempotent, (4-30) can be simplified to 
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with 
k

k
k S

Y
=Y  due to the diagonal nature of S.  Consequently, (4-31) can be rewritten as 

 ( )
21H

MODEC
−

= B B B Yb  (4-33) 

Simplifying (4-33) further yields 

 ( ) HH H H
MODEC

−
= b Y B B Yb  (4-34) 
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Let  

 ( ) YBBYΩ
HHH −

=  (4-35) 

Then (4-34) becomes 

  (4-36) ΩbbH
MODEC =

To avoid the obvious minimizing solution, b = 0, assume that b has non-zero norm.  Then we can 

rewrite the minimization criterion as 

 
bb

Ωbb
H

H

MODEC =  (4-37) 

Let 

  (4-38) { 121 ,,,diag += Lλλλ LΛ }

where  is an eigenvalue of Ω .  Also, define a matrix V, whose columns consist of the unitary 

eigenvectors of , such that 

iλ

Ω

  (4-39) VΛΩV =

Assume b to be expressed in terms of the eigenvector basis 

  (4-40) Vcb =

where c is some arbitrary vector of length L+1.  Substituting (4-30) into (4-37) yields 

 
VcVc

ΩVcVc
HH

HH

MODEC =  (4-41) 

Note that since V is unitary, .  Incorporating this property and substituting (4-39) into (4-41) 

results in 

IVV =H
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cc

Λcc
H

H

MODEC =  (4-42) 

To minimize the above expression, we can select the vector c such that it has zero elements 

everywhere except for the element corresponding to the minimum eigenvalue in Λ, which equals one.  

Note that selecting such a c translates into choosing for b in (4-37) the eigenvector corresponding to 

the minimum eigenvalue, using (4-30). 

Once b is determined, ω  can be derived by finding the roots of the polynomial B(z), with its 

coefficients given in b, as defined in (4-22).  Moreover, we can obtain the gain vector a by solving 

(4-12) and the delay vector [ ]Lτττ L21=τ  from 

 
π2

sNTω
τ

−
=  (4-43) 

To implement the MODE algorithm, the  in (4-24) must be defined, given dataset y and s as well as 

an arbitrary polynomial B

Ω

o(z) as the initial guess for B(z).  We have defined Bo(z) to have its roots 

evenly spaced on the unit circle. 

4.3.2 WRELAX Algorithm 

Maximizing the criterion defined in (4-18) is a highly nonlinear optimization problem and it is very 

difficult to find the global minimum.  Instead, the WRELAX algorithm reformulates the problem by 

decomposing Yk into a sum of the DFTs of individual pulses. 

   (4-44) ∑
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=
L

l
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   (4-45) kj
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The equations can be expressed in matrix form 
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From (4-46) and (4-47), we can define ym for m ∈ 1:L as 

  (4-49) (∑
≠=

−=
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mll
llm a

,1

ωSeyy

The nonlinear least squares criterion defined in (4-11) is then simplified to contain a single pulse 

(assuming all others to be known). 

 ( ) ( 2
2 , mmmmm aaC ωω Sey −=  (4-50) 

For fixed ωm, we can minimize the above expression with respect to am by solving a nonlinear least 

squares problem, with solution 

  (4-51) ( ) ( )( ) ( ) m
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mm
HH

mma ySeSeSe ωωω
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=

Since e(ωm) is always on the unit circle, the expression can be simplified to 

 ( )
2

F

m
H

m
H
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S

ySe ω
=  (4-52) 

Substituting (4-52) into (4-49) yields  
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Note that this criterion is similar to that in (4-14).  Minimizing (4-53) is equivalent to maximizing 
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Furthermore, 
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This can also be expressed as 
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Note that (4-56) can be evaluated for multiple ωm candidates using the FFT (or the Goertzel algorithm, 

if the search interval is sufficiently limited). 

The WRELAX algorithm evaluates (4-56) and (4-52) and updates a  and ω  for m∈1:L, based 

on y

mˆ mˆ

m computed from (4-49) and current estimates, a  and . The evaluation process is iterated until it 

reaches “practical convergence” or some threshold criterion. 

ˆ ω̂

4.3.3 Algorithm Performance on Known Signals 

This section demonstrates the ability of the MODE-WRELAX algorithm by applying it to 

arbitrary – but known – overlapping pulses.  First, consider a discrete raised-cosine reference pulse 

 
( )



 <≤−

=
elsewhere,0

100,2.0cos15.0 nn
sn

π
 (4-57) 

The pulse waveform and its 512-point DFT magnitude spectrum are shown in Figure 4-1(a) and 

Figure 4-1(b), respectively.  To construct a composite of overlapping pulses, based on the given 

reference pulse, we arbitrarily selected L = 3, [ ]2.02.11=a , and [ ]2075=τ .  Each pulse  nly ,
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is plotted in different color in Figure 4-2(a), and the resulting linear combination  is shown in Figure 

4-2. 
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Figure 4-1: The reference pulse for MODE-WRELAX experiment 1 (a) and its 512-point DFT magnitude 
spectrum in dB (b) ( only positive frequencies shown). 
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Figure 4-2: MODE-WRELAX Experiment 1 objective signal —  

individual pulses (a); and composite signal (b). 

As shown in Figure 4-1(b), the reference pulse contains less energy at the higher frequencies than 

at the lower ones.  Since the MODE algorithm is sensitive to low energy content in a signal (i.e. relative 

to its maximum energy) masking of the low-energy components – here, those at the higher frequencies 

– is desired.  In this example, the k  samples were utilized, while all other sample points were 

masked.  

40:0=
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Under the assumption that we know the number of constituent pulses (i.e. ) and noise-free 

measurements, the MODE-WRELAX estimation result for each parameter is listed in Table 4-1.  In 

the table the results from MODE itself, as well as from WRELAX with arbitrary initial conditions 

(±1%, ±5% and ±15% off the actual value) are presented. 

3ˆ =L

Table 4-1: MODE-WRELAX experiment 1 — parameter estimation results ( & SNR = ∞). 3L =ˆ

y1,n y2,n y3,n Algorithm 
τ a τ a τ a 

True Solution 5 1 7 1.2 20 0.2 
MODE 5.000000 1.000000 7.000000 1.200000 20.000000 0.200000 
WRELAX (with i.c. of ±1% of actual) 4.994812 0.995382 6.995706 1.204610 19.999966 0.200000 
WRELAX (with i.c. of ±5% of actual) 4.909160 0.922571 6.929661 1.277297 19.999386 0.200007 
WRELAX (with i.c. of ±25% of actual) 5.436810 1.462732 7.550871 0.735106  20.003009 0.199934 
MODE-WRELAX 5.000000 1.000000 7.000000 1.200000 20.000000 0.200000 

 

It is quite noticeable that the MODE algorithm works perfectly in the noiseless environment.  

