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ABSTRACT

This thesis presents the design and development of a novel biomimetic jellyfish robot that

features ionic polymer metal composite actuators. The shape and swimming style of this

underwater vehicle are based on oblate jellyfish species, which are known for their high

locomotive efficiency. Ionic polymer metal composites (IPMC) are used as actuators in

order to contract the bell and thus propel the jellyfish robot. This research focuses on

translating the evolutionary successes of the natural species into a jellyfish robot that mimics

the geometry, the swimming style, and the bell deformation cycle of the natural species. Key

advantages of using IPMC actuators over other forms of smart material include their ability

to exhibit high strain response due to a low voltage input and their ability to act as artificial

muscles in water environment. This research specifically seeks to implement IPMC actuators

in a biomimetic design and overcome two main limitations of these actuators: slow response

rate and the material low blocking force. The approach presented in this document is based

on a combination of two main methods, first by optimizing the performance of the IPMC

actuators and second by optimizing the design to fit the properties of the actuators by

studying various oblate species.

Ionic polymer metal composites consist of a semi-permeable membrane bounded by two

conductive, high surface area electrode. The IPMCs are manufactured is several variations

using the Direct Assembly Process (DAP), where the electrode architecture is controlled

to optimize the strain and stiffness of the actuators. The resulting optimized actuators

demonstrate peak to peak strains of 0.8 % in air and 0.7 % in water across a frequency range



of 0.1-1.0 Hz and voltage amplitude of 2 V.

A study of different oblate species is conducted in order to attain a model system that

best fits the properties of the IPMC actuators. The Aequorea victoria is chosen based on

its bell morphology and kinematic properties that match the mechanical properties of the

IPMC actuators. This medusa is characterized by it low swimming frequency, small bell

deformation during the contraction phase, and high Froude efficiency. The bell morphology

and kinematics of the Aequorea victoria are studied through the computation of the radius

of curvature and thus the strain energy stored in the during the contraction phase. The

results demonstrate that the Aequorea victoria stores lower strain energy compared to the

other candidate species during the contraction phase.

Three consecutive jellyfish robots have been built for this research project. The first genera-

tion served as a proof of concept and swam vertically at a speed of 2.2 mm/s and consumed

3.2 W of power. The second generation mimicked the geometry and swimming style of the

Aurelia aurita. By tailoring the applied voltage waveform and the flexibility of the bell, the

robot swam at an average speed of 1.5 mm/s and consumed 3.5 W of power. The third

and final generation mimicked the morphology, swimming behavior, and bell kinematics of

the Aequorea victoria. The resulting robot, swam at an average speed of 0.77 mm/s and

consumed 0.7 W of power when four actuators are used while it achieved 1.5 mm/s and 1.1

W of power consumption when eight actuators are used.

Key parameter including the type of the waveform, the geometry of the bell, and position

and size of the IPMC actuators are identified. These parameters can be hit later in order to

further optimize the design of an IPMC based jellyfish robot.
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Chapter 1

Introduction

The interest in developing underwater vehicles that mimic jellyfish especially for their high

locomotive efficiency and simple design [1], has arisen with the recent demand for novel types

of autonomous underwater vehicles. This type of bio-mimetic robot has been extensively

studied, developed, and characterized in the Center for Intelligent Material Systems and

Smart Structures (CIMSS) lab at Virginia Tech [2, 3, 4]. Different aspects of the jellyfish

robot were studied, ranging from propulsion and actuation to energy harvesting, sensor

implementation, and communication.

Various propulsion and actuation mechanisms were explored at CIMSS. The actuation mech-

anisms adapted, were mainly based on smart materials such as: shape memory alloys (SMA)

and ionic polymer metal composites (IPMC) [2, 3, 4]. This thesis will focus on the design

of a bio-inspired jellyfish robot that features ionic polymer metal composites (IPMC) ac-

tuators. This robot mimics the geometry, morphology, and swimming style of the natural

jellyfish species. The following chapters will relate to the fabrication and characterization of

the IPMC actuators, bell kinematics properties of different jellyfish species, and the design,

1
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fabrication, and characterization of the robot.

1.1 Problem Statement

Autonomous underwater vehicles (AUVs) are robots able to travel underwater or swim with-

out any human intervention. AUVs are valuably used in monitoring animals, humans, and

environmental changes; to name a few: seafloor survey and mapping for oil and gas detection

on the commercial level [5]. AUVs are also extensively used for military application such

as detecting mines and/or manned submarines, as well as monitoring protected areas for

unidentified objects [6]. Scientists also use AUVs for the study of ocean floor and animal

migration, the detection of chemical agents, and the preserve of microscopic life [5].

Because current technologies suffer from practical limitations, the uses of AUVs have been

forced to be limited to a certain number of tasks [5]. Examples of these restraints include:

significant maintenance requirement, cost-effectiveness, lifetime and range [6]. However, the

main problems associated with existing AUVs can be summarized by the following: first,

most AUVs used today are powered by rechargeable batteries which limit their range of

operation and have limited lifetime [7]. Larger vehicles use aluminum based semi-fuel cells

batteries that require substantial maintenance and thus high cost of operation; moreover

they produce waste products that might disturb the ocean life thus harming the environment.

Second, most common propulsion techniques are propeller based thrusters or kort nozzles.

These thrusters are commonly powered by electric motors that usually require special sealing

techniques [8]. This process of waterproofing is usually impacted by the decision of brushed

or brushless motors, which lastly affects the reliability, efficiency, and the cost [9].

Recent demand for autonomous underwater vehicles, such as robotic fish and even au-
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tonomous alligators, for use in military and commercial applications motivates the design

and development of new types of self-propelling, bio-inspired crafts. Two requirements for a

successful vehicle design include the ability to demonstrate proficient swimming and maneu-

verability in order to maintain position in water, and provide long-term, efficient use of the

available energy stored on-board [10, 11]. To this point, interest in developing underwater

vehicles that mimic jellyfish is based on their high locomotive efficiency, ability to survive in

different water and environmental condition, and relatively simple and convenient design to

carrying payload [12, 13, 14].

New forms of propulsion and actuation have been also investigated for this purpose. These

techniques are based on bio-inspired materials that can serve as artificial muscles that in

turns can help mimicking the structure, morphology and swimming behavior of the natural

animal [4, 3, 2, 15]. Initial attempts to build robotic jellyfish have used either shape memory

alloys (SMAs) or ionic polymer metal composites for providing actuation to a synthetic bell

structure.

1.2 Literature Review

In this section, brief background information on AUVs and ionic polymer metal composites

will be provided. The review has started with the definition of AUVs in addition to a list of

existing ones and their applications with the emphasis on bio-mimetic designs. Next, since

we are mainly interested in the actuation and propulsion aspect of the design, historical

background on common actuation and propulsion mechanisms is provided and followed by a

brief overview on the use of smart material and electro-active materials as actuators in such

vehicles. Finally, the ionic polymer metal composites properties, manufacturing methods

and present applications is explored and discussed.
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1.2.1 Unmanned Underwater Vehicles

Unmanned underwater vehicles usually fall under two categories, the Remotely Operated

Vehicles (ROVs) and the Autonomous Underwater Vehicles (AUVs) [6]. ROVs are usually

physically connected, through a tether that provides both power and control, to a controller

that can be either on a submarine or a ship. In contrast, AUVs are completely autonomous

and depend in most cases on an onboard power system or controller [6].

The motivation of building and developing underwater vehicles is not recent. In 1775 at

Saybrook, Connecticut, David and Ezra Bushnell built the first American submarine which

they called ”Turtle”. The Turtle was later used in New York Harbor in 1776, in the first

naval battle in history involving a submarine [16].

”Resurgam” the world’s first practical submarine was built in November of 1879 by the

Reverend George W. Garrett. This vehicle was powered by a Lamm ’fireless’ steam engine,

and was able to travel for around ten hours counting on the power stored in an insulated

tank [17].

Many more underwater vehicles have been developed after the aforementioned historic ve-

hicles for numerous different tasks. Subsequently, torpedoes the first AUVs were developed

even though many AUV systems were studied prior the 1970s. Since the beginning of the

1970s a great and valuable amount of development occurred [17].

Actually, the development of AUV began in the 1960s, where some vehicles were built and

mainly served in very specialized cases specifically data gathering [16]. On the other hand,

during the 1970s a respectful amount of initial attempts and experimental prototypes were

built. For instance, the UARS and SPURV vehicles were developed by the University of

Washington APL [18]. These vehicles were mainly used in data gathering. The Marine
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Systems Engineering Laboratory (University of New Hampshire) has developed the EAVE

vehicle. In parallel, the Institute of Marine Technology Problems (Russian Academy of

Sciences) started their research on AUVs and developed the SKAT vehicles along with the

L1 & L2 known to be the first deep diving AUVs. The seventies period is known as the time

of experimentation in order to define the potential of developing AUVs [6].

During the 1980s several proof of concept prototypes were built and fully characterized as

the result of the major advances in technology that occurred at that time. As a result to

these successes the first ”International Symposium on Unmanned Untethered Submersible

Technology” (UUST) was held and took place in Durham, New Hampshire, USA [7]. Many

people from both the industry and the universities attended. The eighties period repre-

sented an important turning point for AUV technology, and was culminated by launching

several research programs in the USA which provided funding for the development of proof

of concepts prototypes.

During the 1990s, the AUVs grew from proof of concepts into initial generation that served

as operational systems able to perform specific tasks. However, the first truly commercial

products did not become available until year 2000. In this decade the utilization of AUV

systems for many commercial and military applications has became obvious. Around 145

different types of AUV were developed and are available in the market nowadays. However,

there are still many technological obstacles that has to be overcome[17].

1.2.2 Biomimetic Unmanned Underwater Vehicles

The design and development of biomimetic underwater vehicles have been recently the focus

of major research efforts. The goal of this cutting-edge field is to translate the evolutionary

successes of natural species into artificial systems that mimic the construction, function, and
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performance of the living systems [10, 11].

At the beginning of year 2008, the development of bio-inspired underwater vehicles that

mimic the designs found in nature, started. Most of the attempts are still in their experi-

mental stages, and they were able to exhibit high propulsion efficiency and maneuverability

when compared to the traditional results.

In 2008, Festo a well known German industrial control and automation company, has devel-

oped the first biomimetic jellyfish robot called ”AquaJelly”. This robot is a self-controlling

system that mimics the swimming behavior if the natural jellyfish. It consists of a translu-

cent hemisphere and eight tentacles for propulsion [18]. A central electric motor powered by

two lithium-ion polymer batteries, is placed at the center of the robot and is responsible of

the propulsion. In 2009, a biomimetic robot that mimics the ”Manta” fish was developed

by Evologics which is another German company that focuses on developing innovative key

technologies for aerospace, maritime, and offshore industries [8].

Bio-inspired underwater vehicles, has been the research interest for many research groups

around the world. Many robots mimicking different kinds of marine species have been. At

Virginia Tech different research groups are studying the capability to mimic jellyfish through

a MURI project funding by the Office of Naval Research.

1.2.3 Actuation Mechanisms/Smart Materials

Most Autonomous Underwater Vehicles are based on motors for locomotion. These com-

mon propulsion techniques used nowadays, are mainly propeller based. The propeller based

robots are either thrusters or Kort nozzles, which are powered by electric motors. These

techniques are usually associated with low efficiency, reliability, and high cost of operation
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and maintenance.

For the past couple years the research has been focused on finding more efficient and ma-

neuverable means of propulsion. This will lead to increase the duration of the mission and

the generally efficiency and performance of the vehicle. People started to look at nature in

order to create new ways of thinking in engineering designs. This is achieved by using the

biological systems to improve the engineering technology.

The new technologies in biology, active materials, and robotics fields, help realizing the

biomimetic propulsion and fish-like swimming robots [10]. These types are usually known

by ”biologically inspired underwater vehicle” (BIUV), and usually obtain thrust by imitating

the swimming behavior of fishes.

Therefore, new forms of propulsion and actuation have been investigated for this purpose.

These techniques are based on bio-inspired materials that can serve as artificial muscles that

in turn can help mimic the structure, morphology and swimming behavior of the natural

animal.

Initial attempts to build robotic jellyfish have used either shape memory alloys (SMAs) [2].

Villanueva, et al demonstrated the fabrication of a jellyfish robot that utilized eight SMA

actuators for propulsion [2]. While Villanueva, et al was able to closely mimic the swimming

motion and speed of the natural jellyfish (Aurelia aurita), the main disadvantage of a SMA-

powered jellyfish is the high power consumption required to actuate the SMA materials. The

RoboJelly consumed an average and peak power of 14W and 80W, respectively [2].

Ionic Polymer Metal Composites (IPMCs) are a type of electroactive material that produces

mechanical deformation in response to an applied electrical field [19]. As shown in Figure 1,

the IPMC, or more specifically the semi-permeable membrane, will bend toward the anode
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upon application of an electric field. This is caused by the motion of the mobile cations

within the polymer matrix [20]. As a result, IPMCs are often thought of as artificial muscles

and may enable a lighter weight, lower-power alternative to Shape Memory Alloys (SMA)

materials for actuating a robotic jellyfish.

