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This paper is concerned with the one-dimensional stationary linear Wigner equa-
tion, a kinetic formulation of quantum mechanics. Specifically, we analyze the
well-posedness of the boundary value problem on a slab of the phase space with
given inflow data for a discrete-velocity model. We find that the problem is
uniquely solvable if zero is not a discrete velocity. Otherwise one obtains a
differential-algebraic equation of index 2 and, hence, the inflow data make the
system overdetermined. ©2000 American Institute of Physics.
@S0022-2488~00!00112-2#

I. INTRODUCTION

The so-called Wigner distribution function was introduced as a method for reformul
quantum mechanics in classical phase space1 (R6N for a generalN-particle system; however we
consider here only systems which are one dimensional and described by a mean, or self-con
field, so our phase space isR2).

The ~real-valued! Wigner function,w(x,v,t) with xPR,vPR, andtPR1 is a quasiprobabil-
ity distribution; it is not, in general, positive but its marginal distribution, the configuration-sp
density

n~x,t !5E
R
w~x,v,t !dv ~1.1!

is indeed non-negative and, in fact, corresponds exactly with the correct quantum-mech
expression for the density. For an arbitrary quasiprobability distributionw(x,v) to be a~physical!
Wigner function, it has to correspond to a positive trace class operator, the density matrix~cf. Ref.
2!.

Wigner showed in Ref. 1 thatw obeys a kinetic~quasitransport! equation, the so-called
Wigner equation

wt1vwx2Q@V#w50, ~1.2a!

with the pseudodifferential operator

Q@V#5 i FVS x1
]v

2i D2VS x2
]v

2i D G , ~1.2b!

a!Electronic mail: arnold@num.uni-sb.de
b!Electronic mail: lange@mi.uni-koeln.de
c!Electronic mail: zweifel@vt.edu
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where we have set Planck’s constant\51. Alternatively,Q@V# can~formally! be expressed as
convolution operator inv:

~Q@V#w!~x,v !5a~x,v !* vw~x,v !, ~1.3!

with

a~x,v !5A8

p
Im@e2ivx~FV!~2v !#, ~1.4!

andF denotes the Fourier transform. These two definitions ofQ@V# coincide under some regu
larity and decay assumptions onV ~cf. Ref. 3!.

In ~1.2b! V represents the~real-valued! system potential. It may either be specifiedab initio
~the linear case! or may be a self-consistent potential which depends on the densityn @Eq. ~1.1!#
~the nonlinear case!. In a typical situationV obeys a Poisson equation and one speaks of
Wigner–Poisson system. However, in this paper only the linear stationary Wigner equat
studied. Furthermore, as suggested by the title of the paper, we are interested in the sta
equation.

In the last several decades many physicists have used the Wigner formalism for qu
scattering theory;4,5 for computing virial coefficients;4 ‘‘squeezed states;’’6 and for Hartree–Fock
calculations.7 When considered on the whole space, i.e.,xPR, the Wigner approach is equivalen
to ‘‘ordinary’’ quantum mechanics. On finite~spatial! domains, however, it is tricky for three
reasons: First, the potential appearing inQ@V# must still be known in the whole space, hereRx .
Second, it is not clear how to formulate adequate boundary conditions~BCs!.8 Third, it is usually
unknown if the Wigner functionw(x,v) on a bounded domain corresponds to a positive den
matrix operator that gives rise to a non-negative densityn(x).

For the past 15 years physicists, engineers, and mathematicians have been using
equation models to simulate the electron transport in submicron semiconductor devices~see, e.g.,
Refs. 9 and 10!. In these numerical simulations physicists9,11 have mostly used so-calledinflow
boundary conditionsfor the Wigner equation. These classical transport-theoretical BCs give
sonable results even for quantum models, if they are applied ‘‘far enough away’’ from the
source of quantum effects~e.g., tunneling barriers!. Assuming the boundaries are in the on
dimensional model atx50 andx5L one specifies the distribution flowinginto a medium through
the boundary~either in the stationary or the time-dependent case!:

w~0,v !5 f 1~v !, v.0,
~1.5!

w~L,v !5 f 2~v !, v,0.

In Refs. 12 and 13absorbing boundary conditionshave been devised for the Wigner equation
a refinement of inflow BCs. They account for the coupling of the incoming and outgoing d
bution at the boundary in quantum kinetic models.

We remark that both of these BCs break the strict correspondence between the Wign
Schrödinger–Heisenberg formulations of quantum mechanics. Hence, it is not easy to judge
resulting Wigner function isphysicalin the sense of corresponding to a positive density matrix
would, for example, be desirable to find conditions on the prescribed inflow dataf 1, f 2 which
guarantee that the resulting Wigner function~when extended to the whole space! is physical.

