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This paper is concerned with the one-dimensional stationary linear Wigner equa-
tion, a kinetic formulation of quantum mechanics. Specifically, we analyze the
well-posedness of the boundary value problem on a slab of the phase space with
given inflow data for a discrete-velocity model. We find that the problem is
uniquely solvable if zero is not a discrete velocity. Otherwise one obtains a
differential-algebraic equation of index 2 and, hence, the inflow data make the
system overdetermined. @000 American Institute of Physics.
[S0022-24880)00112-3

[. INTRODUCTION

The so-called Wigner distribution function was introduced as a method for reformulating
quantum mechanics in classical phase sh&B&\ for a generaN-particle system; however we
consider here only systems which are one dimensional and described by a mean, or self-consistent,
field, so our phase spaceli$).

The (real-valued Wigner function,w(x,v,t) with xe R,v e R, andte R is a quasiprobabil-
ity distribution; it is not, in general, positive but its marginal distribution, the configuration-space
density

n(x,t)= JRW(X’U’t)dU (1.1

is indeed non-negative and, in fact, corresponds exactly with the correct quantum-mechanical
expression for the density. For an arbitrary quasiprobability distribwtionv) to be a(physica)
Wigner function, it has to correspond to a positive trace class operator, the density (cfatRef.
2).

Wigner showed in Ref. 1 thalv obeys a kinetic(quasitranspoytequation, the so-called
Wigner equation

w;+ow,—O[V]w=0, (1.29
with the pseudodifferential operator

. {911
O[V]=i| V| x+ o

aU
2] a
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where we have set Planck’s consténrt 1. Alternatively,®[ V] can(formally) be expressed as a
convolution operator im:

(O[V]w)(x,v)=a(x,v)* ,W(X,v), 1.3

with

a(x,v) = \/glm[ezi”x(fV)(Zv)], (1.4

and F denotes the Fourier transform. These two definition®pY] coincide under some regu-
larity and decay assumptions dh(cf. Ref. 3.

In (1.2b V represents théreal-valued system potential. It may either be specifigll initio
(the linear caseor may be a self-consistent potential which depends on the dem§iy. (1.1)]

(the nonlinear cageln a typical situationV obeys a Poisson equation and one speaks of the
Wigner—Poisson system. However, in this paper only the linear stationary Wigner equation is
studied. Furthermore, as suggested by the title of the paper, we are interested in the stationary
equation.

In the last several decades many physicists have used the Wigner formalism for quantum
scattering theory;> for computing virial coefficient§;“squeezed states:® and for Hartree—Fock
calculations. When considered on the whole space, ke R, the Wigner approach is equivalent
to “ordinary” quantum mechanics. On finitéspatia) domains, however, it is tricky for three
reasons: First, the potential appearingdfV] must still be known in the whole space, hétg.
Second, it is not clear how to formulate adequate boundary condit®®s.® Third, it is usually
unknown if the Wigner functiorw(x,v) on a bounded domain corresponds to a positive density
matrix operator that gives rise to a non-negative deng(g).

For the past 15 years physicists, engineers, and mathematicians have been using Wigner
equation models to simulate the electron transport in submicron semiconductor deeieges.g.,

Refs. 9 and 1D In these numerical simulations physictstShave mostly used so-callddflow
boundary conditiongor the Wigner equation. These classical transport-theoretical BCs give rea-
sonable results even for quantum models, if they are applied “far enough away” from the main
source of quantum effect®.g., tunneling barrieys Assuming the boundaries are in the one-
dimensional model at=0 andx=L one specifies the distribution flowirigto a medium through

the boundaryeither in the stationary or the time-dependent ase

w(0p)=f*(v), ©v>0,
(1.5
w(L,v)=f"(v), v<O.

In Refs. 12 and 1&bsorbing boundary conditiorisave been devised for the Wigner equation as
a refinement of inflow BCs. They account for the coupling of the incoming and outgoing distri-
bution at the boundary in quantum kinetic models.

We remark that both of these BCs break the strict correspondence between the Wigner and
Schralinger—Heisenberg formulations of quantum mechanics. Hence, it is not easy to judge if the
resulting Wigner function iphysicalin the sense of corresponding to a positive density matrix. It
would, for example, be desirable to find conditions on the prescribed inflowfdafa which
guarantee that the resulting Wigner functigvhen extended to the whole spade physical.

