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Bayesian Hierarchical Latent Model for Gene Set Analysis

Yi Chao

ABSTRACT

Pathway is a set of genes which are predefined and serve a particular celluar or physio-

logical function. Ranking pathways relevant to a particular phenotype can help researchers

focus on a few sets of genes in pathways. In this thesis, a Bayesian hierarchical latent model

was proposed using generalized linear random effects model. The advantage of the approach

was that it can easily incorporate prior knowledge when the sample size was small and the

number of genes was large. For the covariance matrix of a set of random variables, two

Gaussian random processes were considered to construct the dependencies among genes in a

pathway. One was based on the polynomial kernel and the other was based on the Gaussian

kernel. Then these two kernels were compared with constant covariance matrix of the random

effect by using the ratio, which was based on the joint posterior distribution with respect

to each model. For mixture models, log-likelihood values were computed at different values

of the mixture proportion, compared among mixtures of selected kernels and point-mass

density (or constant covariance matrix). The approach was applied to a data set (Mootha

et al., 2003) containing the expression profiles of type II diabetes where the motivation was

to identify pathways that can discriminate between normal patients and patients with type

II diabetes.
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1 Introduction

High-throughput microarray has become one of the most important tools which have

been widely used for functional genomics studies. Numerous statistical methods have been

developed for use with these methods. However, most of the methods are single-gene based

analyses which have not considered the dependencies among genes. In recent years, re-

searchers have started looking at sets of genes instead of one gene at a time. This set of

genes is predefined and is called a pathway. Ranking pathways relevant to a particular phe-

notype can help researchers focus on a few sets of genes. The advantage of the pathway

based analysis is that it can detect subtle changes in gene expression levels which may not

be possible with the single-gene based analysis (Mootha et al., 2003; Hosack et al., 2003;

Rajagopalan and Agarwal, 2005).

A number of methods have been proposed to identify pathways relevant to a particular

disease. Several papers have described the advantages of performing pathway based analysis.

Goeman et al. (2004) proposed a global test based on the generalized linear random effects

model. Random forest based analysis was proposed by Pang et al. (2006). The global test

and the random forest approach are applicable to both continuous and binary outcomes. The

global test is a model based analysis, while random forest is a tree based analysis. These

two methods, and many other existing methods, are frequentist approaches.

In this thesis, a model based analysis is proposed using a generalized linear random effects

model for binary events only, assuming there are only two categories. The model is based

on a Bayesian hierarchical latent model. The advantage of the Bayesian approach is that it

can not only clearly express a complex statistical model, but also easily incorporate prior

knowledge when the sample size is small and the number of genes is large. The Gaussian

random process was developed to construct the dependencies among genes in a pathway. For

the covariance matrix of this process, two kernels were implemented: one was the polynomial
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kernel and the other was the Gaussian kernel. Five models, corresponding to five different

covariance structures, were considered as follows: Model 1 with the polynomial kernel, Model

2 with the Gaussian kernel, Model 3 with constant covariance matrix of the random effect,

Model 4 with the mixture kernel of the polynomial kernel (or Gaussian) and point-mass

density, Model 5 with the mixture kernel of the polynomial kernel (or Gaussian) and constant

covariance matrix of the random effect.

The interesting question was whether τ−1 was zero in the covariance structure τ−1K(X)

for each pathway. If τ−1 was zero, then it meant that the gene expression profile did not

help to distinguish between the two binary groups.

The pathway where the Bayesian credible interval of τ−1 was far away from zero was

selected. The top 50 pathways ranked by τ−1 were selected from 277 pathways using the

different covariance structures of the Gaussian random process: the polynomial kernel based

covariance matrix, the Gaussian kernel based covariance matrix. Pathways that overlapped

were selected for analysis.

The constant covariance matrix of the random effect was proposed for the case that the

genes expressions of the pathway did not help to distinguish between the two binary groups.

The point-mass density was proposed for the case that the random effect γ(X) did not exist,

implying that the genes expressions of the pathway did not help to distinguish between the

two binary groups. The pathway was considered as not significant if the model had a larger

likelihood value with constant covariance matrix of the random effect (or the point-mass

density) than the polynomial kernel (or Gaussian). Models 1 and 2 were compared with

Model 3 (which had a constant covariance matrix of the random effect) by using the ratio of

the joint posterior distribution with respect to each model. The predictive power of a new

observation was computed using a leave-one-out cross-validation approach.

For mixture models, log-likelihood values were computed at different values of the mixture
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proportion, π, compared among the mixtures of selected kernels and point-mass density (or

constant covariance matrix). When the polynomial or the Gaussian kernel had a higher log-

likelihood value to have a large value of the mixture proportion π, the pathway was selected

as significant.

This thesis is organized as follows. In Section 2, the Bayesian hierarchical latent model for

the generalized linear mixed model is presented. The polynomial and the Gaussian kernels

are introduced for constructing the covariance matrix for a set of random variables. In Section

3, the Bayesian approach is described and the full conditional distributions for each structure

are derived. In Section 4, a Bayesian inference approach is suggested for this study. First of

all, overlapping pathways between the top 50 pathways are selected with the polynomial and

the Gaussian kernels ranked by τ−1. Based on the overlapping pathways, Models 1 and 2 are

compared with Model 3 by using the ratio of the joint posterior distribution with respect to

each model and the predictive classification is obtained using leave-one-out cross-validation.

Log-likelihood values for Models 4 and 5 are computed using different values of the mixture

proportion π, to maximize the log-likelihood value of mixture models. In Section 5, the

Bayesian approach is applied to type II diabetes data (Mootha et al., 2003) which contains a

microarray expression profile of 277 pathways and the result of data analysis is summarized.

Section 6 contains concluding remarks.

2 Bayesian Hierarchical Model

Let Yi be the binary response variable, i = 1, . . . , n. The Yi = 1 denotes that the sample

i is diseased or one type of cancer and Yi = 0 denotes that the sample i is normal. Let

Xij denotes the gene expression level of the jth gene in a pathway for ith sample, where

j = 1, ..., p. Then the data matrix X can be expressed as
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Xn×p =



x1

x2

.

.

.

xn


=



X11 X12 . . . X1p

X21 X22 . . . X2p

. . . .

. . . .

. . . .

Xn1 Xn2 . . . Xnp


.

The Bayesian hierarchical model with a binary outcome Yn×1 , a clinical covariate Cn×2

where Cn×2=(1, c) and c is the n× 1 vector of age, and a gene expression matrix Xn×p is

Pr{Y = 1|C,γ(X)} = Φ{Cα′ + γ(X)},

γ(X) ∼ MN{0, τ−1K(X)},

where Φ(·) is the standard normal cumulative density function, α=(α0,α1) is the regression

coefficient vector, the random effect matrix γ(X) = {γ(x1), . . . , γ(xn)}′, and γ(·) follows the

Gaussian random process with mean 0 and covariance cov{γ(xi), γ(xj)} = τ−1K(xi,xj), K

is n× n matrix with ijth component K(xi,xj).

The Φ(·) links the linear function Cα′ + γ(X) to the conditional probability of Y =

1, which transforms a continuous model space to probability space (0, 1). This is known

as the probit regression model. Based on Albert and Chib (1993), latent variables Z =

(Z1, Z2, ..., Zn)′ were defined with Z ∼MN{Cα′ + γ(X), I} such that

Yi =

1 if Zi ≥ 0

0 if Zi < 0

,

where Pr{Zi ≥ 0|Ci, γ(xi)} = Pr{Yi = 1|Ci, γ(xi)} and Pr{Zi ≥ 0|Ci, γ(xi)} = 1 −

Φ{−(Ciα
′ + γ(xi))}.

For the covariance cov{γ(xi), γ(xj)}, two kernels were considered: one was the polynomial

kernel and the other was the Gaussian kernel as follows.
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• Polynomial kernel: K(xi,xj) = xix
′
j,

• Gaussian kernel: K(xi,xj) = exp(− ||xi−xj ||
2

).