For the time-dependentWigner equation with inflow conditions, well-posedness has b
studied for the linear14 and nonlinear15 cases.~See also Ref. 16, which studies inflow in th
classical limit, and Ref. 17, where a strategy for coupling classical and quantum regim
discussed.! One study has been made of the stationary Wigner equation with inflow conditio18

a rather involved technical method was used to construct a solution.
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The quantity of interest to engineers is the stationary current as a function of applied vo
the so-calledI –V curve. This explains our interest in the stationary problem. Our objective
is to show unique solvability of the stationary boundary value problem~BVP!

vwx2Q@V#w50, 0,x,L, vPR, ~1.6!

subject to the BCs~1.5!. In Ref. 11 Frensley analyzed a full discretization~upwind finite differ-
ences! of this stationary Wigner equation with inflow BCs, and there is numerical evidence
the problem is well-posed. A mathematical proof, however, has not yet been given.

At first glance~1.6! looks like a classical transport problem of the form

T fx2A f50, 0,x,L,

for f (x) in some Hilbert space, andT]x is the usual transport operator. For classical linear19 and
nonlinear20,21 transport problems with inflow conditions, a great deal is known. In typical ap
cations and in most of the mathematical analysisA is a positive Fredholm operator, modeling th
interaction of the ‘‘transport’’ particles with the medium in which they are diffusing. In~1.6!,
however,2Q@V# describes the time-reversible interaction of the electrons with the system
tential. Since it is skew-symmetric onL2(Rv), standard techniques of generalized transport the
~see, e.g., Refs. 22 and 23! cannot be applied to the BVP of the Wigner equation, even in the lin
case.

At this point it is in order to compare~1.6! with its classical counterpart, the BVP for th
stationary Liouville equation:

vwx2Vxwv50, 0,x,L, vPR. ~1.7!

Potential wells inside the domain (0,L) give rise to closed particle trajectories, and hence
solution of~1.7! with inflow BCs~1.5! is in general not unique~see Ref. 17 for the linear problem
and Ref. 24 for the nonlinear case!. The quantum picture is, however, different: Since bound st
cannot be compactly supported, it is possible to ‘‘control’’ them through the inflow data.

The model we adopt in this paper, aside from being one dimensional and linear, is
discrete velocity. This may be considered either a preliminary step toward the analysis
continuous-velocity model or an end in itself, since for numerics the velocity has to be discr
in any event~see Sec. II!. In Sec. III we prove the well-posedness of the BVP problem for
discrete-velocity case, and discuss generalizations to the continuous-velocity case when in
a cutoff for small velocities. Finally, in Sec. IV we find that the problem is not well-posedv
50 is included in the set of discrete velocities.

II. VELOCITY DISCRETIZATION OF THE WIGNER EQUATION

In Secs. III and IV we shall analyze the well-posedness of discrete velocity analogs of~1.6!.
In this section, we therefore discuss an example of how to obtain such a velocity semidisc
tion. In Refs. 25 and 26 a spectral-collocation method~in velocity! of the time-dependent Wigne
equation was studied. In order to obtain a simple discretization ofQ@V#, the Wigner function is
there approximated by a finite linear combination of trigonometric polynomials~in v), since they
are ~generalized! eigenfunctions ofQ@V#:

Q@V#eihv5dV~x,h!eihv, ~2.1!

where

dV~x,h!5 i FVS x1
h

2 D2VS x2
h

2 D G
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is the symbol ofQ@V# @see ~1.2b!#. Here we present a generalization of these technique
infinitely many equidistant, discrete velocities.

The vector functionw(x)5(wj (x), j PZ)T denotes thediscrete velocity Wigner function,
wherewj (x) is considered as an approximation tow(x,v j ). Here, we choose the discrete veloc
ties asv j5@( j 2 1

2)p#/h0 , j PZ, where h0.0 will be defined later on. With this choice w
‘‘skip’’ the discrete velocityv50, as this would create analytical problems for the resulting B
~Secs. III and IV!.

In the sequel we considerw(x) as the sequence of the Fourier coefficients of the veloc
transformed function

ŵ~x,h!5(
j PZ

wj~x!e2 iv jh, 2h0<h<h0 , 0<x<L, ~2.2!

and conversely:

wj~x!5
1

2h0
E

2h0

h0
ŵ~x,h!eihv jdh, j PZ. ~2.3!

Obviously ŵ(x,.)PL2(2h0 ,h0) iff w(x)P l 2(Z). h0 gives the finite support~bandwidth! of
ŵ(x,h). In order to evaluateQ@V# we extendŵ by 0 from L2(2h0 ,h0) to L2(Rh). This
corresponds to a trigonometric interpolation ofw(x) on Rv :

w̃~x,v !ª
1

2h0
E

2h0

h0
ŵ~x,h!eihvdh, vPR, ~2.4!

and we havew̃(x,v j )5wj (x). This functionw̃(x,v) is considered as a smooth approximation
w(x,v). Sincew(x)P l 2(Z), this implies w̃(x,.)PL2(Rv)ùC` and all v derivatives decay a
infinity:

~]v
nw̃!~x,v !→0 for uvu→`, nPN0 .

