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Simple Physical Approaches to Complex Biological Systems

Andrew T. Fenley

(ABSTRACT)

Properly representing the principle physical interactions of complex biological systems is
paramount for building powerful, yet simple models. As an in depth look into different
biological systems at different scales, multiple models are presented. At the molecular scale,
an analytical solution to the (linearized) Poisson-Boltzmann equation for the electrostatic
potential of any size biomolecule is derived using spherical geometry. The solution is tested
both on an ideal sphere relative to an exact solution and on a multitude of biomolecules
relative to a numerical solution. In all cases, the bulk of the error is within thermal noise. The
computational power of the solution is demonstrated by finding the electrostatic potential
at the surface of a viral capsid that is nearly half a million atoms in size.

Next, a model of the nucleosome using simplified geometry is presented. This system is a
complex of protein and DNA and acts as the first level of DNA compaction inside the nucleus
of eukaryotes. The analytical model reveals a mechanism for controlling the stability of the
nucleosome via changes to the total charge of the protein globular core. The analytical model
is verified by a computational study on the stability change when the charge of individual
residues is altered.

Finally, a multiple model approach is taken to study bacteria that are capable of different
responses depending on the size of their surrounding colony. The first model is capable
of determining how the system propagates the information about the colony size to those
specific genes that control the concentration of a master regulatory protein. A second model
is used to analyze the direct RNA interference mechanism the cell employs to tune the
available gene transcripts of the master regulatory protein, i.e. small RNA - messenger RNA
regulation. This model provides a possible explanation for puzzling experimentally measured
phenotypic responses.
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Chapter 1

Introduction

At any scale, biological systems are rich in a multitude of interactions. From the ‘wiggling

and jiggling’ of small molecules to fully functional organisms and everything in between,

all of these systems are complex enough that a complete description of every interaction

involved is intractable. The key in studying these complex biological systems is determining

those physical interactions that govern the critical behaviors of the systems. And from these

physical interactions, construct a model ‘as simple as possible, but not simpler’.

In this work, we discuss three complex biological systems, each at a different scale, and

present analytical and computational models that elucidate the important underlying physics

for each system. The first topic is a study on the 3-Dimensional structure of biomolecules

and how this structure determines specific functional attributes of the biomolecule, i.e. the

electrostatic potential. The second topic is an analysis of the stability of the nucleosome –

the fundamental unit in DNA compaction inside a nucleus. The final topic is an in depth

look at the quorum sensing regulatory network in Vibrio harveyi and Vibrio cholerae and

how small RNA regulation plays a crucial role in the regulatory network.
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1.1 Introduction to Electrostatics of Biomolecules

Many important interactions at the molecular level are directed by electrostatic forces. Since

the introduction of atomic resolution structures of myoglobin [1] and hemoglobin [2] from X-

ray crystallography and the foundation of the Protein DataBank, a plethora of computation

tools have been produced to analyze these freely available structures [3–7]. Here we focus

on determining the electrostatic potential at and near the surface of large biomolecules. The

potential can then be used to find electrostatic regions of interest across the surface that

might be involved with the function of the biomolecule [8–12].

Analytical approximations to fundamental equations of continuum electrostatics on simple

shapes can lead to computationally inexpensive prescriptions for calculating electrostatic

properties of realistic molecules. In what follows, we derive a closed form, analytical approx-

imation to the Poisson equation for an arbitrary distribution of point charges and a spherical

dielectric boundary. We then apply this solution to realistic biomolecules in a computation-

ally efficient manner. This allows for the computation of the electrostatic potential produced

by molecular charge distributions under realistic solvation conditions which is essential for a

variety of applications.

Results: The main result is a simple, parameter-free formula which defines continuous

electrostatic potential everywhere in space and is obtained from the exact infinite series

solution [13] by an approximate summation method that avoids truncating the infinite series.

We show that keeping all the terms from the infinite series proves critical for the accuracy

of this approximation, which is fully controllable for the sphere.

The accuracy of the analytical approximation is assessed by comparisons with the exact

solution for two unit charges placed inside a spherical boundary separating the solute of
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dielectric 1 and the solvent of dielectric 80. The largest errors occur when the source charges

are closest to the dielectric boundary and the test charge is closest to either of the sources.