The polynomial kernel made the dependence of the pathway effect stronger by increasing

the absolute correlation between genes expressions of two samples if they had the same sign.

The dependence structure based on the Gaussian kernel depended on the Euclidean distance

between two genes expressions of two samples. The smaller the Euclidean distance, the

stronger the dependence.

Five models were proposed corresponding to five covariance structure of γ(X):

• Model 1: γ(X) ∼MN{0, τ−1
p K(X)}, K(xi,xj) = xix

′
j (Polynomial kernel),

• Model 2: γ(X) ∼MN{0, τ−1
g K(X)}, K(xi,xj) = exp(− ||xi−xj ||

2
) (Gaussian kernel),

• Model 3: γ(X) ∼MN{0, τ−1
c I} (Constant covariance matrix of the random effect),

• Model 4: γ(X) ∼ πMN{0, τ−1K(X)} + (1 − π)δ0(γ) (The mixture kernel of the

polynomial kernel (or Gaussian) and point-mass density),

• Model 5: γ(X) ∼ πMN{0, τ−1K(X)} + (1 − π)MN{0, τ−1
c I} (The mixture kernel of

the polynomial kernel (or Gaussian) and constant covariance matrix of the random

effect).

The top 50 pathways ranked by τ−1 were selected from candidate pathways using the

different covariance structures of the Gaussian random process: the polynomial kernel based

covariance matrix, the Gaussian kernel based covariance matrix. The pathways that over-

lapped were selected for analysis.

The constant covariance matrix of the random effect was proposed for the case that

the genes expressions of the pathway were useless in the random effect. The point-mass
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density was proposed for the case that the random effect γ(X) did not exist. The pathway

was considered as not significant if the model had a larger likelihood value with constant

covariance matrix of the random effect (or point-mass density) than the polynomial kernel

(or Gaussian).

Models 1 and 2, with the polynomial and Gaussian kernels, were compared with Model

3 which had constant covariance matrix of the random effect by using the ratio of the joint

posterior distribution with respect to each model. The predictive power of a new observation

was computed using a leave-one-out cross-validation approach.

For mixture models, log-likelihood values were computed at different values of the mixture

proportion, π, compared among the mixtures of selected kernels and point-mass density (or

constant covariance matrix). When the polynomial or the Gaussian kernel had a larger

likelihood value with a large value of the mixture proportion π in the mixture model, the

pathway was selected as significant.

3 Bayesian Approach

In this section, full conditional distributions of parameters were derived based on each

model.

3.1 The prior and full conditional distributions

It was assumed that γ(X) ∼MN{0, τ−1K(X)}. In model 1, the polynomial kernel was

used, K(xi,xj) = xix
′
j, while the Gaussian kernel K(xi,xj) = exp(−||xi − xj||/2) was used

in model 2.

Using the prior distributions α ∼ MN(0,φ−1) and τ ∼ Gamma(a, b), the joint posterior
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distribution was derived as

[Z, α0, α1,γ, τ |y,C,X] ∝
n∏
i=1

(IZi≥0Iyi=1 + IZi<0Iyi=0)×
n∏
i=1

N(Zi;α0 + ciα1 + γi, 1)

× MN{γ; 0, τ−1K(X)} ×Gamma(τ ; a, b)

× N(α0; 0, φ−1)×N(α1; 0, φ−1),

where I(event) was an indicator function, which equaled 1 if the event was true and otherwise

equaled 0.

Since the model was a probit regression model, it allowed to have closed forms of the full

conditional distributions of Zi. The full conditional distributions for Zi were

[Zi|yi = 0, α0, α1, γi, τ ] ∝ IZi<0 Iyi=0 N(Zi;α0 + ciα1 + γi, 1),

[Zi|yi = 1, α0, α1, γi, τ ] ∝ IZi≥0 Iyi=1 N(Zi;α0 + ciα1 + γi, 1),

which were truncated normal distributions.

The full conditional distributions for α, γ, τ were proportional to

[α0|Zi, α1,γ, τ ] ∝ N{
∑n

i=1(Zi − ciα1 − γi)
n+ φ

, (n+ φ)−1},

[α1|Zi, α0,γ, τ ] ∝ N{
∑n

i=1 ci(Zi − α0 − γi)∑n
i=1 c

2
i + φ

, (
n∑
i=1

c2i + φ)−1},

[γ|Zi, α0, α1, τ ] ∝ MN [{I + (τ−1K(X))−1}−1(Z−Cα′), {I + (τ−1K(X))−1}−1],

[τ |Zi, α0, α1,γ] ∝ Gamma{a+
1

2
, b+

1

2
γ ′(K(X))−1γ}.

Since the full conditional distributions for all parameters had closed forms, the Gibbs

sampling algorithm was used to generate a sequence of variables from the distribution of

each variable in order, which was conditional on the previously obtained variables.

For model 3, it was assumed that γ ∼ MN(0, τ−1
c I) where the kernel K(X) was replaced

with the identity matrix, implying that the gene expression X in the pathway provided no

information. The full conditional distribution for γ was derived as

[γ|Zi, α0, α1, τc] ∝ MN{(I + τcI)
−1(Z−Cα′), (I + τcI)

−1}.
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For other parameters, the full conditional distributions were derived in a similar way.

3.2 The prior and full conditional distributions based on mixture

models

In model 4, it was assumed that γ(X) ∼ πMN{0, τ−1K(X)}+(1−π)δ0(γ). The random

variable was defined as L ∼ Ber(π). Using the prior distributions α ∼ MN(0,φ−1) and

τ ∼ Gamma(a, b), the joint posterior distribution was derived as

[Z, L, α0, α1,γ, τ |y,C,X] ∝
n∏
i=1

(IZi≥0Iyi=1 + IZi<0Iyi=0)×
n∏
i=1

N(Zi;α0 + ciα1 + γi, 1)

× [IL=1MN{γ; 0, τ−1K(X)}+ IL=0δ(0)]

× Gamma(τ ; a, b)×N(α0; 0, φ−1)×N(α1; 0, φ−1).

Then the full conditional distributions were proportional to

[Zi|yi = 0, L, α0, α1,γ, τ ] ∝ IZi<0 Iyi=0 N(Zi;α0 + ciα1 + γi, 1),

[Zi|yi = 1, L, α0, α1,γ, τ ] ∝ IZi≥0 Iyi=1 N(Zi;α0 + ciα1 + γi, 1),

[α0|Zi, L, α1,γ, τ ] ∝ N{
∑n

i=1(Zi − ciα1 − γi)
n+ φ

, (n+ φ)−1},

[α1|Zi, L, α0,γ, τ ] ∝ N [

∑n
i=1 ci(Zi − α0 − γi)∑n

i=1 c
2
i + φ

, {
n∑
i=1

(c2i + φ)}−1],

[γ|L = 1, Zi, α0, α1, τ ] ∝ MN [{I + (τ−1K(X))−1}−1(Z−Cα′), {I + (τ−1K(X))−1}−1],

[γ|L = 0, Zi, α0, α1, τ ] ∝ MN{(Z−Cα′), I},

[τ |L = 1, Zi, α0, α1,γ] ∝ Gamma[a+
1

2
, b+

1

2
γ ′{K(X)}−1γ],

[τ |L = 0, Zi, α0, α1,γ] ∝ Gamma(a, b).

In model 5, it was assumed that γ(X) ∼ πMN{0, τ−1K(X)}+ (1−π)MN{0, τ−1
c I}, the

joint posterior distribution was

[Z, L, α0, α1,γ, τ |y] ∝
n∏
i=1

(IZi≥0Iyi=1 + IZi<0Iyi=0)×
n∏
i=1

N(Zi;α0 + ciα1 + γi, 1)

× [IL=1MN{γ; 0, τ−1K(X)}+ IL=0MN(γ; 0, τ−1
c I)]
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× Gamma(τ ; a, b)×N(α0; 0, φ−1)×N(α1; 0, φ−1),

and the full conditional distributions for γ were derived as

[γ|L = 1, Zi, α0, α1, τ ] ∝ MN [{I + (τ−1K(X))−1}−1(Z−Cα′), {I + (τ−1K(X))−1}−1],

[γ|L = 0, Zi, α0, α1, τc] ∝ MN{(I + τcI)
−1(Z−Cα′), (I + τcI)

−1}.