Using ~2.1! and ~2.4! we calculate

~Q@V#w̃!~x,v !5
1

2h0
E

2h0

h0
dV~x,h!ŵ~x,h!eihv dh. ~2.5!

If VPL`(R) ~which is the typical situation in semiconductor applications! we have
Q@V#w̃(x,.)PL2(Rv) with

i~Q@V#w̃!~x,.!i2<2iVi`iw̃~x,.!i2 . ~2.6!

When finally inserting~2.2! into ~2.5! we get the desired discretization ofQ@V# for fixed x
P@0,L#:

A~x!: l 2~Z!→ l 2~Z!,
~2.7!

~A~x!w! j5
1

2h0
E

2h0

h0
dV~x,h!F (

kPZ
wke

ih(v j 2vk)Gdh.

For VPL`(R) we haveA(x)PB( l 2(Z)) with

iA~x!i<2iVi` . ~2.8!

We now proceed with aformal calculation to represent~2.7! as a discrete convolution@similar
to the convolution representation~1.3! of Q@V##:
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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~A~x!w! j5(
kPZ

wkaj 2k~x!, j PZ, ~2.9a!

with

aj~x!5
1

2h0
E

2h0

h0
dV~x,h!expS ip j h

h0
Ddh. ~2.9b!

We remark that~2.9! is equivalent to~2.7! only under restrictive assumptions on the potentialV.
For the analysis of the discretized BVP in Sec. III we shall needA(x)PB( l 2(Z)). In the convo-
lution form ~2.9!, the boundedness ofA(x) follows, e.g., if (aj , j PZ)P l 1. But for an arbitrary
potential VPL` the Fourier coefficients (aj ) are usually not inl 1. Sufficient conditions for
Fourier coefficients to bel 1 are listed, for example, in Sec. I.6 of Ref. 27.

III. WELL-POSEDNESS OF THE BOUNDARY VALUE PROBLEM

In this section we analyze the well-posedness of the discrete velocity analog of~1.6!. The
vector functionw(x)5(wj (x), j PJ) still denotes thediscrete velocity Wigner function. The dis-
crete velocitiesv jPR are assumed to be strictly increasing, i.e.,v j,v j 11 , and the index setJ,Z
might be finite or countably infinite. In the sequel we also assumev j.0 for j .0 ~i.e., j PJ1

ªJùN), andv j,0 for j ,0 @i.e., j PJ2
ªJù(2N)]; we setv050, and generally assume in th

section that 0¹J. Note that, due to these assumptions onv j , the discrete velocities canno
accumulate at zero; this fact will be important for our subsequent analysis.

Our stationarydiscrete velocity Wigner equationhence reads as

Twx2A~x!w50, 0,x,L, ~3.1!

subject to the inflow BCs

wj~0!5 f j , j PJ1, wj~L !5 f j , j PJ2, ~3.2!

with a given sequencef5( f j , j PJ). Here,T5diag(vj)jPJ is the diagonal matrix of the discret
velocities, and the real-valued matrixA(x) is an appropriate semidiscretization~in v) of the
operatorQ@V# for a given potentialV; often the matrixA(x)5(ajk(x)) j ,kPJ will be a Toeplitz
matrix @whereajk(x)5aj 2k(x)#, at least for an equidistant velocity discretization~see Sec. 2 of
Ref. 26!.

In the sequel we shall assume that the matricesA(x) (0<x<L) are skew-symmetric, reflect
ing the skew-symmetry ofQ@V#. This is the key structural property that guarantees the un
solvability of the two-point BVP~3.1! and~3.2!. If the discrete velocityv050 is included in our
model ~i.e., if 0PJ) then ~3.1!, ~3.2! is a differential-algebraic boundary value problem~DAE-
BVP! which behaves very differently from the BVP for an ordinary differential equation. He
in this section we will assume 0¹J, and we discuss the zero velocity case in Sec. IV. Poss
degeneracies when including zero as a discrete velocity in kinetic boundary value problem
already observed before: cf. Refs. 28 and 29, where stationary solutions to the discrete v
Boltzmann equation were analyzed.

We analyze the BVP~3.1!, ~3.2! in the real Hilbert spaceHª l 2(J) with the natural inner
product

^w,y&5(
j PJ

wjyj .