In 2009, Yeom et al [15] published their results about a biomimetic jellyfish robot that is

based on IPMC actuators. The paper discusses the design, fabrication and characterization

of the robot. The robot did not swim freely, however a floating controller was used to

maintain neutral buoyancy. Results about velocity were presented, the maximum achieved

vehicle speed of 0.057 mm/s, but data on power consumption were not presented.

1.2.4 Historical Background on Ionic Polymers and their Appli-

cation

Ionic polymer metal composites (IPMCs) are type of electroactive materials that exhibit

large deformation in response to a low applied voltage [19]. This process is reversible where

a dynamic deformation of an IPMC can produce a dynamic electric field across the electrodes

[21]. IPMCs showed a huge potential to act as soft robotic actuators, artificial muscles, and

electro-dynamic sensors.

An IPMC consists of an ionomeric semi-permeable membrane sandwiched by two conductive

electrodes [21]. The metal electrodes are meant to increase the intensity of the electric field

applied to the membrane during actuation. The metal or metal particles are deposited on

the membrane, in a way to maximize the interfacial area between the membrane and the

metal electrode. In order to get better performance the electrical resistance of the electrode

has to be minimized. There are usually two types of electroding techniques: chemical and
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mechanical. Usually chemical techniques are more expensive and time consuming, however

they provide better adhesion. In contrast, mechanical techniques are adapted due to the

ability to deposit non-precious metals on the membrane for instance Ruthenium dioxide and

Carbon nanotubes. The major disadvantage of this method is inability of this material to

function well in hydrated mediums [22].

Chemical electroding methods usually consist of reducing the metal particles stored in the

membrane with the assistance of reducing agents [22]. This method has been the subject of

interest for many research groups that focused on improving and developing techniques of

chemical metal deposition. The mechanical electroding techniques are mainly based on three

different techniques: physical vapor deposition, solution casting, and the direct assembly

process[22].

Historical, polymer-metal were developed as early as the 1930’s [23]. However, at the be-

ginning of 1990’s their sensing ability was reported by Sadeghipour, et al. In 1992 Oguro’s

group in Japan discovered the bending ability of the ionic polymers due to an applied po-

tential across the thickness of the membrane [23]. Since that moment, several groups across

the world worked and are still working on improving the manufacturing process, in order to

improve the actuation capacity and search for applications for this new material.

Ionic polymers materials have many interesting properties that make of them special kind

of smart materials. These materials are usually large displacement low force actuators [24].

They are soft compared to the brittle ceramics electroactive polymers and have complaint

structures. Many applications need large displacement actuators, and here were the ionic

polymers come into the picture. Moreover, the ionic polymer metal composites are biocom-

patible especially the Nafion based ones which makes them potential muscle implants.

The interesting properties of IPMCs listed earlier give them a number of potential applica-
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tions. These applications range from their application as sensors to actuators. They can be

used in different environments, in water submerged applications, and in different forms i.e.

packaged polymers or ionic liquid diluent based polymers (Bennett and Leo, 2004).

IPMC have been used in industrial and biomedical applications for instance biomimetic

robotic sensors, actuators, and transducers. An IPMC can be used as a mechanical gripper

on both micro and macro levels, in this application two IPMC actuators are placed in

parallel with top faces facing each other. To date multi-finger grippers have been produced,

these grippers consist of two, four, and eight fingers. IPMCs have also been used as three-

dimensional actuators, robotic swimming structure, and Linear actuators.

On the medical level IPMCs have been used as Metering valves, Diaphragm pumps using

flexing IPMC strips and diaphragms, and Exo-skeletal human joint power augmentation.

On the micro level MEMS and microrobots made with IPMCs represent and enabling tech-

nology for manufacturing sensor and actuator microarrays in addition to several other ap-

plications.IPMCs have also found application in the Biomedical field for example Artificial

ventricular or cardiac-assist muscles, Surgical tool, and Peristaltic pumps.

In conclusion these materials can provide an efficient method to convert mechanical energy

into electrical or chemical forms and thus work as sensors in addition to their capability of

being used as actuators. This section presents a summary of the efforts on a number of

potential applications of ionic polymer metal composites.
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1.3 Different Jellyfish Species Morphology and Swim-

ming Behavior

In this section a study on different jellyfish species is presented. Understanding the mor-

phology and swimming behavior of the species is important in order to achieve a biomimetic

robotic jellyfish design. On the other hand, as mentioned in the previous section IPMC

materials are soft and have slow response rate. This study will help in attaining a jellyfish

species that fits the mechanical and electrical properties of the IPMC actuators. The geom-

etry and bell kinematics is first discussed followed by the propulsion types and efficiency of

different medusae. In the second part the swimming behavior of different oblate species is

discussed and finally a summary including the important properties and key factors related

to jellyfish shape and swimming style.

1.3.1 Jellyfish Types: Oblate vs. Prolate Species

Jellyfish species are usually classified under two main categories: prolate and oblate species

[12]. This classification is directly related to the geometrical shape of the jellyfish’s bell.

Prolates are characterized by their elongated bell shape with a fineness ratio larger than 1.0.

In contrast, oblate species have a more flattened shape with a fineness ratio less than 0.5.

The fineness ratio is a number used by the biologists in order to characterize the jellyfish

swimming behavior [25] and is defined as the ratio of the bell height to its diameter,

F = h/d. (1.1)
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Biologists proved that the swimming style and efficiency of jellyfish species are highly corre-

lated with the bell geometry [14, 26]. Oblates depend on a starting and a stopping vortices

caused by the non-uniform deformation of the bell, in order to propel themselves. The bell

of an oblate species minimally contracts at the top while the maximum contractions are

located toward the margin which causes the starting and stopping vortices. These vortices

are represent a critical part of the rowing propulsion technique adapted by the oblates during

the swimming cycle [14].

Rowing propulsion is characterized by a slow and non-uniform bell contractions compared

to the jetting technique in order to generate forward thrust [14]. The stopping vortex is

generated on the interior of the bell during the bell expansion. Directly after the generation of

the stopping vortex, the bell contracts and generates the starting vortex along the margin of

the bell. This vortex interaction impacts the swimming behavior of the medusa by producing

a more efficient mode of swimming even though it is slower.

In contrast, prolate species contract their bell in a uniform fashion causing water jet which

will cause the forward propulsion of the jellyfish. A comparison between the oblate and

prolate species is shown in Table 1.1. The results demonstrate that the oblates are more

efficient even though they swim at a slower speed. Froude efficiency is used to compare

the energetic efficiency of the thrust produced by both propulsion techniques for a living

organism or a vehicle and is defined as follows,

Frp =
2Vm

Vj + Vm

× 100, (1.2)

where Vm is the velocity of the medusa, and Vj is the velocity of the jet. The proficiency on

the other hand is defined as the ratio of the velocity Vm to the bell diameter d.
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Table 1.1: A comparison between prolate and oblate jellyfish species.

Prolate Oblate
Bell contraction Fast Slow
Acceleration High Low

Froude efficiency Low High
Proficiency High Low

1.3.2 Swimming Behavior of Different Oblate Species

This section focuses on studying different oblate species since these species proved to be

more efficient compared to the prolates. Data for four oblate species are found in literature.

The studied species are as follows: Aurelia aurita, Aequorea victoria, Mictrocoma cellularia,

and Phialidium gregarum. Table 1.2 shows a comparison among these species in terms of

physiologically relevant parameters. In this table the fineness ratio ranges are associates

with the contracted and relaxed phases respectively. For instance, the Aequorea victoria

has the smallest range where its fineness ratio ranges from 0.42 (relaxation phase) to 0.55

(contraction phase) as opposed to 0.39 to 0.7 for the Mictrocoma cellularia. In addition to

the fineness ratio range, another important criteria we looked at is the swimming frequency

and it was found that the Mictrocoma swims at a low frequency (0.5 Hz) compared to the

others, while the Aequorea victoria swims at 1.1 Hz. Based on this study the focus is now

on the Aequorea victoria as a good candidate since it has the smallest fineness ratio range

with the second lowest swimming frequency.

1.3.3 Summary

In summary, the jellyfish species fall under two main categories based on their geometrical

shape. The shape of the medusa affect its swimming style and efficiency. The oblate species
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Table 1.2: A comparison among four different oblate species in terms of fineness ratio range,
swimming frequency, peak accelaration, and peak velocity[14].

Aequorea
victoria

Aurelia
aurita

Mictrocoma
cellularia

Phialidium
gregarum

Fineness ratio range 0.42-0.55 0.39-0.7 0.5-0.7 0.3-0.6
Frequency (Hz) 1.1 0.5 1.67 1.67
Peak acceleration (cm/s2) 5 5 10 10.2
Peak velocity (cm/s) 2 1.5 2.5 1.3

are more efficient, however slow swimmer and this is due to the rowing propulsion technique

adapted by these species. On the other hand, the prolate species are less efficient but swim

faster due to the water jetting propulsion technique. Different oblate species are studied

and their properties were identified which will help in designing a biomimetic robot. On the

other hand this study helps in finding the species that best fits the properties if the IPMC

actuators.

1.4 Motivation

The initial focus of this thesis is to study the feasibility of using ionic polymer metal com-

posites as actuation and propulsion mechanisms for a biomimetic jellyfish like underwater

vehicle. Initial attempts to build robotic jellyfish have used shape memory alloys (SMAs).

Villanueva, et al demonstrated the fabrication of a jellyfish robot that utilized eight SMA

actuators for propulsion. While Villanueva was able to attain a biomimetic design by closely

mimicking the swimming motion and speed of the natural jellyfish, the main disadvantage of

a SMA-powered jellyfish is the high power consumption. Therefore, IPMCs were suggested

as an alternative espacially that ionic polymers have been used in many different applications

due to their interesting properties especially their ability to exhibit large deformation due



Joseph S. Najem Chapter 1. Introduction 15

to a low applied voltage.

In 2009, Yeom et al published their results about a bomimetic jellyfish robot based on

IPMC actuators. The resulting robot achieved a speed of 0.057 mm/s, but no data on power

consumption were presented. The major difficulties with ionic polymers was the small force

they generate and their slow response rate, thus the focus at the beginning went on improving

both properties by optimizing the structure of the electrodes. This attempt was successful

but we were faced by the limitations of the material especially at the actuation frequencies

we are using. On a different level the focus shifted toward finding a jellyfish specie that

better fits the properties of the IPMC actuators. Therefore, the aim of this thesis changed

from optimizing the IPMC actuators to both optimizing the material and the design of the

whole system by mimicking the species that better fits the mechanical properties of IPMCs.

1.5 Overview of the Thesis

1.5.1 Research Objectives

The objective of this thesis is to design, build, and develop a biomimetic jellyfish robot that

uses ionic polymer metal composites actuators. Ionic polymer actuators can achieve high

strain deformation ( 5%) for a low voltage applied (2-5 V). The operation of those actuators

depends on the mobility of ions inside the polymer clusters. Therefore, these transducers

are know for low response rate. Another interesting property of IPMCs is the small force

that they can generate.

The first objective of our research, was to improve the performance of the IPMC actuators,

especially building such actuators using the Direct Assembly Process (DAP) is knew and
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had never been optimized. The optimization study focuses on the structure and chemical

composition of the high surface area electrodes bounding the NafionTM membrane.

The second objective of our research was to attain a jellyfish species that can serve as a model

system and specifically fits the limiting properties of the IPMC actuators. This approach

represents a bio-inspired solution of the limiting properties of the actuators. Finally, the goal

of this research is to build a biomimetic robot that mimics the geometry, bell kinematics,

and swimming style of the natural jellyfish.

1.5.2 Contribution

The main contribution of this research is the development of a novel low power biomimetic

jellyfish robot based on IPMC actuators. In order to characterize the free-swimming per-

formance of the robot, the vertical displacement of the robot in water was measured. In

addition the power consumption was also measured by recording the voltage and the current

consumption during the swimming test.

During the characterization process it was realized that several parameters affect the swim-

ming behavior of the robot. First, the amplitude, frequency, and duty cycle of the input

signal to the robot affect dramatically the performance of the robot specifically the swimming

speed and the power consumption. Second, mimicking the bell kinematics had a major effect

on the power consumption which was reduced due to the reduction in the actuators’ sizes.

Third, the geometry of the jellyfish bell also affects its behavior where introducing cuts in

the bell increased the swimming speed of the robot. Finally, it was noticed that adding flaps

at the tip of the margin also improves the performance of the jellyfish robot. Finally, this

whole research could evolve into a larger project where each aspect and parameter discussed

above can be targeted separately in order to achieve a more robust low power robot.
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1.5.3 Approach

Chapter 2 provides an overview for experimental setups and procedures in addition to the

characterization tests performed in order to characterize the ionic polymer actuators and the

robot.