For other parameters, the full conditional distributions were the same as the previous

mixture case.

3.3 The Algorithm

Since the full conditional distributions have closed forms for all models, the Gibbs sam-

pling is applicable. The Gibbs sampling algorithm is following:

• Step 1: Initialize [Z(0),α(0),γ(0), τ (0)].

• Step 2: At the t-th iteration,

– (i) Draw Z(t) from [Z(t)|Z(t−1),α(t−1),γ(t−1)].

– (ii) Draw α(t) from [α(t)|Z(t),α(t−1),γ(t−1)].

– (iii) Draw γ(t) from [γ(t)|Z(t),α(t), τ (t−1)].

– (iv) Draw τ (t) from [τ (t)|γ(t)].

– (v) Draw L(t) from [L(t)|π] (The draw for L is considered only for the case of the

mixture model 4 or 5).

• Step 3: Increase t until the required the number of iterations, M = 10, 000.

• Stop

Typically in Bayesian computing, M = 10, 000 was preferred. For the parameters of

priors, it was proposed that a = 50, b = 0.5 and φ−1 = 0.5 here. In addition, different

parameters would be chosen in the future work for sensitivity analysis.
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4 Bayesian Inference

Using the Gibbs sampling algorithm, the MCMC samples at the t th iteration, {Z(t),α(t),

γ(t), τ (t), t = 1, . . . ,M}, were obtained after burn-in period. These samples were used for

posterior inference and prediction. A 95% Bayesian credible interval was calculated. The

median and mean were obtained for the point estimator. MCMC trace plots and histograms

were used to examine whether the posterior distributions had converged. The interesting

question was whether τ−1 was zero in the covariance structure τ−1K(X) for each pathway

since τ−1 was zero meant that the gene expression profile did not help to distinguish between

the two binary groups. The pathway where the Bayesian credible interval of τ−1 was far

away from zero was selected.

Another interesting question was whether τ−1K(X) was the same as τ−1I which also

implied that the gene expression profile did not help to distinguish between the two binary

groups. The ratio, using the joint posterior distribution with respect to each model, was

used to compare the three models. Using the posterior samples, it was counted that how

many times the ratio was larger than 1 between model j and model 3, j = 1, 2

Ratiotj3 =

∏n
i=1N(Zt

i,j;α
t
0,j + αt1,jCi + γti,j, 1)×MN{γjt; 0, τ

−1,t
j (K(X))}∏n

i=1N(Zt
i,3;α

t
0,3 + αt1,3Ci + γti,3, 1)×MN(γ3

t; 0, τ−1,t
3 I)

×
Gamma(τ tj ; a, b)×N(αt0,j; 0, φ−1)×N(αt1,j; 0, φ−1)

Gamma(τ t3; a, b)×N(αt0,3; 0, φ−1)×N(αt1,3; 0, φ−1)
.

The predictive classification of a new observation Yi,new was obtained using the leave-

one-out cross-validation, conditioning on the expression levels in each pathway as

Pr(Yi,new = 1|X,C) =
1

M

M∑
t=1

P (Yi,new = 1|X,C,Z(t), τ (t),γ(t)),

where P{Yi,new = 1|X,C,Z(t), τ (t),γ(t)} = Φ{Ciα
′(t)
−i+γ

(t)
i } and γ

(t)
i ∼MN{0, τ−1,(t)

−i K(xi)}.

For mixture models, log-likelihood values were computed at different values of the mixture

proportion, π, where π = (0.1, 0.3, 0.5, 0.7, 0.9), compared among the mixtures of selected

10



kernels and point-mass density (or constant covariance matrix). When the polynomial or

the Gaussian kernel had a higher log-likelihood value to have a large value of the mixture

proportion π, the pathway was selected as a significant.

Likelihood for Model 4, the mixture kernel of the polynomial kernel (or Gaussian) and

point-mass density, where θ=(Z,γ),∫ n∏
i=1

(IZi≥0Iyi=1 + IZi<0Iyi=0)×
n∏
i=1

N(Zi;α0 + ciα1 + γi, 1)×

[πMN{γ; 0, τ−1K(X)}+ (1− π)δ(0)]dθ.

Likelihood for Model 5, the mixture kernel of the polynomial kernel (or Gaussian) and

constant covariance matrix of the random effect, where θ=(Z,γ),∫ n∏
i=1

(IZi≥0Iyi=1 + IZi<0Iyi=0)×
n∏
i=1

N(Zi;α0 + ciα1 + γi, 1)×

[πMN{γ; 0, τ−1K(X)}+ (1− π)MN(γ; 0, τ−1
c I)]dθ.

5 Example

The Bayesian approach was applied to the microarray gene expression data with 22, 283

genes on type II diabetes (Mootha et al., 2003). In the data, there were 17 samples with

normal glucose tolerance and 18 samples with type II diabetes mellitus. 277 pathways

were considered including 128 KEGG pathways and 149 curated pathways. The KEGG

pathway database(http://www.genome.jp/kegg/pathway.html) was a collection of curated

pathways representing current knowledge on the molecular interaction and reaction Networks

for metabolism, genetic information processing, environmental information process, cellular

processes, and human disease. The 149 curated pathways were constructed from known

biological experiments by Mootha and colleagues. The example data was given in table 1.
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In the analysis, Y was set as the binary clinical outcomes corresponding to either normal

or type II diabetes, a clinical covariate Cn×2 where Cn×2=(1, c) and c was the n× 1 vector

of age for each subject, and X was the n × p gene expression, where n = 35, p was the

number of genes in a specific pathway, where p varied from 2 to 200 across these pathways.

The goal was to identify pathways to distinguish between two groups (normal vs. type

II diabetes). To identify significant pathways, the Bayesian hierarchical model was used

and parameters estimated. The top 50 pathways were selected using the polynomial and

the Gaussian kernels based on the rank of τ−1. Using 23 pathways overlapped these top

50 pathways, it was determined as follows. One of overlapping pathways is pathway 229,

“Oxidative phosphorylation”, known to be related to diabetes (Misu et al., 2007; Mootha

et al., 2003; Mootha et l., 2004). This is a process of cellular respiration in humans (or in

general eukaryotes). The pathway contains coregulated genes across different tissues which

are related to insulin/glucose disposal. It consists of ATP synthesis, a pathway involved in

energy transfer. Another pathway is pathway 36, c17 U133 probes, which is also selected as

significant (Kim et al, 2009).

6 Conclusion and Discussion

In this thesis, a Bayesian method was developed for pathway based analysis. The ap-

proach was a model based analysis for a generalized linear random effects model. The

Bayesian probit regression model was used because it can derive closed forms of full condi-

tional distribution of parameters so that the Gibbs sampling algorithm can be applied. The

Gaussian random process was considered to construct the dependencies among genes in a

pathway. For covariance matrix of this process, two kernels were implemented: one was the

polynomial kernel and the other was the Gaussian kernel. The polynomial kernel was used

because it made that the dependence of the pathway effect strong, between genes expres-
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sions of two samples, if they had the same sign. The dependence structure based on the

Gaussian kernel depended on the Euclidean distance between genes expressions of the two

samples. Five models, corresponding to five different covariance structures, were considered

as follows: Model 1 with the polynomial kernel, Model 2 with the Gaussian kernel, Model

3 with constant covariance matrix of the random effect, Model 4 with the mixture kernel

of the polynomial kernel (or Gaussian) and point-mass density, Model 5 with the mixture

kernel of the polynomial kernel (or Gaussian) and constant covariance matrix of the random

effect.

The interesting question was whether τ−1 was zero in the covariance structure τ−1K(X)

for each pathway since a zero value of τ−1 meant that the gene expression profile did not

help to distinguish between the two binary groups.

