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Casimir Force in Non-Planar Geometric Configurations
Sung Nae Cho

(ABSTRACT)

The Casimir force for charge-neutral, perfect conductors of non-planar geometric configurations have been investi-
gated. The configurations were: (1) the plate-hemisphere, (2) the hemisphere-hemisphere and (3) the spherical shell.
The resulting Casimir forces for these physical arrangements have been found to be attractive. The repulsive Casimir
force found by Boyer for a spherical shell is a special case requiring stringent material property of the sphere, as well
as the specific boundary conditions for the wave modes inside and outside of the sphere. The necessary criteria in
detecting Boyer’s repulsive Casimir force for a sphere are discussed at the end of this thesis.
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1. Introduction

The introduction is divided into three parts: (@hysics (2) applications and (3)developmentsA brief outline of
the physics behind the Casimir effect is discussed in item (1). In the item (2), major impact of Casimir effect on
technology and science is outlined. Finally, the introduction of this thesis is concluded with a brief review of the past
developments, followed by a brief outline of the organization of this thesis and its contributions to the physics.

1.1. Physics

When two electrically neutral, conducting plates are placed parallel to each other, our understanding from classical
electrodynamics tell us that nothing should happen for these plates. The plates are assumed to be that made of perfect
conductors for simplicity. In 1948, H. B. G. Casimir and D. Polder faced a similar problem in studying forces between
polarizable neutral molecules in colloidal solutions. Colloidal solutions are viscous materials, such as paint, that
contain micron-sized particles in a liquid matrix. It had been thought that forces between such polarizable, neutral
molecules were governed by the van der Waals interaction. The van der Waals interaction is also referred to as
the Lennard-Jones interaction. It is a long range electrostatic interaction that acts to attract two nearby polarizable
molecules. Casimir and Polder found to their surprise that there existed an attractive force which could not be ascribed
to the van der Waals theory. Their experimental result could not be correctly explained unless the retardation effect
was included in the van der Waals’ theory. This retarded van der Waals interaction or Lienard-Wiechert dipole-dipole
interaction [1] is now known as the Casimir-Polder interaction [2]. Casimir, following this first work, elaborated on the
Casimir-Polder interaction in predicting the existence of an attractive force between two electrically neutral, parallel
plates of perfect conductors separated by a small gap [3]. This alternative derivation of the Casimir force is in terms of
the difference between the zero-point energy in vacuum and the zero-point energy in the presence of boundaries. This
force has been confirmed by experiments and the phenomenon is what is now known as the “Casimir Effect.” The
force responsible for the attraction of two uncharged conducting plates is accordingly termed the “Casimir Force.” It
was shown later that the Casimir force could be both attractive or repulsive depending on the geometry and the material
property of the conductors [4, 5, 6].

The Casimir effect is regarded as macroscopic manifestation of the retarded van der Waals interaction between
uncharged polarizable atoms. Microscopically, the Casimir effect is due to interactions between induced multipole
moments, where the dipole term is the most dominant contributor if it is non-vanishing. Therefore, the dipole interac-
tion is exclusively referred to, unless otherwise explicitly stated, throughout the thesis. The induced dipole moments
can be qualitatively explained by quantum fluctuations in matter which leads to the energy imbalBEndee to
charge-separation between virtual positive and negative charge contents that lasts for a time/iiitenradistent
with the Heisenberg uncertainty principleEAt > h/4w, whereh is the Planck constant. The fluctuations in the
induced dipoles then result in fluctuating zero-point electromagnetic fields in the space around conductors. It is the
presence of these fluctuating vacuum fields that lead to the phenomenon of the Casimir effect. However, the dipole
strength is left as a free parameter in the calculations because it cannot be readily calculated. Its value must be deter-
mined from experiments.

Once this idea is accepted, one can then move forward to calculate the effective, temperature averaged, energy
due to the dipole-dipole interactions with the time retardation effect folded in. The energy between the dielectric
(or conducting) media is obtained from the allowed modes of electromagnetic waves determined by the Maxwell
equations together with the boundary conditions. The Casimir force is then obtained by taking the negative gradient
of the energy in space. This approach, as opposed to full atomistic treatment of the dielectrics (or conductors), is
justified as long as the most significant field wavelengths determining the interaction are large when compared with
the spacing of the lattice points in the media. The effect of all the multiple dipole scattering by atoms in the dielectric
(or conducting) media simply enforces the macroscopic reflection laws of electromagnetic waves. For instance, in the
case of the two parallel plates, the most significant wavelengths are those of the order of the plate gap distance. When
this wavelength is large compared with the interatomic distances, the macroscopic electromagnetic theory can be used
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with impunity. But, to handle the effective dipole-dipole interaction Hamiltonian, the classical electromagnetic fields
have to be quantized. Then the geometric configuration can introduce significant complications, which is the subject
matter this study is going to address.

Finally, it is to be noticed that the Casimir force on two uncharged, perfectly conducting parallel plates originally
calculated by H. B. G. Casimir was done under the assumption of absolute zero temperature. In such condition, the
occupational numbet for photon is zero; and hence, there are no photons involved in Casimir’s calculation for his
parallel plates. However, the occupation number convention for photons refers to those photons with electromagnetic
energy in quantum oE,,.:on = fw, whereh is the Planck constant divided i andw, the angular frequency.

The zero-point quantum of energl,,.. = fiw/2, involved in Casimir effect at absolute zero temperature is also of
electromagnetic origin in nature; however, we do not classify such quantum of energy as a photon. Therefore, this
quantum of electromagnetic enerd¥,.. = hw/2, will be simply denoted “zero-point energy” throughout this thesis.

By convention, the lowest energy state, the vacuum, is also referred to as a zero-point.

1.2. Applications

In order to appreciate the importance of the Casimir effect from industry’s point of view, we first examine the theo-
retical value for the attractive force between two uncharged conducting parallel plates separated by a gap of distance
d: Fo = =240~ 'w2d~*hc, wherec is the speed of light in vacuum amlds the plate gap distance. To get a sense of

the magnitude of this force, two mirrors of an area~ofl cm? separated by a distance #f1 um would experience

an attractive Casimir force of roughly 10~7 N, which is about the weight of a water droplet of half a millimeter

in diameter. Naturally, the scale of size plays a crucial role in the Casimir effect. At a gap separation in the ranges
of ~ 10 nm, which is roughly about a hundred times the typical size of an atom, the equivalent Casimir force would
be in the range of atmospheric pressure. The Casimir force have been verified by Steven Lamoreaux [7] in 1996 to
within an experimental uncertainty 686. An independent verification of this force have been done recently by U.
Mohideen and Anushree Roy [8] in 1998 to within an experimental uncertairit$oof

The importance of Casimir effect is most significant for the miniaturization of modern electronics. The technology
already in use that is affected by the Casimir effect is that of the microelectromechanical systems (MEMS). These
are devices fabricated on the scale of microns and sub-micron sizes. The order of the magnitude of Casimir force at
such a small length scale can be enormous. It can cause mechanical malfunctions if the Casimir force is not properly
taken into account in the design, e.g., mechanical parts of a structure could stick together, etc [9]. The Casimir force
may someday be put to good use in other fields where nonlinearity is important. Such potential applications requiring
nonlinear phenomena have been demonstrated [10]. The technology of MEMS hold many promising applications in
science and engineering. With the MEMS soon to be replaced by the next generation of its kind, the nanoelectrome-
chanical systems or NEMS, understanding the phenomenon of the Casimir effect become even more crucial.

Aside from the technology and engineering applications, the Casimir effect plays a crucial role in accurate force
measurements at nanometer and micrometer scales [11]. As an example, if one wants to measure the gravitational
force at a distance of atomic scale, not only the subtraction of the dominant Coulomb force has to be done, but also
the Casimir force, assuming that there is no effect due to strong and weak interactions.

Most recently, a new Casimir-like quantum phenomenon have been predicted by Feigel [12]. The contribution of
vacuum fluctuations to the motion of dielectric liquids in crossed electric and magnetic fields could generate velocities
of ~ 50 nm/s. Unlike the ordinary Casimir effect where its contribution is solely due to low frequency vacuum modes,
the new Casimir-like phenomenon predicted recently by Feigel is due to the contribution of high frequency vacuum
modes. If this phenomenon is verified, it could be used in the future as an investigating tool for vacuum fluctuations.
Other possible applications of this new effect lie in fields of microfluidics or precise positioning of micro-objects such
as cold atoms or molecules.

Everything that was said above dealt with only one aspect of the Casimir effect, the attractive Casimir force. In spite
of many technical challenges in precision Casimir force measurements [7, 8], the attractive Casimir force is fairly well
established. This aspect of the theory is not however what drives most of the researches in the field. The Casimir
effect also predicts a repulsive force and many researchers in the field today are focusing on this phenomenon yet to
be confirmed experimentally. Theoretical calculations suggest that for certain geometric configurations, two neutral
conductors would exhibit repulsive behavior rather than being attractive. The classic result that started it all is that
of Boyer’s work on the Casimir force calculation for an uncharged spherical conducting shell [4]. For a spherical
conductor, the net electromagnetic radiation pressure, which constitute the Casimir force, has a positive sign, thus



1. Introduction

being repulsive. This conclusion seems to violate fundamental principle of physics for the fields outside of the sphere
take on continuum in allowed modes, where as the fields inside the sphere can only assume discrete wave modes.
However, no one has been able to experimentally confirm this repulsive Casimir force.

The phenomenon of Casimir effect is too broad, both in theory and in engineering applications, to be completely
summarized here. | hope this informal brief survey of the phenomenon could motivate people interested in this
remarkable area of quantum physics.

1.3. Developments

Casimir’s result of attractive force between two uncharged, parallel conducting plates is thought to be a remarkable
application of QED. This attractive force have been confirmed experimentally to a great precision as mentioned earlier
[7, 8]. However, it must be emphasized that even these experiments are not done exactly in the same context as
Casimir’s original configuration due to technical difficulties associated with Casimir’'s idealized perfectly flat surfaces.

Casimir’s attractive force result between two parallel plates has been unanimously thought to be obvious. Its origin
can also be attributed to the differences in vacuum-field energies between those inside and outside of the resonator.
However, in 1968, T. H. Boyer, then at Harvard working on his thesis on Casimir effect for an uncharged spherical
shell, had come to a conclusion that the Casimir force was repulsive for his configuration, which was contrary to
popular belief. His result is the well known repulsive Casimir force prediction for an uncharged spherical shell of a
perfect conductor [4].

The surprising result of Boyer's work has motivated many physicists, both in theory and experiment, to search for its
evidence. On the theoretical side, people have tried different configurations, such as cylinders, cube, etc., and found
many more configurations that can give a repulsive Casimir force [5, 13, 14]. Completely different methodologies
were developed in striving to correctly explain the Casimir effect. For example, the “Source Theory” was employed
by Schwinger for the explanation of the Casimir effect [14, 15, 16, 17]. In spite of the success in finding many boundary
geometries that gave rise to the repulsive Casimir force, the experimental evidence of a repulsive Casimir effect is yet
to be found. The lack of experimental evidence of a repulsive Casimir force has triggered further examination of
Boyer’s work.

The physics and the techniques employed in the Casimir force calculations are well established. The Casimir force
calculations involve summing up of the allowed modes of waves in the given resonator. This turned out to be one of the
difficulties in Casimir force calculations. For the Casimir’s original parallel plate configuration, the calculation was
particularly simple due to the fact that zeroes of the sinusoidal modes are provided by a simple functional relationship,
kd = nm, wherek is the wave numbety] is the plate gap distance ands a positive integer. This technique can be
easily extended to other boundary geometries such as sphere, cylinder, cone or a cube, etc. For a sphere, the functional
relation that determines the allowed wave modes in the resondtos is «, ;, wherer, is the radius of the sphere;
andos ;, the zeroes of the spherical Bessel functignsn the notationy; ; denotedth zero of the spherical Bessel
function js. The same convention is applied to all other Bessel function solutions. The allowed wave modes of a
cylindrical resonator is determined by a simple functional relation= 5, ;, wherea, is the cylinder radius and ;
are now the zeroes of cylindrical Bessel functiois

One of the major difficulties in the Casimir force calculation for nontrivial boundaries such as those considered in
this thesis is in defining the functional relation that determines the allowed modes in the given resonator. For example,
for the hemisphere-hemisphere boundary configuration, the radiation originating from one hemisphere would enter the
other and run through a complex series of reflections before escaping the hemispherical cavity. The allowed vacuum-

field modes in the resonator is then governed by a functional relat}bﬁg - R, ‘ = nm, whereHR'/g - R, ‘ is

the distance between two successive reflection pﬁr‘htsandR"Q of the resonator, as is illustrated in Figure 3.1. As
will be shown in the subsequent sections, the actual functional forrﬁ}i’oj - R, ‘ is not simple even though the

physics behin(ﬂﬁ’g - R

is particularly simple: the application of the law of reflections. The task of obtaining

the functional relatiork || R’ — R'1|| = nr for the hemisphere-hemisphere, the plate-hemisphere, and the sphere

configuration formed by bringing in two hemispheres together is to the best of my knowledge my original development.
It constitutes the major part of this thesis.

This thesis is not about questioning the theoretical origin of the Casimir effect. Instead, its emphasis is on applying
the Casimir effect as already known to determine the sign of Casimir force for the realistic experiments. In spite of a
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number of successes in the theoretical study of repulsive Casimir force, most of the configurations are unrealistic. In
order to experimentally verify Boyer’s repulsive force for a charge-neutral spherical shell made of perfect conductor,
one should consider the case where the sphere is formed by bringing in two hemispheres together. When the two
hemispheres are closed, it mimics that of Boyer's sphere. It is, however, shown later in this thesis that a configuration
change from hemisphere-hemisphere to a sphere induces non-spherically symmetric energy flow that is not present
in Boyer's sphere. Because Boyer's sphere gives a repulsive Casimir force, once those two closed hemispheres are
released, they must repulse if Boyer's prediction were correct. Although the two hemisphere configuration have been
studied for decades, no one has yet carried out its analytical calculation successfully. The analytical solutions on two
hemispheres, existing so far, was done by considering the two hemispheres that were separated by an infinitesimal
distance. In this thesis, the consideration of two hemispheres is not limited to such infinitesimal separations.

The three physical arrangements being studied in this thesis are: (1) the plate-hemisphere, (2) the hemisphere-
hemisphere and (3) the sphere formed by brining in two hemispheres together. Although there are many other boundary
configurations that give repulsive Casimir force, the configurations under consideration were chosen mainly because
of the following reasons: (1) to be able to confirm experimentally the Boyer’s repulsive Casimir force result for a
spherical shell, (2) the experimental work involving configurations similar to that of the plate-hemisphere configuration
is underway [10]; and (3) to the best of my knowledge, no detailed analytical study on these three configurations exists
to date.

My motivation to mathematically model the plate-hemisphere system came from the experiment done by a group
at the Bell Laboratory [10] in which they bring in an atomic-force-probe to a flopping plate to observe the Casimir
force which can affect the motion of the plate. In my derivations for equations of motion, the configuration is that of
the “plate displaced on upper side of a bowl (hemisphere).” The Bell Laboratory apparatus can be easily mimicked
by simply displacing the plate to the under side of the bowl, which | have not done. The motivation behind the
hemisphere-hemisphere system actually arose from an article by Kenneth and Nussinov [18]. In their paper, they
speculate on how the edges of the hemispheres may produce effects such that two arbitrarily close hemispheres cannot
mimic Boyer’s sphere. This led to their heuristic conclusion which stated that Boyer's sphere can never be the same
as the two arbitrarily close hemispheres.

To the best of my knowledge, two of the geometrical configurations investigated in this thesis work have not yet
been investigated by others. They are the plate-hemisphere and the hemisphere-hemisphere configurations. This does
not mean that these boundary configurations were not known to the researchers in the field, e.g., [18]. For the case of
the hemisphere-hemisphere configuration, people realized that it could be the best way to test for the existence of a
repulsive Casimir force for a sphere as predicted by Boyer. The sphere configuration investigated in this thesis, which
is formed by bringing two hemispheres together, contains non-spherically symmetric energy flows that are not present
in Boyer’s sphere. In that regards, the treatment of the sphere geometry here is different from that of Boyer.

The basic layout of the thesis is as follows: (f)roduction (2) Theory (3) Calculations and (4)Results The
formal introduction of the theory is addressed in chapters (1) and (2). The original developments resulting from this
thesis are contained in chapters (3) and (4). The brief outline of each chapter is the following: In chapter (1), a
brief introduction to the physics is addressed; and the application importance and major developments in this field
are discussed. In chapter (2), the formal aspect of the theory is addressed, which includes the detailed outline of
the Casimir-Polder interaction and brief descriptions of various techniques that are currently used in Casimir force
calculations. In chapter (3), the actual Casimir force calculations pertaining to the boundary geometries considered in

this thesis are derived. The important functional relatio B, — R/ ) is developed here. The dynamical aspect of

the Casimir effect is also introduced here. Due to the technical nature of the derivations, many of the results presented
are referred to the detailed derivations contained in the appendices. In chapter (4), the results are summarized. Lastly,
the appendices have been added in order to accommodate the tedious and lengthy derivations to keep the text from
losing focus due to mathematical details. To the best of my knowledge, everything in the appendices represent original

developments, with a few indicated exceptions.

The goal in this thesis is not to embark so much on the theory side of the Casimir effect. Instead, its emphasis is
on bringing forth the suggestions that might be useful in detecting the repulsive Casimir effect originally initiated by
Boyer on an uncharged spherical shell. In concluding this brief outline of the motivation behind this thesis work, | must
add that if by any chance someone already did these work that | have claimed to represent my original developments,
| was not aware of their work at the time of this thesis was being prepared. And, should that turn out to be the case, |
would like to express my apology for not referencing their work in this thesis.



2. Casimir Effect

The Casimir effect is divided into two major categories: (1) the electromagnetic Casimir effect and (2) the fermionic
Casimir effect. As the titles suggest, the electromagnetic Casimir effect is due to the fluctuations in a massless Maxwell
bosonic fields, whereas the fermionic Casimir effect is due to the fluctuations in a massless Dirac fermionic fields. The
primary distinction between the two types of Casimir effect is in the boundary conditions. The boundary conditions
appropriate to the Dirac equations are the so called “bag-model” boundary conditions, whereas the electromagnetic
Casimir effect follows the boundary conditions of the Maxwell equations. The details of the fermionic force can be
found in references [14, 17].

In this thesis, only the electromagnetic Casimir effect is considered. As it is inherently an electromagnetic phe-
nomenon, we begin with a brief introduction to the Maxwell equations, followed by the quantization of electromag-
netic fields.

2.1. Quantization of Free Maxwell Field

There are four Maxwell equations:

60E<ﬁ,t> =dnp (ﬁ,t), ﬁxE(R:t) =7 (2.1)

- oo - AN AT -/ =
VoB(R,t)zO, VXB(R,t):7J(R,t)+ET, 2.2)
where the Gaussian system of units have been adopted. The electric and the magnetic field are defined respectively by
E=-V®—c19,AandB = V x A, whered is the scalar potential and is the vector potential. Equations (2.1)

and (2.2) are combined to give

3
4 1 4
3 {47r81p N I {a@ + -0 A + eljkajAk} O Ty
C iy C C

=1

1 1 1 .
—i—gaf |:8lq) + C@Ag] + CzeljkajafAk} é =0,

where the Einstein summation convention is assumed for repeated indices. Because the components along basis
directioné; are independent of each other, the above vector algebraic relation becomes three equations:

3
4 1 4
Andp+ Oy — Y 02, [alcb +SOA + qjkajAk} + e inOm
C (& C

m=1

1 1 1
+078? [81‘1) + C&A;} + C—qukajafAk =0, (2.3)

wherel = 1,2, 3.

To understand the full implications of electrodynamics, one has to solve the above set of coupled differential equa-
tions. Unfortunately, they are in general too complicated to solve exactly. The need to choose an appropriate gauge
to approximately solve the above equations is not only an option, it is a must. Also, for what is concerned with the
vacuum-fields, that is, the radiation from matter when it is in its lowest energy state, information about the charge
densityp and the current densitimust be first prescribed. Unfortunately, to describe properly the charge and current
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densities of matter is a major difficulty in its own. Therefore, the charge demsityl the current densn;y are set to
be zero for the sake of simplicity and the Coulomb gat@e A=0,is adopted. Under these conditions, equation
(2.3) is simplified tod? A, — ¢=20? A; = 0, wherel = 1,2, 3. The steady state monochromatic solution is of the form

A (ﬁ, t) =a(t) A (é) ot () A (é)
= o (0) exp (—iwt) Ay (R’) +a* (0) exp (iwt) A% (R’) ,

Where/YO (ﬁi) is the solution to the Helmholtz equaﬂ(ﬁ‘FAo ( ) +c 2w 2A0 ( ) = 0 anda (t) is the solution

of the temporal differential relation satisfyirig(t) + w?a (t) = 0. With the solutionA (ﬁ, t) , the electric and the
magnetic fields are found to be

and
E(R’,t) =a(t)V x Ay (R‘) ot (b)Y x A (R) .
The electromagnetic field Hamiltonian becomes:

1 * * 3
He = o [E oE+ B oB}dR_—Ha()H , (2.4)

wherek is a wave number and, (ﬁ) have been normalized such ﬂf%tAO,l (R) d*R = 1 with Ao, (R) represent-

ing thelth component ofd, (ﬁ) .

We can transforni{ z into the “normal coordinate representation” through the introduction of “creation” and “an-
nihilation” operatorsa® anda. The resulting field Hamiltoniafi - of equation (2.4) is identical in form to that of the
canonically transformed simple harmonic oscillatdts; o< p? + ¢> — Ksy o a'a. For the free electromagnetic
field Hamiltonian, the canonical transformation is to follow the sequégg o ||« (¢)||> — Hsy o E2+ B2 under
a properly chosen generating function. The result is that with the following physical quantities,

(t) ! [ (t) — o™ (1)) (t) - [ (8) + ™ (1)]
= ——a(f) —« , = — |« « ,
1 cVam b &%

the free field Hamiltonian of equation (2.4) becomes

1
He =5 [p* () +w¢ ()], (2.5)
which is identical to the Hamiltonian of the simple harmonic oscillator. Then, through a direct comparison and
observation with the usual simple harmonic oscillator Hamiltonian in quantum mechanics, the following replacements
are made

2mhc? 2mhc?
T2, at(t)— ) 7=

a(t) — " "

and, the quantized relations f&r(ﬁ, t) E (ﬁ, t) andB ( ) are found,

A(RA) = 22 (o) Ay (R) +a' (0 25 ()]

w
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B(R) = /22 [a )9 Ay (R) +a (09 = 43 (R)]

w

where it is understood that (FZ, t) JE (R, t) andB (R ) are now quantum mechanical operators.
e photon becomes

The associated field Hamiltonian operator for th

Fp = ho [aT ) alt) + ;] , 2.6)

where the haf/A) overH  now denotes an operator. The quantum mechanical expression for the free electromagnetic
field energy per mode of angular frequengy summed over all occupation numbers becomes

Hg _ni0<ns 7:{1:’713> —nio {n + } ',

wherew’ = o’ (n) andng is the occupation number corresponding to the quantum Btate Summation over all
angular frequency modesand polarization®, . gives

o= 3 {n 2o S = S

ns=0

where?;, is defined by

’ 1 HO o , nS:0717273a"'7 27
Hns = [ns+2] w’nz:;)w (n)7 w/(n): u;'/(n)H > 0. ( . )

Herew’ (n) = ||’ (n) H is the magnitude afth angular frequency of the electromagnetic fieltiin) = Zle wh(n;) €,

and ©,, is the number of indepengent polarizations of the field. The energy equation (2.7) is valid for the case
where the angular frequency vectof,, happens to be parallel to one of the coordinate axes. For the general case
wherew’,, is not necessarily parallel to any one of coordinate axes, the angular frequency is giuéiry=

3 , 07 1/2 . .
{Zi:l [wi (n4)] } . The stationary energy is therefore

[e'e) [e'e] (') 3 1/2
H, o, =H, = {n + ﬂ ZE S {Z [k} (ns, L;) } : (2.8)

n1—0n2 0713 0 =1

where the substitution! (n;) = ck; (n;, L;) have been made. Helg is the quantization lengtl®),,, has been been
changed t®, and the subscrigt of H;ls,b denotes bounded space.

When the dimensions of boundaries are such that the differénee(n;, L;) = k. (n; + 1, L;) — ki (n;, L;) , is
infinitesimally small, we can replace the summation in equation (2.8) by integration,

S [ vt = ) e e [T [T g,

TL1:0 ’I’L2:0 n3:0

where in the last step the functional definition fdr = k. (n;, L;) = n,f; (L;) have been used to replade; by
dk;/ fi; (L;) . In free space, the electromagnetic field energy for quantum |statés given by

/ ’ [ hcgk’ ’ 2 v 13t
7_[ns,uE7—{nS = f (Ll)fQ L2 f3 L3 / / / k nvaz)] dkldk2dk3> (29)

where the subscript of /], , denotes free or unbounded space, and the functjfridl;) in the denominator is equal
to (zemni_lL{l for a givenL;. Here(. ., is the zeroes of the function representing the transversal component of the
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Induced dipoles

Reference origin

Figure 2.1.: Two interacting molecules through induced dipole interactions.

electric field.

2.2. Casimir-Polder Interaction

The phenomenon referred to as Casimir effect has its root in van der Waals interaction between neutral particles that
are polarizable. The Casimir force may be regarded as a macroscopic manifestations of the retarded van der Waals
force. The energy associated with an electric dipole momgint a given electric fieldt is Hy, = —p, @ E. When the
involved dipole momeng, is that of the induced rather than that of the permanent one, the induced dipole interaction
energy is reduced by a factor of Wiy = —p @ F?/2. The factor of one half is due to the fact tid}y now represents
the energy of a polarizable particle in an external field, rather than a permanent dipole. The role of an external field
here is played by the vacuum-field. Since the polarizability is linearly proportional to the external field, the average
value leads to a factor of one half in the induced dipole interaction energy. Here the medium of the dielectric is
assumed to be linear. Throughout this thesis, the dipole moments induced by vacuum polarization are considered as a
free parameters.

The interaction energy between two induced dipoles shown in Figure 2.1 are given by
-5 N 5 12 N N N -

{[ﬁcm °ﬁd,2] HRz - RlH -3 [ﬁd,l L4 (RQ - R1)} [ﬁd,2 L4 (Rz - R1>:| } )

—

Mo = 5 | o~ B

whereR; is the position ofith dipole. For an isolated system, the first order perturbation er(eﬂjﬁ@ vanishes due
to the fact that dipoles are randomly oriented, igy,;) = 0. The first non-vanishing perturbation energy is that of the
second order/. s ¢ static = <H§2)> = Zmﬂ) (0| Hint| m) (m |Hint| 0) [Eo — Em]’1 , which falls off with respect

wnt

= ~ 11—6
to the separation distance lik& s ¢ stqtic HR2 - R . This is the classical result obtained by F. London for short
distance electrostatic fields. F. London employed quantum mechanical perturbation approach to reach his result on a
static van der Waals interaction without retardation effect in 1930.
The electromagnetic interaction can only propagate as fast as the speed of light in a given medium. This retardation
effect due to propagation time was included by Casimir and Polder in their consideration. It led to their surprising

N T
discovery that the interaction between molecules falls oﬁ’I’iE — Ry H . It became the now well known Casimir-
Polder potential [2],

he

Ueff,r’etarded = _471_

R TR
Ry — RlH {23 {ag)ag) + a§§)a§{?] -7 {ag)aff) + a%l{)ag)} } ,

Whereag) andag\f} represents the electric and magnetic polarizabilititoparticle (or molecule).

To understand the Casimir effect, the physics behind the Casimir-Polder (or retarded van der Waals) interaction is
essential. In the expression of the induced dipole engfgy- —py e 5/2, we rewritepy = a (w) E,, for the Fourier
component of the dipole moment induced by the Fourier compoﬁ@,mﬁ the field. Heren (w) is the polarizability.

The induced dipole field energy beconiés = —a (w) El, - E,, /2, where the(-) denotes the matrix multiplication
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instead of the vector dot produ@t) . Summing over all possible modes and polarizations, the field energy due to the
induced dipole becomes

]. —. — — —
Hd,l = *5 ZOLl (wk) EI,E,)\ (Rl,t> 'El,E,A (Rl,t) y
EA

where the subscriptd ) and (1, k, )\) denote that this is the energy associated with the induced dipole mginent

at locationR; as shown in Figure 2.1. The total electric fiel  , (ﬁl,t> in mode (E, )\) acting onj;, is given

by
B (Rl; ):Eo,m (R’l,t) By (Rl, )

whereE | (El,t) is the vacuum-field at locatioR; and E, ;. , (ﬁl,t) is the induced dipole field a8, due to

the neighboring induced dipojg; » located atfi,. The effective Hamiltonian becomes

s =5 oo [, (7 ) s 0 () B 0

kX

Bl () B () 4 B, () £ ()]

= Ho + Hﬁd,z + Hﬁd,l,ﬁd,w

where
e e By () £ ().
s =g S ) L, (o) B (o)
Hﬁd‘lgl_fdﬁ = D) Zal Wk [ (Rl, ) : (R1, ) +E);E7)\ (E1,t) 'EO,Q,A (ﬁl,tﬂ .

Because only the interaction between the two induced dipoles is relevant to the Casimir effégs, the , term is
considered solely here. In the language of field operators, the vacuunﬁ(f)iglg (El, t) is expressed as a sum:

E i\ (R t) EEZ)A (ﬁlvt)JrEi,_;;),A (Rl,t),

where

= = . 2mhwy, ] oo
E(():%)«\ (Rl, t) =1 = k af (O) exp (—zwkt) exp (Zk: ° Rl) €fxs

S . 2mhwy, . =2\ A
EC) (Rl,t) =— v a;%,/\ (0) exp (iwyt) exp (—zk: D Rl) €7 x-

In the above expressionst anda,; , are the creation and annihilation operators respectivelyyattte quantization

volume; €rxo the polarization. By conventlorEHk (R}, t) is called the positive frequency (annihilation) operator

) 7
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andEi_E) \ (ﬁl, t) is called the negative frequency (creation) operator.

The field operatoﬁ2 T (ﬁl, t) has the same form as the classical field of an induced electric dipole,

By (Fat) = {3 [z 0 8] 8 = ua | 5 W = rfl + i a0 /)|
= {ﬁd,2 - [ﬁm . 5’] S} Hﬁdg (t—r/c) ’ ;

c2r

wherer = “ég—él‘ = ,SZ {EQ—El}/"ﬁg—ﬁl’
is the speed of light in vacuum. Because the dipole moment is expresggd-as: (w) E,, the appropriate dipole
moment in the above expression @5 o (RL t) is to be replaced by

ﬁd,z = ZO&Q (wk [ (+) (R t) +Ei%)A (ég,t)] ,
P9y

whereas (wy) is now the polarizability of the molecule or atom associated with the induced dipole mgineat the
location R,. With this in place E, ; | (ﬁl, ) is now a quantum mechanical operator.

The interaction Hamiltonian operatdt;; can be written as

a,1,Pd,2
Fnis = —3 2 o o) (B, (Buot) - By (Runt)) + (B (Runt) - B, (Rt
kA

where we have taken into account the fact tﬁétgk (ﬁg,t) lvac) = (vac| EE’E)A (Eg,t) = 0. It was shown in [17]
in great detail that the interaction energy is gi\}én by o

_2mh
U (r) = (Hpuspas) = ‘7; Rg Z k3w (wi) oo (wi) exp (—ikr) exp (zk . r)

EA

b b ]

In the limit of r < ¢/ |wmn|, Wherew,,,, is the transition frequency between the ground state and the first excited
energy state, or the resonance frequency, the above result becomes

3 _ - _
() = | %= 2fahe o o)

This was also the non-retarded van der Waals potential obtained by F. Londonw Hetbe transition frequency, and
« is the static = 0) polarizability of an atom in the ground state. Once the retardation effect due to light propagation
is taken into account, the Casimir-Polder potential becomes,

U (r) g_[ hicay (W) an (w)] .