For the time-dependenWigner equation with inflow conditions, well-posedness has been
studied for the linedf and nonlinedr cases.(See also Ref. 16, which studies inflow in the
classical limit, and Ref. 17, where a strategy for coupling classical and quantum regimes is
discussed.One study has been made of the stationary Wigner equation with inflow conditions;

a rather involved technical method was used to construct a solution.
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The quantity of interest to engineers is the stationary current as a function of applied voltage,
the so-called —V curve. This explains our interest in the stationary problem. Our objective then
is to show unique solvability of the stationary boundary value proklBxP)

vW,—O[V]w=0, 0<x<L, veR, (1.6

subject to the BC$1.5). In Ref. 11 Frensley analyzed a full discretizatiapwind finite differ-
ences$ of this stationary Wigner equation with inflow BCs, and there is numerical evidence that
the problem is well-posed. A mathematical proof, however, has not yet been given.

At first glance(1.6) looks like a classical transport problem of the form

Tf,—Af=0, 0<x<L,

for f(x) in some Hilbert space, anf, is the usual transport operator. For classical lifieand
nonlineaf®?! transport problems with inflow conditions, a great deal is known. In typical appli-
cations and in most of the mathematical analysis a positive Fredholm operator, modeling the
interaction of the “transport” particles with the medium in which they are diffusing(1r6),
however,— O[V] describes the time-reversible interaction of the electrons with the system po-
tential. Since it is skew-symmetric arf(R,), standard techniques of generalized transport theory
(see, e.g., Refs. 22 and)28annot be applied to the BVP of the Wigner equation, even in the linear
case.

At this point it is in order to comparél.6) with its classical counterpart, the BVP for the
stationary Liouville equation:

vwy,—V,w, =0, 0<x<L, veR. (1.7

Potential wells inside the domain (09, give rise to closed particle trajectories, and hence the
solution of(1.7) with inflow BCs(1.5) is in general not uniquésee Ref. 17 for the linear problem,
and Ref. 24 for the nonlinear cas&he quantum picture is, however, different: Since bound states
cannot be compactly supported, it is possible to “control” them through the inflow data.

The model we adopt in this paper, aside from being one dimensional and linear, is also
discrete velocity. This may be considered either a preliminary step toward the analysis of the
continuous-velocity model or an end in itself, since for numerics the velocity has to be discretized
in any event(see Sec. )l In Sec. lll we prove the well-posedness of the BVP problem for the
discrete-velocity case, and discuss generalizations to the continuous-velocity case when including
a cutoff for small velocities. Finally, in Sec. IV we find that the problem is not well-posed if
=0 is included in the set of discrete velocities.

II. VELOCITY DISCRETIZATION OF THE WIGNER EQUATION

In Secs. Il and IV we shall analyze the well-posedness of discrete velocity anal¢gyof
In this section, we therefore discuss an example of how to obtain such a velocity semidiscretiza-
tion. In Refs. 25 and 26 a spectral-collocation metkiadvelocity) of the time-dependent Wigner
equation was studied. In order to obtain a simple discretizatioB[&f], the Wigner function is
there approximated by a finite linear combination of trigopnometric polynoniials), since they
are (generalizel eigenfunctions o®[ V]:

O[V]e'™=sV(x,n)e ™, (2.2

23

where

SV(X,n)=i|V| x+ =

2




7170 J. Math. Phys., Vol. 41, No. 11, November 2000 Arnold, Lange, and Zweifel

is the symbol of®[V] [see(1.2b]. Here we present a generalization of these techniques to
infinitely many equidistant, discrete velocities.

The vector functionw(x) = (w;(x), je7)T denotes thediscrete velocity Wigner function
wherew;(x) is considered as an approxmatlonvax v;). Here, we choose the discrete veloci-
ties asv;=[(j— Dl ng,j €7, where 7,>0 will be defined later on. With this choice we
“skip” the discrete velocityv =0, as this would create analytical problems for the resulting BVP
(Secs. Il and V.

In the sequel we considev(x) as the sequence of the Fourier coefficients of the velocity-
transformed function

WX, 7)= 2, wi(x)e i7", —mo<n<n, O<x=L, 2.2
JeZ
and conversely:
1 (m _ . ]
w0=5— [ " wxmerian, jez 23
2770 — M0

Obviously W(x,.) e L2(— 79, 70) iff w(x)el?(Z). 5, gives the finite supportbandwidth of
W(x,7). In order to evaluated[V] we extendW by 0 from L%(—#g,70) to L%(R,). This
corresponds to a trigonometric interpolationvefx) on R, :

W(x,v): =—f W(x,7)e'™dy, vekR, (2.9

and we havéi(x,v;) =w;j(x). This functionW(x,v) is considered as a smooth approximation to
w(x,v). Smcew(x)eIZ(Z) this impliesW(x,.) e L3(R,)NC” and allv derivatives decay at
infinity:

(0W)(x,v)—0 for [v|—, nelp.