The pathway where the Bayesian credible interval of τ−1 was far away from zero was

selected. The approach was applied to a data set from (Mootha et al., 2003) which was the

gene expression profiles of type II diabetes. The top 50 pathways ranked by τ−1 were se-

lected from 277 candidate pathways using the different covariance structures of the Gaussian

random process: the polynomial kernel based covariance matrix, the Gaussian kernel based

covariance matrix. The overlapped pathways were selected for analysis.

The constant covariance matrix of the random effect was proposed for the case that the

genes expressions of the pathway did not help to distinguish between the two binary groups.

The point-mass density was proposed for the case that the random effect γ(X) did not exist,

implying that the genes expressions of the pathway did not help to distinguish between the

two binary groups. The pathway was considered as not significant if the model had a larger

likelihood value with constant covariance matrix of the random effect (or the point-mass

density) than the polynomial kernel (or Gaussian). Models 1 and 2 were compared with

Model 3 (which had a constant covariance matrix of the random effect) by using the ratio of
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the integration of the joint posterior distribution with respect to parameters. The predictive

power of a new observation was computed using a leave-one-out cross-validation approach.

For mixture models, log-likelihood values were computed at different values of the mixture

proportion, π, compared among the mixtures of selected kernels and point-mass density (or

constant covariance matrix). When the polynomial or the Gaussian kernel had a higher log-

likelihood value to have a large value of the mixture proportion π, the pathway was selected

as significant.

The example data was given in table 1. The results based on the polynomial kernel and

the Gaussian kernel were given in Table 2-3 and Table 4-5, respectively. The proportion of

Ratioi3 < 1 in 10, 000 iterations which was slightly larger than 50%, meant that Model 3

was slightly better. But it could not help guarantee the pathway was significant or not for

they were almost too close to 50%. Then the log-likelihood comparison based on mixture

model was proposed given different mixture proportions. The result based on the mixture of

selected kernels and point-mass density was shown in Table 8. The mixture of selected kernels

and constant covariance structure was summarized in Table 9. The results suggested that

when the mixing proportion was 0.9, the largest log-likelihood values were obtained, meaning

that the selected pathways were highly significant. The 23 overlapping pathways were given

in Table 6, including pathway 229 and 36. Pathway 229, “Oxidative phosphorylation”,

was known to be related to diabetes (Misu et al., 2007; Mootha et al., 2003; Mootha et

l., 2004). Pathway 36, c17 U133 probes, was also selected as significant (Kim et al, 2009).

Using leave-one-out classification, the predictive classification of a new observation Yi,new

was obtained, conditioning on the expression levels in each overlapped pathway. These

results were given in Table 7. Five number summary statistics values were summarized. The

predictive probability of pathway 229 was about 0.53 for the diabetes group and was about

0.47 for the normal group. For pathway 36, the predictive probability was about 0.53 for

14



the diabetes group and was about 0.47 for the normal group. Similar results were obtained

using both Kernels.

The MCMC traces plots of pathway 229 and pathway 36 based on the Gaussian kernel

were shown in figure 1 and 2, respectively. For the mixture of the Gaussian kernel and

constant covariance matrix, the MCMC traces plots of them were shown in figure 3 and 4.

For the parameters of priors, it was proposed that a = 50, b = 0.5 and φ−1 = 0.5 here. In

addition, different priors values would be chosen in the future work for sensitivity analysis.

Simply using kernels may not be enough to characterize the dependencies among genes for

all pathways. The multivariate adaptive regression splines (Friedman, 1991) approach may

be one possible way to model more flexible dependence than the kernel approach. But this

approach may require a large sample size.
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Pathway PID Gene NGT1 . . . NGT17 DM1 . . . DM18

1 200862at DHCR24 4.9912 5.0194 5.2512 4.8611

1 207708at ALOXE3 4.9813 5.3201 5.4803 5.1668

2 207386at CYP7B1 4.3190 4.0180 3.9538 3.6331

2 207708at ALOXE3 4.9813 5.3201 5.4803 5.1668

2 218760at COQ6 4.0682 4.7695 4.8249 4.1371

3 200844sat PRDX6 6.9080 6.9473 6.7995 6.8190

3 200845sat PRDX6 6.4951 6.1733 6.4355 6.5557

3 207708at ALOXE3 4.9813 5.3201 5.4803 5.1668

4 200027at NARS 5.9270 5.3933 6.0312 5.7391

4 200708at GOT2 6.8930 6.4758 7.2996 6.8327

4 201000at AARS 5.5510 5.6695 5.7400 5.8711

4 201623sat DARS 6.2898 5.8505 6.1421 6.1796

4 201624at DARS 4.4580 3.9546 3.8449 4.1070

4 202144sat ADSL 6.3618 6.8327 6.6805 6.8396

4 204476sat PC 4.6400 2.5805 3.8519 4.5906

4 205843xat CRAT 4.0182 4.3577 4.8755 5.1928

4 206030at ASPA 4.7185 4.2734 4.4220 3.8625

4 206527at ABAT 4.3968 4.8115 4.5499 4.5225

4 206780at GAD2 2.8073 3.3191 2.7466 3.1017

4 207076sat ASS 5.3591 4.9363 5.3544 5.3197

4 208813at GOT1 6.8694 6.2766 6.4117 5.9442

4 209522sat CRAT 5.5242 5.1917 5.8957 5.8748

4 210250xat ADSL 6.5176 6.7020 6.5267 6.5326

4 210326at AGXT 3.0206 4.0713 3.2321 2.8512

4 216651sat GAD2 2.9466 3.6256 4.0045 4.0190

4 221761at ADSS 4.0723 4.2449 4.6208 4.3391

. . . . . . .

277 209610sat PSAT1 5.5405 4.7737 4.6406 5.1657

. . . . . . .

277 220892sat PSAT1 4.0806 3.4867 4.4169 4.4060

Table 1: Part of the microarray gene expression data on type II diabetes including 22, 283

genes within 277 pathways, NGTi=sample i normal and DMi=sample i with type II diabetes.
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Rank Pathway (̂τ−1) σ̂(τ−1) 2.5% Bayesian C.I. 97.5% Bayesian C.I. (Ratio13 < 1)%

1 27 0.0157 0.0028 0.0120 0.0175 50.66%

2 229 0.0157 0.0029 0.0121 0.0174 49.89%

3 60 0.0157 0.0028 0.0120 0.0175 50.23%

4 177 0.0157 0.0029 0.0120 0.0175 50.35%

5 52 0.0157 0.0029 0.0120 0.0175 50.76%

6 43 0.0157 0.0029 0.0120 0.0175 50.13%

7 269 0.0157 0.0029 0.0121 0.0174 50.33%

8 34 0.0157 0.0028 0.0120 0.0174 51.16%

9 50 0.0157 0.0029 0.0120 0.0175 50.12%

10 36 0.0157 0.0029 0.0120 0.0175 50.49%

11 232 0.0157 0.0028 0.0120 0.0174 49.90%

12 32 0.0157 0.0029 0.0120 0.0175 50.04%

13 126 0.0157 0.0028 0.0120 0.0174 50.13%

14 109 0.0157 0.0028 0.0120 0.0174 49.66%

15 70 0.0157 0.0028 0.0121 0.0174 50.43%

16 248 0.0157 0.0028 0.0120 0.0174 49.44%

17 35 0.0157 0.0028 0.0120 0.0175 50.19%

18 67 0.0157 0.0028 0.0120 0.0174 49.69%

19 30 0.0156 0.0028 0.0120 0.0174 49.80%

20 249 0.0156 0.0028 0.0120 0.0174 49.82%

21 213 0.0156 0.0028 0.0120 0.0174 49.61%

22 102 0.0156 0.0028 0.0121 0.0174 50.31%

23 66 0.0156 0.0028 0.0120 0.0174 49.89%

24 259 0.0156 0.0028 0.0120 0.0174 50.00%

25 104 0.0156 0.0028 0.0120 0.0174 49.72%

Table 2: Top 1-25 pathways selected by Bayesian approach using the polynomial kernel

and ranked by τ−1, (̂τ−1) =the estimation of τ−1, σ̂(τ−1) =the standard deviation of τ−1,

