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(ABSTRACT)

A multidisciplinary design optimization (MDO) methodology is developed to link the
aerodynamic shape design to the system costs for magnetically levitated (MAGLEV)
vehicles. These railed vehicles can cruise at speeds approaching that of short haul
aircraft and travel just inches from a guideway. They are slated for high speed intercity
service of up to 500 miles in length and would compete with air shuttle services. The
realization of this technology hinges upon economic viability which is the impetus for
the design methodology presented here. This methodology involves models for the
aerodynamics, structural weight, direct operating cost, acquisition cost, and life cycle
cost and utilizes the DOT optimization software. Optimizations are performed using
sequential quadratic programming for a 5 design variable problem. This problem is
reformulated using 7 design variables to overcome problems due to non-smooth design
space. The reformulation of the problem provides a smoother design space which is
navigable by calculus based optimizers. The MDO methodology proves to be a useful
tool for the design of MAGLEV vehicles. The optimizations show significant and
sensible differences between designing for minimum life cycle cost and other figures
of merit. The optimizations also show a need for a more sensitive acquisition cost
model which is not based simply on weight engineering. As a part of the design
methodology, a low-order aerodynamics model is developed for the prediction of 2-D,

ground effect flow over bluff bodies. The model employs a continuous vortex sheet



to model the solid surface, discrete vortices to model the shed wake, the Stratford
Criterion to determine the location of the turbulent separation, and the vorticity
conservation condition to determine the strength of the shed vorticity. The continuous
vortex sheet better matches the mechanics of the flow than discrete singularities and
therefore better predicts the ground effect flow. The predictions compare well with
higher-order computational methods and experimental data. A 3-D extension to this

model is investigated, although no 3-D design optimizations are performed.
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Chapter 1

Introduction

1.1 Overview

The design of advanced aerospace vehicles is inherently multidisciplinary and
should therefore be reflected in a suitable design methodology. Approximately 80%
of the cost associated with the product is committed during the conceptual and pre-
liminary design phases [1]. Since very little money has actually been spent at this
stage in the design process, the gravity of the design decisions and the pivotal na-
ture of these early phases becomes evident. In the design of most aerospace vehicles,
aerodynamics plays a major role in determining propulsion, structural, and control
requirements. Aerodynamics also has strong ties to the overall cost. Designing for
good aerodynamics while ignoring cost as a design objective will surely result in a
flawed design which will incur many off-design penalties over the life of the vehicle.
It is, therefore, important to develop a design methodology which will incorporate
all essential disciplines. This research involves the development of such a method-
ology which includes cost as a figure of merit for the shape design of high speed,
magnetically levitated vehicles (trains).

The technological advantage of MAGnetically LEVitated (MAGLEV) vehicles
over trains is that they lack wheels which cap the maximum speed at approximately

200 mph. This technology is capable of speeds approaching that of aircraft, so the
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target speed for this first generation of MAGLEV vehicles is 300 mph. Market anal-
yses have, therefore, slated MAGLEV vehicles for high speed intercity service of up
to 500 miles in length. This would put MAGLEV vehicles in competition with short
haul air transportation and shuttle service. It could complete this mission, with ap-
proximately two stops, in under two hours and embark and terminate in city centers.
This would relieve highway and air traffic congestion and offset the need to add high-
way lanes and build new airports near cities to accommodate for growth. In addition
to this, the MAGLEV system has low energy consumption per seat mile estimated at
one quarter of that of a commercial aircraft for a similar mission [2].

The design challenges for the aerodynamic shape of MAGLEV vehicles are greatly
different from that of airplanes. With magnetic suspension, aerodynamic forces are
not the only source of lift and drag, so the performance parameters are not as strong
a function of the aerodynamic lift to drag ratio. The inclusion of cost as a design
goal is, therefore, essential in making design decisions involving magnetic vs. aero-
dynamic forces and moments. The absence of onboard fuel removes range from the
problem. Performance is based on cruise Mach number, energy used, and payload
weight. The close proximity of the track changes the aerodynamics, necessitating
specific ground effect analyses for design. Cross wind sensitivity is important due to
the small track clearances involved and the need for lateral directional control. The
design for some service corridors will be based heavily on the issues of vehicle aero-
dynamics in tunnels and vehicle passing. The potential proximity to areas of human
population makes noise abatement a prominent design goal. The aerodynamic shape
must also be chosen with respect to manufacturing complexities and concerns. The
issue of manufacturability strongly connects the aerodynamic design to the life cycle
cost of the vehicle.

The study of life cycle costs is important for measuring the economic viability
of the project. Use of only the acquisition cost, or only the operating cost as the
primary measure, neglects the real operating environment of the system. Life cycle
cost captures all relevant costs for the project, from the conceptual design phase,
through the detailed design phases, production of the system, deployment of the

system, operation and maintenance of the system, and the planned retirement and
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disposal of the system. This analysis takes account of the economic factors relevant
to the life cycle, such as the cost of capital, the time value of money, tax effects
on cash flows, and the costs of disposal of the system. For this work, the life cycle
cost model uses capital cost elements from the work breakdown structure prepared
for the Northrop Grumman MAGLEV vehicle [3]. Using projected passenger traffic
loading, the profitability of the project can be calculated using discounted cash flow
analysis. The realization of this technology hinges upon economic viability which is
the impetus for the design approach presented here.

The concurrent handling of aerodynamic and economic performance is accom-
plished using multidisciplinary design optimization techniques (MDO). Multidisci-
plinary design optimization is the instrument by which one can consider several dis-
ciplines at once and mathematically link them to consider the interactions. This is
advantageous over dealing with each discipline sequentially. Using such tools, one
can deal with numerous individual disciplines and satisfy mission requirements while
achieving optimum performance with respect to some predetermined figure of merit.
Such an approach is very useful for conceptual and preliminary design phases where
analyses are, by definition, simple and inexpensive to perform. The work here employs
the sequential quadratic programming method. It is a gradient based optimization
method and is considered to be the current state of the art in this “mature” area of
optimization theory.

The work presented here involves the development of a design methodology for the
concurrent aerodynamic and cost design of MAGLEV vehicles. The design method-
ology has been created to operate in an automated fashion, and it is modular to allow
for the continual improvement of the individual models. This attribute is particularly
important for the cost models which are low fidelity at this early stage in the develop-
ment process. The design loop is set up around the sequential quadratic programming
optimizer which can perform constrained optimizations. The objective functions for
the optimization are provided by several modules which are shown in Fig. 1.1. The
module input, output, and contents are discussed in the following chapters. A great
deal of effort was put into developing the aerodynamics model which is a low-order

model for the flow over bluff bodies in ground effect. “Low-order” refers to methods
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based upon Laplace’s equation (to be discussed in Chapter 2) while “high-order” refers
to models based upon the Navier-Stokes equation. One of the largest problems in-
volved in performing multidisciplinary design optimizations of vehicles is in acquiring
the aerodynamic coefficient sensitivities. The method developed here is a low-order
(simple and quick) method which can predict flow phenomena normally attributed to
high-order methods. This model overcomes this obstacle which stems from the pro-
hibitive cost of high-order aerodynamic calculations for these complicated flow fields.
The cost models were assembled by Eaglesham and Deisenroth from the Industrial
and Systems Engineering Department at Virginia Tech [4]. A five design variable test
problem (2-D, side view) is performed to evaluate the methodology and determine
design optima for several figures of merit. These are drag coefficient, lift to drag ratio,
empty weight, acquisition cost, operating cost, and life cycle cost. The extension to
full 3-D designs is discussed in the section on the 3-D aerodynamics model (Section

2.3). Optimizations have not yet been performed using full 3-D aerodynamics.

1.2 Ground Effect

The aerodynamics problem being dealt with in this work is the incompressible,
exterior flow over a bluff body in close ground proximity. The ground effect flow is
different than that of an automobile or conventional train. The MAGLEV vehicle is
in close proximity to a guideway, which is raised above the ground. The modeling of
such flows is a difficult problem and is one which involves non-linear aerodynamics
and consequently expensive solution methods. A new development associated with
this work is the use of low-order aerodynamic computations to solve for these flows.
The method proposed is capable of generating solutions which are comparable to
higher-order methods and experiments. The “lift reversal” phenomena is captured,
and quantitative aerodynamic characteristics are obtained. It is also shown that the
choice of panel method singularities is crucial to the calculation of flow over bodies

in strong ground effect.
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1.3 System Requirements

The MAGLEV transportation system technical requirements can be found in a
report put together by ENSCO, Inc. [5]. This document discusses the different oper-
ation concepts and specific factors outlined by the Intermodal Surface Transportation
Efficiency Act of 1991. Requirements are outlined in the general categories of basic
performance, system operations, operating environment, safety and security, environ-
mental impacts, ride quality and passenger environment, and cost. Most of these
requirements involve detailed design parameters which are not dealt with here. This
report describes a balance between technical performance and capital and operating
costs. This design methodology is developed to address such requirements in the

conceptual design phase.

1.4 A Brief History of MAGLEV Vehicles

Magnetic levitation (MAGLEV) is finding its way into many applications ranging
from space launch systems to bearings. It had initially been proposed as a means of
high speed ground transportation at the beginning of the twentieth century. Interest
has been intermittent throughout this century, and financial backing materialized
when technological obstacles broke down and the political climate allowed. A brief
history of MAGLEV Vehicles can be seen in the following subsections each pertaining

to a specific country which is participating in the development of such vehicles [6].

1.4.1 United States of America

The use of magnetic levitation as a means of high speed ground transportation
was first proposed by Robert Goddard in 1909. His idea involved a vehicle traveling
through a tube in partial vacuum [7]. In 1912, a french engineer named Emile Bachelet
built and patented a small scale prototype vehicle which achieved levitation using AC
current repulsive magnets. Due to the level of technology at the time, Bachelet’s ideas

could not be extrapolated to a full-scale vehicle.
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Superconductivity paved the way for a full-scale magnetically suspended vehicle.
Powell and Danby worked in the area throughout the 1960s at Brookhaven National
Laboratory. Their work which involved superconducting levitation magnets and ve-
hicle propulsion via linear synchronous motors became well known, and they received
a patent in 1969. Work continued in the US under Federal Railroad Administration
funding through the High Speed Ground Transportation Act of 1965. A 1/25th scale
model riding on a guideway was completed at the Stanford Research Institute in 1973.
Research ended abruptly in 1975 when all funding was cut by the federal government.

After fifteen years of technological progress abroad, interest was renewed in the
US. The National Maglev Initiative was founded in 1990 as a consortium consisting
of the Federal Railroad Administration, the Department of Transportation, the US
Army Corp of Engineers, and the Department of Energy. The Intermodal Surface
Transportation Efficiency Act of 1991 stipulated the adaptation of the national in-
termodal transportation system to new technologies, including magnetic levitation
vehicles. It also established a US MAGLEV prototype development program for the
design and building of a prototype system. Senator Daniel Patrick Moynihan (D-NY)
was instrumental in the inclusion of MAGLEV technology in the highway bill, which
appropriated $725 million for the prototype development program. Under this
program, the National MAGLEV Initiative chose four companies to propose system
concept definitions; Bechtel, Magneplane, Foster Miller, and Northrop Grumman.
Their respective designs can be seen in Fig. 1.2.

As part of this program Virginia Polytechnic Institute was contracted to perform
wind tunnel testing on the Northrop Grumman vehicles (1993) [8]. In an effort
separate from that of the NMI, American Maglev Technologies of Florida received a
contract from the federal government to develop and build a prototype of their own
system along with a test track. Ground was broken in 1995. Virginia Polytechnic
Institute was also involved in the aerodynamic testing of the American MAGLEV
Technology [9] vehicle whose shape was design by Lockheed Martin Georgia Company.

Interest by the federal government has since waned.
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1.4.2 Germany

German involvement in MAGLEV vehicle technology began with Kemper who
performed research in the 1930’s and received a patent in 1934. A consortium of
German companies began a program to develop and test vehicles in 1969. Their sev-
enth vehicle, the Transrapid 07 (TR07) was certified for operation in 1991 (Fig. 1.3).
Their system is of the ElectroMagnetic Suspension (EMS) type which is characterized
by their attractive magnets and their configuration which has the vehicle wrapped
around a “T” shaped track. EMS systems are unstable since a perturbation upwards
brings the attractive magnets closer together, increasing the attractive force. A per-
turbation downwards moves the attractive magnets further apart, decreasing their
attractive force, and therefore their ability to return to the neutral position. Active
control is required to maintain stability. A schematic diagram of an EMS system can
be seen in Fig. 1.4. It shows the vehicle, “T” shaped track, and attractive magnets.
The TRO7 was the first MAGLEV vehicle system ready to enter commercial service.
Plans to build the TRO7 system for a 13 mile stretch from Orlando airport to Walt
Disney World in Florida by 1996 ($98 million) was later cancelled by the US govern-
ment. The author is unaware of any current plans to implement this transportation

system.

1.4.3 Japan

The Japanese program is run by the Japanese National Railways. Their first ve-
hicle was built in 1970, and the first successful levitation was achieved in 1972. The
Japanese system employs ElectroDynamic Suspension (EDS) which is characterized
by repulsive magnets and a “U” shaped track similar to a bobsled. A schematic
diagram of an EDS system can be seen in Fig. 1.5. EDS systems are stable since
perturbations are naturally corrected by the change in magnet proximity. A pertur-
bation upwards moves the repulsive magnets apart, decreasing their repulsive force,
and returning the vehicle to the neutral point. A perturbation downward also returns
to the neutral point since the reduced proximity of the magnets increases its repul-

sive force. The Miyazaki test track, a 4.4 mile long facility was opened in 1977 for
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the testing of Japanese vehicle prototypes. Testing began on the MLU002 system in
1987. In 1990 the project gained the status of a nationally funded project [10], and
building began on a new test facility called the Yamanashi Test line. The MLU002
was destroyed in a fire, and the MLUOO2N began testing in 1993. In the spring of
1997, full-scale tests began using the Yamanashi test line which could become part
of the Tokyo/Osaka line after tests are completed in 1999 [11].

1.5 Literature Review

1.5.1 MAGLEYV Design

The work presented here deals with the design of MAGLEV vehicles with re-
spect to aerodynamic shape and its effect on system cost. Numerical optimization
is employed to formally link the individual disciplines. Such an optimization design
requires choosing a specific MAGLEV system, since each differs in the method for
propulsion and levitation. A review of the existing system concepts and some past
design efforts is presented here.

The Japanese design teams have been developing MAGLEV vehicle concepts for
almost thirty years. A great deal of information concerning their current activities
and a brief history of their designs can be seen on the Japanese Railroad homepage
[10]. The aerodynamic design for their current MLUOO2N can be seen in reports by
Mitsubishi Heavy Industries, Central Japan Railway Company, and Railway Tech-
nical Research Institute. The evaluation of their aerodynamic model is reported by
Kaiden, Hosaka, and Mazda [12]. Experimental validation for these computations is
described in a report by Shimbo and Hosaka [13]. The aerodynamic design of the cur-
rent Japanese vehicle (MLUOO2N) is discussed in a report by Miyakawa and Hosaka
[14]. This work involves the design of frontal shapes using both experimental and
computational tools. Consideration is given towards structural and manufacturing
issues although no specifics are mentioned. The resulting design is a double cusp
shape which has complex curvatures. The cause for such a complicated shape is the

flow of air over the vehicle in the EDS (“U” shaped) track and for the aerodynamic
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behavior during vehicle passing.

Aerodynamic work undertaken in Germany for the flow over MAGLEV vehicles
and high speed trains is reviewed in a journal article by Peters of Krauss-Maffei [15].
In this paper, he discusses the aerodynamic issues involved with these vehicles, anal-
ysis methods (computational, track tests, wind tunnel tests, towing tank tests), drag
breakdowns, and transient phenomena (cross-wind sensitivity, tunnels, and noise).
Test track results for the German Transrapid system are discussed in a paper by
Merklinghaus and Mnich [16].

Although the concept of MAGLEV vehicles has been known in the United States
for most of the twentieth century, full-scale vehicle designs only began with the Na-
tional MAGLEYV Initiative in 1991. Details of the four system concept definitions can
be seen in the final report of the government MAGLEV system assessment team [6].
This document compares the system concepts of Bechtel, Foster Miller, Grumman,
and Magneplane. It also weighs the attributes of these designs against that of the
German TRO7. The work presented here uses design specifics from the Northrop
Grumman design, since this design concept went the furthest out of all the American
concepts and the most information is available for it. The Grumman MAGLEV de-
sign is outlined in a summary report by the Grumman Team. This report consists of
ten individual papers dealing with the system concept definition [17], the benefits of
MAGLEV technology [18] [19], magnet design [20], power generation [21], the MA-
GLEV suspension system [22], structures and materials [23], aerodynamic design and
analysis [24], cost [3], guideway cost [25], guideway design [26], and vehicle control
27].

Details of the aerodynamic design are covered in a paper by Siclari, et.al. [28].
This paper discusses the aerodynamic analysis method using the Reynolds Averaged
Navier-Stokes equation (RANS), the design selection process, and the details of the
final designs. The high cost of performing such computations precludes the incor-
poration of this type of analysis in an MDO framework. This aerodynamic analysis
forms the baseline for the formal optimization work described here. The only evidence
of another formal optimization design performed for the aerodynamic design of such

vehicles is presented in a National MAGLEV Initiative report [29]. A minimization
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of the front end drag of an EDS type vehicle is performed. Such a minimization is
accomplished by minimizing the strength of the vortex that comes off the channel
guideway as the vehicle passes (“bow vortex”). The channel is simulated using point
vortices, and the passing vehicle is modeled using a point source of varying strength.
This is used to control the rate at which the cross sectional area of the passing vehicle
changes (circular cross section). An analytic function is obtained for the drag coef-
ficient and it is minimized by plotting the function over a range of the single design

variable and visually determining the minimum point.

1.5.2 MDO in Vehicle Design

Multidisciplinary design optimization enables the designer to consider several dis-
ciplines at once and design a vehicle concurrently for multiple objectives. This work
deals specifically with linking the aerodynamic design to the system economics. This
type of formal optimization hasn’t been done before for MAGLEV vehicles, although
there has been work performed for subsonic aircraft. Johnson [30] looked at mini-
mizing life cycle cost for these aircraft. She considered fuel burned, take off gross
weight, direct operating cost, acquisition cost, and life cycle cost as figures of merit.
The results of this study showed different designs for the different figures of merit.
Jensen [31] also looked at designing subsonic aircraft for various figures of merit. This
work focused on determining which figures of merit to design for. He considered gross
weight, life cycle cost, acquisition cost, fly-away cost, direct operating cost and fuel
as figures of merit. Optimizations were performed based upon the different figures of
merit, and off-design penalties were calculated. The inclusion of cost in multidisci-
plinary design of aircraft is discussed in an article by Rais-Rohani [32]. He discusses
the different types of cost estimation models and addresses the issues involved in

implementing them in such a design methodology.

1.5.3 Lower-Order Aerodynamic Analysis

Low-order aerodynamics analyses generally deal with the solution to Laplace’s
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equation which results from simplifying the Navier-Stokes equations for an incom-
pressible, inviscid, irrotational flow. As part of this work, a low-order method is
developed for the analysis of flow over a bluff body in ground effect. This method
is a vortex panel method with continuous surface vorticity, a discrete vortex wake,
separation location model, base pressure model, and ground effect model.

Vortex methods with discrete vortex shedding were first used by Rosenhead in the
early 1930’s. Since then, many methods have been developed which employ free vor-
tices (vortex cloud). Leonard [33] discusses several methods along with the intricacies
of vorticity transport and some insight into the theory and its capabilities. With the
proper simulation of the flow mechanics, vortex methods are capable of simulating
real flows including viscous layer velocity profiles, and boundary layer separation.
These capabilities are usually attributed to high-order aerodynamics methods.

Katz [34] uses a discrete vortex method and sheets of free vortices to model the
post-stall aerodynamics of wings. Vorticity is shed from the trailing edge and a
predetermined separation location on the top surface of the airfoil at high angle of
attack. Katz suggests the need to model thickness effects and to employ a separation
criteria to allow for the calculation of flows at varied Reynolds numbers over bodies
of arbitrary geometry. This idea forms the basis for the model used here to predict
the ground effect flow, over bluff bodies.

A similar vortex method with separation criterion can be seen in work by Menden-
hall [35]. This work deals with the flow around tactical missiles at angle of attack.
Mendenhall uses the cross-flow analogy to determine the formation of the cross-flow
separation. The cross flow planes are mapped into circles, and the bluff body flow
around a circle is solved using a vortex method with sheets of shed vorticity. The
location of the separation points is determined using the Stratford criteria, much the
same way as it is done here.

The model used here is centered around a continuous vortex sheet method dis-
cussed in a paper by Mook and Dong [36]. That work is concerned with blade-vortex
interaction and uses a continuous sheet vortex panel method for the flow over sharp
trailing edge bodies. The trailing edge is treated using a flow model discussed by
Giesing [37] and Basu and Hancock [38]. This model allows for an analogy to bluff
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body separation if one does not consider flow entrainment into the separation bubble.

The problem of an airfoil in ground effect is discussed in a paper by Coulliette
and Plotkin [39]. They perform calculations on a zero thickness parabolic arc airfoil
and a Joukowski airfoil in ground effect conditions. The calculations are performed
using both numerical and analytic solutions. This work is mentioned here because
Coulliette employs a piecewise linear vortex panel method similar to the one used in
this work. They were unable to calculate lift reversal, since flow separation was not
modeled. A 3-D extension to the continuous vortex sheet method was developed by
Mracek and Mook [40].

1.6 Design Problem Statement

The problem is to design the aerodynamic shape of a railed MAGLEV vehicle
based on several figures of merit; drag coefficient, lift to drag ratio, empty weight, ac-
quisition cost, direct operating cost, and life cycle cost. The vehicles use the Northrop
Grumman geometry definition and the Grumman propulsion and levitation system.
The system mission is for a corridor with an 800km trip distance, passenger load
of 2000 per hour, and top speed of 134m/s. The vehicle structure is composed of
aluminum and they each carry 50 passengers. The economic factors used and the

design specifics are discussed in the proper chapters to follow.

1.7 Outline

This dissertation is organized in the following manner. Chapters 2 through 6
discuss the different analyses employed in this design optimization. The multidisci-
plinary design optimization problem statement is described in Chapter 7. The basic
5 design variable problem is posed and a replacement 7 design variable problem is
proposed. Chapter 8 shows the results from the optimizations. The 7 design variable
problem is used to overcome the obstacle of non-smooth design space. Optimizations

are performed for the following figures of merit; drag coefficient, lift to drag ratio,
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empty weight, direct operating cost, acquisition cost, and life cycle cost. The result-

ing designs are compared. Conclusions and recommendations for future work in this

area are shown in Chapter 9.
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Figure 1.2: National MAGLEV Initiative System Concept Definitions [41]
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Figure 1.3: Germany’s Transrapid 07 [42]
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Figure 1.4: A Schematic Diagram of an ElectroMagnetic Suspension System [7]
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Figure 1.5: A Schematic Diagram of an ElectroDynamic Suspension System [7]
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Chapter 2

Aerodynamics Model

2.1 Background Information

The aerodynamics problem being dealt with as part of the design of MAGLEV
vehicles is an exterior flow over a bluff body in close ground proximity. The target
speed is 300 MPH which corresponds to a cruise Mach number of 0.4. In general,
these vehicles experience flow separation on the last car as well as strong ground effect
augmentation of the aerodynamic force and moment coefficients (lift reversal). As
a body is brought closer to a ground plane the lift coefficient will initially decrease
(and may even become negative) due to the Venturi effect. According to this largely
inviscid phenomena, the flow must accelerate to travel through the thin gap between
the vehicle and the ground plane, thereby lowering the pressure on the underside and
reducing the lift. If the body is situated below a critical ground clearance, the lift
will reverse and increase for any further reduction in the height above the ground
plane. This is due to viscous effects which include a repositioning of the stagnation
point and the separation lines whereby the lower portion of the separation line moves
forward and the upper portion of the separation line moves aft. For flow over a
body with a sharp trailing edge, lift reversal can involve flow separation on the lower
surface. The problem of lift reversal is a difficult one to solve since it usually involves
flow separation which has to be predicted by any flow solution method tackling the

problem. Bearman [43] discusses some of these difficulties.

19
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The prediction of reasonable force and moment coefficients is pivotal to the success
of this shape optimization design, therefore much thought and work has gone into
the development of this model. Aerodynamic analyses are developed for 2-D and 3-D
flows. This chapter discusses the theoretical background for the aerodynamic models
used for the design optimizations and also points out important implications these
models make about the simulation of ground effect aerodynamics.

Aerodynamic analysis involves the solution of mass, momentum, and energy con-

servation equations.

dp
o vV =0
v, - P ) 0 av; 0V
p(at —I—V'sz) = pfi— D, (p+§/N V) + 815”(81‘;’ * 81’z‘)
3
pg—i VY= 2 8(; <k gi) + ®(Dissipation Function) (2.1)

Although it only strictly refers to the conservation of momentum equations, this
collection of equations is often referred to as the Navier-Stokes equations by the
Computational Fluid Dynamics (CFD) community. In this discussion, we will be loose
with this term and will specifically refer to momentum conservation when appropriate.
Navier-Stokes calculations, especially subsonic ones, are computationally intensive
and expensive in terms of CPU time. These calculations require both surface and
volume grids with enough resolution to capture important flow phenomena. For the
case of the MAGLEV vehicle, this would include the viscous flow in the gap between
the vehicle and the track and that in the separation region. For turbulent flows, the
Reynolds averaged form of these equations is used.

The difficulty presented by the problem size for Navier-Stokes calculations of MA-
GLEV vehicles is evident in the design work performed by Northrop Grumman Cor-
poration [28]. The analysis of the full three dimensional vehicle with an elevated
guideway required an 18 block grid with 1.1 million points for the half plane model.
Twelve hundred multigrid cycles were needed to reduce the residual by three to four
orders of magnitude. They were able to perform one such analysis and instead per-
formed smaller three dimensional and two dimensional Navier-Stokes calculations for

most of the design process. Similar calculations performed at NASA Ames Research
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Center [44] were also costly, requiring a 12 block grid with 876,912 cells. It is abun-
dantly clear that using Navier-Stokes analyses to analyze the flow over such vehicles
within an optimization loop is too expensive and quite possibly implausible to au-
tomate at this time. Changes made to the surface geometry during an optimization
loop might cause problems when mapping the grid, requiring manual repair.

Alternatively , the use of linear methods would require solely a surface grid and
would require much less CPU time, making it more conducive for use in an MDO
framework. The disadvantages of using such methods are that they cannot predict
the effects of diffusion (skin friction and separation) and therefore rely on empirical
relationships for this information. The advantages of using such methods are that
boundary layer strip theory can provide reliable skin friction values, consistent sepa-
ration criteria exist for two dimensional and axially symmetric turbulent flow, there
is no need for the empiricism involved with turbulence models, they are easy to dis-
cretize, and fast to solve. It is for these reasons that the work presented here employs
such methods.

Linear methods deal with the solution to Laplace’s equation which results from
several simplifying assumptions to the Navier-Stokes equations. Since the cruise Mach
number is not high, the flow can be assumed incompressible. Since the density is
then known throughout the flowfield there is no coupling of the energy conservation
equation with those of mass and momentum conservation so the energy equation is
not needed to uniquely determine the flowfield. Mass conservation is accomplished

by maintaining that the velocity vector field is solenoidal.
V.-V=0 (2.2)

Assuming the flow is inviscid and irrotational, the continuity equation can be
solved independently. The irrotational assumption allows the velocity vector to be
derived from a scalar potential function, ®, such that the gradient of ® is the velocity
vector. This is a result of the requirement that the circulation be zero for any arbitrary
closed, reducible path in the fluid region. In order for this to be true, the integrand

in the definition of circulation must be an exact differential. This can be seen in Eq.



CHAPTER 2. AERODYNAMICS MODEL 22

2.3.

r — fv-dzzo
C

r = f [udz + vdy + wdz]

C
= dd
C
0P 0P 0P
r = fcladl'—l-a—ydy—l-%dz
V = Vo (2.3)

If the velocity vector is replaced in the continuity equation the resulting equation
is Laplace’s Eq. (2.4).
V2 =0 (2.4)

The flow can be completely determined based on mass conservation which involves
one equation and one scalar unknown. The pressure field can then be found using
the momentum equation (Bernoulli equation). Laplace’s equation is a linear, ho-
mogeneous, partial differential equation. The analytic solutions to this equation are
referred to as harmonic functions and can be linearly superimposed to satisfy the two
boundary conditions.

Laplace’s equation is solved by setting up a collection of these mathematically
singular solutions on the solid boundaries of the flow. This separates the flow into two
regions of potential flow (incompressible, irrotational, inviscid), one exterior to and
one interior to a closed body. For our application, we will be concerned with the flow
exterior to the boundary. This region is bounded by an interior boundary (the solid
surface) and an exterior boundary at an infinite distance from the solid surface. The
strengths of these functions are determined by imposing the aforementioned boundary
conditions. This boundary condition is that of no-penetration of the fluid through
the body surface and can be generally handled in one of two ways. The Neumann
boundary condition is a direct implementation of no-penetration stating that the flow
cannot have a velocity component normal to the boundary at the boundary surface.

This condition is explicitly imposed at control points on the interior boundary and is
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mathematically shown in Eq. 2.5.
V®&-n=0 (2.5)

The harmonic functions automatically satisfy the no-penetration boundary condi-
tion at the infinity boundary. The Dirichlet boundary condition states that the no-
penetration condition is equivalent to setting the potential inside the body described
by the boundary to a constant. This boundary condition will be described in greater
detail in the discussion of the doublet panel method for 2-D (Section 2.2.1) and 3-D
flow (Section 2.3.1).

Another possible boundary condition is the no-slip condition which states that
there is no relative tangential velocity between the solid and fluid at the boundary.
It is generally not imposed for inviscid flows since the no-penetration condition on
the two boundaries makes up the two necessary boundary conditions for the second
order partial differential equation. The no-slip condition is mentioned here because
it will be employed for the vortex panel method used in this work. It will be further
discussed in Section 2.2.2 for the 2-D case and Section 2.3.3 for the 3-D case.

The formulation of the solution to Laplace’s equation via the superposition of
harmonic functions is different for lifting and non-lifting bodies. For non-lifting bod-
ies, one can proceed with the solution without any additional information. On the
other hand, the flow around lifting bodies cannot be calculated due to the impli-
cations of the irrotational assumption. Using Stokes Theorem with the irrotational
flow assumption for a 3-D flow around a closed body in an infinite fluid region, one
finds that the flow is acyclic (I' = 0 ) and therefore cannot produce lift according to
the Kutta-Joukowski theorem. For 2-D flow around an infinite cylinder of arbitrary
cross section in an infinite fluid, the flow may or may not be cyclic, although the
circulation is indeterminate. In order to calculate the flow around lifting bodies, aux-
iliary conditions are needed to uniquely determine the circulation around the body.
These conditions are imposed in various ways but invariably stem from a condition
on vorticity conservation.

Vorticity conservation conditions for incompressible low with uniform density and
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kinematic viscosity are shown in Eq. 2.6 for several different flow situations [45].

1D Viscous: [l 2R =0
Inviscid: [[[p, QdR = 0

5_ D { Viscous:% [ QdR =0

(2.6)
Inm'scz'd:% [fRf QdR =0

These conditions stem from conservation of angular momentum. Their derivation
along with a brief discussion can be found in Appendix A. All of the conditions shown
here are in terms of the integral of vorticity over a region. R; refers to the fluid region
and R refers to the combined fluid and solid regions. For viscous flow cases, the
integral of vorticity over the combined solid/fluid region is always a constant. For
three dimensional flow, this constant is always zero, while for two dimensional flow
this constant is zero if the flow begins from rest. Since this condition is imposed over
the entire region, R, it provides a relationship between the vorticity in the fluid and
the vorticity of the solid regions which is two times the angular velocity of the solid
body rotation. This vorticity is transported across the solid boundary via the no-slip
condition. The vorticity diffuses and convects into the fluid region in such a way as
to obey the equations of motion and the boundary conditions.