Chapter 3 is devoted for the fabrication and characterization of the IPMC actuators. In

addition some preliminary optimization attempts are discussed. Finally, a summary of the

experimental bending and impedance measurements results is presented.

Chapter 4 discusses the bio-inspired bell kinematics design of the jellyfish robot. In the

first section, a comparative bell kinematics analysis is conducted between two competitive

medusae Aurelia aurita and Aequorea victoria. In the second section, a discussion of a

biomimetic bell kinematics design is presented, and it focuses of the design, characterization,

and results of a bio-inspired bell, that mimics the morphology and kinematics of the natural

jellyfish.

Chapter 5 presents the design and development of a three different jellyfish robot generations

using IPMC actuators for propulsion. The first generation served as a proof of concept, while

the second mimicked the Aurelia aurita, and the third mimicked the Aequorea victoria.

At last, Chapter 6 provides a brief overview of the thesis. It also provides our contribution

to the field with conclusions beign drawn.



Chapter 2

Experimental Methods

In this chapter a description of the ionic polymer metal composite actuators, the robotic

jellyfish free-swimming, and the bell kinematics design experiments is presented. In addition,

the fixtures and circuits used in these experiments will also be discussed. Two experiments

are performed in order to characterize the IPMC actuators, electric impedance and free

displacement in both water and air. On the other hand, free swimming tests are performed

on the jellyfish robot to characterize its performance. These experiments are described in

the following sections, with details on the circuitry and equipment used.

2.1 Experiments Outputs

Each experiment, in the IPMC actuators characterization case, is run with a sinusoidal input

signal. In the case of free-displacement experiment, this signal is used to actuate the ionic

polymer sample. As for the electric impedance measurements, a sinusoidal input voltage is

applied and the resulting current flow is recorded.

18
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The outputs of the free-displacement experiment consist of: the input voltage, the current

consumption, and the free-tip-displacement. These three sets of data are then plotted in

Matlab, while the displacement results requires post-processing to eliminate the errors (i.e.

laser jumps) due to disturbances in the laser-vibrometer. On the other hand, the results of

the electric impedance experiment consist of magnitude and phase plots in frequency domain.

No processing is needed in this case, the data are simply plotted in Matlab. However, a code

based on a non-linear least-squares fitting routine is used to estimate the resistance and

capacitance from the impedance data.

In contrary, a square signal input is used to actuate the robot during the free-swimming

experiments. The motion of the robot is recorded on a camera, and the input voltage as well

as the current consumption are recorded using a data acquisition system. First, the robot’s

motion is traced using a commercial motion trace software. This data needs to be filtered

using a fifth order Butterworth filter, and then plotted in Maltab. A Matlab code is also

used to extract the instantaneous and average velocities and accelerations, by using linear

fitting methods. Second, the voltage and current consumption data are used to compute the

power consumption. These results are then plotted in Matlab.

The bell kinematics design experiments are characterized in a similar way to free-swimming

experiments. However, in this case the edge of the bell profile is detected and analyzed in

Matlab. The outputs of this experiment are digitized bell profiles, curvature plots, and strain

energy values.
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2.2 Experimental setup for IPMC actuators

2.2.1 Electric Impedance Spectroscopy

Electrical impedance spectroscopy (EIS) is a measure of the impedance of a material across

a range of frequencies. The impedance, Z(jω), is a complex quantity where its magnitude

represents the ratio of the amplitudes of the voltage (V) to the current (I) and the phase

angle represents the phase difference between voltage and current. The complex electric

impedance is defined in the following expression,

Z(ω) = V (ω)/I(ω), (2.1)

where ω is the frequency in radians per second (rad/s). However, in the case of a purely

resistive circuit, the measured current is proportional to the applied voltage irrespective of

the frequency. This is explained in the following expression,

V = IR, (2.2)

where R = Z(ω) in this case since the impedance is purely resistive.

The impedances of an ideal capacitor and inductor are functions of frequency. The impedance

of an ideal capacitor, C is Z(ω) = 1/jωC, while the impedance of and inductor, L is given

by the expression Z(ω) = jωL. In reality many physical systems have complex electrical

impedance that is not a single component as shown in the case of an ideal resistor, capaci-

tor,or inductor. However, it is a combination of them and thus the circuit model of a system

is not always trivial.
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In order to understand the electrical behavior of the actuators at different frequencies, EIS

measurements are performed. The hardware used for this purpose is AutoLab PGSTAT

12 Potentiostat and the FRA 4.9 software. The actuators are clamped in a cantilevered

configuration by gold foil electrodes. The electrodes are in then connected to the AutoLab as

shown in Figure 2.1. The applied voltage amplitide and frequency range for the measurement

is 100 mV and 0.1 Hz-100 kHz respectively.

Figure 2.1: Schematic of the EIS measurments experimental setup.

2.2.2 Free Displacement

The bending behavior of the IPMC actuators, is tested using the experimental setup shown

in Figure 2.2. A sinusoidal voltage waveform is used to excite the actuators. The actuators

are clamped in a cantilevered configuration (Figure 2.2) by two gold electrodes. The resulting

displacement is measured using a Polytec OFV-363 laser vibrometer and a Polytec OFV-3001

vibrometer controller at a point 20 mm from the clamped end.
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The electrical measurements were done using a dSPACE data acquisition system (CP1104).

A power amplifier is used to supply the voltage and current required for driving the actuators,

while a non-inverting op-amp circuit is used to measure the current consumption as shown

in Figure 2.3. Finally the free strain of the actuator is calculated according to the following

expression,

ϵ(t) =
x(t)T

l2f
, (2.3)

where ϵ(t) is the strain, x(t) is the measured displacement, T is the thickness of the actuator,

and lf is the free length at which the laser was pointed and the displacement was measured.

Figure 2.2: The experimental apparatus used to support the IPMC actuator for the EIS and
Bending measurements.
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Figure 2.3: Schematic of the actuation characterization and current consumption measure-
ment.

2.3 Robotic Jellyfish Experiments

2.3.1 Free-Swimming

The free swimming experiment is performed in order to test the swimming behavior of the

robotic jellyfish. The experiments are carried out in two different water filled aquariums.

First generations of the robots are tested in a 40 cm × 20 cm × 26 cm, while the last

generation is tested in a 50 cm × 45 cm × 70 cm aquarium. Varying voltage waveforms

are provided to the neutrally buoyant robot, and the resulting motion is recorded using a

high-speed camera. The motion of the robot is tracked using a commercial motion trace

software. The resulting data is then processed to measure the swimming speed of the robot

as a function of the actuation parameters.

2.3.2 Bell Kinematics Experiments

Part of the biomimetic design process of the jellyfish robot, is to mimic the bell kinematics of

the natural medusa. For this purpose the bell kinematics of the robot are designed based on a
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systematic set of experiments. The experiments consist of varying the position of the IPMC

actuator underneath the jellyfish bell. This will result in different deformation behaviors

of the bell. A lab-built fixture (Figure 2.4) is used for this reason, the fixture will allow

changing the position of the actuator in the x and y direction as well as the angle that the

angle makes with the horizontal. A 0.5 Hz square wave input is applied to the actuator,

the deformation is then recorded on a high speed camera. The videos are then processed in

Maltab using a computer vision code that is written for the purpose of detecting the edge if

the deformed bell. The results are then compared with the natural jellyfish bell deformation.

Figure 2.4: A picture showing the assembled experimental setup, at the top right is a picture
of the actual Aequorea victoria which also shows what it is meant by x,y and θ.

2.4 Equipment Description

In the IPMC actuators set of experiments the ionic polymers were clamped at one end

with two gold electrodes. These experiments are conducted in water, since they are water

based. When not in use, the actuators are stored in deionized water. Figure 2.2 shows the
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fixture used in both experiments, the fixture was acquired from previous researchers in the

CIMSS lab. It is composed of two main lab apparatus,the clamp which is fabricated from

plexiglass, and the circuit boards that contain the non-inverting op-amp circuit responsible

of the current measurements.

In the EIS experiment only the clamp part of the fixture is used, while the full fixture is

used for the free-displacement experiment. The impedance is measured by applying an AC

potential, usually a sinusoidal wave, of known amplitude, |V | and recording the resulting

current flow. Therefore, the EIS measurements are carried out using AutoLab PGSTAT12

Potentiostat and the FRA 4.9 software. The frequency range of the applied potential (100

mV) is 0.1 Hz-100 kHz.

On the other hand, the displacement is measured using a Polytec OFV-363 laser vibrometer

and a Polytec OFV-3001 vibrometer controller. The current consumed by the actuator is

measured using a non-inverting op-amp circuit. The results of the voltage, current and the

displacement are recorded using a dSPACE data acquisition system (CP1104). Note that the

testings are done in water, thus the resulting displacement values are corrected by dividing

them by 1.33. This number is equal the water refractive index, nwater = 1.33, and dividing

by it will compensate for the change in the refractive index of teh laser signal across the

air/water interface.

The robot swimming behavior is tested in commercial water filled aquariums(Figure 2.5).

Different voltage waveforms are applied to the vehicle using a dSPACE data acquisition

system. Subsequently, the voltage is amplified using an hp 6825 power amplifier, the resulting

vertical motion is recorded using a Motion Scope PCI 2000S (RedLake Imaging) high speed

camera. The videos are then processed with the Motion Trace software, that traces specific

regions of the jellyfish while swimming. The current consumed by the robot is measured
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using the same non-inverting op-amp amplifier used for the IPMC experiments. The voltage

and current are recorded using the dSPACE data acquisition system. The actual power

consumption is afterward computed using the recorded values of both the voltage and the

current consumption. Note that all data are processed and plotted in Matlab.

Finally,the bell kinematics design experiments are achieved using a lab-built fixture. It

consists of the following parts: a central hub, an IPMC actuator, a slice of a symmetric bell

(one eighth of the full bell), and a stage that serves to change the location (x and y) and angle

of the actuator which is located underneath the bell. Figure 2.4 shows a photographic picture

of the apparatus. The characterization process is similar to the free-swimming experiments,

however, a computer vision Matlab code is used to detect the motion of the bell instead of

the Motion Trace software.
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Figure 2.5: A picture of the experimental setup used to test the swimming behavior of the
jellyfish.



Chapter 3

Ionic polymer metal composites

fabrication and characterization

The actuators used to deform the bell of the jellyfish robot, are ionic polymer metal com-

posites (IPMC). As mentioned in Chapter 1, IPMCs are chosen because of their ability to

bend at high strain percentage (5%) when a low potential (2V-5V) is applied [27].

IPMC actuators are fabricated using the Direct Assembly Process (DAP) that was developed

by Akle et al [21]. The DAP method has been extensively used and optimized for fabricating

dry IPMCs , however, the fabrication of water-based IPMC using DAP is recent and requires

optimization. In this chapter, the fabrication process based on the DAP method is explained

and described. Moreover, optimization experiments that focus on the effects of the electrodes

thickness, the number of platinum layers deposited on the electrodes, and the chemical

composition of the electrodes on the performance of the actuators are discussed. Finally, a

summary of the experimental bending and impedance measurements results is presented.

28
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3.1 IPMC Actuators Fabrication Method

An ionic polymer metal composite consists of a bare semi-permeable membrane, sandwiched

between two conductive, high surface area electrodes. In the DAP method (Figure 3.2),

the membrane is soaked in a sodium hydroxyde (NaOH) solution, which will lead to an ion

exchange from the proton counterion(H+) form to one of the alkali metal form (Na+ in this

case). This is done in order to prevent charring of the membrane during the drying step.

Afterwards, the membrane is left to dry in an oven at a temperature of 150 oC, and under

vacuum for around 12 hours [21, 27, 28].

Meanwhile, the electrode solution which is an ion conducting polymer/metal solution is

prepared. The mixture consists of a 10% Nafion solution that was purchased from the Fu-

elCellStore, ruthenium dioxide (RuO2) powder, Single Walled Carbon Nanotubes (SWNT),

gold nanoparticles, and a particle dispersion mixture. The dispersion mixture is made of the

following: 50 wt% Deionized water, 25 wt% Isopropyl Alcohol, and 25 wt% Ethanol. Note

that the composition of the electrode material as well as the dispersion mixture are acquired

from Akle et al [21]. However, the difference in this case is adding gold nanoparticles in

some cases. SWNT is meant to provide large surface area (up to 1000 m2/g),but it is rela-

tively less conductive when compared to gold nanoparticles, thus we believe that adding the

gold nanoparticles will improve the performance of the actuators by increasing the internal

electrical conductivity. The full solution is mixed, stirred and sonicated.

Once the membrane is dried, the solution is sprayed directly onto each surface.The membrane

lays on a vacuum table underneath an Infra Red lamp. The IR heating of the sample will

help dry the membrane faster by evaporating the water and the alcohol solvents. After the

spraying process is complete the sprayed membrane is dried at 130oC under vacuum for one

hour which will insure the compete evaporation of all volatile components of the electrode
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Figure 3.1: Schematic of the IPMC showing the Nafion membrane sandwiched by the high
surface area electrodes,in turn sandwiched by the Platinum/Gold surface electrode.

material.