H may be decomposed asH5H1
% H2 whereH6

ª l 2(J6). We denote byQ6 the restrictions of
H onto H6, i.e., Q6w5w6 for any w5(w1,w2),w6PH6. Let P6 denote the projections
defined byP1wª(w1,0),P2wª(0,w2); the embeddingsE6:H6→H are defined byE1w1
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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ª(w1,0),E2w2
ª(0,w2). One has the relationsP65E6Q6. We setDªT21, D being the

diagonal operator diag(1/v j ). Due to our assumptions on thev j we haveDPB(H) ~the bounded
linear operators onH).

We assumeA to be an operator inL1((0,L),B(H)) such thatA(x) is skew-symmetric for all
xP@0,L#. By a mild solutionof the BVP~3.1!, ~3.2! we mean a functionwPW1,1((0,L),H) such
that

w~x!5w01E
0

x

DA~x8!w~x8!dx8 ~3.3!

is valid on @0,L# @wherew05w(0)# and such that~3.2! is fulfilled, i.e.,

w1~0!5f1, w2~L !5f2, ~3.4!

where f5(f1,f2) is given. By aclassical solutionof the BVP ~3.1!, ~3.2! we mean a function
wPC1(@0,L#,H) satisfying

wx2DA~x!w50 ~3.5!

on @0,L# such that~3.4! is fulfilled.
We decompose a given skew-symmetricAPL1((0,L),B(H)) as

A~x!5S A11 A12

A21 A22D 52A* ~x!, ~3.6!

with A11
ªQ1AE1PB(H1),A12

ªQ1AE2PB(H2,H1),A21
ªQ2AE1PB(H1,H2),A22

ªQ2AE2PB(H2). Also, one has

D5S D1 0

0 D2D , uDu5S D1 0

0 2D2D , ~3.7!

where D6
ªdiag(1/v j ) j PJ6. We get uDu>0 in the Hilbert space sense, i.e.,^uDuw,w&>0 for

everywPH.
Crucial for our analysis is the following transformation of the BVP~3.1!, ~3.2!: We introduce

a vectorz by w5:AuDuz, andzPH implies wPH. Then the transformed problem has the for

zx2B~x!z50, 0,x,L, ~3.8!

z1~0!5AuDu21f15..g1, z2~L !5AuDu21f25..g2, ~3.9!

whereg5(g1,g2) are the transformed inflow data, and we shall assumegPH. The operatorB is
defined asB(x)ªAuDu21DA(x)AuDu, and the assumptions onA imply BPL1((0,L),B(H))
sinceAuDuPB(H). We may writeB(x) in the form

B~x!5S AD1A11~x!AD1 AD1A12~x!A2D2

2A2D2A21~x!AD1 2A2D2A22~x!A2D2D . ~3.10!

Hence we havêAw,w8&5^sign(D)Bz,z8& for all z5AuDu21w andz85AuDu21w8PH, and~3.6!
gives

B11~x!52B11~x!* , B22~x!52B22~x!* , B12~x!5B21~x!* . ~3.11!

Our next goal is to reformulate the BVP~3.8!, ~3.9! as an initial value problem~IVP! together with
an operator equation to calculate the outflow data in terms of the given inflow data. To this e
us consider the IVP
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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zx2B~x!z50, 0,x,L, ~3.8!

z~0!5z0PH. ~3.12!

Lemma 3.1: If BPL1((0,L),B(H)) then the IVP~3.8!, ~3.12! has a unique mild solutionz
PW1,1((0,L),H), and there exists a unique strongly continuous propaga
U(x,x8)PB(H);0<x,x8<L. It satisfies

F8~x!2B~x!F~x!50, G8~x!1G~x!B~x!50, F* 8~x!2F* ~x!B* ~x!50 ~3.13!

almost everywhere on(0,L), where

F~x!ªU~x,0!, G~x!ªF21~x!5U~0,x!,

and F(0)5G(0)5F* (0)5I .
Proof: The result follows by a simple extension of the first theorems of Sec. 5.1 of Ref

The identities~3.13! follow easily from the mild version of the differential equation and t
definition of F(x) andG(x). j

We are now in the position to reformulate the BVP~3.8!, ~3.9! using the propagatorU of the
IVP ~3.8!, ~3.12!. Since theinflow dataz1(0)5g1, z2(L)5g2 are given we can get the solutio
of the BVP ~3.8!, ~3.9! by

z~x!5U~x,0!S g1

h2 D5U~x,L !S h1

g2 D , 0<x<L, ~3.14!

if the a priorily unknownoutflow dataz2(0)5h2, z1(L)5h1 could be determined. The idea
to calculateh1 from ~3.14! by eliminatingh2. The vectorsh6 satisfy

S h1

0 D5P1U~L,0!S g1

h2 D , S 0
h2 D5P2U~0,L !S h1

g2 D . ~3.15!

From ~3.15! one gets by insertion~using the notation from Lemma 3.1!