Also, a degradation of the WRELAX algorithm solution is observed as the initial conditions are 

moved farther away from the true solution.  With the initial condition off by 25% of the true solution, 

WRELAX no longer delivers the desired solution for the two pulses that are strongly overlapping. The 

latter is most likely due to the existence of multiple extrema of the criterion function. Lastly, the 

MODE-WRELAX solution does not require any effort by the WRELAX algorithm since the MODE 

algorithm solution leaves no room for improvement by WRELAX. 

Furthermore, the performance of both the MODE and MODE-WRELAX algorithms is 

evaluated under slightly noisy conditions.  Figure 4-3 shows the estimated parameters with the 

composite signal in Figure 4-2(b) contaminated by additive white Gaussian noise (AWGN) with 

standard deviation σ of 10–5.  While the third small isolated pulse is consistently estimated correctly, 

the parameter estimates for the first two pulses indicate large fluctuation mainly due to their closeness 

to each other. 
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Figure 4-3: Experiment 1 — Monte-Carlo (x100) MODE-WRELAX estimation results  

(AWGN with σ = 10-5).  Line indicates compensatory behavior of estimates. 

Another important issue is the behavior of the estimate when the number of pulses is not known.  

Table 4-2 shows the MODE and MODE-WRELAX estimates for different estimated number of 

pulses, namely L= 2, 4, and 6.  If the number of pulses is underestimated, the correct parameters 

cannot be obtained at all, and some sort of averaged representation results. However, in case of 

overestimation, all the pulses are successfully identified, together with some additional (spurious) 

signals that have essentially zero amplitude. 

ˆ
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Table 4-2: MODE-WRELAX experiment 1 
Parameter estimation results 2 ( = 2, 4, and 6 & SNR = ∞). (bold face – correct estimations) L̂

L̂  Algorithm τ a 
 True Solution [5 7 20] [1 1.2 0.2] 

MODE [5.6406 10.5074] [1.9888 0.2596] 2 
MODE-WRELAX [5.4609 7.5842] [1.4878 0.7082] 

MODE [-55.687 5.000 7.000 20.000] [5.275×10-17 1.000 1.200 0.2] 4 
MODE-WRELAX [-57.749 5.000 7.000 20.000] [-2.514×10-16 1.000 1.200 0.2] 
MODE [-52.05 -28.49 5.00 7.00 20.00 58.90] [-2.11×10-16 -2.12×10-16 1.00 1.20 0.20 1.23×10-16] 
MODE-WRELAX [-52.64 -27.55 5.00 7.00 20.00 57.83] [-3.04×10-16-4.48×10-16   1.00 1.20 0.20 5.04×10-16] 6 
MODE-WRELAX [-57.16 -56.26 -37.83 5.00 7.00 20.00] [1.24×10-12 -1.24×10-12 4.26×10-14 1.00 1.20 0.20] 

 

The pulses in the previous example have a finite duration, which does not represent the typical 

TDR response of a TP loop well.  Instead, each overlapping pulse contains an exponential decay.  To 

illustrate the MODE-WRELAX algorithm’s capability on an exponentially decaying function, we 

present another experiment with a reference signal that resembles a charge-discharge type pulse: 

  (4-58) 
[ ] ( )


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as shown in Figure 4-4(a).  Again, the magnitude spectrum is provided in Figure 4-4(b).  To construct 

overlapping pulses based on the reference pulse, we again selected L = 3, [ ]2.2.11=a , and 

[ ]2075=τ .  The individual pulses and the resulting linear combination y(t) are shown in Figure 

4-5(a) and Figure 4-5 (b), respectively. 
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Figure 4-4: The reference pulse for MODE-WRELAX experiment 2 (a) and its 512-point DFT magnitude 

spectrum in dB (b) (only positive frequencies shown). 
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Figure 4-5: MODE-WRELAX experiment 2 objective signal —  

individual pulses (a); and composite signal (b). 

The same masking scheme that was used for the measured signal in the first experiment was 

applied in this example since both reference magnitude spectra are similar.  Table 4-3, Figure 4-6, and 

Table 4-4 show the parameter estimation results that correspond to those of the first experiment in 

Table 4-1, Figure 4-3, and Table 4-2, respectively.  Note that the estimation accuracy is very high with 

the correct – or higher – number of pulses assumed for the MODE and MODE-WRELAX 

algorithms. 
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Table 4-3: MODE-WRELAX experiment 2 — parameter estimation results 1 (  & SNR = ∞). 3ˆ =L

y1,n y2,n y3,n Algorithm 
τ a τ a τ A 

True Solution 5 1 7 1.2 20 0.2 
MODE 5.000000 1.000000 7.000000 1.200000 20.000000 0.200000 
WRELAX (with i.c. of ±1% of actual) 5.005086 1.004736 7.004440 1.195285 20.001693 0.199965 
WRELAX (with i.c. of ±5% of actual) 4.976393 0.978272 6.979788 1.221629 19.992125 0.200162 
WRELAX (with i.c. of ±25% of actual) 4.553201 0.659329 6.703037 1.538006 19.851768 0.202790 
MODE-WRELAX 5.000000 1.000000 7.000000 1.200000 20.000000 0.200000 

Table 4-4: MODE-WRELAX experiment 2  
parameter estimation results 2 ( = 2, 4, and 6 & SNR = 0 dB). (bold face – correct estimations) L̂

L̂  Algorithm τ a 
 True Solution [5 7 20] [1 1.2 0.2] 

MODE [5.82 14.73] [2.09 0.22] 2 
MODE-WRELAX [6.07 18.98] [2.15 0.21] 

MODE [-46.52 5.00 7.00 20.00] [-7.66×10-14 1.00 1.20 0.20] 4 
MODE-WRELAX [-47.67 5.00 7.00 20.00] [-5.37×10-14 1.00 1.20 0.20] 

6 MODE [-59.10 -56.08 -37.42 5.00 7.00 20.00] [1.09×10-13 -1.23×10-13 3.75×10-14 1.00 1.20 0.20] 
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Figure 4-6: Experiment 2 — Monte-Carlo (x100) MODE-WRELAX estimation results (AWGN w/σ = 10-5).  