The next step after drying the sample is to melt-press it at a temperature of 210oC and a

pressure of approximately 206.84 Mpa. The sample is pressed for a total of four minutes (two

minutes for each side), in order to insure uniformity in the sample. The membrane is now

sandwiched between two high surface area electrodes. As mentioned above the electrodes are

composed of RuO2, SWNT and gold nanoparticles in a matrix of Nafion polymer. Figure

3.1 shows a schematic describing the structure of the IPMC.

Oguro et al. [29], proved that an increase in strain per unit voltage is correlated with an

increase in the number of platinum layers added to the polymer. This is due to the increase

in the conductivity of the high surface area electrodes. For this purpose, platinum layers

are added to the electrodes using the impregnation-reduction method [29] which consists of

two main steps. The first is to saturate the full membrane with Pt(NH3)4
2+ by soaking the

polymer in a tetraammineplatinum chloride solution. The next step is to soak the membrane
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in a sodium borohydride solution (NaBH4), this will reduce the metal salt on the surface of

the membrane. The reduction process is done in a cold environment, a bath of ice is used in

our case, to slow the ion reduction process and thus insure more deposition on the surface of

the electrodes. Sodium borohydride is gradually added, its concentration starts at 0.2 wt%

and increases by 0.2 wt% every 30 minutes, this process is repeated five times.

The last step in the process is to increase the surface conductivity by deposit a thin layer of

gold on the electrodes. An electroplating gold solution is used for this purpose, the IPMC

samples are plated until the surface resistance is reduced below 1Ω. A last step might follow

the metal deposition process, and consists of exchanging the mobile cation in the polymer by

any other convenient ion (Na+ in this case) by soaking the polymer in the corresponding salt

solution (NaCl in this case). This process is complete at this stage and is done in aqueous

solutions with the IPMC membrane in a water-saturated state.

3.2 Study on Improving IPMC Peak to Peak Bending

Strain

The Direct Assembly Process (DAP) of ionic polymer metal composites is used in this thesis.

However, as mentioned in the previous section, the DAP method has been optimized for

fabricating dry IPMCs. Therefore the water based IPMC requires additional optimization.

Akle et al. provided an optimization study for the dry IPMC, similar techniques are used

in this case. In addition, the DAP provides control on different variables in the polymer

fabrication process. In this section, some of these variables are inspected and optimized.

The variables studied in this case are the electrode thickness, the number of platinum layers

and the electrodes chemical composition.
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Figure 3.2: Schematic showing the four step needed to fabricate a water-based IPMC using
DAP method.

In the first experiment, the thickness of the electrode is varied, and subsequently the tip

displacement is measured. The number of platinum layers is varied in the second experiment.

In the last set of experiments the chemical composition of the electrodes is varied. Finally,

the combination of the three different parameters at different level each is also tested, in

order to account for any coupling effect that might happen among the three variables. For

this purpose, the Taguchi method [30] is used in order to design the experiments.
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3.2.1 Effect of Electrode Thickness and Applied Pressure

In this experiment the thickness of the electrode is increased while maintaining the same

chemical composition of the electrodes. In the first set of experiments two samples with 30µm

and 65µm thicknesses are fabricated, the chemical composition of the electrodes consists of

35% RuO2 and 10%SWNT. The samples are melt-pressed for four minutes at 3,000 psi and

210oC. The strain response of these samples increases with the thickness of the electrodes.

Figure 3.3 shows the strain results of both samples. It is shown that the peak to peak strain

value of the 30µm sample (0.048 %) is lower than that of the 65µm (0.1 %).

Figure 3.3: Strain response of two samples with different electrode thickness when a 2V, 1
Hz sinusoidal wave is applied.

This result shows that the higher the thickness the higher the peak to peak strain. This is

due to the fact that the amount of particles and the interface area are proportional to the

thickness of the electrode. Akle et al. [21] showed that the strain response and the electrical

capacitance of the IPMC are correlated in a linear fashion. Akle explains this process by
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the fact that the low-frequency capacitance of an IPMC is related to the charge transport

and accumulation at the blocking electrode which will lead to a mechanical deformation.

Therefore, adding more particles by increasing the thickness of the electrode, will increase

the polymer capacitance and thus result in higher peak to peak strain response. Note that

strain results are found to be proportional to the thickness of the electrode which confirms

with the results published by Akle previously [24, 20].

The applied pressure during the melt-press step is also studied. As was shown in the previous

experiment, the higher the thickness, the higher the peak to peak strain response. However,

the drawback from increasing the thickness of the electrode is increasing the mechanical

stiffness of the IPMC. One way of reducing the stiffness while keeping the same electrode

thickness is to decrease the overall thickness of the IPMC. This is due to the fact that stiffness

is proportional to the cube of the thickness of a cantilevered beam and shown in Equation

3.1,

k =
Ebt3

12L3
, (3.1)

where k is the beam stiffness, E is the modulus of elasticity, b is the width of the beam, t is

the thickness of the beam, and L is the length of the beam.

Two samples are also fabricated for this experiment. The samples have the same chemical

composition (35 % RuO2 and 10 % SWNT), the same number of platinum layers (one

layer), and the same size. The only difference is that one of the samples is pressed at 3,000

psi and the other at 5,000 psi. Figure 3.4 shows the strain response results due to a 2V, 1

Hz sinusoidal wave input. The sample that was pressed at 5,000 psi exhibits higher peak

to peak strain (0.23 %) as opposed to (0.1 %) for the other sample. As a conclusion the

strain response of the IPMC is improved by increasing the thickness of the electrodes and

decreasing the overall stiffness by melt-pressing at higher temperature.
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Figure 3.4: Strain response of two samples melt-pressed at two different pressures when a
2V, 1 Hz sinusoidal wave is applied.

3.2.2 Effect of Number of Platinum Layers

The impregnation-reduction method is used to deposit platinum layers at the surface of the

IPMC electrodes. The method is explained in details in section 3.1. Nemat-Nasser et al [31]

demonstrated that the depth and the uniformity of the electrodes affects the performance

of the IPMC. Therefore, controlling the depth of the penetration inside the electrodes, by

varying the concentration of the reducing agent, will improve the performance of the polymer.

Another parameter to optimize for the impregnation-reduction method, which in turn will

lead to optimizing the IPMC, is the number of platinum layers. Oguro et al [29], proved that

increasing the number of platinum layers will increase the strain per unit voltage. However,

this improvement is limited by the increase in the mechanical stiffness of the electrode that

reduces the deflection.

Three samples are fabricated using DAP method. The samples are composed of (25% RuO2
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and 10% SWNT), the thickness of the electrodes is 65µm, and they are melt-pressed at 5000

psi and 210oC for 4 minutes. One platinum layer is added for the first sample, two for the

second, and three for the last. Figure 3.5 shows the strain response due to a 2 V, 1 Hz

sinusoidal wave voltage input. The plot shows a significant increase in peak-to-peak strain

response from the one layer sample (0.042%) to the two layer sample (0.0995%). A smaller

increase is also shown from the two layers to the three layers (0.123%) samples. This is

explained by the increase in mechanical stiffness that opposes the increase in deflection due

to the increase in platinum layers.

Figure 3.5: A plot showing the strain response of the three different samples with different
platinum layers.

3.2.3 Electrodes Chemical Composition

Direct assembly process for fabricating the ionic polymer metal composites enables the ability

to introduce different chemicals to the electrode structure. Traditionally, platinum and gold
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are used as electrode materials [32]. There are also some attempts in literature to use

copper, silver and nickel [28]. However, ionic polymer transducer electrodes developed by

Akle et al [21] are composed from ruthenium dioxide (Ruo2) and single wall carbon nanotubes

(SWNTs).

Ruthenium dioxide was first used by Leo’s research group for developing actuators. RuO2 is

a less expensive material compared to other noble metals. Moreover, RuO2 is interesting in

our case because it has a typical specific capacitance of 80µF/cm2. This will enable the fab-

rication of electrodes with higher capacitance and consequently higher bending deformation.

On the other hand, SWNTs have large effective surface area up to 1000m2/g. Moreover,

carbon nanotube actuators generate large forces and small strains, and they bend towards

the anode (+), which is the same direction as the IPMC. These reasons make SWNTs good

candidates to be used as electrode materials, and this has been proven by Akle et al in his

paper [33].

However, the electrical conductivity of the SWNTs is relatively low and is highly dependent

on the purity of the carbon nanotubes. Therefore, in our case gold nanoparticles are added

to the chemical composition of the electrodes. Gold nanoparticles are highly conductive

( 454500 S/cm), but their major disadvantage is the low surface area (0.4 to 0.75 m2/g).

The addition of gold particles is meant to increase the conductivity of the electrodes and

thus compensate for the relatively low conductivity of the SWNTs. The carbon nanotubes

in turns compensate for the low surface area of the gold nanoparticles.

Four samples are fabricated for this experiment. The thickness of the electrodes of the four

samples is the same (65µm), with the same dimensions (2 × 0.5 cm). In addition, all samples

are melt-pressed at 34.47 Mpa and 210oC for 4 minutes. Table 3.1 summarizes the chemical

composition of each sample. The first sample is only composed from RuO2 (50 vol.%), this
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is done in order to test the effect of SWNT and Gold nanoparticles on the deflection of the

actuators. For the second sample SWNT is added to ruthenium dioxide, in the third gold

nanoparticles are added to ruthenium dioxide and finally the fourth is composed from the

three materials tested in this experiment.

Table 3.1: The chemical composition of the four samples.

Sample RuO2 SWNT Gold nanoparticles
1 50 vol.% - -
2 35 vol.% 15 vol.% -
3 35 vol.% - 15 vol.%
4 25 vol.% 15 vol.% 10 vol.%

Figure 3.6 shows the strain response of the sample actuators due to a 2V, 1 Hz sinusoidal wave

voltage input. The highest peak-to-peak strain value achieved is 0.2622% and it corresponds

to sample 4 as defined in Table 3.1. The addition of SWNT to the electrode chemical

composition does improve the strain response from 0.1750% (RuO2 only) to 0.2349%. Similar

increase is shown also when Gold nanoparticles are added where the maximum peak-to-peak

strain value achieved is 0.21%.

3.3 Jellyfish Robot Actuators Characterization Results

In this section, the actuators used to propel the jellyfish robot are characterized in order to

keep track of each actuator’s performance and test its effect of the overall behavior of the

robot. DAP manufacturing process is used to fabricate the actuators. Further explanation

is given in Section 3.1. Each electrode layer is 65µm thick and consists of a mixture of 25

vol.% ruthenium dioxide (RuO2), 15 vol.% single wall carbon nanotubes (SWNT), 10 vol.%

gold nanoparticles and 50 vol.% Liquid Nafion. The original sheet size is (10 x 7 cm), the
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Figure 3.6: A plot showing the strain response of the four different samples with different
chemical composition.

sheet is melt-pressed at 210oC and a pressure of 30,000 psi. Three layers of platinum are

then applied to the electrode material using ion-impregnation method discussed in Section

3.2. Finally, the plated material is divided into 10 equal-sized actuators. The shape of each

actuator is rectangular and the dimensions are (6.5 x 1 cm) with an approximate thickness of

22µm. The electrical impedance and bending performance (in air and water) of each IPMC

actuator are experimentally measured. As mentioned in sChapter 2, Akle and Leo[REF]

demonstrated that IPMCs exhibit a linear relationship between the strain and the electrical

capacitance. Therefore, EIS measurements and free bending experiments are performed in

order to understand the electrical behavior of the actuators using the experimental setup

discussed in Chapter 2.

Generally, the actuators exhibit a flat magnitude at frequencies above 1 Hz. Figure 3.7 shows

the through thickness magnitude and phase angle results of the electrical impedance versus

frequency for each actuator. On the other hand, the phase angle data show a decreasing

negative phase angle below 1 Hz and a phase of approximately zero at higher frequencies.

Based on this information, we assume that the actuators exhibit a capacitive behavior at



Joseph S. Najem Chapter 3. IPMC fabrication and characterization 40

Figure 3.7: Magnitude (top) and phase angle (bottom) of the electrical impedance magnitude
verses frequency for each of the eight IPMC actuators.

low frequencies (< 1Hz). In contrast, the actuators act as resistors at higher frequencies.