For the source charges placed within 2 Å from the boundary, and the test surface located

on the boundary, the root-mean-square error of the approximate potential is less than 0.1

kcal/mol/|e|(per unit test charge). The maximum error is 0.4 kcal/mol/|e|. These results

correspond to the simplest, first-order formula.

Next, we tested the analytical approximation on actual biomolecules, which are generally

geometrically different but topologically similar to spheres. Since biomolecules are usually in

ionic solutions, the effects of mobile ions are included at the Debye-Hückel level. The accu-

racy of the resulting closed-form expressions for electrostatic potential are assessed through

comparisons with numerical Poisson-Boltzmann (NPB) reference solutions on a test set of

580 representative biomolecular structures under typical conditions of aqueous solvation.

For each structure, the deviation from the reference is computed for a large number of

test points placed near the dielectric boundary (molecular surface). The accuracy of the

approximation, averaged over all test points in each structure is within 0.6 kcal/mol/|e| ∼kT

per unit charge for all structures in the test set. For 91.5% of the individual test points,

the deviation from the NPB potential is within 0.6 kcal/mol/|e|. The deviations from the

reference decrease with increasing distance from the dielectric boundary: the approximation

is asymptotically exact far away from the source charges.

Deviation of the over-all shape of a structure from ideal spherical does not, by itself, appear

to necessitate decreased accuracy of the approximation. The largest deviations from the NPB

reference are found inside very deep and narrow indentations that occur on the dielectric

boundaries of some structures. The dimensions of these pockets of locally highly negative

curvature are comparable to the size of a water molecule; the applicability of a continuum

dielectric model in these regions is discussed. The maximum deviations from the NPB are

3



reduced substantially when the boundary is smoothed by using a larger probe radius (3 Å) to

generate the molecular surface. A detailed accuracy analysis is presented for several proteins

of various shapes, including lysozyme whose surface features a functionally relevant region

of negative curvature.

The proposed analytical model is computationally inexpensive; this strength of the approach

is demonstrated by computing and analyzing the electrostatic potential generated by a full

capsid of the Tobacco Ring Spot Virus at atomic resolution (500,000 atoms). An analysis

of the electrostatic potential of the inner surface of the capsid reveals what might be an

RNA binding pocket. These results are generated with the modest computational power of

a desktop PC.

Contributions We present the software package GEM to the community in a variety of

pre-compiled executables that can be found at the following link: http://people.cs.vt.

edu/~onufriev/software.php. Published versions, in the Journal of Chemical Physics, of

the information presented in Chapters 2 and 3 can be found at the following links: http:

//dx.doi.org/10.1063/1.2956497 and http://dx.doi.org/10.1063/1.2956499 [14, 15].

1.2 Introduction to the Nucleosome Stability Analysis

Since the discovery of the structure of DNA [16] and the structure of chromatin [17–19],

the hunt has been on for trying to solve exactly how eukaryotic cells manipulate access to

any region of their DNA. Eukaryotes store their DNA inside a nucleus, which is about one

micron in diameter. However, the DNA itself can be over a meter in length depending on

the organism. The high level of compaction the DNA must undergo to fit inside the nucleus

is critical for the cell. The first level of compaction consists of the DNA repeatedly wrapping

4



a couple of times around beads of proteins called histones. The result looks like a string of

pearls, where the pearls are the nucleosomes (histones with wrapped DNA) and the string

connecting the nucleosomes are linker DNA. Understanding how the cell controls where DNA

wraps and unwraps from the histones is important for studying the transcription of certain

genes, for example those genes whose RNA polymerase binding sites would be occluded when

wrapped around the histones.

Results The primary result is a quantitative model of the wrapping and unwrapping of

the DNA around the histone core of the nucleosome that suggests a mechanism by which this

transition can be controlled: alteration of the charge state of the globular histone core. The

mechanism is relevant to several classes of post-translational modifications such as histone

acetylation and phosphorylation; several specific scenarios consistent with recent in vivo ex-

periments are considered. The model integrates a description based on an idealized geometry

with one based on the atomistic structure of the nucleosome, and the model consistently ac-

counts for both the electrostatic and non-electrostatic contributions to the nucleosome free

energy.