Line indicates compensatory behavior of estimates. 
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4.4 TDR Reflection Decomposition Using MODE-WRELAX  

If the TDR reflection pulses satisfy the underlying assumption that the closely spaced pulses differ 

only in their delay and amplitude and have the same shape, the MODE-WRELAX algorithm is 

expected to work properly.  In this section, the MODE-WRELAX algorithm is applied to a couple of 

TDR responses for some loop configurations that are considered for loop identification, with the idea 

of getting a preliminary evaluation of its usefulness in the identification process. 

4.4.1 Methodology 

To apply the MODE-WRELAX algorithm to the TDR-based loop identification process, the 

application procedure must be established first.  Specifically, assignments of the reference signal s  

and objective signal y  for the MODE-WRELAX are essential.  Under the iterative identification 

procedure presented in Chapter 3, MODE-WRELAX is the ideal candidate for the reflection 

detection procedure.  Instead of locating one reflection at a time, the MODE-WRELAX algorithm is 

capable of detecting multiple, overlapping reflections in a single algorithm execution. 

n

n

One set of prospects for s  and  is the full TDR response and the TDR input (raised cosine) 

pulse.  However, in Chapter 2, we have already shown that separable TDR reflections undeniably have 

a different shape, which fundamentally violates the MODE-WRELAX assumption.  Also, all 

reflections possess the dispersive tail, which the input signal (raised-cosine pulse) does not have.  

These observations suggest that the reference signal cannot be the TDR input signal so that processing 

the entire TDR response altogether is unsuitable. 

n ny

The better alternative is to decompose the residual signal in (3-1), between the measurement and 

the latest partial model, with an artificial reference pulse created on the basis of the initial length 

estimation procedure described in Section 3.4.1.  In other words, the MODE-WRELAX algorithm is 

used for refinement of the initially detected reflection and to additionally detect possible later 

reflections. 

Another issue is the selection of L, the number of overlapping pulses.  Theoretically there is an 

infinite number of TDR reflections, but most are very small compared to the dominant ones.  For the 

evaluation of the suitability of the MODE-WRELAX algorithm, the reflection count will be estimated 

via visual inspection. 
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4.4.2 Decomposition Experiment 

The evaluation of the algorithm in TDR reflection decomposition is carried out with the loop 

shown in Figure 4-7(a), which is similar to the CSA #1 loop, but with much shorter segments.  

Suppose the first iteration of the identification cycle has successfully identified the 26-AWG infinitely 

long segment attached to the measurement node.  The TDR response is simulated at 40 MHz for 215 

samples.  The TDR responses of the complete loop and model, both from Node 1, are plotted in 

Figure 4-8. 
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Figure 4-7: MODE-WRELAX test loop for near-end reflection decomposition (a), partial model after 1st 
iteration (b), and model with which reference signal is simulated (c). (All line types: ANSI PIC 26 AWG) 
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Figure 4-8: Complete TDR responses of the loop in Figure 4-7(a) and  

of the partial model in Figure 4-7(b). 

Furthermore, the reflection detection procedure returns n  corresponding to the initial 

length estimate of 237.537 m.  With that length estimate, the reference loop in Figure 4-7(c) is 

constructed based on the model, and the initial reflection from Node 2 of the reference loop is used as 

the reference signal.  Both the reference and residual (overlapping) signal are plotted in Figure 4-9.  

Moreover, Figure 4-10 illustrates the underlying dominant reflections that are overlapping.  The two 

overlapping reflections correspond to Node 2 and Node 3.  With an additional reflection visible 

starting at n = 150, there are three visible reflections that need to be estimated. 

101=r
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Figure 4-9: Residual (blue) and reference pulse (green). 
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Figure 4-10: Dominant reflections hidden in the residual signal. 
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The signals in Figure 4-9 and estimated number of dominant reflections, L , provide all the 

input quantities for the MODE-WRELAX algorithm.  The first step is to determine the frequency 

sample points to use for the MODE-WRELAX algorithm.  Based on the magnitude spectra of the 

signals, as shown in Figure 4-11, 101 samples from the 2

3ˆ =

15-point DFT over k = 100 to k = 500, taking 

only samples that are divisible by 4 (this effectively reduces the number of frequency points to N = 

213). 
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Figure 4-11: Magnitude spectra of reference signal (blue) and overlapping signal (green). 

With these spectrum samples, both the MODE algorithm itself and the MODE-WRELAX 

algorithm are applied six times, for a different assumed number of reflections = 2:7.  The estimation 

results are tabulated in Table 4-9, and their corresponding reconstructed composite signals are shown 

in Figure 4-12.  The results are not encouraging.  The reconstructed superimposed signals are 

considerably different from the original in all cases.  The first thing to notice is that the a

L̂

i‘s are 

complex, and the individual reconstructed reflections appear to be substantially different from either 

the reference reflection or the overlapping reflections.  Furthermore, the delay estimates do not 

correspond to the expected values.  From Figures 4-9 and 4-10, the offsets between the reference 
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reflection and the three visible reflections are about 5, 20, and 60 samples (there is another hidden 

reflection around 40).  Only the Node 2 reflection (the negative reflection) seems to be identified (τi = 

~6.5) when the MODE algorithm itself is used.  Despite the obvious failure of the TDR reflection 

decomposition attempt, there are two phenomena worth noting.  First, the MODE estimates for 

 are consistent; i.e., approximately the same estimates are found for all estimated number of 

reflections.  Secondly, the WRELAX algorithm flattens the signal tails that are introduced by the 

complex amplitude parameter even though the overall signals are worse than the MODE estimates. 

4ˆ ≥L
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Table 4-5: MODE-WRELAX estimates for TDR decomposition. 

MODE only MODE-WRELAX 
L̂  yi,n τi Re{ai} Im{ai} τi Re{ai} Im{ai} 

y1,n 1.784 -0.032686 -0.14917 8.0807 0.12554 -0.037364 2 
y2,n 41.798 0.018165 -0.011187 78.864 -0.0085676 -0.00060532 
y1,n 2.612 -0.0051698 -0.15379 8.0867 0.12557 -0.037174 
y2,n 36.228 0.0076525 -0.019498 78.883 -0.0085896 -0.00063546 3 
y3,n 551.57 0.0011731 0.00063505 583.63 -0.00053411 -0.00037161 
y1,n 6.8466 0.17762 -0.31629 14.378 -0.063342 -0.063009 
y2,n 10.433 -0.21499 0.14868 18.681 -0.032294 0.1108 
y3,n 101.9 -0.0014965 -0.0044398 82.539 0.00045566 -0.0036192 