The vorticity conservation conditions for the inviscid flow cases closely resemble
the vorticity conservation conditions for viscous flow except the integral excludes
the solid regions. This is a result of the absence of a no-slip condition, so vorticity
associated with the angular velocity of the solid regions cannot be transported across
the solid boundaries. The difference between this condition and that for the viscous
case is a crucial one which has a large impact on the solution to many flowfields,
especially unsteady ones. For an obvious example, one can look at the 2-D flow
around an airfoil oscillating in pitch. If Eq. A.24 is used as the vorticity conservation
condition and the problem is impulsively started, then the integral of the vorticity
throughout the fluid region will be zero for all time. If Eq. A.22 is used as the vorticity
conservation condition and the problem is impulsively started, then the integral of
the vorticity over the fluid region is equal to the negative of two times the angular

velocity of the pitching airfoil. The latter case for this example is closer to reality
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and can be implemented as a conservation condition even if the inviscid assumption
is made (diffusion of vorticity is ignored). In doing so ,the mechanics of the creation
of vorticity at a solid boundary is properly modeled.

The correct implementation of these vorticity conservation conditions is essential
for properly modeling flows as will be shown in the following sections of this chapter.
These conditions are both imposed explicitly and used to determine a shedding rate
for the convection of vorticity away from the solid bodies.

A brief description of the nature of real flows over solid bodies is useful here.
Flow will attach itself to a solid body at an upstream attachment point and remain
attached to the solid surface until it reaches a line of separation. Vorticity is created
at the solid boundary between the attachment point and separation line and is carried
away from the solid surface by diffusion. Vorticity is also carried into the fluid region
by convection from the separation lines. This process is discussed in greater detail in
Ref. [46].

The locations of attachment and separation points along with the shedding rates at
the separation locations determine the circulation around the solid body and, there-
fore, the forces and moments on that body. For 2-D flows over bodies with sharp
trailing edges, there is an attachment point near the leading edge, a separation point
at the trailing edge and possibly other separation and attachment points depending
upon the angle of attack. For 2-D bluff body flows there is an attachment point near
the leading edge and two separation points which form the boundary for a separation
“bubble” at the aft portion of the body. For bluff body flow, there is also the possi-
bility for additional localized separations and reattachments. The corresponding 3-D
flows involve separation lines which can form closed curves for the bluff body case.
The 2-D cases can be seen in Fig. 2.1 which is a replication of a figure from Ref. [46].

For the case of linear aerodynamics, the shedding rates can be determined by using
the vorticity conservation condition and an auxiliary condition which describes the
nature of the flow at the separation locations. For attached flow over sharp trailing
edge bodies, this additional condition which is applied at the trailing edge is the well-
known Kutta condition. The Kutta condition states that the circulation is set to make

the flow leave an airfoil smoothly at the sharp trailing edge (Ref. [47]). The proper
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implementation of the Kutta condition is different for steady and unsteady flow. A
comparable condition exists for bluff body separation and can only be implemented
in an unsteady fashion.

Some implications of the vorticity theory on the flow problem at hand are worth
mentioning here, prior to their discussion in the appropriate sections. The first is that
vorticity conservation conditions will dictate the type of solution process needed for
the analysis of the flow. For example, a 2-D flow over a body with a single separation
point will shed vorticity during unsteady motion only. On the other hand, a 2-D,
separated flow over a bluff body always sheds vorticity, so the solution for the flow
around such bodies using linear methods must always be solved in an unsteady fashion
to allow for the proper wake development. Similarly, for 3-D flows over bodies with
sharp trailing edges and 3-D, separated flows over bluff bodies, vorticity is always
shed. These flows must also be solved in an unsteady fashion. An unsteady solution
means that the flow is solved over successive time steps during which the wake is
developed. At each individual time step, the flow is solved in the same steady fashion
since the governing equation is elliptic.

The second implication is that linear aerodynamic predictions can detect phe-
nomena normally attributed to high-order aerodynamics if the flow mechanics are
properly modeled. This has been demonstrated already in the use of the Kutta con-
dition and vorticity conservation. Laplace’s equation is purely kinematic, so in order
to predict lifting flows the necessary kinetics are embodied in the auxiliary conditions.
Other examples of this are given in a review article by Leonard ([33]). One impressive
example uses discrete vortices to model a viscous boundary layer. The vortices are
formed at the solid surface and are free to convect and required to diffuse (using a
time varying vortex blob diameter) in order to satisfy the viscous vorticity transport
equation. An image method is used to assure no-penetration and the discrete vor-
tex strengths are determined to satisfy the no-slip condition. Such a method can be
converged to the Navier-Stokes solution to the flow and can even accurately predict
flow separation. In Section 2.2, we show the importance of properly modeling the

mechanics of a flow for the case of ground effect aerodynamics.
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2.2 2-D Model

This section considers two different models which are referred to as the “Doublet
Panel Method” (DPM) and the “Vortex Panel Method” (VPM). They are described in
detail in their respective subsections and then compared to illustrate the importance
of properly modeling the mechanics for ground effect aerodynamics.

The doublet panel method is formulated from the solution to Laplace’s equation
based on Green’s Identity. The vortex panel method is based on a model described
by Mook and Dong in Ref. [36]. Both of the methods are extended here for flow
around a bluff body and for ground effect aerodynamics. It is shown that the vortex
panel method is kinematically closer to a real flow and is able to predict some aspects
of viscous flow which are normally attributed only to higher-order models.

The vortex panel method is used for all of the 2-D optimizations. Extensions are
made to include some aspects of viscous flow. These extensions include a turbulent
flow separation criterion and a model for the base pressure in the separation bubble
for bluff body calculations. Skin friction is calculated along the solid surface from the
stagnation point (attachment) to the separation points using boundary layer integral
methods and a transition criterion. A separate viscous flow model was developed for
the lower surface of bluff bodies in ground effect. This model is a turbulent Cou-
ette/Poiseuille flow calculation which can calculate the fully developed, 2-D, parallel
flow between flat plates with one moving wall, one stationary wall, and a pressure

gradient. Each model is described in its own subsection below.

2.2.1 Doublet Panel Method

As was previously mentioned, linear methods deal with the solution of Laplace’s
equation. The doublet panel method involves the solution based on Green’s Identity
[48]. Green’s Identity is the divergence theorem written for a vector composed of two
scalar functions of position, ®1V®Py — &,V P,. If we set &; = Inr and &, = P the
components of the Green’s Identity resemble distributed sources and doublets with
the strengths o and p respectively. An overview of this formulation can be found

in Appendix D. The no-penetration boundary condition is imposed implicitly using
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the Dirichlet boundary condition. This states that imposing no-penetration explicitly
is equivalent to setting the potential inside the solid surface equal to a constant or
to the free stream potential, ¢o. The simulation of ground effect is accomplished
using the method of images which is described in greater detail in Section 2.2.5. The
aforementioned distributed doublet is mathematically equivalent to discrete vortices
at the panel nodes. This discrete vorticity is not kinematically identical to a real flow
which has continuous vorticity being created at the solid surface.

This model is capable of handling sharp trailing edge flow and bluff body flow.
It accomplishes this by incorporating both steady and unsteady auxiliary conditions
for the separation lines. For flows over bodies with sharp trailing edges, there is no
vortex shedding for steady state flow. The trailing edge condition specifies that the
circulation at the trailing edge be zero (stagnation point). This is accomplished using

Eq. 2.7 which sets the panels adjacent to the trailing edge to equal strength.

I'rg=0
po — pr =0 (2.7)

The subscripts refer to “upper” and “lower” respectively. For bluff body separation
or unsteady sharp trailing edge vortex shedding, an unsteady auxiliary condition is
necessary. This condition stems from the vorticity conservation condition for 2-D,
inviscid flow (Eq. 2.6). This condition requires that % = 0 so the time rate of change
of circulation around the solid body is the negative of that in the wake. Therefore,
the circulation at the separation line is that which is entering the wake. Equation 2.8

shows how this condition is used to set the strength of the wake doublet panel shed

at time, t.
dr dl'g dI'y B
@ = at T a
Al'rg _ (v — pn)e — (o — pL)e—ae
At At
pw = (B — HL)i-At (2.8)

The wake of doublet panels convect with the local velocity so as to remain force free.
The baseline code for the one used here was one from Katz and Plotkin (Ref. [48]).
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2.2.2 Vortex Panel Method

The vortex panel method is described in Ref. [36] and will be outlined here for
the reader’s convenience. This method has strong parallels to boundary layer theory
so it is enlightening to begin the description by juxtaposing the two approaches. The
boundary layer assumptions state that the Reynolds number is very large so that the
viscous effects are confined to a small region bordering the solid surface. Along with
an assumption of modest surface curvature, the boundary layer equations describe
the viscous flow as being forced by the pressure at the boundary layer edge which
can be determined using linear methods. The vortex panel method makes similar
assumptions and takes an opposite approach, that the vorticity in the viscous regions
determines the flow in the inviscid region through a kinematic relationship.

A kinematic relationship between vorticity and velocity can be determined simply
using the continuity equation for an incompressible flow and the definition of vorticity.
This relation is shown in Eq. 2.9 and is derived in Section 18.6 of Ref. [47].

20 = o [l P S ) + Vi 29)

]r —r0]2

Figure 2.2 shows the arrangement of vectors in Eq. 2.9. Equation 2.9 states that
the velocity at a point in the flow is composed of the uniform free stream flow and
the sum of the perturbations from the vortical fluid elements. This perturbation
term is the Biot Savart law. Since this kinematic relation was derived solely using
continuity and the definition of vorticity, it holds for both viscous and inviscid flows.
The flow induced by the viscous boundary layer can therefore be described using the

perturbation term of Eq. 2.9. This can be seen in Eq. 2.10.

Valrt 27//53 (Fo,£) X (X = To) gy, (2.10)

|r —r0]2

If we integrate Eq. 2.10 with respect to the boundary layer thickness and take the
limit of the Reynolds number approaching infinity while the boundary layer thickness

approaches zero we obtain Eq. 2.11.

Vi(r,t) = ——ez f” r—royz o) il (r)
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where
5(1)
Y(L.t)e. = lim [— / Q(l,n,t)dn] (2.11)
€— 00 0
6—0

So, for very high Reynolds number (Re — o0) the boundary layer can be approx-
imated by a continuous vortex sheet. This assumption infers that convection of
vorticity is infinitely faster than diffusion of vorticity (inviscid flow). This vortex
sheet is a solution to Laplace’s equation, so the solution will proceed accordingly.
Since the vorticity is the curl of the velocity vector and there is no normal velocity
at the surface, the vortex sheet strength, v, described in Eq. 2.11 is the difference in

tangential velocity across the sheet.

5(1)
v(l,t) = lim[ @dn]
0

Re—oo 87’],
6—0
= u(l,0%,¢) —u(l,0,t)
= Au(l,t) (2.12)

If we now apply the no-slip condition (u(l,0,¢) = 0) the strength of the vortex sheet
is equal to the tangential velocity at the edge of the infinitely thin boundary layer.

(I, t) = u(l,07,¢) (2.13)

The flow outside the infinitely thin boundary layer “slips” over the solid surface where
the velocity is discontinuous. The inviscid assumption (Re — o0) is kinematically
identical to the impulsively started viscous flow over the solid body in the limit as time
approaches zero. At that instant, all of the vorticity generated during the impulsive
start resides in an infinitely thin sheet at the solid surface. For the viscous case, as
time proceeds this vorticity diffuses into the flow creating the boundary layer. It is
this kinematic similarity to viscous flow which allows this model to predict ground
effect flow more accurately than the doublet panel method, as will be demonstrated
later.

Since we are neglecting diffusion, convection is the only mechanism for the trans-
port of vorticity. As was previously discussed in this chapter, convection occurs
from separation points only and can therefore be determined by vorticity conserva-

tion conditions. The derivation of this vortex panel method is concerned with flow
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over bodies with sharp trailing edges. Flows over bluff bodies will be discussed in a
separate section on the extension of this model to that case.

For flow over bodies with sharp trailing edges, we have already stated that the
circulation is set such that flow leaves the trailing edge smoothly (Kutta condition).
This is implemented here by requiring that the pressures match at the upper and lower
surfaces of the trailing edge. Since the flow is inviscid, Euler’s equation (momentum
conservation) can be used to relate the velocity to the pressure. Euler’s equation is
shown (Eq. 2.14) here where [ is the tangential direction around the surface of the
airfoil.

% 7% = —%88—]; (2.14)
Multiplying across by dl and integrating around the airfoil from the lower surface of

the trailing edge, L, to the upper surface of the trailing edge, U, gives Eq. 2.15.

oy 1

il — _2dpP

8tdl+fydfy pd
d [% 72 v 1Y
@ fy(l,t)dl] X - Jip (2.15)
dt c 2 L P I

Figure 2.3 shows the path of integration. The integral on the left hand side is the
definition of the circulation around the solid body, so Eq. 2.15 can be rewritten as
shown in Eq. 2.16.

dl'(t) | v —ni 1
— _2(p,—P 2.16
ot 5 p( v — Pr) (2.16)

Imposing the Kutta condition such that the pressure is equal across the trailing edge
(Py = Pp) one concludes that the rate of change of circulation in the flow is a function
of the tangential velocity at the upper and lower surfaces of the trailing edge (Eq.
2.17).

dl't) i -0

=T (2.17)

The vorticity conservation condition for 2-D flow (Eq. 2.6) is rewritten in Eq.
2.18 in terms of the circulation (I'(t)).

— — 2085+ —2 =0 (2.18)
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This is the conservation condition for viscous flow, so the circulation includes a term
for the solid body rotation of the solid region at an angular velocity, §. We are not
dealing with these flows specifically here so this term will be dropped from the present
derivation. It can always be added in later. Substituting Eq. 2.17 into Eq. 2.18, one
arrives at the vortex shedding rate for the convection of vorticity from the separation

point at the trailing edge into the fluid region (Eq. 2.19).

dr,  drU
a dt
2 2
= - 5 7L (2.19)

Observations of the flow at the trailing edge provide additional necessary informa-
tion to include along with the vortex shedding rate equation. For this information,
we use the Giesing/Maskell model for the trailing edge flow [37] [38]. The statement
of this model (Eq. 2.20) discusses the possible values of the trailing edge velocities

(sheet strength) depending upon the value of the derivative of the circulation.

d_F>0 {%%0
dt

Y =0
d—F—O v =0
dt Yo =0
r =0
g (2.20)
dt Yo # 0

If the flow is unsteady and % is positive, the flow over the bottom of the airfoil leaves

the trailing edge at 7, while the flow over the top of the airfoil meets a stagnation

dr
dt

the top of the airfoil leaves the trailing edge at vy, while the flow over the bottom of

point at the trailing edge. If the flow is unsteady and %- is negative, the flow over
the airfoil meets a stagnation point at the trailing edge. If the flow is steady, the flow
over the top and bottom surfaces of the airfoil both meet a stagnation point at the
trailing edge. So, for the 2-D flow over a body with a sharp trailing edge, vorticity is
shed (convected) into the flow only if the flow is unsteady.

The amount of circulation added to the wake in a time step, At, follows from Eq.
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2.19 and the Giesing/Maskell model and is shown in Eq. 2.21.

_ dar

_ 7 dr

(2.21)

The wake is constructed using a collection of discrete vortices where one discrete
vortex is released from the trailing edge during each time step. The circulation around
the wake is simply the summation of the strength of all of the discrete vortices that

comprise the wake, where the strength of each discrete vortex is AL, (tx) (Eq. 2.22).

M
Tyw=) Tk (2.22)
k=1

The velocity induced by the wake can be calculated using the Biot-Savart law.

This velocity is shown in Eq. 2.23 where o signifies the radius of the vortex blob [36].

" . r 9.93
V(1) e XZ k]r—rlz—l—az (2.23)

The vortex blob method is employed here to combat instabilities in the solution
which can be created by the free convection of singular functions. The method will
be described in Section 2.2.3.

The flow solution is obtained as a linear superposition of the continuous vortex
sheet (modeling the boundary layer), discrete vortices (modeling the wake) , and the
uniform free stream flow (all of which are solutions to Laplace’s equation) in such a
way as to satisfy the no-penetration boundary condition of the Neumann type (Eq.
2.24).

(VB +Vy,+Vy) n=0 (2.24)

The boundary condition is met at successive time steps with a discrete vortex shed
into the flow at the end of each one. Each discrete vortex of the wake is convected
at the local velocity which is induced by the vortex sheet representing the bound
vorticity in the boundary layer and the other discrete vortices of the wake.

The pressures over the surface are calculated using the unsteady Bernoulli equa-
tion (Eq. 2.25).

aaf + V2 + ; = Constant (2.25)
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The aerodynamic forces and moments are determined by integrating the pressures
around the airfoil. The specifics of the discretization of the airfoil and the problem

setup and solution can be seen in Appendix B.

2.2.3 Vortex Blob Method

As previously stated, the vortex panel method sheds a wake which is modeled by
discrete vortices. Since the vortex sheet is not a solid surface, it cannot support a
force. Keeping the sheet force-free is accomplished by convecting each discrete vortex
with the local velocity. The local velocity at each free vortex is the summation of the
velocity induced by the free stream, continuous vortex sheet, and other free vortices.
Since the vortices are mathematically singular, close proximity between vortices will
result in very large velocities and they will propel each other far from the field of
interest during a time step. Equation 2.9 shows that as r approaches r, the induced
velocity approaches infinity. Leonard (Ref. [33]) discusses the convection of discrete
vortices and points out that this instability in the solution is inevitable if enough time
steps are taken. This problem can be lessened with the use of vortex “blobs,” which
are vortices with finite cores. The induced velocities in the finite cores are described
by distribution functions. The Biot-Savart law can be augmented with a function,

g(d), as is shown in Eq. 2.26.

M pR—
V(I‘,t) — _i Z (I' rk) X ezrksg(d)
2T =
lr — ry|
d = —— 2.26
~ (2:26)

r —ri?

The parameter, o, is the radius of the vortex blob. Leonard (Ref. [33]) describes a

Gaussian distribution function of the form shown in Eq. 2.27.

F(d)=— (2.27)
The function g can then be calculated as

gd) = or /OdF(d’)d’dd’

2

= 1—¢™ (2.28)
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This distribution function eliminates the mathematical singularity at r = ry and
allows for a more stable solution.

A plot of the induced velocity for the vortex blob with a Gaussian distribution
can be seen in Fig. 2.4. The vortex panel method used in this research has a wake
vortex induced velocity shown in Eq. 2.23 which results from the distribution in Eq.
2.29. P

94) =15

It is obvious from Eq. 2.23 that a non-zero vortex blob radius would eliminate the

(2.29)

singularity at r = rx. A plot of the induced velocity for the vortex blob with the
distribution of Eq. 2.29 can be seen in Fig. 2.5. The radius of the vortex blobs
should be chosen according to the nominal separation of vortices in the shed wake. If
we say that the nominal separation is some multiple of the free stream velocity and
the time step, o can be obtained by trial and error being the lowest possible value to
yield a stable solution. For this work, ¢ is given in Eq. 2.30 where the constant, o,
is adjusted from case to case.

o =o'V, At (2.30)

2.2.4 Extension for Bluff Body Aerodynamics

For the 2-D flow over a bluff body, the flow has two separation points as opposed
to the single separation point at a sharp trailing edge. It will, therefore, have two
attachment points (the stagnation point and an attachment point in the wake). This
can be seen in Fig. 2.1. The model for the bluff body, therefore, has to deal with
two shedding rates, since vorticity is convected away at the two separation points.
To do this, we must look at the flow near a separation point as sketched in Fig.
2.6. Reference [37] uses the unsteady Bernoulli equation (Eq. 2.25) to determine the
vorticity shedding rate by treating the vortex sheet as a flow discontinuity in terms
of the pressure, velocity, pressure head, and velocity potential.

Since we are not dealing with a multienergy flow, the pressure head is a constant
throughout the flowfield. The bluff body analogue to the Kutta condition is that the

pressure on both sides of the shed vortex sheet near the separation point is equal.
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This will give Eq. 2.31 where the A refers to the discontinuity across the separation
streamline and the V refers to the velocity of the separation streamline (average of
the velocity on either side of the separation streamline).

A
ot

This equation is a parallel to Eq. 2.17 for the sharp trailing edge case.

VAV = — (2.31)

If one ignores entrainment in the separation bubble, the circulation around the
solid body can be related to the potential jump across the two vortex sheets which

comprise the wake.
' =A¢s — Agy (2.32)

The subscript “1” refers to the lower separation point and the subscript “2” refers to
the upper separation point according to Fig. 2.6. Equation 2.32 along with Eq. 2.31
describes the rate of change of the circulation as a function of the velocity on either
side of the two wake vortex sheets (see Eq. 2.33).

i
2

_dU g =i
dt 2

(2.33)

2 1
The subscript “U” refers to just upstream of the separation point and the subscript
“L” refers to just downstream of the separation point. These subscripts are held over
from those used in the sharp trailing edge Giesing/Maskell model. Their use here
is consistent with the sign of the shed vortex strength. So, according to vorticity
conservation, Eq. 2.18; the vortex shedding rate for the entire wake (upper and lower

sheets) is
dlv =i W=k
dt 2 2

This is simply the sum of the shedding rates at the two separation points.

(2.34)

2 1

It can be argued that in order to have a bluff body separation bubble the shedding
rates at each separation point cannot be zero (as was the case for the steady flow over
a body with a sharp trailing edge). So, for the 2-D flow over a bluff body, vorticity
is always shed into the flow. The flow is never actually steady, therefore it must be
solved in a time dependent fashion. The flow will reach a quasi-steady state in which

the circulation around the solid body is steady in the mean. The actual value will
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continue to oscillate slightly about the mean due to an instability in the separation
location and the periodic nature of vortex shedding. At this quasi-steady state, Eq.
2.35 will hold in the mean.

gl

9 2

Yo — i

5 (2.35)

1

Since there is no loss of pressure head due to viscosity, the attachment point in
the wake region will be a stagnation point with pressure coefficient of unity. The base
pressure in the separation region must be adjusted to calculate base drag. Observation
of actual 2-D flows shows that the base pressure is relatively constant throughout the
separation bubble and is approximately that just outside of the separation streamline
at the point of separation [43]. Thus the base pressure is taken here to be the mean
of the pressures just upstream of the separation streamlines at the two separation
points. It turns out that the pressures at these two points are nearly identical to one

another.

2.2.5 Extension for Ground Effect Aerodynamics

The vortex panel method is extended here for the flow over a body in ground
effect by using the method of images. An in-depth discussion of this method can be
found in Ref. [48]. The method of images models a solid ground plane at z = 0
by placing the mirror image of the solid body at the negative value of the height.
Due to symmetry across the z = 0 line, the no-penetration condition is automatically
satisfied there. A schematic of the problem can be seen in Fig. 2.7. The subscript
“1” refers to the image and the subscript “2” refers to the solid body. The method of
images involves the analysis of flow over multiple bodies even if the original problem
is for flow over a single solid body. For example, the flow over a single airfoil in ground
effect is accomplished by analyzing the flow over two airfoils situated symmetrically
about the intended ground plane (as is shown in Fig. 2.7). Since this flow involves
two separation points (one at each trailing edge) and it is symmetric about z = 0,
it automatically conserves vorticity in the entire region. It is very important to

understand that vorticity conservation must be satisfied in each half region separately,
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since the region of interest is just z > 0. Within the subregion, z > 0, vorticity
conservation and shedding rates are determined identically to the out-of-ground effect
counterpart.

There is no attempt made to satisfy a no-slip boundary condition on the ground
plane. In the real flow problem, the ground plane would be moving at the free stream
velocity as seen from a body-fixed coordinate system. This inability to match that
boundary condition, along with the inviscid assumption causes a disparity in the
predictions of this model with reality for the extreme ground effect case. For this
case the flow between the vehicle and the ground plane is dominated by the diffusion
of vorticity created at the two boundaries in close proximity to one another. The
assumption of a thin viscous region (which we model with an infinity thin vortex
sheet) breaks down since the viscous region will span the entire gap height between

the vehicle and the ground plane when the flow becomes fully developed.

2.2.6 Flow Separation Model

Since the main flow solver is an inviscid one (no diffusion), important viscous
effects need to be predicted by other means. Flow separation is the departure of the
vorticity from the thin viscous region about the solid boundary into the flowfield. This
occurs when the retarding effects of viscosity overcome the inertial forces of the fluid
near the solid boundary. The location of separation along with the vorticity shedding
rates at those points determines the circulation around the solid body and, therefore,
the forces and moments. It is very important for the success of the optimization
design to be able to consistently predict separation locations, at least relatively, from
design to design.

The main separation region at the rear of the MAGLEV vehicle is definitely a tur-
bulent separation due to the high cruise Reynolds number. The separation criterion
used as part of this aerodynamic model is one developed by Stratford in 1959 [49].
This criterion is described by Eq. 2.36.

1

C, <x%) (10_6]%6)_m = Constant (2.36)
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Stratford uses 0.39 for the constant if the curvature of the pressure distribution is
positive and 0.35 if it is negative. It is obvious from this equation that the relation is
only valid in regions of positive (adverse) pressure gradient. This equation is used in
marching fashion from the point of minimum pressure to the point where the equation
is satisfied (separation location). The Stratford criterion depends only upon values
at the current location being evaluated making it simple to implement. The variable,
x, is the distance along the surface measured from the point of minimum pressure.
The pressure coefficient is measured relative to the pressure at the minimum pressure
point. The Reynolds number is based on the surface velocity at the point of minimum
pressure and a distance to a fictitious stagnation point. This distance is based on the
momentum thickness of an equivalent turbulent flow over a flat plate. The value of
the left hand side of Eq. 2.36 increases monotonically from its value of zero at the
minimum pressure point to the value required for flow separation. It is clear from Eq.
2.36 that higher Reynolds numbers and lower adverse pressure gradients forestall the
separation point.

Reference [50] discusses and compares several different separation criteria for in-
compressible, 2-D flow. The comparisons are based on performance in the prediction
of separation location and pressure coefficient for a collection of experiments includ-
ing both exterior and interior flows. The Stratford criterion is shown to consistently
predict early separation. It was outperformed only by the modified Townsend crite-
rion and the Boeing in-house boundary layer calculations. The superior performance
came at the price of increased complexity. The modified Townsend criterion requires
pressure coefficients upstream of the separation point and the skin friction coefficient
at the point of minimum pressure. It also predicts a separation pressure coefficient
rather than the actual separation location. The Boeing method requires an entire
boundary layer calculation to be performed every time the separation location is to
be updated. This would result in increased run times. The Stratford criterion was
chosen for use here due to its easy implementation and consistent predictions. Fig-
ure 2.8 is a reproduction of a figure from Ref. [50]. It shows the predictions of the
Stratford criterion compared with the experimental values of pressure coefficient at

the separation point. The predictions are offset from the exact pressures although
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the consistency can be seen in the banded nature of the predictions.

The location of separation is a function of several variables, one of which is the
gradient of the pressure coefficient along the surface. Since the predicted velocity over
the body surface is piecewise linear, the gradient of the pressure jumps discontinuously
at the nodes between panels. This becomes a problem when the separation point
moves from one panel to the next. The value of the Stratford criterion (the left
hand side of Eq. 2.36) is therefore discontinuous at the nodes. In order to provide a
continuously differentiable pressure distribution for the Stratford criterion, we replace
the pressure distribution with piecewise cubic splines. A spline routine from Burden
and Faires [51] is used to construct the clamped cubic splines using the pressure
values at the nodes. This provides an analytic pressure distribution which is twice
continuously differentiable over the whole surface. The Stratford criterion is satisfied
using a bisection method which guarantees convergence to the separation location.
A Newton or Secant method was not employed, since these methods run the risk of
converging to the wrong root or diverging. The cubic splines are only used for the
location of separation points. The calculated pressure coefficients are used for the

integration of force and moment coefficients.

2.2.7 Solution to The Vortex Panel Method

The solution to the vortex panel method involves satisfying the no-penetration
boundary condition over several time steps. At each time step, there are N unknowns
representing the singularity strengths for the vortex sheet and N + 1 equations con-
sisting of the no-penetration condition at the N collocation points and the statement
of vorticity conservation. These equations can be seen for the discretized geometry
in Appendix B. They are organized in the standard form of Ax = b.

The solution proceeds in the following fashion. After the geometry is read in, the
panel lengths, collocation point locations, and time independent influence coefficients
(the A matrix) are calculated. The time increment is calculated in order to have the
free point vortices of the wake at a comparable distance to the nominal surface panel

length. The number of time steps is chosen to allow a sufficient amount of time to
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achieve a steady state. The vortex blob radius is calculated according to Eq. 2.30
which depends upon the calculated value of At.

Following the impulsive start, all calculations are made at every time step. The
time dependent portion of the solution begins with the shedding of vortices from the
previous time step according to Eq. 2.21 or Eq. 2.34. They are shed from the sharp
trailing edge or the separation points for bluff body calculations. For the first time
step, the vortices are shed from the second and n'* node and are of zero strength.
The time dependent influence coefficients are calculated (the b vector). These consist
of the wake influence coefficients, since a new vortex is shed after each time step and
the position of all of the wake vortices changes during each time step. The current
calculations do not involve any dynamic movement of the solid bodies, so the influence
coefficients associated with the vortex sheet remain as part of the time independent
matrix.

The system of linear equations is solved via a least squares optimization which
minimizes the sum of the squares of the elements in the residual vector. This is
done, since the system of equation is overdetermined by one equation. The DGELS
subroutine from the LAPACK mathematics library is used for this calculation.

Once the no-penetration condition is satisfied for that time step, the locations of
the shed vortices are updated according to the induced velocities and the separation
location is updated according to the Stratford condition (for bluff bodies)(Eq. 2.36).
At this point, we begin a new time step and shed vortices again. This set of calcula-
tions is repeated for the predetermined number of time steps. For the steady solution,
the linear system of equations is solved once with the steady trailing edge condition

1" equation).

as the auxiliary condition (n +

For simplicity sake, two different codes are used to calculate the flow for a sharp
trailing edge body and a bluff body. These codes are named pnlsharp and pnlbluff.
Pnlbluff can be seen in Appendix E. For the sharp trailing edge calculations, the
pressure, force, and moment coefficients are calculated at the final time step when the
flow is at steady state. The lift coefficient and drag coefficient are nondimensionalized

by the chord, and the pitching moment coefficient is nondimensionalized by the chord
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squared (Eq. 2.37).

L
0L = —
qc
D
Cp = =
qc
Cp = % (2.37)

Since the bluff body flow never truly becomes steady, the coefficients are averaged
over several time steps after the circulation becomes steady in the mean. The lift
coefficient and drag coefficient are nondimensionalized by the maximum thickness (d)

and the pitching moment coefficient is nondimensionalized by the thickness and chord
(Eq. 2.38).

L
Co=
D
Cp = =
D qd
m
o= 2.38
c wde (2.38)

2.2.8 Skin Friction Model for Out-of-Ground Effect Case

The skin friction drag calculation is performed using the PMARC_12 boundary
layer analysis which includes the Thwaites/Curle integral method for the laminar
boundary layer and the Nash/Hicks integral method for the turbulent boundary layer
calculations. A detailed description of the boundary layer analysis can be found in
the PMARC_12 operating manual [52]. Empirical relations are used to determine
laminar separation with turbulent reattachment and natural transition. Turbulent
separation occurs when the friction velocity goes to zero. The implementation of
this portion of PMARC_12 involves the proper connection of the 2-D vortex panel
method flow solver with the PMARC_12 boundary layer calculation subroutines as a
post processor. The viscous flow analysis is performed only once for each geometry

following the completion of the time stepping inviscid flow solution.
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2.2.9 Skin Friction Model for Ground Effect Case

For the ground effect case, the viscous flow in the gap between the vehicle and the
guideway is modeled using a turbulent Couette/Poiseuille flow calculation in a 2-D
channel. The flow in the non-parallel sections of the train underbody is ignored for
simplicity. The flow is assumed to be fully developed over the whole length, and the
single skin friction coefficient obtained from this calculation is applied over every panel
on the vehicle underbody. The turbulent Couette/Poiseuille flow can be determined
by solving Eq. 2.39. This equation can be solved by numerical integration. A detailed
outline of the solution procedure can be seen in Appendix C along with a schematic

diagram of the flow.

dp  d du
Ug = 0.0
Up = Uso (2.39)

The eddy viscosity is modeled separately in the inner and outer regions. Since it was
found that the Law of the Wall also applies to pipe flows, the Reichart turbulence
model is used for the inner region (Eq. 2.40).

pr = kpv l(yu*> — y tanh <yu:)] (2.40)
v vy

a

For the outer region, the eddy viscosity is calculated using a model for internal flows
suggested by Reynolds [53].
pr = 0.192kpu.h (2.41)

These turbulence models require the calculation of the friction velocity, w., which
depends upon the wall shear stress. The integration of Eq. 2.39 is therefore embedded
within a root finding scheme for the wall shear stress. The pressure gradient is a
constant and is determined by the vortex method solution of the inviscid flowfield.
The subroutine which performs this calculation can be seen in Appendix E.