Using (2.1) and(2.4) we calculate

1 )
(OIVIW) (x0)= 5 - " SV(x, p)W(x, 7)e ™ d. 2.5

/]

If VeL”(R) (which is the typical situation in semiconductor applicationse have
O[VIW(x,.)e L3(R,) with

IOLVIW) (X, )l2= 2] VIl[W(x, )| (2.6

When finally inserting(2.2) into (2.5 we get the desired discretization 6f[V] for fixed x
e[OL]:

AX):12(2)—1%(2),

L (2.7
(AC)W)j =5 " oV(X,7) E wye! i~ "")}dﬂ
70 — 70
For Ve L*(R) we haveA(x) e B(1%(Z)) with
IA)]| <2/ V] - (2.9

We now proceed with éormal calculation to represeri2.7) as a discrete convolutidisimilar
to the convolution representatidh.3) of @[ V]]:
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(ACOW);= 2, waj (%), e, (2.93

with

0 1 fﬂo N 7) F(HTM
a(X)=-— X, n)€ex
) 270 -7 g 7o

We remark that2.9) is equivalent to2.7) only under restrictive assumptions on the poten¥ial
For the analysis of the discretized BVP in Sec. Ill we shall naéx) e B(12(7)). In the convo-
lution form (2.9), the boundedness &(x) follows, e.g., if @;,j €%) ell. But for an arbitrary
potential Ve L™ the Fourier coefficientsgj) are usually not inlt. Sufficient conditions for
Fourier coefficients to be' are listed, for example, in Sec. 1.6 of Ref. 27.

)dn. (2.9b

lll. WELL-POSEDNESS OF THE BOUNDARY VALUE PROBLEM

In this section we analyze the well-posedness of the discrete velocity analdgepfThe
vector functionw(x) = (w;(x),j € J) still denotes thediscrete velocity Wigner functioThe dis-
crete velocitiew ; e R are assumed to be strictly increasing, igsiv;,, and the index setC7
might be finite or countably infinite. In the sequel we also assue0 for j>0 (i.e., j eJt
:=JNN), andv;<0 for j<0[i.e.,j eI =IN(—N)]; we setv,=0, and generally assume in this
section that @& J. Note that, due to these assumptionsgn the discrete velocities cannot
accumulate at zero; this fact will be important for our subsequent analysis.

Our stationarydiscrete velocity Wigner equatidrence reads as

Tw,—A(X)w=0, 0<x<L, (3.1
subject to the inflow BCs
WJ(O):f]! jEJ+, WJ(L):fJ, jEJ_, (32)

with a given sequence=(f;,j € J). Here, T=diag@;);., is the diagonal matrix of the discrete
velocities, and the real-valued matrix(x) is an appropriate semidiscretizatiéim v) of the
operator®[ V] for a given potentiaV; often the matrixA(x) = (ajk(X)); ks Will be a Toeplitz
matrix [wherea; (x) =a;_(x)], at least for an equidistant velocity discretizati@ee Sec. 2 of
Ref. 26.

In the sequel we shall assume that the matrseg (0<x=<L) are skew-symmetric, reflect-
ing the skew-symmetry o®[V]. This is the key structural property that guarantees the unique
solvability of the two-point BVR3.1) and(3.2). If the discrete velocity =0 is included in our
model (i.e., if 0eJ) then(3.1), (3.2 is a differential-algebraic boundary value probléBAE-
BVP) which behaves very differently from the BVP for an ordinary differential equation. Hence,
in this section we will assume ®J, and we discuss the zero velocity case in Sec. IV. Possible
degeneracies when including zero as a discrete velocity in kinetic boundary value problems were
already observed before: cf. Refs. 28 and 29, where stationary solutions to the discrete velocity
Boltzmann equation were analyzed.

We analyze the BVR3.1), (3.2) in the real Hilbert spacéi:=12(J) with the natural inner
product

<W'y>:% W;j .