S h1

0 D5P1F~L !F S g1

0 D1P2G~L !S h1

g2 D G , ~3.16!

and when solving forh1,

@ I 2P1F~L !P2G~L !P1#S h1

0 D5P1F~L !F S g1

0 D1P2G~L !S 0
g2 D G5 l ~g!. ~3.17!

In ~3.17! the right-hand sidel (g) is datum. IntroducingKª@ I 2P1F(L)P2G(L)P1# one gets
from ~3.16! an operator equation forh1, namely

@ I 2K#S h1

0 D5 l ~g!. ~3.18!

If ~3.18! is uniquely solvable then, by inserting the solutionh1 into the second equation of~3.15!,
one can determineh2. And one then gets the unique solutionz(x) of the BVP ~3.8!, ~3.9! by
either formula of~3.14!. Thus, our goal is to show that~3.18! is uniquely solvable inH.

One can write

K5S 0 F~L !12

0 0 D S 0 0

G~L !21 0D 5S F~L !12G~L !21 0

0 0D . ~3.19!
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The unique solvability of Eq.~3.18! is now implied in the following lemma, which exhibits th
main structural property of our problem.

Lemma 3.2: If BPL1((0,L),B(H)) then K<0 ~in the Hilbert space sense!.
Proof: Define the matrix operatorG̃(x) on H by

G̃~x!ªS G~x!11 2G~x!12

2G~x!21 G~x!22 D , 0,x,L. ~3.20!

By using ~3.11! and ~3.13! one sees that the operator differential equationG̃8(x)2G̃(x)B* (x)
50 is satisfied a.e. on (0,L) which is the same equation that is fulfilled byF* (x) @see~3.13!#;
sinceG̃(0)5F* (0)5I holds,G̃(x)5F* (x) follows a.e. on (0,L). SinceF(x) @and henceF* (x)#
and G(x) @and henceG̃(x)# are strongly continuous inx on @0,L# this implies thatG̃(x)
5F* (x) for all xP@0,L#. Thus, we see that

G~L !2152G̃~L !2152~F* ~L !!2152~F~L !12!* .

This in turn implies

K115F~L !12G~L !2152F~L !12~F~L !12!* <0.
j

From Lemma 3.2 we immediately deduce
Theorem 3.3:Assume0¹J, g5(g1,g2)PH, and let A(x)PB(H) be skew-symmetric for al

xP@0,L#. Then one has:

(a) If APL1((0,L),B(H)) the BVP~3.8!, ~3.9! has a unique mild solutionzPW1,1((0,L),H).
(b) If A(x) is strongly continuous in x on@0,L# and uniformly bounded in the norm of B(H) on

@0,L#, then the solution from (a) is a classical solution, i.e., zPC1(@0,L#,H).

Proof: The assumptions onA imply that BPL1((0,L),B(H)). Lemma 3.2 and the self
adjointness of the bounded operatorK imply that I 2K is invertible with a bounded inverse; thi
shows the unique solvability of the BVP.

To prove~b! we only have to show that a mild solutionzPL1((0,L),H) is in C1(@0,L#,H).
Sincez is in W1,1((0,L),H) it is also inC(@0,L#,H). Since

z~x!5z01E
0

x

B~x8!z~x8!dx8 ~3.21!

is satisfied on@0,L#, it is enough to show that the mappingx→B(x)z(x)5..u(x) is in C(@0,L#,H).
Let xP@0,L# be fixed, and letxn→x ~for n→`), then it follows that forn→` we haveu(x)
2u(xn)5@B(x)2B(xn)#z(x)1B(xn)@z(x)2z(xn)#→0 sinceB(x) is strongly continuous and
uniformly bounded, andz is continuous. j

With the transformationw5AuDuz Theorem 3.3 immediately translates into a result for o
original BVP ~3.1!, ~3.2!. We remark thatzPH iff wPH̃ª l 2(J;uv j u). Hereuv j u denotes a weight
function, i.e., we endowH̃ with the inner product

^^w,y&&5(
j PJ

uv j uwjyj

@if T5diag(vj)jPJ is bounded, then the Hilbert spacesH and H̃ coincide and the two norms ar
equivalent#. Such weighted spaces are typical for kinetic BVPs@see Refs. 31 and 13, wher
L2(Rv ;uvu) is the appropriate space for the~nondiscrete! boundary data#.
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Proposition 3.4: Assume0¹J, f5(f1,f2)PH̃, and let A(x)PB(H) be skew-symmetric fo
all xP@0,L#. Then one has:

(a) If APL1((0,L),B(H)) the BVP~3.1!, ~3.2! has a unique mild solutionwPW1,1((0,L),H̃).
Also, TwxPL1((0,L),H).