The results of this viscous flow analysis are compared with experimental values

obtained by El Telbany [54]. These experiments were for fully developed turbulent
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flow between parallel walls with one wall moving. This was accomplished using a
moving belt in a wind tunnel. Measurements were made for many cases of varying
wall separation, wall velocity, and mass flow. Plots for three different mass flows can
be seen in Fig. 2.9. This plot shows two solutions for Couette type flows which are
flows in which the ratio of wall shear stress is positive and a solution for Poiseuille
type flows which are flows in which the ratio of wall shear stress is negative. There is
excellent agreement between the calculated velocity profiles and the experimental ve-
locity profiles. The mass flow was determined by numerically integrating the velocity

data points.

2.2.10 Verification of the 2-D Model

This subsection was written with two purposes in mind. The first is to show the
differences between the doublet panel method and the vortex panel method, especially
when dealing with ground effects flows. Calculations were performed on a Clark Y
airfoil for this purpose. The second purpose is to examine several flows using the
vortex panel method to verify it for use in the optimization loop. Bluff body flows
were calculated for a circular cylinder and a 3.5:1 elliptic cylinder. Calculations were
then made for the side view of the Northrop Grumman MAG950 and MAG1002
designs.

The Clark Y airfoil was chosen for the purpose of comparing the doublet panel
method and the vortex panel method due to its flat underside. This will allow us to
see the main difference between these two methods. The Clark Y is situated at an
angle of attack of approximately 2° such that the flat underside is perfectly horizontal.
The airfoil at angle of attack and surface grid can be seen in Fig. 2.10. Since this is
a sharp trailing edge flow, the flowfield can be solved in either a steady or unsteady
fashion. The unsteady calculation is an impulsively-started problem. A wake is shed
over successive time steps until the flow reaches steady state.

A plot of vortex panel method pressure coefficient for the Clark Y out-of-ground
effect can be seen in Fig. 2.11 for a steady calculation, as well as for an unsteady

calculation with 400 time steps and one unsteady calculation with 800 time steps.
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This plot shows that as the unsteady solution is allowed to progress in time the
solution approaches that of the steady flow. The 2-D flow over a sharp trailing edge
body requires many time steps to reach steady state, since the starting vortex must
move a sufficient distance from the airfoil (which is infinite in span). A rule of thumb
is that the wake should be allowed to develop to approximately 30 chords in length.
Since we are only concerned here with bodies in translation all of the remaining
calculations for sharp trailing edge flows are performed in a steady fashion.

Figure 2.12 shows a comparison of the pressure coefficient over the Clark Y airfoil
out-of-ground effect calculated by the doublet panel method and the vortex panel
method. This plot shows general agreement in the predicted pressure coefficient
with some slight difference on the lower surface and at the trailing edge. These
small differences can be attributed to the difference between discrete and continuous
surface singularities as well as the different (yet consistent) implementation of the
trailing edge conditions.

Figure 2.13 shows a comparison of the pressure coefficient over the Clark Y airfoil
in ground effect calculated by the doublet panel method and the vortex panel method.
The airfoil is situated at an altitude of 1/10"* chord. There is a large difference in the
pressure coefficient calculated by these two methods. An interesting and enlightening
result is the difference in the pressure coefficient predicted for the lower surface. This
lower surface is in close proximity to the ground plane, and the flow between these
two surfaces is essentially a 2-D flow in a narrow gap. The doublet panel method
predicts a uniform pressure along this gap which is the expected result of a linear
method. On the other hand, the vortex panel method predicts a pressure drop in the
gap in qualitative agreement with real flows. This result is usually attributed only to
high-order aerodynamics methods and is predicted here due to the better kinematic
match between the vortex panel method and a real flow.

Figure 2.14 is a plot of the Clark Y lift coefficient as a function of the height-
to-chord ratio. Since the airfoil has a flat bottom, there is only a slight loss of lift
prior to lift reversal (ACL, = —0.0040). Lift reversal is evident as the height-to-chord
ratio approaches zero. Figure 2.14 also shows points for the doublet panel method

predictions for out-of-ground effect and 0.1c in ground effect flows. As was the case
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for the pressure coefficient profiles, the out-of-ground effect predictions are similar for
these two methods, while the ground effect predictions show a large difference. The
doublet panel method predicts only a slight increase in lift due to the close ground
proximity. The effect of height-to-chord ratio on pitching moment about the leading
edge can be seen in Fig. 2.15. Pitching moment also reverses from a slight increase
to a large negative change as height-to-chord ratio approaches zero. The remainder
of the calculations in this work employ the vortex panel method due to its superior
performance for ground effect predictions.

The vortex panel method for 2-D bluff body flow was verified on several infinite
cylinders, the first of which is the circular cylinder. The initial calculations were
performed with the vortex panel method and no flow separation model. Figure 2.16
shows the surface pressure coefficient over the circular cylinder for both the out-of-
ground effect and ground effect cases. The out-of-ground effect case shows excellent
agreement with the analytic solution for potential flow over a circular cylinder (Eq.
2.42).

C,=1—4sin*6 (2.42)

The angle 6 in this equation is the polar coordinate. Negative lift is predicted for the
ground effect flow due to accelerated potential flow under the cylinder. This negative
lift becomes greater as the height-to-diameter ratio decreases. Lift reversal cannot be
predicted at this level, since the mechanism for this phenomena is in the location and
strength of vortex shedding. Figure 2.17 shows the velocity profile along the vertical
centerline of the circular cylinder for the out-of-ground effect case. Along this line,
the only component of the velocity is in the horizontal direction. The velocity profile
matches the analytic solution, which can be seen in Eq. 2.43.

u R? : R?
o= cos 6 <1 - 7'_2) +sind <1 + 7'_2) (2.43)

oo

R is the radius of the circular cylinder. Figure 2.18 shows the velocity profile along
the lower vertical centerline of the circular cylinder for the ground effect case. This
plot shows the nature of the image method velocity profile which is neither a true road

condition nor a wind tunnel condition. The wind tunnel condition is characterized by
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a ground plane velocity of zero while the road condition is characterized by a ground
plane velocity equal to the free stream velocity.

Calculations were next performed on the circular cylinder using the vortex panel
method with the bluff body separation model. These calculations were performed at
a Reynolds number of 8.6 million. For the bluff body calculations, Reynolds number
is used to determine the skin friction drag and the separation location, while for
sharp trailing edge bodies, Reynolds number only enters the problem in the skin
friction drag calculation. The vortex panel method itself is still an infinite Reynolds
number calculation. The flow developed for 0.5 seconds which was sufficient to reach
steady state. A vortex blob diameter of 3.5V, At is required to obtain a stable
solution. Figure 2.19 shows the pressure coefficient for the out of ground effect case
as compared to experimentally obtained values [55]. The pressure coefficients shown
here are the mean values over the last eighty time steps, since the solution is always
unsteady. This plot shows that as Reynolds number increases the pressure coefficient
plots are approaching that for the infinite Reynolds number limit vortex method
prediction. The base pressure decreases with increased Reynolds number, while the
surface pressures prior to separation increase. This difference prior to separation can
be accounted for by the displacement thickness of the boundary layers for the finite
Reynolds number cases.

Figure 2.20 shows the calculated shed vortex sheets which roll up into the Von
Karman vortex street. Separation occurs at approximately 105° where 0° is the most
upstream point. A time history of the lift and drag coefficients for the out-of-ground
effect calculation can be seen in Fig. 2.21. Lift and drag coefficient are based on
cylinder diameter. The calculation takes around 50 time steps to settle out from
the impulsive start after which the flow exhibits oscillating behavior. We obtained
a Strouhal number of 0.359 and a mean drag coefficient of 0.8371 based on cylinder
diameter. Both of these numbers compare favorably with published experimental
values shown in Delany [56] and Roshko [57]. The drag coefficient is slightly high due
to the lower base pressure of the infinite Reynolds number limiting case. The Strouhal
number is also higher than the Roshko data at Reynolds numbers ranging from 4 to

8 million (0.26 to 0.28). Delany measured Strouhal numbers ranging between 0.3 and
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0.4 at slightly lower Reynolds numbers (1 to 2 million).

Ground effect calculations were performed on the circular cylinder for comparison
with experimental data both published (Bearman and Zdravkovich [58]) and obtained
in house. Bearman and Zdravkovich performed wind tunnel experiments on a circular
cylinder over a fixed ground plane. They tested at a Reynolds number of 48000 based
on cylinder diameter and used a trip strip to obtain turbulent flow over the ground
plane. This Reynolds number is clearly subcritical for flow over a circular cylinder.
Subcritical flow involves laminar separation while supercritical flow involves turbulent
separation. Experiments were also performed at Virginia Tech in the open jet wind
tunnel which has a 0.99 meter diameter test section exit. The experiments were
performed for two of Bearman’s ground clearances at a higher Reynolds number
(300000) although it was still too low to provide supercritical flow. This tunnel can
provide supercritical flow at a Reynolds number of 250000 for out-of-ground effect
flows due to the tunnels high free stream turbulence (approximately 4%). Figures
2.22 through 2.25 show the pressure coefficients over the circular cylinder for the
different experiments and the vortex panel method calculations. These figures show
the results at height-to-diameter ratios of 0.1, 0.4, 1.0, and 2.0 respectively. The
Virginia Tech experiments (indicated by the author’s last name) were performed
for the two lowest ground clearances. These experimental results match those of
Bearman. The vortex panel method which only predicts supercritical low naturally
differs from the experimental results. The delayed separation which is characteristic of
supercritical flow results in the greater acceleration of the flow as it remains attached
until after the maximum thickness of the cylinder.

Calculations were also performed on a 3.5:1 elliptic cylinder in order to com-
pare the vortex panel method results to the RANS calculations and experiments of
Ranzenbach and Barlow [59]. These were performed at a Reynolds number of 1.5
million based on chord. Force and moment coefficients are also based on the chord
(length of the major axis). The RANS calculations were performed for both wind
tunnel conditions (u(y = 0) = 0) and road conditions (u(y = 0) = V) while the
vortex method uses the method of images. The experiments were performed for wind

tunnel conditions only. Figure 2.26 shows the elliptic cylinder and its surface grid for
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the vortex panel method. The vortex panel method was solved over three seconds
which was sufficient to reach steady state flow. A vortex blob diameter of 5V, At
was required to obtain a stable solution. For the out-of-ground effect case, the vortex
panel method predicted a drag coefficient of 0.0465 compared to the RANS predic-
tion of 0.0394. Figure 2.27 shows the lift coefficient as a function of the height which
is nondimensionalized using the length of the minor axis of the ellipse. Figure 2.28
shows the drag coefficient as a function of the height ratio. As the height is decreased,
both the predicted lift coefficient and the drag coefficient increase. They also have
higher values than the experimental values or the RANS calculations. The general
trends of the coefficients as a function of the nondimensional height are captured by
the vortex panel method as well as reasonable numerical values.

Some insight into these results can be gained by looking at the separation and
stagnation point locations. Figure 2.29 shows the separation locations and stagna-
tion point locations for the elliptic cylinder out-of-ground effect. The vortex panel
method using Stratford’s criterion predicted separation aft of the RANS predictions.
The vortex panel method predicted a higher out-of-ground effect drag coefficient due
to a lower base pressure coefficient prediction. Figures 2.30 and 2.31 show the same
information for the ground effect case at nondimensional altitudes of 0.473 and 0.175
respectively. The vortex panel method predicts greater augmentation of the separa-
tion locations and stagnation point locations resulting in greater lift reversal as the
ground clearance is decreased.

Lastly, calculations were performed to verify the vortex panel method against
Northrop Grumman RANS calculations [28] for the flow over a 2-D MAGLEV vehicle
in ground effect. The RANS calculations were performed to match wind tunnel
conditions for experiments performed by Tyll, Liu, and co-workers [8] [60] at Virginia
Tech. These were for a 1/10™ scale model at a Reynolds number of 3.75 million per
meter. The scaled vehicle studied here is 2.4m in length and cruises at an altitude
of 0.01m. The vortex blob diameter is set at 1.75V, At for the ground effect case to
obtain stable solutions. Figure 2.32 shows the paneling for the Grumman MAG950.
Figure 2.33 shows the vortex sheets calculated for the Grumman MAG950 design for
both in and out-of-ground effect. The out-of-ground effect (OGE) calculation shows
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the development of the Von Karman vortex street. The starting vortex is evident at
the downstream end of the sheet. This flow structure is disrupted by the presense of
the ground plane for the in ground effect (IGE) case.

Figure 2.34 shows a plot of pressure coefficient versus the nondimensional vehicle
length for the Northrop Grumman MAG950. This plot shows excellent agreement
between the RANS calculation and the vortex method calculation. The vortex panel
method predicts a reasonable pressure drop of the gap flow as well as a reasonable
base pressure (slightly high). The difference in the pressure coefficient at the aft end
of the vehicle is due to the buildup of a boundary layer for the RANS case. The
increasing boundary layer thickness provides for a more moderate adverse pressure
gradient over the top surface. The thick viscous region on the lower surface accounts
for the difference in pressure coefficient on that surface at the aft end of the vehicle.
The vortex panel method solution shows an expansion as the flow leaves the parallel
section of the underbody just prior to the section of attempted pressure recovery.
Figure 2.35 shows a plot of pressure coefficient versus the nondimensional vehicle
length for the Northrop Grumman MAG1002. It too shows an excellent match of the
vortex panel method solution to the high-order, RANS calculations. The pressure
drop in the gap is predicted well along with an excellent match for the base pressure.

The integrated force and moment coefficients calculated by the vortex panel
method are shown for the five 2-D, Northrop Grumman designs in Table 2.1. These
coefficients are based upon the vehicle height, and the pitching moment coefficient
is taken about the leading edge of the vehicle. These values show similar qualitative
results to the RANS calculations performed by Northrop Grumman. The highest
drag coefficients are experienced by the MAG950 and MAG1007 designs. The major
difference in the predictions is for that of the MAG1459 which we predict to have
an extremely low drag coefficient as compared to the other designs. The prediction
of such a low drag is due to a high leading edge suction which will be explained in
the results sections. The optimum drag coefficient designs have a similar shape to
the MAG1459. The drag breakdown for these vehicles shows that all of these side
view shapes yield between 70% and 75% of the total drag due to base drag. Since

a majority of the skin friction drag is due to the viscous flow in the gap between
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the track and vehicle, attempts to lower the drag coefficient will deal mostly with a
reduction in base drag. So, potential drag coefficient improvement via changes in the
vehicle shape is around 75%.

Tables 2.2 and 2.3 show the lift and drag coefficient comparisons between in and
out-of-ground effect flow for the MAG950. These comparisons are done here for the
wind tunnel scale case. Lift reversal is evident as the lift coefficient increases by
approximately 180% of its out-of-ground effect value for the altitude of 0.01 meters
(% = 0.029). The drag coefficient for the IGE case is higher than the OGE case due to
increases in both skin friction drag and base drag. The table shows that the base drag
makes up approximately 64% of the drag increase. The out-of-ground effect values
closely match those predicted by the RANS calculations [28]. They predicted a lift
coefficient of around 1.0 and a drag coefficient of around 0.16. Similar to the Northrop
Grumman study, the vortex panel method predicted an approximate doubling of the
drag coefficient when the vehicle is brought in ground effect.

The verification for flow over the MAGLEV vehicles was performed at wind tunnel
scale, although, all of the design optimizations are performed at full scale conditions.
A comparison of wind tunnel to full scale condition calculations can be seen in Fig.
2.36 and 2.37. Figure 2.36 shows the pressure coefficient over the Northrop Grumman
MAG950 out-of-ground effect as calculated by the vortex method. The two cases are
for the full-scale Reynolds number of 30.0 million and the wind tunnel case with
Reynolds number of 1.3 million. The pressure coefficient predictions show nearly
identical profiles except for the aft end of the vehicles. The difference between these
two profiles is caused by the later separation for the full scale case due to the higher
Reynolds number. In addition to this, force and moment coefficients differ, since
no attempt was made to fix the location of the boundary layer transition. For the
MAG950, out-of-ground effect, the lift coefficient for the wind tunnel scaled case is
1.2024 and that for the full scale vehicle is 1.4130. The drag coefficient for the wind
tunnel case is 0.168 and that for the full scale case is 0.147. These can be seen in
Table 2.4.

Figure 2.37 shows the pressure coefficient over the Northrop Grumman MAG950

in ground effect as calculated by the vortex panel method. The two Reynolds number
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cases are shown. The profiles for the ground effect case show similar results to that
of the out-of-ground effect case. The pressure coefficient profiles are nearly identical
over most of the vehicle surface. The full-scale case experiences a later separation
than the wind tunnel scale case, since the Reynolds number is higher. It, therefore,
expands more prior to the attempted pressure recovery and recovers to a higher
pressure coefficient than the wind tunnel scale case. The drag coefficient for the full
scale case is lower than that for the wind tunnel scale case (0.203 and 0.253 for the
MAGO950 full scale and wind tunnel scale respectively). The lift coefficient is higher
for the full scale (3.461) than for the wind tunnel scale (3.362) for the MAG950.
These numbers can be seen in Table 2.5.

The test cases for the 2-D aerodynamics model shows that the 2-D, ground effect
flow around bluft bodies can be consistently modeled using the vortex panel method.
Lift reversal is captured with the use of the Stratford criteria for determining the
separation locations and the proper modeling of the mechanics of viscous flow. Dif-
ferences between the vortex panel method predictions and the accepted true values
are accounted for by the vortex panel method assumptions, in particular the infi-
nite Reynolds number limit and the implementation of the ground effect using the
method of images. The results are qualitatively consistent and quantitatively real-
istic. The 2-D vortex panel method makes an excellent analysis tool for integration
in an MDO design methodology due to its performance and quick calculation times
(approximately 6.5 CPU minutes for a 104 panel MAGLEV side view design on a
Silicon Graphics Power Challenge with an R8000 processor chip).

2.3 3-D Model

This section considers the two different models which are 3-D extensions to the
2-D doublet panel and vortex panel methods. The 3-D doublet panel method used
here is PMARC_12 (Panel Method Ames Research Center) [52]. The 3-D extension to
the vortex panel method was developed by Mracek and Mook [40] [61]. The doublet
panel method is equipped with an image method ground plane simulation. It was

extended for flow around a bluff body. The vortex panel method has an unsteady wake
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model which can be used for a closed tube wake. The code available to us, which was
written by Mracek, is formulated specifically for thin lifting surfaces. An extension
for thick lifting bodies is unavailable. This code is extended for ground effect flow
via the image method. Since there are no 3-D turbulent separation criteria, we only
consider geometries with known separation locations. Each model is discussed in its
own subsection below. The work presented here does not include the integration of
these 3-D aerodynamics models into the MDO framework. The intention here is to

evaluate their capabilities with respect to such an integration.

2.3.1 3-D Doublet Panel Method

The 3-D doublet panel method implementation used here is PMARC_12. This
code involves the solution to Laplace’s equation based on Green’s Identity. A dis-
cussion of Green’s Identity and its application to the solution to Laplace’s equation
in 3-D can be seen in Appendix D. A more detailed discussion can be seen in the
PMARC_12 manual [52]. This method employs a 3-D source distribution and a 3-D
doublet distribution. The source strength is set to cancel out the normal component
of the free stream flow. This results from the mathematical statement of no pen-
etration and the implicit formulation (Dirichlet) of that boundary condition. The
3-D distributed doublet singularity is mathematically identical to a ring vortex on
the panel perimeter. So, like its 2-D counterpart, PMARC_12 deals with discrete
vorticity which is kinematically different from a real fluid flow over a solid surface.

The auxiliary condition for a trailing edge used in PMARC_12 is the steady
state implementation of the Kutta condition (Eq. 2.7). This condition is used in
PMARC_12 for both steady and unsteady flow. This wake model is incorrect and
has been changed here to that which is shown in Eq. 2.8. This wake model is for an
unsteady flow and will converge to steady state conditions if the solution is permitted
to sufficiently develop in time. It can also be used for the flow over a bluff body with
separation (closed tube wake) according to the assumptions discussed in Section 2.2.4

for 2-D flow. Ground effect is simulated using the method of images.
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2.3.2 Verification of 3-D Doublet Panel Method

The 3-D doublet panel method, PMARC_12, was verified first for the flow over
sharp trailing edge bodies and bluff bodies. We also looked at the prediction capabili-
ties of ground effect flow. The verification was also performed to look at the corrected
separation line condition which employs the unsteady implementation of the Kutta
condition.

To verify the prediction capability for the flow over a sharp trailing edge body, we
used an aspect ratio 1.0 rectangular wing with a ClarkY airfoil section. The wing is
situated at an angle of attack, so that the flat underside is aligned with the horizontal.
Flow calculations are performed using both the steady trailing edge condition (which
comes with PMARC) and the unsteady trailing edge condition (which was written
into the code by the author). A time history of the lift coefficient for the impulsively
started wing can be seen in Fig. 2.38. The top plot is for out-of-ground effect flow
and the bottom plot is for ground effect flow. The solutions via the two different
trailing edge conditions appear to arrive at approximately the same steady state lift
coefficient although the unsteady trailing edge formulation predicts a longer transient.
The out-of-ground effect lift coefficient is approximately 0.16 while the ground effect
lift coefficient is approximately 0.18 (based on planform area). The wing and the
shed vortex sheet can be seen in Fig. 2.39 for the out-of-ground effect case and in
Fig. 2.40 for the ground effect case. The wake for the ground effect case spreads out
laterally due to the induced velocity of the image wake. This is in agreement with the
observed behavior of wing tip vortices near the ground. If one’s interests are only in
the steady state coefficient values, then the original PMARC wake model can suffice.
However, the unsteady model can provide time accurate values for the flow over a
sharp trailing edge body and is essential for the flow over a bluff body.

Bluff body flow was verified using a sphere, since there is an abundance of data
to compare against and the separation location is widely known. Since the flow over
a bluff body is never truly steady, the unsteady wake model was used. The use of the
steady trailing edge conditions for the case of a bluff body with a closed tube wake
would force a closed stagnation line which is not physically possible. A solution time

history for the impulsive start of flow over a sphere can be seen in Fig. 2.41. Flow is
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set to separate at approximately 104°, according to the accepted value for turbulent
flow over a sphere. The drag coefficient becomes steady after approximately 11 time
steps. Figure 2.42 shows the pressure coefficient predicted by PMARC as compared to
experimentally determined values at a Reynolds number of over 4 x 10° [62]. There
is excellent agreement between the doublet panel method and the experimentally
determined values. Figure 2.42 also shows a portion of the shed closed tube vortex
sheet behind the sphere.

2.3.3 3-D Vortex Panel Method

The 3-D vortex panel method is a 3-D version of the 2-D vortex panel method
and was developed by Mracek and Mook [40] [61]. It is an alternative to the vortex
lattice method which has discrete panels with concentrated vorticity (equivalent to
the doublet panel method). In this model, the solid surface of a body is modeled
using a continuous vortex sheet which represents the thin viscous region much the
same as was done for the 2-D vortex panel method. The sheet strength is set up to
vary linearly along the sides of the elements by using hat functions. These elements
(panels) are triangular so that all of the vertices lie on the surface of the body. Such
panels provide smoothly varying values of pressure and velocity. The layout of the
elements can be seen in Fig. 2.43.

The calculation of the flow over lifting bodies is handled by shedding a wake
which develops over time. The kutta condition is implemented in a similar fashion
as was done for the 2-D vortex panel method. This implementation employs FEuler’s
(or Bernoulli’s) equation, and the Kutta condition is imposed in the most general
sense which is for unsteady conditions. This condition will reach a steady state if the
wake is permitted to shed for a sufficient number of time steps. Based on the same
assumptions as were made for the 2-D case, one can also use this condition for bluff
body flow (closed tube wake). If we ignore entrainment, we can treat a separation
bubble by simply stating that the pressure on either side of the shed wake near the
separation point is identical. Using this trailing edge condition (described in detail

for the 2-D case) it is apparent that the vorticity from the infinitely thin viscous
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region is shed into the wake. The wake is still modeled using discrete vorticity (ring
vortices) identical to those is the doublet panel method. A vortex edge core lies along
the trailing edge or the separation line (for the bluff body case) in order to attach
this discrete vorticity wake to the continuous vortex sheet. This is required in order
to have nonzero vorticity at such a separation line. The strength is chosen so that
the gradient of the circulation around the core in the direction parallel to the line of
separation is equal to the negative of the sheet strength at that point. The piecewise
linear sheet strength will, therefore, result in a quadratic circulation distribution. The
strength of the adjoining vortex ring is the mean value of the circulation along that
segment of the edge core (Fig. 2.43). Spatial conservation of vorticity in the wake
is maintained by using an adaptive mesh to split rings into smaller ones when they
stretch out too much.

This method is a linear one which involves the solution to Laplace’s equation via
the linear superposition of analytic solutions to the equation. These analytic solutions
are the vortex sheet which models the thin viscous region near the solid surface, ring
vortices which are used to model the convected wake, and the edge cores used to join
them. The strengths of all of the elements are determined in order to satisfy the
no-penetration boundary condition on the surface. This is shown here as a system of

linear equations

V:n = 0
Q
[A+cC D]{G} = {U-W} (2.44)

where €2 is the vorticity and G is the strength of the discrete wake elements, U is
the free stream velocity, and W is the velocity induced by the wake elements shed at
previous time steps.

In order for the vortex sheet to resemble a viscous fluid region near a solid surface,
the vorticity field must be solenoidal. This is due to the vorticity being the curl of
the velocity vector field. The divergence of the curl of any vector field must be zero.
For the 2-D vortex panel method this was satisfied automatically, since the vorticity

and velocity vectors are always perpendicular to one another. For 3-D flow, this is
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not the case, so the divergenceless condition must be satisfied explicitly.
V-y =0
Q
B 0 = 0 2.45
[ B 0] { o } {0} (2.49)

The compatibility condition at the separation lines is shown below.

ar
i
E F Q
P {G} ~ {0} (2.46)

As was already mentioned, the Kutta condition is implemented using Bernoulli’s
equation and setting the pressures across the separation line (or trailing edge) equal

to one another.
AC, = 0

| K L]{Z}:{P} (2.47)

Instead of working through the algebra to obtain a square system of equations,
the problem is solved using a least squares optimization to minimize the sum of
the squares of the residual. The divergenceless condition, compatibility condition,
and Kutta condition are treated as weighted constraints. This complete system of

equations can be seen in Eq. 2.48.

A+B D
uv-w
’LUlB 0
E wrF |2 0 (2.48)
(15)) W9 - . .
G 0
’LU3J 0
’LU4P
’LU4K ’LU4L

Just as for the 2-D vortex panel method, the 3-D version solves directly for the surface
velocity if we impose the no-slip condition at the solid surface. The strength of the

vortex sheet (vorticity) is equal in magnitude to the boundary layer edge velocity
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but is rotated 90° about an axis normal to the surface at that point. The specifics
associated with this method and the matrix elements are covered in the previously
cited work by Mracek and Mook. This method provides a better kinematic match to
a real, high Reynolds number, viscous flow than the doublet panel method.

Ground effect is implemented using the method of images. It is only necessary to
augment Eq. 2.44 with the influence coefficients for the image of the body, edge core,
and wake. The divergenceless condition only needs to be satisfied in the real region.
That is also the case for the compatibility condition and the kutta condition.

The code written by Mracek, threed.f, is set up for two specific types of flows;
non-lifting flows over thick bodies, and lifting flows over thin bodies. An attempt
was made to extend Mracek’s code for lifting flow over thick bodies although the
reformulation was never successful. Calculations were made for lifting flow over thin
bodies for both the out of ground effect and in ground effect cases. An extension of
this design methodology for full 3-D designs should consider the development of such

a model.