H may be decomposed &=H"@H~ whereH* :=1?(J*). We denote byQ™* the restrictions of
H onto H*, i.e., Q*w=w"* for any w=(w",w"),w"eH=*. Let P* denote the projections
defined byP*w:=(w",0),P w:=(0w"); the embeddingE*:H*—H are defined byE w"
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=(w",0),E"w :=(0w~). One has the relationB*=E*Q*. We setD:=T !, D being the
diagonal operator diag@{). Due to our assumptions on tbe we haveD e B(H) (the bounded
linear operators o).

We assum@ to be an operator ih*((0,L),B(H)) such thatA(x) is skew-symmetric for all
xe[0,L]. By amild solutionof the BVP(3.1), (3.2) we mean a functiow e W-((0,L),H) such
that

W(X)=wg+ f:DA(X')W(X’)dX' (3.3

is valid on[0O,L] [wherewy,=w(0)] and such tha(3.2) is fulfilled, i.e.,
wh(0)=f", w (L)=f", (3.9

wheref=(f*,f7) is given. By aclassical solutionof the BVP (3.1), (3.2 we mean a function
we CH[0,L],H) satisfying

wy,—DA(X)w=0 (3.5
on[0,L] such that(3.4) is fulfilled.

We decompose a given skew-symmethie L1((0,L),B(H)) as
A++ A+—)

A(x)=(A_+ A | = A, (3.6

with A**:=Q*AE"eB(H"),A" :==Q"AE eB(H ,H"), A" ":=Q " AE"eB(H",H"),A™ "~
:=Q AE” eB(H™). Also, one has

DY 0 ) D* 0
P=l 0o b- D= 0 -D- S
where D*:=diag(1b;);.;=. We get|D|=0 in the Hilbert space sense, i.¢|D|w,w)=0 for
everyweH.

Crucial for our analysis is the following transformation of the B\&1), (3.2): We introduce
a vectorz by w=:y|D|z, andze H implieswe H. Then the transformed problem has the form

z,—B(x)z=0, 0<x<L, (3.9

Z°(0)=|D|"H*=g", z (L)=v|D| T =g, (3.9
whereg=(g*,g”) are the transformed inflow data, and we shall assgmel. The operatoB is
defined asB(x):=|D| DA(x)|D|, and the assumptions oA imply BeL((0,L),B(H))
since/|D| e B(H). We may writeB(x) in the form

JDTA*+*(x)yD* JDTAT(x)\V=D ;
B(x)= . 1
(x) —-J-D A *x)yD* —-J=D A "(x)y-D (3.10

Hence we havéAw,w')=(sign(D)Bz,z’) for all z=|D| 'w andz’ = |D| *w’ e H, and(3.6)
gives

B*"(x)=—B""(x)*, B~ (x)=—B " (x)*, BT (x)=B *(x)*. (3.11)

Our next goal is to reformulate the BMB.8), (3.9) as an initial value probleriVP) together with
an operator equation to calculate the outflow data in terms of the given inflow data. To this end let
us consider the IVP
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z,—B(x)z=0, 0<x<L, (3.8
2(0)=2zye H. (3.12

Lemma 3.1: If B=L((0,L),B(H)) then the IVP(3.8), (3.12 has a unique mild solutiom
eWHY(OL),H), and there exists a unique strongly continuous propagator
U(x,x") e B(H)VO=<x,x'<L. It satisfies

F'(xX)—B(X)F(x)=0, G'(x)+G(x)B(x)=0, F*"(x)—F*(x)B*(x)=0 (3.13
almost everywhere of0,L), where
F(x):=U(x,0), G(x):=F }x)=U(0x),

and F(0)=G(0)=F*(0)=1.
Proof: The result follows by a simple extension of the first theorems of Sec. 5.1 of Ref. 30.
The identities(3.13 follow easily from the mild version of the differential equation and the
definition of F(x) and G(x). |
We are now in the position to reformulate the BY38), (3.9) using the propagatdy of the
IVP (3.8), (3.12. Since thanflow dataz*(0)=g"*, z” (L)=g~ are given we can get the solution
of the BVP (3.8), (3.9 by
g+

zZ(x)=U(x,0) h-

h+
_), Osx=<L, (3.149

)=U(X,L) g

if the a priorily unknownoutflow dataz=(0)=h", z"(L)=h" could be determined. The idea is
to calculaten™ from (3.14) by eliminatingh™. The vectorsh™ satisfy

h+ N g+
" J=pruol i),

From (3.15 one gets by insertiofusing the notation from Lemma 3.1

g
%

o |=PTUOL)