The bending behavior of the IPMC actuators is also tested. The strain response varies

for different actuators. Actuator 1, shows the highest peak-to-peak strain of 0.747% when

actuated at 1 Hz, 0.839% when actuated at 0.5 Hz and 0.88% when actuated at 0.1 Hz

(Table 3.2). In contrast, actuators 6, 7 and 8 exhibit peak-to-peak strains of only 0.37% at

0.5 Hz. On the other hand, the actuators are also tested in water since the main application

is in water. The actuators exhibit less strain percent for the same applied signal (2V and

0.5 Hz). Figure 3.8 shows the measured strain of each of the eight actuator in water. Table

3.2 summarizes the peak-to-peak strain results and capacitance values for the actuator. The

reason this study is conducted is to show how well the capacitance is correlated with the

strain. The capacitance values are given for actuator 1 and 3 through 6. Most actuators

act as capacitors at frequencies less than 1 Hz. However actuators 2, 7 and 8 behave more
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Table 3.2: Measured electrical capacitance values and peak-to-peak strain results.
Peak-to-Peak strain (%) results

0.1 Hz 0.5 Hz 1.0 Hz
Actuator Capacitance (F) Air Water Air Water Air Water

1 0.115 0.880 0.742 0.839 0.671 0.747 0.565
2 - 0.522 0.556 0.479 0.336 0.324 0.279
3 0.100 0.598 0.640 0.463 0.386 0.371 0.327
4 0.126 0.850 0.646 0.742 0.550 0.538 0.460
5 0.104 0.607 0.455 0.504 0.420 0.425 0.364
6 0.117 0.394 0.315 0.362 0.289 0.327 0.261
7 - 0.351 0.339 0.448 0.308 0.340 0.241
8 - 0.356 0.343 0.476 0.390 0.398 0.287

resistively across the frequency range tested, as shown by the flat magnitude of impedance

and phase angles at frequencies less than 10 Hz. On the other hand, each actuator exhibits

higher strain at the lowest excitation frequency (0.1 Hz) in water and in air. The peak-to-

peak strain reduces gradually with increasing the frequency.

3.4 Chapter Summary and Conclusions

In this chapter the fabrication, optimization, and characterization of water-based IPMC

actuators using the DAP process were presented and thoroughly explained. The electrode

optimization results demonstrated that increasing the thickness of the electrode would result

in an increase in the strain percent response of the actuator. This result was consistent with

the results obtained by Akle et al. which demonstrate a linear relationship between the

thickness of the electrode and the strain percent response. The optimization results also

proved that an increase in the strain response occurred as a result to an increase in the

pressure applied during the melt-pressing step.

The electrode was also optimized on the chemical level. The results show that adding three
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Figure 3.8: Strain response versus time of the actuators in water for an applied 2V at 0.5
Hz.

layers of platinum increased the strain response of the actuator. On the other hand, the

addition of gold nanoparticles proved to improve the strain response of the actuator as well

as the addition of SWNT. The resulting optimized chemical composition of the electrode

is as follows: 25 vol.% ruthenium dioxide (RuO2), 15 vol.% single wall carbon nanotubes

(SWNT), 10 vol.% gold nanoparticles and 50 vol.% Liquid Nafion.

In order to check the consistency of the actuators used for the jellyfish robot, eight different

IPMC actuators were fabricated and characterized in air and in water. The results show

that highest peak to peak percent strain achieved was 0.88 % in air at 0.1 Hz frequency,

0.839% at 0.5 Hz, and 0.747 % at 1 Hz. Note that in the introduction it was mentioned

that the IPMC actuators can achieve up to 5% strain. The reason we are not achieving this

number is due number f reasons. First, the actuation frequencies we are using are relatively

high and with a slow response rate it is hard to achieve high strain values. Second, the
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water-based actuators we are manufacturing using the DAP process for the first time and

need more optimization.



Chapter 4

Analysis and Design of a Biomimetic

Bell

The jellyfish bell kinematics play an important role in determining the swimming style of

the medusa. As explained in Chapter 1, jellyfish species are classified under two main types,

“Oblates” and “Prolates”. Oblate species are more efficient compared to the prolates since

they propel their body using the rowing propulsion technique. Rowing propulsion technique

is based on generating both stopping and starting vortices during swimming. These two

different types of vortices are the result of the non-uniform bell contraction of oblate species

[12].

Bell kinematics determine the propulsion technique and thus affect the swimming speed

and efficiency of the jellyfish [14]. For this purpose, in the first section of this chapter, a

comparative bell kinematics analysis is conducted between the natural Aurelia aurita and

the Aequorea victoria medusae. In the second section, a discussion of a biomimetic bell

kinematics design is presented. This section focuses on the design and characterization of a

44
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bio-inspired bell, that mimics the morphology and kinematics of the natural jellyfish.

4.1 Comparative Bell Kinematics and Geometry Study:

Aequorea victoria vs. Aurelia Aurita

In this section a comparative study on the bell kinematics and morphology of the Aequorea

victoria and the Aurelia aurita is presented. First, the methods of quantifying the bell

deformation are described. Secondly, a comparative study of both bell morphologies and

deformations is presented. Finally, since energy is of an important interest in our case, the

strain energy stored in the bell of both medusae during the contraction phase is analyzed

and compared.

4.1.1 Methods of Quantifying Bell Deformation

Two different methods are developed to analyze medusae bell profiles during the relaxation

and contraction phases. The first method represents a first order study that is usually used

by biologists to measure the relative deformation of the bell at a small number of points. The

second is a more sophisticated method that consists of computing the radius of curvature at

different points of the bell.

Percent Bell Contraction

This method consists of measuring the bell deformation at different locations along the length

of the bell profile. The next step is to compute the percent bell contraction relative to the
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bell shape during the relaxation phase. This method represent a rough method to study bell

shape and contraction behavior, and help understanding the bell deformation distribution

along the length of the bell. Costello et al [14] adapted this methods in many of his papers

and studies on jellyfish bell morphology and swimming properties. This method also helps

comparing the kinematics of the bell of different species.

Radius of Curvature

The second method used in quantifying the deformation of the jellyfish bell profile, is the

radius of curvature. This method is more accurate compared to the percent bell contrac-

tion method since it is related to the geometry of the bell and results in higher resolution

quantitative comparison between two different medusae. Obtaining the radius of curvature

at different points along the bell profile, allows us to quantify the different profiles achieved

by the natural species or by the robot. Moreover, the strain energy stored in the bell during

the contraction phase can also be computed using the curvature ρ defined as the inverse

of the radius of curvature. Computing the strain of energy help to quantify any potential

differences in the actuation requirements of the robot bell. The radius of curvature is defined

as the radius of the approximating circle, and is defined by the following expression,

R =
[1 + ( dy

dx
)
2
]
3/2

| d2y
dx2 |

, (4.1)

where R is the radius of curvature of a curve defined by the relationship y = f(x).

In our case, the equation of the bell profile is not defined and an approximation method is

needed in order to approximate the radius of curvature. There are three different methods

that are usually used for this purpose, but the most accurate is the ”3 Points” method since
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it is based on finding the equation of the circle passing through three consecutive points

[34]. This method computes the exact value of the radius of curvature the circle based on

the obtained circle equation. The radius of a circle passing through three different points

is defined as the distance from any of these points to the center of the circle. Equation 4.2

is used to compute the radius of curvature assuming that the coordinates of the center are

known,

R =
√
(xi − xc)

2 + (yi − yc)
2, (4.2)

where xi and yi are the coordinates of any of the three points that lay at the circumference

of the circle of center (xc,yc). Given three points on the circumference, the expressions for

the center of the circle are,

xc =
m1m2(y1 − y3) +m2(x1 + x2)−m1(x2 + x3)

2(m2 −m1)
, (4.3)

yc = − 1

m1

(xc −
x1 + x2

2
) +

y1 + y2
2

, (4.4)

where m1 and m2 are the slopes of the lines L1 joining points 1 and 2, and L2 joining points

2 and 3, respectively (Figure 4.1). The slopes are defined as follows,

m1 =
y2 − y1
x2 − x1

, (4.5)

m2 =
y3 − y2
x3 − x2

. (4.6)

Further explanations on the derivations of the equations mentioned in this section can be

found in mathematics books and in literature [34].
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Figure 4.1: Radius of curvature calculation using a geometrical approach the ”3 Points”
method

4.1.2 Video Processing and Edge Detection

Videos for different swimming jellyfish species were provided by Jack Costello, Providence

College and Sean Collin, Roger Williams University. The videos are converted into images

using either VirtuaDubMod 1.5.10.3 software or a computer vision code that is written in

Maltab. Points along the bell exumbrella (the exterior side of the bell) are extracted using

edge detection techniques provided by Maltab as shown in Figure 4.2. For each frame, the

coordinates the the bell summit are set to (0,0) to be used as a reference point. This is done

by subtracting the original coordinates of the apex point from all the points along the profile

of the bell. This process is done at the full contraction and relaxation positions. The data

is then normalized by the length of the profile for consistency.

The radius of curvature method calculates the radius of curvature using a discrete number
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Figure 4.2: Image of Aequorea victoria specimen where its bell is fully contracted, the
automatically detected points are shown as blue dots.

of points these points are detected using computer vision techniques and in reality they

represent the pixels of the analyzed frame. This will cause errors and inaccuracy in the

values of the computed radius of curvature values since this method is very sensitive to the

coordinates of the points used in the process. Therefore, a curve fit is done through the

points in order to obtain the coordinates of any point on the profile of the bell. Sixth and

seventh order polynomials are used for the curve fitting. The coordinates are expressed in

terms of l which represents the position along the profile length, and have the form as shown

in the following,

x = f(l) = ao + a1l + a2l
2 + ...+ anl

n, (4.7)

y = f(l) = bo + b1l + b2l
2 + ...+ bnl

n, (4.8)

where x and y are the coordinates of any point along the profile of the bell, and n in the

order of the polynomial used to curve fit the original data.
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Once the points from the curve fitted data are obtained, the formulas discussed in Subsec-

tion 4.1.1 are used to compute the radius of curvature. As previously mentioned the 3-points

method computes the radius of curvature passing through three consecutive points. There-

fore, multiple points of interest on the profile are chosen as shown in Figure (4.3) where the

points of interest are in blue. These equally spaced locations are ten points apart. This

is done in order to reduce the overall sensitivity of the calculations. The curvature is then

obtained according to Equation 4.9,

ρ =
1

R
. (4.9)

Figure 4.3: Image of the digitized bell profile showing the curve fitted points in red and the
points of interest used to compute the radius of curvature in blue.
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4.1.3 Bell Morphology and Deformation Comparison

The morphology and kinematics of the jellyfish bell play an important role in the swimming

behavior and propulsion properties of the natural medusa. Therefore, this section presents

an analytical and quantitative study of the bell geometry of two oblate species, the Aequorea

victoria and the Aurelia aurita. These species are chosen since they both are oblates, and

since information about these animals is available in the literature. The purpose of this

study is to understand both medusae structures and swimming behaviors in order to chose

the species that best fit the properties of the IPMC actuator that are used in this project.

Bell Geometry

Figure 4.4 shows the bell shapes of both medusae. These plots represent the digitized bell

profiles at both the full relaxation and contraction states of the bell for each species. In

the relaxation state, the Aurelia aurita’s bell, represented by the solid black line, roughly

takes an elliptical shape, where it is relatively flat at the top but abruptly curves toward the

margin. On the other hand, the Aequorea victoria, represented by the dash-dotted line, has

a more spherical shape, where the curvature does not exhibit any abrupt changes along the

length of the profile.

This is also shown in Figure 4.5, which shows two different curves representing the bell

curvature at the relaxed state for both medusae. The curvature of the Aurelia aurita bell,

represented by the solid black line, is low and constant at the first half of the bell (ρ 1 u−1).

However, it changes abruptly in the second half where it starts to increase and reaches its

maximum around the bell margin. In contrast, the Aequorea victoria represented with the

dash-dotted line, exhibits a more or less constant curvature where it varies between (2 and
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3 u−1) with also the highest located at the bell margin. Note here that (u) stands for unity

since all dimensions in the plots are normalized by the length of the bell profile.

Understanding this difference in bell geometry is important since it will help in choosing the

medusa that best fits the requirements of our design. In addition, it is believed that the

position at which the IPMC actuators are implemented affect their performance. Therefore,

one shape of the jellyfish bell might be more convenient to fit this property of the actuators,

and thus improve the propulsion performance of the robot.

Figure 4.4: A plot showing the relaxed bell profile as well as the contracted profile for both
the Aurelia aurita and the Aequorea victoria.

Bell Deformation Behavior and Fineness Ratio

In addition to the bell geometry, the bell deformation behavior is also an important criteria

to study. As mentioned before, the propulsion properties of the medusae highly depend

on the kinematics of the bell. Figure 4.4, shows the fully contracted bell of the Aurelia
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Figure 4.5: A plot showing the curvature of the relaxed bell profiles for both the Aurelia
aurita and the Aequorea victoria.

aurita represented by the dashed line, and the fully contracted bell of the Aequorea victoria

represented by the dotted line. Aurelia aurita’s bell deforms along the whole length of the

bell, even though the deformation is not uniform and is mainly concentrated at the margin.

It is also noticed that the bell extends during the contraction phase which indicates high

bell deformation. On the other hand, the Aequorea victoria’s bell remain almost stationary

at the top and starts deforming around 60 % of the bell length. The deformation is mainly

concentrated towards the margin of the bell.