2.3.4 Verification of 3-D Vortex Panel Method

The 3-D vortex panel method was used to calculate the flow over a rectangular wing
with aspect ratio 1.0 and a Clark Y airfoil section in an attempt to draw a comparison
to the 3-D doublet panel method, as was done for the 2-D case. This computation
is for a thin body so a mean camber line for the Clark Y is used. The lift coefficient
for the out-of-ground effect case is 0.125, based on planform area. The wing and the
shed wake can be seen in Fig. 2.44. The lift coefficient for the ground effect case
in 0.084. Lift reversal is not predicted. The wing and the shed wake for the ground
effect case can be seen in Fig. 2.45. One cannot draw a comparison between the
discrete vorticity, doublet panel method, and the continuous vorticity, vortex panel
method for 3-D ground effect flow while using this thin body formulation. A general
discussion of the vortex panel method for thick lifting bodies can be found in Ref.
[61].
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A

Streamlined Body

Bluff Body

Figure 2.1: Attachment (A) and Separation (S) for Different Flow Situations (after
Ref. [46])
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Figure 2.2: Schematic of Biot-Savart Law
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Kutta Condition: P,=P, \
e

Figure 2.3: Path of Integration of Euler’'s Equation Around Airfoil
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Figure 2.4: Gaussian Core Distribution for Vortex Blob Method
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Figure 2.5: Vortex Blob Method Distribution Function
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Figure 2.6: Two Dimensional Flow Separation
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Figure 2.7: Schematic of Method of Images
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Figure 2.8: Evaluation of Stratford’s Separation Criterion with Experimental Data
[50]
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Figure 2.9: Comparison on Analysis and Experiment for Couette/Poiseuille Flow
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Figure 2.10: Surface Grid of Clark Y Airfoil
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Figure 2.11: Predicted Clark Y Airfoil Pressure Coefficients Using Steady and Un-
steady Vortex Panel Methods (Out of Ground Effect)
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Figure 2.12: Comparison of Doublet Panel Method and Vortex Panel Method Pressure
Coefficient Predictions on Clark Y Airfoil Out of Ground Effect



CHAPTER 2. AERODYNAMICS MODEL 71

-1.0

3 Vortex Method
77777 Doublet Panel Method

height=0.1c

1.0

x/c

Figure 2.13: Comparison of Doublet Panel Method and Vortex Panel Method Pressure
Coefficient Predictions on Clark Y Airfoil In Ground Effect
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Figure 2.14: Predicted Lift Coefficient vs Height for Clark Y Airfoil Using the Vortex
Panel Method
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Figure 2.15: Predicted Pitching Moment Coefficient vs Height for Clark Y Airfoil
Using the Vortex Panel Method
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Figure 2.16: Pressure Coefficient Over Circular Cylinder w/o Separation
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Figure 2.17: Velocity Profile Over Circular Cylinder w/o Separation Top Vertical
Centerline, Out of Ground Effect
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Figure 2.18: Velocity Profile Over Circular Cylinder w/o Separation Bottom Vertical
Centerline, In Ground Effect
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Figure 2.19: Pressure Coefficient Over Circular Cylinder Out of Ground Effect
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Figure 2.20: Separated Flow Over Circular Cylinder by the Vortex Panel Method
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Figure 2.21: Time History of Lift and Drag Coefficient for Circular Cylinder Out of
Ground Effect predicted by the Vortex Panel Method
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Figure 2.22: Pressure Coefficient Over Circular Cylinder In Ground Effect (h/d=0.1)



CHAPTER 2. AERODYNAMICS MODEL 81

-1.5

Y

Vortex Method
g Bearman (Re=4.8E4)
A Tyll (Re=3.1E5)

Lt by b b by b b L |

0~
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 04 0.6 0.8 1.0

x/r

Figure 2.23: Pressure Coefficient Over Circular Cylinder In Ground Effect (h/d=0.4)
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Figure 2.24: Pressure Coefficient Over Circular Cylinder In Ground Effect (h/d=1.0)
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Figure 2.25: Pressure Coefficient Over Circular Cylinder In Ground Effect (h/d=2.0)
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Figure 2.26: Surface Grid of Elliptic Cylinder
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. Lift Coefficient of a 3.5:1 Elliptic Cylinder vs Height to Width Ratio
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Figure 2.28: Drag Coefficient of a 3.5:1 Elliptic Cylinder vs Height to Width Ratio
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Figure 2.29: Separation and Stagnation Point Locations for Elliptic Cylinder Out of
Ground Effect
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Figure 2.30: Separation and Stagnation Point Locations for Elliptic Cylinder at
height-to-diameter ratio of 0.473
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Figure 2.32: Surface Grid for Grumman MAG950
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Figure 2.33: Vortex Panel Method Solution for MAG950
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Figure 2.34: Pressure Coefficient over the MAG950 2-D Side View In Ground Effect
(& =0.029)
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Figure 2.35: Pressure Coefficient over the MAG1002 2-D Side View In Ground Effect
(& =0.029)



CHAPTER 2. AERODYNAMICS MODEL 94

i Full Scale (Re=30.0 million)
o5+ —--—- Wind Tunnel Scale (Re=1.3 million)
1.0 L L L | L L L M L L L L | L L L L | L L L L |
0.0 0.2 04 0.6 0.8 1.0
x/c

Figure 2.36: Pressure Coefficient for the Full Scale and Wind Tunnel Scale Cases of
MAG950 Out of Ground Effect (Vortex Panel Method)
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Figure 2.37: Pressure Coefficient for the Full Scale and Wind Tunnel Scale Cases of
MAG950 In Ground Effect (Vortex Panel Method)
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Figure 2.38: Solution Time History for Flow Over a Finite Thickness ClarkY Airfoil
(AR=1.0) Out of Ground Effect (Top) and In Ground Effect (Bottom); Doublet Panel
Method
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Figure 2.39: Flow Over A ClarkY Airfoil (AR=1.0) Out of Ground Effect; Doublet
Panel Method



CHAPTER 2. AERODYNAMICS MODEL 98

Figure 2.40: Flow Over A ClarkY Airfoil (AR=1.0) In Ground Effect; Doublet Panel
Method
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Figure 2.41: Solution Time History for Flow Over a Sphere With Turbulent Separa-
tion as Predicted by the Doublet Panel Method
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as Predicted by the Doublet Panel Method (Separation at 104°) [62]
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Figure 2.43: 3-D Vortex Panel Method, Panels and Panel Assembly



CHAPTER 2. AERODYNAMICS MODEL 102

[ AR RVRVRVAVAVAN

Figure 2.44: Mean Camber Line of ClarkY, Aspect Ratio of 1.0, Out of Ground Effect
(Vortex Panel Method)
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Figure 2.45: Mean Camber Line of ClarkY, Aspect Ratio of 1.0, In Ground Effect
(Vortex Panel Method)
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Model CL CD Cm

MAG950 | 3.362 0.253 -0.059
MAG1002 | 3.926 0.217 -0.086
MAG1007 | 2.683 0.247 -0.027
MAG1742 | 2.885 0.213 -0.037
MAG1459 | 3.914 0.053 -0.083

104

Table 2.1: Force and Moment Coefficients for Northrop Grumman MAGLEV Designs

Calculated Using the Vortex Panel Method
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Model ‘ OGE IGE

Base 1.204 3.361
Total | 1.202 3.362

Table 2.2: Comparison of In and Out of Ground Effect Lift Coefficients for the Wind
Tunnel Scale MAG950 Using the Vortex Panel Method

Model ‘ OGE IGE
Base ‘0.131 0.185

Total | 0.168 0.253

Table 2.3: Comparison of In and Out of Ground Effect Drag Coefficients for the Wind
Tunnel Scale MAG950 Using the Vortex Panel Method
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‘ Wind Tunnel Scale Full Scale

1.202 1.413
0.168 0.147

CL
Cp

Table 2.4: A Comparison of Wind Tunnel Scale and Full Scale Force Coefficient
Predictions for the MAG950, Out of Ground Effect Using the Vortex Panel Method

‘ Wind Tunnel Scale Full Scale

3.362 3.461
0.253 0.203

CL
Cp

Table 2.5: A Comparison of Wind Tunnel Scale and Full Scale Force Coefficient
Predictions for the MAG950, In Ground Effect Using the Vortex Panel Method



Chapter 3

Structural Weight Model

The main function of the structures module is to calculate the structural weight
as a function of the vehicle geometry for a nominal fifty person vehicle. It is assumed
here that the structure of the MAGLEV vehicle is similar to that of a subsonic air-
craft fuselage. Shaw [23] describes the aluminum cabin to have a sheet and stringer
structure with internal frames and longerons. This enables use of the empirical equa-
tions for aircraft structural weight which are widely available. The structural weight

and the design gross weight are found by simultaneously solving the following two

equations,
0.5 70.25 ¢0.302 L 0.10
Wusciage = 0.3280(Wiag Nz)*LO# §9°%( ) (3.1)
de = quselage + Wmagnet + Wpayload + Wmisc (32)

where the miscellaneous weight includes furnishings, instruments, controls, etc. This
weight equation is for a transport aircraft fuselage and was taken from an aircraft
design text by Raymer [63].

The design gross weight equation is altered to include MAGLEV specific items.
The magnet weight is taken to be 114.4lbs (52 kg) for each of the 24 superconducting
magnets (Ref. [22]). The payload weight is taken to be 205lbs (93.2 kg) for each

of the 50 passengers and two crew members. This weight includes luggage. The
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miscellaneous equipment includes the seats and all of the ancillary equipment. Each
seat has a mass of 14.55 kg. The ancillary equipment is treated as a fixed weight and
is determined to be 47800 1bf. This number was calculated using weight estimations
by Allen [26] which states 72000 1bf (320 kn) design gross weight. By subtracting
the payload, seats, motor, and estimated structural weight (9000 1bf [23]), one can
calculate the remaining fixed weight. These equations can be altered to account for
the use of composite materials using a mass modifier. This modifier is currently set
at 1.0 for aluminum but can be adjusted to 0.8 for composite material.

The use of this empirical weight equation is correct from a structural standpoint,
although, the structural sizing for railed vehicles is handled differently from that of
aircraft. Aircraft are structurally sized to handle a specific maneuver by considering
the maximum load factor it will have to withstand. Railed vehicles are structurally
sized for a longitudinal buffer shock. Shaw [23] specifies a maximum 2g vertical
acceleration which is used as the load factor (Nz) in the weight equation. This is
very low compared to maximum load factors for aircraft. For example, a utility
category Cessna 152, general aviation aircraft has a maximum load factor of 4.4g.
Since aerodynamic loads are very low and the levitation forces are fairly uniform over
the length of the vehicle, the MAGLEV structure will be very light. The 3 meter per
second bumper impact, specified in the system technical requirements [5], cannot be
handled in this preliminary design setting. In addition to the shock load, there are
other specifications dealing with impact with guideway obstructions, thrown objects,
bird strikes, and bullet strikes.

Weight calculations are very important in the design of aerospace vehicles since
the mission profile usually involves carrying a payload over a distance. The weight
growth factor is defined in order to determine if the payload can be carried. The

definition can be seen in Eq. 3.3.

1

Weight Growth Factor = T FEmpty Weight (3.3)

Gross Takeoff Weight

It can be deduced from this equation that lower growth factors are favorable, since

lower vehicle empty weight increases the possible payload weight. As the weight

growth factor increases, the payload weight becomes a smaller fraction of the whole.
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Zero payload weight corresponds to a weight growth factor of infinity. The empty
weight for a MAGLEV vehicle includes the structure, levitation and guidance system,
propulsion system, ancillary equipment, and cabin furnishings. Herbst [64] estimates
a growth factor for MAGLEV vehicles of 2.0. This compares to 2.4, which is a
common growth factor for transport aircraft. Growth factors for aircraft can be as
high as 4.0, while growth factors for launch vehicles can be as high as 20.0. Based
on weight estimations presented by Allen [26], the growth factor for the Grumman
MAGLEV system is slightly less than 4.0.

The gross takeoff weight can be as much as the available lift which is the com-
bined aerodynamic and magnetic lift. This type of analysis can be used to figure out
the maximum potential speed for these vehicles given the current technology. For
increased speed requirements, the Linear Synchronous Motor (LSM) propulsion sys-
tem must be larger and, therefore, heavier. The propulsion system weight increases
resulting in a decrease in payload weight. This trade-off can be continued until there
is zero payload. This system will give the maximum possible vehicle speed. Likewise,

speed can be compromised in order to achieve greater payload capacity.



Chapter 4

Acquisition Cost Model

The acquisition cost model calculates the investment cost involved in acquiring a
MAGLEV vehicle. This should not be confused with the vehicle price which is the
cost plus some mark-up value. This cost model does not deal with the other costs
associated with this transportation system such as the cost of the guideway, electrical
distribution, stations, maintenance, and facilities. A work breakdown structure for
the entire transportation system was prepared by Parsons Brinckerhoff and can be
seen in a paper by Deutsch [3]. It includes estimates of all of the capital costs of
the transportation system. The design of the vehicles is of primary importance to
the rail companies offering MAGLEV service. The overall system costs will be seen
by these companies as user fees. The vehicle design does impact the cost of the
system as a whole although these relationships are out of the scope of this work. For
example, lower vehicle weight can impact the cost of the guideway structure. Bohlke
[25] discusses guideway costs and shows some studies looking at the effect of span
between guideway supports on the cost.

The acquisition cost of the MAGLEV vehicle is the total cost involved in cre-
ating the vehicles. This includes the cost of producing the vehicle structure, the
furnishings, HVAC, levitation and guidance systems, propulsion, control systems,
communications, breaking system, and on board power supply (APU). Information is
not available on the costs of most of these components. Since they are present on any

vehicle design, this model concerns itself with only the structural costs. The cost of
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the structure is a function of the vehicle shape and complexity, materials used, manu-
facturing processes chosen, and company procedures dealing with the use of different
production facilities.

The different types of cost models are discussed in a paper by Rais-Rohani [32].
The two main categories of models are the Parametric Cost Models (PCM) and
the Manufacturing Process Cost Model (MPCM). Parametric cost models are cost
equations based on design variables as arguments. Weight engineering models fall into
this category. These models are easy to use, although they are not very accurate.
They ignore product and process complexity and depend upon a database of past
cases. Cost accrued from cost drivers not present in the database cases will not be
predicted by the model. These models are good to use in the conceptual design
phase, since accuracy requirements are lower and not much is know about the vehicle
in question.

Manufacturing process cost models include more detail about the materials and
manufacturing processes used. They also address labor, time, and assembly. These
models have higher accuracy than the PCM models, although they require much
more information to build. This information may not be available at the conceptual
or preliminary stages of a design process. Costs are accumulated on a process level
giving these models the higher accuracy and sensitivity. Gutowski [65] refers to these
types of models as primitive task models, since the whole manufacturing process is
broken down to a collection of elementary activities which incur costs that add up
to the whole. These activity based models require information from manufacturing
process planning records, bills of material, and accounting records. This information
is difficult to obtain for a company outsider since it is the source of a company’s
competitive advantage. Detailed knowledge of a company’s cost is usually proprietary
information, since it enables them to be competitive via aggressive pricing.

The optimization design undertaken in this work is a conceptual design so there is
little detailed information available which would be necessary for the use of an MPCM.
This information would include stringer and longeron spacing and surface skin panel
size and shape. In addition to this, there have been no production level MAGLEV

vehicles from which to construct a database for a PCM. As an interim model, this
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work employs RAND corporation’s DACPA IV model for transport aircraft [66]. This
model is a parametric cost model which describes the cost of an aircraft as a function
of the vehicle size, structural materials, gross vehicle weight, and cruising speed. As
was done for the structural weight model, we assume that the MAGLEV vehicle
structure is similar to that of a transport aircraft. In addition to that, we assume
that similar manufacturing processes will be used to build the MAGLEV vehicle as
are used for transport aircraft. The database used to construct the DACPA IV model

is constructed from aircraft with specifications shown below.

Empty Weight 9753 — 320085(lbf)
Maximum Speed 389 — 1250(kn)
No. of Flight Test Vehicles : 10 — 33

The MAGLEV application is out of range for the maximum speed and the number
of flight test vehicles (low for both categories).

The total acquisition cost predicted by the DACPA IV model includes the en-
gineering cost, tooling cost, manufacturing cost, quality control cost, development
cost, test cost, and materials cost. The engineering cost is a function of the empty
weight, velocity, quantity of vehicles, and an engineering labor rate. The tooling cost
is a function of the empty weight, velocity, quantity of vehicles, and a tooling labor
rate. The manufacturing cost is a function of the empty weight, velocity, quantity
of vehicles, and a manufacturing labor rate. The quality control cost is a function
of the empty weight, velocity, quantity of vehicles, and a quality control labor rate.
The development cost is a function of only the empty weight and velocity. The test
cost is a function of the empty weight, velocity, and number of test vehicles, while
the material cost is a function of empty weight, velocity and total number of vehicles.
The actual aircraft cost model includes the engine and avionics cost. This part of
the model was not used here. Replacement costs for MAGLEV specific items were
not included, since this information is unavailable. All of the cost predictions are in
1986 dollars and are not adjusted. The model is run for a 100 vehicle fleet and 2 test

vehicles. The labor rates are shown below.

Engineering Labor Rate = $59.10/hr
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Tooling Labor Rate = $60.70/hr
Quality Control Labor Rate = $55.40/hr
Manufacturing labor Rate = $50.10/hr

Vehicle cost modifiers can be applied to account for materials. The cost modifier is
1.0 for an aluminum structure and 1.1 for composite structures. The acquisition cost
model resides in the same subroutine that calculates the life cycle cost. This can be
seen in Appendix E. As was previously mentioned, parametric models have low sen-
sitivity and cannot predict outside of the realm of the vehicles used for the database.
This analysis will, therefore, neglect costs incurred by some of the detailed MAGLEV

design geometries. Acquisition cost will vary little from design to design.
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Direct Operating Cost Model

The direct operating cost model calculates the direct operating costs as a function
of the mission profile, vehicle gross weight, energy costs, and aerodynamic coefficients.
Excluded are the costs associated with operating personnel, support infrastructure,
charges on the guideway installation cost , maintenance, and terminal operations,
since these costs are fixed with respect to changes in the vehicle shape design. Costs
associated with longitudinal trim and guidance are also excluded. All of the assumed
parameters involved in this model were taken from feasibility studies on MAGLEV
vehicles [3] [6].

The operating cost model calculates the force required to levitate and propel
the vehicle for the duration of its mission. The vehicle weight is provided by the
structures model, and the aerodynamic coefficients are provided by the aerodynamics
model. The required magnetic lift is the aerodynamic lift subtracted from the vehicle
weight. The force to be put out by the magnets is this term divided by the cos 35°
since the magnets are angled to provide both lift and lateral guidance. The levitation
power required is calculated as the product of the system current and voltage. The
current is given as a function of levitation force in the final report of the government
MAGLEYV system assessment team [6]. The voltage is a constant. The power required
to overcome the aerodynamic drag is the product of the drag force and the vehicle
speed. This value is divided by the system efficiency which is nearly 1.0 for the linear

synchronous motor and 0.82 for the converter station. Magnetic drag is not accounted
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for here, since it is small compared to aerodynamic drag at cruise speed [6]. Magnetic
drag becomes predominate at lower speeds. The total power required is the combined
power for propulsion, levitation, and auxiliary power. The auxiliary power is that for
the superconducting magnets, cooling system, HVAC, and lighting. The total power
is multiplied by the trip time to give the energy requirements for the trip. The energy
costs are calculated using the consumption charges and demand charges used in the
feasibility studies [3] [17] [27].

The vehicle mission profile is that of an 800 kilometer trip at 134 (300mph).
There are no intermediate stops, and it is assumed that the vehicle travels at its cruise
speed over the entire trip distance (no acceleration or deceleration). The system is
operational 16 hours per day, 365 days per year. Fifty person vehicles are used with
an average passenger load of 2000 per hour. The auxiliary power required is 85 kw and
is constant over the entire speed range. The assumed electric charges are $0.05/kwh.
The assumed electric demand charges are $7.50/kw and are accrued monthly.

The inclusion of energy costs in the multidisciplinary conceptual and preliminary
designs is important for several reasons. Analyzing technical performance may lead
the designer to designs with lower energy consumption, although no consideration is
given to the efficiency of the energy source. Herbst [64] cites an example pertaining to
the comparison of MAGLEV vehicles to aircraft. A MAGLEV vehicle might require
less energy to complete a similar mission as an aircraft although its energy source
(Rankine cycle power plant) operates at a lower efficiency than the energy source for
the aircraft (Brayton cycle engine). The use of operating cost as a figure of merit
for these vehicle designs accounts for this efficiency and serves as a uniform measure
for operating performance. As for the fixed operating costs which this model ignores,
Deutsch [3] estimates the personnel and material costs to be $49 million per year and
$48 million per year respectively. Deutsch also estimates the energy costs (variable)
to be $172 million per year. This number is very close to the yearly energy costs
calculated by this operating cost model for typical designs. The subroutine for the

direct operating cost model can be found in Appendix E.



Chapter 6

Life Cycle Cost Model

The definition of life cycle costs is all of the cost incurred from the conceptual
design phase, production and deployment of the system, through to the retirement
and disposal of the system. The consideration of the “cradle to grave” costs in
the design process is crucial to the determination of long term profitability of the
MAGLEV transportation system. The life cycle cost can be viewed as the equivalent
value of the system cash flow over the lifespan at some zero time. For the comparison
of alternatives with similar lives, one can use either a present worth method or a
capitalized cost method. The present worth method is the calculation of a net present
worth of the system and is used for the comparison of alternatives with finite lives.
The work presented here uses this type of calculation. For systems with infinite
horizons, capitalized cost methods are used in which the life cycle cost is the amount
of money needed at a zero time to perpetually support the system using only the
earned interest. The MAGLEV vehicles are analyzed here for a finite life, although a
capitalized cost approach may be warranted if system life extensions are expected.

As was mentioned, this model is a present worth method in which the life cycle
cost is presented as a net present value of the system cash flow over the lifespan of the
system via a discounted cash flow analysis. This model does not include fixed costs,
since we are looking here at making design decisions for vehicle shape based on its
effect on the overall system performance. These fixed costs include the development

cost, disposal costs, fixed direct operating costs, indirect operating costs, etc. Such

116



CHAPTER 6. LIFE CYCLE COST MODEL 117

costs, along with stations and guideway costs, must be included when analyzing the
transportation system as a whole for comparison with other modes of transportation.

The variable costs associated with changes in the vehicle shape design are the
investment cost (acquisition) and the discounted operating cost. The investment cost
is provided by the acquisition cost model, and the yearly operating cost is provided by
the direct operating cost model. Several assumptions are made concerning the system
economics. The lifespan is set at 15 years. Over this time, the average inflation rate
is 3% per annum, the interest rate (return on investment) is 6% per annum, the tax
rate is 50%, and the growth in traffic is 4% per annum. These values were taken
from Ref. [17] which is part of the Grumman system concept definition. This model
also has a revenue stream which is not employed for the studies performed as part of
this work. Estimates for the fixed costs can be obtained from the work breakdown
structure for the Grumman system. This can be seen in Ref. [3] prepared by Parsons
Brinkerhoff. Their estimate for total capital cost amounts to $12302 per meter of
track (the work breakdown structure was prepared for a 1000 km track system). Of
this total, $7934 per meter is associated with the guideway, $1836 with the electrical,
communications, and control for the system, and $882 with buildings and equipment
(including stations). Their estimate for the vehicle cost is $1650 per meter, although
these costs are variable with respect to the design variables of this multidisciplinary
design.

The use of life cycle cost as a figure of merit is necessary to compare the designs
based on performance and cost components. Life cycle cost is a universal figure of
merit including all of the lower level objectives and indicators. It balances the initial

capital investment with the annual costs associated with operating the system.



Chapter 7

MDO Problem Statement

To demonstrate the effectiveness of this design tool, we will perform a sample
problem with five design variables. For the purpose of comparison, a portion of the
Northrop Grumman MAGLEV design process [28] was redone here using this MDO
methodology. Northrop Grumman was one of four companies contracted by the
National MAGLEV Initiative (NMI) to develop vehicle designs. For the aerodynamic
design they developed a design methodology geared towards minimizing aerodynamic
drag using RANS as an analysis tool. They began with over 2000 2-D side view
geometries and a separate set of 2-D plan view geometries. The side view geometry
definition can be seen in the Fig. 7.1 in terms of the design variables [28]. The design
variables are XN, XF #, N, and F. L is fixed at 6.0 meters and H is fixed at 3.5 meters.
A 12.0 meter long parallel section separates the vehicle nose from its identical tail.
This identical nose and tail provide for dual direction capability.

According to the Grumman selection process, fourteen of the 2-D side view ge-
ometries were chosen by the designers to represent the whole design space. 2-D RANS
calculations were performed for the out of ground effect case, and five side view geome-
tries were chosen based on minimum drag. RANS calculations were then performed
on these five geometries for the IGE case. From these five side view geometries, 3-D
geometries were constructed using the 2-D plan view designs chosen from a separate
selection process. The design process continued using 3-D RANS calculations and

the five final designs were chosen for experimental evaluation in the Virginia Tech
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moving track wind tunnel facility [8] [67].

The five design variable problem dealt with in this work repeats the 2-D, side view
design using the MDO design methodology, minimizing drag coefficient. The optimum
design is compared to the five 2-D side view designs developed using the Northrop
Grumman methodology. These five designs are shown in Fig. 7.2.  Optimizations
are also performed for additional figures of merit such as acquisition cost, operating
cost, life cycle cost, empty weight, and lift to drag ratio. The mission profile for this
example is that of an intercity haul of 800 kilometers non stop. The acceleration
and braking are ignored for this example problem although it can be incorporated in
future studies set at the maximum allowable normal mode value of 0.16g [5]. The
analyses are performed for a single, 50 person car although the mission may call for
a larger capacity.

The mathematical problem statement for a general optimization problem is, min-
imize the objective function, which is a function of n design variables, subject to m

constraints (Eq. 7.1).

min f(x) x€ R"

subject to 1<c(x)<u ce R™ (7.1)

Optimization methods fall into two major categories which are calculus-based meth-
ods and search methods. Calculus-based methods use gradient information to navi-
gate through the design space to find local optimum points. This area of optimization
technology is fairly mature compared to the search methods. These methods involve
mathematical criteria to indicate convergence to an optimal point (Kuhn Tucker
conditions). These methods have strong theoretical background and converge fairly
quickly. Their weakness is that they require gradient information and, therefore, a
differentiable design space. In addition to this, they do not search for global optima.
There are iterative methods which attempt to find global optima, using calculus-based
methods, although, there is no method to prove that the solution is a global optimum
point [68].

Search methods available include genetic algorithms, simulated annealing, and
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neural networks. These methods search for global optima and do not have smooth-
ness requirements on the design space. Although, these methods cannot guarantee
the convergence to a global optimum point, they are slow (require many analyses),
and can only handle constraints using an augmented penalty function. The work pre-
sented here involves a calculus-based method called Sequential Quadratic Program-
ming (SQP). This method was chosen since it is theoretically well founded, converges
quickly, and involves a rigorous mathematical requirement for optimality.

Sequential Quadratic Programming is an optimization method for constrained
optimizations with nonlinear constraints; it can handle linear constraints and uncon-
strained problems although methods specifically designed for those problems might
be more efficient. In this method, at each iteration step, the optimizer attempts
to minimize a quadratic model of the Lagrangian subject to a linear model of the
constraints (quadratic subproblem). This problem can be stated as:

min g’p + %pTH P

subject to 1<c(x)+ Ap <u (7.2)
The minimizing function is the linear and quadratic term of the Taylor Series ex-
pansion for the Lagrangian. The vector, g, is the gradient of the objective function.
The vector, p, is the search direction, and the matrix, H, is an approximation to the
Hessian of the Lagrangian. The matrix, A, is the Jacobian of the constraints. At
each iteration, the optimality criteria are imposed in order to solve for a new search
direction. This optimality criteria states that the gradient of the Lagrangian equals

zero and that the constraints are satisfied (Eq. 7.3).

{ Pk }:{ —8k } (7‘3)
Mk —Cg

n is a vector of the Lagrange multipliers of the linearly constrained quadratic sub-
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problem. A detailed discussion of SQP methods and of optimization theory in general
can be seen in Ref. [69]. A detailed discussion about the specific SQP algorithm used
here can be found in the DOT users manual [70].

The 5 design variable problem uses the five geometry variables outlined in Fig.

7.1. The problem also involves two constraints. The first constraint requires XF to
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be greater than or equal to XN. The second constraint requires the drag coefficient
to be positive. This constraint is necessary to avoid areas in the design space where
the aerodynamic model fails. For low-order methods, “kinks” in the surface can
result in singularities and, therefore, very large negative pressure coefficients which
could result in a thrust. These solutions are mathematically viable but physically
unrealistic. This problem can also be lessened by choosing proper bounds on the
design variables.

A 7 design variable problem is adopted as an alternative way to perform the
optimizations. The reasons for this higher dimensional problem and the benefits of
this change in the problem statement will be discussed in the Results section. The

problem formulation requires 7 constraints and a separate scaling scheme.
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Figure 7.1: Geometry Definition [28]
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XN=1.5 N=2.0

XF=1.5 F=0.2 MAG950
0=34.0

XN=1.5 N=2.0

XF=1.5 F=0.6 MAG1002
0=24.0

XN=1.5 N=2.0

XF=15 F=0.6 MAG1007
06=29.0

XN=1.5 N=3.0

XF=3.5 F=1.0 MAG1459
06=16.0

XN=2.5 N=2.0

XF=2.5 F=0.6 MAG1742
©6=20.0

Figure 7.2: Northrop Grumman 2-D Side View Designs
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Chapter 8

Results

This section deals with the results from the optimization design studies performed
using the design methodology for the 2-D, side view, MAGLEV vehicles in ground
effect. We first discuss the 5 design variable problem which turns out to be flawed due
to a non-smooth design space. A higher dimensional problem with 7 design variables
is then developed to combat the deficiency in the original formulation. Optimizations
are then performed, using the 7 design variable problem for several objective functions.
The designs and their attributes are discussed and compared to those from Northrop
Grumman which were used as baseline designs for this study.

The 5 design variable problem uses the 5 geometry variables outlined in Fig. 7.1
and two constraints. The first constraint requires XF to be greater than XN, and the
second constraint requires the drag coefficient to be positive, as discussed in Chapter
7. An optimization was performed using the Northrop Grumman MAG1007 as a
baseline design. The SQP optimizer never hones in on an optimum point during the
computation time allotted. This is due to the non-smooth design space which causes
the SQP algorithm to take steps through the design space based on bad gradient
information. Non-smooth design space is typical of real engineering problems and is
a major obstacle in engineering design optimization. The bumps in the design space
stem from the analyses of flow over bluff bodies. Small, continuous changes in the
geometry definition variables can produce discontinuous values for the aerodynamic

coefficients. This is mainly a result of movement of the separation points.
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Figure 8.1 is a plot of the optimization with the MAG1007 baseline and drag
coefficient as the objective function. The abscissa shows the design space index which
steps one for every SQP iteration. This index does not indicate the search direction
in the 5 dimensional space, nor does it indicate the length of each step. The total
length traveled from the baseline to iteration number 15 is 3.41. The direct distance
between the two points is 2.2. The optimization path is shown as a solid line with
boxes indicating the discrete steps taken by the optimizer.

To illustrate the problem with the 5 design variable formulation, we can take a
closer look at iteration number 12. The distance along the search direction from
iteration 12 to iteration 13 is 0.0452. The step along this search direction results
in a higher objective function. The actual design space along this step in the 5
dimensional search direction is shown with a dashed line. The section shown here is
constructed using 20 evenly spaced steps along the search direction for a length twice
that of the optimization step. The non-smooth nature of the design space is apparent.
Using the gradient information obtained by finite differencing at iteration 12, along
with the approximation for the Hessian of the Lagrangian, a quadratic model of the
Lagrangian is formed. The quadratic model of the Lagrangian is shown in Fig. 8.1
as the dashed/dotted line. Based on the gradient information at iteration 12 as well
as the build up of gradient information from passed iterations in the approximation
to the Hessian, the optimizer thinks it is stepping in a direction which lowers the
Lagrangian. There are no active constraints during this optimization, so a lowered
Lagrangian should correspond to a lower objective function. Due to the violation of
the smoothness requirement the quadratic subproblems are not representative of the
actual design space in the region of the iteration.

In order to combat this deficiency with this formulation of the problem, it was in-
stead reposed as a 7 design variable optimization. The two additional design variables
are the locations of the top and bottom surface separation points. The aerodynamic
forces are functions of the vehicle shape and the flow conditions (the 5 design vari-
ables and the Reynolds number). More exactly, the geometry and the free stream
flow conditions determines the separation locations, and therefore the circulation,

which determines the forces on the vehicle which are the integrated pressure and skin
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friction over the surface.

According to this new formulation, these two separation locations are independent
variables and not functions of the 5 original design variables as they once were. As
independent variables they will most probably not match their correct value according
to their functional dependence on the other variables and flow parameters. So, we
are solving for flows in which the separation locations do not match the pressure
field in hopes that this projected design space is smoother than that in 5 dimensions.
Two equality constraints are then imposed which require each separation location to
match the pressure field; the Stratford Criterion is imposed as a constraint [71]. Each
equality constraint is enforced using two inequality constraints so this formulation
adds four new constraints to the SQP problem. Optimization theory requires that
the solution be feasible at the optimum point but allows for infeasible iteration steps
along the way. The idea of projecting the design space in such a manner as to smooth
out the design space was developed during personal conversations with Dr. Eugene
Cliff. This formulation utilizes a seventh constraint which requires the flow to remain
attached until reaching the aft end of the vehicle thereby avoiding designs which
cannot be handled by the boundary layer calculation.

One problem associated with the implementation of this idea is that the objective
function is a much stronger function of the separation locations than of the 5 geometry
variables. If left as is, this formulation of the problem will result in optimizations
requiring many SQP iterations. The separation locations which are strong variables
will be changed much more than the geometry variables which are weak variables.
Affine scaling is used to prevent this. This scaling is aimed at producing equal changes
in the objective function for equal changes in each of the scaled design variables.

Equation 8.1 shows the functional form of the scaling.
x = NOM + SCALE x Z (8.1)

The unscaled design variables, x, are sent to the analyses while the scaled design
variables, Z, are sent to the optimizer. The ranges of the scaled design variables go
from approximately 0.0 to 1.0 for the range of interest in the corresponding unscaled

variables. The matrix, SCALE, is a diagonal matrix with the diagonal elements
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corresponding to the value of the derivative of x with respect to Z that makes the
coefficient of the linear term of the Taylor Series expansion of the objective function

with respect to the scaled variables a constant (Eq. 8.2).

OBJ = f(x
OBJ—-O0OBJ, = Z AZH—...
" f ox;
= AZi+ ...
Z 0x; 07; *
= ALE,AZ; + ...
; &EiSC +
of .
SCALE; = Constant for all i (8.2)
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Figure 8.2 shows the optimization path through the design space using this 7
design variable formulation. It is an equivalent plot to that shown in Fig. 8.1 for the
5 dimensional case. Again, we are looking at iteration number 12. The dark boxes
indicate that the iteration step is at an infeasible point in the design space. The
scaled length of the step in the search direction between iteration steps 12 and 13 is
0.5110. The objective function along this search direction in 7 dimensional space is
shown as the dashed line for twice the length of the iteration step. The design space
is much smoother than its 5 dimensional counterpart and will, therefore, be more
conducive for finite differencing derivatives. The quadratic model of the Lagrangian
along the search direction is shown in the dashed/dotted line. The quadratic model of
the Lagrangian increases as does the objective function. Both iteration 12 and 13 are
infeasible points, so there is at least one active constraint included in the Lagrangian.
The quadratic model is developed using better gradient information and does a better
job following the design space. The optimization is successfully completed after 18
iterations. The total length traveled through the design space from the baseline to
the optimum point is 7.82, and the straight line distance between the two points in
the 7 dimensional space is 0.50. The 7 design variable formulation has provided a
projected design space which is navigable by calculus-based optimizers.

Another benefit of the 7 design variable formulation is that the CPU time required

per analysis is reduced to approximately 1.5 minutes, down from 6.5 minutes on a
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Silicon Graphics Power Challenge with an R8000 processor chip. By prescribing
the separation locations and not letting them develop over time, the transient from
the impulsive start is approximately 50 time steps shorter. Since the CPU time is
approximately proportional to the square of the number of time steps, any reduction
in the number of time steps taken will greatly shorten the computational time.