47

What we try to emphasize in this brief derivation is that both retarded and non-retarded van der Waals interac-
tion may be regarded as a consequence of the fluctuating vacuum-fields. It arises due to a non-vanishing corre-

lation of the vacuum-fields over distance of= Hﬁg — EIH' The non-vanishing correlation here is defined by

<U@C’E(+) (R t) ) (Rg, ) vac> # 0. In more physical terms, the vacuum-fields induce fluctuating dipole

moments in polarlzable medla The correlated dipole-dipole interaction is the van der Waals interaction. If the retar-
dation effect is taken into account, it is called the “Casimir-Polder” interaction.
In the Casimir-Polder picture, the Casimir force between two neutral parallel plates of infinite conductivity was

10



2. Casimir Effect

z=0 z=d

Figure 2.2.: A cross-sectional view of two infinite parallel conducting plates separated by a gap distaacd.dfhe
lowest first two wave modes are shown.

found by a simple summation of the pairwise intermolecular forces. It can be shown that such a procedure yields for
the force between two parallel plates of infinite conductivity [17]

= 207he

F(d;L,c) (2.10)

Casimir—Polder — _m
When this is compared with the force of equation (2.11) computed with Casimir’'s vacuum-field approach, which will

be discussed in the next section, the agreement is with20% [17]. In other words, one can obtain a fairly reason-

able estimate of the Casimir effect by simply adding up the pairwise intermolecular forces. The recent experimental
verification of the Casimir-Polder force can be found in reference [19].

The discrepancy of 20% between the two force results of equations (2.10) and (2.11) can be attributed to the fact
that the force expression of equation (2.10) had been derived under the assumption that the intermolecular forces were
additive in the sense that the force between two molecules is independent of the presence of a third molecule [17, 20].
The van der Waals forces are not however simply additive (see section 8.2 of reference [17]). And, the motivation
behind the result of equation (2.10) is to illustrate the intrinsic connection between Casimir-Polder interaction and the
Casimir effect, but without any rigor put into the derivation.

Itis this discrepancy between the microscopic theories assuming additive intermolecular forces, and the experimen-
tal results reported in the early 1950s, that motivated Lifshitz in 1956 to develop a macroscopic theory of the forces
between dielectrics [21, 22]. Lifshitz theory assumed that the dielectrics are characterized by randomly fluctuating
sources. From the assumed delta-function correlation of these sources, the correlation functions for the field were
calculated, and from these in turn the Maxwell stress tensor was determined. The force per unit area acting on the two
dielectrics was then calculated as thecomponent of the stress tensor. In the limiting case of perfect conductors, the
Lifshitz theory correctly reduces to the Casimir force of equation (2.11).

2.3. Casimir Force Calculation Between Two Neutral Conducting
Parallel Plates

Although the Casimir force may be regarded as a macroscopic manifestation of the retarded van der Waals force be-
tween two polarizable charge-neutral molecules (or atoms), it is most often alternatively derived by the consideration

of the vacuum-field energhw/2 per mode of frequency rather than from the summation of the pairwise intermolec-

ular forces. Three different methods widely used in Casimir force calculations are presented here. They are: (1) the
Euler-Maclaurin sum approach, (2) the vacuum pressure approach by Milonni, Cook and Goggin, and lastly, (3) the

source theory by Schwinger. The main purpose here is to exhibit their different calculational techniques.

2.3.1. Euler-Maclaurin Summation Approach

For pedagogical reasons and as a brief introduction to the technique, the Casimir’s original configuration (two charge-
neutral infinite parallel conducting plates) shown in Figure 2.2 is worked out in detail.

11
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Since the electromagnetic fields are sinusoidal functions, and the tangential component of the electric fields vanish
at the conducting surfaces, the functiohgL;) have the formf; (L;) = wL;*. The wave numbers are given by
K/ (ni, L;) = ni fi (L;) = nywL; . Forng = 0 in equation (2.8), the ground state radiation energy is given by

Ho b 4109;6/ Z Z Z {Zn27r2L }1/2.

n1=0n9=0n3=0

For the arrangement shown in Figure 2.2, the dimensions are suchithat Ly and L, > L3, where(Ly, Lo, L3)
corresponds t¢L,, L,, L.). The area of the plates are given By x L,. The summation oven, andn, can be
replaced by an integration,

1/2
Ho *hCLlLQF @k// / [k'} +n§7r2Li_2} dk;,dk;,.

For simplicity and without any loss of generality, the designatiohof= L, = L and L3 = d yields the result

2 2y 1/2
Hy, o (d) @’“ / / { + K]+ ”j;} dk, k),

nay=— =0

HereH,, , (d) denotes the vacuum electromagnetic field energy for the cavity when plate gap distdnte tise
limit the gap distance becomes arbitrarily large, the sum ayes also replaced by an integral representation to yield

@k’ 2 2 1/2
M, (00) = 5 cﬂdllrgo< / / / + [y + (R dk;dk;dk;).

This is the electromagnetic field energy inside an infinitely large cavity, i.e., free space.

The work required to bring in the plates from an infinite separation to a final separatibis tfien the potential
energy,

U(d)=H,,,(d )— ) )
2,_2y1/2
{ 4 [k BT } dk, di,

@k,
= y 2
n3= =0
. d 2 2 2\ 1/2
~ lim (W/o /O /O (AR AAAY dk;dk;dk;ﬂ.

The result is a grossly divergent function. Nonetheless, with a proper choice of the cutoff function (or regularization
function), a finite value folJ (d) can be obtained. In the polar coordinates representétiat) , we definer? =

[k,)* + [k,]? anddk,dk!, = rdrde, then

, 2 /2 co 2. 9
U(d) = @’“ hel M / IRV e rdrdo
=0 p3=0
w/2 oo
~ lim < / / / \/r2+[k’z]2rdrd9dk;>],
—° k=0 JO= r=0

where the integration overis done in the rangé < 6 < /2 to ensurek;, > 0 andk; > 0. For convenience, the
integration ovep is carried out first,

’ L2
U(d) = Lkﬁf l \/r2 + 0 Td?“ - hm ( / 0/ ) \/ 72+ [k rdrdk:’)]
r=0 I — r=

As mentioned earliet/ (d) in current form is grossly divergent. The need to regularize this divergent function through

12
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some physically intuitive cutoff function is not a mere mathematical convenience, it is a must; otherwise, such a
grossly divergent function is meaningless in physics. A cutoff (or regularizing) function in the forf{/dj =

f < r2 + [k’]Q) (orf(k')=1f (\/’I‘Q +n§772d—2)) such thatf (k') = 1 for &' < kg, and f (k') = 0 for
k' > ki, is chosen. Mathematically speaking, this cutoff functjofi’) is able to regularize the above divergent
function. Physically, introduction of the cutoff takes care of the failure at small distance of the assumption that plates
are perfectly conducting for short wavelengths. It is a good approximation to adﬁgmjef ~ 1/a,, wherea, is

the Bohr radius. In this sense, one is inherently assuming that Casimir effect is primarily a low-frequency or long
wavelength effect. Hence, with the cutoff function substitutetl ifal) above, the potential energy becomes

o= [ [ (o)
~ lim (W /k;_o /T:o \/r2+[k’z]2f (\/r2+[k;]2) rdrdk'z)].

The summatiory " .—o and the mtegray _, In the first term on the right hand side can be interchanged. The inter-
change of sums and integrals is justified due to the absolute convergence in the presence of the cutoff function. In
terms of the new definition for the integration variables= r2d?7~2 andx = k’dn~!, the above expression for

U (d) is rewritten as
1 5 0|1 o= [ ™
U(d):§@k/th7r [di)’ g /I: l/x—l—n%f(d\/x—l—n%)dx

d—oo
1 = oo
= §®k/th27r2 F(0)+ Z F (n3) —/ F (k) dm] ,
na=1 xk=0
where
_ 1= 20T 2

F(n3) = g/r:() \/x—l—n3f (d\/x—l—n3> dz,

and

Fi=jim (5 [ Verer (GVere)a).

Then, according to the Euler-Maclaurin summation formula [23, 24],

ZF”3 / Fn ;F(O) 1dF()+Ld3F(O)+

12 dk 720 dk3

ns= 1
for F(co) — 0. Noting that fromF (k) = [5 /rf (%Z/r)dr anddF (k) /dx = —2x*f (Zk), one can find
F(0) /dk =0, d*F (0) /dr® = —4, and all higher order derivatives vanish if one assumes that all derivatives of the

cutoff function vanish ak = 0. Finally, the result for the vacuum electromagnetic potential en&r¢y) becomes
U(d;L,c)=—6 her
A VYTV

This result is finite, and it is independent of the cutoff function as it should be. The corresponding Casimir force for

13
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the two infinite parallel conducting plates is given by

~ oU (d; L, c) 3her?
FdLe)==—57— = Oz

The electromagnetic wave has two possible polarizations= 2, therefore,

2
hers

24044

F(dL,c)=— (2.11)

This is the Casimir force between two uncharged parallel conducting plates [3].

Itis to be noted that the Euler-Maclaurin summation approach discussed here is just one of the many techniques that
can be used in calculating the Casimir force. One can also employ dimensional regularization to compute the Casimir
force. This technique can be found in section 2.2 of the reference [14].

2.3.2. Vacuum Pressure Approach

The Casimir force between two perfectly conducting plates can also be calculated from the radiation pressure exerted
by a plane wave incident normally on one of the plates. Here the radiation pressure is due to the vacuum electromag-
netic fields. The technique discussed here is due to Milonni, Cook and Goggin [25].

The Casimir force is regarded as a consequence of the radiation pressure associated with the zero-point energy of
hw/2 per mode of the field. The main idea behind this techniques is that since the zero-point fields have the momentum
p, = hk}/2, the pressure exerted by an incident wave normal to the plates is twice the éh@eyunit volume of
the incident field. The pressure imparted to the plate is twice that of the incident wave for perfect conductors. If the
wave has an angle of incidenég,., the radiation pressure is

P=FA""'=2Hcos? Oipe.

Two factors ofcos 6;,,. appear here because (1) the normal component of the linear momentum imparted to the plate
is proportional tacos 6;,,., and (2) the element of aredis increased by / cos 6;,. compared with the case of normal
incidence. It can be shown then

-2

11 Fw
P = 205 B = 2 X 5 X Sl x V1 x 008 e = 5 )’ ‘

2
2V

i

where the factor of half have been inserted because the zero-point field energy of a mode ofieriengydivided
equally between waves propagating toward and away from each of the platas:sPhe. factor have been rewritten

using the fact that, = ke é, = ‘ || cos fine, Whereé, is the unit vector normal to the plate on the inside,
iz
The successive reflections of the radiation off the plates act to push the plates apart through a Bréssuaege

plates wherd: , k; take on a continuum of values and the component along the plate gap-igi7/d, wheren is a
positive mteger the total outward pressure on each plate over all possible modes can be written as

Pout = 2:;;6 / / [/ d] dk,dk,,,
k=0 k12 4 [k + o/

whereO,;. is the number of independent polarizations.

External to the plates, the allowed field modes take on a continuum of values. Therefore, by the replacement of
S = ld f;;ozo in the above expression, the total inward pressure on each plate over all possible modes is given

n=1
@k/hc }2
k., =0 k’ k7, =0 \/ kl [k/,/}

= w/candV is the quantization volume.

by

14
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Both P,,; and P;, are infinite, but their difference has physical meaning. After some algebraic simplifications, the
difference can be written as

@k/ﬂ' hc [
n — T o4

Pout — P da:du] .

An application of the Euler-Maclaurin summation formula [23, 24] leads to the Casimir’s result

m2he

Pout - Pin = _W’

where®;, = 2 for two possible polarizations for zero-point electromagnetic fields.

2.3.3. The Source Theory Approach

The Casimir effect can also be explained by the source theory of Schwinger [14, 15, 17]. An induceg/dipaie
field E has an energ¥t, = —p,e E/2. The factor of one half comes from the fact that this is an induced dipole energy.
When there aréV dipoles per unit volume, the associated polarizatioRf iss Np,; and the expectation value of the
energy in quantum theory i§€,) = — [ <ﬁd . E/2> d3R. Here the polarizability inp; is left as a free parameter
which needs to be determined from the experiment. The expectation value of the energy is then

1 _ -, .
(i) =5 [(Fe B9+ EO wpi) &R,

whereE (+ (R t) = E(i) (R t) + E(i) (R t) Hereﬁéi) is the vacuum-field and‘fgi) is the field due to other

sources. Sinc&| (R,t) |vac) = (vac| ES (R, t) = 0, the above expectation value of the energy can be written
as

1 3 3
(Ha) = / (Fue EO) &R + e, 2.12)

wherec.c. denotes complex conjugation. From the fact that electric field operator can be written as an expansion in
the mode functionsl,, (ﬁ) ,

B =i /amhon |an () Aa (R) - ol (0) A (B)],

the Heisenberg equation of motion f@f (t) anda, s (¢) are obtained as

(a (t) = —twaaq (1) + 1/ 21Wa /A* R opd R t) d3R
Ag,s ( \/27Twa/exp (iwq [t —t]) dt’ /A*(_‘)oﬁd<Rt)d3R,

15
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wherea, s (t) is the source contribution part af, (t) . The “positive frequency” or the photon annihilation part of
E (ﬁ, t) can then be written as

B ( R, t) =27 » wada (ﬁz) / t exp (iwg [t — t]) dt’ / AX (R’) oy (R",t’) PR
p 0

= 27ri//t Z“’M‘T (R) A* (R") exp (iwg [t — t]) ® P (R’,t’) dt'd*R’
—871'// G<+> RR’tt)opd( )dtd3R’

whereG(+ (R R’ t t) is a dyadic Green function
«—> >
+) (p p. AR 1 1 n\ A o/ - I
G (R, Rt t ) 1 gwaAa (R) . (R) exp (iwq [t —1]) . (2.13)
Equations (2.12) and (2.13) lead to the result

(Hg) = —87Rp /R / /0 t G((—f) (ﬁ, ﬁ’;t,t’) <ﬁd,j (é, t) oG (é’,t')>dt’d3é’d3é,

where the summation over repeated indices is understood® amttnotes the real part. The above result is the energy
of the induced dipoles in a medium due to the source fields produced by the dipoles. It can be further shown that for
the infinitesimal variations in energy,

(6Ha) = —4Rg / / / t / T, (E, R”,w) <ﬁd,j (R’,t) oGy (R’,t’)>exp (iw [t — 1)) dwdt' d®* R &®R,
RJR JO JO
wherel';; (E, R",w) is related to@) (ﬁ, R";t,t’) through the relation

C(J(—H) (ﬁ, R";t,t’) = % /000 L) (é, R",w) exp (iw [t —t]) dw.

The force per unit area can then be shown to be

87T3/ /k (d d k., )dQEldw, (2.14)
1

where the factofe, — €3] T'; (d d, lﬂ, ) is given by

—1
2Ksd) — 1
Ky — K3 KQ—KS]GXN 3d) )
esK1 +e1K3 esKo + 9K _1
2Ksd) — 1 .
+<[53K1€1K3} LngegKg]eXp( 3d) >

Here K? = k? — ¢~2w?e (w) ande; is the dielectric constant corresponding to the regicfhe plate configuration
corresponding to the source theory description discussed above is illustrated in Figure 2.3.

[e2 — &3] Ty (d, d. Ko, ):2[K3_K2]+2K3{<[K1+K3] [K2+K3
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2. Casimir Effect

z=0 z=d

Figure 2.3.: A cross-sectional view of two infinite parallel conducting plates. The plates are separated by a gap distance
of z = d. Also, the three regions have different dielectric constants) .

The expression of force, equation (2.14), is derived from the source theory of Schwinger, Milton and DeRaad
[14, 15]. It reproduces the result of Lifshitz [21, 22], which is a generalization of the Casimir force involving perfectly
conducting parallel plates to that involving dielectric media. The details of this brief outline of the source theory
description can be found in references [14, 17].
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3. Reflection Dynamics

Once the idea of physics of vacuum polarization is taken for granted, one can move forward to calculate the effective,
temperature-averaged energy due to the dipole-dipole interactions with the time retardation effect folded into the van
der Waals interaction. The energy between the dielectric or conducting media is then obtained from the allowed
modes of electromagnetic waves determined by the Maxwell equations together with the electromagnetic boundary
conditions, granted that the most significant zero-point electromagnetic field wavelengths determining the interaction
are large when compared with the spacing of the lattice points in the media. Under such an assumption, the effect of
all the multiple dipole scattering by atoms in the dielectric or conducting media is to simply enforce the macroscopic
reflection laws of electromagnetic waves; and this allows the macroscopic electromagnetic theory to be used with
impunity in calculation of the Casimir force, granted the classical electromagnetic fields have been quantized. The
Casimir force is then simply obtained by taking the negative gradient of the energy in space.

In principle, the atomistic approach utilizing the Casimir-Polder interaction explains the Casimir effect observed
between any system. Unfortunately, the pairwise summation of the intermolecular forces for systems containing large
number of atoms can become very complicated. H. B. G. Casimir, realizing the linear relationship between the field
and the polarization, devised an easier approach to the calculation of the Casimir effect for large systems such as
two perfectly conducting parallel plates. This latter development is the description of the Euler-Maclaurin summation
approach shown previously, in which the Casimir force have been found by utilizing the field boundary conditions
only. The vacuum pressure approach originally introduced by Milonni, Cook and Goggin [25] is a simple elaboration
of Casimir’s latter invention utilizing the boundary conditions. The source theory description of Schwinger is an
alternate explanation of the Casimir effect which can be inherently traced to the retarded van der Waals interaction.

Because all four approaches which were previously mentioned, (1) the Casimir-Polder interaction, (2) the Euler-
Maclaurin summation, (3) the vacuum pressure and (4) the source theory, stem from the same physics of vacuum
polarization, they are equivalent. The preference of one over another mainly depends on the geometry of the boundaries
being investigated. For the type of physical arrangements of boundary configurations that are being considered in this
thesis, the vacuum pressure approach provides the most natural route to the Casimir force calculation. The three
physical arrangements for the boundary configurations considered in this thesis are: (1) the plate-hemisphere, (2)
the hemisphere-hemisphere and (3) a sphere formed by brining two hemispheres together. Because the geometric
configurations of items (2) and (3) are special versions of the more general, plate-hemisphere configuration, the basic
reflection dynamics needed for the plate-hemisphere case is worked out first. The results can then be applied to the
hemisphere-hemisphere and the sphere configurations later.

The vacuum-fields are subject to the appropriate boundary conditions. For boundaries made of perfect conductors,
the transverse components of the electric field are zero at the surface. For this simplification, the skin depth of
penetration is considered as zero. The plate-hemisphere under consideration is shown in Figure 3.1. The solutions
to the vacuum-fields are that of the Cartesian version of the free Maxwell field vector potential differential equation
V24 (R) — 2024 (R) = 0, where the Coulomb gaugé e A = 0 and the absence of the soums{p, EH) =0

have been imposed. The electric and the magnetic field component of the vacuum-field are diven by—latff
andB = V x A, whereA is the free field vector potential. The zero value requirement for the transversal component

of the electric field at the perfect conductor surface implies the solutiafi fsin the form ofE o sin (277/\—1 HEH) ,

where\ is the wavelength anﬁfH is the path length between the boundaries. The wavelength is restricted by the

condition\ < 2 Hﬁ’g — R"l H = 2&,, Whereﬁ’g andﬁ’l are two immediate reflection points in the hemisphere cavity

of Figure 3.1. In order to compute the modes allowed inside the hemisphere resonator, a detailed knowledge of the
reflections occurring in the hemisphere cavity is needed. This is described in the following section.
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3. Reflection Dynamics

Infinity e @ o

\

\ Infinity

Figure 3.1.: The plane of incidence view of plate-hemisphere configuration. The waves that are supported through
internal reflections in the hemisphere cavity must satisfy the relatigr2 Hﬁ’g - R

3.1. Reflection Points on the Surface of a Resonator

The wave vector directed along an arbitrary direction in Cartesian coordinates is written as

i=1—k, =1,
k (kll T 1yak/1z Zkl zéia kllz = Z*QHkll Y €2 :Q (31)
i=3—ky, e=2

Hence, the unit wave vectdr/; =

—1 . . 5
k'y ‘ Zle k’ue}. Define the initial position?’ for the incident wave’;,

i=1-r{,,
.

>/ N / N _ /oA o . J
Ry (70’96, To?yﬂo’z) = E To.i€i Toi = 1=2— 0.y (3.2)

i=3 =7,
Here it should be noted that/, really has only components, , andr; .. But nevertheless, one can always set

5, = 0 whenever needed. Since no particular wave vectors with specified wave lengths are prescribed initially, it is
desirable to employ a parameterization scheme to represent these wave vectors. The line segment traced out by this
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3. Reflection Dynamics

wave vectork’, is formulated in the parametric form

3
I [ ! .7 -t ! 3
=&k + Ry Z {7’0,7: +& Hk 1H ku} €, (3.3)

=1

where the variabl€; is a positive definite parameter. The restrictign> 0 is necessary because the direction of the
wave propagation is set Hy,. Here R, is the first reflection point on the hemisphere. In terms of spherical coordinate
variables,R'; takes the form

Al | = sin 6] cos ¢,

Ry (r!,0,,¢)) =r! ZA“ez, A, = sin 6] sin ¢, (3.4)

!/ _ /
i=1 Al 5 = cosby,

wherer, is the hemisphere radiug; and ¢; are the polar and the azimuthal angle respectivelﬁ’qf at the first
reflection point. Notice that subscripbf r; denotes “inner radius” not a summation index.

By combining equations (3.3) and (3.4), we can solve for the parafietircan be shown that

~ N " N 2 . )
=6y =~ e ot o[ o ]+ 0 -

(3.5)

where the positive root faf; have been chosen due to the restrictfor’> 0. The detailed proof of equation (3.5) is
given in Appendix A, where the same equation is designated as equation (A.11).

Substitutings; in equation (3.3), the first reflection point off the inner hemisphere surface is expressed as

_ Lo 3 L1
By (€1 Roo, 1) =S {r(),i +é, Hk’lH k’l] é, (3.6)

i=1

where¢; ,, is from equation (3.5).

The incoming wave vector’; can always be decomposed into parallel and perpendicular with respect to the local
reflection surface componenfs l andkz’l 1. Itis shown in equat|on (A.14) of Appendix A that the reflected wave
vector &/, has the formi/, = o | [n X k:’z} x n — aT,Hn ° k;@;n , Where the quantities,.| anda,. , are the
reflection coefficients and’ is a unit surface normal. For the perfect reflecting surfaceg, = a, 1 = 1. 1In
component formj/, = Z?:l {ahl [n k; iy, — nik; nnn} — ki, m }él, where it is understood that' is

already normalized and Einstein summation convention is applied to the indehxe second reflection poirﬁ’g is
found then by repeating the steps done/r and by using the expressiaf, = &,/ ‘ K,

Q| [n’ X k’l} xn' —a,n ek'in'

Ry =R+ fz,p/%'r =R+ Sap ’

~ — ~ A — ~ )
o 1 [n’ X k’i] xn' —a,n e k'in'

wheref, ,, is the new positive definite parameter for the second reflection point.

The incidence plane of reflection is determined solely by the incident wavand the local normal/; of the
reflecting surface. It is important to recognize the fact that the subsequent successive reflections of this incoming wave
will be confined to this particular incident plane. This incident plane can be characterized by a unit normal vector. For
the system shown in Figure 3,5’ = 15’1 andﬁ’m 1 = —& k"1 — R'o. The unit vector which represents the incident

plane is given by’ pl =

n'p1 H i1 €k ;70 1 €i, where the summations over indicgandk are implicit.

If the plane of incidence is represented by a scalar functioef, ', z’) , then its unit normal vectoa’m will satisfy
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3. Reflection Dynamics

Intercept

The x coordinate is coming out of the page!

Figure 3.2.: The thick line shown here represents the intersection between hemisphere surface and the plane of inci-

. oY s
dence. The unit vector normal to the incident plane is given’hy = — ‘ n’p,lH S €ijkk1 ;70 1Ci-

the relationshipr/,, ; V_"f,,,l (z',y', 2") . Itis shown from equation (A.43) of Appendix A that

3 1—-v =2
= —1 1 9
/ / / _ / / / - /! /
fpa (v1,v5,v8) = — n’p,lu g €ijkkl ;70 kVis i=< 2-uvh=1y, (3.7)
i=1 3o uvh =2,

where—oco < {vf =2/, v =y, v =2} < 0.

The surface of a sphere or hemisphere is defined through the refation (', v/, 2') = [r/]> — Zle W),
wherer; is the radius of sphere and the subsciipenotes the inner surface. The intercept of interest is shown in
Figure 3.2. The intersection between the hemisphere surface and the incidencg plang v4,v4) is given by
Fremi (2',y', 2") — fpo1 (&, y,2") = 0. After substitution off,, 1 (z',y/, 2) and frem: (', Y, 2) , we have

> {wr

i=1

1—v =2a

—1 1 ’
) YA / /270 P 9 ;o
p,1 €ijkR1 70,kVs —[r]” =0, 1= — V=Y,
3—vy =2

The term[r/]> can be rewritten in the formr})> = 2 [ .]*, wherer], = 7

i

Solving foru/, it can be shown from equation (A.51) of Appendix A that

/ . A ! _ /
2 Tig = Tiy andri73 =T

» 5 1/2
Wy mﬂ%yﬂJ +ﬁmf} . i=123 (39

Lt 1
/ /
”/p,lH fijkk1,j7’0,k == { {2 ’

1,{:1’
' T2

wheree;, 1, is the Levi-Civita coefficient. The result fof shown above provide a set of discrete reflection points found
by the intercept between the hemisphere and the plane of incidence.
Using spherical coordinate representations for the variablgs; , andr; 5, the initial reflection point?’; can be
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3. Reflection Dynamics

Figure 3.3.: The surface of the hemisphere-hemisphere configuration can be described relative to the system origin
throughR, or relative to the hemisphere centers throutjh

expressed in terms of the spherical coordinate varigbles!, ¢}) (equation (A.109) of Appendix A),

3 1 — vy, =r;sinf] cos ¢,
Ry (7,00, ¢) E Vi (ri, 07, ¢h) € i= 24>l/12—7‘;b1n6/151n¢1, (3.9)
3—>1/1377“;cost9’1,

wherer! is the hemisphere radiug; andd, the polar and azimuthal angle, respectively. They are defined in equations
(A.102), (A.103), (A.107) and (A.108) of Appendix A. Similarly, the second reflection point on the inner hemisphere
surface is given by equation (A.151) of Appendix A:

s / /
1— 1/2 1 = r}sin 6 cos ¢h,

N / ! o3 /
o (1}, 05, ¢5) = E vy (ri, 05, ¢5) € i=4q 2— V2 o = 7 sin 0y sin ¢, (3.10)
3 — vy 5 = 1] cos by,

where the spherical angles andd’, are defined in equations (A.143), (A.144), (A.148) and (A.149) of Appendix A.
In general, leaving the details to Appendix A, tNeh reflection point inside the hemisphere is, from equation (A.162)
of Appendix A,

3 1—>V§Vl—r’sin9’ cos @y,
B (rfy Oy, 9ly) = D v (i, Oy, 9ly) 6, i= Q2= vy = risinfivsindly, (3.11)
i=1 3 — vyg =ricosty,

where the spherical anglé4, and ¢’y are defined in equations (A.158), (A.159), (A.160) and (A.161) of Appendix
A. The details of all the work shown up to this point can be found in Appendix A.

The previously shown reflection pointﬁ_’,"ﬁ, R’5 and R’ y) were described relative to the hemisphere center. In
many cases, the preferred choice for the system origin, from which the variables are defined, depend on the physical
arrangements of the system being considered. For a sphere, the natural choice for the origin is its center from which the
spherical variablegr;, ¢, ¢’) are prescribed. For more complicated configuration shown in Figure 3.3, the preferred
choice for origin really depends on the problem at hand. For this reason, a set of transformation rules between
(ri,0',¢") and(r;, 0, ¢) is sought. Here the primed set is defined relative to the sphere center and the unprimed set is
defined relative to the origin of the global configuration. In terms of the Cartesian variables, the two Veatat &'
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3. Reflection Dynamics

describing an identical point on the hemisphere surface are expressed by

3 3
R(v1,v9,v3) = Zl/ie}, R (V) vh,v5) = vié;, (3.12)
i=1

=1

where (v1,v9,13) — (2,5,2), W, vh,v4) — (2/,y,2') and(é1, €y, €3) — (&,7,2). The vectorsk and R’ are
connected through the relatidd (v1, 1o, v3) = S0, [vr, + /] € with Ry = 3%, vr,€é; which represents the
position of hemisphere center relative to the system origin. As a result, weﬂiég@[w —vp; — Vi é = 0.1n
terms of the spherical coordinate representatior{#pyvs, v3) and (v}, v4, v4) , we can solve fof and¢. As shown
from equations (B.10) and (B.12) of Appendix B, the result is

. + r!sin 6 sin ¢’
=300, 4 — arctan [ 22217 3.13
¢=¢(r;,0,¢',vr1,vr2) = arctan (uT,1 + rsin 6’ cos ¢’ ’ ( )
0=0 (r;,e’, @, ET)
. {vra + vrp + ) sin® [cos ¢ + sin¢']} [vrs + 7} cos 8] (3.19)

vr o+r! sin 0’ sin ¢’ . vr o+r! sin 0’ sin ¢’ ’
cos (arctan (”l—¢)) + sin (arctan <T21—¢))

vr,1+7] sin 6’ cos ¢’ vr,1+7] sin 6’ cos ¢’

where the notatior:} andé indicates that andd are explicitly expressed in terms of the primed variables, respectively.
It is to be noticed that for the configuration shown in Figure 3.3, the hemisphere center is only shifted hioag
amount ofvr o = a, which leads tovr ;x> = 0. Nevertheless, the derivation have been done for the case where
vr,; # 0,1 =1,2,3 for the generalization purpose.
. 1/2
With the magnitud(HRH - {Zf;l vri + r§A§]2} ,whereA, (6, ¢/) = sin @’ cos ¢/, Ab (0, ¢') = sin @' sin ¢’

andAj (6') = cos ¢, the vectorR <r§, AN, ET) is given by equation (B.13) of Appendix B as
1/2 4 [\1 0,@5) = sin 0 cos (;\S,

vri + T;A;f} Z Aié;, Ay (0,0) = sinfsin ¢, (3.15)
=t As (9 = cos .

ﬁ(r&i,ﬂﬂﬁT) = {i[

=1

The details of this section can be found in Appendices A and B.

3.2. Selected Configurations

Having found all of the wave reflection points in the hemisphere resonator, the net momentum imparted on both the
inner and outer surfaces by the incident wave is computed for three configurations: (1) the sphere, (2) the hemisphere-
hemisphere and (3) the plate-hemisphere. The surface element that is being impinged upon by an incident wave would

experience the net momentum change in an amount proportioMtg,nw (; E’SJ, ﬁf’&o) on the inner side, and
AIZ’outer (; R"s,l + af{’svl) on the outer side of the surface. The quantitikag’mm) and AIZ’O,ILM are due to the
contribution from a single mode of wave traveling in particular direction. The not{l‘;i(ﬁ*is,l, ﬁ’s,o) of AR jner

denotes that it is defined in terms of the initial reflection p(ﬁﬁ{l on the surface and the initial crossing poﬁm,o of
the hemisphere opening (or the sphere cross-section). The no(aﬂﬁgl + al%’&l) of Alg’outer implies the outer

surface reflection point. The total resultant imparted momentum on the hemisphere or sphere is found by summing
over all modes of wave, over all directions.
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3. Reflection Dynamics

| : /
| : L P
: ;

I The initial /Z\ ek / 4»
wave-number vector Z K’ ) / p
x kr r: ;o ! / LIJI,i+l
— | — k
s :
kT : AN B
————— —_— ——1 :
e . V’
/y'\ e -
R 0
|
|
! AN
a s ‘ y
I |
| = |
U
, Rl

Figure 3.4.: Inside the cavity, an incident wab/gon first impact pomP’Z induces a series of reflections that propagate
throughout the entire inner cavity. Similarly, a wa/e incident on the impact pomR’ + aR';, where

a is the thickness of the sphere, induces reflected wave of magr“tsu#. The resultant wave direction

in the external region is alonéfi and the resultant wave direction in the resonator is alefy; due to

the fact there is exactly another wave vector traveling in opposite direction in both regions. In both cases,
the reflected and incident waves have equal magnitude due to the fact that the sphere is assumed to be a
perfect conductor.