Bayesian C.I.=the Bayesian credible interval of τ−1 and (Ratio13 < 1)%=the proportion

of Ratio13 < 1 in 10, 000 iterations.
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Rank Pathway (̂τ−1) σ̂(τ−1) 2.5% Bayesian C.I. 97.5% Bayesian C.I. (Ratio13 < 1)%

26 44 0.0156 0.0028 0.0120 0.0174 49.45%

27 115 0.0156 0.0028 0.0120 0.0174 49.10%

28 59 0.0156 0.0028 0.0120 0.0174 50.76%

29 186 0.0156 0.0028 0.0120 0.0174 48.79%

30 63 0.0156 0.0028 0.0120 0.0173 49.50%

31 56 0.0156 0.0028 0.0120 0.0174 50.13%

32 137 0.0156 0.0028 0.0120 0.0174 50.11%

33 242 0.0156 0.0028 0.0120 0.0174 49.88%

34 278 0.0156 0.0028 0.0120 0.0173 50.15%

35 107 0.0156 0.0028 0.0120 0.0174 49.93%

36 98 0.0156 0.0028 0.0120 0.0174 50.24%

37 149 0.0156 0.0028 0.0120 0.0174 50.22%

38 221 0.0156 0.0028 0.0121 0.0173 50.12%

39 154 0.0156 0.0028 0.0120 0.0174 50.55%

40 222 0.0156 0.0028 0.0120 0.0174 50.50%

41 91 0.0156 0.0028 0.0120 0.0173 50.45%

42 38 0.0156 0.0028 0.0120 0.0174 49.20%

43 49 0.0156 0.0028 0.0120 0.0174 50.89%

44 39 0.0156 0.0027 0.0121 0.0173 50.27%

45 253 0.0156 0.0028 0.0120 0.0174 50.16%

46 53 0.0156 0.0028 0.0120 0.0174 50.29%

47 41 0.0156 0.0028 0.0120 0.0174 50.98%

48 86 0.0156 0.0028 0.0120 0.0174 49.78%

49 29 0.0156 0.0028 0.0120 0.0174 49.91%

50 238 0.0156 0.0028 0.0120 0.0174 49.77%

Table 3: Top 26-50 pathways selected by Bayesian approach using the polynomial kernel

and ranked by τ−1, (̂τ−1) =the estimation of τ−1, σ̂(τ−1) =the standard deviation of τ−1,

Bayesian C.I.=the Bayesian credible interval of τ−1 and (Ratio13 < 1)%=the proportion

of Ratio13 < 1 in 10, 000 iterations.
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Rank Pathway (̂τ−1) σ̂(τ−1) 2.5% Bayesian C.I. 97.5% Bayesian C.I. (Ratio23 < 1)%

1 249 0.0158 0.0029 0.0121 0.0176 49.79%

2 27 0.0157 0.0028 0.0120 0.0175 50.38%

3 253 0.0157 0.0028 0.0121 0.0174 50.47%

4 213 0.0157 0.0029 0.0120 0.0175 50.47%

5 229 0.0157 0.0028 0.0121 0.0175 50.53%

6 257 0.0157 0.0028 0.0121 0.0174 50.92%

7 37 0.0157 0.0028 0.0121 0.0175 49.92%

8 238 0.0157 0.0028 0.0121 0.0174 50.65%

9 50 0.0157 0.0028 0.0121 0.0175 50.19%

10 97 0.0157 0.0028 0.0120 0.0174 50.77%

11 270 0.0157 0.0029 0.0120 0.0174 50.75%

12 138 0.0157 0.0028 0.0120 0.0175 51.11%

13 92 0.0157 0.0029 0.0120 0.0174 50.28%

14 62 0.0157 0.0028 0.0121 0.0174 49.93%

15 177 0.0157 0.0028 0.0120 0.0175 49.96%

16 93 0.0157 0.0028 0.0120 0.0174 50.06%

17 28 0.0157 0.0028 0.0121 0.0174 50.32%

18 230 0.0157 0.0028 0.0120 0.0174 50.47%

19 135 0.0157 0.0028 0.0120 0.0173 51.01%

20 256 0.0157 0.0028 0.0120 0.0174 50.00%

21 43 0.0157 0.0028 0.0121 0.0174 50.68%

22 56 0.0156 0.0028 0.0121 0.0174 49.77%

23 44 0.0156 0.0028 0.0120 0.0175 50.40%

24 79 0.0156 0.0028 0.0120 0.0174 50.11%

25 35 0.0156 0.0028 0.0120 0.0174 50.11%

Table 4: Top 1-25 pathways selected by Bayesian approach using the Gaussian kernel and

ranked by τ−1, (̂τ−1) =the estimation of τ−1, σ̂(τ−1) =the standard deviation of τ−1,

Bayesian C.I.=the Bayesian credible interval of τ−1 and (Ratio23 < 1)%=the proportion

of Ratio23 < 1 in 10, 000 iterations.
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Rank Pathway (̂τ−1) σ̂(τ−1) 2.5% Bayesian C.I. 97.5% Bayesian C.I. (Ratio23 < 1)%

26 110 0.0156 0.0028 0.0120 0.0174 49.85%

27 47 0.0156 0.0028 0.0121 0.0173 50.06%

28 246 0.0156 0.0028 0.0121 0.0174 50.34%

29 218 0.0156 0.0028 0.0120 0.0174 50.25%

30 54 0.0156 0.0028 0.0120 0.0174 49.65%

31 102 0.0156 0.0029 0.0120 0.0174 49.68%

32 221 0.0156 0.0028 0.0120 0.0174 50.01%

33 104 0.0156 0.0028 0.0120 0.0174 50.11%

34 60 0.0156 0.0028 0.0120 0.0174 49.73%

35 36 0.0156 0.0028 0.0120 0.0174 50.20%

36 105 0.0156 0.0028 0.0120 0.0174 50.20%

37 63 0.0156 0.0028 0.0120 0.0174 49.85%

38 248 0.0156 0.0028 0.0120 0.0174 50.11%

39 116 0.0156 0.0028 0.0120 0.0174 49.94%

40 243 0.0156 0.0028 0.0120 0.0174 50.00%

41 31 0.0156 0.0028 0.0121 0.0174 50.00%

42 153 0.0156 0.0028 0.0120 0.0173 50.24%

43 39 0.0156 0.0028 0.0120 0.0174 50.32%

44 94 0.0156 0.0028 0.0120 0.0174 49.91%

45 57 0.0156 0.0028 0.0120 0.0174 49.94%

46 268 0.0156 0.0028 0.0119 0.0174 50.40%

47 107 0.0156 0.0028 0.0120 0.0173 49.92%

48 232 0.0156 0.0028 0.0119 0.0173 50.77%

49 32 0.0156 0.0028 0.0120 0.0174 50.87%

50 95 0.0156 0.0028 0.0120 0.0174 50.25%

Table 5: Top 26-50 pathways selected by Bayesian approach using the Gaussian kernel

and ranked by τ−1, (̂τ−1) =the estimation of τ−1, σ̂(τ−1) =the standard deviation of τ−1,

Bayesian C.I.=the Bayesian credible interval of τ−1 and (Ratio23 < 1)%=the proportion

of Ratio23 < 1 in 10, 000 iterations.
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Polynomial Kernel Gaussian Kernel

Pathway (̂τ−1) σ̂(τ−1) 2.5% C.I. 97.5% C.I. (̂τ−1) σ̂(τ−1) 2.5% C.I. 97.5% C.I.