The 7 design variable formulation does have a drawback. The non-smooth design
space was replaced with a smooth one and highly convex equality constraints. The
two inequality constraints, forming the top separation point equality constraint, are
prohibitive in finding a global optimum point. Figure 8.3 shows a set of analyses
between two optimum drag coefficient points. The first point was arrived at from
a MAGI950 baseline design while the second point was arrived at from a MAG1007
baseline. The search direction is a straight line from one point to the other in 7
dimensional space. The dotted line shows the equality constraint tolerance. Any con-
straint value within 4+0.03 is considered to be satisfied. The values of the constraints
for the top and bottom separation points are shown in the dashed line. The top sepa-
ration point constraint is highly convex and is violated for most of the space between
these two optima along the straight path between the two points. The highly convex
equality constraints result in a design space with many isolated, local optima i.e. a

7 Different starting points in the design space will lead to

7 dimensional “egg crate.
different optimum points. The two optimum points based on drag coefficient have
objective functions with nearly the same magnitude (Fig. 8.3). In order to use this
method as a design tool, one must optimize several times from different positions in
the design space and make an engineering decision as to which design to accept. This
is essential for the optimization problem here due to the nature of the design space
and is good practice for any problem, since there is no mathematical proof for the
convergence to a global optimum point. Improvements to this method might involve
the development of another formulation which can provide the differentiable objective
function without the inclusion of convex equality constraints.

Optimizations are performed for the objective functions of drag coefficient, lift to
drag ratio, empty weight, vehicle cost, operating cost, and life cycle cost. All of these

optimizations employ the 7 design variable problem formulation. The aerodynamic
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analyses are performed for full-scale vehicles.

8.1 Optimum Drag Coefficient Designs

The optimizations for drag coefficient as the objective function were run from two
different baselines - MAG950 and MAG1007. Figure 8.4 shows the baseline, MAG950,
and the optimized drag coefficient design derived from it. The drag coefficient was
reduced from 0.2025 to 0.0489. This 75.9% reduction is due to a 95.4% reduction in
the base drag and a 1.43% reduction in the skin friction drag. The pressure coefficient
plots for the the baseline and optimum points for this design are shown in Fig. 8.5.

Figure 8.6 shows the baseline, MAG1007, and the optimized drag coefficient design
derived from it. This design is referred to as the OPTCD2 design and the MAG950
baseline design is referred to as the OPTCD1 design based solely on the order that the
calculations were performed. This optimization results in an optimum point different
from that of the OPTCD1 design. The drag coefficient is reduced from 0.1984 to
0.0424. This 78.6% reduction in the drag coefficient is due to a 99.2% reduction in
the base drag and a 4.4% reduction in the skin friction drag. The pressure coefficient
plots for the the baseline and optimum points for this design are shown in Fig. 8.7.
The “blips” in the pressure coefficient profiles for the optimum designs are due to the
panel spacing and quantity which are not adjusted during the optimization. Figure
8.8 shows the OPTCD2 pressure coefficient as calculated during the optimization and
after the surface grid is refined. Improvements to this methodology might include
automatic grid refinements during the optimization process.

Figure 8.9 shows a comparison of both optimum drag coefficient designs. The
optimizations from the two different baseline designs resulted in two local optima
with roughly the same objective function value. Both optimum designs are more
blunt than their baselines and yet they achieve minimum drag coefficients. These
designs exploit the ground effect phenomena to greatly reduce the base drag. As
part of the lift reversal phenomena, the upstream stagnation point is pulled down to
a lower position. A blunt nose quickly expands the flow producing a leading edge

suction which offsets the base drag caused by flow separation. Figures 8.10 and
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8.11 show the two minimum drag coefficient designs along with top surface pressure
profiles for in and out of ground effect flow. The respective stagnation point locations
are indicated. It is apparent that for ground effect flow these designs provide a
large amount of expansion around the leading edge of the vehicle. The leading edge
suction here may be slightly augmented due to the aerodynamics model. We can
recall the calculations performed for the flow over an elliptic cylinder in ground effect
(Fig. 2.31) where the vortex method predicts a larger shift in the attachment and
separation point locations than is predicted using a Navier-Stokes CFD code.

For a point of comparison a design optimization was performed to minimize the
drag coefficient while assuming an out of ground effect aerodynamic condition. This
was performed to show the difference in the aerodynamics problem and the need to
design specifically for ground effect flow. The optimization was performed from the
MAGO950 baseline. Figure 8.12 shows the baseline and the optimum design. This
design shows a side view which is very close to being symmetric top to bottom. The
asymmetric geometry definition prevents this from occurring. The drag coefficient
for the out of ground effect low was reduced from 0.1472 to 0.0510. The pressure
coefficient plot in Fig. 8.13 shows the optimum drag coefficient design with higher
base pressure than that of the baseline. In contrast to this design, the ground effect
designs have a drooped nose and a blunt top surface used for the quick expansion of
the top surface flow. The ground effect drag coefficient for this design is 0.1529, so
the use of out of ground effect analyses for the design of ground effect vehicles is not
advised.

Figure 8.14 shows a comparison of the two minimum drag coefficient designs to
the five 2-D, side view designs from Northrop Grumman. All of these designs were
evaluated based on drag coefficient as a figure of merit. The optimum designs are
both blunt and resemble the Northrop Grumman MAG1459. As calculated here by
the vortex panel method, the MAG1459 is the lowest drag coefficient design proposed
by Northrop Grumman. As was calculated using a Navier-Stokes CED code [28], the
MAG1459 had the second lowest drag coefficient.

These optimizations resulted in changes to the other figures of merit which we

are dealing with via separate optimizations. Both optimum drag coefficient designs
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resulted in vehicles with slightly higher weight and, therefore, higher vehicle cost due
to the weight engineering model. Due to the lower drag coefficients, both designs
resulted in much lower operating costs and, therefore, lower life cycle cost. These
designs will be compared to the designs based on the other figures of merit in a

quantitative fashion in Section 8.6.

8.2 Maximum Lift to Drag Ratio Designs

Next, optimizations were performed to maximize the lift to drag ratio, because
this ratio traditionally plays a major role in determining the efficiency and perfor-
mance of aerospace vehicles. A high lift to drag ratio design can possibly lead to
lower direct operating cost since less energy would be required to provide magnetic
levitation and propulsion. Since optimizations are usually formulated in terms of a
minimization problem this one was set up to minimize the ratio of drag to lift. For
these calculations, four baselines are used; the MAG950, MAG1007, and the two min-
imum drag coefficient designs - OPTCD1 and OPTCD2. The optimization for the
baseline MAG1007 resulted in an infeasible solution, so it is not shown here. The re-
sults of the other three optimizations are shown in Fig. 8.15. The solid lines represent
the baseline designs and the dashed lines represent the optimum designs. The design
from the MAG950 baseline results in a 63.9% increase in the lift to drag ratio from its
baseline value of 17.09 to the optimum value of 28.01. The design from the OPTCD1
drag coefficient optimum baseline results in an assumed convergence due to a null
search direction on the first iteration. The OPTCD1 drag coefficient optimum is also
a local optimum point for the lift to drag ratio at a value of 68.03. The greatest value
for lift to drag ratio was achieved with the OPTCD2 optimized drag coefficient point
as a baseline. The lift to drag ratio was increased marginally from 83.33 to 84.75.
This final design provides the greatest objective function found among the sampled
local optima. It will be used in Section 8.6 as the design for maximum lift to drag
ratio even though we have no mathematical proof that this design point is the global
optimum point. A bar chart of the normalized lift to drag ratio can be seen in Fig.
8.16.
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8.3 Optimum Operating Cost Designs

Optimizations for minimizing the operating cost were then performed for four
baseline designs; the MAG950, MAG1007, and the two minimum drag coefficient
designs - OPTCD1 and OPTCD2. The objective function is scaled due to the large

magnitude of its values.
_ |Operating Cost|

1.0E®

The absolute value of the operating cost is taken, since its value is usually taken to

OBJ

(8.3)

be negative.

The four baseline designs and their resulting optima can be seen in Fig. 8.17. The
solid lines represent the baseline designs and the dashed lines represent the optimum
designs. The design based on the MAG950 baseline is similar to the corresponding
design for lift to drag ratio in Fig. 8.15, and it actually has a higher lift to drag ratio
(44.05). This is what provides the lower operating cost, since less energy is expended
to lift and propel the vehicle. The maximum lift to drag ratio design does not exactly
correspond to the minimum operating cost design, since the propulsion and levitation
systems operate at different efficiencies and energy consumptions. In addition to
this, the maximum lift to drag ratio design can have higher drag. The design from
the MAG1007 baseline resulted in a 33.6% reduction in the operating costs. The
design from the OPTCD1 optimized drag coefficient baseline results in an assumed
convergence due to a null search direction on the first iteration. The lowest value
for the operating cost resulted from the OPTCD2 optimized drag coefficient design
baseline. The optimization takes one step to an infeasible design with a slightly higher
objective function. The design is shown in Fig. 8.17 even though it is not feasible.

Figure 8.18 shows the normalized operating cost for the four optimizations dis-
cussed here. The MAG950 operating cost is used to normalize all of the values. It can
be seen that all of the optimum points have similar values for the objective function.
Due to the highly convex equality constraints in the design space, we are forced to
make decisions concerning the best designs based on the completion of several calcu-
lations to find local optima. The lowest operating cost among these calculations is for

the OPTCD2 optimized drag coefficient baseline design. This design will therefore
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be used as the minimum operating cost design for the comparisons in Section 8.6.

8.4 Optimum Acquisition Cost Designs

Optimizations were performed to minimize the acquisition cost from the four
baseline designs; the MAG950, MAG1007, and two optimized drag coefficient designs
- OPTCD1 and OPTCD2. A scaled objective function is used due to the large
magnitude of the acquisition cost.

Acquisition Cost

B =
OBJ 1.0E7

(8.4)

This acquisition cost is the cost of a single vehicle. The total investment cost is calcu-
lated as part of the life cycle cost calculation. The vehicle cost is directly proportional
to the vehicle weight, so the minimum cost vehicle is also the minimum weight vehicle.
These were presented previously as two separate figures of merit but are discussed
here together due to the models used. According to the weight model, the minimum
weight vehicle will have the minimum surface area, or length for a 2-D design. The
design from the baseline MAG1007 in Fig. 8.19 provides the minimum acquisition
cost, since it has the minimum surface length. The top and bottom surfaces of the
nose are practically straight lines which gives the least surface length. This design
provides a 0.08% reduction in the acquisition cost due to the 0.10% reduction in
empty weight. The total range of vehicle weights is very small, and so, due to the
weight engineering model, the vehicle cost is very insensitive to the design variables.
This problem is discussed further in Chapter 4.

The minimum acquisition cost design provides minor improvements at the price
of penalties in operating cost and life cycle cost. These penalties result from the poor
aerodynamics of this minimum acquisition cost design (Cp = 0.2305). The operating
cost increases by 4.3% and the life cycle cost increases by 0.8% (both increases are
from nonoptimal values). Figure 8.19 also shows designs from the MAG950 and opti-
mized drag coefficient design baselines. The MAG950 and optimized drag coefficient
OPTCDL1 baseline designs result in assumed convergence due to a null search direc-
tion on the first SQP iteration. The optimized drag coefficient OPTCD2 baseline
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design moves slightly to reduce the vehicle cost by less than 0.005%. A bar chart of
the normalized acquisition cost, referred to the MAG950 acquisition cost, for the four
optimizations performed can be seen in Fig. 8.20. The ordinate ranges from 0.98
to 1.00, so the reader can detect the small differences in acquisition cost among the

designs.

8.5 Optimum Life Cycle Cost Designs

Finally, life cycle cost optimizations were performed with a scaled objective func-

tion due to the large magnitudes of the life cycle cost.

|Life Cycle Cost|

OBJ = 1.0E°

(8.5)

The optimizations were performed from four baseline designs; the MAG950, MAG1007,
and the two optimized drag coefficient designs - OPTCD1 and OPTCD2. The base-
lines and their respective optima can be seen in Fig. 8.21. The solid line represents
the baseline and the dashed line represents the optimum design. Both of the op-
timized drag coefficient baseline designs resulted in null search directions and are,
therefore, also local minimum life cycle designs. The optimization from the MAG950
baseline resulted in a 6.9% reduction in the life cycle cost and the optimization from
the MAG1007 baseline resulted in a 7.1% reduction in the life cycle cost. All of the
local optima have similar values of the objective function. This can be seen in Fig.
8.22 which shows the normalized life cycle cost for the four optimizations performed.
The normalization was performed using the life cycle cost for the MAG950. The rel-
atively small reduction in the life cycle cost (less than 10%) is due to the insensitive
acquisition cost model. Improvements to this model will allow us to tap into a large
component of the life cycle cost. The minimum life cycle cost design is that from the
optimized drag coefficient design, OPTCD2.
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8.6 Comparison of Designs for Various Figures of

Merit

In the previous sections of this chapter, a single design was chosen from each to
represent the optimum design for that figure of merit. In this section, these designs are
compared to gain insight into the design problem and the workings of the MDO design
methodology. Each of these optimum designs is not necessarily a global optimum
point, since there is no way to prove convergence to such a point. In addition to
this, the highly convex equality constraints precludes searching for a global optimum
point.

The bar charts in Fig. 8.23 and 8.24 show a comparison of the designs based on
different figures of merit. The designs are shown on the abscissa and are identified
by the objective function optimized for each one. The optimum designs for the drag
coefficient, operating cost, and life cycle cost are the same design. The maximum lift
to drag ratio design is one arrived at from optimizing the minimum drag coefficient
design to minimize the ratio of drag to lift. The minimum acquisition cost design
is one arrived at by optimizing from the MAG1007 baseline. The MAG950 and
MAG1007 baseline designs are also shown.

The drag coefficient for each of the optimized designs is shown at the top of Fig.
8.23. The optimum acquisition cost design has the highest drag coefficient, followed
by the two baseline designs. The optimum drag coefficient, direct operating cost,
and life cycle cost designs are the same design, and they, therefore, have the same
attributes. These designs have nearly the same drag coefficient as the optimum lift
to drag ratio design which has a marginally higher drag coefficient.

Also shown in Fig. 8.23 is a plot of the lift to drag ratio for the different de-
signs. The lowest values of the lift to drag ratio are obtained by the baseline designs
and the optimum acquisition cost design. The optimum lift to drag ratio design
has a marginally greater ratio than the design with optimum drag coefficient, direct
operating cost, and life cycle cost.

A plot of normalized direct operating cost can be seen at the top of Fig 8.24.

The values are normalized using the MAG950, so it has a normalized cost of unity.
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The baseline designs and the optimum acquisition cost design have the highest direct
operating cost due their poor aerodynamic performance. The remaining designs have
similar values for the direct operating cost. The optimized lift to drag ratio design
actually has a slightly lower operating cost than the optimum operating cost design.
Results such as this are entirely possible due to the convex equality constraints in the
design space.

Figure 8.24 also shows plots for the acquisition cost and the life cycle cost, at
the middle and the bottom. Both of these plots are normalized using the MAG950
values. The plot of normalized acquisition cost shows the ordinate from 0.980 to
slightly higher than unity. This is done so that the reader can detect the slight
differences in vehicle cost among the designs. The optimum acquisition cost design
has a marginally lower acquisition cost. The optimum life cycle cost design shows a
slightly less than 10.0% reduction in the life cycle cost. The optimum lift to drag
ratio design has a slightly lower life cycle cost than the optimum life cycle cost design.
This is due to the lower operating cost experienced by this design. The difference
in the life cycle cost between these designs in indistinguishable on this plot and is
almost certainly within the uncertainty on these cost models. Greater variation in
designs and sensitivity to the design variables can be achieved with the use of a more
advanced acquisition cost model. Table 8.1 shows the geometry variables for all of

the optimum designs.
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H Ch ‘ L/D ‘ DOC ‘ Acq Cost ‘ LCC ‘ MAGI50 | MAG1007
XN || 1.22 1.29 1.22 1.74 1.22 1.50 1.50
XF || 1.61 1.63 1.61 1.78 1.61 1.50 1.50
0 16.13 | 16.40 | 16.13 | 35.13 16.13 | 34.00 29.00
N 2.42 244 | 2.42 1.08 2.42 2.00 2.00
F 1.86 | 1.66 |1.86 | 0.54 1.86 | 0.20 0.60

Table 8.1: Geometry Variables of Optimum Designs
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shows significant and sensible differences between designing for minimum life cycle
cost and other figures of merit. The minimum life cycle cost design is identical to that
of the minimum direct operating cost and minimum drag designs. This showed the
need for a more sensitive acquisition cost model which is not based on weight engi-
neering. With one in place the minimum life cycle cost would be a balance between a
low operating cost and low investment cost according to the economic factors chosen.
The development and inclusion of such a model is necessary if continued work is to

be done in this area. Other recommendations for future work can be seen below.

9.1 Recommendations for Future Work

The work presented in this dissertation is only the beginning of work that is
needed in this area. The MDO methodology is developed in a modular fashion to
better facilitate the update of the individual models. Future work should include
the improvement of all of the analyses. Higher fidelity cost models are required,
especially for the acquisition cost. The further development of low-order aerodynamic
analyses should be continued for 3-D flow over bodies with boat tails. The lack of
a 3-D flow separation model restricts such methods to flows over bodies with know
separation locations, such as the boat tail bodies. The 3-D vortex panel method code
should be extended for lifting flows on thick bodies. This should be pursued in order
to eventually perform full 3-D configuration optimizations. Once this capability is
achieved, higher dimensional optimization problems can be attempted. Future work
should also be done to develop a problem formulation with smoother design space

without adding highly convex equality constraints.
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Appendix A

Vorticity Conservation Conditions

This appendix contains a derivation of the vorticity conservation conditions for
incompressible flow with uniform density and kinematic viscosity. This derivation
is based on the outline by Wu in Ref. [45] and [72] and is derived here for the
reader’s convenience. Begin with the continuity equation for an incompressible flow,
the Navier-Stokes equation, and the definition of vorticity which are shown below in

a respective order.

V-V=0 (A1)
2AY 1
— +(V:-V)V=—-VP+vV’V (A.2)
ot P

VxV=Q (A.3)

This derivation involves several vector identities which are shown in Eq. A.4, A.5,
A6, A7, and A.8 [73].

VV=V(V-V)-Vx(VxV) (A.4)

V x(VP)=0 (A.5)

VX (VxQ)=V(V-Q)—-QV-V)+(Q-V)V-(V-V)Q  (A6)
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(V.V)V = %V(V-V)—VX(VXV)

— %V(V V)=V xQ (A7)

V- (VxV)=0 (A.8)

Equation A.4 is a vector identity for the Laplacian of a vector and is written here for
the velocity vector. Equation A.5 states that the curl of the gradient of a scalar is
always zero. This identity is written here for the scalar, pressure, although it is valid
for any scalar and will be used for other scalars in this derivation. Equation A.6 is
a vector identity involving any two vectors and is written here in the form it will be
used involving the velocity and vorticity vectors. Equation A.7 is a vector identity for
a single vector and is shown here for velocity along with the definition for vorticity.
Equation A.8 is a vector identity which states that the divergence of the curl of a
vector is always zero. Written here for the velocity vector, we see that vorticity is a
solenoidal vector field.

Since all of the vorticity conservation conditions stem from the vorticity transport
equation, the derivation of the latter will be the first step. If we apply the vector
identity of Eq. A.4 along with the definition of vorticity in Eq. A.3 and the continuity
equation in Eq. A.1 to replace the diffusion term in the Navier-Stokes equation (Eq.
A.2), the result is Eq. A.9.

aa—\;Jr(V-V)V:—%VP—nyQ (A.9)

The next step towards obtaining the vorticity transport equation is to take the curl
of this equation. This can be done by taking the curl of each term individually as is
shown in Eq. A.10.

VX%—Y+V><[(V-V)V]=V>< [—%VP]—VX[VVXQ] (A.10)

For the first term on the left hand side of Eq. A.10, the curl can be brought inside

the partial derivative with respect to time and along with the definition of vorticity
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can be written as the partial derivative of vorticity with respect to time. The first
term on the right hand side can be set to zero due to the vector identity of Eq. A.5.
Using the vector identity of Eq. A.4 for the vorticity vector in the second term on

the right hand side we can rewrite Eq. A.10 as is shown in Eq. A.11.

ALY ((V-V)V] = vv0 (A11)

Using the vector identity of Eq. A.7, the second term on the left hand side of Eq.
A.11 can be replaced

Vx[(V-V)V]=-V x(VxQ) (A.12)
resulting in
oN 5
EzVX(VxQ)%—uVQ (A.13)

Using the vector identities of Eq. A.6 and A.8 along with the continuity equation,
the first term on the right hand side of Eq. A.13 can be rewritten and Eq. A.14,
the vorticity transport equation for a 3-D, incompressible, uniform density, uniform

viscosity flow is obtained.

]Y)
aJr(V-V)Q: (- V)V +0rVQ
DQ

This equation closesly resembles the form of the Navier-Stokes equation with the
exception of one additional term which has no counterpart. The first term on the
right hand side of Eq. A.14 describes the change in vorticity due to the stretching of
a vortex line. It should also be noted here that the description of a flow by vorticity
conservation is done without having to deal with a pressure term. This is seen as a
major advantage over the corresponding momentum conservation. This equation can
be written in a slightly different manner by applying the vector identity of Eq. A.4
written for vorticity along with the vector identity of Eq. A.8 on the last term on
the right hand side of the vorticity transport equation. This is shown in Eq. A.15,
which is the starting point for the derivation of the vorticity conservation conditions

for several physical situations.



APPENDIX A. VORTICITY CONSERVATION CONDITIONS 175

DQ
o7 = (2 V)V -1V x (Vx Q) (A.15)

Before the derivation is continued separately for 2-D and 3-D flow it is useful to
define the physical regions and boundaries of the flowfields in question. For 3-D flow,
a region refers to a volume and a surface refers to that which forms the boundary
to the region. Two-dimensional flow is an infinitely long extrusion along a single
coordinate direction, so for these flows, a region refers to the in-plane area and the
surface refers to the closed curve that forms the boundary to that region. The entire
limitless region occupied by both solids and fluids is referred to as R.,. This region is
only bounded externally by a surface at infinity, S.. Solid regions are referred to as
R; where the subscript j is the index number of the solid object. These regions are
externally bounded by surfaces, S;, with corresponding indices j. The fluid region,
Ry is externally bounded by S and internally bounded by Sg, where Sg signifies
all of the solid surfaces collectively. Normal vectors point to the exterior of their
associated region. A schematic diagram of the different regions and surfaces can be
seen in Fig. A.1.

For 2-D flow, the vorticity and velocity are always orthogonal to one another with
the velocity vector in the plane of the flow and the vorticity vector in the direction
normal to the plane of flow. Therefore, the vorticity is also orthogonal to the gradient
of velocity, and Eq. A.15 reduces to Eq. A.16.

% — 1V x (V x Q) (A.16)

It should also be noted here that the vorticity vector does not have a component
normal to a solid fluid boundary. Equation A.17 is a relation between surface and

volume integrals and is written here for any arbitrary vector, q.

///RqudR:—%qxndS (A.17)

If we integrate Eq. A.16 over the fluid region, Ry, and apply Eq. A.17 to the right
hand side we obtain Eq. A.18.

d

a QdR = f Q .
il dR=v¢ (VxQ)xndS (A.18)

Ss(t)
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The surface integral is written here solely over the solid surface, since there can be no
diffusion at the infinity boundary. The left hand side results from applying Reynolds
transport theorem along with the continuity equation to the integral of the total
derivative of vorticity. The right hand side of Eq. A.18 can now be replaced with
the use of the Navier-Stokes equation. If we take the cross product of each term in
Eq. A.9 with the solid surface normal vector and integrate over the solid surface, we
obtain Eq. A.19, where the normal vector points to the exterior of the fluid region,
Ry.

—><mds_—l VPxndS—yf (V x Q) x ndS (A.19)

Ss P JSs Ss
The first term on the right hand side is always zero. This can easily be seen by

transforming the term to a volume integral using Eq. A.17. The integrand, V x VP,
is always zero as stated by the vector identity in Eq. A.5. Replacing the right hand
side of Eq. A.18 with the left hand side of Eq. A.19 results in Eq. A.20.

d QiR = —§ =Y x nds (A.20)
dt R(t) Ss

We now make use of the no-slip boundary condition on the solid surface which simply
states that at the boundary Sg the total derivative of velocity with respect to time
is identical for both the fluid and solid. Therefore, a version of Eq. A.20 can be
written for the entire region, R.,. This can be seen in Eq. A.21 where the right hand
side comes from applying Eq. A.17 to the right hand side of Eq. A.20 with the unit
normal vector pointing to the exterior of the solid region instead of to the exterior of
the fluid region.

d

4 QIR = — // —dR
dt JJRs(t) Z VX

d QIR = —Z // —dR

dt JJr;q) B

d

e QiR = -y 4% / Q A21
dt ) R zj:dt R; ar ( )

This results in Eq. A.22.

%//RdeRJrzj:%//RdeR — 0
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J

d
— Q = A.22
) QR = 0 (A.22)

So, for 2-D, incompressible, uniform density, uniform viscosity flow, the total vorticity
for the combined region (fluid and solid) is constant with time. The vorticity of the
solid region is simply twice its angular velocity.

For 2-D, inviscid flow it can easily be seen from the 2-D vorticity transport equa-
tion (Eq. A.16) that the diffusion term on the right hand side is equal to zero. The

resulting equation is the 2-D version of Kelvin’s Theorem, shown here in Eq. A.23.

DQ

T 0 (A.23)
It states that the vorticity of a fluid element remains constant with time. This
work is stated here for an incompressible fluid although it can be shown that this
holds for the more general case of a barotropic fluid regardless of compressibility [47].
For consistency, the vorticity conservation condition for the inviscid case, which is
presented as a stipulation on the substantial derivative of vorticity, can be rewritten
in an integral form. This differential equation holds for the fluid region, so if we
integrate Eq. A.23 over the region R; and apply Reynolds transport theorem we

obtain the following equation.

%// QR =0 (A.24)

This equation closely resembles the vorticity conservation condition for 2-D viscous
flow in Eq. A.22 except the integral excludes the solid regions. This is a result of the
absence of a no-slip condition, so vorticity in the fluid region has no relation to the
vorticity in the solid region which is equal to two times the angular velocity of a solid
body rotation. If the solid bodies have zero angular velocity, Eq. A.22 is identical to
the corresponding inviscid condition in Eq. A.24.

For 3-D flow the approach to deriving the vorticity conservation expression differs
greatly from the approach involving the integration of Eq. A.15 over the regions. This

is due to the fact that in order to maintain complete generality of the flow situation
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the (2-V)V term cannot be eliminated. The vorticity vector has a component normal
to the solid fluid boundaries and due to the no-slip condition this normal component
is continuous across that boundary. The derivation makes use of two vector identities
shown in Eq. A.25 and A.26 where ¢ and ¢ are scalars or vectors as indicated by

bold face type.
Vo) =9V -¢d+¢- Vi (A.25)

V(- ¢) = (Vo) + (Vip)p (A.26)
These vector identities can be used to derive Eq. A.28 with the manipulations shown
in Eq. A.27. This analysis also notes that vorticity is solenoidal and that we are
assuming that a is a constant vector. The gradient of the position vector, r, is the

identity matrix.

V-j(a-nQ=(ar)(V-Q) +Q-V(a-r)
V(a-r)=(Va)r+ (Vr)a (A.27)

V-(a-r)Q=a-Q (A.28)

The derivation will also use the Divergence Theorem which is shown for an arbitrary

///RV-qdR:%q-ndS (A.29)

If the integrand in the volume integral of the Divergence Theorem is replaced with

vector, q, in Eq. A.29.

the left hand side of Eq. A.28 and the constant vector, a, is cancelled out on both
sides of the equation, the resulting equation is Eq. A.30.

QdR = r(2-n)dS (A.30)
[, =g,

This equation is written for the fluid region, R¢. A similar equation can be written for
the solid region as in Eq. A.31 taking note that the normal vector for this equation

is pointing opposite to that for the equations written for the fluid region.

QdR = r(2-n)dS (A.31)
[l 0am= g,
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Due to the no-slip condition, the right hand side of Eq. A.31 is the negative of the
right hand side of Eq. A.30, and we can write

//R QdR = —//R QdR (A.32)

Therefore, for the 3-D, incompressible, uniform density,uniform viscosity flow, the
vorticity conservation statement is that the integral of the vorticity over the combined

fluid and solid regions is always zero.

//R QdR = 0

= Rf + Rgs (A.33)

For 3-D, inviscid flow, it can easily be seen from the 3-D vorticity transport
equation (Eq. A.15) that the diffusion term on the right hand side is equal to zero

leaving

D2
Dt
This is the 3-D version of Kelvin’s theorem which is identical to the 2-D equation in

—(Q-V)V (A.34)

Eq. A.23 if the flow starts from rest, i.e. no initial vorticity. Similar to our treatment
of the 2-D Kelvins theorem, we can integrate Eq. A.34 over the region Ry and apply

Reynolds transport theorem to obtain

QdR = r(2-n)dS (A.35)
I, =g,

According to the Helmholtz Vorticity Theorems, a vortex filament in an inviscid flow

cannot end at a solid boundary, so the right hand side of Eq. A.35 is zero resulting

in Eq. A.36.
// QdR = 0 (A.36)
Ry

In review, the four vorticity conservation equations derived here can be found in

Eq. A.22, A.33, A.23, and A.34 and are presented here again for easy reference.

5. D Viscous: [[[p  2dR =0
Inviscid: [[[p, QR =0

5_ D { Viscous:% [l QdR =0

(A.37)
Inviscid: & [, QR =0
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R.=R+ZR

Figure A.1: Regions and Boundaries in Flowfield



Appendix B

2-D Vortex Panel Method Solution

The flow solution is obtained as a linear superposition of the continuous vortex
sheet, point vortices, and uniform free stream flow, all of which are solutions to
Laplaces equation, in such a way as to satisfy the no-penetration boundary condition
of the Neumann type. The continuous vortex sheet is comprised of N panels with
piecewise linear vortex sheet strength connected at N 4+ 1 nodes. The boundary
condition is imposed at a single collocation point located at the midpoint of each

panel. The boundary condition is shown in Eq. B.1
(VB—I—Vw—I-VOO)-n:O (B.l)

Vi is the velocity induced by the boundary layer, V,,, is the velocity induced by the
shed wake, and V is the velocity induced by the free stream flow. The vorticity

conservation condition is simultaneously imposed.

N
Z Yi + Yir1) Al + Ty + Z I'y = Constant (B.2)
i=1 k=1

l\DI»—t

Throughout this work, ¢ is the index for the surface panel inducing a velocity, & is
the index for the wake point vortices inducing a velocity, and j is the index for the
panel at which the no-penetration boundary condition is being imposed. The velocity
induced by the vortex sheet, Vg, is composed of the N linear sections of the sheet

plus a point vortex at the trailing edge as indicated in Eq. B.3. This point vortex

181
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replaces the vortex sheet at the trailing edge and easily allows for the toggling between

conditions for the Giesing/Maskell trailing edge model.

1 Le(t)(r — 1)

N
t) = V. (r,t) — —e,
) ; bi(r7) 27Te X

Equation B.4 describes the velocity induced by the shed wake as the summation of

(B.3)

|r —rt]2

the velocities induced by the M individual point vortices that comprise the wake.

Vu(r,t) ez>< r B4
- St (B4

The uniform free stream is taken as magnitude unity and is shown in Eq. B.5 where

« is the angle of attack.
Vs = cosaE,; + sinaE, (B.5)

As was previously mentioned, the body is discretized into N panels. The solution
takes place in two reference frames; a global reference frame and a panel local reference
frame. The discretized body, along with the two reference frames are shown in Fig.
B.1 for a 2-D airfoil case. Upper case letters refer to values in the global coordinate
system, while lower case letters refer to values in the panel local coordinate system.
The boundary condition is imposed in the global coordinate system. Equation B.6

shows the length of panel ¢

Al; = \/(Xz'+1 = Xi)? + (Yiy — ¥3)? (B.6)

and Eq. B.7 shows the direction cosines for the coordinate transformation between

global and panel local coordinate systems.

d (Xi—l—l - XZ)
! Al;
(Vi1 — Y5)
b o= (B.7)

The transformation from global to panel local coordinate system can be seen in Eq.
B.8.

y = —do(X; = Xi) +du(Y; - Y5) (B.8)
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Equations B.9 through B.12 show the ingredients for the calculation of the contribu-
tion of the linearly varying vortex sheet on panel i to the velocity (Eq. B.13).