h+> 3.1
g (3.19

(h+)—P+F L P~G(L <h+) 3.1
o | =P FWL|[ o [+P e 4| (3.16

and when solving foh™,

+

[1- P+F(L)P‘G(L)P+](h0 )= PTF(L) (go )+ P‘G(L)(go-”=|(g)- (3.179

In (3.17) the right-hand sidé(g) is datum. IntroducinK:=[I—P*F(L)P G(L)P"] one gets
from (3.16) an operator equation fdr", namely

n-x1l'y =10, (3.18

If (3.18 is uniquely solvable then, by inserting the soluttoh into the second equation ¢3.15),
one can determind™. And one then gets the unique solutia(x) of the BVP (3.8), (3.9) by
either formula of(3.14). Thus, our goal is to show th&8.18) is uniquely solvable irH.

One can write

0 F(L)™" 0 0| (FIL*GL)* 0
( (L) )( )z( (L))" G(L) (319

0 0 G(L)™" 0 0 0/
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The unique solvability of Eq(3.18 is now implied in the following lemma, which exhibits the
main structural property of our problem.
Lemma 3.2: If B=L((0,L),B(H)) then K<O (in the Hilbert space sense

Proof: Define the matrix operatds(x) on H by

G(X):= GOo™™ - —G00™ 0<x<L 3.2
(X):= G-t G- | x<L. (3.20

By using (3.11) and(3.13 one sees that the operator differential equat@ifx) —G(x)B* (x)
=0 is satisfied a.e. on (0) which is the same equation that is fulfilled By (x) [see(3.13];
sinceG(0)=F*(0)=1 holds,G(x) =F*(x) follows a.e. on (@,). SinceF(x) [and hencé&* (x)]
and G(x) [and henceG(x)] are strongly continuous ix on [O,L] this implies thatG(x)
=F*(x) for all xe[0O,L]. Thus, we see that

G(L) "==G(L) "=—(F*(L)) "=—(F(L)*)*.
This in turn implies

K" "=F(L)""G(L) " f=—-F(L)"(F(L)")*=o0.
|

From Lemma 3.2 we immediately deduce
Theorem 3.3:Assumd ¢ J, g=(g",g7) e H, and let Ax) € B(H) be skew-symmetric for all
xe[0L]. Then one has:

(@ If AeL((0L),B(H)) the BVP(3.9), (3.9 has a unique mild solutiome W>((0,L),H).
(b) If A(x) is strongly continuous in x of0,L] and uniformly bounded in the norm of B) on
[0,L], then the solution from (a) is a classical solution, ,ijze C1([0,L],H).

Proof: The assumptions o imply that Be L*((0L),B(H)). Lemma 3.2 and the self-
adjointness of the bounded operakoimply thatl —K is invertible with a bounded inverse; this
shows the unique solvability of the BVP.

To prove(b) we only have to show that a mild solutiare L((0,L),H) is in C}([0,L],H).
Sincez is in WHX((0,L),H) it is also inC([0,L],H). Since

Z(X)=2zy+ J'OXB(X’)Z(X')dX' (3.21

is satisfied onO,L ], it is enough to show that the mappirg- B(x)z(x) =u(x) isin C([O,L],H).

Let xe[0,L] be fixed, and le,—x (for n—), then it follows that forn—c~ we haveu(x)

—u(x,) =[B(x) —B(x,)1z(x) + B(x,)[z(x) — z(x,) ] — 0 since B(x) is strongly continuous and

uniformly bounded, and is continuous. |
With the transformatiorw= \|D[z Theorem 3.3 immediately translates into a result for our

original BVP (3.1), (3.2. We remark thaze H iff we H:=12(J;|v;|). Here|v;| denotes a weight

function, i.e., we endovid with the inner product

<<W,y>>=j§:€J lvjlwjy;

[if T=diag@;);., is bounded, then the Hilbert spaddsand H coincide and the two norms are
equivalenf. Such weighted spaces are typical for kinetic BBse Refs. 31 and 13, where
L2(R, ;|v]) is the appropriate space for tlondiscretg boundary dath
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Proposition 3.4: Assum8¢ J, f=(f",f")eH, and let Ax) e B(H) be skew-symmetric for
all xe[0OL]. Then one has:

(@) If AcL((0L),B(H)) the BVP(3.1), (3.2 has a unique mild solutiomwe WY((0,L),H).
Also, Tw, e L1((0L),H).