Under physiological conditions, isolated nucleosomes are predicted to be very stable (38± 7

kcal/mol). However, a decrease in the charge of the globular histone core by one unit charge,

for example due to acetylation of a single lysine residue, can lead to a significant decrease in

the strength of association with its DNA. In contrast to the globular histone core, comparable

changes in the charge state of the histone tail regions have relatively little effect on the

nucleosome’s stability. The combination of high stability and sensitivity explains how the

nucleosome is able to satisfy the seemingly contradictory requirements for thermodynamic

stability while allowing quick access to its DNA informational content when needed by

specific cellular processes such as transcription.
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Finally, we computed the relative change in free energy due to the post-translational modifi-

cations (both acetylation and phosphorylation) of all the lysine, threonine, and serine residues

inside the globular histone core using APBS, a numeric solver of the Poisson-Boltzmann

equation [5]. Out of the nearly one hundred residues modified, we found only a handful that

would predict a complete unwrapping of the DNA from the globular histone core. How-

ever, a majority of the modified sites alter the available free energy in a way consistent with

loosening the DNA (without unwrapping it completely) around the globular histone core.

Contributions We present a possible mechanism for controlling the stability of the nu-

cleosome and couple this with a comprehensive list of the predicted effects from the charge

altering post-translational modifications. The bulk of the work presented in Chapter 4 is

currently in press with the Biophysical Journal.

1.3 Introduction to Quorum Sensing and sRNA Reg-

ulation

Certain bacteria are able to orchestrate the starting and stopping of critical functions de-

pending on the size of the bacterial colony. These bacteria are known as quorum sensing

bacteria [20]. The bacteria are constantly producing, secreting, and detecting small signal-

ing molecules called autoinducers [21–23]. When the concentration of autoinducers reaches a

critical amount, the cells in the colony turn on a particular function, for example the bacteria

will produce light. Currently, there is a large effort to discover and learn the characteris-

tics of all the components in the regulatory gene network of the quorum sensing pathway,

particularly in the bacteria Vibrio harveyi and Vibrio cholerae [24–28].

Vibrio harveyi and Vibrio cholerae have quorum-sensing pathways with similar design and
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highly homologous components including multiple small RNAs (sRNAs). However, the asso-

ciated luminescence phenotypes of mutants with sRNA deletions differ dramatically: in V.

harveyi, the sRNAs act additively; however, in V. cholerae, the sRNAs act redundantly. Fur-

thermore, there are striking differences in the luminescence phenotypes for different pathway

mutants in V. harveyi and V. cholerae; however these differences have not been connected

with the observed differences for the sRNA deletion mutant strains in these bacteria.

Results The first result is a framework for analyzing luminescence regulation during quo-

rum sensing in the bioluminescent bacterium Vibrio harveyi. Using a simplified model for

signal transduction in the quorum sensing pathway, we identify key dimensionless parame-

ters that control the system’s response. These parameters are estimated using experimental

data on luminescence phenotypes for different mutant strains. The corresponding model

predictions are consistent with results from other experiments which did not serve as in-

puts for determining model parameters. Furthermore, the proposed framework leads to

novel testable predictions for luminescence phenotypes and for responses of the network to

different perturbations.

Next, we constructed a model for quorum-sensing luminescence phenotypes focusing on the

interactions of multiple sRNAs with their target mRNA. Within our model, we find that one

key parameter – the relative fold-change in protein concentration necessary for luminescence

activation in V. harveyi and V. cholerae – can control whether the sRNAs appear to act

additively or redundantly. For specific parameter choices, we find that differences in this

key parameter can also explain hitherto unconnected luminescence phenotypes differences

for various pathway mutants in V. harveyi and V. cholerae. The model can thus provide

a unifying explanation for observed differences in luminescence phenotypes and can also be

used to make testable predictions for future experiments.
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Finally, we present a comprehensive framework for analyzing small RNA (sRNA) regulation

of an mRNA. We begin with a mean-field description of the interaction for a single sRNA

and show how it could be generalized for multiple sRNAs. Within the mean-field approach,

we identify key dimensionless parameters that control the system’s response. Then we look

at how to solve the same problem from a Master Equation approach. Due to the complexity

of the interactions, we focus on the limit where the mean concentration of the mRNA is one

copy number per cell. We are able to obtain survival probabilities of the mRNA for when

there is one specie of sRNA present and when there are two species present. Similar to the

mean-field description, we identify key dimensionless parameters that control the survival

probabilities.