— Al
A = tan™? <£) —tan™! <$ ! ) (B.9)
Yy Yy
(z = AL)* +y°
— B.10
i x? + y? ( )
= L (A JAO L In R)
Viei = 27l i— T 2?/ n
1 1
1
Vi = 5o [xAQ—I— yln R)
1
i, = ——[AlL —yA —zl B.11
Vay 27rAlZ-[ l; — yAf + 235 n R ( )
Vixi = d1V1i — dzvlyz‘

Vivi = d2viz; + div1y

Voxi = diVogi — dzvzyz‘
Voyi = davag + divay; (B.12)
Vi, (X, Y, t) = %i[VixiEx + ViviEy ]| + 7it1[VaxiEx + Vay:Ey| (B.13)

The velocity induced by the infinitely thin boundary layer from Eq. B.3 can be seen
in terms of the global coordinates in Eq. B.14.

1 (Y = Y)Ex — (X — X;)Ey

VB—ZVb +2 [4(t) (X —X)2+ (Y - Y,)?

=1

(B.14)

Likewise, the velocity induced by the wake and free stream can be seen in Eq. B.15

and B.16 respectively in terms of the global coordinates.

Y — Yk)EX—(X Xk)beY

Vo (X, Y, 1) =5 2 ka (B.15)

Vo(X,Y,t) = cosaEx + sinaEy (B.16)
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At each time step, the Giesing/Maskell trailing edge model is used to determine the
value of 'y, which is the AT',, for that time step using Eq. B.17.

.= 'YLZAlL
<0 B.17
' AT, = — 2% At (B.17)

L
Equation B.18 shows the boundary condition with the unit normal written out ex-

plicitly in terms of the global coordinates.

(VB+V,+Vy) n=0

Yio — Y X1 — X,
(]+1 ])EX‘I'( j+1 ])EY =0 (B18)

(VB + Vo, + VOO) . l— Alj Alj

The dot product of each velocity contributor with the unit outward normal of a panel
j on which the boundary condition is being imposed can be seen in Eq. B.19, B.20,

and B.21 for the vortex sheet, wake, and free stream respectively.

VB -n =
al Yiii—Y, Xiiq — X
Z —(viVixi + 741 Vaxi) <%l]) + (Vv + Vi1 Voyi) <%)
i=1 j i
—if‘t(t) (Y} _ Y;f) (Y}'H - Y})
o VO — X G -vP A
“o el : By B.19
21 o )(Xj - Xi)?2+ (Y; - Y2)? Al ( )
Vo -n=
iMrk _ (Y}'_Yk) Y}'+1—Y}'
2m i3 (Xj = Xi)2 + (Y = Yi)2 02\ Al
(X5 — X&) Xjp1 — X
B B.2
(X — Xi)? + (Y — Yi)? + 0 Al (B.20)

Y — Y, X1 — X;
Ve -n=—cosa <%l]]> +sina <%]]) (B.21)
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The boundary condition, Eq. B.1 can be separated into the part that needs to be
solved for and the part that is known from previous time steps (right hand side) as
shown in Eq. B.22.

Vg-n=—(Vy,+Vy) n (B.22)

At each time step, another point vortex is shed and added to the wake. Each point
vortex is also convected at the local velocity, so that the new point vortex location
is equal to the old location plus the product of the velocity and the time step. So
at each time step, the right hand side (RHS) is updated and the unknown strengths
of the vortex sheet at the panel nodes along with the trailing edge point vortex are
calculated by solving the linear system of equations (Eq. B.23), where a;; is given in
Eq. B.24.

2
: RHS
Qi = (B23)
Tn
I i |
Y, Y, X X
aj; = —Vax, , < Hil- ]) + Vay, < ﬁil- ])
J J
Yii1—Y Xjp1 — X
—lei <Q) + VlYi <77 (B.24)
Al Al

Since the trailing edge flow is described using the point vortex of strength I'; the
vortex sheet strength is set to zero at the trailing edge (y1 = Y41 = 0), therefore
they are excluded from the system of equations. It can be seen that the coefficient
for the v at the node involves a V, from the panel behind the node (i — 1) and a
V1 from the panel ahead of the node (7). Figure B.2 shows two adjacent panels and
their shared node along with the linear hat function for the velocity distribution over
the two panels associated with the sheet strength at the node. It should be noted
that the V' functions are not the linear hat functions themselves but the influence
coefficients of the linear sheet strength distribution on panel j. The matrix entries

for the vorticity conservation equation are shown in Eq. B.25.

1 1
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Caution must be taken in the calculation of the diagonal elements of the a matrix, a; ;,
since the values of y are zero. When calculating A6 it must be explicitly specified from
which side of the panel zero is being approached. To avoid this problem, the values
for this special case are explicitly provided in Eq. B.26 instead of being calculated
using Eq. B.11.

x:% {A9:—7r

y — 0t R=1
1
Vizi = 1z
1
Ulyi = —57
Y o (B.26)
Vogi = — 73
— 1
V2yi = o

The same approach is taken for the solution of the bluff body problem. For this
case, there are two separation points and, therefore, two wakes. The bluff body
extension to the model does not employ point vortices on the surface of the solid
region, such as the one placed at the trailing edge of the streamlined body so the
vector of unknowns consists only of the vortex sheet strengths at the N distinct
nodes (Eq. B.27).



APPENDIX B. 2-D VORTEX PANEL METHOD SOLUTION 187

Panel i is bounded by nodes i and i+1

Panel Coordinate System

Global Coordinate System E

Figure B.1: Discretized Geometry and Coordinate Systems
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V(i)

Figure B.2: Adjacent Panels and Hat Functions



Appendix C

2-D Turbulent Gap Flow

Calculation

The fully-developed, turbulent flow in a thin 2-D gap with one wall moving can

be analyzed by solving Eq. C.1, which is the momentum equation for such a flow.

dp d du

ir  dy [(M + NT)@]

Ug = 0.0

Up = Uso (C.1)

This simply states that the pressure gradient in the longitudinal direction of the pipe
is equal to the shear stress gradient in the lateral direction of the pipe. The boundary
condition at the two pipe walls forces a zero velocity at the lower wall and a possibly
none zero velocity at the upper wall. A schematic diagram of the flow can be seen in

Fig. C.1. Equation C.2 results from integrating both sides of Eq. C.1 with respect

to y.

dp du du

a@v . _ -, = C.2

7Y (u+uT)dy “dyo (C.2)
Integrating a second time with respect to y yields

@y du| v p
u—ug= | —E—dy + — / dy’ (C.3)
0 M+ pr dy|,Jo p+ pr
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The boundary condition at y = 0, u(0) = 0, allows us to eliminate ug and the
boundary condition at y = h, u(h) = us, allows us to solve for the velocity gradient
at the y = 0 wall.

h B g
| _ e ot c
dy 0 fO H+HT dy,

If Eq. C.4 is inserted into Eq. C.3 we obtain the solution for longitudinal velocity at
any height, y.

y g Uso Y gy
u(y) :/ Y dy' + fO i Y / a dy' (C.5)
0 M+ pr fo “+“Tdy 0 [+ pr

The eddy viscosity is modeled separately in the inner and outer regions. These models
are the Reichart turbulence model and a pipe flow outer region model from Reynolds

shown in Eq. C.6 in a respective order.

pr = kpv [(yu ) Yo tanh< )]
v vyl

pr = 0.192kpu.h (C.6)

The friction velocity, u., is dependent on the final solution so the integration, Eq.
C.5, must be solved iteratively within a root finding scheme to update values of the

wall shear stress.
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hE

Figure C.1: 2-D Pipe Flow with a Moving Wall and Pressure Gradient



Appendix D

Green’s Identity Formulation

For this outline of the Green’s Identity formulation of a linear aerodynamic anal-
ysis, i.e. a panel method, one is looking at the exterior flow in a region with only
one interior boundary. The extension for multiple interior boundaries is trivial. The
flow is divided into two regions, Ry, the region of interest, and R;. The exterior
boundary of R is Se and the interior boundary is S which is composed of Sg, the
surface of solid body, and S, the surface of a shed wake. The normal vector of the
boundaries point to the outside of the region being considered. These regions can be
seen pictorially in Fig. D.1. Laplace’s equation must hold in both the interior region,

R; and the exterior region, Ry,

Ve = 0
V20, = 0 (D.1)
where @ is the total velocity potential which is equal to a free stream potential plus

a perturbation potential, ¢.
D=0+ 0 (D.2)

Green’s Theorem is used to find the velocity potential at a point, P. Green’s Theorem
is the Divergence Theorem written for a vector composed of two scalar functions of
position, ®;VPy; — &5,V P,

//S@lv% — ®2V®y) - ndS = / / /R (D1 VP — ®,V?®1)dR (D.3)
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If the scalars of Green’s Theorem are solutions to Laplace’s equation, the right hand
side of Eq. D.3 equals zero. These harmonic functions are placed on the interior
boundary, and the no-penetration condition (Dirichlet) is imposed on the bound-
aries. The formulation is slightly different for 2-D and 3-D flows, so the discussion is
continued in separate sections for the two cases. Detailed discussions can be found in
Refs. [47], [48], and [52].

D.1 2-D Flows

For the 2-D formulation, set ®; = Inr and &, = ® where r is the scalar distance
from some point, P. ®; and ®, are both solutions to Laplace’s equation, so the right
hand side of Green’s Theorem is zero. If Eq. D.3 is evaluated at point P and P is in

the region Ry, then the resulting expression can be seen in Eq. D.4.
1
<I>P:——/l Vo — dVInr| - nd D.4
(P) o S[ nr nr| - nds (D.4)

Care must be taken to exclude the point P from the region of integration, since Inr
approaches infinity as r approaches zero. This is accomplished by enclosing P in a
circular boundary of radius € and taking the limit as ¢ approaches zero. If Eq. D.3 is
evaluated at point P and P is in the region R;, then the resulting expression can be

seen in Eq. D.5.
1
0=—— / InrV®; — &,V Inr] - nds (D.5)
2m Js

Add Eq. D.5 to Eq. D.4 noting that for each of these expressions the normal vector

points in the opposite direction to get

O(P) = —% /S[(VCD —V®,)Inr — (® — ®;)Vinr] - nds (D.6)

The functional form of the integrand in Eq. D.6 is that of a 2-D source and 2-D
doublet with strengths o and pu respectively. These strengths are described in Eq.
D.7.

od 09

on  on

—u = &—d; (D.7)
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For a modeled exterior flow, the interior boundary, S can be composed of the bound-
ary of a solid surface, Sp and the boundary of a wake, S,,. If we ignore entrainment
into the wake, then there are no source terms on the wake boundary. At the exterior
boundary, S, all of the perturbation potentials approach zero and the potential is
equal to ¢o,. With all of this in mind, Eq. D.6 can be rewritten as Eq. D.S.

1

g/SB[alnT—u%(lnr)]ds— —/ P 1n7’)]ds+¢oo( ) (D.8)

o(P) =
The no-penetration boundary condition is imposed implicitly using the Dirichlet
type boundary condition. This condition states that setting the total potential in
the region R;, ®;, equal to a constant is equivalent to imposing no flow through the
boundary. The condition can also be imposed by setting ®; equal to ¢ even though
the potential of the free stream is not a constant. Therefore, Eq. D.8 reduces to Eq.

D.9.

—1/[111 — (1 ——/ 1 =0 (D.9)
n .

2 SBU r ,uE r)|ds ,uw (Inr)]

The boundary condition is automatically satisfied at the mﬁmty boundary. This is a
property of the analytic solutions to Laplaces equation (harmonic functions).

If the interior boundary is discretized into panels, Eq. D.9 can be written as shown
in Eq. D.10, where Np is the number of panels comprising the surface Sg and N, is

the number of panels comprising the wake S,,.
E;cVZBl (1xCik) + E;cvfl(o'kBjk) + 22@1 (1w, Cji) = 0’j:1,NB (D.10)

The coefficients B and C' are shown in Eq. D.11.

1
Bj, = %/klnrds
1 0

The strength of the wake doublets, p,,, is determined by an auxiliary condition. The
source strengths are determined using the Dirichlet boundary condition. Equation
D.7 defines the source strength as the dot product of the gradient of the potential
jump across a panel with the normal vector of that panel. Since the definition of

no-penetration requires gq’ = (0 and the potential of the interior region is equal to the
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free stream potential, the source strength is equal to the normal component of the

free stream velocity (Eq. D.12).

(0D 09
T <% ~ on )k;
s
~on
= —Vg'n (D.12)

This leaves the surface doublet strengths as the Np unknowns to match the Np
equations.

The coefficients, B and C' are the influence coefficients for a distributed source
and distributed doublet. These can easily be evaluated in the panel reference frame
which is described in Fig. D.2. The influence coefficient B is evaluated in Eq. D.13.
/:2 Inrde = % [(z —21)In(r?) — (z — 22) In(r3) — 2(v2 — 1) + 22(02 — 91)]

1

7 o= (z—m)*+2°
r = (x— 1)+ 27
0, = tan~! i
r — T
0 = tan! : (D.13)
r — T2
The influence coefficient C' is evaluated in Eq. D.14.
o 8 8 o
/xl %(lnr)dx = 3, /xl (Inr)dx
= — [0y — 6] (D.14)

The negative sign is due to the normal vector pointing in the negative direction. The
influence coeflicient of the distributed doublet in Eq. D.14 is mathematically identical
to that of discrete vortices at the panel nodes. The strength of the discrete vortex at

x7 is equal to p and that at x5 is equal to —pu.

D.2 3-D Flows

For the 3-D formulation, set ®; = % and @, = ®. If P is in the region Ry, Green’s

Theorem yields Eq. D.15. A sphere of radius e surrounds point P in order to exclude
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it from the region of integration. The limit as € approaches zero is taken just as was
done for the 2-D case.

¢g§:i%/sév¢—¢v%yn@ (D.15)
If Pisin R;, then Green’s Theorem yields
= % /S[%VCDZ- - <I>Z-V%] -nds (D.16)
Equation D.17 is a result of the summation of Eq. D.15 and D.16.
zjiMﬁV@—@y4¢—gwﬁqms (D.17)
4 JJs'r T

Since the functional forms of the integrand are that of a 3-D source distribution and a
3-D doublet distribution, the strengths of these distributions are the coefficients (Eq.
D.7). Equation D.18 shows Eq. D.7 substituted into Eq. D.17.

_%//SB[U%—MV nds+—//w UV =] - nds + ¢oo(P) (D.18)

The no-penetration boundary condition is imposed in the same implicit fashion as

was done in 2-D in a Dirichlet formulation. The 3-D equivalent to Eq. D.9 is shown

If the interior boundary is discretized, then Eq. D.19 can be written in discretized

form as in Eq. D.10 with the matrix components shown in Eq. D.20 and D.21.

1 1
———/—@ (D.20)
/I kT

Cik = 4 // 871 7’ (D-21)
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Figure D.1: Regions for Green’s Identity Formulation of Panel method
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Global
Coordinate
System

Figure D.2: Description of Panel Reference Frame



Appendix E

Computer Codes

The program, main, connects the optimizer to all of the analyses and allows the
user to adjust all variables pertaining to the optimization. The user can adjust the
design variables, variable bounds, constraints, and DOT software options. Call state-
ments for the analysis codes allow for quick and easy replacement of the individual

analyses.

E.1 main.f

sokokokok ok ok ok ok koo skok koo ok sk sk sk kok ko ok skskokok ok skokok ok ok koo sk ok stk sk ok sk skok sk ok skok ok ok sk ok ok
* Program: mainc.f
* Author : Jason Tyll

x Date : 4/1/97
* purpose: Calls DOT and analysis codes.
* Set up for 7 Design Variable Problem.

>k 3k 3k 3k >k >k 3k 3k 5k >k 3k >k >k >k 3k 5k 3k 5k 5k 5k >k >k >k k >k 3k %k 5k 3k 5k 5k %k >k >k %k >k 3k %k 5k 5k 5k 3k %k >k >k %k %k %k %k 5k 5k >k >k %k %k >k %k %k %k %k >k Kk %

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
parameter (ndv=7,nrwk=1000,nriwk=300)
dimension iprm(20), iwk(nriwk)

dimension x(ndv), x1(ndv), xu(ndv), rprm(20), wk(nrwk)
dimension xmap(ndv)
dimension g(7)

info=0
method=3
iprint=7
ncon=7

199
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* Design variables and variable limits
=0.042857

PP PPN

~NO TR WN N0 U W N NANANAANANNS

rprm(i)=0.0

iprm(i)=0
end do
rprm(7)=0.05
iprm(2)=-1

* Transform the design variables to nonscaled values
* (Affine Scaling)

xmap (1)=3.5%x (1)

xmap (2)=0.5+3.0*x(2)

xmap (3)=14.7+35.3*x(3)

xmap (4)=1.111+1.887*x(4)

xmap (5)=0.166+7.854*x(5)

xmap (6)=21.67+2.3298*x(6)

xmap (7)=20.24+3.768*x(7)

* Call the analyses
call geomc(xmap)
call xinyout (xmap,ysepl,ysep2)
call pnlbluffc3(cd,cl,xmap(6),xmap(7),ysepl,ysep2,conl,con2,
1 cdbase, ITRBSEP,npanel, info)
call mvehicc(vehicmss,wempty)
call opcost(cd,cl,vehicmss,flevit,encost)
call lifecost(wempty,encost,clc,coperate,cvehic,cinvest)
write(*,*) wempty,encost,clc,coperate,cvehic
write(*,*) i,cd,cl,cm
write(*,*) i, conl, con?2
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* Call the optimizer (DOT SQP Method)
10 call DOT(info,method,iprint,ndv,ncon,x,x1l,xu,obj,minmax,
1 g,rprm, iprm,wk,nrwk, iwk,nriwk)
* If the optimization is complete, perform optimization at optimum

*

point and exit the program.
if (info.eq.0) then
* transform the design variables to unscaled values
(this mapping is repeated for the optimization loop which
* begins at line 10)
xmap (1)=3.5%x(1)
xmap (2)=0.5+3.0*x(2)
xmap (3)=14.7+35.3*x(3)
xmap(4)=1.111+1.887*x(4)
xmap (5)=0.166+7.854*x(5)
xmap (6)=21.67+2.3298*x(6)
xmap (7)=20.24+3.768%x(7)
call geomc(xmap)
call xinyout (xmap,ysepl,ysep2)
call pnlbluffc3(cd,cl,xmap(6),xmap(7),ysepl,ysep2,conl,con2,
1 cdbase, ITRBSEP ,npanel, info)
call mvehicc(vehicmss,wempty)
call opcost(cd,cl,vehicmss,flevit,encost)
call lifecost(wempty,encost,clc,coperate,cvehic,cinvest)
obj=abs(cd/cl)
write(*,*) wempty,encost,clc,coperate,cvehic
goto 20
end if

*

*

Calculate the objective function and the constraints.
if (info.eq.1) then
* transform the design variables to unscaled values
(this mapping is repeated for the optimization loop which
* begins at line 10)
xmap (1)=3.5%x(1)
xmap (2)=0.5+3.0*x(2)
xmap (3)=14.7+35.3*x(3)
xmap(4)=1.111+1.887*x(4)
xmap (5)=0.166+7.854*x(5)
xmap (6)=21.67+2.3298*x(6)
xmap (7)=20.24+3.768%x(7)
call geomc(xmap)
call xinyout (xmap,ysepl,ysep2)
call pnlbluffc3(cd,cl,xmap(6),xmap(7),ysepl,ysep2,conl,con2,
1 cdbase, ITRBSEP ,npanel, info)
call mvehicc(vehicmss,wempty)
call opcost(cd,cl,vehicmss,flevit,encost)
call lifecost(wempty,encost,clc,coperate,cvehic,cinvest)
obj=abs(cd/cl)

*
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g(1)=(xmap(1)-xmap(2))/xmap(2)
g(2)=-cdbase
g(3)=conl
g(4)=-conl
g(5)=con2
g(6)=-con2
g(7)=dble (npanel/4-ITRBSEP) /dble(npanel)
write(*,*) wempty,encost,clc,coperate,cvehic
goto 10
end if

20 continue
stop
end



APPENDIX E. COMPUTER CODES 203

The subroutine, geomc generates the side view geometry for the 2-D Northrop

Grumman geometry definition. This definition involves 5 design variables and is

identical from front to back.

E.2 geomc.f

subroutine geomc(var)

sokokokok ok ok ok ok skokok skok koo ok sk sk sk kok ko ok skskokok ok skokok ok ok koo sk ok koo sk ok sk skok sk ok skok ok ok skokok ok
Program: magc.f
Author: Jason Tyll

*
*
*
*
*
*
*

Date:

Purp

2/15/96
ose: Generates side view geometry using

Grumman definition (AIAA 95-1908-CP)
Set up for 7 Design Variables.

>k 3k 3k 3k >k >k 3k 5k 3k 3k >k 5k >k k 5k 3k 5k 3k 5k 3k 5k >k 5k %k 5k 5k 3k 5k 3k 5k >k 5k >k >k %k 3k >k 3k 3k 5k 5k >k >k %k %k >k 3k %k 5k >k 5k >k %k >k >k %k %k %k %k >k Kk *k

integer imax, jmax, kmax

double precision 1, h

parameter (imax=17, jmax=20,kmax=20,1=.6,h=.35)
double precision xn, xf, f, th, n

double precision x(imax+1), yu(imax+1)

double precision yl(imax+1),var(7)

double precision pi,d

double precision p, q, r, S

integer i

open(unit=9,file=’mag.dat’,status=’unknown’)

th=var(3)
n=var (4
f=var(5
xn=var (1
xf=var(2

pi=4.*atan(1.)
th=th*pi/180.

do i=1,imax+1
x(1)=1-1*cos(.5*pi*(real(i)-1.)/(real(imax)))
end do

do i=1,imax+1
if (x(i).1le, xng then
yu(i)=n¥tan(th / Genr ((1.-1m) /) ) kx (%% (1. /n)
yl(i)=-f*n*tan(th)*xn*(1.-(abs(x(i)-xn)/xn)**n)**(1./n)
d if
?% (i(i).gt.xn .and. x(i).le.xf) then

yu(i)=n*tan(th)*xn+tan(th)*(x(i)-xn)
yl(i)=-f*n*tan(th)*xn
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end if
if (x(i).gt.xf) then

p=(-2.*%(h-f*n*tan(th)*xn)+2.*(n*tan(th) *xn+tan(th) *

1 (xf-xn))+tan(th) *(1-xf))/(1-xf) **3.
g=(3.*(h-f*n*tan(th)*xn)-3.* (n*tan(th) *xn+tan (th) *

1 (xf-xn))-2.xtan(th) *(1-xf))/(1-xf)**2.
r=tan(th)

s=n*tan(th)*xn+tan(th)*(xf-xn)
yu(i)=p*(x(1)-xf) **3.+q* (x (1) -xf) **2.+r*(x (1) -xf) +s
yl(i)=-f*n*xtan(th)*xn
end if

end do

* Output the geometry.
do i=1,imax+1
write(9,*) 4.%1-x(i), yl(i)+f*n*tan(th)*xn
end do
do i=1,imax
write(9,*) 3.xl-real(i)/real(imax+1)*2.x1, O.
end do
do i=imax+1,1,-1
write(9,*) x(i), yl(i)+f*n*tan(th)*xn
end do
do i=2,imax+1
write(9,*) x(i), yu(i)+f*n*tan(th)*xn
end do
do i=1,imax
write(9,*) l+real(i)/real(imax+1)*2.*1, yu(imax+1)
1 +fxn*xtan(th) *xn
end do
do i=imax+1,1,-1
write(9,*) 4.%1-x(i), yu(i)+f*n*tan(th)*xn
end do

close(9)
return
end
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The aerodynamic analysis using the unsteady vortex panel method for separated
flow over bluff bodies in ground effect is performed in subroutine, pnlbluff. The
user can make adjustments to variables involved in the aerodynamic analysis in the

“parameter” statements and immediately following the variable declarations.

E.3 pnlbluff.f

subroutine pnlbluffc3(cd,cl,xsepl,xsep2,ysepl,ysep2,

1 conl,con2,cdbase, ITRBSEP,n,infodot)
sk sk sk sk ok sk ok sk ok sk sk sk sk ok ok sk o sk ok sk sk sk sk sk sk sk sk ok ok ok o ok sk sk sk sk sk ok ok o ok sk sk sk sk sk sk ok ok ok sk ok ok sk sk ok ok sk sk ok

* Program: pnlbluffc3.f

* Author: Jason Tyll

*x Date: 4/1/97 (updated to c3 on 4/17/97)

* Purpose: unsteady vortex panel method

(method was developed from Mook, JFE, 1994)

For separated flow over bluff bodies.

7 Design variable formulation.

Use cubic splines to model piecewise linear pressure

distribution for the Stratford Criterion.

*
*
*
*
*
Sk 3k 3k 3k 3k >k ok 3k 3k ok 3k 3k >k ok Sk >k 3k 3k Sk Sk sk 3k 3k 3k 3k >k 3k 3k ok k >k >k ok Sk sk >k >k Sk Sk sk ok 3k sk >k >k ok ok ok >k >k >k ok Sk sk ok ok sk sk skook ok sk k k

* declarations
integer i, j, n, tstep, timemax, tt, t, nmax, info, lwork
integer 11,12
integer sepl, sep2, nmin,nminest, infodot, ITRBSEP
integer step, tmmax
integer nstag, icon
double precision nu, rho, strat
double precision ratio, time, L, deltt, h
parameter (nmax=200, ratio=1.,time=0.43,tmmax=600,L=24.,h=3.5)
parameter (nu=1.56E-5, rho=1.177)
parameter (strat=0.39)
double precision pi, alpha, al, gnd, alt
double precision xmom, zmom, sigma(tmmax)
double precision xx(mmax+1), yy(nmax+1)
double precision xxwl(tmmax),yywl(tmmax)
double precision xxw2(tmmax),yyw2(tmmax)
double precision xxwtmpl(tmmax),yywtmpl (tmmax)
double precision xxwtmp2(tmmax),yywtmp2(tmmax)
double precision deltl(nmax), co(nmax,2)
double precision dl, d2, x, y, deltth, R
double precision vix(nmax), viy(nmax), v2x(nmax), v2y(nmax)
double precision vvix(nmax), vviy(nmax), vv2x(nmax), vv2y(nmax)
double precision a(nmax+1,nmax), b(nmax,1)
double precision g(nmax),gwl(tmmax),gw2(tmmax) ,glast(nmax)
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*

* X ¥ X ¥

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision

u, v
work (2*nmax+1)

delx, dely, cl, cd, cm, cp(nmax),cf(2000)
cdbase, vel(nmax)

error

uinf

s (nmax+1) ,dcpds (nmax) , c (nmax)

cpmin,reo, xxmin, cfgap, dpdx
ssepl,ssep2,gsepl,gsep2
xsepl,xsep2,ysepl,ysep2

glast_sepl, glast_sep2

atmp (nmax+1,nmax)

clavg, cdavg, cmavg, cpavg(nmax)
clmin,clmax,cdmin, cdmax,cmmin, cmmax
split, combine

phib0 (nmax,nmax) ,phibl (nmax,nmax)
phifs(nmax) ,phi(nmax) ,philast (nmax)
phivu(nmax,tmmax) ,phivl (nmax, tmmax)
conl, con2

fpo,fpn,rootl,root2,smin,p0,pl,cpmintry

aa(nmax) ,bb(nmax) ,cc(nmax) ,dd (nmax)

real timel, time2, tarray(2)

open(unit=8,file=’cpsd.dat’,status=’unknown’)
open(unit=9,file="mag.dat’,status=’0ld’)
open(unit=69,file=’thist.dat’,status=’unknown’)

pi=4.*atan(l.)

user in

put

The number of panels (must be divisible by 4)

n=104

206

The angle of attack in degrees (must be zero for ground effect)

alpha=0

al=alphax*pi/180.
Set gnd to 0. for OGE or 1. for IGE

gnd=1.

altitude in units of cord

alt=0.1

separation panel #1

sepl=2

separation panel #2
sep2=n
Free Stream Velocity

uinf=13

4.

calculate time increment and number of time steps

deltt=2.*L/n/uinf/ratio
timemax=idnint (time/deltt)
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* Initialize Arrays
do i=1,nmax
deltl(i)=0.
co(i,2)=0.

v1x€i§=0.
vly(i)=0.
v2x€ig=0.
v2y(i)=0.
vv1x€i§=0.
vvly(i)=0.
vv2x€ig=0.
vv2y(i)=0.
b(i,1)=0.
g(i)=0.
glast(i)=0.
cp(i)=0.
cpavg(i)=0.
cf(i)=0.
vel (i)=0.
dcpds (i)=0.
c(i)=0.

do i=1,timemax
xxwl(i)=0.
xxw2(1i)=0.
yywl(i)=0.
yyw2(i)=0.
gwl(i)=0.
gw2(i)=0.
xxwtmpl (i)=0.
xxwtmp2(i)=0.
yywtmpl (i)=0.
yywtmp2(i)=0.
sigma(i)=0.
end do
do i=1,nmax+1
xxgig=0.
yy(i)=0.
s(1)=0.
end do
do i=1,nmax+1
do j=2,nmax
a(i,j)=0.
atmp (i, j)=0.
end do
end do
do i=1,2*nmax+1
work (i)=0.
end do
do i=1,nmax
do j=1,nmax
phib0(i, j)=0.
phib1(i, j)=0.
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end do
phifs(i)=0.
phi(i)=0.
philast (i)=0.
do j=1,timemax
phivu(i,j)=0.
phivl(i,j)=0.

end do
end do
ok k sk okk k
* point about which pitching moment is calculated
xmom=0

zmom=0.405+alt

* zero out the average force & moment coeff
clavg=0.
cdavg=0.
cmavg=0.
do i=1,n
cpavg(i)=0.
end do

* read in the panel end points
* note: global position variables (xx,yy), local variables (x,y)
do j=1,n+1
read(9,*) xx(j),yy(j)
end do

do j=1,n+1
yy(§)=yy(j)+alt
end do
* set initial separation points
ysepl=ysepl+alt
ysep2=ysep2+alt
sepl=2
do j=2,n/2
if (abs(xsepl-xx(j)).lt.abs(xsepl-xx(sepl))) then
sepl=j
end if
end do
sep2=n
do j=n/2,n+1
if (abs(xsep2-xx(j)).1lt.abs(xsep2-xx(sep2))) then
sep2=j
end 1if
end do
gsepl1=0.
gsep2=0.