4 

y4,n 978.91 0.00010435 0.00026378 995.76 -0.00023087 -0.0004397 
y1,n 6.6404 0.15401 -0.29975 9.3825 0.010585 -0.0030831 
y2,n 10.558 -0.1939 0.13378 9.7742 0.10681 0.016817 
y3,n 101.84 -0.0015384 -0.0044173 93.221 0.010223 -0.002072 
y4,n 979.16 0.00012363 0.00023412 992.48 -0.00074476 -0.00016423 

5 

y5,n -3885.7 0.00080272 -0.00040774 -3864.9 -0.0067 -0.0015883 
y1,n 6.5973 0.14934 -0.29556 12.599 0.066824 0.052543 
y2,n 10.599 -0.18945 0.12986 18.201 -0.016896 0.0084107 
y3,n 101.85 -0.0015319 -0.0043592 88.243 0.0080102 -0.012509 
y4,n 979.04 0.00013206 0.00023284 999.45 -0.00012991 -0.0016724 
y5,n -1819.8 -0.00048815 0.001168 -1833.8 -0.0057597 0.0021237 

6 

y6,n -3495.1 -0.00094712 -0.00018915 -3457.9 -0.0024095 8.8839×10-5 
y1,n 6.5362 0.14271 -0.28621 18.265 0.027235 -0.083729 
y2,n 10.725 -0.18241 0.11993 22.454 -0.083902 0.028495 
y3,n 101.89 -0.0015388 -0.004399 89.738 0.0095783 -0.0040779 
y4,n 975.35 0.00029614 0.0005286 1003 0.00094242 -0.00095456 
y5,n -1719.9 -0.00062568 0.00039941 -1678.8 0.00065938 0.00098044 
y6,n -3378.4 0.00029262 -0.00014612 -3382.1 -9.6238×10-5 0.00070239 

7 

y7,n 3510.5 0.00074755 2.0378×10-5 3510.9 0.00024211 0.00047585 
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Figure 4-12: The MODE-WRELAX estimation results — actual residual (blue), MODE reconstructed 
residual (green), and MODE-WRELAX reconstructed residual (red) — (a), (b), (c), 

(d), (e), and (f). 

ˆ 2L = ˆ 3L = ˆ 4L =
ˆ 5L = ˆ 6L = ˆ 7L =

Two possible reasons for the above poor results are: 

• Assumption violation — reflection shapes vary significantly; 

• Inappropriate selection of frequency samples. 
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With the selection of the frequency range where most energy is concentrated, for both the reference 

and the composite signal, the second possibility is unlikely.  On the other hand, our observation of the 

shape difference between the original and reconstructed signals indicates that the signal model in (4-1) 

does not hold for the TDR reflections.  To further verify this hypothesis, the Fourier domain model in 

(4-3) is examined.  Dividing both sides of (4-3) by Sk and assuming complex ai yields 

 (, i ij a ki k
i

k

Y
a e

S
ω∠ −= )  (4-59) 

In other words the magnitude of the ratio is constant while the phase of the ratio is affine.  Figure 4-13 

shows the above ratio between the analytically extracted TDR reflections in Figure 4-10 and the 

reference reflection in Figure 4-9.  While the phase behavior in Figure 4-9(b) obeys the assumption, 

the magnitude ratio is far from being constant.  Comparison between Yr1,k/Sk and Yr2,k/Sk indicates 

that the further a reflection is from the reference reflection, the more deviation from the model occurs. 
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Figure 4-13: The spectral ratio of individual overlapping reflections to the reference. 

The above observation suggests that the (4-3) model does not portray the TDR reflection behavior, 

and thus the MODE-WRELAX algorithm cannot be applied directly.  However, if the time-varying or 

dispersive nature of the TDR reflections can be included in the model, the subspace-method based 

approach to separate TDR reflections could be effective. 
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4.5 Problem Reformulation — TP Analysis for Dispersion Modeling 

In the last section, the MODE-WRELAX algorithm, which is designed to decompose a 

superposition of delayed and scaled versions of a known reference signal, was found not effective in 

decomposing TDR reflections.  The dispersive nature of the TDR reflections prevents the MODE-

WRELAX algorithm assumption (i.e. all pulse shapes are identical) from being satisfied in general.  To 

address this shortcoming of the MODE-WRELAX algorithm and to adopt the reflection ratio 

observed in Figure 4-13, the MODE-type algorithm is introduced toward solving the TDR reflection 

decomposition problem.  The MODE-type algorithm, which was originally developed for damped, 

undamped, and explosive sinusoids, is capable of modeling the particular kind of dispersion where the 

dispersed signal’s magnitude spectrum rolls off in exponentially decaying fashion.  The model for the 

MODE-type algorithm is defined as follows, in the Fourier domain, 

  (4-60) k

L

l

k
llkk EaSY += ∑

=1

ρ

where 

 ( )[ ] N
f

lll

s

j
π

τζρ
2

exp −=  (4-61) 

with damping (dispersion) factors { } .  Note that . L
ll 1=ζ l lρ ω∠ =

Visual inspection of the ratio of the reflection spectra in Figure 4-13 immediately points out that 

(4-60) is not applicable over the entire frequency range of the spectrum, due to deviations for the low 

frequency range.  Note that the magnitude part of (4-60) is affine in dB.  However, if only the high 

frequency components are considered, the (4-60) model seems to agree with the TDR reflection 

characteristics.  This assumption is verified in the next subsection with respect to the system block 

diagram derived from the bounce diagram in Section 2.6. 

4.5.1 Analysis of  Reflection Signal Models 

To confirm the compatibility of the MODE-type model in (4-60) with TP loop reflections, 

individual building blocks of the TP loop block diagram — discussed in Section 2.6 — are evaluated.  

Recall that all TP loops can be modeled as a combination of subsystems as in Figure 2-18.  

Furthermore, a path on the system block diagram corresponds to a TDR reflection, and thus the 
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reflection spectra are defined as the input spectrum multiplied by a cascade of TP loop blocks on its 

path.  Therefore, if each possible TDR loop block can be modeled by (4-60), the ratio of any TDR 

reflections is also in compliance with (4-60). 

System blocks to consider are those included in Figure 2-18, except for the source discontinuity 

transmission A(f) in Figure 2-18 (a).  A(f) does not need to be considered since it is mutually included 

in all reflection spectra expressions, and hence the ratio of two reflections no longer includes the term.  