To understand the difference in the non-uniform bell deformation of both medusae, the

percent bell deformations are measured at five different locations along the length of the

bell using the methodology described in Section (4.1). The points are equally spaced in 20

% increments; the first point is positioned at 20 % of the bell length and the last is at 100

%. Figure 4.6 shows the normalized bell deformation of both medusae. It is shown that the

Aequorea victoria mainly deforms at the margin with minimal deformations at the top. It is
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also shown that the victoria performs less deformations in the bell compared to the aurita.

Figure 4.6: This plot shows the bell contraction of both the Aurelia aurita and the Aequorea
victroria at five different points along the length of their bells.

Figure 4.7 shows the alterations in the bell shape that are quantified by the fineness ratio,

F, defined as follows,

F =
h

d
, (4.10)

where h is the bell height and d is the bell diameter. The plot shows the instantaneous

fineness ratio F(t), that quantifies the variations in bell morphology during the pulsation

cycle. The minimum fineness ratio corresponds to the relaxed state of the bell, while the

maximum corresponds to the full bell contraction. As shown in the plots the fineness ratio

during a swim cycle increases until it reaches a maximum and then decreases again the black

solid line corresponds to the Aurelia aurita, the minimum fineness ratio is 0.29 while the

maximum is 0.58. On the other hand, the dashed line corresponds to the Aequorea victoria,

where the minimum fineness ratio is 0.42 and the maximum is 0.55. This result is consistent
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with the fact time that the Aurellia aurita exhibits larger bell deformations. Moreover, the

plot shows that the Aequorea victoria swims at a slower frequency ( 1 Hz) since it achieves

3 cycles in around 3 seconds, while the Aurita swims at 1.67 Hz since it achieves 3 cycles in

almost 1.8 seconds.

Figure 4.7: Instantaneous bell fineness ratio for the Aurelia aurita and the Aequorea victoria.

4.1.4 Strain Energy Stored in the Bell

In this section the normalized strain energy in the bell at maximum contraction is computed

using the radius of curvature measurements. The reason of this study, is to quantify any

potential differences in the actuation requirements of the robot bell. In other terms the

lower the strain stored in the bell during the contraction phase, the lower the strain response

needed for the IPMC actuators.

The bell profile is treated as a cantilever beam, in a first order approximation and since the
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purpose is just to compare the strain energy requirement in each bell. The shape of the

bell is spherical and therefore ideally it should be modeled as a shell or spherical membrane.

However, assuming the bell is uniform a cross-sectional small section of the bell is isolated

and then treated as a cantilever beam. Under these simplifying assumptions the strain energy

is defined as the product of the modulus of elasticity E and the square of the strain in the

x-direction ϵx,

U =
1

2
Eϵx

2(z), (4.11)

where x and z are the x coordinates and z coordinates, respectively. Therefore, total energy

in the x-direction is defined as a follows,

Ux =
∫ z

−z

1

2
Eϵx

2 dz, (4.12)

where z is equal to t
2
and t is defined as the thickness of the beam. Moreover, the strain in

the x-direction of a cantilever beam can be expressed in terms of the curvature of the beam

(ρx) in the same direction as follows, ϵx = zρx. Replacing the strain by its value in Equation

4.12 and integrating results in the following,

Ux =
Et3

24
ρx

2. (4.13)

In order to compute the total strain energy stored in the beam, 4.13 is integrated with

respect to x as shown in the following,

U =
∫ l

0

Et3

24
ρx

2 dx, (4.14)

where l is the length of the beam. In robotic jellyfish case it is assumed that the bell

material is the same, thus the modulus of elasticity is the same, also the thickness of the
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bell is assumed to be the same. Therefore, the Et3

24
term is dropped for the purpose of

simplification. As a result, the data presented later in this section referred to the
∫ l
0 ρx

2 dx

term which we call by ”Non-dimensional strain energy”. Figure 4.9 presents the square of

Figure 4.8: Bell profile section represented as a cantilever beam and showing the coordinate
axes.

the difference in curvature between the maximum relaxation and contraction states. The

Aurelia aurita represented by the solid line exhibits a maximum curvature difference at 66.6

% of the length of the bell with a value of 15.58u−2. On the other hand, the Aequorea

victoria represented by the dashed line exhibits a maximum curvature of 15.52u−2 located

at 69 % of the length of the bell. Note here that u refers to unit since the bell length is

normalized, therefore the values obtained for the curvature difference and the stain energy

are dimensionless. Table 4.1 summarizes the curvature results and the overall strain energy

stored in the bell of both medusae. The Aurelia aurita exhibits an overall stain energy of

3.84 as opposed to 3.53 for the Aequorea victoria, which means that for a robot using IPMC
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Figure 4.9: The square of the curvature difference at different points along the bell of the
Aequorea victoria and the Aurelia aurita.

as actuators Aequorea victoria is a better candidate since less strain energy in the bell is

needed when compared to the Aurelia aurita.

Table 4.1: A summary of the peak curvature and strain energy results for both medusae.

δρ2(u−2) peak values Non-dimensional strain energy Position
Victoria 15.52 3.53 69.10%
Aurita 15.58 3.84 66.6%



Joseph S. Najem Chapter 4. Analysis and Design of a Biomimetic Bell 59

4.2 Bio-inspired Method to Achieve Natural Bell Kine-

matics and Deformation

As discussed in Chapter 1 and in the previous section, the bell of oblate species deform in

a non-uniform way. The top part of the bell exhibits minimal deformations while larger

deformations are concentrated toward the margin of the bell. This section focuses on the

design of a bio-inspired bell that mimics the morphology and kinematics of the natural

jellyfish. In the first part of this section, the experimental setup and characterization of the

biomimetic are discussed while the results are presented and analyzed in the second part.

4.2.1 Experimental Method and Set Up

The first step in conducting these experiments is to fabricate a test structure that would

mimic the morphology of the jellyfish bell and enable testing of multiple actuator config-

urations. The experimental apparatus that is developed consists of a central hub, a single

IPMC actuator, a one-eighth section of a symmetric bell, and a stage that enables changing

the position (x and y) of the actuator and the angle at which it is located underneath the

bell.

The hub consists of two circular halves made from ABS plastic and printed using a rapid

prototyping machine. Each part have eight radially distributed gold electrode pads that

provide mechanical and electrical support for the IPMC actuators. The bell section is made

from polyolefin film that is able to hold the shape of the biomimetic bell while maintaining low

stiffness which is essential for an IPMC-based design. The stage is made from a rectangular

plexiglass piece that has equally spaced 3 mm holes. These holes will serve in moving the

stage and thus the actuator in the y-direction on a threaded tube and also the stage is able
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to move in the x-direction, to hold it in position two 3 mm nuts are used. These parts are

shown in Figure 4.10.

Figure 4.10: The assembled experimental setup, at the top right is a picture of the actual
Aequorea victoria also showing what it is meant by x,y and .

The experiments are designed in a way to understand the effect of varying the position and

the size of the actuator on the bell deformation. Therefore, three different actuators with

similar peak to peak strains percent are used in this set of experiments. The actuators are

of different sizes: a small actuator (4.5cm× 0.5cm), a medium actuator (5cm× 0.8cm) and

a large actuator (6.5cm× 1.0cm). Varying the actuator surface area by varying its size will

enable the study of the effect of the actuator size on the actuation performance of the bell

and also on the power consumption. Taguchi’s method [34] is used in order to design the

experiment, having three different parameters (x, y, θ) with four different levels each. Table

4.2 shows the distribution of sixteen experiments for each actuator where L refers to level.
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Table 4.2: Experiment distribution according to Taguchi’s method having three parameters
with four levels each.

Experiment y x θ
1 L1 L1 L1
2 L1 L2 L2
3 L1 L3 L3
4 L1 L4 L4
5 L2 L1 L2
6 L2 L2 L2
7 L2 L3 L4
8 L2 L4 L3
9 L3 L1 L3
10 L3 L2 L4
11 L3 L3 L1
12 L3 L4 L2
13 L4 L1 L4
14 L4 L2 L3
15 L4 L3 L2
16 L4 L4 L1

4.2.2 Experimental Results

The results of a total of 48 experiments are summarized in Figure 4.11. These results

are classified under three different categories: Far, Fair and Close compared to the actual

medusa’s data. Specifically, the data of interest are the total non-dimensional strain energy

stored in the bell and the location of the point of inflection (i.e. the point of maximum

curvature difference).

Most of the results fell under the ”Far” category (Figure 4.11), since the deformation of the

ionic polymer metal composites is bulk and thus hard to control and makes it difficult to

attain the exact shape of the medusa’s bell. However, some experiments fell under the ”Fair”

category since they exhibited reasonable results when compared to the actual animal.
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Figure 4.11: Summary of the bell profile experiments for a total of 48 experiments.

On the other hand, the best results are the ones of experiments 4,5 and 6 when the medium-

sized actuator is used. These results are summarized in Table 4.3 and show fairly close

deformation to those of the actual jellyfishes, with maximum peak curvatures of 7,10 ,and

10 for experiments 4,5 ,and 6 respectively. The locations of the maximum peak curvature

for these experiments (65 %) are to large extent close to the real jellyfish. These results are

promising because they are close match to the results of the natural medusae. Note that

the IPMC actuator exhibit bulk deformation and thus controlling it to achieve exacts bell

deformations needs higher fabrication and patterning techniques.

Another interesting result of these experiments is related to the power consumption of the

actuators. Due to the reduction in the size of the actuators in all three experiments, the

power consumption is reduced. Figure 4.12 shows the power consumption results of the large



Joseph S. Najem Chapter 4. Analysis and Design of a Biomimetic Bell 63

Table 4.3: Summary of the peak curvature and strain results of the best 3 experiments.

Experiment ∆ρ2(u−2) peak values Non-dimensional strain energy Position
4 7 4 64 %
5 10 10 65 %
6 10 10 65 %

and medium actuators. It is shown that the power is reduced by 40 % when the size of the

actuator is reduced by 39 % from 6.5 cm2 (large actuator) to 4.0 cm2 (medium actuator).

Figure 4.12: Power consumption results comparison between the large and the medium
actuators.
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4.3 Chapter Summary and Conclusions

In this chapter the analysis and design of a biomimetic bell are presented. Bell kinematics

determine the propulsion technique and thus affect the swimming speed and efficiency of

the jellyfish. Therefore, the “Oblate” species are more efficient since they depend on rowing

propulsion technique caused by the non-uniform bell deformations for propulsion.

A comparative study on the bell kinematics and morphology of the Aequorea victoria and

the Aurelia aurita is also presented. This study shows that the geometry of the Aequorea

victoria is more suitable for an IPMC-based robot since it has a more spherical shape as

opposed to the flattened shape of the Aurelia aurita. This conclusion was based on the

results of the first generation robot that demonstrated that the smaller the angle the IPMC

actuator makes with the vertical, the better the actuation performance. On the other hand,

this study also proves that the strain energy stored in the Aequorea victoria’s bell during the

contraction phase is lower than the energy stored in the Aurelia aurita’s bell. This result is

important since less strain energy in the bell means that less strain energy for the actuators

is needed.

On a different level a series of experiments were conducted in order to recreate the bell

deformation the Aequorea victoria. Three different actuators each having a different size

were used in the experiments. The results show that three different actuator configurations

resulted in a deformation similar to the natural jellyfish in terms on maximum deformation,

point if deflection, and strain energy. These configurations were achieved using a medium

sized actuator (5 cm × 0.8 cm) which resulted in a power reduction of 40% associated with

the reduction in size the original actuator used in the first two generations.



Chapter 5

Design of a Biomimetic Robotic

Jellyfish

5.1 Initial Attempt and Proof of Concept Trial

This section presents the design and development of a jellyfish robot using IPMC actuators

for propulsion. This first generation are investigated serves as a proof of concept and initial

attempt to test the swimming capability of an IPMC-based robot. Several parameters in-

cluding the input waveform to the actuators, the shape of the bell and material of the bell.

The design parameters are discussed in the first part of this section, while the free swimming

results and power consumption are presented in the second part.

65
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5.1.1 Design Parameters

Two robotic jellyfishes are built and both served as a proof of concept. These robots are pow-

ered using water-based IPMC actuators. The first robot is developed in order to demonstrate

the ability of using ionic polymer metal composite actuators as a propulsion mechanism. It

consists of an acrylic base, an air filled ping-pong ball to control buoyancy, a polyethylene

thin film and IPMC actuators. The acrylic base (Figure 5.1 (a)) is composed of eight ribs

each containing a gold electrode. The gold electrodes are connected in parallel and serve

as mechanical support and electrical connection to the actuators which are sandwiched and

held in a cantilever configuration. The ping pong ball attached at the top of the acrylic base

helps to control the buoyancy of the robot. However, in order to make the jellyfish robot

neutrally buoyant in water, counter weights are hanged on the lower part of the base.