* calculate panel lengths
do j=1,n
deltl(j)=sqrt((xx(j+1)-xx(j))**2.+(yy(j+1)-yy(G))**2.)
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*x%x%xSt

e

end do

establish surface points (colocation points)
do j=1,n
co(j,1)=(xx(j)+xx(j+1))/2.
co(j,2)=(yy(P+yy(G+1)) /2.
end do

art Clock**xx*
call etime(tarray)

timel=tarray(1)

establish influence coefficients

do j=1,n
phifs(j)=uinfx*(xx(j)*cos(al)+yy(j)*sin(al))
do i=1,n
dl=(xx(i+1)-xx(i))/deltl(i

d2=€yy€i+ig-yy€igg/deltlgig

x=d1*(co(j,1)-xx(i))+d2*(co(j,2)-yy(i))
y=-d2*(co(j,1)-xx(i))+d1*(co(j,2)-yy(1))+1.E-12
deltth=atan(x/y)-atan((x-deltl(i))/y)
R=((x-deltl(i))**2.+y**x2.)/(x**2. +y**2.)

vix(i)=1./(2.*pi*deltl(i))*
((deltl(i)-x)*deltth-0.5*y*log(R))
viy(i)=1./(2.*pi*deltl(i))*
(y*deltth-deltl(i)+0.5*(deltl(i)-x)*1log(R))
v2x(i)=1./(2.*pi*deltl(i))*(x*deltth+0.5*y*xlog(R))
v2y(i)=1./(2.*pi*deltl(i))*
(deltl(i)-y*deltth+0.5*x*1log(R))

vvix(i)=dilxvix(i)-d2*v1iy(i)
vvly(i)=d2*vix(i)+di*viy(i)
vv2x (1)=d1*v2x(i)-d2*v2y (i)
vv2y (1)=d2*v2x (i) +d1*v2y (i)

phib0(j,i)=-1./(2.*%pi)*(x*atan(y/x)-(x-deltl(i))*
atan(y/(x-deltl(i)))-0.5*y*log(R))

phib1(j,i)=-1./(2.%pi)*(-x*y*0.5*%1og(R)-0.5*y*deltl (i)

+(x**2 . -y**2.)*0.5*atan (y/x) -
(x**2.-deltl (i) **2.-y**2.)*0.5*atan(y/

(x-deltl(i))))
end do

do i=2,n

a(j,i)=-(vv2x(i-1)+vvix(i))*(yy (G+1)-yy(j))/deltl(j)
+(vv2y (i-1)+vvly (1)) * (xx (j+1) -xx(j)) /deltl(j)

209
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end do
a(j,=-(vv2x()+vvix (1)) *(yy(j+1)-yy(j)) /deltl(j)

1 +(vv2y (n)+vvly (1)) * (xx (j+1) -xx(j) ) /deltl(j)
if (gnd.eq.1.) then
do i=1,n

di= i+1)- i deltl(i
GGy Ty 3 /AeTE ()
x=d1*(co(j,1)-xx(i))+d2*(co(j,2)+yy(i))
y=-d2*(co(j,1)-xx(i))+d1*(co(j,2)+yy(i))
deltth=atan(x/y)-atan((x-deltl(i))/y)
R=((x-deltl(i))**2.+y*x2.)/(x**2 +y**2.)

vix(i)=1./(2.*pi*deltl(i))*

1 ((deltl(i)-x)*deltth-0.5*y*log(R))
viy(i)=1./(2.*pi*deltl(i))x*
1 (y*deltth-deltl(i)+0.5*(deltl(i)-x)*1log(R))

v2x(i)=1./(2.*pi*deltl(i))*(x*deltth+0.5*y*x1log(R))
v2y(i)=1./(2.*pi*deltl(i))x*
1 (deltl(i)-y*deltth+0.5*x*1log(R))

vvix(i)=dilxvix(i)-d2*v1iy(i)
vvly(i)=d2*vix(i)+di*viy(i)
vv2x (1)=d1*v2x(i)-d2*v2y (i)
vv2y (1)=d2*v2x (i) +d1*v2y (i)

end do
do i=2,n
a(j,i)=a(j,)+wv2x(A-D+vvix (@) *(yy (j+1)-yy(§))/delt1(j)
1 - (vv2y (i-1)+vvly (1)) * (xx (j+1)-xx(j)) /deltl(j)
end do
a(j,=a(j,D+(vv2x(n)+vvix (1)) *(yy(j+1)-yy(j)) /deltl(j)
1 - (vv2y (n)+vvly (1)) * (xx(j+1)-xx(j))/deltl(j)
end if
end do
* establish constraint equation
do i=2,n

a(n+1,i)=0.5%(deltl(i-1)+deltl(i))
end do

a(n+1,1)=0.5%(deltl(n)+deltl (1))
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* begin time steps
do tstep=2,timemax

* calculate sigma (votex blob diameter)
sigma(tstep)=1.75*%uinf*deltt

* update sigma values
if (tstep.gt.2) then
do t=2,tstep-1
sigma(t)=sqrt(sigma(t)**2.+4.*nu*xdeltt)

end do
end if

* establish strength of shed wake
gwl(tstep)=-(gsepl**2.)*deltt/2.
gw2(tstep)=(gsep2**2.)*deltt/2.

* location of the shed wake

yywl(tstep)=ysepl

yyw2(tstep)=ysep2

if (tstep.eq.3) then
xxwl(tstep)=xsepl+0.1*deltl(sepl)
xxw2 (tstep)=xsep2+0.1*deltl (sep2)

else
xxwl(tstep)=xsepl+dabs(gsepl) *deltt/5.

xxw2 (tstep) =xsep2+dabs (gsep2) *deltt/5.
end if

* Establish RHS
do j=1,n
b(j,1)=uinf*(dcos(al)*(yy(j+1)-yy(j))-dsin(al)
1 *(xx(j+1)-xx(j)))/deltl(j)
if (tstep.le.200) then
do t=2, tstep
b(j,1)=b(j,1)+1./(2.xpi)/deltl(j)/((co(j,1)-xxwl(t))**2.

1 +(co(j,2)-yywl(t))**2.+sigma(t)**2.)*((co(j,2)-
1 yywl () ) *(yy (G+1)-yy(§))+(co(j,1) -xxwl (t))*
1 (xx(j+1)-xx(3)) ) *gwl (t)
b(§,1)=b(j,1)+1./(2.%pi) /delt1(j)/((co(j,1)-xxu2 (t))**2.
1 +(co(j,2)-yyw2(t))**2.+sigma(t) **2.)*((co(j,2)-
1 yyw2 () ) * (yy (G+1) -yy (§))+(co(j,1) —xxw2(t)) *
1 (xx(j+1)-xx(3)) ) *gw2(t)
b(j,1)=b(j,1)-gnd/(2.*pi)/deltl(j)/((co(j,1)-xxwl(t))**2.
1 +(co(j,2)+yywl(t))**2. +sigma(t)**2.)*((co(j,2)+
1 yywl () ) *(yy (G+1)-yy(§))+(co(j,1) -xxwl (t))*
1 (xx (j+1)-xx(3)) ) *gwl (t)
b(j,1)=b(j,1)-gnd/(2.*pi)/deltl(j)/((co(j,1)-xxw2(t))**2.
1 +(co(j,2)+yyw2(t))**2. +sigma(t) **2.)*((co(j,2)+
1 yyw2 () ) * (yy (j+1) -yy (§))+(co(j,1) —xxw2(t)) *

1 (xx(j+1)-xx(j) ) ) *gw2(t)
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end do
else
do t=tstep-199,tstep

b(j,1)=b(j,1)+1./(2.xpi)/deltl(j)/((co(j,1)-xxwl(t))**2.

1 +(co(j,2)-yywl(t))**2.+sigma(t)**2.)*((co(j,2)-
1 yywl () *(yy(G+1) -yy(§))+(co(j,1) —xxwl (t))*
1 (xx(j+1)-xx(j) ) ) *gwl (t)
b(j,1)=b(j,1)+1./(2.xpi)/deltl(j)/((co(j,1)-xxw2(t))**2.
1 +(co(j,2)-yyw2(t) ) **2.+sigma(t)**2.)*((co(j,2)-
1 yyw2(t)) *(yy(G+1)-yy () )+(co (G, 1) —xxw2(t) ) *
1 (xx(j+1)-xx(j) ) ) *gw2(t)
b(j,1)=b(j,1)-gnd/(2.*pi)/deltl(j)/((co(j,1)-xxwl(t))**2.
1 +(co(j,2)+yywl (t) ) **2. +sigma(t)**2.)*((co(j,2)+
1 yywl () *(yy(G+1) -yy(j))+(co(j,1) —xxwl (t))*
1 (xx(j+1)-xx(j) ) ) *gwl (t)
b(j,1)=b(j,1)-gnd/(2.%pi)/deltl(j)/((co(j,1)-xxw2(t))**2.
1 +(co(j,2)+yyw2(t) ) **2. +sigma(t) **2.)*((co(j,2)+
1 yyw2 () *(yy (j+1) -yy (j))+(co(j,1) —xxw2(t) ) *
1 (xx(j+1)-xx(j) ) ) *gw2(t)
end do
end if
end do
b(n+1,1)=0.

do t=2,tstep
b(n+1,1)=b(n+1,1)-gwl(t)-gw2(t)
end do

* glast will be used to calc the dynamic term in cp equation
do i=1,n
glast (i)=g(i)
philast (i)=phi (i)
end do

do j=1,n+1
do i=1,n
atmp(j,i)=a(j,1)
end do
end do

* solve system of equations using a linear least squares
* optimization
lwork=2*nmax+1
call DGELS(’N’ ,n+1,n,1,atmp,nmax+1,b,nmax+1,work, lwork, info)
do i=1,n
g(1)=b(i,1)
phi(i)=phifs(i)
end do
do j=1,n
do i=1,n-1
phi(j)=phi(j)+g(i)*phib0(j,1i)+g(i+1)*phib1(j,i)
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end do
phi (j)=phi(j)+g(n)*phib0(j,n)+g(1)*phibl(j,n)
end do

* calculate gsep at prescribed xsep location

do i=1,n/2-1
if (xsepl.ge. xx(i+1l) .and. xsepl .le. xx(i)) then
gsepl=g(i+1)+(xsepl-xx(i+1))/(xx(i)-xx(i+1))*(g(i)-g(i+1))
end if

end do

do i=n/2,n
if (xsep2.le. xx(i+1l) .and. xsep2 .ge. xx(i)) then
gsep2=g(i)+(xsep2-xx(i))/(xx(i+1)-xx(1))*(g(i+1)-g(i))
end if

end do

*kkkkkupdate shed vorticy locations for bottom vortex sheet*kxxx
if (tstep.le.200) then
i1=2
i2=tstep
else
il=tstep-199
i2=tstep
end if
do t=i1,i2

u=0.
v=0.

* velocity induced by free stream

u=uinf*dcos€alg
v=uinf*dsin(al

* velocity induced by airfoil
do i=1,n
dl=(xx(i+1)-xx(i))/deltl(i)
d2=(yy(i+1)-yy(i))/delt1(i)

x=d1x (xxwl(t)-xx(i))+d2*(yywl(t)-yy(i))

y=—d2* (xxwl (t)-xx (1)) +d1* (yywl (t)-yy (i) )+1.E-12
deltth=atan(x/y)-atan((x-deltl(i))/y)
R=((x-deltl(i))**2.+y**2.)/(x**2.+y**2.)

vix(i)=1./(2.xpi*deltl(i))*

1 ((deltl(i)-x)*deltth-0.5*y*xlog(R))
viy(i)=1./(2.*pi*deltl(i))*
1 (y*deltth-deltl(i)+0.5*(deltl(i)-x)*1log(R))

v2x(1)=1./(2.*pixdeltl(i))*(x*deltth+0.5%y*log(R))
v2y(i)=1./(2.*pi*deltl(i))*
1 (deltl(i)-y*deltth+0.5%x*1log(R))

vvix(i)=d1*vix(i)-d2*v1y(i)
vvly(i)=d2*vix (i)+di*v1iy(i)
vv2x (1)=d1*v2x (i) -d2*v2y (i)
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vv2y (1)=d2*v2x (i) +d1*v2y (i)

if (i.eq.n) then
u=u+g (i) *vvix(i)+g (1) *vv2x (i)
v=v+g (1) *vvly(i)+g(1)*vv2y (i)
end if
if (i.ne.n) then
u=u+g (i) *vvix(i)+g(i+1) *vv2x (1)
v=v+g (1) *vvly (i) +g(i+1)*vv2y (i)
end if

phivl(i,t)=-1./(2.*pi)*atan((yy(i)-yywl(t))/(xx(i)-xxwl(t)))
end do

if (gnd.eq.1.) then
do i=1,n
dl=(xx(i+1)-xx(i))/deltl (i)
d2=(yy (i+1)-yy(i))/deltl(i)

x=d1x (xxwl(t)-xx(i))+d2*(yywl(t)+yy(i))
y=—d2* (xxwl (t)-xx (1) ) +d1* (yywl (t) +yy(i))
deltth=atan(x/y)-atan((x-deltl(i))/y)

R=((x-deltl(i))**2.+y**2.)/(x**2.+y**2.)

vix(i)=1./(2.xpi*deltl(i))*

1 ((deltl(i)-x)*deltth-0.5*y*log(R))
viy(i)=1./(2.*pi*deltl(i))x*
1 (y*deltth-deltl(i)+0.5*(deltl(i)-x)*1log(R))

v2x(i)=1./(2.*%pi*deltl(i))*(x*deltth+0.5*%y*x1log(R))
v2y(i)=1./(2.*pi*deltl(i))x*
1 (deltl(i)-y*deltth+0.5*x*log(R))

vvix(i)=dixvix(i)-d2*viy(i)
vvly(i)=d2*xvix(i)+dixviy(i)
vv2x (1)=d1*v2x (i) -d2*v2y (i)
vv2y (1)=d2*v2x (i) +d1*v2y (i)

if (i.eq.n) then
u=u-g(i)*vvix(i)-g(1)*vv2x (i)
v=v-g(i)*vvly(i)-g(1)*vv2y (i)

end if

if (i.ne.n) then
u=u-g(i)*vvix(i)-g(i+1) *vv2x (1)
v=v-g(i)*vvly(i)-g(i+1)*vv2y (i)

end if

end do
end if

* velocity induced by wake
if (tstep.le.200) then
do tt=2, tstep
if(tt.ne.t) then
u=u+gwl (tt)/(2.*%pi)*(yywl(t)-yywi(tt))/
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e e e e e

e e

e e e e

e

((xxwl(t)-xxwl(tt))**2.+(yywl(t)-yywl(tt))**2.
+sigma(tt)**2.)+gw2(tt) /(2. *pi)*(yywl (t)-yyw2(tt))/
((xxwl(t)-xxw2(tt))**2.+(yywl(t) -yyw2(tt) ) **2.
+sigma(tt)**2.)
u=u-gnd*gwl (tt) /(2.*pi) * (yywl (t) +yywl(tt))/
((xxwl(t)-xxwl(tt))**2.+(yywl(t)+yywl(tt))**2.
+sigma(tt)**2.)-gnd*gw2(tt) /(2. *pi)* (yywl (t)+yyw2(tt))/
((xxwl(t)-xxw2(tt))**2.+(yywl(t)+yyw2(tt) ) **2.
+sigma(tt)**2.)
v=v-gwl(tt)/(2.*pi)* (xxwl(t)-xxwl(tt))/
((xxwl(t)-xxwl(tt))**2.+(yywl(t)-yywl(tt))**2.
+sigma(tt)**2.)-gw2(tt) /(2. *pi)* (xxwl (t)-xxw2(tt))/
((xxwl(t)-xxw2(tt))**2.+(yywl(t) -yyw2(tt) ) **2.
+sigma(tt)**2.)
v=v+gnd*gwl(tt) /(2. *pi)* (xxwl (t)-xxwl (tt))/
((xxwl(t)-xxwl(tt))**2.+(yywl(t)+yywl(tt))**2.
+sigma(tt)**2.)+gnd*gw2(tt) /(2. *pi)* (xxwl (t)-xxw2(tt))/
((xxwl(t)-xxw2(tt))**2.+(yywl(t)+yyw2(tt) ) **2.
+sigma(tt)**2.)
else
u=u
V=V
end if
end do

else

do tt=tstep-199,tstep
if(tt.ne.t) then
u=u+gwl (tt) /(2. *pi)* (yywl(t)-yywl(tt))/
((xxwl(t)-xxwl(tt))**2.+(yywl(t)-yywl(tt))**2.
+sigma(tt)**2.)+gw2(tt) /(2. %pi) *(yywl(t)-yyw2(tt))/
((xxwl(t)-xxw2(tt))**2.+(yywl(t)-yyw2(tt) ) **2.
+sigma(tt)**2.)
u=u-gnd*gwl(tt) /(2. *pi)*(yywl (t)+yywl(tt))/
((xxwl(t)-xxwl(tt))**2.+(yywl(t)+yywl(tt))**2.
+sigma(tt)**2.)-gnd*xgw2(tt)/(2.*pi)* (yywl (t)+yyw2(tt))/
((xxwl(t)-xxw2(tt))**2.+(yywl(t)+yyw2(tt) ) **2.
+sigma(tt)**2.)
v=v-gwl(tt)/(2.*pi)* (xxwl(t)-xxwl(tt))/
((xxwl(t)-xxwl(tt))**2.+(yywl(t)-yywl(tt))**2.
+sigma(tt)**2.)-gw2(tt)/(2.*%pi)*(xxwl(t)-xxw2(tt))/
((xxwl(t)-xxw2(tt))**2.+(yywl(t)-yyw2(tt) ) **2.
+sigma(tt)**2.)
v=v+gnd*gwl(tt) /(2. *pi)* (xxwl (t)-xxwl(tt))/
((xxwl(t)-xxwl(tt))**2.+(yywl(t)+yywl(tt))**2.
+sigma(tt)**2.)+gnd*gw2(tt)/(2.*pi)* (xxwl (t)-xxw2(tt))/
((xxwl(t)-xxw2(tt))**2.+(yywl(t)+yyw2(tt) ) **2.
+sigma(tt)**2.)
else
u=u
V=V
end if
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end do
end if

xxwtmpl (t)=xxwl(t)+uxdeltt
yywtmpl (t)=yywl(t)+vxdeltt

end do
s sk ok ok ok sk ok ok stk sk ok sk ok sk ok sk ok ok ok sk ok ok ok ok ok ok

*kkxkkupdate shed vorticy locations for top vortex sheet*kxxx
if (tstep.le.200) then
i1=2
i2=tstep
else
il=tstep-199
i2=tstep
end if
do t=il,i2

u=0.
v=0.

* velocity induced by free stream

u=uinf*dcos€alg
v=uinf*dsin(al

* velocity induced by airfoil
do i=1,n
dl=(xx(i+1)-xx(i))/deltl(i)
d2=(yy (i+1)-yy(i))/deltl(i)

x=d1x (xxw2(t)-xx(i))+d2* (yyw2(t)-yy(i))

y=-d2x (xxw2 (t) -xx (1)) +d1* (yyw2 (t)-yy (i) )+1.E-12
deltth=atan(x/y)-atan((x-deltl(i))/y)
R=((x-deltl(i))**2.+y**2.)/(x**2.+y**2.)

vix(i)=1./(2.xpi*deltl(i))*

1 ((deltl(i)-x)*deltth-0.5*y*log(R))
viy(i)=1./(2.*pi*deltl(i))*
1 (y*deltth-deltl(i)+0.5*(deltl(i)-x)*1log(R))

v2x(i)=1./(2.*%pi*deltl(i))*(x*deltth+0.5*%y*x1log(R))
v2y(i)=1./(2.*pi*deltl(i))x*
1 (deltl(i)-y*deltth+0.5*x*log(R))

vvix(i)=d1*vix(i)-d2*v1iy(i)
vvly(i)=d2*xvix(i)+dixviy(i)
vv2x (1)=d1*v2x (i) -d2*v2y (i)
vv2y (1)=d2*v2x (i) +d1*v2y (i)

if (i.eq.n) then
u=u+g (i) *vvix(i)+g (1) *vv2x (i)
v=v+g (1) *vvly(i)+g(1)*vv2y (i)
end if
if (i.ne.n) then
u=u+g (i) *vvix(i)+g(i+1) *vv2x (1)

216



APPENDIX E. COMPUTER CODES 217

e

=

v=v+g (1) *vvly (i) +g(i+1)*vv2y (i)
end if

phivu(i,t)=-1./(2.*pi)*atan((yy(i)-yyw2(t))/(xx(i)-xxw2(t)))
end do

if (gnd.eq.1.) then

do i=1,n

di= i+1)- i deltl(i
LGy Ty st s
x=d1x* (xxw2(t)-xx(i))+d2* (yyw2(t)+yy(i))
y=—d2* (xxw2 (t) -xx (1) ) +d1* (yyw2(t) +yy (i))
deltth=atan(x/y)-atan((x-deltl(i))/y)
R=((x-deltl (i))**2.+y*x2.)/(x*x*2. +y**2.)

vix(i)=1./(2.xpi*deltl(i))*
((deltl(i)-x)*deltth-0.5*y*log(R))
viy(i)=1./(2.*pi*deltl(i))*
(y*deltth-deltl(i)+0.5%(deltl(i)-x)*1log(R))
v2x(i)=1./(2.*%pi*deltl(i))*(x*deltth+0.5*%y*x1log(R))
v2y(i)=1./(2.*pi*deltl(i))*
(deltl(i)-y*deltth+0.5*x*1log(R))

vvix(i)=dixvix(i)-d2*viy(i)
vvly(i)=d2*xvix(i)+di*viy(i)
vv2x (i)=d1*v2x (i) -d2*v2y (i)
vv2y (1)=d2*%v2x (i) +d1*v2y (i)

if (i.eq.n) then
u=u-g(i)*vvix(i)-g(1)*vv2x (i)
v=v-g(i)*vvly(i)-g(1)*vv2y (i)

end if

if (i.ne.n) then
u=u-g(i)*vvix(i)-g(i+1) *vv2x (1)
v=v-g(i)*vvly(i)-g(i+1)*vv2y (i)

end if

end do
end if

velocity induced by wake
if (tstep.le.200) then

do tt=2, tstep
if(tt.ne.t) then
u=u+gwl(tt)/(2.*pi)*(yyw2(t)-yywl(tt))/
((xxw2 () —xxwl (tt) ) **2.+(yyw2(t) -yywl (tt) ) **2.
+sigma(tt)**2.)+gw2(tt) /(2. *pi)*(yyw2(t)-yyw2(tt))/
((xxw2 (L) —xxw2(tt) ) **2.+(yyw2(t) -yyw2(tt) ) **2.
+sigma(tt)**2.)
u=u-gnd*gwl (tt) /(2.*pi) * (yyw2 (t) +yywl(tt))/
((xxw2 () —xxwl (tt) ) **2.+(yyw2(t) +yywl (tt) ) **2.
+sigma(tt)**2.)-gnd*gw2(tt) /(2. *pi)* (yyw2 (t)+yyw2(tt))/
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e e

e
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e

((xxw2 (L) —xxw2(tt) ) **2.+(yyw2(t) +yyw2(tt) ) **2.
+sigma(tt)**2.)
v=v-gwl(tt)/(2.*pi)* (xxw2(t)-xxwl(tt))/
((xxw2(t) —xxwl (tt) ) **2.+(yyw2(t) -yywl (tt) ) **2.
+sigma(tt)**2.)-gw2(tt) /(2. *pi)* (xxw2(t) -xxw2(tt))/
((xxw2(t) —xxw2(tt) ) **2.+(yyw2(t) -yyw2(tt) ) **2.
+sigma(tt)**2.)
v=v+gnd*gwl (tt) /(2. *pi)* (xxw2(t) -xxwl(tt))/
((xxw2 (L) —xxwl (tt) ) **2.+(yyw2(t) +yywl (tt) ) **2.
+sigma(tt)**2.)+gnd*gw2(tt) /(2. *pi)* (xxw2(t) -xxw2(tt))/
((xxw2 (L) —xxw2(tt) ) **2.+(yyw2(t) +yyw2(tt) ) **2.
+sigma(tt)**2.)
else
u=u
V=V
end if
end do

else

do tt=tstep- 199 tstep
if(tt.ne.t) t
u= u+gw1(tt)/(2 *pi)* (yyw2(t)-yywl(tt))/
((xxw2(t) —xxwl (tt) ) **2.+(yyw2(t) -yywl (tt) ) **2.
+sigma(tt)**2.)+gw2(tt) /(2. *%pi)*(yyw2(t)-yyw2(tt))/
((xxw2(t) —xxw2(tt) ) **2.+(yyw2(t) -yyw2(tt) ) **2.
+sigma(tt)**2.)
u=u-gnd*gwl(tt) /(2. *pi)*(yyw2 (t)+yywl (tt))/
((xxw2(t) —xxwl (tt) ) **2.+(yyw2(t) +yywl (tt) ) **2.
+sigma(tt)**2.)-gnd*xgw2(tt)/(2.*pi)* (yyw2(t)+yyw2(tt))/
((xxw2(t) —xxw2(tt) ) **2.+(yyw2(t) +yyw2(tt) ) **2.
+sigma(tt)**2.)
v=v-gwl(tt)/(2.*pi)* (xxw2(t)-xxwl(tt))/
((xxw2(t) —xxwl (tt) ) **2.+(yyw2(t) -yywl (tt) ) **2.
+sigma(tt)**2.)-gw2(tt)/(2.*%pi)* (xxw2(t)-xxw2(tt))/
((xxw2(t) —xxw2(tt) ) **2.+(yyw2(t) -yyw2(tt) ) **2.
+sigma(tt)**2.)
v=v+gnd*gwl(tt) /(2. *pi)* (xxw2 (t)-xxwl (tt))/
((xxw2(t) —xxwl (tt) ) **2.+(yyw2(t)+yywl (tt) ) **2.
+sigma(tt)**2.)+gnd*gw2(tt)/(2.*pi)* (xxw2(t)-xxw2(tt))/
((xxw2(t) —xxw2(tt) ) **2.+(yyw2(t) +yyw2(tt) ) **2.
+sigma(tt)**2.)
else
u=u
V=V
end if
end do

end if

xxwtmp2 (t)=xxw2(t)+uxdeltt
yywtmp2 (t)=yyw2(t)+vxdeltt

end do

218
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do t=1,tstep
xxwl (t)=xxwtmpl (t)
yywl(t)=yywtmpl (t)
xxw2 (t)=xxwtmp2 (t)
yyw2(t)=yywtmp2(t)
end do

do j=1,n
do t=1,tstep
phi(j)=phi(j)+gwl (t)*phivl(j,t)+gw2(t)*phivu(j,t)
end do
end do

*kkxkxupdate separation location using the Stratford Criteria
s(1)=0.0
do 1i=2,n+1
s(1)=s(i-1)+SQRT((xx (i) -xx(i-1))**2.+(yy(1)-yy(i-1))**2.)
end do
do i=1,n
cp(i)=1.-g(i)**2./uinf**2.

end do

cp(n+1)=cp(1)
fpo=(cp(2)-cp(1))/(s(2)-s(1))
fpn=(cp(n+1)-cp(n))/(s(n+1)-s(n))

call spline(s,cp,fpo,fpn,aa,bb,cc,dd,n)

cpmin=1.
* calc estimate for nmin
do i=3*n/4,n
if (cp(i).lt.cpmin) then
cpmin=cp (i)
nminest=i
nmin=nminest
end if
end do
cpmin=1.
do i=nminest-2,n
if (((2.xcc(i))*%2.-4.%3.*%dd(1)*bb(i)).ge. 0.) then
root1=}-2.*cc(i)+((2.*cc(i))**2.-4.*3.*dd(i)*bb(i))**O.S)

1 (2.%3.%dd (1))
root2=}-2.*cc(i)-§(2.*cc(i))**2.-4.*3.*dd(i)*bb(i))**O.S)
1 (2.%3.%dd (1))

rootl=rootl+s(i
root2=root2+s(i
if (rootl.ge.s(i) .and. rootl.le.s(i+1)) then
cpmintry=aa(i)+bb(i)*(rootl-s(i))+cc(i)*(rootl-s(i))**2.
1 +dd (i) * (rootl-s(i))*%3.
if (cpmintry.lt.cpmin) then
cpmin=cpmintry
smin=rootl
nmin=i+1
goto 35
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35

end if
end if
if (root2.ge.s(i) .and. root2.le.s(i+1)) then

cpmintry=aa(i)+bb(i)*(root2-s(i))+cc(i)*(root2-s(i))**2.

1 +dd (1) *(root2-s (i) )**3.

if (cpmintry.lt.cpmin) then
cpmin=cpmintry
smin=root2
nmin=i+1
goto 35
end if
end if
end if
end do
continue

glast_sepl=gsepl
glast_sep2=gsep2

pO=s (nmin+1)
pl=s(n+1)
call bisection(p0,pl,s,aa,bb,cc,dd,
1 ssep2,uinf ,nu,strat,smin,cpmin,n,icon,1.)

calculate constraint
con2=xsep2-(xx(icon)+(ssep2-s(icon))/(s(icon+1)-s(icon))

1 *(xx(icon+1)-xx(icon)))
cpmin=1.

calc estimate for nmin

do i=1,n/4

if (cp(i).lt.cpmin) then
cpmin=cp(i)
nminest=i
nmin=nminest
end if
end do

cpmin=0.
do i=1,nminest+2
if (((2.xcc(i))*%2.-4.%3.*%dd(1)*bb(i)).ge. 0.) then
root1=}-2.*cc(i)+((2.*cc(i))**2.-4.*3.*dd(i)*bb(i))**O.S)
(2.%3.%dd (1))
root2=}-2.*cc(i)-((2.*cc(i))**2.-4.*3.*dd(i)*bb(i))**O.S)
(2.%3.%dd (1))
rootl=rootl+s(i
root2=root2+s(1i
if (rootl.ge.s(i) .and. rootl.le.s(i+1)) then
cpmintry=aa(i)+bb(i)*(rootl-s(i))+cc(i)*(rootl-s(i))**2.
1 +dd (i) * (root1-g(i))**3.
if (cpmintry.lt.cpmin) then
cpmin=cpmintry
smin=rootl
nmin=i
goto 45
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end if
end if
if (root2.ge.s(i) .and. root2.le.s(i+1)) then
cpmintry=aa(i)+bb(i)*(root2-s(i))+cc(i)*(root2-s(i))**2.
1 +dd (i) * (root2-s(i))*%3.
if (cpmintry.lt.cpmin) then
cpmin=cpmintry
smin=root2
nmin=i
goto 45

end if
end if
end if
end do
45 continue

pO=s (nmin-1)
pl=s(1)
call bisection(p0,pl,s,aa,bb,cc,dd,
1 ssepl,uinf ,nu,strat,smin,cpmin,n,icon,-1.)