The others that need to be analyzed are 

• Propagation block e  in Figure 2-18 (a); γl2−

• Reflection function  (2-16) at GC node in Figure 2-18 (d);  ( )fc1Γ

• Transmission function Τ  at GC node in Figure 2-18 (d);  ( ) ( )ff cc 11 1 Γ+=

• Reflection function  (2-17) at BT node in Figure 2-18 (e); ( )fd1Γ

• Transmission function Τ  at BT node in Figure 2-18 (e). ( ) ( )ff dd 11 1 Γ+=

For each case, combinations of two TP line types are considered (24 and 26 AWGs, with the much 

less used 22 AWG excluded for simplicity).  The BT TP type combinations are listed in Table 4-6.  

The (4-60) model is fit to these TP frequency-domain characteristics over the arbitrarily selected 

frequency range, from 1 MHz to 2 MHz.  Fitting (4-60) to the propagation block yields 

  (4-62) ( ) f
pp

fl ae ργ ≡−2

This is equivalent to the affine approximation of both attenuation and phase functions: 

  (4-63) ( ) ααα cfmf +≈

and 

  (4-64) ( ) βββ cfmf +≈

where 

 pp afcfm lnln +∝+ ραα  (4-65) 
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and 

 . (4-66) pp afcfm ∠+∠∝+ ρββ

For the other blocks, magnitude and phase are separately fitted according to (4-60).  The modeling 

results (in least squares sense) for all five cases are shown in Figures 4-14 – 4-26. 

Table 4-6: Possible BT TP type combinations with 24 AWG and 26 AWG TP types.  TP 1 leads the node 
and TPs 2 & 3 follow the node with respect to the measurement node. 

Config. TP 1 TP 2 TP 3 
1 24 AWG 24 AWG 24 AWG 
2 24 AWG 24 AWG 26 AWG 
3 24 AWG 26 AWG 26 AWG 
4 26 AWG 24 AWG 24 AWG 
5 26 AWG 24 AWG 26 AWG 
6 26 AWG 26 AWG 26 AWG 
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Figure 4-14: Least-square estimates of attenuation function (a) and phase function (b)  

24 & 26 AWG TPs — modeled over 1 MHz to 2 MHz. 
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Figure 4-15: Least-squares estimates of magnitude (a) and phase (b) of the reflection function at GC 

node.  Gauge change between 24 & 26 AWG TPs  — modeled over 1 MHz to 2 MHz. 
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Figure 4-16: Least-squares estimates of magnitude (a) and phase (b) of the transmission function at 

GC node.  Gauge change between 24 & 26 AWG TPs  — modeled over 1 MHz to 2 MHz. 
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Figure 4-17: Least-squares estimates of magnitude (a) and phase (b) of the reflection function at BT 

node.  Combination configuration defined in Table 4-6 — modeled over 1 MHz to 2 MHz. 
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Figure 4-18: Least-squares estimates of magnitude (a) and phase (b) of the transmission function at 

BT node.  Combination configuration defined in Table 4-6 — modeled over 1 MHz to 2 MHz. 

All the fitting results demonstrate a good fit between the TP loop characteristics and the new 

signal model.  Even though the frequency responses outside of the fitting region are noticeably 

different between the two, a good enough fit over the frequency region of 1 MHz to 2 MHz is 

obtained to proceed with the MODE-type algorithm implementation. 
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4.6 MODE-Type Algorithm 

In the previous section, we have shown that the dispersive signal model (4-60) is indeed a good 

(though not perfect) model to apply for TDR reflection decomposition.  This section introduces the 

MODE-type algorithm that can obtain the necessary parameters in the model.  The MODE-type 

algorithm is a MODE based algorithm for decomposing linear combinations of damped, undamped 

or explosive modes [26].  The MODE-type algorithm shares the same roots [21] as the MODE 

algorithm used in the MODE-WRELAX algorithm.  However, the MODE-type algorithm pertains to 

different applications than its counterpart.  While the MODE-WRELAX algorithm aims at separating 

overlapping pulses, the MODE-type algorithm was originally developed for parameter estimation of 

sinusoidal modes.  Although the MODE-type algorithm model is slightly different, a minor 

modification allows it to operate in the same manner as the MODE-WRELAX algorithm, but with the 

dispersive signal model in (4-60). 

The remainder of the section presents the derivation of the algorithm in detail, with necessary 

adjustments toward our superimposed signal decomposition application (Section 4.6.1). The derivation 

follows the implementation of the algorithm as suggested earlier [26] (Section 4.6.2).  The performance 

of the algorithm is presented briefly in Section 4.6.3. 

4.6.1 Derivation 

Cedervall et al. [26] presented the MODE-type algorithm based on the following time-domain 

model 

  (4-67) t

L

l

t
llt eay ~~

1

+= ∑
=

ρ

where  consists of superimposed mixed-mode sinusoids,  is the time sample index, and e  is zero-

mean white noise.  This model is almost identical to our model in (4-60) if written in the discrete 

Fourier domain (replacing t with k) and letting 

ty~ t t
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However, dividing by the reference spectrum may introduce some problems [25]: 

• Possible division by zero (or a very small number); 

• Noise is no longer white (assumed by the algorithm); 

• Lowering of SNR. 

The MODE-WRELAX algorithm successfully circumvented the division altogether, by manipulation 

of the matrix equations.  Rather than re-deriving the MODE-type algorithm to avoid the division, we 

simply select a valid frequency range where the reference has sufficient energy and thus mitigate the 

noise issues, at least for the time being.  Thus, the revised model is 

 k

L

l

k
ll

k

k
k Ea

S
YY ~~

1

+== ∑
=

ρ  (4-69) 

First, (4-69) is manipulated to resemble the model often used in sensor array signal processing (which 

is what the original MODE algorithm [21], [22] was developed for).  Define the following matrices: 
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 , (4-72) k
LL

aka
k 



= ρ L

11
x

and  

  (4-73) [ T
mkkk EE 1

~~
−+= Le

for some arbitrary snapshot size L  where  is the number of contiguous DFT 

samples used in the algorithm.  With the above definitions, (4-69) is re-written as 

Nm ~<< NN ≤~
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  (4-74) kkk exΡy += ~

This form corresponds to the sensor array processing form.  The following covariance matrix is 

formed 

  (4-75) ( ) ( )∑
=

+−+−=
M

k

H
dkdkd

1
1111

ˆ yyR

where d  controls the number of overlapping samples in adjacent snapshots, and M is the total 

number of snapshots defined as  

0>

 1
~

+






 −
=

d
mNM  (4-76) 

The operator  denotes rounding to the nearest smaller or equal integer.  Reference [26] contains an 

example to determine the optimal snapshot size m and the amount of overlap in samples.  We have 

defined a default configuration along the lines of the example where d  and , where  is 

the estimated number of signal components. 