3.2.1. Hollow Spherical Shell

A sphere formed by bringing in two hemispheres together is shown in Figure 3.4. The resultant change in wave vector
direction upon reflection at the inner surface of the sphere is from the equation (C.4) of Appendix C1,

4Anm cos Ope B 0 < Oine < 7/2,
= = > 5,1 =1.2. ...
DA cr ) M G

Alg’inner (; ﬁ/s,ly ﬁ/s,()) = - (3-16)

wheref,,,. is from equation (A.llS)ﬁs,l (r;, K’SJ) andﬁsg (r;, K;Q) follow the generic form shown in the equa-
tion (C.1) of Appendix C1,

I / / - o) / /
. As,N,l (HS,N’ ¢S,N> = S HS,N CO8 és,N’
/ / / / H /! s /
RS»N ( T4 s,N ) - T E As Nzel? AS,N,Q (QS,N’ d)s,N) = sl gs,N Sin (bs,N? (317)
/ / _ 0!
AS7N,3 (957N) = €08 GS,N'

Here the labek have been attached to denote a sphere and the obvious index changes in the spherical&/agiables
and¢’,  are understood from the set of equations (A.158), (A.159), (A.160) and (A.161).

Similarly, the resultant change in wave vector direction upon reflection at the outer surface of the sphere is from
equation (C.5) of Appendix C1,

Ogamc<ﬂ/2,
n=1,2--.

Ak?outer (7 ﬁ/s,l + aR,&l) =

k_j;i,f H COS eincéls,la { (318)
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3. Reflection Dynamics

The details of this section can be found in Appendix C1.

3.2.2. Hemisphere-Hemisphere

For the hemisphere, the changes in wave vector directions after the reflection at é’pgirimide the resonator, or
after the reflection at IocatioR'/h,l + aR’hﬁl outside the hemisphere, can be found from equations (3.16) and (3.18)

with obvious subscript changes,

Anm cos Oine 0 < Oine < /2,

- - - - R, { 7 2 (3.19)
o () o () L

Ak/inner (7 R/h,17 R/h,O> = - ‘

0§9mc<7r/27

st (320

A]';/outer (; }:{/h,l + aR,h,l) =4 ’

k_';i,f H COs 9i7lCR/h,17 {

where the reflection Iocatioﬁh,N (r;, KMV, K;LN, ETJ,,) follows the generic form as shown in equation (C.6) of
Appendix C2,

3 1/2 3
- 3, - — 2 N R
Ry N (Té’Ah,N,AZ,NaRT,h) = {Z (7, + 1A v ] } > An i (3.21)
i=1

i=1

In the above equation, the subscripienotes the hemisphere; and

An o <9h,N, ¢h,N) = sin 0y, N cos ¢p N,
A N2 (eh,N, ¢h,N) = sin Oy, n sin ¢p N,
An.n3 (9h,N) = costp .

The expressions m;w,i, i = 1,2,3, are defined identically in form. The angular variables in spherical coordi-

nates,éhw and <2>,,,,N, can be obtained from equations (3.13) and (3.14), where the obvious notational changes are
understood. The implicit angular variablégw and¢>’h7N, are the sets defined in Appendix A, equations (A.158) and
(A.159) ford;, , and the sets from equations (A.160) and (A.161)f0x, .

Unlike the sphere situation, the initial wave vector could eventually escape the hemisphere resonator after some
maximum number of reflections. It is shown in the Appendix C2 that this maximum number for internal reflection is
given by equation (C.8),

Nh,ma;c = [Zh,maw}ca (322)

where the greatest integer functiy, ,....], is defined in equation (C.7) of Appendix C2,

Zh,maz = W%QGW [77' — arccos (; {r; ’ - {r; H o f%)p})] . (3.23)

Here¢, , is given in equation (3.5) andl,,. is from equation (A.115).

The above results obE ;,,ner (; Rina, R"hg) and AR yurer (; R+ aR’hyl) have been derived based on the

fact that there are multiple internal reflections. For a sphere, the multiple internal reflections are inherent. However, for

a hemisphere, it is not necessarily true that all incoming waves would result in multiple internal reflections. Naturally,

the criteria for multiple internal reflections are in order. If the initial direction of the incoming wave vé}:;cnis

given, the internal reflections can be either single or multiple depending upon the location of the entry point in the
cavity, R'y. As shown in Figure 3.5, these are two reflection dynamics where the dashed vectors represent the single
reflection case and the non-dashed vectors represent multiple reflections case. Because the whole process occurs in the
same plane of incidence, the vecﬂé’rf = —X\oR'o where), > 0. The multiple or single internal reflection criteria

Ry

L on—1
By ‘

+ | R
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3. Reflection Dynamics

Intercept

Figure 3.5.: The dashed line vectors represent the situation where only single internal reflection occurs. The dark line
vectors represent the situation where multiple internal reflections occur.

can be summarized by the relation found in equation (C.21) of Appendix C2:

. 1o 3 3 3 oz 3 g , )
7] =5 ||| |32 k. Z[H’“H kzk] rourey g 0 (K = [rb]
n=1 j=11=1 m=1 =1
) 3 -13 9 3
+2R @ Ky, — HE/OH T [Zk’u] 3 U 2 - Zkl] ot (3.24)
=1 =1 m=1

Finally, because the hemisphere opening has a raglitise following criteria are concluded:

|

‘ < Single — Internal — Reflection,
(3.25)
|#;

‘ >, Multiple — Internal — Reflections,

WhereHﬁ’f

‘ is defined in equation (3.24). The details of this section can be found in Appendix C2.

3.2.3. Plate-Hemisphere

A surface is represented by a unit vecﬁﬁg, which is normal to the surface locally. For the circular plate shown in
Figure 3.6, its orthonormal triafin’,,, ¢’,,, qb’p> has the form

- 3 A A 3 OA . - 3 1 OAL .
/— / . /A Pt 5. /A Pt 5,
np = Zi:l Ap,ie’bv 0 p = Zi:l 907, €i, p — Zi:1 sin 67, 9¢), €i,

26



3. Reflection Dynamics

Figure 3.6.: The orientation of a disk is given through the surface unit noifpaThe disk is spanned by the two unit
vectorsf’,, and¢/,.

whereA] (9;, qb;) = sin 6, cos ¢y, A}, 5 (9;,7 gb;) = sin 0, sin ¢, and A}, 5 (91’0) = cos 0.
For the plate-hemisphere configuration shown in Figure 3.7, it can be shown that the elgymenthe plane and
its velocitydﬁp/dt are given by (see equation (3.27) and (C.30) in Appendix C3:

Lo ON, . Vg, ON
_ § 253 P9 D,
Ry (8.8, Fry ) = {Z [VT”’””;*% 96, " snby 90,

i=1

9y 1/2 3
> Apiéi, (3.26)
=1

= dR
L p

O?N! Vpo [ PN N’ :
PPy 7 pk DR pJ; n .Pvd’p Pk op gl Sopk 0,
sind;, 0¢), kS P% g [@; ] sin @), \ 00,04, P 0gs,

ey PN, Vpe, OPAL L ; /aA;7k+u'/p,¢; oA
»% d¢1,00,, sind), 9 [¢]° Yro90,  sindl ¢

3 2
>
i=1

D,J

/ v /

e S
sPyt p,0;, / in O/ /

r 00, sin 6, 0¢;,

AN, ; 90, ., 9N, ; 0, ., |\ .
g 9O gr 4 970, &, 3.27
on, 00,7 " oo, g | | 320

where (/\p,l, Ay, Ap’g) is defined in equation (C.31) and the anglesandd, are defined in equations (C.27) and

(C.28) of Appendix C3. The subscriptof ép andép indicates that these are spherical variables for the points on the
plate of Figure 3.7, not that of the hemisphere. It is also understood\gj@and]\p,g are independent qi;, and
&Sp, respectively. Therefore, their differentiation with respecmoandi)p respectively vanishes. The quantiti(ég
andqé’p are the angqlar frequencies, aid, ; is the translation speed pf the pAIate relative to the system origin. The
quantities’,, o, andv’,, 4 are the lattice vibrations along the directiatis and¢’,, respectively. For the static plate
without lattice vibrationsy’,, o, andv’,, 4, vanishes.

In the cross-sectional view of the plate-hemisphere system shown in Figure 3.8, the initial wave%etmaling
toward the hemisphere would go through a complex series of reflections according to the law of reflection and finally
exit the cavity. It would then continue toward the plate, and depending on the orientation of plate at the time of impact,

the wave-vector, now reflecting off the plate, would either escape to infinity or re-enter the hemisphere. The process
repeats successively. In order to determine whether the wave that just escaped from the hemisphere cavity can reflect
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3. Reflection Dynamics

Plate

Figure 3.7.: The plate-hemisphere configuration.

back from the plate and re-enter the hemisphere or escape to infinity, the exact location of reflection on the plate must
be known. This reflection point on the plate is found to be, from equation (C.54) of Appendix C3,

2y 1/2
3 OAL, - -1
. 35| oA i1 e [Aﬁa,ﬁ H"’pﬁl‘ Eijkkll7jr67k] OA/
_ D, -
RP B Z 9, - 3 OAL, / by -t / / 09!
s=1 b =1 BTZ Ap,l + Hn/P71H Glmnkl,mro,n b
3
X {C’ElC’;lAWAg + 705 CT By Ag + C[;chBﬁ} 3 Ay, (3.28)

i=1

where the translation parameter, ; = 0 and the termgA¢, B¢, C¢), (A4, B,,C,), (43, Bg,C3) and~, are
defined in equations (C.46), (C.49), (C.50) and (C.52) of Appendix C3. It is to be noticed that for a situation where
the translation parameter, ; = 0, A becomes identical ta’ in form. Results forA can be obtained from’ by a

simple replacement of primed variables with the unprimed ones.

Leaving the details to the relevant Appendix, the criterion whether the wave reflecting off the plate at I&;ation

can re-enter the hemisphere cavity or simply escape to infinity is found from the result shown in equation (C.58) of
Appendix C3,
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1 KNy e 1B 1) = QT kBN ot LR i }) s (3.29)
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3. Reflection Dynamics
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Figure 3.8.: The intersection between oscillating plate, hemisphere and the plane of incidence whose ﬁQ{maJ is
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wherei = 1, 2,3 and¢,, ; is the component of the scale vec{?;;r: Zle &,.,:€; explained in the Appendix C3.

In the above re-entry criteria, it should be noticed tRgt < r/. This impliesrg ; < r;, wherer;] is the radius
of hemisphere. 1t is then concluded that all waves re-entering the hemisphere cavity would satisfy the condition
&1 = &e2 = &k 3. On the other hand, those waves that escapes to infinity cannot have alf,thregual to a single
constant. The re-entry conditign 1 = &2 = &3 IS just another way of stating the existence of a parametric line
along the vectoEnNh.mMH that happens to pierce through the hemisphere opening. In case such a line does not
exist, the initial wave direction has to be rotated into a new direction such that there is a parametric line that pierces
through the hemisphere opening. That is why all tifeevalues cannot be equal to a single constant. The re-entry
criteria are summarized here for bookkeeping purpose:

{ €kl =Ek2 = &k,3 — Wave — ReEnters — Hemisphere,

ELSE — Wave — Escapes — to — In finity, (3.30)

where ELSE is the case wherg, 1 = .2 = £ 3 cannot be satisfied. The details of this section can be found in
Appendix C3.

3.3. Dynamical Casimir Force
The phenomenon of Casimir effect is inherently a dynamical effect due to the fact that it involves radiation, rather than
static fields. One of my original objectives in studying the Casimir effect was to investigate the physical implications

of vacuum-fields on movable boundaries. Consider the two parallel plates configuration of charge-neutral, perfect
conductors shown in Figure 3.9. Because there are more wave modes in the outer region of the parallel plate res-
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3. Reflection Dynamics

z=0 z=d

Figure 3.9.: Because there are more vacuum-field modes in the external regions, the two charge-neutral conducting
plates are accelerated inward till the two finally stick.

onator, two loosely restrained (or unfixed in position) plates will accelerate inward until they finally meet. The energy
conservation would require that the energy initially confined in the resonator when the two plates were separated be
transformed into the heat energy that acts to raise the temperatures of the two plates.

Davies in 1975 [26], followed by Unruh in 1976 [27], have asked the similar question and came to a conclusion that
when an observer is moving with a constant acceleration in vacuum, the observer perceives himself to be immersed
in a thermal bath at the temperatdre= hRR/ [2wck’] , whereR is the acceleration of the observer aridthe wave
number. The details of the Unruh-Davies effect can also be found in the reference [17]. The other work that dealt
with the concept of dynamical Casimir effect is due to Schwinger in his proposals [14, 16] to explain the phenomenon
of sonoluminescense. Sonoluminescense is a phenomenon in which when a small air bubble filled with noble gas is
under a strong acoustic-field pressure, the bubble will emit an intense flash of light in the optical range.

Although the name “dynamical Casimir effect” have been introduced by Schwinger, the motivation and derivation
behind the dynamical Casimir force in this thesis did not stem from that of Schwinger's work. Therefore, the dynami-
cal Casimir force here should not have any resemblance to Schwinger’s work to the best of my knowledge. | have only
found out of Schwinger’s proposals on sonoluminescense after my work on dynamical Casimir force have already
begun. The terminology “dynamical Casimir force” seemed to be appealing enough, | have personally used it at the
beginning of my work. After discovering Schwinger’s work on sonoluminescense, | have learned that Schwinger had
already introduced the terminology “dynamical Casimir effect” in his papers. My original development to the dynam-
ical Casimir force formalism is briefly presented in the following sections. The details of the derivations pertaining to
the dynamical Casimir force can be found in Appendix D.

3.3.1. Formalism of Zero-Point Energy and its Force

For massless fields, the energy-momentum relatidt)js = Er..a1 = pc, wherep is the momentumg the speed
of light, and7{;, is the quantized field energy for the harmonic fields of equation (2.8) for the bounded space, or
equation (2.9) for the free space. For the bounded space, the quantized fieIdHQgrgtyH;L%b of equation (2.8)
is a function of the wave numbét (n;) , which in turn is a function of the wave mode valug and the boundary

functional f; (L;) , whereL; is the gap distance in the direction f)t = [ﬁ’g °é; — ﬁ’l ° é,} é;. Hereﬁ’l andﬁi’g

are the position vectors for the involved boundaries. As an illustration with the two plate configuration shown in
Figure 3.9,R’; may represent the plate positionedat 0 and R’ may correspond to the plate at the positios d.

When the position of these boundaries are changing in time, the quantized field fjergy?;, , will be modified
accordingly because the wave number functidrigh;) is varying in time,

af; dL;

| ok, . of; .
i OL; dt

i + i L.

dk] Ok, dn;
dt ~ On; dt

fi (Li) +

= fi (L)

Here the term proportional ta; refers to the case where the boundaries remain fixed throughout all times but the
number of wave modes in the resonator are being driven by some active external influence. The term proportional to
L; represents the changes in the number of wave modes due to the moving boundaries.

For an isolated system, there are no external influences, higned). Then, the dynamical force arising from the

30
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Figure 3.10.: A one dimensional driven parallel plates configuration.

fact that the time variation of the boundaries is given by equation (D.17) of Appendix D1,

3
Flo = 0f; My, 17, 117 .
F a = ; {774 8LZ Ca,5 a [kZ]Z + (1 — 5104) <Ca,6 - Coéj Ng + 5 kl) ng + 5 I/2
3
of; M, . | .
+ ; (1-6)) ca,g,ma—Lj8%%2 Lj ¢ éu, (3.31)

whereCy, 1, Ca.2, Ca3, Caa, Co s, Cac andC, 7 are defined in equations (D.6), (D.9), (D.14), (D.15) and (D.16)
of Appendix D1.

The force shown in the above expression vanishes for the one dimensional case. This is an expected result. To under-
stand why the force vanishes, we have to refer to the starting point equation (D.4) in the Appendix D1. The summation
there obviously runs only once to arrive at the expresgiétf, /0k; = [ns + %] he. This is a classic situation where

the problem has been over specified. For3Becase, equation (D.4) is a combination of two constra@%il [p;]2
and;, . For the one dimensional case, there is only one constfdint, Therefore, equation (D.4) becomes an over
specification. In order to avoid the problem caused by over specifications in this formulation, the one dimensional
force expression can be obtained directly by differentiating equation (D.1) instead of using the above formulation for
the three dimensional case. Th® dynamical force expression for an isolated, non-driven systems then becomes (see
equation (D.18) of Appendix D1)

. ndf oH,,.

] —

~ cOL oK

Leé, (3.32)

whereZ" is an one dimensional force. Here the subsaripff F’, have been dropped for simplicity, since it is a one
dimensional force. The details of this section can be found in Appendix D1.

3.3.2. Equations of Motion for the Driven Parallel Plates

The Unruh-Davies effect states that heating up of an accelerating conductor plate is proportional to its acceleration
through the relatio?” = LR/ [2rck’], whereR is the plate acceleration. A one dimensional system of two paral-

lel plates, shown in Figure 3.10, can be used as a simple model to demonstrate the complicated sonoluminescense
phenomenon for a bubble subject to a strong acoustic field.

The dynamical force for th&D, linear coupled system can be expressed with equation (3.32),
Ry —mBRy — Ry = &y, Ry —n3Re — Ry = &y, (3.33)

where the quantitieg,, 72, 13, 14, &rp, &ip, R1, R are defined in equation (D.31) of Appendix D2. Héterepresents
the center of mass position for the “Right Plate” aRglrepresents the center of mass position for the “Left Plate” as
illustrated in Figure 3.10. With a slight modification, equation (3.33) for this linear coupled system can be written in
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3. Reflection Dynamics

the matrix form, (see equations (D.33), (D.34) and (D.35) of Appendix D2):

t t
Ry :/ Radt’, R2=/ Rydt’,
to to

and
R3 m 72 } [ ] [ grp }
. _ ) 3.34
[ Ry } [ N4 M3 Eip 330
ﬁn M,, R, 3
where . .
~ R] RS, R2 R47
RB = _Rl frp —+ anl + nQRQ g'rp + an3 + 772R47
Ry =Ry =&+ Ry + Ry = & +n13Ra + mRs.

The matrix equation has the solutions given by equations (D.51) and (D.52) of Appendix D2:

: A1 (5to) —m (o oy (t, o rpema (to) V12 (t,t0) Rip.em.a (to
o (0= [y ey =1 O e G el e (o)
b e (Ft0) Erp (1) — tra (F t0) &ap (1)

to Y11 (t',t0) Yoz (t',t0) — Y12 (', t0) Y21 (¥, o)
P (', t0) &ip (') — 21 (' 20) §rp (F) gt

+ 911 (¢, to)

dt’ + 12 (¢, to)

to V11 (' t0) oz (¥, to) — Y12 (¥, t0) a1 (¥, to) i (3:35)
R (1) = [)\4 (Gto) =m Gto) 1} 1 4oy (t, o) Rypem.o + Va2 (t,t0) Rip.em.a (to)
e X3 (ito) —m (i to) exp (A3 (i o) + Aa (510)] to)
Yoz (', t0) Erp (V') — b1 (¥, 10) &1p (') /
9 (8 %o) o Din (2 10) thaz (', f0) — thrz (7, 00) s (Fo70)  + 22 (t:f0)
P11 (' to) &p (t') — Y21 (P, 10) &p () at’ (3.36)

to Y11 (¥, t0) P2z (¥, t0) — Y12 (¥, t0) Y1 (¥, to)

where the termsa; and )\, are defined in equation (D.37); and; (¢,t0) , ¥12 (t,t0) , W21 (¢, to) andeas (t,to) are
defined in equations (D.43) through (D.46) in Appendix D2. The quantRigs..,.. and Ry, ... are the speed of
the center of mass of “Right Plate” and the speed of the center of mass of the “Left Plate,” respectiveldedings
the particular basis direction.

The corresponding positiod®,, cm, o (t) andRy, ..« (t) are found by integrating equations (3.35) and (3.36) with
respect to time,

_ [AaGto) =m Gto) [ (7 t0) Repem,a (to) + W12 (7, t0) Rip.em.a (o)
Fonema )= |10 Y [ exp (D s 10) + A G o)) o)
T Y (i t0) &p (t) — 12 (¥ t0) &ip (F)
to V11 (' t0) Yoo (U, o) — Y12 (¥, t0) a1 (¥, o)

Y11 (', t0) Eip (') — a1 (', t0) &rp (1) /
) to Y11 (U5 t0) Yoo (¢ t0) — 12 (¥, t0) Y1 (¥ t0) dt'| 47 + Rrp e (fo) (3:37)

+ 111 (7, 10)

dt' + 112 (1, t0)
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_ [AaGto) =m Gto) 1 a1 (7, t0) Repema (to) + 22 (7, t0) Ripemea (o)
Rip.em,a (1) = {)\3 Gto) —m (: to) 1} / [ exp ([As (5t0) + Aa (5 to)] to)

g (t',t0) Erp (1) — 1o (¥, 10) §1p (V')
o (o) 1o V11 (', t0) Va2 (', t0) — Wiz (¢, to) Y1 (', o)
T (F ko) &ip () — a1 (', t0) &rp (F)

to W11 (T'5t0) P22 (¥ t0) — 12 (¥, t0) Y1 (¥, t0)

The remaining integrations are straightforward and the explicit forms will not be shown here.

One may argue that for the static ca@,,,cm_ya (to) andep,Cm,a (to) must be zero because the conductors seem
to be fixed in position. This argument is flawed, for any wall totally fixed in position upon impact would require an
infinite amount of energy. One has to consider the conservation of momentum simultaneously. The wall has to have
moved by the amoumh R.;; = Ruau/Mt, WwhereAt is the total duration of impact, an,,.; is calculated from the
momentum conservation and it is non-zero. The same argument can be applied to the apparatus shown in Figure 3.10.
For that system

to

dt' + oo (1, t0)

dt'| dT 4+ Rip.em,a (to) - (3.38)

L

) Brp.em.a (to) = | R (t0) + Bz (t0)
Hpvirtual—photon” = EHnS,éR (tO) y :,

Rlp,cm,oc (tO) = R'r‘p,l (tO) + ﬁlp,Q (tO)H .

For simplicity, assuming that the impact is always only in the normal direction,

. 2 R 2
Rip.em,a (to) = e | M0, 5 (to) — o2 (to)]] Rip.em,a (to) = e | 1 (to) — H,, o (t0)]]

m

where the differences under the magnitude symbol imply field energies from different regions counteract the other.
The details of this section can be found in Appendix D2.

33



4. Results and Outlook

The results for the sign of Casimir force on non-planar geometric configurations considered in this thesis will even-
tually be compared with the classic repulsive result obtained by Boyer decades earlier. For this reason, it is worth
reviewing Boyer’s original configuration as shown in Figure 4.1.

Edge of Universe

J

Infinity

Sphere vacuum-field Poynting vector field lines

Figure 4.1.: Boyer’s configuration is such that a sphere is the only matter in the entire universe. His universe extends
to the infinity, hence there are no boundaries. The sense of vacuum-field energy flow is along the radial
vector?, which is defined with respect to the sphere center.

T. H. Boyer in 1968 obtained a repulsive Casimir force result for his charge-neutral, hollow spherical shell of a
perfect conductor [4]. For simplicity, his sphere is the only object in the entire universe and, therefore, no external
boundaries such as laboratory walls, etc., were defined in his problem. Furthermore, the zero-point energy flow is
always perpendicular to his sphere. Such restriction can be a very stringent condition for the material property that a
sphere has to meet. For example, if one were to look at Boyer’s sphere, he would not see the whole sphere; but instead,
he would see a small spot on the surface of a sphere that happens to be in his line of sight. This happens because the
sphere in Boyer's configuration can only radiate in a direction normal to the surface. One could equivalently argue that
Boyer’s sphere only responds to the approaching radiation at normal angles of incidence with respect to the surface of
the sphere. When the Casimir force is computed for such restricted radiation energy flow, the result is repulsive. This
can be attributed to the fact that closer to the sphere origin, the spherically symmetric radiation energy flow becomes
more dense and this density decreases as it gets further away from the sphere center. As an illustration, Boyer’s sphere
is shown in Figure 4.1. For the rest of the thesis, “Boyer’s sphere” would be strictly referred to as the sphere made of
such material property that it only radiates or responds to vacuum-field radiations at normal angle of incidence with
respect to its surface.

The formation of a sphere by bringing together two nearby hemispheres satisfying the material property of Boyer’s
sphere is illustrated in Figure 4.2. Since Boyer's material property only allow radiation in the normal direction to its
surface, the radiation associated with each hemisphere would necessarily go through the corresponding hemisphere
centers. For clarity, let us define the unit radial basis vector associated with the left and right hemisphigres by
andrg, respectively. If the hemispheres are made of normal conductors the radiation from one hemisphere entering
the other hemisphere cavity would go through a complex series of reflections before escaping the cavity. Here, a
conductor with Boyer’s stringent material property is not considered normal. Conductors that are normal also radiate
in directions non-normal to their surface, whereas Boyer’s conductor can only radiate normal to its surface. Due to
the fact that Boyer’s conducting materials can only respond to radiation impinging at a normal angle of incidence with
respect to its surface, all of the incoming radiation at oblique angles of incidence with respect to the local surface
normal is absorbed by the host hemisphere. This suggests that for the hemisphere-hemisphere arrangement made of
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Edge of Universe

Poynting vector field line from right hemisphere

Poynting vector field line from left hemisphere Sphere vacuum—field Poynting vector field lines

Figure 4.2.: Manufactured sphere, in which two hemispheres are brought together, results in small non-spherically
symmetric vacuum-field radiation inside the cavity due to the configuration change. For the hemispheres
made of Boyer's material, these fields in the resonator will eventually get absorbed by the conductor
resulting in heating of the hemispheres.

A virtual photon along one of the Poynting
vector field lines from left hemisphere

Figure 4.3.: The process in which a configuration change from hemisphere-hemisphere to sphere inducing virtual
photon in the direction other thahis shown. The virtual photon here is referred to as the quanta of
energy associated with the zero-point radiation.

Boyer’s material shown in Figure 4.2, the temperature of the two hemispheres would rise indefinitely over time. This
does not happen with ordinary conductors. This suggests that Boyer's conducting material, of which his sphere is
made, is completely hypothetical. Precisely because of this material assumption, Boyer’s Casimir force is repulsive.

For the moment, let us relax the stringent Boyer's material property for the hemispheres to that of ordinary con-
ductors. For the hemispheres made of ordinary conducting materials, there would result a series of reflections in one
hemisphere cavity due to those radiations entering the cavity from nearby hemisphere. For simplicity, the ordinary
conducting material referred to here is that of perfect conductors without Boyer’s hypothetical material property re-
quirement. Furthermore, only the radiation emanating normally with respect to its surface is considered. The idea
is to illustrate that the “normally emanated radiation” from one hemisphere results in elaboration of the effects of
“obliquely emanated radiation” on another hemisphere cavity. Here the obliquely emanated radiation means those
radiation emanating from a surface not along the local normal of the surface.

When two such hemispheres are brought together to form a sphere, there would exist some radiation trapped in the
sphere of which the radiation energy flow lines are not spherically symmetric with respect to the sphere center. To
see how a mere change in configuration invokes such non-spherically symmetric energy flow, consider the illustration
shown in Figure 4.3. For clarity, only one “normally emanated radiation” energy flow line from the left hemisphere is
shown. When one brings together the two hemispheres just in time before that quantum of energy escapes the hemi-
sphere cavity to the right, the trapped energy quantum would continuously go through series of complex reflections
in the cavity obeying the reflection law. But how fast or how slow one brings in two hemispheres is irrelevant in
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Poynting vector field lines originating

from lab boundaries \

K Lab boundary _)

Figure 4.4.: A realistic laboratory has boundaries, e.g., walls. These boundaries have effect similar to the field modes
between two parallel plates. BD, the effects are similar to that of a cubical laboratory, etc.

i~ ¥
Poynting vector field lines from lab . N .
boundary Trapped Poynting vector field lines originally from laboratory

boundary and due to the configurational changes going
from hemisphere—hemisphere to a sphere.

Figure 4.5.: The schematic of sphere manufacturing process in a realistic laboratory.

invoking such non-spherically symmetric energy flow because the) gam be chosen arbitrarily. Therefore, there

would always be a stream of energy quanta crossing the hemisphere openiggAvittas shown in Figure 4.3. In

other words, there is always a time intervat within which the hemispheres are separated by an ambbefore

closure. The quanta of vacuum-field radiation energy created within that time infetwabuld always be satisfying

the conditior{ # 0, and this results in reflections at oblique angle of incidence with respect to the local normal of the
walls of inner sphere cavity. Only when the two hemispheres are finally closed, would the@hand the radiation

energy produced in the sphere after that point would be spherically symmetric and the reflections would be normal to
the surface. However, those trapped quantum of energy that were produced prior to the closure of the two hemispheres
would always be reflecting from the inner sphere surface at oblique angles of incidence.

Unlike Boyer’s ideal laboratory, realistic laboratories have boundaries made of ordinary material as illustrated in
Figure 4.4. One must then take into account, when calculating the Casimir force, the vacuum-field radiation pressure
contributions from the involved conductors, as well as those contributions from the boundaries such as laboratory
walls, etc. We will examine the physics of placing two hemispheres inside the laboratory.

For simplicity, the boundaries of the laboratory as shown in Figure 4.5 are assumed to be simple cubical. Normally,
the dimension of conductors considered in Casimir force experiment is in the ranges of microns. When this is compared
with the size of the laboratory boundaries such as the walls, the walls of the laboratory can be treated as a set of infinite
parallel plates and the vacuum-fields inside the the laboratory can be treated as simple plane waves with impunity.

The presence of laboratory boundaries induce reflection of energy flow similar to that between the two parallel
plate arrangement. When the two hemisphere arrangement shown in Figure 4.2 is placed in such a laboratory, the
result is to elaborate the radiation pressure contributions from obliquely incident radiations on external surfaces of the
two hemispheres. If the two hemispheres are made of conducting material satisfying Boyer's material property, the
vacuum-field radiation impinging on hemisphere surfaces at oblique angles of incidence would cause heating of the
hemispheres. It means that Boyer’'s hemispheres placed in a realistic laboratory would continue to rise in temperature
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Figure 4.6.: The vacuum-field wave vectd{"s,b and k?’mc impart a net momentum of the magnitudg,.:| =
d

E’U, - lg’bfll /2 on differential patch of an are&4 on a conducting spherical surface.

as a function of time. However, this does not happen with ordinary conductors.

If the two hemispheres are made of ordinary perfect conducting materials, the reflections of radiation at oblique
angles of incidence from the laboratory boundaries would elaborate on the radiation pressure acting on the external
surfaces of two hemispheres at oblique angles of incidence. Because Boyer’s sphere only radiates in the normal
direction to its surface, or only responds to impinging radiation at normal incidence with respect to the sphere surface,
the extra vacuum-field radiation pressures considered here, i.e., the ones involving oblique angles of incidence, are
missing in his Casimir force calculation for the sphere.