(b) If A(x) is strongly continuous in x on@0,L# and uniformly bounded in the norm of B(H) on

@0,L#, then the solution from (a) is a classical solution, i.e., wPC1(@0,L#,H̃). Also, Twx

PC(@0,L#,H).

Proof: The assertions onTwx follow from H̃,H and the discretized Wigner equation~3.1!.j
We shall now outline an alternative well-posedness proof for the BVP~3.1!, ~3.2!. This

approach complements the above result as it will require different assumptions onf andA. This
strategy was suggested by the anonymous referee and it is more closely related to know
niques in generalized transport theory.23,32

We now consider the BVP~3.1!, ~3.4! for wPXªL2((0,L)3Rv ;dx dm), wheredm is a
positive Radon measure satisfyingm$0%50. In our discrete-velocity case we have

dm5(
j PJ

d~v2v j !, ~3.22!

with v j,v j 11 and 0¹J. We adopt here a notation that equally applies to discrete and contin
velocities, as we shall comment on the latter case at the end of this section.A(x) is either the
pseudo-differential operatorQ@V# ~in the continuous velocity case wheredm5dv) or its velocity
discretization. In either case we shall assume thatA(x) is skew-symmetric and

APL`~~0,L !,B~L2~Rv ;dm!!!,

and henceAPB(X).
In this second approach we shall assume inflow boundary data

~ f 1, f 2!PYªL2~Rv ; min~1,uvu!dm!,

which is the appropriate space for the boundary traces: by Theorem 3 of Ref. 31,f 6PY can be
‘‘lifted’’ to a function f (x,v) with f , v f xPX. Hence, the inhomogeneous BVP~3.1!, ~3.4! and the
following BVP for yPX are equivalent as far as existence and uniqueness is concerned:

vyx2A~x!y5g~x,v !, ~3.23a!

with homogeneous boundary conditions

y1~0!50, y2~L !50. ~3.23b!

Here we sety5w2 f andg5A(x) f 2v f xPX.
The free-streaming operatorL5v]x of ~3.23a! is defined on

D~L !5$yPXuvyxPX,y1~0!50,y2~L !50%.

L generates onX a C0 semigroup of contractions. 0¹s(L) iff v50 does not belong to the set o
velocities~i.e., m$uvu,«%50 for some«.0). In the discrete velocity case we assumed 0¹J and
henceL is invertible. Therefore~3.23! is equivalent to

y2L21~A~x!y!5L21g~x,v !, ~3.24!

with the BCs~3.23b!.
Lemma 3.5: L21 is compact on X iff the discrete velocities$v j , j PJ% do not accumulate in

Rv . (Such an accumulation would anyhow not be relevant in practical cases.)
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Proof: For yPX we have

~L21y!~x,v j !55
1

uv j u
E

0

x

y~j,v j ! dj, j .0

1

uv j u
E

x

L

y~j,v j !dj, j ,0.

~3.25!

In the case of finitely many velocitiesL21 is clearly compact. For infinitely many velocitie
without an accumulation point we decomposeL21:

L215PṽL211~ I 2Pṽ!L21, ~3.26!

wherePṽ is the projection fromL2(Rv ;dm) onto the~finitely many! velocitiesuv j u, ṽ. The first
summand of~3.26! is compact. The norm of the second summand is bounded byṽ21 and can thus
be made arbitrarily small by choosingṽ large enough. Hence,L21 andL21A are compact.

If the discrete velocities$v j% accumulate~e.g., asj→`), L21 is not compact: Consider th
bounded squence$yn,nPN% with yn(x,v j )5d j

n ~const inx), which does not have a converge
subsequence. j

With this result we have the second well-posedness result for the BVP~3.1!, ~3.4!:
Theorem 3.6:Assume that the velocities$v j , j PJ% do not accumulate inRv and that0¹J.

Let A(x) be skew-symmetric for all xP@0,L# and let APL`((0,L),B(L2(Rv ;dm))), and
( f 1, f 2)PY. Then, ~3.1!, ~3.4! has a unique solution wPX. Also, vwxPX.

Proof: Due to Lemma 3.5 the Fredholm alternative applies to~3.24! and any solutionyPX of
~3.24! also satisfiesyPD(L). It remains to show that the homogeneous version of~3.23! ~i.e.,
with g50) admits only the trivial solutiony50.

We multiply ~3.23a! by y and integrate over (0,L)3Rv to obtain

05E
0

LE
R
v~y~x,v !2!xdm dx5E

0

`

v~y~L,v !!2dm2E
2`

0

v~y~0,v !!2dm,

where we first used the skew-symmetry ofA(x) and then the BCs~3.23b!. This impliesy2(0)
50 and y1(L)50. Using the initial conditiony(0,v j )50,j PJ or z(0)50 for the IVP ~3.8!
implies z[0 andy[0. j

We finish this section with some remarks:

~1! The motivation for the assumptions onA(x) stem directly from the continuous velocity cas
There the pseudodifferential operatorA(x)5Q@V#(x) in the Wigner equation has the explic
form

A~x!w5iF 21$@V~x1./2!2V~x2./2!#Fw%

for wPL2(Rv) whereh→V(x6h/2) is a multiplication operator in the dual Fourier variab
h; F denotes the Fourier transform in thev variable.