* calculate constraint
conl=xsepl-(xx(icon)+(s(icon)-ssepl)/(s(icon)-s(icon-1))
1 *(xx(icon-1)-xx(icon)))

* write(x,*) ’xsepl=’,xsepl,’xsep2=’,xsep2
* write(*,*) ’ysepl=’,ysepl,’ysep2=’,ysep2
* write(x,*) ’sepl=’,sepl,’sep2=’,sep2
* write(*,*) ’conl=’,conl,’con2=’,con2
* write(*,*) ’Constraints in pnlbluffc’,conl,con2
ok Kk ok Kok KK oKk KK KKK oK K ok ok ok Kok K kK oK
* calculate cp,cl,cd,cm at each time step
cl=0.0
cd=0.0
cm=0.0
if (tstep.gt. timemax-75) then
do i=1,n

if (i.eq.1) then
delx=co(i,1)-co(n,1)
dely=co(i,2)-co(n,2)
else
delx=co(i,1)-co(i-1,1)
dely=co(i,2)-co(i-1,2)
end if

* pressure coeff equation (w/ base pressure model)

if (i.ge.sepl .and. i.le.sep2) then
cp(i)=1.-g(i)**2. /uinf**2.
1 -2./uinf**2.*(phi(i)-philast(i))/deltt
cpavg(i)=cpavg(i)+cp(i)
else
cp(i)=1.-gsep2**2./uinf**2.
1 -2./uinf**2.%0.5%(phi(sep2)-philast(sep2)+
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1

(BN

phi(sepl)-philast(sepl))/deltt

cpavg(i)=cpavg(i)+cp(i)
end if

if (i.eq.1) then

cl=cl-(cp(i)+cp(n))/2.*((xx(i)-xx(n))*cos(al)+

(yy(1)-yy(n))*sin(al))/h

cd=cd+(cp(i)+cp(n))/2.*x((yy(i)-yy(n))*cos(al)-

(xx%i)-xx(n))*sin(al))/h
cm=cm+

else

(yy(i)-yy(i-1))*sin(al))/h

cd=cd+(cp(i)+cp(i-1))/2.*((yy(i)-yy(i-1))*cos(al) -

(xx%i)-xx(i-l))*sin(al))/h
cm=cm+

cp(i)+cp(m)) /2. ((xx (1) -xx(n))*(co(n,1)-xmom) +
(yy(@)-yy(@n))*(co(n,2)-zmom)) /h

cl=cl-(cp(i)+cp(i-1))/2.*((xx(i)-xx(i-1))*cos(al)+

cp(i)+cp(i-1))/2. % ((xx(i)-xx(i-1))*
(co(i-1,1)-xmom)+(yy(i)-yy(i-1))*(co(i-1,2)-zmom))/h

end if
end do

clavg=clavg+cl

cdavg=cdavg+cd
cmavg=cmavg+cm

end if
write(69,*) tstep,cl,cd

end time step **xx*
end do

cl=clavg/75.
cd=cdavg/75.
cm=cmavg/75.

cdbase=cd

write(*,%) ’Cl=’,cl,’Cd=’,cd,’Cm=",cm

do i=1,n
cp(i)=cpavg(i)/75.
end do

output to file

if (infodot.eq.0) then
write(8,*) ’variables="x","y"’
write(8,*) ’zone f=point’
do i=1,n

write(8,*) xx(i),’ ’,cp(i)
end do

222
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end if

* goto 182

*kxxxk perform viscous correction calculations**xx
do i=1,n+1
if (cp(i).gt. 1.0) then
cp(1)=1.0
end if
end do
call visctop(cf,ITRBSEP,nstag,xx,yy,cp,n,L,uinf,nu)
write(*,*) ’ITRBSEP=’,ITRBSEP, 'nstag=’,nstag
do j=1,ITRBSEP
i=nstag-1+j
if (i.eq.1) then
delx=co(i,1)-co(n,1)
dely=co(i,2)-co(n,2)
else
delx=co(i,1)-co(i-1,1)
dely=co(i,2)-co(i-1,2)

end if
cl=cl+cf(j)*(dely*cos(al)-delx*sin(al))/h
cd=cd+cf (j)*(dely*sin(al)+delx*cos(al))/h

cm=cm+cf (j)*(delx*(co(i,2)-zmom)-dely*(co(i,1)-xmom))/h
end do

if (gnd .eq. 0.) then
call viscbttm(cf,ITRBSEP,nstag,xx,yy,cp,n,L,uinf ,nu)
write(*,*) ’ITRBSEP=’,ITRBSEP, 'nstag=’,nstag
do j=1,ITRBSEP
i=nstag+l-j
if (i.eq.1) then
delx=co(i,1)-co(n,1)
dely=co(i,2)-co(n,2)
else
delx=co(i,1)-co(i-1,1)
dely=co(i,2)-co(i-1,2)
end if
cl=cl+cf (j)*(-dely*cos(al)+delx*sin(al))/h
cd=cd+cf (j)*(-dely*sin(al)-delx*cos(al))/h
cm=cm+cf (j)*(delx*(co(i,2)-zmom)+dely*(co(i,1)-xmom))/h
end do
else
cpmin=cp(nstag)
do j=nstag,1,-1
if (cp(j).1lt.cpmin) then
cpmin=cp(j)
xxmin=xx(j)
end if
end do
dpdx=(cpmin-cp(nstag))/(xxmin-xx (nstag) ) *0.5*xrho*xuinf**2.
call couette(dpdx,-uinf,alt,cfgap)
do j=nstag,1,-1
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182

if (j.eq.1) then
delx=co(j,1)-co(n,1)
dely=co(j,2)-co(n,2)
else
delx=co(j,1)-co(j-1,1)
dely=co(j,2)-co(j-1,2)
end if
cl=cl+cfgap*(-dely*cos(al)+delx*sin(al))/h
cd=cd+cfgap*(-dely*sin(al)-delx*cos(al))/h
cm=cm+cfgap* (delx*(co(j,2)-zmom)+dely*(co(j,1)-xmom))/h
end do

end if
continue

if (infodot.eq.0) then
write(8,*) ’zone’
do i=1,n+1

write(8,*) xx(i), yy(i)
end do

write(8,*) ’zone’
do t=2,timemax
write(8,*) xxwl(t), yywl(t)
end do
write(8,*) ’zone’
do t=2,timemax
write(8,*) xxw2(t), yyw2(t)
end do
end if

write(x,x) ’Cl=’,cl,’Cd=’,cd,’Cm=",cm

call etime(tarray)
time2=tarray(1)
write(*,*) timel, time2, time2-timel

close€9)
close(69)

return
end

subroutine spline(s,cp,fpo,fpn,aa,bb,cc,dd,n)

>k 3k 3k 3k >k >k 3k 5k 3k >k >k >k >k >k 3k 5k 5k 5k 5k 3k >k >k >k 3k >k 5k %k 5k 3k 5k >k 5k %k >k 3k %k 5k 5k 5k >k 5k >k >k %k %k >k 3k 5k 5k >k >k >k %k >k >k %k %k %k >k %k *k kK

*
*

*

Date: 4/17/97
Reference: Numerical Analysis by Burden & Faires

Purpose: Calculates Clamped Cubic Spline

>k 3k 3k 3k >k >k 3k ok 3k >k >k >k >k >k 3k %k 5k 5k 5k 3k %k >k >k 3k %k 3k 3k 5k 3k 5k >k 5k %k >k 3k %k 5k 3k 5k K 5k >k 5k %k %k >k 3k 5k 5k >k *k >k %k >k >k %k %k %k >k >k *k Kk *k

integer 1i,j,n,nmax
parameter (nmax=200)
double precision s(nmax+1),aa(nmax),bb(nmax),cc(nmax),dd(nmax)
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double precision h(nmax), alp(nmax), 1l(nmax), mu(nmax)
double precision z(nmax),cp(nmax)
double precision fpo,fpn

do i=1,n+1
aa(i)=cp(i)
end do

do i=1,n

h(i)=s(i+1)-s(i)
end do
alp(1)=3.x(aa(2)-aa(1))/h(1)-3.*fpo
alp(n+1)=3.*fpn-3.*(aa(n+1)-aa(n))/h(n)

do i=2,n
alp(i)=3./h(i)*(aa(i+1)-aa(i))-3./h(i-1)*(aa(i)-aa(i-1))
end do

1(1)=2.%h(1)
mu(1)=0.5
z(1)=alp(1)/1(1)

do i=2,n
1(i)=2.*(s(i+1§-s(i-1))-h(i-l)*mu(i-l)
mu(i)=h(i)/1(i
z(1)=(alp(i)-h(i-1)*z(i-1))/1(i)

end do

1€n+1g=h(n)*(2.-mu€ng)
z(n+1)=(alp(n+1)-h(n)*z(n))/1(n+1)
cc(n+1)=z(n+1)

do j=n,1,-1
cc(j)=z(j)-mu(j)*cc(j+1)
bb(j)=(aa(j+1)-aa(j))/h(j)-h(j)*(cc(j+1)+2.*cc(j))/3.
gdéj)=(CC(j+1)-CC(j))/(3.*h(j))

en o

return
end

subroutine bisection(pO,pl,s,aa,bb,cc,dd,p,uinf,nu,strat,

1 smin,cpmin,n,icon,pt)
Kok 3 ok 3 ok 3 ok 3 ok oK ok K ok K ok K ok 3ok K ok ok 3ok 3 ok ok ok ok K ok ok ok K ok ok ok Sk ok ok ok sk ok 3 ok ok sk ok K ok ok sk kK ok ok Kk ok K
* Date: 4/17/97 ' '
* Reference: Numerical Analysis by Burden & Faires

* Purpose: Bisection Method for Root Findin
skok ok ok ok ok ok ok ok skok sk sk ok o ok ok ok sk sk stk ok sk sk sk ok ok skok sk stk sk ok ok sk ok ok ok skok Sk sk ok ok sk ok ok ok sk sk skok sk ok ok sk ok ok

integer i,j,n,nmax,maxiter, icon

double precision tol

parameter (nmax=200,tol=1.E-7 ,maxiter=1000)

double precision aa(nmax),bb(nmax),cc(nmax),dd(nmax)
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double precision s(nmax+1)

double precision p0,q0,pl,ql,p,£0,fp0,f1,fpl

double precision gmin, cpmin, uinf,reo,nu,smin,strat
double precision pt

do j=1,maxiter
do i=1,n
if (pO0.ge.s(i) .and. pO.le.s(i+1)) then
fO=aa(i)+bb(i)* (pO-s(i))+cc(i)*(pO-s(i))**2.+dd (i) *
1 (pO-s(1))**3.
f0=£0-cpmin
fpO=pt*(bb(i)+2.*cc(i)*(p0-s(i))+3.*dd(i)*(pO-s(i))**2.)
gmin=((1.-cpmin)*uinf**2.)**(0.5)
reo=gmin*pt* (p0-s(n/2))/nu
qO0=£f0* (pt* (pO-smin) *fp0) **0.5%(1.e-6*reo) **(-0.1) -strat
end if
end do

p=p0+(p1-p0)/2.

do i=1,n
if (p.ge.s(i) .and. p.le.s(i+1)) then
f1=aa(i)+bb(i)*(p-s(i))+cc (i) *(p-s(i))**2.+dd (i) *
1 (p-s (1)) *%3.
fi=fl-cpmin
fpl=pt*(bb(i)+2.*cc(i)*(p-s(i))+3.*dd (i) *(p-s(i))**2.)
gmin=((1.-cpmin)*uinf**2.)**(0.5)
reo=gmin*pt*(pl-s(n/2))/nu
ql=f1*(pt*(p-smin)*fpl) **0.5%(1.e-6*reo)**(-0.1)-strat
if (pt.eq.1.) then
icon=i
else
icon=i+1
end if

end if
end do

if (abs(p1-p0)/2..1t.tol) then
return

endif

if (qO0*ql.gt.0.) then
pO=p

else
pl=p

end if

end do
write(*,%*) ’Method Fails after’,maxiter,’iterations’
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return
end
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The subroutine, c-p, performs the turbulent, Couette/Poiseuille flow calculations
for the flow in the gap between the vehicle and the ground plane. This calculation is
used to obtain the skin friction coefficient for the gap flow and is performed once after
steady state conditions are achieved for the unsteady vortex panel method calculation.

This calculation uses the Reichart turbulence model.

E.4 c-p.f

subroutine couette(dpdx,uw,h,cf)
ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Program: c-p.f

Author: Jason Tyll

Date: 12/26/95

Purpose: Calculates turbulent Couette/Poiseuille flow

using Reichart turb model
sk ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ook ok sk ok sk ok ok ok s sk ok sk sk ook ok sk ok ok sk ok ok sk ok ok ok ok sk sk skok ok ok skok ok sk ok ok

*
*
*
*
*
*

integer imax,tmax

parameter (imax=101,tmax=2000)

double precision ya,k,rho,nu,mu,uw,h,y(imax) ,u(imax)

double precision int(imax),tw(tmax+1), tol, diff, twf

double precision yp(imax), mutl(imax), mut2(imax), deltast

double precision dpdx,v,w,X,us,uav

integer i,j,t,iter

open(unit=1,file=’c-p.out’,status=’unknown’)

pi=4.*atan(1.)
ya=9.7

k=0.41
rho=1.177
mu=1.84e-5
nu=mu/rho
tw(1)=10.
tol=1.e-3
twf=0.

* set up y grid
do i=1,imax
y(i)=real(i-1)/real (imax-1)
end do

* full cosine spacing of y
do i=1,imax
y(1)=hx*0.5%(1.-cos(pixy(i)))
end do

* initialize deltastar (will be corrected in iterations)
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deltast=0.5%h

* begin iteration to match Tw
do t=1,tmax
diff=0.
us=0.0
* calculate eddy viscosity for the Reichart turbulence model

do i=1, (imax+1)/2
us=sqrt (abs (tw(t)+y(i)*dpdx)/rho)
mutl (i)=k*rho*nu*((y(i)*us/nu)-ya*tanh(y(i)*us/nu/ya))
mut2(i)=0.192xk*rho*us*2.*h

end do

do i=(imax+1)/2+1,imax
us=sqrt (abs (tw(t)+y(i)*dpdx)/rho)
mutl (i)=k*rho*nu*(((h-y(i))*us/nu)-

1 yaxtanh ((h-y(i))*us/nu/ya))

mut2(i)=0.192xk*rho*us*2.*h

end do

* calculate integrand
do i=1,imax
yp(i)=sqrt(abs(tw(t))/rho)*y(i)/nu
if (mut1(i).ge.mut2(i)) then
int (i) =dpdx*y (i) /(mu+mut2(i))
else
int (i)=dpdx*y (i) /(mu+mutl(i))
end if
end do

deltast=0.0

v=0.0
w=0.0
do j=2,imax
v=v+(int (j)+int (j-1)) /2. *(y () -y(G-1))
if (mut1(j).ge.mut2(j)) then
w=w+mu* (1/ (mu+mut2(j))+1/(mu+mut2(j-1)))/2.*(y(§)-y(j-1))
1
wwrmux (1/ (mumut1(3))+1/ (musmut 1 (-1))) /2. % (3 () -y (3-1))
end Sgd H

do i=2,imax
u(i)=0.0
x=0.0
do j=2,i
u(i)=u(i)+(int(j)+int(j-1))/2.*x(y(G)-y(G-1))
if (mut1(j).ge.mut2(j)) then
x=x+mux* (1/ (mu+mut2(j))+1/(mu+mut2(j-1)))/2.*(y(j)-y(j-1))
1
x=x-rmus (1/ (mumt 1 (3))+1/ (mumutd (5-1))) /2. % (y () -y (G-1))
engngolf
u(i)=u(i)+uw*x/w-x/wkv
* correct deltastar
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deltast=deltast+(2.-(u(i)+u(i-1))/uw)/2.*(y(1)-y(i-1))
end do

uav=0.0

do i=1,imax
uav=uav+u(i)

end do

uav=uav/real (imax)

diff=abs (tw(t) -mu* (uw-v)/w)
if (diff.le.tol) then
twf=tw(t)
goto 10
end if

* wall shear corrected
tw(t+1)=mux* (uw-v) /w
end do

write(1,*) ’No Convergence’
10 continue

* output
write(1,*) twf, twf/0.5/rho/(uw*2.)**2., twf/0.5/rho/(uw)**2.
write(1l,*) deltast, uav
do i=1,1imax
write(1l,*) y(i)/h, u(i)/uw
end do

cf=muxabs ((u(imax)-u(imax-1))/(y(imax) -y (imax-1)))
1 /0.5/rho/(uw)**2.

close(1)
return
end
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The file, declare, is a collection of “parameter” statements used for the weight and
cost models. The parameters include information about the mission details and the

assumed economic factors.

E.5 declare.h

skok ok ok ok ok ok ok ok ok ok sk sk ok o s ok sk ok sk sk stk sk sk sk sk ok ok kok sk stk sk ok ok sk ok sk sk sk stk ok ok sk s sk ok ok sk skok ok ok ok

Program: declare.h

Author : Mark Eaglesham

Date :

purpose: SETUP COMMON INPUT VARIABLES FOR MAGLEV MASS,
gﬁgggﬁﬁgURING COST, LIFE CYCLE, & OPERATING COST

Use "include" statement in each subroutine.
sk ok ok ok ok o ok ok ok ok ok ok ok sk sk sk sk ok sk sk ok sk sk ok sk ok ok ok sk ok ok sk ok ok sk sk ok sk sk ok sk sk ok sk sk ok ok ok ok ok ok ok ok ok sk ok sk ook sk ok

C DECLARE.FOR
C SETUP COMMON INPUT VARIABLES FOR MAGLEV MASS, MANUFACTURING
C COST & LIFE CYCLE OPERATING COST PROGRAMS

* KX XX ¥ ¥

C INITIALIZE PARAMETER NAMES

double precision MPERMO,MCONT,MSEATS,MANC,MFUSE,LIFTMO,
LIFPOL,MPOLE,
POWPOL , AUPOWR , NPASS , MAVEP, MLUGG SPEED TRDIST, ADENS,
FRAREA,CD,CL, MNOSE , MCONTROL , MSEA

double pre0131on "NUMMOT , MMOT , MPASS, MVEHIC DRAG,LIFT,TRTIME,

X TOTPOW,TENERGY,VCM,VMM,

X ENCOST,COSTPP,COSPPM,NTRIPS, INTEREST ,PVFACTOR , INFLATN,

X ILEVIT,PLEVIT,CLC

DOUBLE PRECISION X,C1,NZ,NMODULE,L,SF,D,X0,WREST,ROQ0T,F,DFDX,

X DF,DX,DXMAX,EPS,MULT

DOUBLE PRECISION ELECHA,ELEDEM,PLOAD,OPHOURS,YEAR,PRPASS

DOUBLE PRECISION GROWTH,CGUIDPM,NVEHIC,QUANTITY ,MTV,RE,RT

DOUBLE PRECISION RQ,RM,LMOD,WMOT,WCONTROL,WPASS

DOUBLE PRECISION WSEATS, WDG,WFUSE,WEMPTY,Q

DOUBLE PRECISION PDRAG,FVEHIC,FLEVIT,PI,VLEVIT,PAUX,V

DOUBLE PRECISION PRPASSKM,NTICKETS,REVENUE, TCGUID,CINVEST

DOUBLE PRECISION TRIPS,COPERATE,CASHFLOW,DEPN,TAXINC,TAXPAID

DOUBLE PRECISION ATCF,PVATCF

DOUBLE PRECISION ENGH,ENGC,TOOLH,TOOLC,MFGH,MFGC,QCH,QCC,

x DEVC,TESTC,MATLC,CVEHIC,CFLEET

INTEGER IMAX,N

INTEGER I, LIFE

C INPUT PARAMETER VALUES
PARAMETER (MPERM0=52., MCONT=47200., MSEAT=14.55, MANC=0.

X, NMODULE=1., VCM=1.,VMM=1.)
Mass/Motor :MPERMO kg/unit: 1470 kg given lit.ref:ref., value
Mass of Controls/Module:MCONT kg: assumed from sum of

other values
Mass of Furnishings:MSEAT kg: seat 14.55kg (Raymer)* 100 =

1455kg

Lol
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Mass of Ancillary Equipment:MANC kg: assumed included in MCONT
Number of Vehicle Modules: NMODULE 1, 2, 3, 4,
DEPENDING ON CONFIGURATION
Vehicle Cost Modifier: VCM=1 aluminum, =1.1 composite
Vehicle Mass Modifier: VMM=1 aluminum, =0.8 composite

PARAMETER (AUPOWR=85 . ,EFF=0.82)
Auxillary power consumption: AUPOWR 85[kW] .

GMSA final report: 49-50
Converter Station Output Efficiency: EFF 0.82
Efficiency at LSM is approx 1.00

Qo
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PARAMETER (MAVEP=93.2, MLUGG=0., SPEED=134., TRDIST=800.)
Ave.mass.of passenger: MAVEP 93.2 [kg]
INCL. LUGGAGE. Shaw, Grumman
Mass of Luggage: MLUGG O [kg] included with MAVEP.
Shaw, Grumman
Speed of Vehicle: SPEED 134 [m/s] GMSA final report
Trip distance: TRDIST 800 [km] GMSA final report

PARAMETER (ADENS=1.177, FRAREA=3.5)

density of air: ADENS 1.177 [kg/m3] given

frontal area:S=FRAREA 3.5%1=3.5 sq.m
given lit.ref:3.8m w x 3.6m len(ref Allen &
Ghalli, 1993)

Qoo
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PARAMETER (ELECHA=0.05, ELEDEM=7.50, NTRIPS=19200.,PLOAD=2000.,
x0PHOURS=16. ,YEAR=365. ,LIFE=15,PRPASS=0.,GROWTH=0.04,
xCGUIDPM=19800000. ,NVEHIC=100.)

Energy Charges: ELECHA=$ 0.05 [$/kW.h]

given lit.ref: ref., value
Demand charge: ELEDEM=$ 7.50 [$/mo per kW]

given lit.ref:ref. value
Number of trips per month: NTRIPS=2000/50%16%30=19200
Passenger load:PLOAD=2000 per hr
Operational hours:0PHOURS=16 hrs/day
Service level:YEAR=365 days/year
Expected lifetime:LIFE=15 years
Price per passenger: PRPASS=0 i.e. no revenue (in 1995)
Ave.growth in traffic: GROWTH=4), per annum
Guideway cost/mile: CGUIDPM= $19,800,000 per mile (Deutch)
Vehicle size: 50 passengers
Vehicle availability: 99% of operational time NOT USED
No.vehicles reqd.: 100 vehicles:NVEHIC=100

PARAMETER (INTEREST=1.06,TAX=0.0, INFLATN=0.03)
Interest rate: INTEREST=6), per annum
Depn:sum of years digits over vehicle life

Tax rate: TAX=0.0 or 50%
Average inflation: INFLATN=3), per annum

PARAMETER (QUANTITY=100.,MTV=2.,RE=59.10,RT=60.70,RQ=55.40,

oo PP NP NP NP P NP K IP KPP NP X!
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X RM=50.10)
Quantity of vehicles to be built:QUANTITY=100
Maglev Test Vehicles: MTV=2
Labor Cost Rate: Engineering: RE=59.10
Labor Cost Rate: Tooling: RT=60.70
Labor Cost Rate: Quality Control: RQ=55.40
Labor Cost Rate: Manufacturing: RM=50.10

PARAMETER(NZ=3.00,D=11.6,LMOD=79.2)

Nz:ultimate load factor=1.74

L:fuselage struct. length=71.61 ft (REMOVED L=71.61,)
D:fuselage struct.depth:12.54 ft

Qo
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The subroutine, mwvehicc, calculates the vehicle mass and the empty weight using

the geometry definition as input.

E.6 mvehicc.f

subroutine mvehicc (MVEHIC,WEMPTY)
Kok ok ok ok ok ok ok ok ok ok ok sk ok o o o ok ok ok sk sk sk ok o o ok o ok ok ok skok sk ok ok ok o ok ok ok sk sk ok ok o o sk ok ok sk skok ok ok ok ok

* Program: mvehicc.f
* Author : Mark Eaglesham

* Date :
* purpose: Calculates empty weight using parametric weight model
stk Sk sk ok o ok sk sk sk ok sk sk ok sk sk sk o ok sk o ki sk Sk ok sk sk sk sk ok ok Rk ok sk ok sk sk sk sk ok sk sk sk o ok ks ok ok sk sk ok ok

INCLUDE "declare.h"

integer nmax
parameter (nmax=104)
double precision xx(nmax+1),yy(nmax+1)

open(unit=9,file=’mag.dat’,status=’0ld’)

Number of Motors: NUMMOT [#]=24 per module ,
GMSA final report.

NUMMQOT=24 . *NMODULE

Mass of Motors: MMOT [kg]
MMOT=NUMMOT=*MPERMO

Mass of Controls: MCONTROL: [kg]
MCONTROL=MCONT*NMODULE

Number of Passengers: NPASS
NPASS=NMODULEx*50.

Mass of Passengers: MPASS 9506.4 [kg] calc. product
MPASS=NPASS* (MAVEP+MLUGG)

Mass of Seats
MSEATS=NPASS*MSEAT

C CONVERSION OF MASSES TO WEIGHTS: kg TO 1bf
WMOT=2.205*MMOT
WCONTROL=2.205*xMCONTROL
WPASS=2.205*%MPASS
WSEATS=2.205*%MSEATS
WREST=WMOT+WCONTROL+WPASS+WSEATS

C GEOMETRIC PARAMETERS OF VEHICLE
L=NMODULE*LMOD

Q QO Q Q Q Q@

C calculate SF (surface area)
do I=1,nmax+1
read(9,*) xx(I),yy(I)
end do
SF=0.
do I=2,nmax+1
SF=SF+sqrt ((xx (I)-xx(I-1))**2.+
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1 (yy(I)-yy (I-1))**2.)*D
C not unit width for the case of surface area (so we can calc
C reasonable weight

end do

do I=2,nmax+1
SF=SF+0.5%(xx(I)-xx(I-1))*(yy(I)+yy(I-1))*2.
end do

C convert units from m“2 to ft~2
SF=SF*3.3%%2,

PROGRAM TO SOLVE FOR WDG USING
WDG=WREST+WFUSE*NMODULE
WFUSE=0.328% (WDG*NZ) **0 . 5% (L) **0 .25% (SF) *x0.302*% (L/D) **0. 1

C1=0.3280*NZ**0.5*L**0.25%SF**0.302* (L/D) **0.1
X0=130000.

aQaa

MUL .
CALL NEWTON(XO,C1,WREST,EPS,IMAX,DXMAX,MULT,WFUSE,
X F,DFDX,N)

WDG=WFUSE*NMODULE+WREST
WEMPTY=WDG-WPASS

C Convert WFUSE to kg
MFUSE=WFUSE/2.205

Mass of Vehicle: MVEHIC 61369.4 [kg] calc.sum

(Lever- for 2 mod vehicle)
MVEHIC= MMOT+MCONTROL+MPASS+MSEATS+MFUSE*NMODULE
Vehicle mass modifier: VMM input as parameter

MVEHIC=VMM*MVEHIC

QQ

close(9)

RETURN
END

C SUBROUTINE TO CALCULATE ROOT OF 2 EQUATIONS USING NEWTON’S METHOD
SUBROUTINE NEWTON(X,C1,WREST,EPS, IMAX,DXMAX,MULT,

X ROOT,F,DFDX,N)
C VARIABLE DECLARATIONS
INCLUDE "declare.h"
C ITERATIONS

DO 1 I=1,IMAX
DFDX=1.-0.5*%C1* (NMODULE*X+WREST) ** (-0.5) *NMODULE
F=X-C1* (NMODULE*X+WREST) **0.5
DF=DFDX
IF(DF.EQ.0.)THEN
WRITE(*,112)I,X,F
WRITE(*,*) ’ERROR IN NEWTON’

235
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RETURN
ENDIF
DX=-MULT*F/DF
IF (ABS(DX) .LT.EPS) THEN
ROOT=X+DX
N=I
RETURN
ELSEIF (ABS(DX) . GT.DXMAX) THEN
WRITE(*,110)I,DX
WRITE(*,*) ’ERROR IN NEWTON,METHOD DIVERGING’
RETURN
ENDIF
X=X+DX
1 CONTINUE
WRITE(*,111)X,F,DX,I
WRITE(*,*) ’ERROR IN NEWTON,METHOD NOT CONVERGING’

C MESSAGES
110 FORMAT(’In iteration’,I6,’dx=’,F15.1,’larger than limit’)

111 FORMAT (’Excessive iterations after max steps
x:£(’,F15.1,7)=",F15.1/’latest dx=’,F15.1,’ ITERATIONS=",16)
112 FORMAT(’In iteration’,I6,’df=0: problem with df/dx’,2F15.4)

RETURN
END
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The subroutine, opcost, calculates the direct operating cost for a single trip using
vehicle mass, aerodynamic coefficients, and system performance parameters as input.
The power requirements are calculated and the cost is determined using electricity

cost and demand charges.

E.7 opcost.f

subroutine opcost(CD,CL,MVEHIC,FLEVIT,ENCOST)
ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok oK ok o ok ok sk ok ok sk ok ok sk ok sk ok ok ok ok sk ok ok sk ok ok ok ok ok ok ko ok ok ok sk ok ok ok ok ok ok ok

* Program: opcost.f
* Author : Mark Eaglesham

* Date :
* purpose: Calculates the direct operating cost for single trip.

Calculates power requirements.
stk sk sk ok o ok ok ok sksk sk ok skok sk ok sk sk sk sk sk o sksk sk sk ok ok sk sk sk ok sk sk sk sk sk ok sk sk sk sk ok sk sk sk o koksksk o ok sk sk ok ok

INCLUDE "declare.h"

C Dynamic pressure of freestream air:q= 1/2.rho.V~2
C (RAYMER p.260)
Q=0.5%ADENS*SPEED**2 .
C Aerodynamic Drag Force DRAG: D=q.S.Cd [kN] (Raymer p.260)
DRAG=Q*FRAREA*CD/1000.
C Lift: L=q.S.Cl [kN](Raymer p.260)
LIFT=Q*FRAREA*CL/1000.
C Time for trip: TRTIME =7939s =132.3 min = 2.2053hr.
C given (in hrs)
TRTIME=TRDIST/SPEED*1000./3600.
C Power consumption for DRAG: [kW]
PDRAG=DRAG*SPEED/EFF
C Force downward [kN] due to vehicle mass plus safety
C factor of 1.5
FVEHIC=MVEHIC%*9.81/1000.
C Force required for magnetic levitation [kN]
FLEVIT=FVEHIC-LIFT
C Calculate force normal to magnets: FLEVIT/COS(35)
PI=4 *ATAN(1.)
FLEVIT=FLEVIT/COS(35.*PI/180.)
C Read off polynomial curve for current use[kA]
C [GMSA final report]
ILEVIT=7.E-9*FLEVIT**3.-2 .E-5%FLEVIT**2.+0.0526*FLEVIT+10.045
C Initial method: Levitation power consumpt: POWLIF = 2100.4 [kW]
C calc.MAE
C POWLIF=2100.4
C Power consumption for Levitation and guidance: P=V*I [kW]

VLEVIT=42.
PLEVIT=VLEVIT*ILEVIT
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C Auxillary power consumption: PAUX [kW]
PAUX=AUPOWR
C Total power consumption rate [kW]
TOTPOW=PDRAG+PLEVIT+PAUX
write(*,*) ’PDRAG=’,PDRAG, ’PLEVIT=’,PLEVIT
C ENERGY CONSUMED BY VEHICLE OVER TRIP [kW.h]
TENERGY=TOTPOW*TRTIME
C ENERGY COST CALCULATION
C Energy Cost: [$] : calc.sum
ENCOST=(TENERGY*ELECHA) + (TOTPOW*PLOAD/ (NMODULE*50. ) /
1 NTRIPS*ELEDEM)
C Total cost per passenger per trip: COSTPP 0.0025 [$/passenger]

NPASS=NMODULEx*50.
COSTPP=ENCOST/NPASS
C Cost per passenger km ($/passenger km)

COSPPM=COSTPP/TRDIST

RETURN
END
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The subroutine lifecost, calculates the acquisition cost, yearly operating cost, and
life cycle cost using a discounted cash flow analysis. The required input to this model

is the empty weight, energy cost for a single trip, and economic factors.

E.8 lifecost.f

subroutine lifecost(WEMPTY,ENCOST,CLC,COPERATE,CVEHIC,

X CINVEST)
sk ok ok ok ok ok ok ok ok K ok ok sk ok ok o o e ok sk sk sk sk skok sk sk ok sk ok sk ok sk sk sk sk ok ok ok o ok sk sk sk skok ok ok s ok sk sk skok sk sk ok ok
* Program: lifecost.f
* Author : Mark Eaglesham
* Date :
* purpose Calculates acquisition cost and yearly operating cost.
* Performs discounted cash flow analysis to obtain net
*
*

present value.
sk ok ok ok ok ok ok ok ok Sk ok ok ok ok ok sk sk stk sk sk sk sk ok ok kok sk stk sk ok sk ok ok sk sk sk sk sk ok sk sk sk ok ok sk skok ok ok ok

INCLUDE ’declare.h’

Price per pass. km:

PRPASSKM=PRPASS/TRDIST
Tickets s01d:23,360,000 in year zero
NTICKETS=PLOAD*0PHOURS*YEAR
Revenue per year: $ 350,400,000
REVENUE=NTICKETS*PRPASS

Cost of Infrastructure
Total guideway cost: $9,127,800,000

TCGUID=CGUIDPM*TRDIST/1.609

COSTVOE gEgIgLESD(DACPA IV COST MODEL: RAYMER P.498)
ENGH=4 .86*WEMPTY**(0.777+V*x0.894*NVEHIC**0. 163
ENGC=RE*ENGH
TOOLH=5.99*xWEMPTY**0.777*V**0.696*NVEHIC**0.263
TOOLC=RT*TOOLH
MFGH=7 . 37*WEMPTY**( .82*V**0 .484*NVEHIC**0.641
MEFGC=RMx*xMFGH
QCH=0.133*MFGH
QCC=RQ*QCH
DEVC=45.42*xWEMPTY**Q.630*V**1.3
TESTC=1243.03*xWEMPTY**0Q.325%V**0Q.822*MTV**1 .21
MATLC=11.0*WEMPTY**0.921*V**0.621*NVEHIC**0.799
CFLEET=ENGC+T00OLC+MFGC+QCC+DEVC+TESTC+MATLC

Vehicle cost modifier: Material=composite=>VCM=0.8 TO 1.1
CFLEET=VCM*CFLEET

Fleet cost: $ 825,000,000 baseline
CVEHIC=CFLEET/NVEHIC

Investment Cost
CINVEST=CFLEET

Number of trips made per year

NPASS=NMODULE*50.

QO aQ Q @
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TRIPS=PLOAD/NPASS*0OPHOURS*YEAR
C Operating Cost
COPERATE=-ENCOST*TRIPS
Initial Cash Flow = - CINVEST

CLC=-CINVEST

Annualized net present value of cash flows for 15 year life

DO I=1,LIFE
ATCF=COPERATE
PVFACTOR=INTEREST**REAL (I)
PVATCF=ATCF/PVFACTOR
CLC=CLC+PVATCF

END SBPERATE=(1.+GROWTH)*(1.+INFLATN)*COPERATE

RETURN
END
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