4.1. Results

T. H. Boyer in 1968 have shown that for a charge-neutral, perfect conductor of hollow spherical shell, the sign of

the Casimir force is positive, which means the force is repulsive. He reached this conclusion by assuming that all
vacuum-field radiation energy flows for his sphere are spherically symmetric with respect to its center. In other words,
only the wave vectors that are perpendicular to his sphere surface were included in the Casimir force calculation. In
the following sections, the non-perpendicular wave vector contributions to the Casimir force that were not accounted
for in Boyer's work are considered.

4.1.1. Hollow Spherical Shell

As shown in Figure 4.6, the vacuum-field radiation imparts upon a differential patch of adAm@athe inner wall
of the conducting spherical cavity a net momentum of the amount

2nmh cos O, B { 0 < Bine < /2,
= - N - . s,1s —
| Roa (1K) = Ron (7252, ) | n=1,2,3,

) 1 - B
Apinner = *ihﬁk/inner (7 R/S,17R/S,O)

where AR ;pmer (; ﬁ’s’hﬁ’&o) is from equation (3.16). The angle of incidengg. is from equation (A.115);

Ry, (r;, K;’l) andR, (r;, K;’z) follow the generic form shown in equation (3.17).

Similarly, the vacuum-field radiation imparts upon a differential patch of an @fean the outer surface of the
conducting spherical shell a net momentum of the amount

0 < bine <7T/2,

1 _ — ~
= _ _ = 7 57 / —
Apouter — 2FLA]€ outer (7 R s,1 + aR s,l) 2h‘ n = ]_, 27 3, cee

kli,fH Cos eincR/s,la {
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whereAK yuier (; Rig1+ aR’S_yl) is from equation (3.18).

The net average force per unit time, per initial wave vector direction, acting on differential element patch of an area
dA is given by

f — lim Aﬁouter Aﬁwmer
SAVI T A At At
or
S nmw - 5 0 < Oine <m/2
Foavg = 2hcosd; ||| R { = Oine ’
s,avg mc i,f s,1 n = 1’ 27 3, -

R (ri A g) = R (1,82, )|

Notice thatfs,wg is called a force per initial wave vector direction because it is computeH’lf,@rand k_”w along
specific initial directions. Her@i,b denotes a particular initial wave vector; entering the resonator ﬁsp as shown
in Figure 3.4. The subscriptfor k?’i,b denotes the bounded space inside the resonatorEIhejenotes a particular
initial wave vectork’, impinging upon the surface of the unbounded region of sphere atﬁojﬂt+ aR’S,l as shown
in Figure 3.4. The subscrigtfor &/; ; denotes the free space external to the resonator.

Because the wave vectEfi7f resides in free or unbounded space, its magni”.!ang can take on a continuum

of allowed modes, Where%ﬁ’i,bu have been restricted t#/EH - HR'&Q (rQ,K’S}Q) — R, (rg,K;,l) H of equation
(C.2). The free space limit is the case where the radius of the sphere becomes very large. Therefore, by designating

‘ —

k:'i,fH as

nm

bl

Hl&;H = hm = = -
riTee HR (Tg’A;,Q) —Rs1 (Tg’A;,l)

and summing over all allowed modes, the total average force per unit time, per initial wave vector direction, per unit
area is given by

o0

_. B nmw2h cos Hmc nmw2h cos Hmc
SR 1 ot o ey R [ e e G

In the limit r; — oo, the second summation to the right can be replaced by an integrafigh, — f0°° dn. Hence,
we have

fsﬂvg _ Z _ %hmr Cosfinc _ 7 /hIn /00 § 2h’n’ﬂ' COS_)Qinc _ dn ]’?/5,1,
[ Bs (r A ) = R (AL )| o Rua (1K) = R (r1 KL
or with the following substitutions,
1= .

P _ . dn=- HR&2 (r;,A;Q) ~ Ry, ( A 1) H dk, ;,

" oo (r’-,A’SQ) ~ R, (r’- A;J) ’ m
the total average force per unit time, per initial wave vector direction, per unit area is written as

ﬁe,avg = 2hcos Oine Z 5 5 o >
n=1 || Rs,2 ( ',HAIG,2> —Rsn (T'INAIQ,l)H
~2 Jim HR ( K;,Q) ~ R, (r;,K;,l) H/ k;,fdk;f} R, (4.1)
7 —>OO 0
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4. Results and Outlook

where0 < 0,,. < m/2andn = 1,2,3,--- . The total average vacuum-field radiation force per unit time acting on the
uncharged conducting spherical shell is therefore

Fs,total = § / -7:5 ,avg ® dSsphere
{k_‘ s s R, 0}

or
= 2nmhcos Oy, 2h
Fs total = Z / fm CObﬂ - - — — cosbine
Fontorny 5 1 [Roa (1K) = R (1 80) | 7
. ,lim Hlfés’2 (T;’K;’Z) B Es’l T;7K;’1> H / kgvfdkgvf] ]%/871 ° dgsz)he?“ea (4.2)
TiToe 0

Wheredggphm is a differential surface element of a sphere and the integrg('g’da over the spherical surface. The

term R/, o Is the initial crossing point inside the sphere as defined in equation (3.2). The n@ygnb Fog B}

imply the summation over all initial wave vector directions for both ms(ﬂ:(—:;yb) and out&de(k@_,f) of the sphere,
over all crossing points given b&"s,o.

It is easy to see thaﬁ?avg of equation (4.1) is an “unregularized’D Casimir force expression for the parallel
plates (see the vacuum pressure approach by Milonni, Cook and Goggin [25]). It becomes more apparent with the
substitutionAt = d/c. An application of the Euler-Maclaurin summation formula [23, 24] leads to the regularized,
finite force expression. The forc‘fésmg is attractive because

€08 Bipne >0

and

o0

1 R . R o oo
Z _ _ nm = = < — /hm HRS’Q (T;,A;Q) — Rs,l (TQ,A;J) H/O fdkz 1o

! I ! ! T
n—=1 HR5,2 (Ti,Asg) — Rs1 (ri’ASJ)H Taee

whereHR’s’g (r;/{’s,z) — R, (T§7K§,1) H is a constant for a given initial wave, ;, and the initial crossing point

ﬁ's,o in the cross-section of a sphere (or hemisphere). The total averageﬁgg&gl, which is really the sum of

fm,,g over allﬁ’&o and all initial wave directions, is therefore also attractive. For the sphere configuration of Figure
3.4, where the energy flow direction is not restricted to the direction of local surface normal, the Casimir force problem
becomes an extension of infinite set of parallel plates of a unit area.

4.1.2. Hemisphere-Hemisphere and Plate-Hemisphere

Similarly, for the hemisphere-hemisphere and plate-hemisphere configurations, the expression for the total average
force per unit time, per initial wave vector direction, per unit area is identical to that of the hollow spherical shell with
modifications,

oo
- nw
Fh,avg = 2hcos Oipe E

D Y D Y
n=1 HRhQ (quvAhQ) - Rh,l (ri’Ah )H

—— lim HRhg ( Z,Ah 2) - éh,1 (T&K%J)H/O k; fdkl f] bl h,1) (4.3)

7T7‘~>oo

wheref;,. < w/2 andn = 1,2,3,--- . The incidence anglé,,. is from equation (A. 115)Rh 1 ( Ah 1) and

ﬁm (r;, [\';ﬂ) follow the generic form shown in equation (3.21). This force is attractive for the same reasons as
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4. Results and Outlook

discussed previously for the hollow spherical shell case. The total radiation force averaged over unit time, over all
possible initial wave vector directions, acting on the uncharged conducting hemisphere-hemisphere (plate-hemisphere)
surface is given by

o0

. 2nmh 0; 2h
Fytotal = Z Z = ﬁmr COS_, e = — — c08 Oinc
{Fiv kg R0} 5 =1 HR’“2 (Tg’A;%Q) — Bna (TQ’A;l,l) H i
oo
X lim HRh,Q (rQ,A’m) — R, (TQ,AQL’I)H / kg’fdkgyf] Rt ® dShemispheres (4.4)
T;—00 0

where(ilihe,m-mme is now a differential surface element of a hemisphere and the integrﬁstitmover the surface
of the hemisphere. The ter}’?(hp is the initial crossing point of the hemisphere opening as defined in equation (3.2).

The notationz{,g,, i o} imply the summation over all initial wave vector directions for both ins@?e;,b)

and outside(l?i7f) of the hemisphere-hemisphere (or the plate-hemisphere) resonator, over all crossing points given

by E/hp.

It should be remarked that for the plate-hemisphere configuration, the total average radiation force remains identical
to that of the hemisphere-hemisphere configuration only for the case where the gap distance between plate and the
center of hemisphere is more than the hemisphere raflighen the plate is placed closer, the boundary quantization

length HEH must be chosen carefully to be either

HEH = Hﬁhz (T;,KZQ) — Rpa (Tg’K;L,1> H

or

—

=B A7 D Y
2] = 10 (75 55) = B (e B )|

They are illustrated in Figure 3.8. The proper one to use is the smaller of the twoﬁjévé;, K;) is from equation
(C.54) of Appendix C3 an@V}, 4. is defined in equation (C.8) of Appendix C2.

4.2. Interpretation of the Result

Because only the specification of boundary is needed in Casimir's vacuum-field approach as opposed to the use of a
polarizability parameter in Casimir-Polder interaction picture, the Casimir force is sometimes regarded as a configu-
rational force. On the other hand, the Casimir effect can be thought of as a macroscopic manifestation of the retarded
van der Waals interaction. And the Casimir force can be equivalently approximated by a summation of the constituent
molecular forces employing Casimir-Polder interaction. This practice inherently relies on the material properties of
the involved conductors through the use of polarizability parameters. In this respect, the Casimir force can be regarded
as a material dependent force.

Boyer's material property is such that the atoms in his conducting sphere are arranged in such manner to respond
only to the impinging radiation at local normal angle of incidence to the sphere surface, and they also radiate only
along the direction of local normal to its surface. When the Casimir force is calculated for a sphere made of Boyer’s
fictitious material, the force is repulsive. Also, in Boyer’s original work, the laboratory boundary did not exist. When
Boyer’s sphere is placed in a realistic laboratory, the net Casimir force acting on his sphere becomes attractive because
the majority of the radiation from the laboratory boundaries acts to apply inward pressure on the external surface of
sphere when the angle of incidence is oblique with respect to the local normal. If the sphere is made of ordinary perfect
conductors, the impinging radiation at oblique angles of incidence would be reflected. In such cases the total radiation
pressure applied to the external local-sphere-surface is twice the pressure exerted by the incident wave, which is the
force found in equation (4.2) of the previous section. However, Boyer’s sphere cannot radiate along the direction that
is not normal to the local-sphere-surface. Therefore, the total pressure applied to Boyer’s sphere is half of the force
given in equation (4.2) of the previous section. This peculiar incapability of emission of a Boyer’s sphere would lead to
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O
Apparatus
Region

Figure 4.7.: To deflect away as much possible the vacuum-field radiation emanating from the laboratory boundaries,
the walls, floor and ceiling are constructed with some optimal curvature to be determined. The apparatus
is then placed within the “Apparatus Region.”

the absorption of the energy and would cause a rise in the temperature for the sphere. Nonetheless, the extra pressure
due to the waves of oblique angle of incidence is large enough to change the Casimir force for Boyer’s sphere from
being repulsive to attractive. The presence of the laboratory boundaries only act to enhance the attractive aspect of the
Casimir force on a sphere. The fact that Boyer’'s sphere cannot irradiate along the direction that is not normal to the
local-sphere-surface, whereas ordinary perfect conductors irradiate in all directions, implies that his sphere is made
of extraordinarily hypothetical material, and this may be the reason why the repulsive Casimir force have not been
experimentally observed to date.

In conclusion, (1) the Casimir force is both boundary and material property dependent. The particular shape of the
conductor, e.g. sphere, only introduces the preferred direction for radiation. For example, radiations in direction nor-
mal to the local surface has bigger magnitude than those radiating in other directions. This preference for the direction
of radiation is intrinsically connected to the preferred directions for the lattice vibrations. And, the characteristic of
lattice vibrations is intrinsically connected to the property of material. (2) Boyer's sphere is made of extraordinary
conducting material, which is why his Casimir force is repulsive. (3) When the radiation pressures of all angles of
incidence are included in the Casimir force calculation, the force is attractive for a charge-neutral sphere made of
ordinary perfect conductor.

4.3. Suggestions on the Detection of Repulsive Casimir Force for a
Sphere

The first step in detecting the repulsive Casimir force for a spherical configuration is to find a conducting material that
most closely resembles the Boyer’s material to construct two hemispheres. It has been discussed previously that even
Boyer’s sphere can produce attractive Casimir force when the radiation pressures due to oblique incidence waves are
included in the calculation. Therefore, the geometry of the laboratory boundaries have to be chosen to deflect away as
much as possible the oblique incident wave as illustrated in Figure 4.7. Once these conditions are met, the experiment
can be conducted in the region labeled “Apparatus Region” to observe Boyer’s repulsive force.

4.4. Outlook

The Casimir effect has influence in broad range of physics. Here, we list one such phenomenon known as “sonolumi-
nescense,” and, finally conclude with the Casimir oscillator.
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Original Bubble |

- Acoustic fielc

Bubbl eg under strong
acoustic field

Figure 4.8.: The original bubble shape shown in dotted lines and the deformed bubble in solid line under strong acous-
tic field.

4.4.1. Sonoluminescense

The phenomenon of sonoluminescense remains a poorly understood subject to date [28, 29]. When a small air bubble
of radius~ 103 em is injected into water and subjected to a strong acoustic field 2 k£ H z under pressure roughly
~ 1atm, the bubble emits an intense flash of light in the optical range, with total energy of roughly eV. This
emission of light occurs at minimum bubble radius of roughly0~* cm. The flash duration has been determined to
be on the order of 00 ps [30, 31, 32]. It is to be emphasized that small amounts of noble gases are necessary in the
bubble for sonoluminescense.

The bubble in sonoluminescense experiment can be thought of as a deformed sphere under strong acoustic pressure.
The dynamical Casimir effect arises due to the deformation of the shape; therefore, introducing a modifi€atica to

HE{Q — R H from that of the original bubble shape. Heltg, is the path length for the reflecting wave in the original
bubble shape. In generah, = Ly (t) = Hfig (ri (£),0(t), 0 () — By (rs (t),0(t), ¢ (t))” . From the relations

found in this thesis work for the reflection poin (r; (t),6 (t), ¢ (t)) and Ry (r; (t),6 (t), 6 (t)), together with

the dynamical Casimir force expression of equation (3.31), the amount of initial radiation energy converted into heat
energy during the deformation process can be found. The bubble deformation process shown in Figure 4.8 is a
three dimensional heat generation problem. Current investigation seeks to determine if the temperature can be raised
sufficiently to cause deuterium-tritium (D-T) fusion, which could provide an alternative approach to achieve energy
generation by this D-T reaction (threshold17 KeV) [33]. Its theoretical treatment is similar to that discussed on

the 1D problem shown in Figure 3.9.

4.4.2. Casimir Oscillator

If one can create a laboratory as shown in Figure 4.7, and place in the laboratory hemispheres made of Boyer’s material,
then the hemisphere-hemisphere system will execute an oscillatory motion. When two such hemispheres are separated,
the allowed wave modes in the hemisphere-hemisphere confinement would no longer follow Boyer’s spherical Bessel

function restriction. Instead it will be strictly constrained by the functional relatiohdf — &, H , whereR; andR,

are two neighboring reflection points. Only when the two hemispheres are closed, would the allowed wave modes
obey Boyer’s spherical Bessel function restriction.

Assuming that hemispheres are made of Boyer’s material and the laboratory environment is that shown in Figure 4.7,
the two closed hemispheres would be repulsing because Boyer’s Casimir force is repulsive. Once the two hemispheres
are separated, the allowed wave modes are governed by the internal reflections at oblique angle of incidence. Since the
hemispheres made of Boyer’'s material are “infinitely unresponsive” to oblique incidence waves, all these temporary
non-spherical symmetric waves would be absorbed by the Boyer's hemispheres and the hemispheres would heat up.
The two hemispheres would then attract each other and the oscillation cycle repeats. Such a mechanical system may
have application.
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Unclosed

Figure 4.9.: The vacuum-field radiation energy flows are shown for closed and unclosed hemispheres. For the hemi-
spheres made of Boyer's material, the non-radial wave would be absorbed by the hemispheres.

43



Appendices

These are my original derivations and developments that were too tedious and lengthy to be included in the main
body of the thesis. There are five appendices: (1) Appendix A, (2) Appendix B, (3) Appendix C, (4) Appendix D
and Appendix E. The appendices C and D are further divided into subparts C.1, C.2, C.3, D.1 and D.2. The title and
the layout of the appendices closely follow the main body of the thesis. Finally, the appendix E have been added to
provide further list of references pertaining to the Casimir effect, but which were not explicitly used by this thesis.
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A. Reflection Points on the Surface of a
Resonator

In this appendix, the original derivations and developments of this thesis pertaining to the reflection dynamics are
included. It is referenced by the text of this thesis to supply all the details.

For the configuration shown in Figure 3.1, the wave vector directed along an arbitrary direction in Cartesian coor-
dinates is written as

i=1—k

. 1,29 él = j>
Ky (K o0 kL, Z K€, k=R i=2—k,, é&=7 (A.1)
i=3—k, €é=2
The unit wave vector is given by
e Zkl (A2)

The initial crossing positiodk’, of hemisphere opening for the incident wabe is defined as

i=1—>7“67w,

3

>/ / / / o /PN ’ . /

Ry (1"0727, r07y,r07z) = Zro_’iei, To; = i=2-7p,, (A.3)
i=1

i =31,

It should be noticed here thdt’, has only two components;, , and 7.~ But nevertheless, one can always set

76, = 0 whenever needed. Since no particular wave with certain wavelength is prescribed initially, it is desirable to
employ a parameterization scheme to represent these wave vectors. The line segment traced out by the wave vector
15’1 is formulated in the parametric form

3 o o—1
Ri=ak+Ro=Y [r(’m & HkllH k’“} é, (A.4)
=1
where the real variablg, is a positive definite parameter. The restrict@an> 0 is a necessary condition since the

direction of the wave propagatlon is setldy Here R/, denotes the first reflection point on the hemisphere. In terms
of spherical coordinates}’; takes the form

3 A} | = sin 6] cos ¢,

/ / / / A I ~ I ol /ol /

1(r},01,01) =7 E Auei, A172 = sin 0] sin ¢}, (A.5)
N i _ s
= A 3 = cosOy,

wherer; is the hemisphere radiug; and ¢} are the polar and azimuthal angles respectively of the first reflection

point R'i. The subscript of r; denotes “inner radius” and it is not a summation index. Equations (A.4) and (A.5) are
combined as

3 - —1
Z |:T(/),i +& HkllH ll,i — T;Al,i:| é; = 0. (A.6)

i=1

Because the basis vectaisare independent of each other, the above relations are only satisfied when each coefficients
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A. Reflection Points on the Surface of a Resonator
of ¢; vanish independently,

= —1
i ‘ K —riA =0,  i=1,23. (A7)

7"6}7; + 61 ’

The three termd ;—1, Ay ;=2 andA, ;—3 satisfy an identity
3
A% = (A8)
i=1
From equation (A.7)A%_’i is computed for each:
2 =2 ;12 ol 1725, 12 ’ - 17 .
Ay, =[] [r(),i} +&7 HkllH [klz] + 21 ;61 HkllH kii¢s 1=1,2,3.

Substituting the above result Aﬁ,i into equation (A.8) and after rearrangement, one obtains

3. 2 1B 3
&3 || 2 ||F]| D bkt + Y o - 1 =0, (A.9)
i=1 i=1 i=1
Further simplifying, it becomes
€2 4 2%, o Rty + Hﬁfo ]2 P =o. (A.10)

There are two roots,

A - “ 5 2 ~ 2
6o =i e o= 0 0]+

and

. . . S 12 2
§1p = —k1eRog+ \/{kﬁ . R’o} + [THQ - HR/O ‘ )

The root to be used should have a positive value. For the wave reflected within the hemi&ﬁhgﬁ‘re;,

e B+ = |

k'y e Rlg| > —k'y o R

2
\ >

where the equalit 15’1 ° ﬁ’o = —15’1 ° ﬁ’o happens wher'; o R”O < 0. Therefore &, , < 0 and&;, > 0; the
positive root¢; ;, should be selected. For bookkeeping purpo$esis designated a§ ,, :

N N ~ L 72 N 2
€1, = K1 e Rg+ \/[kfl o« B+ - HR’O ‘ . (A.11)
Using this positive root, the first reflection point of the inner hemisphere is found to be
. L. 3 L o-1
By (€13 Blo B ) = Y {r(),i &, Hk’lH k’u] é:. (A.12)
=1

The incident wave:’;, shown in Figure A.1 and whetiehere stands for incident wave, can always be decomposed
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A. Reflection Points on the Surface of a Resonator

N

e e B,
n i

Surface

Figure A.1.: A simple reflection of incoming wawé; from the surface defined by a local normgl

into components parallel and perpendicular to the vectoormal to the reflecting surface,

- - s T by
]57_];/ k_; _n/'k’/ij [n xk,}xn
i=Fky Rl = =—=n+ o

I./ n/.n/

If the local normal’ is already normalized to unity, the above expression reduces to
lgi:ﬁ/.lﬁ?iﬁ/+|:ﬁ/X]gli:| XTZ/. (A13)

Here the angle betweei; andn’ is = — ;. The action of reflection only modifie@w in the reflected wave. The
reflected wave part of; in equation (A.13) is

k/r = O‘r,Lk/i,L — O‘T,Hk/i,H = Oy | [n’ X k/,:| xn' — O‘RH”/ [ klﬂl/, (A14)

Wherek?’m have been rotated b\80° on the plane of incidence. The new quantitieg; anda,. ; are the reflection
coefficients. For a perfect reflecting surfaces; = «, 1 = 1. Because of the frequent usage of the component for

IQ'T, equation (A.14) is also written in component form. The component of the double cross p[dduct?’i} x n'
is computed first,

v i 2 v i ro_ Iy I
{[n x k l} X N }l = €lmn [n x k 1} M = Elmn€marNgk; Ty = €ntm€qrmMgky o1,

! 1./ li 1./ / 1./ /
= [0ngOir — Onr0iq] ngki oM = OngOirnigks .1y, — Onrigngks ni,

Y W 1. ’
—nnki’lnn—nlk- n

i,n'‘n

or

wn''n

3
[ﬁf x 15’} ! =3 [nl kL nt, — ik, ] é, (A.15)
=1
where the summation over the indexs implicit. In component formk’,. is hence expressed as
3
M= {ans [nk g, —nikl o nl] = anyni ki ni} é, (A.16)
=1

where it is understood’ is already normalized.
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The second reflection poitit'- is found by repeating the steps done o,

o | [n’ X k’z} xn' —a,n e k';in'

R'y =R+ 52,1)]%/7‘ =R+ §2.p ‘

whereé, ,, is the new positive parameter corresponding to the second reflection point. The procedure can be repeated
for any reflection point. Although this technique is sound, it can be noticed immediately that the technique suffers
from the lack of elegance. For this reason, the scalar field technique will be exclusively used in studying the reflection
dynamics. For a simple plane, the scalar field function can be inferred rather intuitively. However, for more complex
surfaces, one has to work it out to get the corresponding scalar field. For the purpose of generalization of the technique
to any arbitrary surfaces, we derive the scalar field functional for the plane in great detalil.

o | [n’ X k"l} xn' —a,n ek'in

In simple reflection dynamics, there exists a plane of incidence in which all reflections occur. The plane of incidence
i§ determined by the incident wawé; and the local surface normal;. For the system shown in Figure 3&; and
n/; are given by

s =K, W1 =—R4 (fl,p;R’O,k'l) = —&1pk'y — Ro.
The normal to the incidence plane is characterized by the cross product,
3
W1 =k1xn'y 1=k X% [*51@1?’1 - R'O] =—k'1 XxRy=— Zeijkkll,j""(),kéiv
1=1
where the summation over the indiceandk are implicit. The normal to the incidence plane is normalized as

3
N -1
/ / e
n’p,1H E Eijkkl,jro,kei' (Al?)

i=1

Np1=—

In order to take advantage of the information given above, the concept of scalar fields in mathematical sense is in
order. A functionalf (2',y’, 2") is a scalar field if to each poirit’, v’, z’) of a region in space, there corresponds a
number). The study of a scalar field is a study of scalar valued functions of three variables. Scalar fields are connected
to its normals, e.g., equation (A.17), through the relation

1oy =d,
W1 o<V i (2 y', ) Zeza,fp, (@'y,2), i=3 2—vh=y, (A.18)

3—vh =2\
Introducing a constant proportionality factdy ;, equation (A.18) becomes
°. 0
1= Fpa ; i gy foa (92 (A.19)
The proportionality factop, ; is intrinsically connected to the normalization'tf, ;. Because the vectar', ; is a
unit vector, its magnitude squared is
5.1 g 2 5.1 g 2y ~1/2
2 Z |:a /fPa ( ’,y’,z’)} =1 - ﬂpal ==+ {Z L?I/{fp’l (x’,y’,z’)} } .
=1 =1 ?

In equation (A.19), the directions for vectoﬁ%l andﬁ’fm are intrinsically built in. Therefore, the proportionality
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factor 3, 1 has to be a positive quantity,

5. 1y 2y ~1/2
ﬁp,l = {Z [pr’l <x/,y/,zl>:| } . (A.ZO)

i=1

Unfortunately, the exact form of the proportionality coefficiept; requires the knowledge df, ;, which is yet to be
determined. However, we can use it formally for now until the solutioryforis found.

Substituting the gradient functio‘ﬁ’fm into equation (A.19), and using equations (A.17) and (A.19), one arrives
at

1—v =1,

/ / 2~ . / /
eijkkl,jro,k] é =0, 1=< 2—=vy=y, (A.21)

33—y =2

o _ R —1
> [t 00+ 5 |
5 3

=1
Because the basis vectaisare linearly independent, the equation for each component is obtained as
l-vy=1=q

-1
ek i =0, = 21—y =, (A.22)
— Uz =2z =1.

7] il -
wfp,l (a7577) + ﬁp& Hn/p,l

Integrating both sides of equation (A.22) over the varialile- «,

@ 9 o 1
—11] =
/ Do fp-,l (0/7677) dOé/ = 7/ ﬂp,l Hn/p,lH Ga/jkklldrlo,kda/a
(e 7)) «

0

where the dummy variable’ is introduced for integration purpose. The tereas;xk} ;7 4, Bp,1 @nd Hrf’m ) are
independent of the dummy variahlé, and they can be moved out of the integrand,
aif (/6 )d,——_lﬁ’ -t N, ad/ (A.23)
o 1Pt a,P,y)ac = =01 p,1 €ajkR1 70,k Q. .
[e75) (e74)
Because the total differential gf, ; is given by
Ofpa fpa Ofpa
dfp1 = =2=da + —=L=dp + —L=d ! A24
foa = GErdel + ZELAG+ P, ol £ B A, (A.24)
the term[0f,1/0c’] da’ can be written as
afp 1 / afp.l 8fp 1
—Loda’ =df, 1 — —df — —=dy.
N I TR
The integration over the variablé = « in equation (A.23), with variableg # « fixed, can be carried out with
0
dﬁ = dW = 07 wfp,l (a/vﬂa ’7) dO/ = dfp,l (a,7577) (A25)
as
“ ’ 1,7 -1 ’o o
/ dfp,l (a 767')/) = - p_,l Hn/p,lH €ozjkk17j7"0_,k‘/ da
[e75) [e70]
to give

-

1
!
Np1 ‘

fp,l (aaﬁaf)/) = ﬁ !

,1

€ajikl ;70 k [0 — ] + fp1 (a0, B,7) - (A.26)

The two terms[eajkkgyjrg’k/ {Bp,l HE’MHH ap and f,, 1 (ao, 8,7) are independent ak. These terms can only
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assume values of = g or v, = ~. By re-designating independent terms,

. -1
hpa (8:9) = B, [ | €asekl b s + fya (a0, 8,7). (A27)

equation (A.26) can be rewritten for bookkeeping purposes as

. -1
Fo (@, B,7) = byt (B,7) = Bt || | ecanbl bz (A28)
Substituting the result into equation (A.22) and performing a differentiation with respect to the vafiablé gives

0

-1 -1
—1|.7 —1.7
a5 hpa (8,7) = By1 Hn/p,l ‘ eajkkll,jr(/),ka:| + 06,1 ‘ n'pa ‘ eginkt 7ok =0
or
0 —1 ||, -1 / !
%hp,l (B,7) = _5p,1 H”Ip,l ‘ €gjkk1 70,k

The integration of both sides with respect to the variable: 3 yields the result

L)
5 08’

-

B -1 N -1 8
hpi (8,7)d3 = —/ Byl Hn’pJH epr ikl jrordB = —B,1 Hn'p,lH Eﬁjkkll,jré,k/ dg’,
Bo Bo

where the dummy variablg’ is introduced for integration purpose and the teems ky ;7 1., Bp,1 andHﬁ'p,lH have

been taken out of the integrand because they are independéhtrafllowing the same procedure used in equations
(A.24) through (A.25), the integrar{@h,, 1 /05’] ' on the left hand side of the integral is

0
aiﬁ/hlﬁl (ﬁ/a’}/) dﬁ/ = dhp71 (ﬁ/a’}/) .

Consequentlyk, 1 (3, ) is given by

. -1
o (8,7) = Byt [ | €amt st [0 = 8]+ By (Bo,7) (A29)

The two terms{eﬁjkkidrg’k/ {6,9,1 Hﬁ’p,l H H Bo andh,, 1 (B0, v) are independent gf. The 8 independent terms can
be re-designated as

o oq—1
Ipa (7) = 5;% Hn’p,lu €grky 70 180 + hp1 (Bo,7) - (A.30)

For bookkeeping purposes, equation (A.29) is rewritten as

. -1
Pt (8,7) = 991 (0) = Byt ||| okt 76.8. (A31)
Substitution ofk, 1 (5,y) into equation (A.28) gives
. -1
Ty (06:7) = g1 (1) = By [t [essnbt 7608 + €asht 7] (A32)

Once more substituting), ; (o, 3,) into equation (A.22), and performing the differentiation with respect to the
variablev, = -, wherey # « # 3, we obtain

T | 0= 3

—1
/ /
evirky o =0
d’y ‘ YIR™1,570,k

-1
—11l =
[ o+ okt i} o] + 51 [
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A. Reflection Points on the Surface of a Resonator

or

—gp1(7) = _5;)71 np1

d ,1‘ -
dy

—1
! /
’ evjk/ﬁ,jro,ka

where the differentiation have been changed fédto d becausgy, ; is a function of single variable. The integration
of both sides with respect to the variabfe= ~ then gives

/’Yig 1(71)‘17/__/7571“7? )
P, - 1 p,
o dfyl Yo P

where the dummy variable’ have been introduced for integration purpose and the texms ;g ., Bp1 and

‘ ‘ have been taken out of the integrand because they are independénKobwing [dg,1/dY' ] dy' = dgpa,
the integration is carried out to yield

-1
o / /_ —1 1.7
‘ GW'Jkkl,er,kd7 =-8 1 H”p,l

—1 v
! / /
‘ Evjkku?"o,k/ dry’,
Y

0

-
p1

1

R -1
91 (1) = B} [ |

evikks 0.k Y0 — ] + gpa1 (0) - (A.33)

The two terms{ewkkijrg’k/ {ﬂp,l HE’NHH ~0 and gy 1 (7o) are independent of. The independent terms are
re-designated as

. -1
bo = Bt || o] etk mh a0 + gpa (0)- (A34)

For bookkeeping purposes, equation (A.33) is rewritten as

‘—1

gpa (7) =bo — B, 1 H7”7'p,1 €yikk1 70,17 (A.35)

Substitutingg, 1 () in equation (A.32), the result fof,, 1 (c, 8, ) is found to be

.3 1= =a=2a,
Fo (0, 8,7) =bo = Bt |whpal| Dokl rburts  i=4 2—vh=g=y, (A.36)
i=1 3—ovp=y=2.