(b) If A(x) is strongly continuous in x of0,L] and uniformly bounded in the norm of B) on
[0.L], then the solution from (a) is a classical solution, j.&.e CX([0,L],H). Alsa Twy
e C([O,L],H).

Proof: The assertions ofiw, follow from HCH and the discretized Wigner equatith1).1

We shall now outline an alternative well-posedness proof for the B¥B), (3.2). This
approach complements the above result as it will require different assumptidnanalA. This
strategy was suggested by the anonymous referee and it is more closely related to known tech-
niques in generalized transport thedty>

We now consider the BVR3.1), (3.4) for we X:=L2((0L) X R, ;dx du), wheredu is a
positive Radon measure satisfyipgd0} = 0. In our discrete-velocity case we have

d,u=j§E:J 8(v—v)), (3.22

with vj<vj,, and O¢ J. We adopt here a notation that equally applies to discrete and continuous
velocities, as we shall comment on the latter case at the end of this se&fionis either the
pseudo-differential operat@|[ V] (in the continuous velocity case whetg =dv) or its velocity
discretization. In either case we shall assume &(xf) is skew-symmetric and

AeL”((0,L),B(LAR,;du))),

and hencé e B(X).
In this second approach we shall assume inflow boundary data

(f*f7) e Y:=L3(R,; min(1]v])du),

which is the appropriate space for the boundary traces: by Theorem 3 of Réf: 8%, can be
“lifted” to a function f(x,v) with f, vf, e X. Hence, the inhomogeneous BV®1), (3.4) and the
following BVP for y e X are equivalent as far as existence and unigueness is concerned:

vYx—AX)Y=9g(X,v), (3.233
with homogeneous boundary conditions
y*(0)=0, y (L)=0. (3.23h

Here we sey=w—f andg=A(X)f—vf,e X.
The free-streaming operatbar=uv g, of (3.233 is defined on

D(L)={yeX|vy,eX,y"(0)=0y (L)=0}.

L generates o a C, semigroup of contractions.€a (L) iff v =0 does not belong to the set of
velocities(i.e., u{|v|<e}=0 for somes>0). In the discrete velocity case we assumegdioand
hencel is invertible. Thereford3.23 is equivalent to

y—L HAMXyY)=L"'g(x,0), (3.24

with the BCs(3.23D.
Lemma 3.5: L'! is compact on X iff the discrete velocitigs; ,j € J} do not accumulate in
R, . (Such an accumulation would anyhow not be relevant in practical cases.)
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Proof: Fory e X we have

L Pynas 10

. |U]| Oy(glvj) g! J

(L™ y)(Xvj)= 1 (L (3.25
—f y(évpdé,  j<0.

|Uj| X

In the case of finitely many velocitids™* is clearly compact. For infinitely many velocities
without an accumulation point we decompdse:

L™ 1=P;L 1+ (1—-P;)L" Y, (3.26

wherePs is the projection fronL.2(R, ;du) onto the(finitely many) velocities|v;|<T. The first
summand of3.26) is compact. The norm of the second summand is bound&d byand can thus
be made arbitrarily small by choosifiglarge enough. Hencé, ! andL ~*A are compact.

If the discrete velocitiegv;} accumulatee.g., asj— ), L~ is not compact: Consider the
bounded squencfy",ne N} with y"(x,v;) =46 (const inx), which does not have a convergent
subsequence. |

With this result we have the second well-posedness result for the (BMP (3.4):

Theorem 3.6: Assume that the velocitids; ,j e J} do not accumulate ik, and thatO ¢ J.
Let A(x) be skew-symmetric for all «[0L] and let AcL*((0,L),B(L%(R,;du))), and
(f*,f7)eY. Then (3.1, (3.4 has a unique solution w X. Also, vw, e X.

Proof: Due to Lemma 3.5 the Fredholm alternative applie€3t&4) and any solutiory e X of
(3.29) also satisfieyy e D(L). It remains to show that the homogeneous versioi3dt3 (i.e.,
with g=0) admits only the trivial solutiory=0.

We multiply (3.233 by y and integrate over (D) X R, to obtain

0

L o0
0=f0 fHU(Y(X,v)Z)Xd,u dx= jo v(y(L,U))ZdM_f v(y(O,v))zd,u,

— oo

where we first used the skew-symmetryAfx) and then the BC$3.23h. This impliesy ™ (0)

=0 andy"(L)=0. Using the initial conditiony(0,v;)=0,jeJ or z(0)=0 for the IVP (3.9

impliesz=0 andy=0. |
We finish this section with some remarks:

(1) The motivation for the assumptions é{x) stem directly from the continuous velocity case:
There the pseudodifferential operafofx) = 0[V](x) in the Wigner equation has the explicit
form

AXW=iF " H[V(x+./2) = V(x—./2) ] Fw}

for we L2(R,) where— V(x* 7/2) is a multiplication operator in the dual Fourier variable
n; F denotes the Fourier transform in thevariable.