 ⋅

1= Lm ˆ2= L̂

Assuming large SNR, R  in (4-75) is close to the true correlation matrix d
ˆ

  (4-77) H
dd ΡGΡR ~~=

where 

  (4-78) ( ) ( )∑
=

+−+−=
M

k

H
dkdkd

1
1111 xxG

Also, let’s define the eigenvalue decomposition of R  as d

  (4-79) [ ] H
H

H

d ΣΣΛ
G

Σ

00

0Λ
GΣR =









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
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


=
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where  corresponds to the L principal eigenvectors and Λ  to the diagonal matrix with the 

corresponding principal eigenvalues on its diagonal.  G corresponds to the eigenvectors that span the 

signal-free space.  By equating (4-77) and (4-79), it is readily shown that the range spaces of A and Σ  

are the same. 

Σ

Analogous to the MODE algorithm, define an L-th order polynomial 

  (4-80) ( ) (∏∑
==

−==
L

k
kL

L

k

k
k zbzbzB

10

ρ )

and let 

  (4-81) 

( ) mLmL

L
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bb

bb

×−


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


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




=

L

OO

L

0

0

0

0
B

The matrices  and P~  are orthogonal, i.e., B

  (4-82) H =B Ρ 0%

The derivation for the above condition is the same as the derivation for the orthogonality condition in 

(4-28).  The Vandermonde matrix E in (4-28) is the constrained version of P~  with all its elements on 

the unit circle.  

Since both A and Σ  share the same range space, (4-82) can be rewritten as 

  (4-83) H =B Σ 0

Let  and  denote the sample counterparts of Σ  and .  Then we are interested in finding the 

 polynomial — an estimate of B(z) — such that 

Σ̂

)

Λ̂ Λ

(zB̂

  (4-84) ˆ ˆH −B Σ 0%

Such  can be found by minimizing the quadratic cost function ( )zB
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over 

 [ ]Lbb L0=b  (4-86) 

The weighting matrices suggested by Cedervall et al. are  and [26]. ΛW =2 ( ) 1
1

−
= BBW H

4.6.2 Implementation 

Cedervall et al. [26] also outlines the implementation for finding the minimizer for the expression 

in (4-85).  The proposed method is outlined in Figure 4-19.  The process includes two consecutive 

evaluations of the cost function 

  (4-87) ( ) [ HH
Wf ΣΛΣBWBb ˆˆˆtr= ]

]

with the weighting matrix W specified differently for each evaluation.  

1. Compute the L principal eigenpairs of  for a given m and d. dR̂

2. Estimate b  such that (4-87) is minimized from an initial guess for B
and with . 

ˆ
W I=

3. Enhance the estimate by reevaluating (4-87) with B , based on b , anˆ ˆ d
( ) 1ˆˆ −

= BBW H . 

4. Obtain {  from }kρ̂ { }kb̂  (roots of the polynomial ). ( )zB̂

Figure 4-19: Outline of the MODE-type algorithm procedure [26]. 

There is an efficient implementation to minimize (4-87) utilizing matrix vectorization and 

Kronecker (tensor) product techniques. First, based on the property of trace operation, the cost 

function is rewritten as follows: 

  (4-88) ( ) [ BWΣΛΣBb HH
Wf ˆˆˆtr=
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Replacing the trace operator with a summation operator yields 

  (4-89) ( ) ∑
−

=
••=

Lm

i
i

HH
iWf

1

ˆˆˆ BwΣΛΣbb

where  and  are i-th column vectors of B  and , respectively.  The remaining B  matrix can 

also be decomposed into a sum of its column vectors as follows 

i•b i•w W

  (4-90) ( ) ∑ ∑
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=
••=
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1 1
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where w  is the ji-th element of .  Let  ji W

 ( ) [ TTTTT L00vec~ bbBb == ]  (4-91) 

with vec denoting the vectorization operator; then (4-90) becomes 
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The matrix expression in (4-92) is a Kronecker (or tensor) product of W  and Σ .  Therefore, 

(4-92) can be denoted as follows 

T HΣΛ ˆˆ

 ( ) ( )bΣΛΣWbb ~ˆˆ~ HTH
Wf ⊗=  (4-93) 

where ⊗  denotes the Kronecker product operator.  Define  Ω

b

 to be the matrix W  

from which the rows and columns corresponding to the zeros in ~  are eliminated.  Let 

HT ΣΛΣ ˆˆ⊗

 [ ]















=

I

I

ΩIIΩ ML  (4-94) 
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then (4-87) can finally be expressed as 

 ( ) Ωbbb H
Wf =  (4-95) 

For a fixed norm of b, the quadratic cost function in (4-95) is minimized by selecting the smallest 

eigenvector of Ω .  Note that the initial evaluation of (4-95) (Step 2 in Figure 4-19) is now 

independent of B (i.e. no initial guess required).  Once B  is determined, both  and  are readily 

obtained. 

( )zˆ ρ̂ â

4.6.3 Algorithm Performance with Known Signal 

To verify the proper operation of the MODE-type algorithm, the algorithm is tested with three 

known signals.  The first test is in the sinusoidal parameter estimation context, which is what the 

MODE-type algorithm was originally proposed for.  The second and third tests parallel the test carried 

out for MODE-WRELAX in Section 1.4, for decomposing superimposed pulses.  The pulses are now 

dispersed according to the MODE-type signal model. 

The first test is the identification of the poles associated with the sum of 10 random sinusoids with 

various modes.  Each sinusoid is normalized to have the same energy (over the measured frequency 

samples) as any other sinusoid.  Figure 4-20 shows the sum of the sinusoids, while Figure 4-21 

illustrates the location of the poles (‘x’ marks).  The pole estimates obtained by the MODE-type 

algorithm are shown in Figure 4-22 under two different environments.  Figure 4-22(a) is the result 

when there is no noise (SNR = ∞) added to the signal in Figure 4-20.  As clearly illustrated in the 

figure, the true poles are accurately estimated (the red •’s are precisely on the blue x’s).  Figure 4-22(b), 

on the other hand, shows the Monte Carlo simulation result of estimating poles in additive white noise 

for an SNR of 20 dB.  While some variations are observed, all poles are consistently found by the 

MODE-type algorithm. 
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Figure 4-20: Signal for MODE-type test 1 — Sum of 10 exponential modes. 
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Figure 4-21: Pole location of ten sinusoidal modes. 
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Figure 4-22: Estimation results — SNR = 0 dB (a) and SNR = 20 dB (b). 