The cross product expressed in terms of the Levi-Civita symbol is expanded to give

! r / ! !

€a'jkF1 50k = K1 j=yT0 k=2 = K1 k=2/T0,j=y" (A.37)
! r 1 ! !

Gy’jkijTo,k = kl,j:z’ro,k:z’ - kl,k:a:’TO,lc:z” (A.38)
/ / / / / /

€2/ ikk1 70k = K1 jmarT0 ey — K1y 70, j—a - (A.39)

It is important to understand that the functiorfgh in equation (A.36) is a scalar field description of an infinite family
of parallel planes characterized by the normal given in equation (A.17),

1.3

Y VS
n p"1H E e”kkwro’kez.
i=1

/ —
Wp1=—

Because the norma?l’p,l is a cross product of the two vectdd?s andﬁ’o, the surface represented by the scalar field
fp1 is a plane spanned by all the scattered wave vectors. The graphical plot of the fungiignalillustrated in
Figure A.2. The three coefficients,

! / ! / / !
Eozjkijro,ka eﬂjkkl,jrow Exjkk1 70 ko

51



A. Reflection Points on the Surface of a Resonator

x>

~ o -1
Figure A.2.: Parallel planes characterized by a normgl = — ) n'p1 H S €ijkky 70 ki

of the independent variables § and~ define the slopes along the respective bases and 4. The integration
constanty provides infinite set of parallel planes whose common norméi,;g. For what is concerned with here,
only one of them containing the coordinate origin is required. It is convenient to choose the plahg with With
the plane oby, = 0 chosen, the scalar field of equation (A.36) is rewritten for the sake of bookkeeping purposes:

lovi=a=2a,

3

—1

| Dk ro, =8 2= ==y, (A.40)
i=1 3ovf=vy=2"

fp,l (0476”7) = _ﬁp_,;ll Hnll)»l

where—oo < {a, 8,7} < 0.

As mentioned beforef), ; of equation (A.40) is a scalar field whelkg and R/, are the two initially known vectors
which span locally the reflection surface. Other thianand ﬁ’o, any member vectors of the spanning set for the
incidence plane can also be used to determine the orientation of a surface. Then it is always true that

fp,l( By K, Rl ) Ip.2 (04 B,v; K9, Ry ) == fpN (%@%E’N,E’N), (A.41)

where the integer inde¥ of k' is used to enumerate the sequence of reflections; and the integeWmifeﬁ’N is
used to enumerate the sequence of reflection points.

What is still yet undetermined in equation (A.40) is the proportionality fagor. From equation (A.20), thg,, 1
has an algebraic definition

2y /2 1—v =aq,
ﬁp,—{Z[a,fp, ﬁ,v)H Li={2-u=4

i=1 3— vy =1.
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A. Reflection Points on the Surface of a Resonator

The partial derivatived f,, 1 /0v] are calculated with the solution gf ; in equation (A.40),

0 -
q R Y A R s | Py YA
”p-,lH 6V’§ €zakk1,j7o,k’/z’* ﬂp;an,lH €1Jkk1,j70,kv
i =1

0 _1ll = -1 3 1
i fa (0 8,7) = =61 |

which reduces to

ﬂp,l

np1

3 ~1/2
‘{Z €k 7 4] } 0. (A.42)
i=1

The two possible solutions are eithéf; = 0, or the term enclosed in the outermost square bracket must van-
ish. Because3,; = 0 is a useless trivial solution, the second solution has to be adopted. #Eﬂpe” =

. 27 1/2
{Zf_l [eijkk’mrg,k} } , the equation (A.42) is already satisfied for any valugpf. Therefore 3, ; is an arbi-

trary quantity, and it is simply chosen to be unity which makes the gradient furﬁtifyh automatically normalized.
The scalar field solutiotf,, ; of equation (A.40) is now restated with, ; = 1,

1.3 1=V =a=21,
foa (@ 8,7) == |[wpa | Y esmktyrbars,  i={ 2-wu=8=y, (A43)
i=1 3ovh=vy=2,

where—oco < {Vf =a=2vh=0=y vi=v=2"} < 0.
The intercept between the plane of incidence, defined by equation (A.43), and the hemisphere is found through the
algebraic relation

2’2 + y/? + 2 [7,”2

7

which can be written as

3 11— =4,
S =0, i={ 2=y, (A.44)
i=1 3—-vh =2,

where ther] is the radius of sphere and the indedtenotes the radius of the inner surface. The intercept of interest is
shown in Figure 3.2.

One may be tempted to incorporate the surface vibration into equation (A.44) through a slight modification

- =

1=

—

where the vibration have been introduced through the time variations in radius. Some have employed such a model
in describing the “Casimir radiation,” as well as the phenomenon of sonoluminescense mainly due to its simplicity
from the mathematical point of view [14, 29]. In general, if one wishes to incorporate the vibration of a surface, the
description of such system could be represented in the form

3
[ri (0,601 = D i (0, ) = 0.

Since the radius function varies with, ¢’ andt, its treatment has to be postponed until the surface function can be
found in later sections. In the present discussion, the hemisphere is regarded as having no vibration.

Returning from the above short digression, the surface function of the sphere is expressed as the null function from

53



A. Reflection Points on the Surface of a Resonator

equation (A.44),

3 11—y =2,
fhemi (q;/’ y/’ z/) = [Tﬂz — Z [1/1(]2 = 0, Z = 2 — I/é = y/, (A45)
i=1 3—vh =2

The intersection between the two surfaces, the plane of incidence defined in equation (A.43) and the hemisphere
defined in equation (A.45), is found through the relation

fpyl (xl7y/a Z/) - fhemi (95/7?/, Z,) = 07 (A46)

which is equivalent to setting the scalar functifyy (z’,v’, 2’) = 0. Substituting expressions fgt, 1 («/,3', 2") and
Tremi (/9 2') given in equations (A.43) and (A.45), we arrive at

3 {we -

i=1

l1—v=a=21

—1 1 ’

= r ’ 2 . ’ ’
n’p,lH eijkkl,jro,kyi} —[r]” =0, = 2-vy=0=y, (A.47)

3ovh=vy=2\.

It is convenient to rewritér/]* in the form

) ) ) 3 , 1=l =7,
12 ’ / ’ ’ . 7
[ri]” = [Tw,] + [ri7y,] + [Ti,z’] = Z [’I“m} , i=9Q 29Ty =T,, (A.48)
i=1 3= ria =1
Equation (A.47) can then be written as
3 . , l-vi=a=a"r},="1},,
2 >, . ’ ’
Z {[Vl/] - ‘ n’p,1H eijkki’jr(’)’kug — [T;J } =0, i= 2=vy=08=yriy =7}, (A49)
i=1 3ovy=y=2"rig="1] .
Since the first two terms are already known, we can set each braced term equal to zero,
| ek = =0, i=1,2,3 A.50
[vi” —||n p,1 €ijkR1,T0,kVi — [7"“] =0, t=1,2,9. (A.50)

The above relation, equation (A.50), is valid in determining the set of discrete reflection points. The solutions of this
guadratic equation are

» ) 1/2
ﬂ'p,1H Eijkk,17j’l“67k:| + [rgﬂ-]Q} ., 1=12,3, (Abl)

1
V., = —
2

. 1
7 / /
n le €ijkk o T { {2 ’

where the summation over the indiceandk is implicit. The restriction ol being real imposes the condition

1=
[2 |5

In spherical coordinates, the three radial vector compongnts-; , andr; ; are

’—l

2
eijkk;,jrgyk} + [P >0, i=1,23 (A.52)

/ — 0l o3 / / / — 2! & ! o3 / / R /
i1 = risind cos¢’, Tio = rising sing¢’, Tig =Ticost, (A.53)

wherer] ; = r; ., ri, =1, andr; 3 = r; ,. Here the terms;, 0’ and¢’ are the usual radial length, the polar and

i,z 1,y
the azimuthal angle. This guarantees tRat= Zle 7; ;€: is on the sphere, and justifies the step taken in equation

(A.50) since we are only interested in the conditions of the discriminants expressed by equation (A.52); ;With
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redefined in terms of spherical coordinates, the reality conditior} nf equation (A.52) becomes

TR 2
{2 Hn’pJH eljkki’jréyk] + [r]) sin2 6’ cos® ¢ > 0, (A.54)
1y~ -1 2
[2 H”'“H ijk;,jr&k} + [ sin? 0 sin ¢/ > 0, (A.55)
_ 2
L5 ! o 12 2 p/
3 Hn’pJ ‘ e3jiky jro x| + ] cos” 0 > 0. (A.56)

Equations (A.54) through (A.56) provide allowed range/pfo ensure its value being real. The solution of equation
(A.56) is

2
1 - !
2
cos?@ > — {274/ n/p’lH €3jk>k/17j7‘67k:| , (A.57)
i
which leads to two inequalities,
/ o1 = -1 ’ ’ , 1 -, -1 , ,
cosd ZZQ—T, Wpill €Kkl To ks cosf’ < —ig 7 || €35kk1 ;70 k- (A.58)
i i

These two inequalities cannot be satisfied simultaneously by the two véttpendk’;. We have to look fosin 6/
by combining equations (A.54) and (A.55) to give

1 ) -2 [ i kl / 2 k/ / 2 12 . 2 9/ >0
7 /7ea €1k 1’]-7'07]6] + [e2mnkl n70.0] ¢ 4 [rf]” sin® 6" >0,
which yields
20> L2l T e g 12 JY AR E A.59
sm 2 *Z[TJ p1 [elyk 1,j7"o,k] + [Ean 1,mr07n} . (A.59)
The solutions are again two inequalities,
v i = -t A P ’ ;712
sinf’ > 27 np1 {[eljkk17jr07k] + [ankl,mrom] }, (A.60)
Y, i = -1 1o 12 / 7712
sin @ < —5.7 ||V {[eljkkzl,jro’k] + [Ean 1,mTO,n] }7 (A.61)

which cannot be simultaneously satisfied by the vecﬁjgsindl;’l. We have to combine equations (A.57) and (A.59)
to give

2 2 2
tan® 0’ > [esqrk] .75, ] {[eljkk'mré,k] + [€xmnk) T ] } (A.62)

which leads to another two inequalities,

/ roo0 11 s 12 , ;12 1/2
tan ' > [esgrk] ,75,] {[eljkkl_jro,k} + [€amnk} 7] } , (A.63)

-1 2 2)1/2
tan 0’ < - [63(17‘ i,q’ré),r] {[eljkkll,jré,k] + [6277”1/ ll,mr(,),n] } : (A64)
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In the specified range f&¥, 0 < ¢’ < 7, the tangent function has the limits

1
lir% (O <0 < 5 — |€|> =0 <tan® < oo, (A.65)
E—
: 1 / /
hn}) §7T+|6\ <@ <7|=—-oc0<tand <0, (A.66)

wheree is infinitesimal quantity introduced for limiting purposes. Since there is no guaranteg fhét 7 ,. > 0in
equations (A.63) and (A.64), one has to consider both cases whetg ;. > 0 andes, kq g, < 0. Therefore,
for the positive denominator case whesgg, k7 ,rg . > 0, we have

€3qrk1 470 = 0, lim._.g (O <6 < %77 - \5\) ,
- 2 bz A.67
0< (tan@’ > [esqrkl 470.1] ! { [eljkk’l,jrg k} Eanki’mréyn}z} ) < oc; (A-67)
€3qrk1 470+ > 0, lim. (%77 +le| <o < 7T) ,
(A.68)

1/2

2

-1 2

—0 < <tan9’ < — [63117'kll,qr6,7} {[eljkki’jrg’k] + [egnmki’mré’n] } > <0.

For the negative denominator case wheggk; ,r; . < 0, we rewrite equations (A.63) and (A.64) in the form

egqu:’lﬁqrg’,, <0 = - |€3qr iyqréﬁr| <0,
/ rogo -1 ro 12 ’ ;72 1/2
tan @’ > — ‘qur l’qTO’T’ [eljkkl’jro’k] + [Ean l,er,n] , (A.69)
/ ;-1 ' 2 , ;12 1/2
tan 8 < |esgrk) 7| {[eljkkwro,k] [€2mnk) 0] } . (A.70)

The tangent function in the domain< ¢’ < = has a discontinuity &8’ = 7/2, the inequality (A.69) has the limit
0 > tanf > —oo, and the inequality (A.70) has the limib > tan#’ > 0. Therefore, the limits for a negative
denominator case wheeg,.k; 75, <0,

63qui)qr(/)7r S O, hme—>0 (O S 9 S % ‘5‘) )
B 9 1/2
0< (tan 0 < |63qu/17q7"6774’ ! {[eljkki’jré’k + [ezmnk'lymré,n]z} ) < oo; (A71)
€3qrk1 470, < 0, lim._o (37 + || <0 <),
(A.72)

1/2

2

—1 2

—o00 < (tan9’ > — |esgrkl 470, | {[€1jkk/17j7"61k} + [eamnk’ 170, } ) <0.

Comparing equations (A.67), (A.68), (A 71) and (A.72), we see that two of them are identical when rewritten in
terms of the later convention whetg,,.k; ,r; . < 0 is expressed as |63q7]€1 40, T] < 0. The two tangent function
inequality limits are summarized below for bookkeeping purposes:

lime_o (0 <6 < 37— e]),

_ 2 1/2
0= (tan@ < ’ESqr 470 r’ 1 {[Eljklﬁ,jré,k} + [62mnk/1’m7"(/)m]2} > < o0 (A73)
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lim._,o (%Tr + |€‘ <9< 77) 7
- 2 1/2
—00 S <tan 0’ 2 - |€3qu/1,qr(l)m| 1 { [eljkkll,jré,k] + [62777‘”‘1{:/1,7”17”67"]2} ) S 0. (A74)

The corresponding arguments for inequalities in (A.73) and (A.74) are
lim. o (0< 0/ < dm— |},
_ 2 1/2
¢' = arctan <|€3qul1,qré),r‘ 1 { [eljkkll,jT(l),k} + [62mnk/1,mrf),n]2} ) ; (A-75)
lim. o (37 + || <0 <),
-1 2 9 1/2
0, = arctan ( |63qu,17quo,r| { {Eljkki,jré,k] + [62mnk,1,7rLT/O,n] } ) .

The spherical coordinate representation is incomplete without the azimuthaléngle have to solve for the allowed
range for the azimuthal angd# by combining equations (A.54) and (A.55). From equation (A.54), we have

(A.76)

’71

2
19 - 9
2 ./ / / ! 2l
cos” ¢ > — [2 Hn’p,l €1jkkjro| [risin® ']

and from equation (A.55),

2
19~ -1 _
sin ¢ > — {2 Hn’p,lH €2jkk/1,j7’6,k} [} sin26) .
They are combined to give

sin? ¢/

tan? ¢ = ———
¢ cos? ¢/

-2 2
> [eljkkiyjré’k] [€2mnk/17m7‘/0,n] . (A.77)
The two inequalities are derived from the last equation,

—1 -1
tan ¢’ > [eljkkllyjré,k] €2mnk] 170 s tan ¢’ < — [eljkk’l’jrgyk] €amnkl 170 n- (A.78)

In the range ofy’, 0 < ¢’ < 2, the tangent function has the limits

1
lir% (O <¢' < 37~ |5|> = [0 < tan¢’ < o], (A.79)
£—
1
lir% (27r +le| < <7 — 5) = [—oo < tan¢’ < 0], (A.80)
e—
. / 3 /
hr% <7r+5| <¢' < 37~ 6) = [0 < tan¢’ < o], (A.81)
E—
. 3 / /
1111’(1) (27T +le| < ¢ <2m— |€|> = [—oo < tan¢’ < 0], (A.82)

wheree is an infinitesimal number used in the limiting process. Because discontinuities ocglr=atr/2 and
¢’ = 37/2, the inequalities (A.78) has the limits

—1
0< (tan (Z)/ > [eljkki,jré,k] €27rmk/17m7‘67n) < o0,
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and )
—00 < (tan(b’ < — [€1jkk"17j7“6,k]

The ranges for inequalities in (A.79) through (A.82) can now be expressed explicitly as

/ !/
€2mn l,m’rOm) < 0.

lime_o (0 < ¢' < 37 —e]), limeg (7 +[e] < ¢' < 3w —[e]),
-1
0< (tang’ > [exuhl mhu]  €amnkt b ) < 0 (A-83)
limeo (374 le] < ¢/ <m—¢), lim. g (37 + |e| <¢ <2m—[e]),
/ / ! -1 (A84)
—o0o < [ tang’ < — [Eljkkl,jTO,k} Egmnkl mTon | < 0.
The solutions fog)’ are
: / 1 /
lim._.q (O <@ <gm— \5\) , lim._.g (71' +le] < ¢’ < 27r — |E|)
~1
¢’ = arctan [Eljkkll,jro,k} ankl_’mro’n : (A.85)
lim.o (374 || < ¢/ <m—¢), lim. o (374 |e| < ¢/ <21 — |¢]),
—1
¢’ = arctan | — [eljkk’mro’k} €2mnkl ;mT0m | - (A.86)

In order to have/; values being real, the allowed rangetbfis determined by equations (A.75) and (A.76) and the
allowed range ofp’ is determined by equations (A.85) and (A.86). Having found valid rangésarid¢’ in which

v} is real, the task is now shifted in locating reflection points on the inner hemisphere surface in spherical coordinates.
To distinguish one reflection point from the other, the notatipis modified tov; — v ; in equation (A.51). The first

index1 of v ; denotes the first reflection point. In this notation, the second reflectlon point would; lzed theNth
reflection p0|nt Vi ;- Then equation (A.53) is used to rewritg; in terms of spherical coordinates. The Cartesian
coordinate variables’ ./ andz’ in equation (A.51) are expressed as

r 12 1/2
1 - - 1y - -1
V{,l =) = 5 ‘ n/p,lH 61jkk/1,j7"6,k + { 3 Hn’p,;H eljkkll’jréyk + [7'2]2 sin? @) cos? qﬁ’l} , (A.87)
_ _9 1/2
v — ) } = -1 . k/ / + 1 = -1 . k/ / 4 [ /]2 : 29/ 2 ¢I (A 88)
12=Y1 = B n'p1 €25kR1,5T0,k B Np1 €25kK1,570,k T S Uy ST @y ) .
i . 9 1/2
Via=2 =>|n AT B ey e Rkl "% cos2 8, A.89
1,3 = %1 = p,1 €3jkR1,570,k 5 Wpa1 €35kR1 70k | T [r:]” cos™ 0} . (A.89)

Although the first reflection point on hemisphere is fully descrlbed%hym equation (A.12), it is not convenient to
useR’; in its current form. The most effective representauon‘%mc is in spherical coordinates. We €t= 6} and
¢’ = ¢} that describe the same reflection pothl on the hemisphere. The subscript on the angular varighles
and¢} denotes first reflection point on the hemisphere surface. In terms of Cartesian vatiallesnd>’, the first
reflection point on hemisphere is given by

! _ !
_ l1— Vi1 =2y,
- ! _ !

Ry (2,97, 21) E 17 i€is 1= 2=V =y, (A.90)

/ — !
3— 3= 2.

The same point on the hemisphere, defined by equation (A.90), can be expressed in terms of a parametric representation
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of equation (A.12),
o 3 o 3
"1 (51,p;R’o,k’1) =y |:T6,i +&1p Hk’lu k/u] 6= Tiié, (A.91)
=1 =1

where

T
Tis =1, + &y k’1H h i=1,23. (A.92)

Both representationsf’y (.1}, 2} ) and R, (51 o Rlok ) describe the same point on the hemisphere. Therefore,
we have

3
Ry (2,91, 21) = B (fl,p%é'(),léﬁ) = Y - Tié =0
=1
The components of the last equation are
Vi,i - Tl,i = O, 1= 1, 2, 3. (A93)
Substituting expression of ; from equations (A.87), (A.88) and (A.89) into the above equation, we obtain

-1 11 -
. / ! - 7
’ €1jkky ;o ) £ { {2 Hn P,

1/2

1 2
‘ eljkki’jr()’k] + [7‘2]2 sin? 0] cos? (b'l} —T11=0, (A.94)

L=
5 Wp1

-1

1/2
IR 1~ ? 2 . .
2 |7 62]"“’“'1“3*'“*{[2 [ szkki,jra,k} +[r}) sm20'1sm?¢>’1} ~T12=0, (A95)

1/2
-yt 2
Wy egjkk;,jrgvk} ] cos? 9'1} —Ti5=0, (A.96)

.-t 1
! /
Tl'p,1H €3jkky 70k T { [

whereY; ; is defined in equation (A.92). To solve fé}, equation (A.96) is first rearranged,

1 W - -1
£33

. 9 1/2
2
’ Egjkki’j’l"é’k] + [r}]” cos® 9’1} =Ti3— = H P 1” esjkk'ur(’)’k.
Square both sides and solve fox? 0}, the result is
-2 - -1
cos® 01 = [r] {Ti?, —Ti3 Hﬂ'p1H €3jkky ;0 k| - (A.97)

For reasons discussed earli@&r,information from the sine function is also needed. Following the earlier procedures,
equations (A.94) and (A.95) are combined to yield the relation,

L 1 e i Ll
3 o] enkirias {5 7

i
Wp,1

2

1 1/2
- ro 12 . 2 gt 2 4/
p,1 H eljkkl,jro,k] + [Tl] S11 91 COS ¢1} — Tl,l

’—1

5 1/2
' / N2 20 2 41
€2mnk1,m7"o,n} + [r]” sin” 61 sin” ¢} —T12=0

59



A. Reflection Points on the Surface of a Resonator

The equation is not easy to solve fdn? ¢). Fortunately, there is another way to extract the sine function which
requires the knowledge af;. The solution off; is postponed until a solution af; is found. To solve fok!, it is
desirable to solve fatos? ¢ andsin? ¢/, from equations (A.94) and (A.95) first. Rearranging equation (A.94),

1/2
1 y -1 ro ? N2 .2 2 4 ! 1 = B ro
+ ) Npa1 €1j/‘~‘kl7jro,k + [ri]” sin® 0] cos” ¢} =Ti1— 9 Npa1 €1jl~ck’1,j7“0,ka

and followed by squaring both sides, then? ¢} can be found to be

—1
cos? ¢ = [risin@]” {Tf 1 —Tia H o 1H eljkkllyjré,k} . (A.98)

Similarly, rearranging equation (A.95),

3

and squaring both sides, thein” ¢, can be found to be

by -t ro ? 12 .2t 2 41 v -1 I,
; _ . . 1 ‘
n p,1H €gjiky jTo |+ [ri]” sin® 67 sin® ¢} =Ti12 H » 1“ €Kk ;0.1

Wpa| @jkk;,jrg,k} . (A.99)

sin® ¢, = [r}sin@)] > {TM—TM‘

Finally, tan? ¢} can be obtained by combining equations (A.99) and (A.98),

-1 1
tan2 (;5/1 = |: Tl 1 H D, 1H Eljkki,jr(/)}k:| |:Ti2 — TL? Hn/p’lH egmnki’mréyn] . (AlOO)

Finally, the azimuthal angle] is found to be

1/2

-1
/ !/

) T, — Y1 H P, 1H €2mnk1 mT0.n

¢7 = arctan | £

kel (A.101)
2
11, —Tia Hn’p,lH €1k ;70 1

The restriction ofy} being real imposes the condition

—1
/ /
T -T2 H », 1H €2mnkt mT0n

=<

1
A
T1 1= Y11 ‘ Np, 1H eljkkl,jro,k

or

-1
Tl 2 Ti2 H P, 1H Eankl mTO n 2 <T1 1—sT11 H P, 1H Eljkkll,jr(/),ka
whereg > 0. Following equations (A.77) through (A.86), the following results are obtained:

limeo (0 < ¢} < 27 —e]), lime (7 + [e] < ¢} < 37— ¢]),
mr1,2||mp,1||lmnz@;,mrg?n]m . (A.102)
)

= =T
2 7 . ’ ’
i1 Tl,lH” p,1|| eljkkl,jro,k,

¢} = arctan ({

lim, g ( T4le] <) <m— 6) lim, ( T+ le] < @) < 2m — |€|) ,
T1.2—T1,2||" P,IH 52'rrznk1,7ylr(/),'rL:| 1/2> (Alos)

= =1
2 _ 7 . ’ ’
T TM”” P,IH €151k 570,k

@ = arctan < [
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A. Reflection Points on the Surface of a Resonator

Having found the solution fap;, we can proceed to finalize the task of solving for the polar aéigl€ombining the
results forcos? ¢} andsin® ¢, found in equations (A.98) and (A.99)in* ¢, can be found to be

3 L1
sin 0 = [}~ |:T%,1 +Ti, H”’p,l ‘ {1 rejuk jro5 + T1,2€2mnkll,mr6,n}:| - (A.104)

Finally, tan? ¢/ is constructed with equations (A.97) and (A.104),

—1
T, + 713, H P, H {Tl,leljkkll,jr(/),k + T1,2€2mnki,m7"6,n}
tan? @] = — . (A.105)
T%S - T1’3 Hnlpal ‘ 63qu/17qré,r
Thend) is given by
o —1 1/2
, T+ 11, - Hn’p,l ’ {Tl 1€1jkk1 ;70 & + T1,262mn k1 7o n}
0} = arctan | = — (A.106)

/ !
Tl 3 Ti3 H P, 1” 613c11”1€1,117°0,r

Following equations (A.62) through (A.76), we arrive at

lime o (0 < 0] < 37— [¢]),
- _ 1/2
¢} = arctan ({T§,1+Tf,2_||"'p,1| 1{Tl,lEljkkll,j"‘{)fk"r’rl,2€2nL'rLk/1,'rrLT[/],7L}:| / ) : (A.107)

= -1
2 7 / ’
T1,3*T1,3H” P11|| €3qrki 470,

lime_ (37 + |e| < 0] <),
1/2
0" — arctan <_ [Tf)lJr'I‘l,QHn pl” {Tl,lEljkk;[,]‘Toyk+T1,2€2mnk/1,7n,r6,n}:| / ) (A-108)
1= .

2 > -1 ’ ’
T3 s Tool[wpa || eaarkl o7,

The allowed angular values are all defined na#:by equations (A.102) and (A.103); af¢l by equations (A.107)
and (A.108). The initial reflection point on the inner hemisphere surface can be calculated by the equation:

/ / /
1 — v]; =r;sinf] cos ¢y,
(r:,01,97) E v (i, 00, 00)é,  i= 2—>V12—’1";SII19/181H¢/1, (A.109)
3 — vy g =1]cost.

We still have to determine the maximum wavelength that can fit the hemispherical cavity. It is determined from
the distance between two immediate reflection points once they are found. We have to find expression describing the
second reflection poink’s. In Figure 3.2, the anglé, » satisfies the relation

Y12+ 02+ 0, =m. (A.110)
Anglesf, andd,. are equal due to the law of reflection, consequently
92 = Hr = 91, 1/1172 =T — 201 (Alll)

It is important not to confuse the andlg above with that of spherical polar anglewhich was previously denoted

with an index: to indicate particular reflection poirﬁ’i. The#; in equation (A.111) is an angle of incidence, not a
polar angle. In order to avoid any further confusion in notation, equation (A.111) is restated with modifications applied
to the indexing convention for angle of incidence,

9i+1 =0, = einca q/}i,i-‘,-l =T = 29inc- (A112)
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A. Reflection Points on the Surface of a Resonator

The relation that connects angle of incidence to known quank?tﬁeandﬁ’l is

kll.R/l*Zklﬂjlz: Ty kl

‘ c0s Oine,

WhereH}?’l

‘ = r}, and the index is not summed over. The incident anglg. is given by

0;nc = arccos <[

Substituting the explicit expression of ; :

_1 3
H Zkl o > . (A.113)
=1

/ Y o A / / / — o — o3 ! o3 / / I - /
V11 =) = r;sint cos ¢i, Vi =Yp = r;sinf;sin ¢, Vi3 =21 =rjcosb, (A.114)

into equation (A.113), the incident angle is evaluated as

sin 0] [k;/l cos @) + ki/i sin qb’l} + k;i cos 6]

0ine = arccos (A.115)
2 2 2
VIl )+ ]
Ty Y1 21
wherek} ; = k:’,, l2= k;i andkj 5 = klz;- The second reflection poitt’, has the form
3 l1— Vé,l = x,27 Vi,l = zlla
R's (Vé,lv Vé,zv Vé,s) = Z Vé,i (Vi.,l’ Vi,za Vi,:a) €is i = 2—- Vé,z = Y, V{,2 =y, (A.116)
i=1 3—upg =2y, Vig=2.
The relation that connects two vectdes, and /5 is
Ry e Ry =[r]” cospr o, (A.117)

where|| k', ‘ = ||R ‘ = r; for a rigid hemisphere. Equivalently, this expression can be evaluatedyisingiven
in equation (A.112), as

[1)? cos (7 — 20inc) Zv“ur“—. (A.118)

Equation (A.118) serves as one of the two needed relations. The other relation can be found from the cross product of
R andR’g,

3
é’l X E/Q = Zeijkyi,jyé,kéi' (Allg)

i=1

SinceR’; andR/, span the plane of incidence whose unit normal is given by equation (A.17),

‘ g e”kkl 77“0 RN

v
Wp1= ‘
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A. Reflection Points on the Surface of a Resonator

the cross product af’; andR’5 can be equivalently expressed as

3
. —1
| D ekt yriacs (A.120)

i=1

Rll X R/Q = 7F172

wherel'; - is a proportionality factor. The factdr; » can be found simply by noticing

Ry x Ry = Dyon'py — Hﬁll x Ry ‘ =T Hﬁ’p; ‘ =T,
which leads to
[y = Hﬁ/l x Bra| = ) sin (x — 261me) . (A.121)
Equations (A.119) and (A.120) are combined as
3 —1
S~ [eunth vt Toa [ | ekt ] = (n122)
i=1
The individual component equation is written
—1
eljkyl sz E T Fl 2 H p,1 ’ Eijkki}jré,k =0, 1 =1,2,3. (A123)

Equations (A.123) and (A.118) together provide the needed relations to specify the second reflectidtipivint
terms of the known quantltleR’o, k1 andR';. Itis convenient to expand equations (A.118) and (A.123) as

—[dT1,2/d0inc]/2

nz . . ro ro ror
[ri]” cos (m — 20ine) =1 1V5 1 — Vi aVs o — Vi 3Va 3 =0, (A.124)
. -1
V] oVh 3 — V] 3V o + 10 |0 e1inky o, =0 (A.125)
1,223 1,372,2 1,2 p,1 1jkh1570 =Y .
-1
Vi U — (Vs + T |0 Wk =0 (A.126)
1,3V2,1 1,1Y2,3 1,2 p,1 €25kRy 7ok = Y5 .
Ly — Vot A T ||| esink b =0 (A.127)
Vi1Ve2 —Vi2V2 1,2 [|"p,1 €35kR1 70k = Y- .