AssumingV e L*(R,) one sees thaf(x) e B(L%(R,)) and|A(x)||<2|V|... If the given
potential decays sufficiently at infinityj(x) even regularizes:

”A(X)”LZ(R’U)ﬂHl(]Ru)gC||(1+|X|)V||°Cv (3.2

with some constant that is independent of @x<L.
Furthermore, using Lebesgue’s dominated convergence theorem it is easy to Fe&that
is strongly continuous ofO,L]. If the potentialV is discontinuous atat least one pointin
[O,.L], thenA(x) is discontinuous for everye[0,L] in the uniform operator topology; this is
easily seen, e.g., for a step potential modeling tunneling in semiconductor devices.
(2) Theorem 3.3 equally applies for the continuous-velocity case when one weéscity cutoff
in the stationary Wigner equation in the vicinity of zero. For example, it applies to the
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following modification of(1.6):
{w)w,—O[V]w=0,

with a cutoff functionZ(v) =v for |v|>e>0 and|{(v)|=¢ elsewhere. Therl, " 1=1/z(v) is
again a bounded operator dR(R,).

This velocity truncation is rather a technical restriction that cdptzssibly be overcome in
the future. We remark that such a cutoff for small velocities is frequently encountered in
stationary kinetic problems: cf. Ref. 33, for example, where the steady Boltzmann equation is
studied.

Lemma 3.5 doesot carry over to the continuous-velocity case, since® is then not
compact. However, if the potenti®l decays such that #|x|)V(x) e L*(R,), compactness
in velocity direction(and hence a result analogous to Theorem 8ah be obtained from a
decomposion similar t63.26):

1 1
Zioy AOO=Pi 2 ACO-H(1 = Py) 2 A,
Here, the first operator on the right-hand side is compact due to the compact imbedding
HY(-7,5)—L?%(—7,7) [cf. (3.27], and the second operator can be made arbitrarily small.
(3) Our method and Theorem 3.3 apply also to symmetric velocity discretizations of the Liouville
equation(1.7), showing that the discretized version of the inflow BWF7), (1.5 is uniquely
solvable. In the limit of continuous velocities, however, it is clear that no propagktaix’)
(cf. Lemma 3.1 can exist because of the characteristics intersecting« thgis (unlessV
=const).
Similarly, the second approac¢mheorem 3.5would not work either for the classical case
asA(x)=V,d, is then unbounded.
(4) The original problem(1.6)—the stationary Wigner equation with continuous velocities—still
poses additional analytical problems since HEFéA(x) is unbounded oh ?(R,). This case
will eventually be treated in a forthcoming paper. To this éBd.8 with K<0 seems to be
the crucial structural property, since it is independent @f the above cutoff functiord.

IV. ZERO AS A DISCRETE VELOCITY

In this section we shall analyze the discrete velocity Wigner equation
Tw,—A(X)w=0, 0<x<L, (4.2
for w(x) = (w;(x),] eJ)T in the case @ J. Again we prescribe inflow BCs

wt(0)=f",
4.2)
w (L)=f".

The model now includes the discrete veloaity=0, hence(4.1) is a linear differential-algebraic
equation(DAE, see, e.g., Refs. 34 and)3Frensley already mentioned in Ref. 11 that one should
“avoid” this zero velocity in the numerical discretization of the stationary Wigner equation on a
slab. In this section we shall analyze the algebraic reasons for it. To illustrate the problems
encountered here, we will first consider an example of dimensien|J|=3 with a constant
matrix A:

Example 4.1:

0 —adip —Aa;-1
TWX_ al,O 0 —aov_l WZO, 0<X<L, (43)
a;-1 Qo-1 0
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with T=diag@,,00 1), W=(W,Wo,w_;)", and the BCs
wi(0)="fy, w_y(L)=Ff_;. (4.9

In order to avoid trivialities we assume the y,aq 17 0.

As the second row of4.3—the algebraic constraint—does not involwg, one has to
differentiate algebraic constraints twice in order to expregg,( as a function ofn. Hence, the
indexof (4.3) is 2.