AssumingVPL`(Rx) one sees thatA(x)PB(L2(Rv)) and iA(x)i<2iVi` . If the given
potential decays sufficiently at infinity,A(x) even regularizes:

iA~x!iL2(Rv)→H1(Rv)<Ci~11uxu!Vi` , ~3.27!

with some constantC that is independent of 0,x,L.
Furthermore, using Lebesgue’s dominated convergence theorem it is easy to see thaA(x)

is strongly continuous on@0,L#. If the potentialV is discontinuous at~at least! one pointin
@0,L#, thenA(x) is discontinuous for everyxP@0,L# in the uniform operator topology; this i
easily seen, e.g., for a step potential modeling tunneling in semiconductor devices.

~2! Theorem 3.3 equally applies for the continuous-velocity case when one uses avelocity cutoff
in the stationary Wigner equation in the vicinity of zero. For example, it applies to
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following modification of~1.6!:

z~v!wx2Q@V#w50,

with a cutoff functionz(v)5v for uvu.«.0 anduz(v)u>« elsewhere. Then,T2151/z(v) is
again a bounded operator onL2(Rv).

This velocity truncation is rather a technical restriction that could~possibly! be overcome in
the future. We remark that such a cutoff for small velocities is frequently encountere
stationary kinetic problems: cf. Ref. 33, for example, where the steady Boltzmann equa
studied.

Lemma 3.5 doesnot carry over to the continuous-velocity case, sinceL21 is then not
compact. However, if the potentialV decays such that (11uxu)V(x)PL`(Rx), compactness
in velocity direction~and hence a result analogous to Theorem 3.6! can be obtained from a
decomposion similar to~3.26!:

1

z~v!
A~x!5Pṽ

1

z~v!
A~x!1~I2Pṽ!

1

z~v!
A~x!.

Here, the first operator on the right-hand side is compact due to the compact imbe
H1(2 ṽ,ṽ)→L2(2 ṽ,ṽ) @cf. ~3.27!#, and the second operator can be made arbitrarily sm

~3! Our method and Theorem 3.3 apply also to symmetric velocity discretizations of the Liou
equation~1.7!, showing that the discretized version of the inflow BVP~1.7!, ~1.5! is uniquely
solvable. In the limit of continuous velocities, however, it is clear that no propagatorU(x,x8)
~cf. Lemma 3.1! can exist because of the characteristics intersecting thex axis ~unlessV
5const).

Similarly, the second approach~Theorem 3.6! would not work either for the classical cas
asA(x)5Vx]v is then unbounded.

~4! The original problem~1.6!—the stationary Wigner equation with continuous velocities—s
poses additional analytical problems since hereT21A(x) is unbounded onL2(Rv). This case
will eventually be treated in a forthcoming paper. To this end~3.18! with K<0 seems to be
the crucial structural property, since it is independent of« in the above cutoff functionz.

IV. ZERO AS A DISCRETE VELOCITY

In this section we shall analyze the discrete velocity Wigner equation

Twx2A~x!w50, 0,x,L, ~4.1!

for w(x)5(wj (x), j PJ)T in the case 0PJ. Again we prescribe inflow BCs

w1~0!5f1,
~4.2!

w2~L !5f2.

The model now includes the discrete velocityv050, hence~4.1! is a linear differential-algebraic
equation~DAE, see, e.g., Refs. 34 and 35!. Frensley already mentioned in Ref. 11 that one sho
‘‘avoid’’ this zero velocity in the numerical discretization of the stationary Wigner equation o
slab. In this section we shall analyze the algebraic reasons for it. To illustrate the pro
encountered here, we will first consider an example of dimensionmªuJu53 with a constant
matrix A:

Example 4.1:

Twx2S 0 2a1,0 2a1,21

a1,0 0 2a0,21

a1,21 a0,21 0
D w50, 0,x,L, ~4.3!
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with T5diag(v1,0,v21), w5(w1 ,w0 ,w21)T, and the BCs

w1~0!5 f 1 , w21~L !5 f 21 . ~4.4!

In order to avoid trivialities we assume thata1,0,a0,21Þ0.
As the second row of~4.3!—the algebraic constraint—does not involvew0 , one has to

differentiate algebraic constraints twice in order to express (w0)x as a function ofw. Hence, the
indexof ~4.3! is 2.