Equations (A.124) and (A.125) are added to yield

Vi,lyé’l + [Vi,z + V{J] V§,2 + [Vi 3— V] 2] va3="T1p2 H p,1 ‘7 Eljkk/Lj?"(/Lk - %zg;i (A.128)
Equations (A.124) and (A.126) are added to give

Vi = o] vha + vt + [+ via] vhs = Dra [ila| eanbirin - 522 (A129)
Similarly, equations (A.124) and (A.127) are combined to give

[Vi,l + Vi,ﬂ vy + [’4,2 - Vi.,1] Voo +V13Vh3=T12 Hﬁ"m ‘_1 €3jkk ;70 k — ;Zg;j (A.130)
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A. Reflection Points on the Surface of a Resonator

Define the quantities

—1
o / o / _ v} VAW 1dl2
p =V + V3, Qg =V 3 — V9, G =T12]n pJH eljkkl,jro,k ~ 2 d0ine
—1
o / o / _ v} BN, 1dl1,2
Q3 =V — Vi3, 4 =1V3 + Vi1, (o= FLQ n'p1 ’ ezﬂkkl,jro,k — a0, (A131)
—1
o ’ o ’ _ ) oy .0 1dlio
a5 =V 1+ Vo, Qg =Vi9 — Vi, G3=T1p2 ‘ n p,l' €36k ;08 — S ag

wherel'; » is defined in equation (A.121). Equations (A.128), (A.129) and (A.130) form a reduced set
ViaVha +oavs o + gty 5 = (1, Q3Vyq + V] oV o + Qa3 = (2, QsVh g+ ey o + V] 33 = (3

In matrix form it reads

! !
vip a1 Qg Z% S
! !
az Vig a4 || Vao | =| G |, (A.132)
! !
Qs Qg Vi3 Va3 €
Mo

and its determinant is expressed as
det (Mo) = [vh1 +via+ sl { i)+ [o]” + Mal”} = 07 [+ via +v0a] . (AL39)

Three new matrices are then defined here as

N G o Qo N Vi,l 1 o N V{J ar G
My=| G vip a |, M=|a (¢ a |, M=| a v, (@
G as Vi as (3 Vi as  as (3

The variables ,, v5 , andv; 5 are solved with the Cramer’s Rule as
vy, = det (M1> / det (]\70) , vy o = det (Mg) / det (Mg) , vy 3 = det (Mg) / det (MO) .
Explicitly, they are given by
Uy =Vyy = (Vi,l [V{,l — Vot Vi,3] G+ {Vi,l [VLQ - V1,3] - [%,2]2 - [Vi,3]2} G2

-2

+ {Vi@ [Vi,z + Vi,:s] + [Vi,z]g + [Vis}z} CS) [Vi,l +vio+ Vi,s] - il (A.134)

Vo = vho = ({Via Wia + sl + )"+ W)} G+ {vha W = vial + Mo}

vl [V = via) = ) = ()"} G) [ + vha +via] T )7 (A.135)

Vo =vha = ({1~ vial via — W) = (o)} o+ { Pl +via) s+ D)7 + M)} o

2 -1 _92
+ { 12 = 1a] v + [15] } 53) [vig +vig i) ], (A.136)
where
Vi,l = x/l (T§7917 ¢1) 1/571 (V{J? VLQ’ V{73) = "1:"2
Vigt Vgt s #0, Vg =y (15, 01,01) |, Vho (Vi1 Vios) =vh |- (A137)
Vg =2 (rl, 01, 61) Vhs (Vi1sVigsVis) = 2b
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A. Reflection Points on the Surface of a Resonator

In the above set of equations; ; has been used to indicate thgt, is now expressed explicitly in terms of the
Cartesian coordinate8/] |, ] 5, ] 3) instead of spherical coordinates corresponding to the second reflection point,
(rl, 02, ¢2) . The second reflection point inside the hemisphere is then from equation (A.116),

>/ Ny </ </ _ NVZEDN
R's (V2,17V2,27V2,3) = E Vy.i€is

wherers ;, i = 1,2, 3 are given in equations (A.134) through (A.136) with restriction given in equation (A.137). In
general, all subsequent reflection poiﬁt’s« can be expressed in generic form

>/ </ Ny Ny, _ N/ o
R'y (VN,17VN,27VN,3) = § Un i€i

through iterative applications of the restilt;, i = 1,2, 3. This however proves to be very inefficient technique. A

better way is to expres&’ v in terms of spherical coordinates. Becau®e belongs to a spanning set for the plane
of incidence whose unit normalig,, ; defined in equation (A.17), the component relatiohs of equations (A.134),
(A.135) and (A.136) satisfy the intercept relation given in equation (A.51),

- -1 1
7 . / !/ -
n p,lH emkkl,er,k + { |:2 ’

wherer; | = r}sin 6 cos ¢y, r; , = r}sin 0 sin ¢5 andr; ; = r; cos 0. Here the subscrig of angular variables;
andqb2 denote the second reflectlon point. In terms of the angular variables, using the above expresglgrﬂfer
Uy 1, U o @andiy 5 are expressed as

1
I\/é" = 5

| 2 1/2
-, - 2
/ / / / .
n p71H eijkkl’jro_’k] + [ri,i] } y 1= 1, 2,3,

1 -1 12 v
:F{ §Hn’p1H €1jk»k/1,j7"67k +[r;]231n29’2c052¢’2} =3

-1
/ / N7
Woal| - evukt b~ vy, (AL38)

_ _ 1/2
L) - 2 e . L5 7t \
T { 5 Hn’p,l ‘ 62j;€k'17jr67k + [r}]” sin? 0 sin? ¢’2} =3 Hn’pJ ’ 62jkk;,j7n/07k — 1/572, (A.139)
1 -1 2 2 Yy -1
T { [2 (2 63jkk’1,jr’0’k} + [ cos® 9’2} = 5 |oa]| sk s — 2 (A.140)
Square both sides of equation (A.138)s> ¢, can be solved as
i ™ R N DT b
cos? oy =[r! 511192] —ln p’lH ekl jro K — Vo] — 3 Hn p’lH 16Ky 70k . (A.141)
Similarly, square both sides of equation (A.138)” ¢, can be solved as
2 1+ -1 o Ny’ 2 1+ -1 /. :
sin ¢2 [} sin 6]~ — n/p’lH 2Kk jT0 K — Vao| — 3 n’p,lu €251k ;70 & . (A.142)
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A. Reflection Points on the Surface of a Resonator

The last two equations are divided to give

2

- . -1
~ !/ / /
Tp,1 H 62mnk1,nz7ﬂ07n:|

-1
! / !
Tpa1 H €2mnkl mTom — V2,2

| I
no

—_ |1
2

2
2 41 |:
tan =
&) — —
/ . / ! _ N _ 1
np,IH eljkkl,jro,k Vo 2

E

The azimuthal angléy, is obtained as

-

1 2
7 N /
n pJH eljkkl,jro,k]

2y 1/2

—

1 [,7 -1 / / / ? 1 -1 / /
1,7 o R )
2 Hn p,1 H €QMTLk1,7rLTO,n Va2 2 [|TVp,1 H 62mnkl,mr0,n

B

Following the procedures used in equations (A.77) through (A.86), the following results are arrived at

¢h = arctan | & 5

—

—1 2 e _1
! . ! / _ _ Es ! . / /
Mp1 H elykijTo,k Va1 3 H” p,1 H 61Jkk1,j7”0,k

lime o (0 < ¢ < 27— [¢]), lime_g (7 + || < @5 < 37— ) »
/ e e e E1 e e e (A.143)
¢5 = arctan TS IR A T TS IR E ;
[EH”'PJ” Eljkkl,jro,k"’z,l} —[EH"/PJH eljkkl,jro,k}
lime o (37 + | <gh<m—e), lime_o(3m+e] < h <2m—|[e]),
- - 1/2
, 417 | cmnt oty =4 0] = [4 ] | emnt oty ] (A.144)
¢2:arctan — e — T VR 1 2 .
(117l vt =5 ] = [l exsnt i i

The solution forg,, forms a generic structure for any subsequent reflection points on the inner hemisphere surface.
The Nth azimuthal angl@'y, is found following a prescribed sequential steps

¢y = ¢y = gy == Py — Py (A.145)

By reversing the direction of sequengg, can be expressed in terms of the initial azimuthal aggled’y, = ¢y (¢}) .
The polar anglé, of the second reflection point can be found by squaring equation (A.140), which yields

cos? 0 = [r}] > { [1

—

_ 2
/ ! X k/ / _ Ny _ ]-
p,1 €35kR1,5T0k — V2,3

2

o -1 2
2 n/p,lH egjkki,jrgyk} } (A.146)

Add together equations (A.141) and (A.142) 6}, can be solved as

2 2
in2 0, — n—2 1 y -1 ko Ny, 1 > -1 -
sin® 0y = [r;] D) Np1 €15kR1 T0,k —V2,1| — ) Npa1 €15k71 570,k
1y - -1 / / / ? 1y -1 / / 2
! » !
+ 3 ‘ n'p1 H €2mnk1)mr07n —Uya| — 3 n'p1 H €2mnk1 ;mTo.n . (A.147)
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Finally, by dividing equations (A.146) and (A.147), we get

of a Resonator

2 2
tan2 @, — 1 = -1 N Ny} 1 = -1 Y-
an- vy = 5 Wpa1 €15kR1 jT0k — V21| — B pa1 €15kR1 570k
1+ -1 / ! / ? 1+ -1 ! I 2
+ 9 n'p1 H 52nmk1,mro,n — V2| — 5 n'p1 H 62mnkl,mTOm

!
2

Ik

10~ -1
7 / / ~
X { [2 Hn p’lH 63qu1’qroﬁr — U

The polar anglé), is given by

1
04 = arctan (:i: { [2

) N1
Wp1

-1
/ !
H €1kk1 jTox — Vo,

2
1= -1 10 =
! ! / N2 7
+ [2 n p,lH 6Zrnn]ﬁ,mTo,n — V2| — 5 ‘ Np,1
2
1= -1 1 -
/ / ! NY4 7
X { {2 ‘ n p,lH €3qrk1 gT0,r — V23| — 3 Np,1

Following the procedures given in equations (A.62) through (A.76

The above result of}, forms a generic structure for any subsequent

J

-

!
Np,

—1
-1 o ?
1 H €3qu1,qu,r .

1 2

[

2

-

!
Np,

—1
! /
1” 61]'1«’4?1,]'7“0,4

1/2
-1 / / 2"
H 62mﬂk1,mr(),n

—1/2
-1 o ? !
H 6?>117‘k1,11r0,7‘

), the following results are obtained

3 / 1
lime o (0 < 05 < 37 — [e]),
1,7 -t 1,7 -t ?
/ 7 o Y |1 7 N /
05 = arctan 5 (| p"lH Eljkkl,jro}k % 3 ||n p’lH Elyklﬁ,jro,;@
1 9 . 2y 1/2
1 {57 / / s/ 1,7 / / A.148
+ |:2 ’ n/P,lH E27>“L7lkl7nL7’0,n - V2,2] - |:2 ’ n/PJH E2mnk1,m’r0,n:| ( )
—1i/2
1 = —1 2 1 . -1 2 /
Vi / / N/ / / / .
X912 (|t H €3qrk1 qT0.r — V23| — |2 |1 p,lu €3qrk1 q70,r ;
. 1
lim, (571' +le| <05 < 7r) ,
/ 11],77 -1 A / ? 11],77 -1 A ?
o — £ / . — 7 — | L / .
0, = arctan 5 || p,1H €1kky jT0k — Va1 5 || p,1H €1kky ;70 &
) 9 ) 9y 1/2
1 {57 - / / N/ 1,7 B / / A.149
+ |:2 ’ n/p,l H €2mnkl,m7‘0,n - V2,2] - |:2 n,p,l H 62m7Lk17mT'0’n:| ( )
—1/2
1 = —1 2 1 . -1 2 /
/ / / ~] / / !/
X9 |2 ||t H €3qrk1 qT0.r — V23| — |2 |1 p,IH €3qrk1,470,r

reflection points on the inner hemisphere surface.

The Nth polar angle?);, can be obtained by following the sequential steps

07 — 0y — 05 — -

— Oy — 0.

(A.150)

Equivalently, reversing the direction of sequengg, can be expressed as a function of the initial polar adgle
0 = 6% (0]). With angular variabley, defined in equations (A.143) and (A.144), afiddefined in equations
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A. Reflection Points on the Surface of a Resonator

Figure A.3.: The two immediate neighboring reflection poiﬁrs and R, are connected through the angle ».
Similarly, the two distant neighbor reflection poinfgi and ﬁ’iﬁ are connected through the angle
Q"/}'i,i+17'(/)'i+1.i+2'

(A.148) and (A.149), the second reflection point on the inner hemisphere surface is given by

1 — vy 1 = 7} sinfy cos ¢,
L792?¢2 ZVQL L7927¢2 1= 2_>V22 _r;blneéSin(ﬂ% (A151)
3 — vy 5 = 1] costy.
As shown in Figure A.3, two reflection poinf&; and R’, are related throughp, o, which is the angle measured
between the two. Sincé”j, where the index = 1,2, -+, N,uae @and N, is the last count of reflection before a
repeat in cycle, belongs to a spanning set for a plane of incidence whose unit noﬁ’ggl ggven in equation (A.17),
all reflections occur on the same plane of incidence. The task of determininyttheubsequent reflection point
R’y is therefore particularly simple. The needed connection formulae between the initial reflectioRfacand the
Nth subsequent reflection poift 5 is found through both scalar and vector cross product relations similar to those
given in equations (A.117) and (A.119). In order to generalize the previous resuittfdo R’ y, recall the set from
equations (A.117) and (A.119),
RieR [T;f cos Y p — Z?:l Vi,iyé,i =0,
1oie } & (A.152)

—1
ety 5 o -
R’y X R’y die1 | €k Ve + 12 Hn’p,1 ‘

eijkkll,jré,k] éi = 0,
wherel'; » = [r;]2 siniyq o andyy o = m — 20;,,c. Becausd? y € {S : ﬁ’m} , itis true that

R xRy o< Ry x Ro.
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A. Reflection Points on the Surface of a Resonator
Therefore, we can write
Ry % By =T g By x By = T \Tyaiilyy = Dy niilp s,
wherel'; x = I'} yI'1,2 is a proportionality factor. Comparing the results,
(R By =Tinitp} = (B x Ba=Tuariy ).
one obtains a set of relations similar to equation (A.152)§Qv7

2 3 / /
S % [ri]” cos1 v — D iy V,iVn; =0,
Ry e Ry } o (A.153)

—1
) ) 3 / ’ = o ~
R xRy 2 i {Gz’jk’ful/zv,k + TN Hn’pJH €ijkk1,j7"o,k} ¢ =0.

In the above expression the indék on vy ; andvy , denotes components correspondingia; and 1, y is the
angle measured betweé_i"ll andﬁ’N. The proportionality factof'; x is found to be

Ry xRy = Dy nnlps — Hﬁ/l X ﬁ/N“ =I'n Hﬁ/p,l ’ =T N,
which yields
'y = Hﬁ’l X ﬁ’N“ = [ré]Qsinz/JLN.
The angley; v is contained iffYy, , ¢ _, , @s shownin Figure A.3,
Qg mry = QWaiownon =12+ %23+ -+ N2 N1+ N1 N (A.154)
For eachy; ;11, the sum of inner angles of a triangle gives
Y12 +02+0, =m,
Yo 3+ 03+ 0,11 =,
YN—2,N-1+ 9N—-1 + 0, N_2=m,
YN-1,N +ON +OriN_1 =T
The law of reflection gives
Op=05=-=0n1=0n=0,=0,11 =" =01n2="01Nn_1=0Oinc
Hence, the angles; ;. are found to be
Yioa=wa3 =" =0%N_oN-1=YN-1,N =T — 20;pnc. (A.155)

The angl&y, , 4y, » IS EXpressed as

Q¢1,27¢N71,N = q/}1,2 + 1/)2,3 + -+ wN—l,N = [77 - 201’nc] + [7T - 20inc] + -0+ [77 - 20mc}

or

1/}1’N = Q¢1,2,¢N—1,N = [N - ].] [7‘( - 29”“3] . (A156)

Hence forl'; », we have the result:

Ty = [ sin ([N = 1] [7 — 20inc]) - (A.157)
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A. Reflection Points on the Surface of a Resonator

The angular variable$,, and¢’y corresponding tdVth reflection poinﬁ'N are given as

: / 1
lim._o (0 <Oy < gm—le]), N =>2,
/ 1,7 -1 / ’ / 2 1,57 -1 / ’ 2
_ 7 ) _ I ey .
0N22 = arctan 3 || pylH Eljkkl,jro,k VN1 2 H" p,lH Eljkkl,jro,k
. 9 ) 9y 1/2
1,77 - ’ / Nyl 1|7 - / ’ A.158
+ [2 Hn/mH 62mnk1,mr(),n - VN,2:| - [2 Hn'zm” €2mnk1,m7"0,n] } ( )
. 9 . 2y —1/2
1|7 A Ny} 1|77 ro .
X { [2 ‘ n pJH 53qu1,q7'0,r - VN,3] - [2 n p,lH E3qu1,qr0,r:| } )
lim. o (37 + || < 0} <), N > 2,

2

Oy > = arctan ( { {; ‘ % ;

1 2 . . _1
R A B |1 7 oL
np,IH eljkkl,jro,k VN1 2 H”p,IH eljkkl,jro,k

9 2 1/2
- It . - |t (A.159)
+ % ’ n/PJH 62”mk/1,m7n(l)7n - V;\/',Q - % Hn/PJH 62mlel mT n '
T \ 9 T 1/2
X |:2 ‘ n/pJH 63‘17‘1{"/1,(17’/0,7' — V}v’3:| — |:2 ’ n,p*lH E3qu1 q'ro r
lime_o (0 < ¢y < 37 —|e]), lime_g (7 + [e] < ¢y < 37— |e]) N > 2,
1|77 -1 2 7 /
¢9v>2 — arctan [5”71 p,lH 627n,nk1,m7“01n—l/N72:|2—|:§||'n, 7’>1H €amnk] mro n (A 160)
- {%HTZIPYI||71€1jkki,jT6,k_’\’§v,1] _[%||7;,p,1H71611kk1,jT0 k
limeo (374 |e] < @)y <m—¢), lime_o (37 + |e] < ¢y < 2m — [¢]), N >2
_ , , 2 , 72y 1/2
’ {5 H”lpyl || €2mnk mTo,n —Vy 2] - {5 H"/pJ || €2mnk1,m7’o,n] (A 161)
@y>o = arctan | — — — s . ,
- [EHWPJH elek iTo R~ Vf\f,l] _{EH"IPYIH fljkkll,ﬂ'(/),k]

Where{uN ,1i=1,2 3} are given in equations (A.134), (A.135) and (A.136) together with the modificafipn-
z/NZ, (1 (Fl 9) — gl (T1,n), G2 (T1,2) — G (Th,n) and(s (T'1,2) — (3 (T'1,n), whereT'; y is given in equation
(A. 157) With angular variablé)y ., defined in equations (A.158) and (A.159) agig.., defined in equations (A.160)
and (A.161), theVth reflection point on the inner hemisphere surface is given by

) 3 1—>u§v1 = 7} sin @y cos ¢'y,
!/ / / / !/ / / ~ 3 .
R'n (1}, 0, dn) = E Un.i (15, 0n, ON) €is i= 2—>UN2 = 7} sin 0y sin ¢y, (A.162)
i=1

/
7

/ /
3 — vyg =ricosty,

where the initial reflection poinﬁ’l is given in equation (A.109).

For a sphere, the maximum number of reflections are given by the equation
Ns,mawwN—ZN—l = 271—7

whereyy_5 1 is the angle between two neighboring reflection poifits_; and &' y_»; the subscriptV, ,,q.
denotes the maximum number of reflection points for a sphere. The above result is a statement that the sum of all
angles is equal tow. Application of the rule shown in equation (A.155) for_o ny—1 gives

2

Niaz [77 - 20z’nc] =21 — Ns,mam = Q@
™= 291716

(A.163)
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A. Reflection Points on the Surface of a Resonator

whered;,,. is given in equation (A.115). In explicit formV; ... is given by

sin 0] [k‘;,l cos @) + k:;i sin ¢’1} + k;i cos 6]

\/[kéar [+

(A.164)

Ns maxz = 27 | T — 2arccos
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B. Mapping Between Sets (r,0,¢) and (v, 8, ¢)

In this appendix, the original derivations and developments pertaining to the mapping between thed s¢jsand
(r',0', ¢') used in this thesis are described in detail.

For a sphere, the natural choice for origin is the sphere center from which the spherical coordihétes’)
are prescribed. For more complicated configurations, as shown in Figure 3.3, the preferred choice for the origin
depends upon the problem in hand. For this reason, this section is devoted in deriving a set of transformations between
(rl,0',¢') and(r;, 0, ¢) , where the primed set is defined relative to the sphere center, and the unprimed set is defined
relative to the global configuration origin. In Cartesian coordinates, the two veltans i/ describing an identical
point on the hemisphere surface are expressed as

1/1,1/2,1/3 E vi€;, R (v}, vh, v3) E Vi€, (B.1)
where
v ==z vy =a é=2%
! ! o~ ~
vy = ) Vy = ’ €2=Y
V3 =2 vy =2 €3 =2

Here R and R’ are the position vectors of the same location relative to the system origin and the hemisphere center,
respectively. The two vectors are related through a translation,

3
R (vi,va,v3) = Ry (vra,vra,vrs) + B (v, vh, vh) Z vri + V] €, (B.2)
i=1

where Ry = Z?:1 vr,i€; is the position of hemisphere center relative to the system origin. Equation (B.2) can be
written as

3
Z [vi —vri —vi] € =0. (B.3)
=1
and the component equations are
vi—vp; —v; =0, i=1,2,3. (B.4)

It is to be emphasized that in the configuration shown in Figure 3.3, the hemisphere center is only shiftgd along
by the distancer > = q, thereforevr ;2o = 0. Nevertheless, the derivation is done for the case where# 0,
1 =1,2,3 for general purpose. In explicit forms, they are written as

/ / /
Vi —Vvry1 — V= O, Vo —Vp2 —Vy = O, V3 —Vp3 — Vg = 0. (BS)

In spherical coordinates,

vy =r;sinfcos ¢ = r;Aq (0,0) vy =rising cos¢’ = riA (0, ¢)
vy =r;sinfsing = r;As (6,9) |, vh =risin® sing’ =rAL(0/,¢") |, (B.6)
V3 =Ty cosf = TZ'A3 (0) Vé = 7‘7/4- COS 9/ = T;Ag (0’)

equation (B.5) is written as

risinfcos¢ — vy —risinf cos ¢’ =0, (B.7)
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B. Mapping Between Sefts, 0, ¢) and(r’,0’, ¢")

risinfsing —vro — risin® sing’ =0, (B.8)

ricost —vp s — 1 cost =0, (B.9)

where the Cartesian variablés;, v} : i = 1,2, 3} were expressed in terms of the spherical coordinatescdhgand
sin ¢ functions are obtained from equations (B.7) and (B.8),

vr1 + 7 sing’ cos ¢’ vro + 7 sin 6’ sin ¢’

, sing =

cosp =

r; sin 6 r; sin 6

The azimuthal anglé is given by

N vy + risin 6’ sin ¢’
6= (r;,0', ¢, vr1,vrs) = arctan < T2 77 4

B.10
vr1 + 1 siné’ cos ¢’ ( )

where the notatios indicates that is explicitly expressed in terms of primed variables. Combining equations (B.7)
and (B.8), we have

risinf [cos ¢ + sin¢] — vp — v — 7 sind’ [cos ¢’ + sin¢'] =
which leads to

vr + vro + 1) sing’ [cos ¢’ + sin ¢/]
r; [cos ¢ + sin @)

sinf =
From equation (B.9), we have
cosf =r; ! [ups + 7l cosd].

Combining the above results feim 0 andcos 6; and, solving for the argument

(B.11)

vr1 4 vr2 + rising [cos ¢’ + sin ¢']
f = arctan : - )

[cos ¢ + sin @] [vp,3 + 17} cos 0']

whereg is to be substituted in from equation (B.10). For convenience, the above restiisfagwritten explicitly in
terms of primed variables,

. . —1
{vr1+vre +7rising [cos¢’ +sin¢’|} [vr,s + 7} cos ]
/_ =1 9/ a1 / . / = 0/ 21 /
cos (amtan (w)) 4 sin (arctan (w))

vy 147} sin 6’ cos ¢’ vy 147} sin 6’ cos ¢’

0", ¢ Rp) = arctan (B.12)
o(r )

Here the notatio indicates that is explicitly expressed in terms of primed variables. The magnitude of a vector
describing hemisphere relative to system origin is found from equation (B.2),

o B 3 1/2 A} (0',¢") = sin @' cos ¢,
Ti (r;A’,RT) = HRH = {Z[VT, +7iAL] } : A, (0,¢)) = sin @' sin ¢/,
i= A5 (6') = cost'.
In terms of spherical coordinates, the position vector is expressed as
1/2 4 Ay 97¢ :sinécosqg7

3
) {Z vr; + 7‘2/\;]2} ZAiéi’ Ay (0,¢) = sinfsin g, (B.13)
i=1 =1

1\3 (0) = cos .

=
/N
S
U
>1
Dal
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C. Selected Configurations

In this appendix, the original derivations and developments in the thesis pertaining to the selected configurations: (1)
the hollow spherical shell, (2) the hemisphere-hemisphere and (3) the plate-hemisphere are described in detail.

C.1. Hollow Spherical Shell

For the reflection problem in a sphere as shown in Figure 3.4, the natural choice for a system origin is that of the
sphere centel’ = 0. The Nth reflection point inside the sphere is given by equation (A.162) as

/

3 1/;7N71 = risin QQ’N cos ¢’57N,
>/ !l l _ / ! ! / ~ ’ o i A : /
RN (ri,stN, ¢3,N) = E Vs N (7"1'7 s, N ¢S,N) €i, Vi N2 = Tisinb ysing; v,
— / _ /
i=1 Vs N3 = T;COS GS’N,

where the labek have been attached to denote the sphere. Keeping in mind the obvious index changes, the angular
variable?’, y is defined in equations (A.158) and (A.159), a#idy, in equations (A.160) and (A.161). Staying with

the notation of equation (B.lSﬁ’&N is rewritten as

. . 3 A;,N,l (9;,N’ ¢;7N) = sin 0;,1\7 Co8 ¢;,Nv
! ! / ! ~ N .
Rs N (rivAs,N> =T E As,N,ieia A;,N,Q (9;,N7¢/5,N) = s 9;,1\[ S ¢/5,Na (C.1)
i=1 A;N,?, (G’SN) = cos GQ,N,

where the relationsr . ; = 0, and>_"_, [A’&N’i]2 = 1 are used.
The maximum number of internal reflections for a spherical cavity before a repeat in cycle is given by equation
(A.163),

2T

N€,7r1,am = )
™ — 29mc

whered;,,. is given in equation (A.115).
The distanceHEH between two immediate neighboring reflection points on a sphere is

L

B Hﬁ”“ (rg,K;Q) — Ras (%K;l) H : (C.2)

It should be noted that

—

RS,Q - Rs,l

—

R, — Rs 1

= N (€3)

The only reason tha‘Es,l andﬁsg are used is for the purpose of convenience.
To compute the resultant wave vect]S’rqv,m,,er, acting at the poinﬁ’svl, the incident wave is first decomposed into
components parallel and perpendicular to the inner surface normal vedtty;,

— —

ki =ki= ];/iH + /f_"u_ = |:k_;z L R/s,1:| R/s,l + |:R/s,1 X ];/z} X R/s,la

where the subscriftt-) of l<?’i7+ denotes the particular contribution where the incident wéyds approachingi’s_yl
from 1:3"3,0- From equation (A.14) of Appendix A, the corresponding reflected wave vector can be expressed in terms

74



C. Selected Configurations

of the incident wave as

—

K=k, = [R'sJ X {[k_;z . R,s,l} R’s,l + [R’sJ X k_;z] X R’s,lH X R's 1

wherea,. | = a,| = landn’ — —R', ;. Because?’, ; L {[R’SJ X kﬂ X FA{’SJ} andR', ; | {k?’z . R’SJ] R4,
the above expression is simplified to

By = [ { [fran ) % r00)] o B = [Fo o] B,

The changes in resultant wave vedtoy, .., at the pointi’, ; due tok’; , at locationR', , is given by

Ak?inner,+(Rsl>ﬁ ) E k?’z+
= { {[R’SJ X Ig’l} X R’SJH X R’S,l
- [ o1 % K } X Ry —2 {E/ . R/SJ} Roa

2 {k/’/i . Rls,l} R’s717

Where{R’SJ X {{R’s’l X l;’l] X ]:2’5,1}} X RISJ = [R’SJ X Ig’l] X R’S,l.

For the incident wave traveling in the opposite direction, i.e., approadﬁmg from ﬁ’s72, one has

— — — —

ki =—k, :_E/r,-‘m K =—k,; :_k?/i,-&-:

) )

where the subscrigt-) on k_"i,_ denotes the particular contribution where the incident walyes approaching@s,l
from §,572. In this case, the changes in the resultant wave véctgy,.,. at the pointl?"syl due tok’; _ at the location
E?’S’O is given by

—

Ak?inner,— <7 Els,h Els,O) = lglr,— - k/i,— = k i+ + k r4+ = Ak inner,+ ( R s,1s é/s,O) .

The resultant wave vect@?mner acting at the poinR”S,l due to incident wave approachimﬁs,l from ﬁ’s,o and the
other incident wave approachin@s,l from ﬁ’s,z is therefore

AK inner (; R/s,la R/s,0> = Ak/inner,+ (; R/s,l, R/s70) + Ak/inner,— (; R/s,lv RIS,O)

=—4 |:k_;i7b . Rls7li| R/s717

where the subscrigtof kq’u, denotes the wave vector for ambient fields inside cavity.

W

The wave numbe

that can be fit in the bounded space of a resonator is restricted by the boundary condition

S(—1 . - .
/ !/ /
of = B = oo () = R ()]

‘ K
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C. Selected Configurations

The scalar product df’i}b andR’s’l is

EiryeR 1= Hk/i,b

‘ cos Oine,

where the angle between the two vecté"rlsb andﬁs@ is equal to the angle of incidenég,., as shown in equation
(A.115). The momentum transfer is proportional to

B 4Anm cos Ope B { 0 < Oine < 7/2,
N N — — S,19 — P
e (11 K) = R (110, ) | nehEe

Alg’inner (; ﬁ/s,ly E’s,o) = (C.4)

Similarly, the resultant wave vectdfrm,,ter acting at pointﬁ’&l + al?’&l on the outer spherical surface, wheris
the sphere thickness parameter, is given by

Ak_’/outer (7 ﬁ/.s,l + aR,s,l) =—4 |:k_;z,f L4 Rls,1:| é/s,lv

where the subscripf of &/, ; denotes the wave vector of the ambient fields in free space, and the factor 4 is due to
the fact there are two incidence wave vectors from opposite directions. The free space Wave’@MFhas no

guantization restriction due to the boundary. And, the scalar produ‘é;,pfand}?’syl is

— A

K'ifeRs1= ng/lfH cos (T — Oine) = — ’

k?;i,f H Cos eincR/s,l .
The momentum transfer is proportional to

O§9mc<7r/2,

AIgoutar (;§/571+aé/5,1) :4‘ n = 1,2,... A

k?;17f” COSQinCR/S’l, { (C5)

C.2. Hemisphere-Hemisphere

For the hemisphere-hemisphere configuration, the preferred choice for a system origin iskhat 6f The Nth
internal reflection point is given by equation (B.13),

. 3 /2 3
- A - - 2 N R
Ry, N (Tg,Ah,N,A;L7N,RT,h) = { E (Vr,h,i + TiA i) } E Ap N, (C.6)
i=1

=1

where the labehk denotes hemisphere; and

Anna 9h,N,¢h,N) = sin 0, N cos ¢p, N,
Anno (OnN, On.N ) =sinby nsingp n,

Ah7N,3 <'9h,N = COS Gh,N.

The definitions forA’h7N}i, i =1,2,3 are identical in form. The angular variablééh,N, g%h,N) are given in equations

(B.10) and (B.12), where the obvious notational changes are understood. The implicit angular varjaisielefined
in equations (A.158) and (A.159); amq ,, defined in equations (A.160) and (A.161).

We have to determine the maximum number of internal reflections of the wave in the hemisphere cavity before its
escape. Three vectof8, &;k'; andR’;, ; = R’; shown in Figure A.3 satisfy the relation

Ry =1 — Ry = &=1k i=1,
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C. Selected Configurations
where the notation of ﬁ’h,izl denotes the hemisphere. The path length squared is given by

N o 12 o 2 o 12 o o =12
Y L N e

e
— 2’/“i HR/O

cos o, 1-

N - 2 N 2
SinceHR’h,izl — Rly|| = ‘ §i=1k’i=1H = ¢2, the angleyy ; is found from the last equation to be

o,1 = arccos (; {7'7’ ’ - {r; H_l 5%}) ,

where¢,; = &, is given in equation (A.11). The angle » measured between the two vectds, ; and &), ; is

—

Ry

1 .