The constant-coefficient DAE.3) is calledtractable’ or solvable® if the determinant

de(A\T—A)=\(vi8] ;+v_ja]) (4.9

does not vanish identically fox e C. First we consider the casqagy,ﬁv_laioi 0. Then(4.3
is easily seen to be equivalent to

(Wl)X: 01
dp—1W_1=2a; W1,
8p-1Wo=ajz —1Wj.

And, obviously, only one BC can be specified fd:3) in this case.

In the nontractable case, i.e., foga(z)‘_lJrv_laiO: 0, the three rows of4.3) are linearly
dependentafter differentiating the second rowHence, there are more than countably many
solutions to the BVR4.3), (4.4) in this case:

10 a1,-1810
jwo(x )ex;{ Ua—(x—x’) dx’,

190,—-1

a; 1810
V18p,-1

wy(X) ="y ex;< -

W_q(X)= aal,o wi(X),

andwy is arbitrary up to the constraimt_,(L)=f_;.

We summarize the situation of Example 3.1 in

Proposition 4.2: For any matrices T and A of the above structure, the DAB is not
well-posed if two independent BC4.4) are prescribed

We now turn to the general situatigd.1), (4.2). To avoid technical difficulties, we confine
ourselves to the finite dimensional case<{>) and we assumaA(x) to be sufficiently smooth in
xe[OL].

In the sequel we shall assume tlétl) is solvable(see Sec. 2.4.1 of Ref. 35 for the definition
in the variable coefficient cageOtherwise(4.1) would not have a solutiom(x),0<x<L that is
uniquely determined by fixing the solutiam(x,) at one pointxg.

In the variable coefficient case there is no simple characterization of solvdbKiydet\T
—A)=0 for constant coefficienfsbut we can give a sufficient criterion. First, we remark tldat)
can be written irHessenberg form of size Re.,

., O
0 O0|Wx—

Z21()()Z12(X) =
]#0

FAll(X) ’A12(X)

~ w=0, O0<x<L,
Ax(X) 0

if the constraint

’0( 20 o Vxe[OL] (4.6
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is satisfied. HereA,;(x) andA,,(x) are, respectively, X (m—1) and (n—1)x 1 matrices.
Propsition 4.3 (Sec. 2.4.2 of Ref. 35): (#.1) is in Hessenberg form of size 2, then it is
solvable and has index 2
A simple calculation gives

2
ajo(X)
de()\T—A(x))=)\m‘2(2 L)H vj+lower order terms(in \)
7o vj /4o

[see(4.5]. Hence, the Hessenberg conditigh6) also implies the localin x) regularity of the
matrix pencil\T—A(X).

Next we discuss the index of the DAE.1). SinceT is constant irx, it has constant rank, and
the differentiation procedur@f the algebraic constraintan be used to define the index(dfl),
i.e., the minimum number of differentiations necessary to expngssxplicitly as a continuous
function ofw andx (see Sec. 2.4.1 of Ref. 38n (4.1) the algebraic constraint has the form

2 aoyj(X)WjZO. (47)

jeld

Sinceag o(x)=0, (4.1) has an index=2 (if it is solvable. The index can indeed exceedeg.,
for m=4, the index 4 is possible

Since the differentiation procedure works fdr1) it can be further showisee Sec. 2.4.2 of
Ref. 35 that(4.1) is (analytically equivalent to a decoupled systemsitandard canonical form:

5 ool
0 N

wherew=R(x)y is a change of coordinates with a smooth, nonsingular m&(&), and we
partition y=(yy,¥,)". N(x) is a strictly lower triangular, square matrix of sigg=k with nilpo-
tencyk. One easily verifies that the second equatiori4o8),

Cx) O

)yzo, o<x<L, (4.9
0 g

N(X)(Y2)x—Y2=0

only has the trivial solutiory,(x)=0, and hence, no BCs may be specified yar A necessary
condition for the unique solvability of the first equation @f8) is to specifym—s BCs.

We therefore conclude that only—s(=m—k<m-—2) BCs may be prescribed f¢4.9) or,
equivalently,(4.1). Them—1 BCs(4.2) hence make the system overdetermined.

We summarize in

Theorem 4.4: (a) If the DAE (4.1) is not solvable (in the sense of Sec. 2.4.1 of Ref. 35),
solutions of (4.1), (4.2) cannot be unique.

(b) If the DAE (4.1) is solvable, the BCs (4.2) are overdetermined and hence make the BVP (in
general) unsolvable
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