The constant-coefficient DAE~4.3! is calledtractable34 or solvable35 if the determinant

det~lT2A!5l~v1a0,21
2 1v21a1,0

2 ! ~4.5!

does not vanish identically forlPC. First we consider the casev1a0,21
2 1v21a1,0

2 Þ0. Then~4.3!
is easily seen to be equivalent to

~w1!x50,

a0,21w215a1,0w1 ,

a0,21w05a1,21w1 .

And, obviously, only one BC can be specified for~4.3! in this case.
In the nontractable case, i.e., forv1a0,21

2 1v21a1,0
2 50, the three rows of~4.3! are linearly

dependent~after differentiating the second row!. Hence, there are more than countably ma
solutions to the BVP~4.3!, ~4.4! in this case:

w1~x!5 f 1 expS 2
a1,21a1,0

v1a0,21
D2

a1,0

v1
E

0

x

w0~x8!expS 2
a1,21a1,0

v1a0,21
(x2x8) Ddx8,

w21~x!5
a1,0

a0,21
w1~x!,

andw0 is arbitrary up to the constraintw21(L)5 f 21 .
We summarize the situation of Example 3.1 in
Proposition 4.2: For any matrices T and A of the above structure, the DAE~4.3! is not

well-posed if two independent BCs~4.4! are prescribed.
We now turn to the general situation~4.1!, ~4.2!. To avoid technical difficulties, we confin

ourselves to the finite dimensional case (m,`) and we assumeA(x) to be sufficiently smooth in
xP@0,L#.

In the sequel we shall assume that~4.1! is solvable~see Sec. 2.4.1 of Ref. 35 for the definitio
in the variable coefficient case!. Otherwise~4.1! would not have a solutionw(x),0,x,L that is
uniquely determined by fixing the solutionw(x0) at one pointx0 .

In the variable coefficient case there is no simple characterization of solvability@like det(lT
2A)Ó0 for constant coefficients#, but we can give a sufficient criterion. First, we remark that~4.1!
can be written inHessenberg form of size 2, i.e.,

S I m21 0

0 0D wx2S Ã11~x! Ã12~x!

Ã21~x! 0
D w50, 0,x,L,

if the constraint

Ã21~x!Ã12~x!52(
j Þ0

aj 0
2 ~x!

v j
Þ0 ;xP@0,L# ~4.6!
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is satisfied. Here,Ã21(x) and Ã12(x) are, respectively, 13(m21) and (m21)31 matrices.
Propsition 4.3 (Sec. 2.4.2 of Ref. 35): If~4.1! is in Hessenberg form of size 2, then it

solvable and has index 2.
A simple calculation gives

det~lT2A~x!!5lm22S (
j Þ0

aj 0
2 ~x!

v j
D )

j Þ0
v j1 lower order terms~ in l!

@see~4.5!#. Hence, the Hessenberg condition~4.6! also implies the local~in x! regularity of the
matrix pencillT2A(x).

Next we discuss the index of the DAE~4.1!. SinceT is constant inx, it has constant rank, an
the differentiation procedure~of the algebraic constraint! can be used to define the index of~4.1!,
i.e., the minimum number of differentiations necessary to expresswx explicitly as a continuous
function of w andx ~see Sec. 2.4.1 of Ref. 35!. In ~4.1! the algebraic constraint has the form

(
j PJ

a0,j~x!wj50. ~4.7!

Sincea0,0(x)[0, ~4.1! has an indexk>2 ~if it is solvable!. The index can indeed exceed 2~e.g.,
for m54, the index 4 is possible!.

Since the differentiation procedure works for~4.1! it can be further shown~see Sec. 2.4.2 o
Ref. 35! that ~4.1! is ~analytically! equivalent to a decoupled system instandard canonical form:

S I m2s 0

0 N~x!
D yx2S C~x! 0

0 I s
D y50, 0,x,L, ~4.8!

wherew5R(x)y is a change of coordinates with a smooth, nonsingular matrixR(x), and we
partition y5(y1,y2)

T. N(x) is a strictly lower triangular, square matrix of sizes>k with nilpo-
tencyk. One easily verifies that the second equation of~4.8!,

N~x!~y2!x2y250

only has the trivial solutiony2(x)[0, and hence, no BCs may be specified fory2. A necessary
condition for the unique solvability of the first equation of~4.8! is to specifym2s BCs.

We therefore conclude that onlym2s(<m2k<m22) BCs may be prescribed for~4.8! or,
equivalently,~4.1!. Them21 BCs ~4.2! hence make the system overdetermined.

We summarize in
Theorem 4.4: (a) If the DAE (4.1) is not solvable (in the sense of Sec. 2.4.1 of Ref.

solutions of (4.1), (4.2) cannot be unique.
(b) If the DAE (4.1) is solvable, the BCs (4.2) are overdetermined and hence make the B

general) unsolvable.
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