27 0.0157 0.0028 0.0120 0.0175 0.0157 0.0028 0.0120 0.0175

32 0.0157 0.0029 0.0120 0.0175 0.0156 0.0028 0.0120 0.0174

35 0.0157 0.0028 0.0120 0.0175 0.0156 0.0028 0.0120 0.0174

36 0.0157 0.0029 0.0120 0.0175 0.0156 0.0028 0.0120 0.0174

39 0.0156 0.0027 0.0121 0.0173 0.0156 0.0028 0.0120 0.0174

43 0.0157 0.0029 0.0120 0.0175 0.0157 0.0028 0.0121 0.0174

44 0.0156 0.0028 0.0120 0.0174 0.0156 0.0028 0.0120 0.0175

50 0.0157 0.0029 0.0120 0.0175 0.0157 0.0028 0.0121 0.0175

56 0.0156 0.0028 0.0120 0.0174 0.0156 0.0028 0.0121 0.0174

60 0.0157 0.0028 0.0120 0.0175 0.0156 0.0028 0.0120 0.0174

63 0.0156 0.0028 0.0120 0.0173 0.0156 0.0028 0.0120 0.0174

102 0.0156 0.0028 0.0121 0.0174 0.0156 0.0029 0.0120 0.0174

104 0.0156 0.0028 0.0120 0.0174 0.0156 0.0028 0.0120 0.0174

107 0.0156 0.0028 0.0120 0.0174 0.0156 0.0028 0.0120 0.0173

177 0.0157 0.0029 0.0120 0.0175 0.0157 0.0028 0.0120 0.0175

213 0.0156 0.0028 0.0120 0.0174 0.0157 0.0029 0.0120 0.0175

221 0.0156 0.0028 0.0121 0.0173 0.0156 0.0028 0.0120 0.0174

229 0.0157 0.0029 0.0121 0.0174 0.0157 0.0028 0.0121 0.0175

232 0.0157 0.0028 0.0120 0.0174 0.0156 0.0028 0.0119 0.0173

238 0.0156 0.0028 0.0120 0.0174 0.0157 0.0028 0.0121 0.0174

248 0.0157 0.0028 0.0120 0.0174 0.0156 0.0028 0.0120 0.0174

249 0.0156 0.0028 0.0120 0.0174 0.0158 0.0029 0.0121 0.0176

253 0.0156 0.0028 0.0120 0.0174 0.0157 0.0028 0.0121 0.0174

Table 6: Overlapping pathways between top 50 pathways selected by Bayesian approach

with the polynomial and the Gaussian kernels and ranked by τ−1, (̂τ−1) =the estimation of

τ−1, σ̂(τ−1) =the standard deviation of τ−1, C.I.=the Bayesian credible interval of τ−1.
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Polynomial Kernel Gaussian Kernel

Normal Normal Diabetes Diabetes Normal Normal Diabetes Diabetes

Prediction Pathway Mean Median Mean Median Mean Median Mean Median

Min 27 0.2739 0.2784 0.2992 0.2947 0.2477 0.2428 0.3024 0.3053

Q1 0.4093 0.4078 0.4676 0.4694 0.4028 0.4010 0.4647 0.4701

Q2 0.4702 0.4705 0.5284 0.5275 0.4700 0.4692 0.5291 0.5319

Q3 0.5320 0.5329 0.5858 0.5840 0.5347 0.5342 0.5928 0.5950

Max 0.6737 0.6755 0.7383 0.7279 0.7035 0.7047 0.7467 0.7445

Min 32 0.2549 0.2693 0.3054 0.3069 0.2490 0.2517 0.2929 0.3103

Q1 0.4098 0.4133 0.4669 0.4695 0.4068 0.4072 0.4617 0.4621

Q2 0.4678 0.4673 0.5309 0.5328 0.4693 0.4677 0.5249 0.5233

Q3 0.5310 0.5303 0.5918 0.5912 0.5333 0.5335 0.5916 0.5882

Max 0.6891 0.7004 0.7425 0.7411 0.6976 0.6987 0.7465 0.7485

Min 35 0.2639 0.2653 0.3305 0.3400 0.2502 0.2482 0.3006 0.3020

Q1 0.4091 0.4118 0.4694 0.4709 0.4040 0.4009 0.4653 0.4677

Q2 0.4706 0.4733 0.5279 0.5281 0.4626 0.4614 0.5259 0.5247

Q3 0.5337 0.5310 0.5881 0.5865 0.5281 0.5313 0.5908 0.5947

Max 0.6901 0.6838 0.7388 0.7369 0.7040 0.7025 0.7527 0.7403

Min 36 0.2658 0.2755 0.3205 0.3199 0.2531 0.2657 0.2944 0.2991

Q1 0.4074 0.4085 0.4722 0.4735 0.4018 0.3993 0.4653 0.4658

Q2 0.4701 0.4719 0.5301 0.5324 0.4709 0.4734 0.5306 0.5318

Q3 0.5303 0.5292 0.5888 0.5892 0.5345 0.5345 0.5924 0.5925

Max 0.6942 0.6943 0.7248 0.7291 0.7215 0.7153 0.7495 0.7444

Min 39 0.2636 0.2589 0.3137 0.3091 0.2580 0.2707 0.2955 0.3021

Q1 0.4099 0.4099 0.4704 0.4703 0.4055 0.4049 0.4640 0.4637

Q2 0.4672 0.4676 0.5278 0.5291 0.4712 0.4732 0.5265 0.5251

Q3 0.5272 0.5300 0.5860 0.5844 0.5412 0.5468 0.5934 0.5957

Max 0.7049 0.7154 0.7550 0.7591 0.7070 0.7002 0.7455 0.7352

Min 43 0.2803 0.2865 0.3010 0.3227 0.2564 0.2654 0.3066 0.3081

Q1 0.4177 0.4168 0.4708 0.4726 0.4068 0.4079 0.4635 0.4657

Q2 0.4746 0.4760 0.5244 0.5254 0.4736 0.4706 0.5270 0.5293

Q3 0.5283 0.5289 0.5828 0.5804 0.5363 0.5333 0.5921 0.5922

Max 0.6845 0.6900 0.7217 0.7220 0.7151 0.7087 0.7599 0.7590

Min 44 0.2586 0.2589 0.3290 0.3385 0.2555 0.2512 0.3034 0.3000

Q1 0.4114 0.4126 0.4695 0.4661 0.4070 0.4087 0.4684 0.4686

Q2 0.4708 0.4696 0.5312 0.5301 0.4673 0.4700 0.5313 0.5326

Q3 0.5294 0.5298 0.5883 0.5862 0.5371 0.5421 0.5943 0.5905

Max 0.6936 0.6922 0.7237 0.7264 0.7008 0.7095 0.7536 0.7473

Min 50 0.2660 0.2699 0.3016 0.2955 0.2516 0.2491 0.2932 0.2875

Q1 0.4121 0.4154 0.4674 0.4692 0.4070 0.4075 0.4655 0.4626

Q2 0.4711 0.4725 0.5273 0.5283 0.4707 0.4725 0.5291 0.5292

Q3 0.5329 0.5322 0.5847 0.5859 0.5355 0.5373 0.5892 0.5891

Max 0.6944 0.7040 0.7404 0.7372 0.6920 0.6908 0.7453 0.7318

Min 56 0.2725 0.2710 0.3028 0.3012 0.2581 0.2567 0.2988 0.2953

Q1 0.4072 0.4064 0.4685 0.4695 0.4061 0.4046 0.4651 0.4677

Q2 0.4677 0.4672 0.5321 0.5320 0.4681 0.4712 0.5287 0.5277

Q3 0.5292 0.5318 0.5937 0.5932 0.5351 0.5383 0.5917 0.5920

Max 0.7103 0.7017 0.7541 0.7540 0.6967 0.6905 0.7496 0.7359

Min 60 0.2722 0.2613 0.3123 0.3235 0.2449 0.2497 0.3037 0.3063

Q1 0.4134 0.4134 0.4711 0.4703 0.4022 0.4058 0.4650 0.4642

Q2 0.4727 0.4720 0.5307 0.5291 0.4709 0.4768 0.5284 0.5264

Q3 0.5334 0.5348 0.5886 0.5874 0.5324 0.5333 0.5891 0.5846

Max 0.6974 0.6940 0.7341 0.7298 0.6966 0.7030 0.7509 0.7475

Table 7: Prediction probability of overlapping pathways between top 50 pathways selected

by Bayesian approach with the polynomial and the Gaussian kernels.
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Polynomial Kernel Gaussian Kernel