Contributions Within the context of the models, we present a multitude of experimentally

testable predictions at different levels within the quorum sensing regulatory pathway. A

published version, in the journal Physical Biology, of the information presented in Chapter 5

can be found at the following link: http://dx.doi.org/10.1088/1478-3975/6/4/046008

[29].

1.4 Organization of this Thesis

The organization of the rest of this thesis is as follows:

1. In Chapters 2 and 3, we discuss analytical solutions for the electrostatic potential

associated with biomolecules. The solutions are implemented in a software package

that allows for the visualization of the electrostatic potential at and near the surface of

any biomolecule. Recently, the computation time of the analytical solutions has been

dramatically sped up by implementing them on graphical processing units (GPUs) [30].
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2. In Chapter 4, we discuss the stability of the nucleosome and suggest a mechanism cells

might use to alter the stability to facilitate gene transcription. The work is based on

a hybrid model that melds analytical solutions of simplified geometry with numerical

analysis on the fully atomistic X-ray crystallography structure of the nucleosome.

3. In Chapters 5 and 6, we discuss the quorum sensing regulatory pathways of Vibrio

harveyi and Vibrio cholerae. Particularly, Chapter 5 focuses on the input section of

the regulatory pathway – where the machinery necessary for tracking the size of the

bacterial colony is located. Chapter 6 is an analysis of the downstream section of the

pathway – where regulation of the global regulatory protein occurs.

4. In Chapter 7, we further explore mean-field and stochastic approaches for modeling

small RNA regulation, which is at the core of the quorum sensing regulatory pathway

discussed in Chapters 5 and 6.

5. In Chapter 8, we give a brief conclusion of what has been done in this thesis and

discuss the contributions of this work to the fields of biomolecular electrostatics, the

nucleosome, and quorum sensing.
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Chapter 2

An Analytic Approach to Computing
Biomolecular Electrostatic Potential
I: Derivation and Analysis

2.1 Introduction

Electrostatic interactions are often a key factor in determining properties of biomolecules

[8–12], including their functions such as: catalytic activity [31, 32], ligand binding [33, 34],

complex formation [35], proton transport [36], as well as structure and stability [37, 38].

In-depth studies of electrostatics-based phenomena in macromolecular systems require the

ability to compute the potentials and fields efficiently and accurately on the atomic scale

[9, 39]. Within the framework of the so-called implicit or continuum solvent model [40–42],

the Poisson-Boltzmann (PB) approach is an exact way to compute the electrostatic potential

ϕ(r) produced by a molecular charge distribution ρ(r). In many practical applications its

linearized form is used, in which case the following equation or its equivalent must be solved:

∇ · [ϵ(r)∇ϕ(r)] = −4πρ(r) + κ2ϵ(r)ϕ(r). (2.1.1)
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where ϵ(r) is the position-dependent dielectric constant, and the electrostatic screening effects

of monovalent salt enter via the Debye-Hückel screening parameter κ.

Historically, the first quantitative approaches to computation and analysis of the electrostatic

potential produced by biomolecular charge distributions relied on analytical approximations

[13, 43] to equation (4.2.1), such as the famous model due to Kirkwood [13]. The use of these

models led to unique insights into a number of important biophysical problems, for example

protein titration [44] and protein folding [45]. The limited accuracy resulting from the use

of simplified shapes such as a sphere to represent the true complexity of a molecular surface

was probably thought to be an inevitable drawback of these models and thus prompted the

development of numerical approaches to solving the PB equation.

A prototypical numerical Poisson-Boltzmann (NPB) method works by placing the molecule

inside a bounding box or surface, defining a 3D grid of points within it, and then solving for

the ϕ(r) at every grid point through iterating a set of self-consistent equations. Currently

available tools [3–7] based on these methods produce accurate potential fields ϕ(r) for any

realistic charge distribution and molecular shape. The errors of these numerical solutions can

be controlled, and, in principle, made arbitrarily small (albeit at an unrealistic computational

cost), by adjusting parameters of the numerical models such as the finite difference grid

resolution and the size of the bounding box.