The next two experiments demonstrate the ability of the MODE-type algorithm in decomposition 

of overlapping pulses by applying it to arbitrary – but known – pulses.  The MODE-type algorithm is 

compared to the MODE (without WRELAX stage) and MODE-WRELAX algorithms with an 

objective signal that is the superimposition of scaled, delayed, and dispersed versions of a reference 

pulse.  Two experiments are carried out: with objective pulses that are either well-spaced or 

substantially overlapping.  Let us again consider the discrete raised-cosine reference pulse, which was 

used for the MODE-WRELAX test in Section 4.3.3, 

 
( )



 <≤−

=
elsewhere,0

200,1.0cos15.0 nn
sn

π
 (4-96) 

The pulse width is twice as wide as the previous one, in (4-57).  The waveform over n  is 

shown in Figure 4-23(a).  Its 512-point DFT magnitude spectrum is also shown in Figure 4-23(b) (only 

for positive frequencies shown). 

500:0=
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(a) (b)  
Figure 4-23: Reference raised-cosine pulse (a) and its 512-point DFT magnitude spectrum in dB (b). 

(only positive frequency shown) 

First, the combination of three visually separable (i.e. well-spaced) pulses is considered.  To 

construct the composite of overlapping pulses, based on the given reference pulse, we arbitrarily 

selected L = 3, [ ]54.095.01=a , [ ]9.2176.1844.97=τ , and [ ]3.05.01=ζ

=kE

sf

.  Figure 4-26(a) 

illustrates the individual pulses.  The resulting linear combination y(t) is shown in Figure 4-26(b).  The 

Figure 4-26(b) waveform is generated based on its 512-point evenly-spaced frequency spectrum 

samples by evaluating (4-60) with the DFT of the reference signal (Figure 4-23(a)) and the signal 

parameters defined above, as well as assuming a noiseless environment, i.e. 0 .  Note that, since 

the input waveform is already in the discrete-time domain, the sampling frequency  is set to 1. The 

discrete time-domain signal is obtained by taking the inverse DFT of the frequency samples (note that 

only samples for  are displayed in the figure). 500:0=n
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(a) (b)  
Figure 4-24: MODE-type test signal 1 with sparsely overlapping pulses; 

individual pulses (a), combined signal (b). 

To avoid estimation errors caused by possible aliasing — even at very small magnitudes — the 

frequency samples are directly fed to the estimation algorithms, instead of applying a series of inverse 

and forward DFTs.  Under the assumption that we know the number of constituent pulses (i.e. ), 

the estimation results of the MODE, MODE-WRELAX, and MODE-type algorithms, are presented 

in Table 4-7; moreover, reconstructed signals are displayed in Figure 4-25  The algorithms utilize only 

the 41 frequency samples over k , from the 512-point DFT samples S  and Y .  Again the 

frequency range is determined by where the reference signal power is concentrated (for our reference 

signal that is in the low frequency region) to avoid division by a small quantity. 

3ˆ =L

40:0= k k
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Table 4-7: MODE-type experiment 5-1 — parameter estimation results for . 
(Best estimates highlighted) 

3ˆ =L

Algorithm Signal component True Solution MODE only MODE-WRELAX MODE-type 
1
 τ 97.4 97.4  97.327 97.4 

1ζ  1 (1) (1) 1 
{ }1Re a  1.00 1.005 1.0054 1 nY ,1̂

 

{ }1Im a   0 –0.0057788 –0.016372 0 
2τ  184.6 184.6 184.43  184.6 
2
 ζ 0.5 (1) (1) 0.5 
{ }2Re a  0.95 0.86667 0.86325 0.95 nY ,2̂

 

{ }2Im a   0 –0.009673 –0.03071 0 
3τ  217.9 217.9 218.25 217.9 
3ζ  0.3 (1) (1) 0.3 

{ }3Re a  0.54 0.4625 0.45905 0.54 nY ,3̂
 

{ }3Im a   0 0.010316 0.03288 0 
 

All three algorithms identified the pulse without dispersion (the pulse near n = 100) fairly 

accurately (the dispersed pulses somewhat affected the precision of the original algorithms).  As clearly 

shown with the other two dispersed pulses, the MODE-type algorithm detects the dispersed pulses 

more accurately.  It is interesting to note that the MODE algorithm alone accurately estimates all the 

delays while it compensates for its incompatibility with dispersion by using a complex scaling factor, 

and the WRELAX algorithm displaces these pulses from the initially correct delays to further 

compensate for the dispersion.  However, the superiority of the MODE-type algorithm is particularly 

apparent when the overlapping pulses are reconstructed based on the corresponding model and 

compared to the original signal, as shown in Figure 4-25. 

0 50 1 00 1 50 2 00 2 50 3 00 3 50 4 00 4 50 5 00
-0 .03

-0 .02

-0 .01

0

0 .01

0 .02

0 .03

0 .04

0 .05

0 .06

0 .07

s a m ple  ind e x n

e n

MO D E  on ly
M ODE -W R EL A X
M OD E- ty pe

0 50 1 00 1 50 2 00 2 50 3 00 3 50 4 00 4 50 5 00
- 0.2

0

0.2

0.4

0.6

0.8

1

1.2

s am ple  ind ex n

y n

MO DE  on ly
M ODE -W R ELA X
M OD E-ty pe

(a) (b)  
Figure 4-25: MODE-type experiment 2 — reconstructed objective signal with MODE, MODE-WRELAX, 

and MODE-type algorithms (a) and corresponding estimation errors (b). 
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The second experiment uses the same raised cosine reference pulse, as shown in Figure 4-23(a), 

but the objective pulses are now substantially overlapping.  The exact same L, , and ζ  from the 

previous experiment are used, while the delays are changed to τ .  The 

resulting objective pulses (before combining) and the superimposed signal are shown in Figures 

4-26(a) and 4-26(b), respectively. 
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(a) (b)  
Figure 4-26: MODE-type test signal 2 with substantially overlapping pulses; individual pulses (a), 

combined signal (b). 