+ |

3
_9 = —
1 2 = arccos ([T” Rpie R/h’g) = arccos ( E A/h,l,i %21> ,

=1
whereR', ; andR'), » have been explicitly written foN = 1,2 in equation (C.1), or equivalently,
P12 =7 — 20inc

from equation (A.112). Because a hemisphere is just a sphere halve, it is convenient to define a quantity

1
Zh,ma:r - m [71— - "/]0,1] s
or in explicit expression,
Z _ T — arccos 1 | R ‘_1 + [T/-]_l Hﬁ’ ‘ — |:T‘/- R H_1§2 (C.7)
h,mazx I 29i71,c 9 i 0 i 0 [ 0 1,p ) .

where¢; , is given in equation (A.11) anéd,,. is given in equation (A.115). The maximum number of internal
reflections is then simply

Nh,maz = [Zh,max}ga (CS)

where the notati0|[1’Zh7mm]G is the greatest integer @, ..., and it is defined in equation (C.7).

The distanc#‘EH between the two immediate neighboring reflection points of the hemisphere is

HEH == Hﬁh,Q (7"27 K}L,Qa K/h,Za ET,}I,) - Rh,l (T;a Kh,la K;L,lv RE’T,h) H . (Cg)
It should be noted that

HR}L,2 - Rh,l

’ = HRhJ — Rpj-1

5 .] = Sa T 7N}L,’VVL(L(L‘ (Clo)

and the only reason thaﬁm andﬁm are used is for the purpose of convenience.

The change in wave vector direction upon reflection at the péim;l inside the resonator, or at the location

ﬁ’h,l + aR’M outside of the hemisphere, is given by results found for the sphere case, equations (C.4) and (C.5),
with obvious subscript changes,

(C.11)

4 Oinc A < Oine 2
nT CoS R, { 0 <ipe <7/2,

Ak/inner (;R/h,hR/h,()> TN S = , n=12.-..
HRh,2 (Ti’Ah,Q) — Rpa (ri’Ah,l)H I o
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and

Og@mc<7r/27

A]';/outer (;ﬁ/h,l +aR/h,1) :4’ n = 1’2’-.. .

g cos e . { (C.12)

The above results ah ke, (; Ry, R'po) andAK gueer (; B'h1 + a1 ) have been derived based upon the
fact that there are multiple internal reflections. For a sphere, the multiple internal reflections are inherent. However,

for a hemisphere, it is not necessarily true that all incoming waves would result in multiple internal reflections. The
criteria for multiple internal reflections are to be established. For a given initial incoming wave ¥écttirere can
be multiple or single internal reflections depending upon the location of point of entry into the da\ityshown
in Figure 3.5 are the two such reflections dynamics where the dashed vectors represent the single reflection case and
the non-dashed vectors represent the multiple reflection case. Because all the processes occur in the same plane of
incidence, the relationshif’ ; = —\gR’o with Ay > 0 has to be true. Therefore, we will have

R”l = ﬁlo + é-pk?/l, ﬁ/f = —Aoﬁlo = ﬁ/l + ];/2. (C13)
After eliminating B/, from the last two equations, we find

Bo=—[1+X)]" [5p15/1 + 15’/2} . (C.14)

The direction of the reflected wave vectbr, cannot be arbitrary because it has to obey the reflection law. The
relationship between the directions of an incident and the associated reflection wave is shown in equation (A.14).
Designatingy’ = —R'1/7}, k', — k's andk’; — k’1, the reflected wave vectdr, can be written in the form
192 X Oy | [7‘2]72 [ﬁll X ]i?l} X Ell — Qg [7"”72 Ell [ ]glR’/l
or, introducing a proportionality factox,, it becomes
];,2 = )\QQT’J_ [T;]_z {ﬁll X ]{71:| X ﬁll — )\20@7” [T;]_2 Ell ° lg/lﬁ/l.
The goalis to relatéi’f, or Ao, in terms of K. Substituting the expression fét', from equation (C.13), we arrive at

| o]}

+ Ag [Tg]72 {ar,L [E/O X k?/1:| X ﬁ'o — Othﬁlo ° k?/lR’/o} . (C15)

];/2 = —gg)\ganu [7’;]72 k_;1 + fp)\z [7’;]72 {OZTJ_ [R/() X ];/1:| X ]%/1 — O[TvH |:.R_’/() [ ] ](71]%/1 + ’ 15/1

Finally, equations (C.14) and (C.15) are combined to yield

fio&ryulal — fp {Oé/,-,L {ﬁ'o X ](71} X /4?/1 — Qqp | [ﬁ’o [ k?lk;/l + ‘ /;/1

o] + 23" [ 1}

+Oér,\\§'0 ok Ry — O, 1 {ﬁ’o X 7471} x Ry — At [7"2]2 [1+ o] B'g = 0. (C.16)

Utilizing the formula[/f x E_f} xC=Y", { {ffo (j} B, — {E . C‘} Al} é,, the cross product are evaluated as

- - A S o—1 _,
|:R/0 X k/1:| X kll = kll ]{/1

- . - E -1r, - -

o ] B =S [ [Foe P b [

- - - 12 - N

(o 3] x o = S { |l 1, - [Fro o]t b
Fr=Siake Ro=Tir6
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Rewriting equation (C.16) then

3
Z {ﬁgaMk’U +& (Oéry| [R”O ok
=1

[l =t

R .
k’l’ ki,z+”’f’1

k'

N — -1
A !
T07l:| — Q1 {R’O o k' ‘ kl.,l

k'

—1 N .
’ kiz) + a, R'g e kllré,l — Q1
57 2 / » 21O —17,.12 / N
X R 0 kl,l —k 1@ R OTO,l — )\2 [T’,J [1 + )\0} 7‘0,[ e = 07
which leads to the component equations

f;%ar,\Ik;,l +& (O‘r,| |:R'/O hd 1571 E/l

S o—1 .
L

- _, -1
/ /
7"07l:| — Oy | |:RIO [ ] k/l ’ 1,1

-1 _. _
! /
‘ kl,l) + o, Rloek'yrg; — a1

kll kll

EY R

L2 L
x U’R/OH K, — e R'Org,l] — 7 R+ Aol = O,
wherel = 1,2, 3. For an isotropic systenay,. , = a,.|| = «., the last equation reduces to

—1
/
)

o2
o[ Ky = 2 7 1+ Ml =0,

k' k'

3

oty o

rha =3t Il

+20,R'g @ K/ 17 ) — oy

wherel = 1, 2, 3. Because there are three such relations of the above, all three component equations are added to yield

3 -1 3
. T
£+¢ Zk’ul > {2 ‘ K| rh, — At ) ’ o ‘ ’1,1]
=1 =1
3 -1 3 )
+ Z klll] Z {QR/O o k'yrg, — HR/OH Kii— Ayt [ 11+ Xo] 7"6,1} =0, (C.17)
=1 =1

-1
where the both sides of the above equation have been multipli%@fgﬁg1 k’u} anda, = 1 have been chosen for
simplicity. Sinceg, is just a positive root of; of equation (A.9), it satisfies the equation

1

3

—1 3
| S bk > [ - 1 =0,
=1

3 . _9 .
a3 [ a6
1

= =1

where the index have been changed idn equation (A.9). The reflection coefficieat. have been set to a unity in
equation (C.17) for the very reason that = 1 had been already imposed in the above relation, the equation (A.9).
Becaus€; = &,, and the fact that coefficient gf = £7 = 1 in equations (A.9) and (C.17), the two polynomials must
be identical. Therefore, subtracting equation (A.9) from equation (C.17), we obtain

3 -1 3
a [E:“J EjP\Ml 7,
=1 =1

rha =23 )|

1 13
T YR Y 12
1] — 2|k § roak ¢+ ]
=1

+

3 -13 5
Z’%J Z {QR',O o, — HR',OH ki =23t (P71 4 Ao o1 — [7’6’[]2} =0.
=1

=1
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Becausé,, is a particular value for the root @f, for the case wherg, # 0, the above equation is satisfied only when
the coefficients of the different powersgf vanish independently. This is another way of stating that each coefficients
of the different powers aof,, in equations (A.9) and (C.17) must be proportional to each other. For the situation here,
they must be identical due to the fact that coeﬁicient&io% £2 = 1. Hence, we have the conditions:

52w 1705 e ll@a] e, -tz e k| =2 e s e ke, =0
1=1F1 =1 1{| To, 2 T 1 1,1 1 1=1"T0,1%1,1 )

12 3/713 _’/_'//__’/2/_71/2 /_/2_
[Fil™ + (= k| o= (2R e kg, — (|RVo|| kyy — Ay [T [1+ Aol g, — |70, = 0.

(C.18)

From the first expression of equation (C.18), we find

-1

i’fil] > lH,;’/lHQ — Ky 23: k’l,m] 70,1 (C.19)
=1 m=1

=1

=20

Solving for \q from the second expression of equation (C.18), we have
3 / > N n—2 57 2/ =2 -1 / 2 =2
D=1 ki 2R 0 @ Klurg ] — HR OH Kyl = =Xy g, — {To,z} [r7]
Ao = ——
Ay ! >t Tf),l

or, substituting the expression &' given in equation (C.19), we have the result:

-1

3 3 3
1 5 112 2 2
=l [Z k] > U A ka,m] by b S (K )
n=1 j=11=1 m=1 =1
o o 3 -1 3 o2 3
2R 0 Wil — | R ki 206, [Z k’u] ) U DY ’fim] o (- (C.20)
=1 i= m=1

Referring back to Figure 3.5, the terig is connected td?'; through the relation?’; = —\oR'y. Therefore, the
criterion for waves to have multiple or single internal reflection is contained in the controlled quantithe vector
R’y is a quantity that must be specified initially. Becaugés a positive definite scalar, we can rewrite it as

B 3 —1/2
o= e o = ) { o E)

7

Substituting the above definition af, into equation (C.20), the quanti#ﬁ’ f ‘ can be solved as

. 1o 3 3 3 w2 3 g , )
75| =5 | & [ Dok zz“kq —ka,lzka,m] rorhy o 2o KT =[]
n=1 j=1l1i=1 m=1 =1
) 3 -1 3 ) 3
w2y el — | K20, [Zk;,l] Z[H’%H _kgyizk;,m] a b ca
=1 =1 m=1

Because the hemisphere opening has a radjuke following criteria are concluded:

|

‘ <l Single — Internal — Reflection,
(C.22)
|#;

‘ >, Multiple — Internal — Reflections,
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whereHR”f

‘ is given in equation (C.21) and is the radius of a hemisphere.

C.3. Plate-Hemisphere

The description of a surface is a study of the orientation of its local noriﬂp,alvvhich is shown in Figure 3.6. In
spherical coordinates, the unit vectafr§, ', and¢’,, are expressed as

3 ~ A 3 OA . » 3 1 ON L.
Wy =i Al Oy =Y G 8, = T e e (C.23)

where
Aj 4 (9;7 qS;,) = sin 0}, cos ¢}, b2 (9;,, QS;) = sin 0}, sin ¢y, b3 (0;) = cos 0, (C.24)

It is easy to show that the set of unit vectc(n&’p, 0, é’p) forms an orthonormal coordinates. Therefore, the points
on plane can be described byB coordinate system made eifp andgi’p,

3 ’ / 1
- . . ON . Vpe ON .
;] 7 / ;7 / 1253 p’¢l’ D, 5.
Rp—vp,e,:f’va,%d»p—;:l lvp,e; o8, snd, 00, ] (C.25)

If the plane’s orientation constantly changes in time about its origin, the points on the plane experience the velocity
dR',/dt,

. 3 /
R, = dR/ =X |v Wi Ly Fhni Moo [(Ohpr 0 O L,
P gt V'po, 89’ "o o]’ sing) \ 90,00, P 0g], P

Feg oty [ PN e Y]
+Sin9;) o, +{ V.0 1’8¢’5’9’ + Sin%a[d)’]z 'y | Eis (C.26)

P

wheref’,,, d)’ are the angular frequencies ang, 0, v, ¢, are the lattice vibrations along the directiats and¢’
respectlvely Here, it is understood th¥j ; is mdependent of;,. Therefore, the differentiation of;, ; with respect

to the¢;, vanishes. For the static plate in which there are no lattice vibratibpsij andv/,, ¢, vanishes.

For the case of plate-hemisphere configuration shown in Figure 3.7, the points on the plate are represented by the
vectorR relative to the system origin. Making the correspondence in equation (B 2y, R,, Rr — RTp and

R —n », the two angular variable se(ﬁp, ¢;) and (6, ¢) are connected through the relations given in equations
(B.10) and (B.12) with”, — 1. Herer!, — 1 becaus# n',

N Vrp2 + sin @ sin d)’
0,4, , = arcta e P 2, c.27
djp ( D d);ﬂ VT,p,1 VTJMQ) arctan <VT,p,1 +sin 9;} cos Qb;) ( )
. . v + v +siné |cos¢. +sing’ |} (v +cosf |
gp <9;,7 (;5297 RT,p) — arctan { T,p,1 T,p,2 P [ ¢P ¢P]} [ T,p,3 p] (C28)

v +sin 6/ sin ¢’ . VT p.2+sin 07 sin ¢/
cos (arctan (m—‘j%>) + sin (arctan (T‘”—P%))

3 ’ ’ ’ Q ’
vr,p,1+sin 0}, cos ¢, vr,p,1+sin 0, cos ¢,

where the subscript of <Z>p andép indicates that these are the spherical variables for the points on the plate shown in
Figure 3.7, and they are not that of the hemisphere. The vé;tdnecomes

3

’
o - oA . Vp.o! ON .
_ /7 . / P, pP,%p V2L
RP = RTﬁv (VT,pJv VT.p,2, VT7P73) + R p— E : UTpi =+ vy o, 96’ ind a¢ z
i=1 P S v, P

(C.29)
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The magnitud#’ R”’H is given by

5 , 9y 1/2
In terms of the spherical coordinatd%, is expressed by
\ 5 , 9y 1/2 5
By (K, Ky, r,y ) = > lum + U, aaA;i . ;f;p a;% > A (C.30)
where
]\p,l (@)p, gf)p> = sin @)p coS gf)p, /\\p72 <9p, q\ﬁp) = sin 9,) sin g?)p, /\\p73 (9,,) = cos ép. (C.31)

Here, the subscript in ﬁp indicates that the vectcﬁp describe the points on the plate. If the plane’s orientation
constantly changes in time about its origin, then the same orientation change observed relative to the system origin is
given by the velocitylR,,/dt,

, / ;72 “12 o, /
N,  Vho ON,, on,
o 22\ | e, 5y
=1 k=1

p,t

9 ~
a0, sinf, 9¢,

s an, [
=G =0

!
UTp,i + Vp

P 8 8Ap k U + aQA/ + V1/77¢';) aQA;,k B 9/ aA;) k 9‘,
sing, g, | [7TPFT %y [9,] sin6), \ 90,04, P 0g, r
PN Vpg OPAL . ON Ve ON ]
+ ::1,0’ BY) + = ¢/ ¢/ v p,0, P/;k + .'p@f P/Jf APJ
» O, 09 sinf, 9 [¢/} r 00, sind), 0¢,

ON’ . Vp,¢; 3./\;”4

D,

0 + =
v 00, sind), 0¢,

!
UTpitVp

2 N N
oM, ; 90, . 0N, ; 08, -, ] .
2J 7P g : y C.32
[ae,, ¢, T 99, 8¢/¢ “ (€32)

3
2
i=1

where it is understood that, 5 andz\&p,g are independent afj, and&ﬁp, respectively; and as a consequence, their dif-
ferentiation with respect t¢, and¢,, vanishes. Heré',,, ¢/, are angular frequencies ang,, ; is the translation speed
of plate relative to system origin. Also{p,%, Vpg, are lattice vibrations along direction$, and¢’,,, respectively.
For a static plate in which there are no lattice vibratiorts,, andv’, 4 vanishes.

A cross-sectional view of the plate-hemisphere system is shown in Figure 3.8. The initial wavd&etrmxeling
toward the hemisphere would go through reflections according to the law of reflection and finally exit. It then continues
toward the plate and reflect from it. Depending on the orientation of plate at the time of impact, the wave would either
escape to infinity or re-enter the hemisphere to repeat the process all over again.

The equation (C.25) defines points on a plate, the Figure 3.7, relative to the plate origjjris K set of points on
a plate whose members are definedFBy of equation (C.25), the wave reflection dynamics off the plate involve only
those points of5, in the intersection between the plate and the plane of incidence whose unit novﬁ}gi igiven
in equation (A.17). In order to determine the intersection between the plate and the incidence plane, the plate is first
represented by a scalar field. From equation (C.23), the unit plate normal is

3
N .
n', = g Amel.
i=1
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The scalar field corresponding to the unit nornﬁ%l satisfies the relation

3 3 8f
V' f, (V1 vh, V) ;Zé i ZAPH — Z{ P A;”}éio.

=1 =1

The individual component of the equation is given by

8.fp A/

/ D,
ov} '

=0, i=1,2,3.
Notice thatA], ; is independent of;. An integration with respect to; yields the result

Ip (1,05, v5) ZAIM vy, (C.33)

where the integration constant is set to zero because the plate contains its local origin. The intersection between the
plane of incidence and the plate shown in Figure 3.6 satisfies the relation

p,1

3 o oq—1
k)~ foa (A hd) =0 = Y Nt [ et =0, (39
=1

wheref, 1 (v1, v, v4) is given in equation (A.43), and is a scalar corresponding to the bagisof course. We have,
from equation (C.25),
O, VZI,}% 8A;7i

p,t

/
Vp.or + = y
P00y, sin 6, d¢;,

i=1,2,3. (C.35)

/_
v, =

Substituting; into equation (C.34)y, ,, is solved as
p

3 8A 1 / !
1’7¢, Zz 1 a¢>/ [ "'H p,1 ’ Eijkkl,jro,k
/ 9
V, g = (C.36)
p,0! / —1 )
P sm9pz A, + TZ/ ¢ k/ 7’/
=1 a .l p,1 Imn1.m"0o,n

where the summation over indicgsk, m andn is implicit, also the quotient/;w / sin 0, has been moved out of the
summation. Theﬁ’p given in equation (C.25) is then rewritten as

p,1

3 0A 5 !
. - oA, 21 a¢,, |:A;7,i + ‘ n' ‘ Eijkkll,jr(/),k:| oA,
r_ o N C.37
p Sin 9;) Z 8¢; 3 aA;, 1 / = -1 / 89;7 ‘ ( )
: l + H p;1 ‘ n

— . /
=1 =1 80; €lmnk1,mr0

Similarly, ﬁp given in equation (C.30) is rewritten as

1 2y 1/2
30 0AL ’ > B -
. 3 1/1’) o | oA, iz a0, AL+ {7 pa €ijkk1 ;70 k N
R — g s 4 20 P i
P _ P singl | 0! 3 AN -t 06!
i=1 p p bl / 7 k! / P
I=1 30; T Wp1||  €mnkipmTon
3
=1
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where]\p’i is given in equation (C.31). [N}, ;4. iS the maximum count of reflections within the hemisphere before
the wave escapes, the direction of the escaping wave, measured with respect to the systel_é):oﬂgia

th,'mamJl‘l = thNthamJFl - RhyNh,'mam7 (C39)

whereky, .. +1 = ENpuat 1K Ny as+1- Similarly, by the correspondend®, v, ,...+1 — RhitsandRy n, ... —
Eh,i+2 in Figure 3.8, the direction of the escaping wave veEthequivaIentIy described by the relation

CI_C‘]Vh,'rnaa;“1‘1 = ﬁp - EhyNh,,wn,az (C‘40)
where( is an appropriate positive scale factor. Combining equations (C.39) and ((Z:‘@A[S)solved as
Ry = CRunp o1 + (1= I R (C.41)

Because botlﬁp andENh,mmH belong to a spanning set for the plane of incidence whose unit norn'qu,isgiven
in equation (A.17), we observe that the following relationship

—

Ry X kNy pant1 = {Cﬁh,Nh,WH + - Rh,zvh,,mm} X KNy maat1 = 11 (C.42)

hold, wherey is a proportional constant. Substituting the explicit form 7501;71 from equation (A.17) into equation
(C.42), it simplifies into the following equation

3
. 1
! / ~
{Cﬁiijh,Nh,mm+1,j/ho,,mm+1,k + [1 = ) €k B, Ny i B Nw mant 1,k T Hn’p,lH Eijk/ﬁ,ﬂ“o,k} € =0,
=1

and its component equations are given by

. -1
[ ! / _
np,IH €ijkk1 ;70,6 = 0,

Ceijk Rh. Ny, awt+ 1,58 Ny maw+1.6 + [1 = Cl €k R1 Ny, e iENG mant 1k T ‘

whereky, ...+1.k = Bu Ny maot1,k — BroNy 0.,k @S described in equation (C.39). Finally, the scale fagtisr
solved as

N -1
= = e . — € ) / A
C - Ci - El‘]th7Nh‘7naz7jRh7Nh,mﬂ1'+17k ezjkfR}%Nh,wnam7]Rh7Nh,mam7k + ’y Hn p71H emjk:kl,jfroykf:|

X €15k R0, Ny s G BNy maat 1k = €k BR Ny maw i Bl Ny ok = €k Bh Ny man 41,5 B0 Ni maat 1,k

1
€0k BRI Ny ot 10BNy anik] (C.43)

wherei = 1,2,3; j = 1,2,3 andk = 1,2, 3. Here, the notatiorg; have been adopted in place @flt should be
understood that for irrotation&D vectors,(; = (; = (3 = (. For vectors ir2D and1D space, it is understood then
(3, (o are absent, respectively. In current form, equation (C.43) is incomplete becaustdl arbitrary. This happens
because/;h% anduz’,7 o of }?p, equation (C.30), still needs to be related to the scale paragyeubstituting(; for ¢

in equation (C.41), it is rewritten as

Ry = GRa Ny powt1 + [1 = Gl BaNy ras

or using equation (C.6) to explicitly substitute &, v, ,...+1 and Ry v, ... For N = Npnae + 1, N = Ny mas,
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respectively; and, regrouping the terms

1/2
3 3 2 /
= S N
Ry=> 161> [VTJW' + TiAh,Nh,maerl,j} Ap Ny a1, + (1= G
i=1 j=1
1/2
3 9 /
I AY A ~
X [VT,h,j + ’riAh;Nh)'m,a,zyj] AhyNh,rn,arnai €, (C44)
Jj=1

where(; = (> = {3 = (. The subscript of ; is not a summation index. Equating the above resullﬁpwith that
of equation (C.38), we arrive at

oy 1/2
3 oA , A i -1 kK oyl
3 3 VZ/? & AN . Zw:1 d¢7, pa T [|Tp,1 Cxyzi1 470,z ON. .
Pp D,J P,J
3] D i AR -
o sin 0/ P! 3 OA o —1 90’
4_ — D D | / 7 / / P
=1 i=1 =1 892 Ap,l + Hn P71H 6lmnk‘l,mTO,n
1/2
N ' 2 N N
XAPv": - gl Z |:VT7h7j + TiAh,N}L‘nLuz+1,j:| Ah7Nh,7naz+1vi + [CT - 1] Ah'7Nh,7nawsi
Jj=1
1/2
3 9 /
I AT ~
x [VT,h,j + TiAh,Nh,mam,j} € =0,
j=1
and its component equations are
2y 1/2
3 oA . Al i -1 kK oyl
3 v, [onr . 2e=iag [Mpa T ||Wea| €ayskiy o] gpr
E: A Pdp pJ P Py
D] o3 / / AT —1 /
sin d¢ 3 QA - a9
L D P N !/ ! / / P
J=1 =1 agz Ap,l + Hn p,lH el‘f”nkl,nzro,n
1/2
3 9 /
N L N N
xApi =G> [VT,hg‘ + riAh,Nh‘m,,,erl,j} An Ny mant 1+ 16— U ARN, i
Jj=1
1/2
3 9 /
I AT
X Z |:VT7h”j + TiAhaNh,m,a:zyj:| = O’ (C'45)
Jj=1

wherei = 1,2, 3. Introducing the following definitions for convenience,

9y 1/2 9y 1/2
_ 3 1A _ 3 ) 1A
A= {Zj_l |:VTJL7]' + Tz'Ah,N,L,,,wH,j] } ) B¢ = {Zj_l {VTJL,J + rz'Ah,N;L,,,Law,j} } )

/ 71
3 OA, & / Y roo
CC = - (Zm—l 8@5; |:Ap,w + Hn/Ith 6JJyzkl,er,:/:

3 3/\;,1 Al = -1 k! / N
X =1 90, |Dpr T {1 EmnF1mT0n )

(C.46)
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the relation shown in equation (C.45) is rewritten as

3 Vs (ON . on N1
_ P9, P.J P,J
2 [”TW T sinoy ( do, e >

Jj=1

1/2

Api = GACAR N, past1i

+ [CZ - 1] BCA}L7N}L,77Lazvi = 0’

wherei = 1,2,3. There are three such relations, one for each value Ibfis convenient to combine additively all
three relations to form

3 /
S o ’/Pa% OA _c OA,
: »i " Gno, e, o0

Jj=1

2y 1/2

3 3
D i = GACY  Mnny i
i=1 =1

3
+[G =B Y ANy penii = 0.
=1

After regrouping the terms and squaring both sides, it becomes

Vo raN. an N1
‘ ) P p,J _
2 [”T’” " sinoy ( a6, < am, )

Jj=1

3 N 3 < 2

GACY 1 ANy et 1,i =[G = 1] Be >y Ah,Nh,mm,i]

— .
21:1 Ap,l

Ly

The summation labeledls- is rewritten as

23 1 oA ON S T2wp, : (ON N
L= |1 ., P.J P,J , T.p,j P.J P,J 2
> [V’WJ ; sin” 6, [ o9, Ce o9, } o, Zl { sin ) < ¢y, Ce 0, ) * VT’”}

The above equation is simplified into a quadratic equatiar},of ,

23 1 oA oA, 3 2wy, . [(ON ON'
v, [ D,J - C; } +u [ T,p,j < P PJ) + 2 ]
N §:2 ,¢p§: : ¢ T,p,
[ P ] = sin 0, | 00, 39’ P = Lsin 0, \ 0¢, o9, P.J

3 A 3 N 2

GACD iy AnNy et 1,0 — (G — 1 Be D25y Ah,Nh,nm,i] 0

— =0.
21:1 Ap,l

The two roots// ., A€ given by

3
(3'/\/ oA . 1 1 2w 8A/ 3/\/
A VTp,j _ P.J o2 - T,p,j _
ot = 12::1 Lln@’ ( 3¢’ Ce a0, ) + 2VT’p"]} + 4 ; { sin 0, ( 8@5; Ce 39/ > +VTPJ:|
3 , , o2 3 s N 9y 1/2
1 oA o ON, 17 | GACD Sy ArNy w10 — (G — 1 Be D2y An Ny i
+Z in20’ | 9¢! Y 3
j=1 S Op P p 2i=1 Ay
-1
3 2
1 oA, ; oA, ;
x - ’ ; C.47
jzl sin 9’ [ (9925’ ¢ o0, } ( )

whereA., B, andC, are defined in equation (C.46). It is understood that one does not mix summation inditgs of
B andC¢ with those already present above. The resultug,q(;;, is still incomplete because the factptin ¢; needs
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to be fixed by normalization. Unfortunately, the translation property of the platg,, makes it difficult to extract;

out of the radical. Besides the stated difficulty regarc[mg/;% is still ambiguous in deciding which of the two roots
correspond to the actual reflection point on the plate. Fortunately, for the plate-hemisphere system of Figure 3.7, the
choice of system origin is arbitrary. One can always choose the plate origin to be the system origin and the translation
of the plate can be equivalently simulated by a translation of the hemisphere origin in the opposite direction. Then, in
the rest frame of the plate, the translational motion of the plate is zeray.g,; = 0. In this frame,v;, o takes on

much simplified form

GACS o AN mantti = (G = 1 Be 001 ANy i

V;7¢; = Fsind, ! o ” 7
3 ’ ’
{Z { a¢f = Cc—g* } } Zz=1 Ap,l

For the sign ambiguity im, ,, , it can be quickly fixed by noting that forr,, ; = 0, equation (C.45) yields

G Y [AcAh N+ = BEAR N, z] + Be 3y M
1/
. -1 3 oAl OA!, 3
[Sm ‘%] {Zj—l { I — O 09/ } } D=1 Apy
where A, B andC, are defined in equation (C.46) with-,, ; = 0. It is to be noticed that for a situation where

vrp,i = 0, A becomes identical td’ in form. One can obtain simply by replacing the primed variables with the
unprimed ones il\’. For convenience;; of equation (C.43) is rewritten as

/
Vp,gr, =

, vrp; =0, (C.48)

Gi=C;'Ay++C'B,,

where

L1
/ /
{ Ay = €k Rh Ny rmansi [BhNumas+106 — Bl Npmmasik] 5 By = Hnlp’l €ijkk1 570 k> (C.49)

Cy = €iji [Rh.Nnmaei — BiNimas+1.5] [BhNmas+1.k — Bl Ny o k] -

Furthermore introducing the definitions,

3 N N 3 N
A/B = Zi:l |:A<Ah-,Nh,7naa:+1-,i - BgAthh.mamvi:| ’ Bﬁ = Zi=1 Athh,ma:mi’

, , 1/2 (C.50)
3 aA;vj BAPVJ 2 3 A
Cs = {Zj_l {W - Cga—%} } =1 Mo,
theyz’)’d),y of equation (C.48) is rewritten as
’ = [0*10—1/1 Ag +7C5 0T B, Ay + O3 BeBj | sin ¢! =
Vp,zﬁ{, = B Yy y4p + B Y A+ g DP¢bp| S, VTp,j = 0.
Substituting the last expression fm!([ ¢ into equation (C.38), we arrive at
1/2
3 o o B NPT o e
R, = |C5'C5 A, A +7C; 1 C By Ag + C BCB[;} P 5~ Y Ayiéi,  (C51)
i=1 p =1

wherevr,, ; = 0. The vector cross produép X ENWMH is given by
3

Ry X kny, powt1 = E €ijkBp KN, paw+1,kEi
=1
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or

1/2

3
By X By paet1 = [C5 € Ay A +9C5 1y By Ag + G5 BeBa| 4 S

Jj=1

oA, ; 8A’
6¢' - aaf
3 N

X Z €ijkAp iKNy paw+1,kEi-

i=1

Finally, substituting above vector cross prodlﬁ;; X I?:'Nhymazﬂ into equation (C.42) and regrouping the terms, it
becomes

1/2

3
S| [crter A as +4C5 O By A + O BeBa|

i=1 j=1

2
ON,; 0N
ag, ¢ o,

‘71

i
p,1

A / / ~
X€ijkAp, i KNy pawt1k — eijkkl,jTO,k) € =0,

~ - -1 2 .
wheren’), | = Hn’pJH 3 eijek ;70 ,€: have been used. And for the component equations

1/2
3 / / 2
1 P _ oA, ; N,
[Cﬁ 'O A A +9C O By Ag + C 1B<Bﬁ] Z [ 85/ — 89][;]}
=1 p p

N = —1
/ !
X €ijkAp, KNy pant+1.6 — 7 ||V p,1 H €ijkk1 70k =0,

wherei = 1,2, 3. There are three such relations and they are additively combined to yield

1/2
3 / ’
e L ) or,; Oy,
(€515 4,45 +7C5C By Ag + C BBy 2:[(%[ _ aefﬂ
=1

<.