The NPB approaches have become the de-facto accuracy standard in the field [46]. Despite

their widespread acceptance, the methodology has several drawbacks relative to alternative

analytical approaches. From the practical standpoint, the NPB methods are fundamentally

more complex and generally more expensive computationally compared to closed-form an-

alytical expressions. These differences are especially pronounced in dynamical simulation,

where availability of analytical energy functions is particulary advantageous. Generally, the

NPB framework does not offer as much freedom and ease in exploring parameter space of
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simple model systems and toy models, and in making qualitative estimates. This ability

may be critical for studies aimed at certain fundamental, system non-specific properties of

biomolecular systems [45].

The fundamental difference between NPB and analytical approaches such as the Kirkwood

model is seen in the limiting case when ϕ(r) needs to be estimated at a single point in space:

the NPB methodology still requires that ϕ(r) is found simultaneously at many points of a

finite spatial domain, for example at every node of a 3D cubic grid or 2D surface [47, 48]. The

computational complexity of finding ϕ(r) combined with technical difficulties associated with

computing forces due to changes in the molecular surface motivated the search for alternative

methods to be used in Molecular Dynamics (MD) to estimate electrostatic forces within the

implicit solvent framework.

While a number of promising models were proposed [49–52], perhaps the most successful of

these analytical alternatives is the generalized Born (GB) approximation pioneered by C. Still

around 1990 [53]. The model offers an analytical prescription for estimating the electrostatic

part of the solvation free energy. The GB’s original formulation applies to the zero ionic

strength case (the Poisson equation). Later, a heuristic prescription was introduced that

successfully adapted the GB approximation to handle the non-zero salt case [54].

Unlike the infinite-series Kirkwood’s solution [13], the GB expression is a mathematically

simple, closed-form formula. Importantly, the GB approximation is also aimed at working for

arbitrary shapes, not just spherical as in Kirkwood’s model. The algorithmic simplicity and

computational efficiency of the original GB model, combined with accuracy improvements

have made it the method of choice in implicit solvent MD [40, 42, 55–75], although promising

NPB-based alternatives have also been recently tested [7, 76].

Despite the successes of the GB approximation, the model has its own serious drawbacks.

First, fundamentally, the GB model does not, even in principle, permit a definition of con-
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tinuous electrostatic potential everywhere in space: at best, it can only be used to define

ϕ(r) at the centers of the atoms [77]. This property is at odds with the very physical nature

of electrostatic potential. In practice, the ability to compute the potential at any given point

is critical for many applications. Second, unlike many important approximate approaches

in Physics, for example the perturbation theory, or the NPB approach itself, the GB model

is heuristic in nature and does not have an obvious “handle” that controls its accuracy, at

least in principle. As a result, the physical origins of the observed deviations from the NPB

reference are hard to trace [78].

The goal of this work is to overcome these drawbacks and derive a simple, analytical approx-

imation of the Poisson equation that is closed-form and controllable. Ideally, the approxi-

mation should define physically admissible electrostatic potential everywhere in space, and

should provide a level of accuracy acceptable in practice.

In Chapter 2 of the thesis, we derive several candidates for such an approximation and

thoroughly examine their behavior and physical nature on a simple geometry (sphere) for

which an exact reference solution of the Poisson problem is available. We propose a candidate

approximation for realistic biomolecular shapes and show how its parameters should be

redefined once the spherical symmetry is abandoned.

In Chapter 3, we adapt the proposed approximation to handling the screening effects of salt

and thoroughly test the resulting model on a large number of realistic biomolecules. We then

demonstrate how the model might be useful in a concrete problem – a search for putative

RNA binding sites on the surface of a viral capsid.
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2.2 Derivation of the Analytical Models

The geometric set-up of the boundary value problem for the Poisson equation, equation

(4.2.1) with κ = 0, is shown in figure 2.1.

εinεout
i

q

ri

A

θ

r

d

φi

II I

i

II

Figure 2.1: The boundary value problem for equation (4.2.1). A spherical boundary separates
the inside region I, dielectric ϵin, from the outside region II, dielectric ϵout. The point of
observation is specified by its spherical coordinates (r, θ); the source charge is at (ri, 0).
Here A is the radius of the sphere.