The procedure used in the previous experiment is used here too.  With the correct number of 

pulses given, the estimation results for each algorithm are tabulated in Table 4-8; the reconstructed 

signals, based on the parameter estimates for the three algorithms, are shown in Figure 4-27. 
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Table 4-8: Experiment 5-1 — parameter estimation results with  (best estimates highlighted). 3L =ˆ

Algorithm Signal component True Solution MODE only MODE-WRELAX MODE-type 
1
 τ 99.5 99.495 99.495 99.497 

1ζ  1 (1) (1) 0.99663 
{ }1Re a  1.00 0.034858 0.03489 1.0031 nY ,1̂

 

{ }1Im a  0 0.8111 0.81113 0.011456 
2τ  100.0 99.993 99.993 99.995 
2
 ζ 0.5 (1) (1) 0.49761 
{ }2Re a  0.95 2.0462 2.0462 0.94676 nY ,2̂

 

{ }2Im a  0 –0.61124 –0.61121 0.011414 
3τ  104.9 104.9 104.9 104.9 
3ζ  0.3 (1) (1) 0.29995 

{ }3Re a  0.54 0.41115 0.41111 0.54012 nY ,3̂
 

{ }3Im a  0 –0.20497 –0.20505 0 
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(a) (b)  
Figure 4-27: MODE-type experiment 1— reconstructed objective signal with MODE, MODE-WRELAX, 

and MODE-type algorithms (a) and corresponding estimation errors (b).   
(MODE-WRELAX on top of MODE) 

Evidently, the reconstruction results in Figure 4-27 show both overall accuracy and accurate 

individual pulse detection capability of the MODE-type algorithms.  However, while MODE and 

MODE-WRELAX failed to reconstruct the individual pulses overall (in terms of amplitude and delay), 

its delay approximations itself were rather good and comparable to the estimates from the MODE-

type algorithm.  This is perhaps due to the additional parameters being estimated in the MODE-type 

algorithm; an increase in the number of estimated parameters causes an increase in the error variance 

of the individual estimates.   
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4.7 Application of  Mode-Type Algorithm in TDR Reflection 
Decomposition 

The procedure to apply the MODE-type algorithm is essentially the same as for the MODE-

WRELAX algorithm in Section 4.4.  The experiment in Section 4.4 is repeated with the MODE-type 

algorithm in this section as well as the CSA #1 case study from Chapter 3. In Section 4.5, we 

determined? that the frequency range from 1 MHz to 2 MHz allows a good match between the TP 

characteristics and the MODE-type signal model.  With the 215-point DFT and the sampling frequency 

of 40 MHz used in the Section 4.4 experiment, the equivalent frequency sample indices are k = 

820:1638.  Since the MODE-type algorithm does not require such a large number of data samples, 

only every eighth DFT value is used in the algorithm.  With reference and overlapping spectra as 

shown in Figure 4-11 and for the number of reflections estimated at L= 2:7 each, the MODE-type 

algorithm is applied and the resulting estimates listed in Table 4-9.  When the results in this table are 

compared to those in Table 4-5, for MODE-WRELAX estimates, it is apparent that the MODE-type 

algorithm has captured more reflections than the MODE-WRELAX algorithm.  The reflection at n = 

20, previously unidentified, appears in the MODE-type estimates.  However, the behavior of each 

detected mode is rather peculiar.  The ζ

ˆ

i indicates that most estimated reflections are explosive (ζi > 1) 

while we have observed that later reflections are more dispersed (e.g., damped).  Moreover, for a high 

number of estimated reflections, the amplitude parameter fails (a numerical issue).  Despite these 

remaining concerns, the MODE-type algorithm seems to detect overlapping TDR reflections more 

accurately than the MODE-WRELAX algorithm, particularly in terms of their TOAs. 
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Table 4-9: MODE-type estimates for TDR decomposition. 

L̂  yi,n τi ζi |ai| ∠ai 
y1,n 9.39 1.0021 0.0093367 -1.9381 2 
y2,n 31.65 1.0058 1.4614e-005 -1.8384 
y1,n 7.9238 1.002 0.012003 0.81257 
y2,n 26.472 1.0039 0.00023023 -2.2548 3 
y3,n 119.67 0.99672 0.23252 -2.4275 
y1,n 7.3014 1.0017 0.017693 -0.80865 
y2,n 25.071 1.0034 0.00048523 0.35442 
y3,n 89.081 0.99698 0.27272 -2.8667 

4 

y4,n 127.28 1.0027 0.00029177 0.019621 
y1,n 6.4441 1.0018 0.020384 -3.0811 
y2,n 22.602 1.0036 0.00048616 0.56586 
y3,n 55.576 1.0032 0.00029362 2.0507 
y4,n 123.49 1.0018 0.0010215 -3.1253 

5 

y5,n 906.95 0.96634 – – 
y1,n 6.0188 1.0013 0.040292 2.0039 
y2,n 21.449 1.0029 0.0013684 -2.4841 
y3,n 49.679 1.0048 3.9883e-005 -0.29194 
y4,n 121.18 1 0.0050212 -1.7755 
y5,n 224.62 0.97014 – – 

6 

y6,n 1002.5 0.87765 – – 
y1,n 5.719 1.0013 – – 
y2,n 20.689 1.003 – – 
y3,n 47.293 1.0071 – – 
y4,n 118.7 1.0008 – – 
y5,n 174.93 1.0128 – – 
y6,n 957.56 1.0514 – – 

7 

y7,n 3510.5 0.00074755 2.0378×10-5 3510.9 
 

4.8 Summary 

This chapter has introduced two types of MODE-based algorithm in an attempt to resolve 

overlapping TDR reflections.  The MODE-WRELAX algorithm, developed for a similar application, 

was implemented first.  However, we discovered that the signal model (linear combination of the same, 

delayed and scaled pulses) associated with the MODE-WRELAX algorithm does not apply to the 

TDR reflections due to the dispersive nature of the TP medium.  To accommodate the dispersion, 

another algorithm, the MODE-type algorithm — which was originally developed for sinusoidal 

parameter estimation — was presented next.  The signal model for the MODE-type algorithm 

incorporates dispersive behavior that is relatively compatible with that of TDR reflections, and the 
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MODE-type algorithm has shown some promise for TDR reflection decomposition.  If applied 

properly, the MODE-type algorithm can contribute significantly to the TP loop identification process, 

especially with close segments present. 

Incorporation of the MODE-type algorithm into the TDR-based identification process is the 

apparent next step.  However, the extensive study of the algorithm for decomposing TDR responses 

has lead to another approach to TP loop identification in which the MODE-type algorithm would be 

more fully utilized.  Both MODE algorithms operate in the Fourier domain (for our application) and 

to apply them the DFT of the TDR response must be computed.  This, in addition to the typically 

long data length, can be relatively time consuming and inefficient.  The alternative approach is to start 

with frequency domain data, or the frequency response of the loops.  The subsequent chapter 

combines the ability of the MODE-type algorithm to accurately estimate the TOA of reflections with 

the iterative modeling approach developed in the time-domain approach to perform the loop 

identification with the frequency-response measurement data. 
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