Normal Normal Diabetes Diabetes Normal Normal Diabetes Diabetes

Prediction Pathway Mean Median Mean Median Mean Median Mean Median

Min 63 0.2543 0.2620 0.3021 0.3153 0.2459 0.2456 0.2924 0.2988

Q1 0.4145 0.4138 0.4686 0.4696 0.4070 0.4091 0.4622 0.4634

Q2 0.4770 0.4772 0.5294 0.5317 0.4702 0.4685 0.5284 0.5242

Q3 0.5339 0.5292 0.5901 0.5865 0.5310 0.5367 0.5909 0.5861

Max 0.6798 0.6806 0.7370 0.7407 0.6818 0.6765 0.7494 0.7516

Min 102 0.2457 0.2529 0.3221 0.3148 0.2404 0.2441 0.2978 0.3001

Q1 0.4131 0.4125 0.4688 0.4666 0.4057 0.4042 0.4652 0.4677

Q2 0.4730 0.4688 0.5294 0.5325 0.4713 0.4708 0.5277 0.5276

Q3 0.5352 0.5390 0.5878 0.5902 0.5358 0.5357 0.5908 0.5912

Max 0.6987 0.6923 0.7350 0.7304 0.7003 0.6866 0.7512 0.7612

Min 104 0.2363 0.2339 0.3018 0.2983 0.2511 0.2560 0.3118 0.3206

Q1 0.4054 0.4044 0.4603 0.4568 0.4050 0.4053 0.4667 0.4681

Q2 0.4744 0.4732 0.5288 0.5302 0.4734 0.4709 0.5276 0.5297

Q3 0.5400 0.5366 0.5951 0.5964 0.5326 0.5332 0.5839 0.5814

Max 0.7270 0.7073 0.7810 0.7741 0.7107 0.7012 0.7466 0.7461

Min 107 0.2778 0.2830 0.3212 0.3160 0.2587 0.2640 0.2900 0.2930

Q1 0.4122 0.4147 0.4715 0.4730 0.4046 0.4074 0.4704 0.4694

Q2 0.4686 0.4669 0.5312 0.5330 0.4668 0.4658 0.5317 0.5315

Q3 0.5285 0.5281 0.5814 0.5802 0.5336 0.5356 0.5918 0.5912

Max 0.6789 0.6767 0.7231 0.7184 0.7031 0.6991 0.7574 0.7437

Min 177 0.2574 0.2565 0.3227 0.3215 0.2419 0.2359 0.2962 0.2983

Q1 0.4120 0.4122 0.4758 0.4769 0.4019 0.4011 0.4642 0.4621

Q2 0.4694 0.4705 0.5293 0.5304 0.4695 0.4683 0.5262 0.5262

Q3 0.5275 0.5279 0.5863 0.5878 0.5325 0.5339 0.5878 0.5896

Max 0.6838 0.6883 0.7339 0.7230 0.7158 0.7150 0.7433 0.7373

Min 213 0.2546 0.2575 0.2934 0.2923 0.2496 0.2475 0.2995 0.3027

Q1 0.4065 0.4076 0.4682 0.4656 0.4071 0.4067 0.4640 0.4625

Q2 0.4734 0.4728 0.5294 0.5305 0.4722 0.4721 0.5302 0.5318

Q3 0.5392 0.5381 0.5920 0.5897 0.5346 0.5361 0.5949 0.5954

Max 0.7074 0.7134 0.7452 0.7486 0.6900 0.6807 0.7465 0.7604

Min 221 0.2683 0.2668 0.3180 0.3232 0.2405 0.2443 0.3029 0.3089

Q1 0.4127 0.4103 0.4734 0.4742 0.4097 0.4101 0.4638 0.4660

Q2 0.4697 0.4706 0.5293 0.5304 0.4716 0.4699 0.5275 0.5280

Q3 0.5237 0.5267 0.5872 0.5879 0.5329 0.5344 0.5927 0.5916

Max 0.6874 0.6892 0.7261 0.7205 0.6844 0.6764 0.7521 0.7535

Min 229 0.2776 0.2799 0.3087 0.3207 0.2420 0.2498 0.3063 0.3100

Q1 0.4115 0.4117 0.4712 0.4735 0.4098 0.4099 0.4640 0.4664

Q2 0.4691 0.4693 0.5336 0.5326 0.4740 0.4704 0.5250 0.5266

Q3 0.5275 0.5307 0.5929 0.5919 0.5415 0.5392 0.5933 0.5881

Max 0.6908 0.6906 0.7156 0.7131 0.7092 0.6996 0.7428 0.7440

Min 232 0.2646 0.2583 0.3120 0.3167 0.2455 0.2460 0.2992 0.3054

Q1 0.4115 0.4128 0.4691 0.4715 0.4081 0.4076 0.4653 0.4654

Q2 0.4645 0.4647 0.5266 0.5270 0.4706 0.4687 0.5271 0.5287

Q3 0.5261 0.5286 0.5825 0.5795 0.5359 0.5362 0.5931 0.5896

Max 0.6710 0.6632 0.7303 0.7246 0.7111 0.7056 0.7419 0.7413

Min 238 0.2705 0.2723 0.3166 0.3211 0.2583 0.2599 0.2915 0.2935

Q1 0.4083 0.4102 0.4716 0.4720 0.4115 0.4117 0.4598 0.4624

Q2 0.4719 0.4699 0.5299 0.5323 0.4728 0.4766 0.5265 0.5296

Q3 0.5318 0.5342 0.5877 0.5878 0.5368 0.5364 0.5919 0.5927

Max 0.6885 0.6902 0.7264 0.7248 0.7194 0.7173 0.7729 0.7675
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Polynomial Kernel Gaussian Kernel

Normal Normal Diabetes Diabetes Normal Normal Diabetes Diabetes

Prediction Pathway Mean Median Mean Median Mean Median Mean Median

Min 248 0.2678 0.2709 0.3110 0.3183 0.2387 0.2342 0.3001 0.3029

Q1 0.4137 0.4147 0.4719 0.4736 0.4066 0.4062 0.4679 0.4677

Q2 0.4716 0.4719 0.5274 0.5267 0.4693 0.4695 0.5293 0.5301

Q3 0.5270 0.5258 0.5826 0.5856 0.5367 0.5372 0.5915 0.5919

Max 0.6723 0.6776 0.7240 0.7214 0.6987 0.6890 0.7553 0.7532

Min 249 0.2673 0.2645 0.3199 0.3265 0.2503 0.2508 0.2966 0.3003

Q1 0.4106 0.4084 0.4730 0.4744 0.4031 0.4031 0.4652 0.4642

Q2 0.4742 0.4768 0.5298 0.5286 0.4705 0.4715 0.5304 0.5294

Q3 0.5287 0.5293 0.5870 0.5872 0.5344 0.5338 0.5960 0.5937

Max 0.6844 0.6832 0.7319 0.7349 0.7099 0.6982 0.7471 0.7446

Min 253 0.2412 0.2417 0.3039 0.3098 0.2500 0.2541 0.2943 0.3015

Q1 0.4059 0.4045 0.4734 0.4747 0.4038 0.4051 0.4693 0.4695

Q2 0.4729 0.4689 0.5324 0.5321 0.4732 0.4723 0.5290 0.5283

Q3 0.5315 0.5325 0.5905 0.5884 0.5366 0.5364 0.5918 0.5903

Max 0.6971 0.6898 0.7310 0.7309 0.7042 0.7112 0.7471 0.7440
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Polynomial and Point-mass Gaussian and Point-mass