We follow Kirkwood [13] to obtain the exact infinite-series expressions for ϕ(r) everywhere

in space. The infinite-series solutions for region I (inside) is worked out in detail in reference

13, with β = ϵin/ϵout:

ϕI
i =

1

ϵin

qi
di

+

(
1

ϵout
− 1

ϵin

)
qi
A

∞∑
l=0

[
1

1 + l
l+1

β

](rir
A2

)l
Pl cos θ (2.2.1)

The solution for region II is worked out in detail in section 2.5 at the end of this chapter.

To summarize, we have arrived at the following solution to the Poisson equation for region

II:

ϕII
i = −qi

r

(
1

ϵin
− 1

ϵout

) ∞∑
l=0

[
1

1 + l
l+1

β

](ri
r

)l
Pl (cos θ) +

qi
r

1

ϵin

∞∑
l=0

(ri
r

)l
Pl (cos θ) (2.2.2)
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Equations (2.2.1) and (2.2.2) satisfy the usual [79] continuity conditions at the boundary:

ϕI
i (A) = ϕII

i (A) (2.2.3)

ϵin
∂ϕI

i

∂r
|A = ϵout

∂ϕII
i

∂r
|A (2.2.4)

The above solutions, equations (2.2.1) and (2.2.2), of the Poisson equation are valuable since

they are exact. Unfortunately, they are not very useful in practice since each one is dependent

on two infinite series that converge slowly for charge distributions relevant to biomolecules.

For example, the infinite series in equation (2.2.2) converge slowly when (ri/r) → 1. For

the potential near the molecular surface, the ratio being close to 1 is a typical case in real

molecules since charged groups are rarely buried due to a high desolvation penalty. As

will be discussed below, tens or even hundreds of terms might need to be kept in order

to approach well-converged sums. Thus, for practical applications where speed is a factor,

something different needs to be done. Also, the infinite series itself or its partial sum is not

particularly helpful in illuminating the physical properties of ϕ(r). A simple, closed-form

approximation that retains the key physics of the Poisson equation embedded in equations

(2.2.1) and (2.2.2) is what we are looking for. Below we present the detailed derivations for

equation (2.2.2), and just list the end result derived for equation (2.2.1).

As discussed above, we need to avoid truncating the infinite series. Instead, we keep the

l = 0 term unchanged, and approximate l/(l+1) ≈ const = α for all l > 0 terms in the first

of the two infinite sums in equation (2.2.2). The approximation is both mathematically and

physically motivated.

Mathematically, the approximation recasts the infinite series into a form that can be summed

exactly into a closed-form, simple formula. The specific algebraic form of α is motivated by
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a relatively small variation of l/(l + 1) for any l > 0: 1/2 ≤ l/(l + 1) ≤ 1.

Physically, this approximation maintains a dependence on the constant β, which encapsu-

lates a specific contribution of the dielectric interface to the potential. While one can easily

construct other algebraically “simple” approximations that would provide equal mathemat-

ical benefit, e.g. (1 + (l/(l + 1))β) ≈ const = α or (1 + (l/(l + 1))β)−1 ≈ const = α, these

would lose the explicit dependency on β and thus were not considered.

Upon setting l/(l + 1) ≈ const = α for all l > 0, the infinite series in equation (2.2.2) is

approximated as:

∞∑
l=0

[
1

1 + l
l+1

β

](ri
r

)l
Pl (cos θ) ≈ 1 +

1

1 + αβ

∞∑
l=1

(ri
r

)l
Pl(cos θ)

≈ 1

1 + αβ

[
∞∑
l=0

(ri
r

)l
Pl(cos θ) + αβ

]
(2.2.5)

We now define t = (ri/r) and use the following identity,

∞∑
l=0

tlPl(cos θ) =
1√

1 + t2 − 2t cos θ
(2.2.6)

to approximate the first term in equation (2.2.2) as

1

1 + αβ

[
∞∑
l=0

tlPl(cos θ) + αβ

]
≈ 1

1 + αβ

[
1√

1 + t2 − 2t cos θ
+ αβ

]
(2.2.7)

Since 1/2 ≤ l/(l+1) ≤ 1 for l > 0, a reasonable first guess for α is the middle of the interval,