The polyethylene film is glued to the acrylic base of the robot and attaches to the actuators

through polyethylene sleeves (1cm× 5cm) that in turn are attached to the bell (Figure 5.1

(b)). The IPMC actuators are attached from one side to the acrylic base and from the other

side they are inserted inside the sleeves. To reduce the friction between the actuators and

the sleeves small plastic pieces are inserted into the sleeves.

Finally, it was shown from different attempts by other research groups that flaps at the

margin of the bell tend to improve the swimming speed. Therefore, in the last step flaps are

attached to the end of the IPMC actuators. The flaps have a rectangular shape (4 cm× 3

cm) and are made from a thin sheet of DRAGON SKINTM silicon. The flaps are then glued

to the margin of the polyethylene bell.

The first version of the proof of concept robot proved to be heavy and not biomimetic.

Therefore , a second version is built where the robot is redesigned to become more biomimetic
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Figure 5.1: (a) Photographic picture showing the acrylic base and the floating element (b)
photographic picture showing the assembled jellyfish robot.

and lighter. The second version is distinguished by first, its shape which mimics the Aurelia

aurita jellyfish and second, by its light weight. The maximum diameter of this robot is 16.5

cm with a depth of 5 cm. The bell is spin coated in a biomimetic 3D printed mold, using 40

grams of the DRAGON SKINTM silicon (Figure 5.2).

The floating element in this version is a Styrofoam cylinder of 4.5 cm diameter and 0.7 cm

thickness. The acrylic base is replaced by a gold plated acrylic ring which is glued to the

floating part and the silicon bell together. Another gold plated acrylic ring is screwed to the

top electrode supporting eight IPMC actuators. The 1 cm × 6.5 cm actuators are placed in

a cantilever configuration and sleeves similar to the ones used in the first version are glued

to the bell to hold them on the other side.
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Figure 5.2: Photographic picture of the second version of the IPMC jellyfish robot showing
the biomimetic silicon bell.

5.1.2 Characterization and Results

The characterization process of the robot is explained in details in Chapter 2. Substantially,

the robots are characterized in a water filled aquarium (40 cm × 20 cm × 26 cm). A D-Space

data acquisition system is used to apply the signal waveform voltage, and also in order to

record the current consumed by the robot and using a non-inverting op-amp circuit. The

free swimming of the robot is recorded using a high speed camera, the videos are processed

later using a motion trace software.

Several waveforms such as sine, sawtooth, and square waveforms are used and optimized

in order to maximize the acceleration and velocity of the robot. The square wave signal

proved to be the most convenient which is also consistent with the biological jellyfish since
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the power and relaxation strokes can be described as square wave. Figure 5.3(a) shows a

typical square waveform applied to the robot while Figure 5.3 (b) and (c) show the current

and power consumption respectively. The applied potential in 4 V peak-to-peak and varies

between +2 V (power stroke) and -2 V (relaxation stroke), while the frequency and duty

cycle are changed and optimized. The optimization of the waveform is done by varying the

duration of the power stroke (contraction phase) to the duration relaxation phase, while the

motion of the robot is recorded for each case.

Figure 5.3: (a) The input voltage used to actuate the robotic jellyfish, (b) the current
consumption of the robotic jellyfish, and (c) the power consumption of the robotic jellyfish.

Figure 5.4 shows the free swimming results of 17 different trials each having different fre-

quency and duty cycle. Figure 5.6 presents a third order curve fit of the data presented in
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Figure 5.4: The displacement curves of the robot as the ratio of the Relaxation stroke to the
Power stroke is varying.

Figure 5.4 which represent the average displacement of the robot in time. Figure 5.6 also

shows the slope of the time at 10 seconds which is considered to be steady state velocity.

These results show that the 1.9 seconds for relaxation stroke and the 1.6 seconds for the

power stroke signal, is the optimal waveform in this case. To elaborate more on the results,

the best waveform dynamic response is shown in Figure 5.7 (a) through (f). The velocity

results show the peak velocity attained is approximately 6 mm/s, while the average speed

is around 2 mm/s. The swimming performance of the robot is also compared to the natural

jellyfish performance, and the fineness ratio is used for this purpose. Figure 5.8 show the

fineness ratio of the robot as well as of the Aurelia aurita. It can be concluded that the



Joseph S. Najem Chapter 5. Design of a Biomimetic Robotic Jellyfish 71

Figure 5.5: The average swimming speed as function o relaxation to power stroke ratio.

robot operates at a lower frequency as compared to the natural jellyfish, even though the

ratio of the relaxation stroke to the power stroke is similar. This robot served as a proof

of concept and it proves that a robot based on IPMC actuators can swim. The maximum

average speed attained is 2 mm/s with a power consumption of 3.2 W.

5.2 First Generation Mimicking theAurelia aurita

This section presents the design, fabrication, and characterization of a robotic jellyfish that

mimics the shape and swimming style of the Aurelia aurita. The robot uses ionic polymer

metal composites as actuators for propulsion. The choice of the Aurelia aurita is based

on its high swimming efficiency and since its morphology and swimming behavior are will

understood and described in the literature. The following subsections focus on the bio-

inspired design and development of the robot. First, the design parameters and fabrication

processes are discussed. In the second part the characterization process and free-swimming

results are presented and discussed.
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Figure 5.6: A curve-fit of the average displacement.

5.2.1 Design Parameters and Fabrication Process

The robot consists of three parts: a central hub, the IPMC actuators, and a flexible

biomimetic bell. The central hub replaced the acrylic base used in the previous generation.

The hub is composed of two lightweight plastic circular halves, each having eight radially

distributed gold electrodes. The gold electrodes serve as a mechanical support and provide

electrical connection to the actuator that are attached in a cantilever configuration. The hub

in made of ABS plastic and is printed using a rapid prototyping machine. The electrodes are

made with gold foil (Arrow Springs, 23 kt, 65 g/m) and are connected in parallel Figure 5.9

(b) and (d). Gold is used for its high conductivity and resistivity to corrosion. Figure 5.9
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Figure 5.7: (a) Displacement, (b) velocity, and (c) acceleration of the robot due to square
waveform of relaxation stroke of 1.9s and power stroke of 1.6s. Also presented are the average
curves of (d) displacement, (e) velocity, and (f) acceleration.

shows the CAD models of the hub along with photographic pictures of the printed pieces.

The electrical connection is chosen such as the actuators are actuated simultaneously.

The biomimetic, flexible bell is made from heat shrinkable polyolefin film. Polyolefin is

adapted in this design for its low stiffness and shape-holding ability, which are essential

for an IPMC-based design especially that IPMCs are known by their low blocking force. A

biomimetic mold is used to shape the bell of the robot. The mold mimics the geometry of the

Aurelia aurita jellyfish. The dimensions and coordinates of the mold profile are taken from

the digitized Aurelia aurita bell profile discussed in Chapter 3. The coordinates are then

imported to the CAD software Unigraphics NX7.0, where the mold is modeled in addition
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Figure 5.8: Top graph showing the instantaneous fineness ratio of the jellyfish robot while
bottom graph shows the instantaneous fineness ratio of the Aurelia aurita.

to different parts that makes the robot.

Finally, eight IPMC actuators (6.5cm× 1cm each) are inserted between the two hub halves

and extend radially out from the hub in a cantilever configuration. The free end of each

actuator is held by a horizontal sleeve made from rectangular polyolefin films and attached

at the inner side of the bell.

The final weight of the robot is approximately 14 grams as opposed to 42 grams for the

previous generation. The maximum diameter of the bell is 16.4 cm with a depth of 5 cm

(Table 5.1). Figure shows the assembled biomimetic jellyfish robot.
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Figure 5.9: (a-c) CAD model of the top and bottom halves of the hub . (b-d) Top and
bottom halves of the hub with applied gold electrode layers and the wired connections.

5.2.2 Free-Swimming Results

The ability of the Aurelia aurita jellyfish robot to swim freely is studied as a function of two

design and operation parameters: the input voltage waveform and the bell geometry.

Input Voltage Waveform Effect

The input voltage waveform to the robotic jellyfish is shown in Figure 5.10. The signal

consists of a square wave with varying duty cycles used when testing the swimming behavior

of the robot. The voltage amplitude of the signal is held constant at 2V (4V peak-to-

peak), and the duty cycle of the square wave was varied between 30 % and 50 % in a 5 %

increment. The current consumption (Figure 5.10 (b)) is also measured and recorded for the

input voltage signal shown in Figure 5.10(a).

The swimming speed and power consumption depended on the applied voltage waveform.

As the duty cycle is varied, the net motion of the robot changes. Figure 5.11 shows the
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Table 5.1: A summary of the robot dimensions, materials used and fabrication methods.

Design Dimensions Material

Hub Two-piece circu-
lar hub with 8
radially-spaced
gold covered
electrode surfaces

d =
5cm, h =
1cm,W =
11g

ABS plastic, 3D printed

Bell modeled after Au-
relia aurita

d =
16.4cm, h =
5cm,F 3

Polyolefin, t = 50µm

Actuators Cantilevered,
beam-type

l =
6.5cm,w =
1cm, t =
300µm

water-based IPMC

resulting vertical motion of the robot during a 30 seconds actuation period for two specific

duty cycles at 2V.

Both plots exhibit an oscillatory motion corresponding to the frequency of the applied wave-

form (0.5 Hz). The 30 % duty cycle cycle produced more than a factor of two increase in

total displacement during the test, with an average slope of 1.5 mm/s and an average power

consumption of 3.5 W. This study demonstrates that an unbalanced square is required in

order to increase the swimming speed of the robot.

Bell Geometry Effect

As previously mentioned IPMC actuators have relatively low stiffness and are known for their

low blocking force which will reduce the thrust. This constraint is overcome by using low-

stiffness bell material, however radial cuts are introduced to the bell which enables fortuning

the bending stiffness of the molded bell. The cuts are positioned between the actuators and

extend from the bell margin toward the central hub.
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Figure 5.10: (a) The input voltage used to actuate the robotic jellyfish, (b) the current
consumption of the robotic jellyfish, and (c) the power consumption of the robotic jellyfish.

Three sets of swimming tests are performed to understand the effect of bell geometry and

stiffness: a bell with no cuts, a bell with cuts extending half-way, and a bell featuring

all-the-way cuts in to the hub.

Figure 5.12 shows vertical displacements of the robot having these three different bell ge-

ometries. When no cuts are introduced to the bell the robot remains stationary due to the

softness of the actuators. Introducing the cuts improved the swimming performance of the

robot.

The robot swam faster with an oscillation frequency (0.5 Hz) similar to the uncut bell, when

half-way cuts are introduced. However, increasing the length of the cuts does not results in

an increase in swimming speed, but it does change the swimming oscillation frequency.
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Figure 5.11: The vertical displacement of the jellyfish versus duty cycle for an applied square
wave of 2V and 0.5 Hz.

Design Assessment

The rates of the change of the shape, or the fineness ratios of the robot and natural jellyfish

are compared. Figure 5.13 shows the fineness ratio change in function of time, for the natural

jellyfish is represented in red while the robot in blue. It is obvious that the natural species

swims at a higher frequency compared to the robot. This can be associated with the slow

response rate property of IMPC actuators.

Moreover, it is also shown that the natural Aurelia aurita contracts more where its bell

fineness ratio ranges from 0.29 to 0.57 while the robot’s ranges from 0.29 to 0.32.

From these results one can conclude that the properties of the Aurelia aurita might not be

the most appropriate to serve as a model system for an IPMC based robot.
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Figure 5.12: This plot is showing the displacement of the robot for different bell geometries.

5.3 Bio-mimetic Design Based on Aequorea victoria as

a Model System

5.3.1 Design Parameters

The results in Chapter 4 describe the motivation and approach for focusing on the Aequorea

victoria as a model system for a bio-inspired robotic jellyfish based on IPMC actuators.

This specific species swims at a slower frequency compared to other oblate species and

contract minimally with the smallest fineness ratio range compared to other medusae. These

properties fit the mechanical properties of the IPMC actuators.

The Aequorea victoria jellyfish robot consists of four different parts: a central hub, eight

radially distributed spars, a stage, the IPMC actuators, and a flexible bell. The central hub

is composed of two lightweight plastic parts. The top half has a t-shape where the horizontal

disc represents the hub and the vertical tube represents the part at which the stage will be
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Figure 5.13: This plot showing the fineness ratio versus time for both the natural and robotic
jellyfishes.

attached. The bottom part of the hub is a simple cylindrical piece use for support. Both

parts (Figure 5.14) are printed using a rapid prototyping machine and are made from ABS

plastic material.

The eight radially distribute spars (Figure 5.15 (a)) extend from the central hub to 69% of the

synthetic bell (natural species bell inflection point), in order to keep the top part stationary

during the contraction phase. The spars also add stability to the submerged robot.