Pathway π = 0.1 0.3 0.5 0.7 0.9 π = 0.1 0.3 0.5 0.7 0.9

27 -89.6097 -84.3250 -93.6767 -100.8029 -27.4078 -92.2183 -83.9393 -98.1210 -101.3295 -36.9661

32 -74.5988 -91.1763 -89.7667 -94.2849 -45.4785 -82.3963 -85.7547 -93.7509 -101.2650 -40.1362

35 -82.1249 -79.4311 -91.2623 -89.6418 -57.7610 -75.0304 -82.6301 -93.3203 -96.7034 -51.7525

36 -76.7462 -92.6822 -91.2217 -96.7731 -29.3416 -85.9767 -82.1339 -90.6975 -101.9851 -29.4243

39 -78.9130 -86.8862 -96.6282 -87.1791 -36.0094 -68.1786 -85.5657 -91.6920 -104.4558 -37.1595

43 -77.6200 -75.4491 -95.2109 -87.3411 -42.6807 -92.6393 -91.3018 -83.4547 -102.4193 -44.6771

44 -79.2289 -78.6459 -99.0842 -105.0286 -36.8892 -75.2051 -85.0127 -94.5287 -92.7939 -43.0213

50 -77.0942 -91.6952 -106.4643 -93.4494 -24.2755 -74.6403 -83.8038 -104.2355 -96.9197 -29.8003

56 -73.0555 -86.2489 -95.9689 -103.5378 -33.4283 -75.6710 -81.0434 -104.0168 -102.5679 -33.6712

60 -76.8654 -84.4777 -86.9530 -96.6614 -35.5391 -80.7878 -92.6847 -98.7081 -101.9840 -30.2318

63 -78.5407 -82.2566 -94.9332 -102.3404 -37.4382 -85.8454 -86.7251 -89.2277 -98.9844 -56.9666

102 -73.9452 -77.4506 -94.1905 -100.3804 -16.6375 -70.0733 -90.2126 -101.1307 -101.6901 -24.0634

104 -71.0426 -85.9550 -84.1409 -101.0087 -37.4511 -72.1228 -85.0801 -99.8887 -95.0613 -45.4940

107 -81.3486 -87.9075 -95.7056 -99.9949 -50.3171 -92.3075 -77.3575 -98.2703 -96.4968 -32.6405

177 -83.1158 -98.0737 -89.1788 -100.2707 -41.4139 -77.7612 -85.8690 -92.3877 -101.9098 -37.0035

213 -81.4581 -88.4611 -104.8559 -82.7978 -46.4415 -85.0286 -87.4152 -86.7290 -106.0232 -46.9100

221 -75.6350 -82.1727 -94.2206 -112.5444 -53.3895 -81.3517 -78.9361 -101.0304 -109.0720 -49.8237

229 -79.4675 -81.9152 -101.5734 -107.7748 -38.1227 -76.3921 -80.6297 -90.5961 -101.4590 -28.5732

232 -77.1862 -87.7314 -91.2930 -107.0081 -74.2807 -82.7225 -97.2582 -95.3039 -100.5103 -36.5818

238 -72.2161 -81.3961 -94.9845 -86.6786 -36.0718 -71.3444 -92.1969 -97.6423 -99.1545 -46.4910

248 -75.1838 -85.1340 -96.0070 -98.6222 -37.4782 -79.4949 -78.2865 -102.4643 -106.0986 -31.9894

249 -80.2707 -77.6329 -99.2291 -100.2209 -47.7806 -77.4326 -93.4519 -101.1277 -108.7311 -56.7668

253 -82.3137 -84.6110 -96.3320 -102.3442 -29.9983 -74.6661 -89.4633 -89.2047 -92.9129 -39.9102

Table 8: Log-likelihood value based on the mixture of selected kernels and point-mass density,

π=the mixture proportion.
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Polynomial and Constant Gaussian and Constant

Pathway π = 0.1 0.3 0.5 0.7 0.9 π = 0.1 0.3 0.5 0.7 0.9

27 -77.3526 -76.4807 -67.6022 -67.2045 -41.0632 -77.3813 -78.6254 -75.0449 -61.8915 -35.7982

32 -75.8610 -77.6761 -73.0162 -63.8918 -28.4798 -76.3342 -75.4908 -75.4959 -60.0886 -31.7715

35 -76.2100 -78.2027 -73.8664 -66.1623 -35.9609 -81.6746 -77.9857 -75.0873 -65.9640 -26.8334

36 -78.4893 -78.9714 -77.5009 -74.7068 -28.2839 -77.3073 -78.0263 -76.3573 -72.4890 -28.2570

39 -77.2743 -75.9493 -76.9360 -62.4703 -35.1099 -78.7436 -76.8563 -76.3170 -71.7533 -23.3679

43 -77.6872 -78.9708 -74.3449 -70.4164 -13.6850 -78.5912 -80.4497 -76.1053 -59.6081 -24.5087

44 -78.2807 -80.7319 -84.4580 -72.3985 -15.5506 -78.7976 -79.5194 -78.7301 -70.7466 -18.1691

50 -77.9895 -77.1855 -78.2188 -70.6400 -18.1024 -78.4341 -75.9071 -75.9879 -69.1629 -26.9938

56 -77.9876 -74.4020 -71.0717 -69.4398 -30.9465 -78.2774 -75.7292 -73.6655 -69.6070 -36.1730

60 -77.9563 -74.3952 -78.3353 -71.9692 -30.2357 -78.4729 -76.5551 -75.5927 -68.5790 -20.2411

63 -78.0331 -76.4274 -73.0871 -62.5960 -31.0437 -77.1595 -76.0394 -79.0706 -69.2809 -34.6454

102 -77.0453 -77.6759 -72.1555 -70.9117 -26.4245 -78.4785 -75.4058 -68.1873 -66.5453 -25.2462

104 -76.6318 -77.2742 -73.1585 -64.3935 -31.8190 -76.8476 -76.0488 -77.7017 -63.2991 -36.2175

107 -81.2087 -81.5950 -82.1734 -69.5193 -29.3148 -78.1376 -78.4586 -76.9339 -77.3053 -18.4683

177 -79.4237 -81.1129 -82.9973 -68.5479 -31.4826 -79.5161 -82.2463 -85.9490 -82.0351 -30.5218

213 -78.0967 -76.8449 -74.1528 -70.1644 -41.3122 -78.4815 -75.4670 -74.0991 -68.2019 -37.7294

221 -79.8148 -86.7610 -91.7771 -91.6506 -35.2403 -79.4049 -87.2871 -89.5863 -91.6451 -32.1177

229 -77.8063 -76.5115 -73.6989 -66.9360 -24.0074 -75.7090 -78.5973 -76.4080 -64.6714 -19.0580

232 -78.0321 -82.9603 -90.7997 -73.8113 -20.9800 -80.8000 -82.0010 -83.5842 -84.3040 -27.5046

238 -76.9709 -75.1968 -79.9104 -66.4742 -40.5238 -76.3860 -80.5384 -78.6250 -67.6159 -28.4909

248 -78.1180 -81.4038 -84.1633 -68.4664 -35.6159 -77.6021 -80.0115 -77.7066 -70.4652 -29.9161

249 -78.4498 -78.6412 -82.6710 -78.0350 -17.1158 -78.2846 -76.3153 -80.6119 -85.7281 -14.1024

253 -79.1677 -78.0527 -73.6698 -70.8110 -32.3504 -77.2881 -75.2101 -73.4178 -66.7466 -33.1872

Table 9: Log-likelihood value based on the mixture of selected kernels and constant covari-

ance structure, π=the mixture proportion.
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Figure 1: MCMC trace plots and histograms based on the Gaussian kernel using pathway
229
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Figure 2: MCMC trace plots and histograms based on the Gaussian kernel using pathway
36
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Figure 3: MCMC trace plots and histograms based on the mixture of the Gaussian kernel
and constant covariance matrix using pathway 229
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Figure 4: MCMC trace plots and histograms based on the mixture of the Gaussian kernel
and constant covariance matrix using pathway 36
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