3 -1 3
A = ro
x E EijkAp,jth,mamH,k -7 ”/pJH E Eijkkl,jro,k =0.

i=1 1=

Finally, ~ is solved to give the result

1/2
Lol L [OA E)A’
Y=Y = n’p,lH Zeijk’kll,jr(l),k —Oﬂ_lc,;lB,YA@ Z |: a¢/ — 89;[;J:|
i=1 j=1 P
3 —1
Xy Gijk/\\p,jkm‘nmﬁl,k) ([C;Elcy_lAwAﬁ + C/;lBCBﬁ}
i=1
3 1/2 3
oA, ; ON! N
Z [ 3¢/ - 8917/]} Z €ijkNp i KNy a1,k | - (C.52)
j=1 p i=1
The parametem; & 1S now completely defined,
»p
Yy, = [Cﬁ—lcglA,yAﬁ +7C5'Cy'ByAg + Cy' BeBg | sinf,, v, =0, (C.53)

where(A¢, B:,C¢), (A4, By, Cy), (Ag, Bg,Cg) and~, are given by equations (C.46), (C.49), (C.50) and (C.52),
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respectively. W|th/1’3 " defined in equation (C.53), the reflection point on the plate is obtained from equation (C.38),

1 2y 1/2
. S 1OAL Z? 1 8(';:)’ |: it H p.1 ‘ Eijkkll,jré,k] ON
Ry, = Z 555 5 on T 3;/73
s=1 p i 8921 {A;J + Hn’p,lH Glmnkll,mr(/)’n] P
3
X {0510;1A7A5 + ’Y()Cﬁ_lc;lB,yAﬁ + CngcBﬁ} Z /\p,iéi; (C.54)

i=1

wherevr, ; = 0. It should be noticed that for a situation wherg,, ; = 0, A becomes identical ta’ in form, andA
can be obtained simply by replacing the primed variables with the unprimed ones.

To see if the wave reflected from the plate at Ioca@nre-enters the hemisphere cavity or escape to infinity, we
consider the reflected wa\i'e’N,mmH,

—

Kr Ny maz+1 = Qr, 1 [n’p X /ho,mmﬂ} Xn'p — o n'p @kn, a1 ps (C.55)

where the relation found in equation (A.14) have been used. As always, it is convenient to express vectors in

component forms. Making the changes in varialflesn,n) — (i,5,k), (m,q,7) — (4,I,m), n’ — ri’p and
K, — th ...+1, the component result of equation (A.16) is used to get

3 3
7 § :2 : / ’ 1 /
kT»Nh,mam"‘l = {OLT,L [th,.maz‘i‘Linp,knp,k - np,ith,mamJ"l-,knPsk]
=1 k=1
/ / N
=0 | M kKN a1 | €3 (C.56)

wheren;, ; andn;k. are coefficients of the normalizeiﬂp. All wave vectors entering the hemisphere cavity satisfy the
relation

3 3
Rp—i—Z[fﬁoe} [ TN,””“_HOG}(E — Ry =0, Z vrohi + 104 €, (C.57)

=1

vl/hereg,{ is a real-valued positive scale vector aRglis the points on the opening face of hemisphere. The scale vector
&, has the form

3
&= &nifin
=1

With the scale vectoef,i defined above; and§p andl_c}, Ni.mao+1 defined in equations (C.54) and (C.56), respectively,
equation (C.57) is rewritten in component form

on B 1/2

23: 23: oA’ it G [A;’i + Hn/pJH eijkkll,jr(l),k} oA
oP! " } o0,

: 36A
= = p
=t 1169'[ “‘le

€lmnk/

1
‘ 1 m

3
x [C51CT Ay Ag + 7,05 Cy By A + O3 BeBa| My + 60 > {an s vy a1
k=1

I ! / i / i ! s~
XN, kM e = Ty KNG s 4 LR k) — Q[T 1 BNy e 41k i} — VTohi — 70 ;) €= 0,
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which yields the component equations,

1 2y 1/2
3 9AL, / ] B o
3 / Yict e | A T ||l €nkl ok /
aAP»S P aAp.s 0_107114 A
Z GYY o AN . 1 90’ [ B vy B
s=1 P 3 N VAR | ko p
1=1 907, p,l p1 €imnR1 mTon

3

+7,C5 1 Cy By Ag + CngCBﬁ} Api + & D {1 (kN oot L 0
k=1

/ / / / /
_np,ith,?nau:JFlvkn[),k] - O[T7Hnp,kka}L,nLaw+17knp,i} - VT-,h7i - TO,i = 07
wherei = 1,2, 3. Finally, §,. ; is solved as

1/2
3 OA - |7t ?
. P, / /! L /
s any,  Zi=ag [Meat e 0N,
’ , ;
Eri = | VTohy + 70 — g T
) s, s 1 /
s=1 8¢P 3 oML, A+ n ek oyl 89})
=1 819;7 p,l p,1 Imn 1,m"'0,n

3

X [Cﬁ—lcw—lA,yAg + 705105 B Ag + CngCB@} /\p,i) (Z {1 [ENnmaut 1Ty kT i
k=1

—1
_n;/o,ith,,maerl-,kn;,k] - a?”,Hng/o,kth,maerl,kn;;,i}) ) (C'58)

wherei = 1,2, 3.

The above result can be applied in setting the re-entry criteria. Noticémgtrg, which impliesr ; < r;, where
r} is the radius of the hemisphere. It can be concluded then that all waves re-entering hemisphere cavity would satisfy
the conditioné,,; = .2 = &,3. On the other hand, those waves that escapes to infinity cannot have alf three
equaling to a same constant. The re-entry condiion= &, 2 = &, 3 is just another way of stating the existence of
parametric line along the vectér,,N,mmH that happens to pierce through a hemisphere opening. When such a line
does not exist, the initial wave vector direction has to be rotated accordingly to a new direction, such that in its rotated
direction there is a parametric line that pierces through the hemisphere opening; it leads to the condition that all three
&,,; cannot equal to a same constant. The re-entry criteria are now summarized for bookkeeping purpose,

{ €1 =&k2 = &3 = Wave — ReEnters — Hemisphere, (C.59)

ELSE — Wave — Escapes — to — In finity,

whereELSE is the case wher§, 1 = . 2 = £, 3 cannot be satisfied.
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D. Dynamical Casimir Force

The original derivations and developments of this thesis pertaining to the dynamical Casimir force are included in this
appendix. It is referenced by the text of the thesis to supply all the fine details.

D.1. Formalism of Zero-Point Energy and its Force

For massless fields, the energy-momentum relation is given by
H;zs = ETotal = p¢, (Dl)

wherep is the momentum andthe speed of light. The field propagating in an arbitrary direction has a momentum
P =37 | plé;. The associated field energy-momentum relation is hence

3 1/2
M, —c{z [p;f} =0.
=1

The differentiation of the above equation gives

3 1/2
d M, —c{Z[pz]"’}
=1

The total differential energyH;, is

oM, ak' ' OH!
!’ Ns _ - Ns /

i=1

3 1/2
= dH/, —cd{Z[ ;]2} = 0. (D.2)
i=1

where the relatiop] = [n, + 3] hk] has been used. The total differential momentum is

3 1/2 5 ~1/2 4
d{Z[pﬂz} ={Z[p212} Zpédpé-

i=1

The combined result is

Z[([nﬁﬂ ) ke {ow} cp;] =0 04

i=1

Because all the momentum differentials are linearly independent, their coefficients are zero,
-1 3 -1/2
1 aH;L 112 / .
([ns—i—z} h) o ;[pi] =0, i=123.
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D. Dynamical Casimir Force
There are three such equations. Then, additively combining the three relations, and rearranging the terms, we have
3 /2 3 1 qqp 3
2 1 oM, ,
e} Sl S -p

Squaring both sides to get rid of the radical leads to

[23: ({" + ;} h) h 8;25 ] 2 23: ) = ¢? Lz:pél 2- (D.5)

i=1 i=1

2
The summation§~?_, [p}]* and [Zle pg} are rewritten as

> Bl = B+ 30 0 = 0+ > ) ([ 1] ) e,

i=1 i=1 i=1

3

3 2 3 2
pix +Z(1 _6ia)p2‘| = [ :1}2 +QZ(1 - za pzpoc Z ]
i=1 i=1 i=1

AR SCRRI IS RN (PR IV oIt ]

5] -

=1

wherep] has been replaced by, + 3| hk{. Substituting the result into equation (D.5) and rearranging the terms in
powers ofp,, we have

(L: a;:?r B ([né " ;] hc>2) il =2 {ns " ﬂ hi(l ~ dia) ({m + ﬂ hc)zklpa
_ lzgj (1= 610) ({n + ;] ﬁc)2 k] . [1 8;:25]

i=1

Defining the following quantities,

Con =32, 8;2, . Can =32 (1= 6i0) ([ns + 1] he)* L,
, ) (D.6)
Coz =21 (1= dia) ([ns + %] h) (%]

the above quadratic equation is rewritten as

1 2 1
CZ,- ({n + 2} hc) ] . —2 [n + 2} hCa oty — Ch g + C3 1Cay3 = 0.

Finally, the rootp/, is found to be

1/2

p = __Ina 3] M2 [ns +3]° 1C2 Ciz— C2aCas

G~ t 01 [c2,— (s 0] G (et 20

; (D.7)

where the positive root have been chosen sipicés an« component magnitude of the total field momentﬁm
therefore it is a positive scalaf, > 0.
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D. Dynamical Casimir Force

By definition, force is equal to the change in momentum per unit time,
3
- d 5 d ) dp!, . de, dp P
5 — / — (e} . (e} /4
Fr=aV = g 2uPete Z{dt (’ﬂj‘ldt] Zf

a=1 a=1 a=1 a=1

The explicit expression faF,, is found to be

ﬁ/ — Ca!ICO‘A [Ci’lca’g B 03,2] _ 2 [ns + %]2 hQCaJng,QCQA . Ca,lca,SCaA
o — 3 3 3
(€21 = ([ns+ 3] 1e)”] €2, — (Ina+4]he)"] Cla= ([ +3]he)
2[ns + 3] Ca1Caz | dCan , | _[ns+ 1% h2C 2Ca 4 .\ CosCos
- i : 2
2=+ 807 ) ¥ \[C2a= (e + 4] 00%] Caa = (met 3] Re)
[ns + %] h ) dCa,Q o %02710a,4 . dCa73 } eré, (D8)
Cin = (Ins+3lhe)”) At Gy = ([ne+ 3] he)”
where
—1/2
2
o | APe 2l PPCay Cao = CanCas 09)

2 + 2
2= (fne+ 3e)"]" Coa= (et 3] 0e)
Before computing the three time derivativé€', 1 /dt, dC, 2/dt and dC, 3/dt, we should notice thak] (n;) =

n; fi (L;) . Hence, the derivativeék. /dt can be written as

dkl Okl dn;
dt 8nl dt

0 fz dL; O, ., O

fi(Li) +

The three derivativeéC, 1 /dt, dC, 2 /dt anddC,, 3/dt are given by
dCa 1 827'(, dk/ 3 82’]-(/ ak; ) af] '
Z z 8/@’/8% dt Z Z ak/ak/ [ j) %nj + njaLjLJ}

82H’ ok! of; 5 M,
_Z [ Li) g, i+ aLL]+ZZ (1 =%) Bran

i=1 j=1 g
8k/ 0
X {f] (Lj) 5= on, nj+ Ja£] L; } } (D.11)
ACos k! of;
72 :;(1_5ia) |:ns+ :| |:fz( z) nz ’L+ OL L:| (Dlz)
dCa 3 3 112 ok, Of; -
= Z 1—0ia) [ns + 2} k. {fi (L;) anl i+n 8L AN } (D.13)

whereC, 1, C, 2 andC, 3 are defined in equation (D.6). It is noted that the derivati¥g/dt, and also each of
dCya/dt, dCy 2 /dt anddC, 3/dt, consists of two contributing parts, one is proportionabt@nd the other involves

L;. The force expression in equation (D.8) has then two contributing parts. The force contribution invglViag

a physical meaning that the boundaries are being driven to generate the extra wave modes that would otherwise be
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D. Dynamical Casimir Force

missing when such drivers were not present. The force contribution involvirig the effect of feedbacks from the
moving boundaries. This feedback effect due to the moving boundaries tends to either cool or heat the conducting
boundaries. For an isolated, non-driven conducting boundaries, the force contribution proportignartishes. For

what is concerned with in this thesis, only isolated systems are studied; and, theigfere, The expression of force

is then rewritten as

7 CarCa [C21Cais = Coa] _ 2[ns +5]"WCaiC3aCas __ CanCasCau

a = —

T S N T P S A (O

2 [n + 3] FCa,1Caya i PH,,  fi v M., Of;
’ - Sni—Li—l—ZZ(l—&j) —_— nj—JLj
[02,1 ~([ne+ 1] hc)zr ak]* " OL; oK 0k] "’ OL;

2

i=1 i=1 j=1
112 32 1 3
s 9 h C(x Ca oY « s 5 h
[n +2] 2 ,242+ 2 Co2C, ,41 4 : [n +2]1 i 2(1*57:@)
{Cﬁ,1 — ([ns + 3] he) } Con = ([ns +3]he)”  CZy = ([ns + 3] he)” | IS
1 ofi : 3C2 1Can > [ 1]2 ;o Ofi s | .
X [ng + = nz—Li — : 2 1-— 610/ Neg + = k7n17L7 Eq-
{ 2} OL: " 2 — ([ny + ] he)’ ;( ) 2 OL;

It can be simplified with the following definitions,

CotCa [C21Cas — C2,]  2[ns+ 4]7 h2C01C2 ,C0u

Cos = 2 1 212 2 1 2)3
(20— (e + 3 m0)"|" |20 = ([ns + 3] he)’
1
_ - Ca,lca,SCTA - 2 [ns + 2] hCa,lca,2 -, (D14)
Coa= (s +3]he)™[c2 ) = ([ns + 3] e)’]
112 2 1
s 5| h Co/ Ooz o a S 2N
Co6 = [n. + 5] A+ — Ca2C, L+ — [ + 5 ——.  (D.15)
[03,1 = ([ns + 3] he) ] Caa—([ns+3]he)”  C2y— ([ns + 3] he)
C'i 1Ca 4
Cor = e (D.16)

5
Caa = ([ns + 3] he)
The dynamical force can then be rewritten as

3
f’a :Z{’I’ngf

=1

L,

a,b

M, 'y )
o [k,;]Q + (1 — 61’(1) (CQ’G — Coz,7 |:n8 + 2:| kz) |:ns + 2:|

3

of; "M, - | .

+Z(1 —6ij) Ca75n]‘78L]j akl-(?]{;/-Lj €, (D.17)
j=1 R’

whereC, 5, C, ¢ andC, 7 are defined in equations (D.14), (D.15) and (D.16). The force equation (D.17) vanishes
for the 1D case, which is an expected result. The reason is explained as follow: Recall that equation (D.4) reads

i [(|:’I’Ls + ﬂ h)_l 8;2% - {é @2]2}1/2 cpﬁ] dp}, = 0.

i=1
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D. Dynamical Casimir Force

For thelD case, the summation runs only once and the above expression simplifies to

1.\ ' o, , 1.\ ' oH,.
l({nerQ]h) k! C] dp; =0 — <[ns+2} h> ok —c=0.

This is a classic situation where the problem has been over specified. F8Dtbase, equation (D.4) is really a
combination of two constraintszf=1 [p)]> and H;,_. For thelD case, there is only one constraifit;, . Hence,
equation (D.4) becomes an over specification. In order to avoid the problem caused by over specifications in this
formulation, the one dimensional force expression can be obtained directly by differentiating equation (D.1) instead
of using the above formulation for the three dimensional case. We have then for the force expresbicase:

dp  10M,_ dk' 10H;, ok’ of .
W eow @t —eoaw [TWHatrart

1
/ !/
=-H
p c Ng
For an isolated, non-driven systems,

= ndf oM,

(A—

= T o Lt (D.18)

whereF is the force expression ihD space. Here the subscriptof 7', have been dropped for simplicity, since it
is a one dimensional force.

D.2. Equations of Motion for the Driven Parallel Plates

Consider the one dimensional system of two parallel plates shown in Figure 3.10. Defining the boundar;length
as the magnitude of a vectey [E}R . él} , whereR® denotes the region, the following relation is found from Figure
3.10,

3
Lp=Ropm—Rpn =Y {Rmm oéi—Rype e} é:. (D.19)
=1
Hence, the velocityl Ly /dt is
3

dLy dR.,» dRyw
e dt dt _Z

dé,-p R N dﬁlp R “ “
SLN S D.2
dt * ¢ dt N (5.20)

1=

and the corresponding component magnitude is given by

dLy . dR,,%
= dw

_ ARy o (D.21)

LL i i
® a °° dt

Tt

Substituting the resulL»,ge of equation (D.21) fot,, in the one dimensional dynamical force expression of equation
(D.18),

OH’ R
Na,® Ofar OMn, g | dBRrpw o dRp 0 c,| €. (D.22)

7 —
a,R =

¢ Loy O,y | dt 7 dt

T

where Lm = L, andi = «. The subscriptR denotes the corresponding quantities associated with the region
R=123, e.g.,H;m% denotes the field energy in regidh For simplicity, the following notational convention is
adopted

. d’R,
® €y, Rap = a2

L4 éba
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Nea, R 3fazn) oH,, .
R : R ) D.23
s ="22 ( e ( - (D.23)

The force expression of equation (D.22) is then rewritten as

—

-7:/04,9? = Ja,R [Rrp,ﬁ?,a - Rlp,%,a} écw (D24)

Before writing down equations of motion for each plates illustrated in Figure 3.10, the associated center of mass
point relative the the surface point vectdts, » . for each plates needs to be determined. The center of mass point

}?rp’cmfor plate labeled “right plate” in Figure 3.10 is related to the surface point véﬁtgg@ through a relation

—

ﬁrp,cm (t) = Erp,%:Q (t) + Rrp,cm—?R (t) 5

Whereﬁ,«p,m_m (t) = ﬁmcm_g (t) is a displacement between surface and the center of mass point.cbineponent
of the center of mass poitit,,, . is then

Rrp,cm,,a (t) = éoc L4 Erp,cm (t) = erz L4 Rrp,2 (t) + eAa ° Erp,cm—? (t) = Rrp,Q,oz (t) + Rrp,cm—Q,oz (t) . (D25)
The component of the center of mass point speed is given by
Rrp,cm,a (t) = R’r’p,2,a (t) + Rrp,cmf2,a (t) . (D26)

Similarly, for the plate labeled “left plate,” the center of mass point is related to the surface vectoﬁppjgig (t)
by

élp,cm (t) = élp,%:Q (t) - R’lppmf% (t> )
and the component along the directignis
Rlp,cm,oz (t) = Rlp,Q,a (t) - Rlp,cm—Q,a (t) ) Rlp,cm,a (t) = Rlp,2,a (t) - Rlp,cm—Q,oz (t) . (D27)

Using the above center of mass relations, equations (D.25), (D.26) and (D.27), along with the force equation (D.24),
the net force acting on a plate labeled “right plate” along the directiefy, @f the configuration shown in Figure 3.10
is

mrpRrp,cm,a = |:~7:/a,3?:2 + f/a,%:3:| L4 éa

or

mrpRrp,cm,a =09a,2 |:Rrp,cm,oz - Rlp,cm,oz - Rrp,cm—Q,a - Rlp,c7n—2,a:|
+ 9a,3 I:der,cm,oz - Rrp,cm,a - der,cm—2,a - Rrp,cm—2,a:| (D28)

wherem,,, is the mass of the “right plate.” If the plate surface is not vibrating longitudinally along the direction of
€, the displacement®,, cm—2,o aNARapr cm—2,o are constants; henclyp, cm—2.0 = Rapr,em—2,o = 0. For static
surfaces, the above net force relation simplifies to

mrpRrp,cm,a = Srp,29a,2 |:Rrp,cm,a - Rlp,cm,a:| + Srp,39a,3 [der,cm,a - Rrp,cm,a:| ) (D29)

wheres,,, » ands,, 3 have been inserted for convenience due to the force sign convention to be set later. Similarly, for
the plate labeled “left plate” in Figure 3.10, the net force relation along the directiein isf

mlpRlp,cm,a (t> = [-7:/&,6,9?:1 +-7:/o¢,ﬁ,§)%:2:| o erc
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or, for the case where plate surfaces do not have longitudinal vibrations,

mlpRlp,cm,a = Sip,19a,1 Rlp,cm,a - del,cm,a:| + Sip,29a,2 [Rrp,cm,a - Rlp,cm,ozi| 5 (DSO)

wherem,,, is a mass of “left plate” and the termg, ; ands;, » have been inserted for convenience due to the force
sign convention to be set later. We have now the two coupled differential equations,

mrpRrp,cm,a + 37‘p,39a,3Rrp,cm,a - Srp,an,QRrp,cm,a + Srp,Zga,QRlp,cm,a = Srp,3ga,3der,cm,om

mlpRlp,cm,a + Slp,QQa,QRlp,cm,a - Slp,lga,lRlp,cm,(x - 5[p,29(¥,2RT'p,cm,a = _Slp,lga,lepl,cm,a-

Introducing the following definitions,

m= m;pl [Srp,2ga,2 - 5rp,3ga,3] ) M2 = —Srp,29a,2Myp
N3 =My, [Sip,19a,1 — Sip,29a,2] N4 = Sip,29a,2My),
B g B 1 (D.31)
grp = Srp,39c,3Myp der,cm,av flp = _Slp,lga,lmlp )
Rl = Rrp,cm,om RQ = Rlp,cm,av
the coupled differential equations are rewritten as
Rl - 771R1 - Usz = frp, Rz - 7]3R2 - 774R1 = flp- (D-32)

The equations of motion shown in equation (D.32) are a system of two linear second-order inhomogeneous differential
equations. In order to rewrite the coupled linear inhomogeneous differential equation (D.32) into a set of first-order
linear inhomogeneous equation, a set of new variables are defined first,

=R R=R,
Rs = Ri = &p +mBy+meRo = &p + 1 R3 + 2R, (D.33)
Ry =Ry =&p +n3Ra +maRy = & +n3Ra + nuRs.

Using these new variables defined in equation (D.33), equation (D.32) can be cast into first-order inhomogeneous
equation in matrix form,

Ry 00 1 0 R 0

= r B ud R2 0 0 0 1 R2 0
R=M- R+ 2= : +

¢ - R 00 m n R3 &rp

Ry 0 0 na ms Ry &ip

The above first-order inhomogeneous equation is equivalent to

¢ ¢

Ry = [ Rsdt, m:/Rmc (D.34)
t() tO

and
Rs3 o N2 ] { R } [ &rp }
. — . . D.35

{ Ry ] { i M3 Ry + &p ( )

A, M, Ry 3
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For the homogeneous system

R3 mo M2 R3

. = . D.36
[sz] {774 773]{34}’ (-30)

1%,, My, Ry

the eigenvalues are found from the root of the characteristic equation
det (x\f— M,,) =N — [+ 03] A+ ming — nana = 0.

The two eigenvalues are

n 1 1/2 n 1 1/2
Az = % + {4 [m — 773]2 + 772774} 5 Ay = L2773 2 [m — 773]2 + 1274 - (D.37)

And, the two corresponding eigenvectors are found to be

72 2 —1/2
R/\3 =Ry { Az—m } , Ry = {[772} + 1} , (D.38)
1 Az —m

and

] \ 9y —1/2
EA4 = R?) I: Aa—m :| ; R3 = {1 + |:4771:| } s (D39)

712 2

whereR; and R, are the normalization constants. The solutions for the matrix equation (D.36) are then

L R 2 exp (Ast) - o . exp (Aqt)
= = Az—n1 = =
Prs = R, exp (Ast) = Ry [ 3 oxp (Ast) , Oxa =1, exp(Mt) = Ry A47;n1 exp (\at) |
The fundamental matrix solutioh (¢) = {J)}z (t), da, (t)} is given by
~ 2R Ast R. At
d (t) _ Az—m1 46Xp( 3 ) \ _73(?Xp( 4 ) ) (D40)
R4 exp (Agt) %Rg exp ()\4t)
The fundamental matrix solutio (¢) has an inverse
51 (1) = 1 %Rg exp (Aqt) —Rgexp (M\4t)
det, (CI) (t)) —R4 exp ()\3t) )\;Em R4 exp ()\315) ’
where
- Ay — .
det (cI> (t)) - {4”1 - 1} RsRyexp (s + Al t). (D.41)
Az —
The principal matrix solutions (¢, to) = @ (¢) - " (t,) of equation (D.35) becomes then
3 1 Y1 (tto) Y12 (t,to)
U(t,tg) = —F—— D.42
(£ o) { Vo1 (t,to) a2 (L t0) |’ (D-42)

det (ci (to))
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where
m

b (tto) = Ry Ry Lgél exp (st + Mato) — exp (Aat + Agto)] : (D.43)
’(/Jlg (t, to) = R3R4 |:/\ exp (>\4t + )\3t0) — exp ()\315 + )\4t0):| s (D44)

3— M Az —m

s s [ A m 4= M
Y21 (t, to) = Ra Ry O (Ast + Agto) — P (At + Asto) |, (D.45)

N A1 —
a9 (t, tO) = R3Ry |:/\4 Zl exp (/\4t + )\3t0) — exp ()\325 + /\4t0):| . (D46)
3— M

The inverse of principal matrix solutiof (¢, t) is

-1 1 Voo (t,to)  —tb12 (t,to)
vt = det< (t, to)) det (‘i (on)> { ~Va “720) Yn (t’toc)) ] ’ (D.47)

where

det( (t, to)) - [det (213 (to))TQ (11 (L, o) o (£, t0) — ra (£, to) Wi (£, 10)] (D.48)

Using a variation-of-parameters technique, the solution to the inhomogeneous first-order differential equation (D.35)
is

RV] (t) = ifj (t,to) ' R'ﬂ (tO) + {I‘} (t7t0) : / \I’il (t/7t0) . g(t/) dt,

where itis yndersgood the multiplications are that of the matrix operations. Substituting into this integral equation the
results forR, (t), £ ('), ¥ (¢) and¥ ! (¢') given by equations (D.35), (D.42) and (D.47),

R ) sy (L) )[R0 [y )

' L Yoo (t',t0)  —v12 (U, t0) &rp (F) /
'/to {det (@ (t’,to)) { —21 (t'ago) Y11 (t’7t0()) } . { &ip (1) ]}dt)

or

R3(t) = ~1) {wn (t,to) R3 (to) + 12 (t, to) Ra (to) +

Y1 (¢, o)
det (cI> (to) det (513 (to))

Fioa (tt0) Enp (V) L0 [T 2 (tt0) Ep () Y12 (t, to)
o det( 2 to)) -, det( (t, to)) « +det (&)(to))

et e we, @ )| (0.49)
i to det( (t/ to)) to det( t/ ,to )
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Ra (1) = ——— Lo (8, t0) R (fo) + s (1 t0) R (1) + 221 70)_
det (@(t())) det( ( ))

" ihaa (', t0) &rp (t ) " ahaa (', to) &p (1) ) g1t Y22 (1, to)
e aa(e) T () ] (@)

o Py (1) Ep (tl)dt oy (¥, 0) Erp ( t/ ' (D.50)
i to det( (t/ to)) to det( t/ to )

It is noted from equation (D.34R5 (o) and Ry (to) are initial speeds,
R'f'p,cm,a (tO) = Rl (tO) = R3 (tO) ) Rlp,cm,a (tO) = RQ (tO) = R4 (tO) .

Hence,

A1 (5to) —m (Gto) B 1} Y (2, to) rp.em,a (to) + P12 (¢, to) Rlp,cm,a (to)
Az (5t0) —m (to) exp ([As (520) + A4 (s t0)] o)
Yo (', t0) Erp (t) — 12 (¥, t0) &1 (1)
1 (8 %o) to Y11 (', t0) Yoz (¥, t0) — V12 (¥, t0) Y21 (¥, Lo)
Y11 (', t0) &ip (1) — a1 (', t0) Erp (1) /
* to Y11 (¥, t0) Yoz (¥, t0) — Y12 (¥, t0) Y1 (t’,to)dt ’ (b:31)

Rrp,cm,a (t) = |:

dt’ + 12 (¢, to)

As(ito) —m (o) 1} ! 1 (tt0) Repemaa + ¥22 (£ t0) Rip.em.a (fo)
Az (3t0) —m (3to) exp ([As (520) + A4 (s t0)] o)
Yoo (t',10) Erp (t) — Y12 (', 10) &1 (1)
to Y11 (¥, t0) Yoz (¥, t0) — Y12 (¥, t0) Y1 (¥, t0)
" o (Ft0) & (1) — Y (F t0) rp (1)
to Y11 (t',t0) Y22 (¥, t0) — Y12 (¥, t0) Y21 (¥, to)

Rlp7cm7a (t) = |:

+ 21 (L, t0) dt' + a2 (¢, to)

ar, (D.52)

where substitutions have been made for the determiﬁﬂan@ (to)) anddet (\Tl t, to)) from equations (D.41) and

(D.48). ltis to be understood that the notat{ory) onn;, A\s and\, implies implicit time dependence for these terms.
Finally, integration of both sides of equations (D.51) and (D.52) with respect to time gives the results

Rrp,cm,a (t) _ |:>\4 (a tO) — 71 (; tO) o 1:| ! /tt [dﬁl (T7 tO) Rrp,cm,a (tO) + 7/}12 (7—7 tO) Rlp,cm,a (tO)

n
Az (3to) —m (3to) exp ([A3 (:%0) + A4 (:20)] to)
T e (¢ t0) &p () — Y12 (V' 20) &ip ()
1 (7o) to Y11 (¥ t0) Yoo (¥, t0) — 12 (¢, t0) Yan (¥, t0)
» T b (#t0) &p (B) — a1 (' 0) Erp ()
to Y11 (¥ t0) Yoo (¥, t0) — 12 (¢, t0) Y2u (¥, t0)

dt’ + 112 (1, t0)

dt'| dT 4+ Ryp.em.a (to) (D.53)

Aa (to) = m Gto) 1}‘1 / Y21 (7, t0) Rrpem,o (to) + 22 (7. t0) Rip,em.a (to)
Az (5to) —m (5to) to exp ([A3 (5t0) + Aa (5t0)] to)
Yoz (¢ 20) &rp (V') — Y12 (s 20) &1p (V')
Yo (7 %0) to Y11 (t't0) Yoo (¥, o) — 12 (¢, t0) Yan (¥, to)
o [ ¥u (', t0) &ip (') — P21 (¥, t0) &rp (')

1o W11 (', t0) oo (t',t0) — b1 (¥, t0) Y1 (¥, t0)

Rl;mcm,a (t) = I:

dt’ + Pag (7’7 to)

dt'| dT + Rip,em,a (to) s (D.54)
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where the terms)1, 112, ¥21 andiys, are defined in equations (D.43), (D.44), (D.45) and (D.46). The remaining
integrations are straightforward; hence, their explicit forms are not shown.

As a closing remark of this section, one may argue that for the static Base,, « (to) and Ry, cm.o (to) must
be zero because the conductors seem to be fixed in position. This argument is flawed for any wall totally fixed in
position upon impact would require an infinite amount of energy. One has to consider the conservation of momentum
simultaneously. The wall has to have moved by the amavRt,,; = RuaulMt, where At is the total duration
of impact, andR,,;; is calculated from the momentum conservation and it is non-zero. The same argument can be
applied to the apparatus shown in Figure 3.10. For that system

)

Ripema (to) = Hﬁlp,S (to) + ﬁrp,Q (to)’

. 1
Hpvirtual—phot()n|| = EH;LS,ER (tO) 5 . .
Rlp,cm,a (tO) = HRrp,l (tO) + Rlp,Z (tO)H
or, for simplicity, assuming impact without any angle,
R t) = —2— |H, 4 (to) — H. (¢ R t) = —2— ||H, . (to) — H!, (¢
7’p,cm,a( 0) - || 71,5,3( O) ns,2( O)H ) lp,cmﬂ( 0) - MiyC H ng,l ( 0) 71,5.,2( O)H )
P

MypC

where the difference under the magnitude symbol implies that the energies from different regions act to counteract
each other.
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