The stage is a dynamic central body that serve as a mechanical support to the IPMC

actuators. It consists of a main part and eight similar clamps. Figure 5.15 (b) shows the

CAD models of the assembled structure. The clamps that also serve for electrical connectors

to the actuators through gold electrodes located at the tip of each clamp. The electrodes are

fabricated with gold foil (Arrow Springs, 23 kt, 65 g/m) and are wired such that the contacts

on the lower and upper clamps are wired in parallel as illustrated in Figure 5.3.1. This
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Figure 5.14: (a) CAD model of the t-shaped top part it the hub, (b) CAD model of the
bottom part of the hub, (c) 3D printed parts of the central hub.

electrical arrangement is chosen such that all IPMC actuators are actuated simultaneously.

The lightweight, flexible bell is made from polyolefin film that is chosen for its combination

of shape-holding capability and low stiffness. A 3D printed biomimetic mold (Figure 5.17)

mimicking the Aequorea victoria is used to shape the robot bell.

Finally, IPMC actuators (5 cm × 0.8 cm each) are sandwiched between the two halves of

the equidistant clamps and extend radially outward from the stage. The free end of each

actuator is attached to the bell by a horizontal sleeve around the bell margin.

The final robot weighs around 20 grams and has an overall diameter of 15 cm and a height

of 5.8 cm. The assembled biomimetc jellyfish robot is shown in Figure 5.18.
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Figure 5.15: (a) CAD model of eight radially distributes spars, (b) CAD model of the
assembled parts that make the jellyfish robot.

5.3.2 Free Swimming Average Speed and Power Consumption

The robot is actuated by four actuators for the first set of experiments and eight for the

second set. For each set of experiments the position of the actuators was varied in the y-

direction between 1.5 cm and 2 cm. At each actuator position, two bell configurations were

tested (full bell and half way cut bell), and for each configuration, a square waveform voltage

is applied at different frequencies and with different duty cycles.

Figure 5.19 (a) shows an example of an input voltage waveform to the robot. A particular

signal which consisted of a square wave with different duty cycles was used when testing the

swimming ability of the robot. In this study, the voltage amplitude was held constant at

2V (4V peak-to-peak), and the duty cycle of the square wave was varied from 30% to 50%.

The current consumption of the robotic jellyfish for the applied voltage shown in Figure

5.19 (a) was also measured and is shown in Figure 5.19 (b). The power consumption is thus

computed using measured values of the applied voltages and resulting currents. The average

power consumption for the jellyfish was 0.7 W when four actuators were used and 1.14 W

when eight actuators used. Notice that both the current and power consumption varied with
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Figure 5.16: A photograph showing the central stage, the clamps and the electrical connec-
tions.

the variation of the duty cycle. The resulting motion of the jellyfish also depended on the

applied voltage waveform.

Our results demonstrated that the net motion of the robot changed as the duty cycle was

varied. Figure 5.20 shows a 3D plot of the velocity of the jellyfish in function of both the

frequency and the duty cycle. Akle, et al also demonstrated that an asymmetric square wave

(45% duty cycle) achieved the maximum swimming speed with the first generation robot.

One limitation of using IPMC materials for actuating the jellyfish is that their relatively

low stiffness and blocked force (0.74 N/m and 20 MPa, respectively) limits thrust. This

constraint was overcome by using a bell material that is highly flexible but which can also

maintain the undeformed bell geometry. Using a heat-shrinkable polyolefin film, a lightweight

flexible bell was molded to mimic the shape of Aequorea victoria jellyfish.

As a method for reducing the bending stiffness of the molded bell, radial cuts positioned

between actuators and extending from the outer perimeter in toward the hub are introduced.
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Figure 5.17: CAD model of the biomimetic mold used in fabricating the robot bell.

A similar approach was used by Villanueva, et al for increasing the swimming speed and

actuation profile of the SMA-actuated biomimetic jellyfish. Two sets of swimming tests

were performed to understand this effect of bell geometry and stiffness: a bell with no cut

and a bell with cuts that extend half-way from the outer edge to the hub. Figure 5.21 shows

the vertical displacement of the jellyfish robot during a 30 s actuation period for four different

configurations of the robot at 2V. The traces exhibit an oscillatory motion corresponding

to the frequency of the applied waveform and demonstrate that the jellyfish swam upwards.

When no cuts are introduced to the bell the robot swims at slower velocities due to the

increase in mechanical resistance of the bell. When the cuts are introduced to the bell, the

performance of the robot improved. When half-way cuts are introduced, the robot swam

faster with oscillation frequency similar to the uncut bell. Figure 5.21 also shows the results

for two different positions of the stage at 1.5 cm and 2 cm from the hub. The results shown

in Table 5.2 also show that the robot swims faster when the stage is positioned at 1.5 cm.

Finally Figure 5.21 also shows the vertical displacement for the robot when eight actuators
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Figure 5.18: A picture of the assembled jellyfish robot.

are used. This robot swam at a speed equal to 1.5 mm/s and consumed 1.14 W.

Table 5.2: A summary of the swimming frequency, duty cycle and speed of the robot along
with the power consumption for the four different configurations.

Bell Frequency (Hz) Duty cycle (%) Average speed (mm/s) Average power (W)

1.5 cm
Half-cuts 0.67 46.67 0.77 0.7
no-cuts 0.67 33.33 0.72 0.65

2.0 cm
Half-cuts 0.5 25 0.4 0.55
no-cuts 1 45.45 0.36 0.79

5.4 Chapter Summary and Conclusions

In this chapter the design and development of three different jellyfish robot generations are

presented and discussed. The first robot served as a proof of concept and swam vertically

at a speed of 2.2 mm/s and consumed 3.2 W of power. This version proved the concept
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Figure 5.19: (a) The input voltage used to actuate the robotic jellyfish, (b) the current
consumption of the robotic jellyfish, and (c) the power consumption of the robotic jellyfish.

of IPMC-based robot and introduced some key parameters that are critical for biomimetic

jellyfish robot. The first important parameter is the type, frequency, and duty cycle of the

input signal where an unbalanced square wave resulted in higher swimming speeds. The

second parameter was the addition of flaps that turned out to be effective in improving the

swimming behavior of the robot.

Based on the results of the first generation a second version of the robot was built. This

generation mimicked the geometry and swimming style of the Aurelia aurita and it swam

vertically at an average speed of 1.5 mm/s and consumed 3.5 W pf power. New fabrica-

tion techniques were adapted for this design where a polyelfin film was used in order to

form a biomimetic bell. These techniques resulted in a light weight vehicle. However, the

bell kinematics did not mimic the natural bell kinematics which resulted in unneeded bell

deformation and thus more power consumption.
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Figure 5.20: A 3D plot showing the velocity of the jellyfish with 4 actuators used in function
of frequency and duty cycle, the velocities are in mm/s.

The third and last generation mimicked the geometry, swimming style, and bell kinematics

of the Aequorea victoria. This robot swam vertically at a speed of 1.5 mm/s and consumed

1.1 W of power when eight actuators were used while it swam at 0.77 mm/s and consumed

0.7 W when four actuators were used. In this design smaller actuators compared to the

ones used in previous generations were used due to mimicking the natural bell kinematics

by shifting the position of the actuator from the central hub.

Finally, Figure 5.22 show a summary of the three designs. These designs represent a basic

study on a IPMC-based biomimetic jellyfish robot. They represent a road map for a more

optimized and effective design since the key parameters were identified and can be targeted
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Figure 5.21: The vertical displacement of the jellyfish for different configuration using 4
actuators and 8 actuators.

for any further study.
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Figure 5.22: A summary of the average swimming speed and power consumption of the three
robot generations built in addition to key facts related to each design.



Chapter 6

Summary and Conclusions

In this chapter a brief summary of the thesis is provided. The contributions to the field are

presented and major conclusions are drawn. Finally, recommendations for future work are

provided.

6.1 Thesis Summary

In this thesis we have designed, developed, and characterized a novel biomimetic robotic

jellyfish that uses ionic polymer metal composites actuators. The final design mimics the

Aequorea victoria jellyfish species, and swam vertically at a speed of 1.5 mm/s and consumed

around 1 W of power when eight actuators were used. This design was the result of several

initial attempts that helped in understanding the key parameters to a biomimetic robot

design.

The initial motivation of this project comes from the interesting properties of the ionic

90
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polymer metal composites especially their ability to exhibit large deformations when a low

input voltage is applied. These properties made of the IPMCs strong candidates to replace

the SMA actuators used by Villanueva et al in their design of a biomimetic jellyfish robot.

The Direct Assembly Process developed by Akle et al was used to fabricate the water based

IPMC actuators. This method was optimized for making dry actuators but not the water

based ones. Therefore, the electrode structure and chemical composition of the actuator’s

electrodes were preliminary optimized. The maximum strain percentage achieved was 0.7%

in water for an actuation frequency of 0.5 Hz. The actuators were fully characterized and

understood. However, the IPMC actuators have two limiting properties that are critical

to our design. IPMCs are soft materials and known for a slow response rate since the

deformation is due to ion motion through the cluster of the polymer.

In order to overcome these properties different jellyfish species were investigated.The goal

is to attain a species that can serve as a system model and fits the mechanical properties

of the IPMC actuators. Specifically, we looked for species that achieve small deformations

during the contraction cycle i.e. small fineness ratio ranges, and low swimming frequencies.

The results proved that Aequorea victoria has the smallest fineness ratio and a reasonable

swimming frequency of 1.1 Hz. Further comparative studies were conducted between the

Aequorea victoria and the Aurelia aurita which was adapted as a model system for other

groups and initially for this project.

Three robot generations were built. The first served as a proof of concept and it swam

vertically at 2 mm/s. This version didn’t mimic a specific medusa for simplicity, however, it

proved that IPMCs can work as actuators for an underwater vehicles. It was learned from this

trial the importance of the input signal frequency and duty cycle as well as the importance

of the flaps implemented at the margin of the bell. The second generation mimicked the

geometry and swimming style of the Aurelia aurita, this version swam at a speed of 1.5
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mm/s and consumed 3.5 W of power. From this trial it was learned that the geometry of

the jellyfish affects the performance of the jellyfish robot. Finally, the final version mimicked

the Aequorea victoria species and swam vertically at a speed of 1.5 mm/s and consumed 1.1

W of power when eight actuators are used. The same robot swam at a speed of 0.77 mm/s

and consumed 0.7 W of power when four actuators are used.

6.2 Conclusions

Ionic polymer metal composites are used as actuators for a biomimetic robotic jellyfish.

The limiting properties of IPMCs in this project’s case i.e. softness and slow response rate

were overcome through two main approaches. First by conducting preliminary optimization

studies on the high surface area metal electrodes and second by finding a jellyfish species

which properties fits the properties of the actuators. The Aequorea victoria was adapted as

a model system based on its shape, small fineness ratio range, and slow swimming frequency.

The resulting robot swam vertically at a swimming speed of 1.5 mm/s and consumed 1 W

of power when eight actuators were used. When four actuators were used the robot swam

at 0.77 mm/s and consumed 0.7 W of power. Throughout the research work done on this

project it was learned that the input signal amplitude, frequency, and duty cycle affect the

swimming speed of the jellyfish robot. On the other hand the addition of flaps and the

introduction of cuts to the bell proved to increase the swimming speed of the robot. Finally,

this design can be further optimized and studied based on the key parameters that were

defined earlier in the thesis.
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6.3 Contributions

This thesis has three major contributions to the field of ionic polymer metal composites and

biomimetic robotics. These contributions include enhancing the performance of the ionic

polymer metal composites, providing basic tools to the fabrication and characterization of

biomimetic robotics, and highlighting key parameters that can be later targeted in order to

optimize the jellyfish robot. The following is a list of these contributions:

• The first major contribution is the optimization of the water-based ionic polymer metal

composites using the Direct Assembly Process (DAP). The achieved percent strain was

0.7% in water for a actuation frequency of 0.5 Hz.

• The second contribution is the development of a fabrication process which allows the

manufacturing of biomimetic robots. These techniques allow low power lightweight

designs especially the ones that need special shaping based on the biomimetic principles

obtained from natural jellyfish..

• Finally, a novel low power biomimetic jellyfish robot was designed and built that uti-

lized IPMCs as the actuation mechanism. Key parameters were identified in order to

optimize the design and achieve higher swimming speeds at low power consumption.

6.4 Future Work

Three main recommendations for future works are presented in this section.

• The first recommendation is to further optimize the DAP process for manufacturing

water-based ionic polymer metal composites. Improving these actuators by increasing
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the strain percentage and rate have a direct impact on the swimming performance of

the robot since the biological swimming frequency can be achieved. Another property

to optimize is the softness of the material in order to achieve more robust designs.

• A second idea is to better mimic the bell kinematics of the natural jellyfish. This can

be done by using patterned actuators and by better locate the position of the actuators.

This can result in using smaller actuators and thus reduce the power consumption.

• Since the ionic polymer metal composite act like capacitors at specific frequency the

stored current in the actuators can be restored and used to power back the robot. This

will definitely lead to more power reduction.

• Finally, study more jellyfish species in order to probably find a better match to the

properties of the IPMC actuators. Also consider design robots at smaller scale which

might be more beneficial.
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