α = 0.75. Applying the same identity to the second infinite sum in equation (2.2.2) and

combining the two terms yields the following closed form approximate expression for ϕII
i :
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ϕII
i ≈ −qi

r

(
1

ϵin
− 1

ϵout

)
1

1 + αβ

[
1√

1 + t2 − 2t cos θ
+ αβ

]
+

qi
r

1

ϵin

1√
1 + t2 − 2t cos θ

(2.2.8)

After algebraic manipulations, we arrive at the following analytical form for the electrostatic

potential outside of the sphere, region II in figure (2.1). The corresponding expression for

the inside space, region I is obtained in the same fashion. Below is the combined key result

of this work:

ϕI
i ≈ 1

ϵin

qi
di

− qi
A

(
1

ϵin
− 1

ϵout

)
1

1 + αβ

[
A2√

(A2 − r2i ) (A
2 − r2) + A2d2i

+ αβ

]
(2.2.9)

ϕII
i ≈ qi

ϵout

1

(1 + αβ)

[
(1 + α)

di
− α(1− β)

r

]
(2.2.10)

Since only the first term, l = 0, in the exact infinite sums was kept intact throughout the

derivations, the above expression can be referred to as the first-order approximation, though

it shall not be confused with truncating the infinite sums. To demonstrate how the accuracy

of this approximation can be controlled, at least in principle, we extend equation (2.2.7) to

include the next two terms exactly. Due to the specific symmetry of the Legendre polyno-

mial, retaining the l = 1 term exactly improves the accuracy only for antisymmetric charge

distributions: ρ(θ) = −ρ(−θ), and the l = 2 term improves the accuracy for symmetric

charge distributions: ρ(θ) = ρ(−θ). Thus, the next order that is expected to produce overall

improvements in accuracy is the third-order according to the terminology just introduced:
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∞∑
l=0

tlPl(cos θ)

1 + l
l+1

β
≈ 1

1 + αβ

[
1√

1 + t2 − 2t cos θ
+ αβ +

β(α− 1/2)

1 + 1/2β
tP1 +

β(α− 2/3)

1 + 2/3β
t2P2

]
(2.2.11)

After similar algebraic manipulations as before, we arrive at the following third-order ex-

pression for the outside potential.

ϕII
i ≈ qi

ϵout

1

(1 + αβ)

[
(1 + α)

di
− α(1− β)

r
− (α− 1/2)(1− β)

r2(1 + 1/2β)
riP1 +

(α− 2/3)(1− β)

r3(1 + 2/3β)
r2iP2

]
(2.2.12)

An analogous third-order expression exists for the inside solution, but it will not be used in

this work. An optimal α for the third-order formula must lie in the interval 3/4 ≤ α ≤ 1;

we choose the middle of the interval, α = 0.875, as a reasonable initial guess.

Higher order approximations can be defined using the approach described above. Equation

(2.2.13), shown below, represents the exactly summable, kth-order approximation with k/(k+

1) ≤ α ≤ 1 and k ≥ 1.

∞∑
l=0

[
1

1 + l
l+1

β

]
tlPl (cos θ) ≈

k−1∑
l=0

[
1

1 + l
l+1

β

]
tlPl (cos θ) +

∞∑
l=k

[
1

1 + αβ

]
tlPl(cos θ)

=
1

1 + αβ

[
1√

1 + t2 − 2t cos θ

]
+

k−1∑
l=0

[
1

1 + l
l+1

β
− 1

1 + αβ

]
tlPl(cos θ) (2.2.13)

2.2.1 Properties of the analytical approximations

We now establish some basic properties of the analytical approximations we have just derived.
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Relation to the Poisson Equation Each of the approximate formulae just derived satisfy

the Poisson equation. For the first-order equation (2.2.10), this is seen immediately: the

expression is the sum of two Coulomb potentials multiplied by constant prefactors. For

equation (2.2.9) one can verify explicitly that ϵin∇2ϕI
i (r) = −4πδ(r − ri). The statement

remains true for all orders of the approximation. This is because each term in the original

infinite series solution satisfies the Poisson equation; the approximate expression contains

the same terms, each multiplied by its own constant.

At first glance, the fact that the analytical approximations also satisfy the Poisson equation

may seem to be at odds with the uniqueness theorem that guarantees just one solution of

the Poisson problem for the specific boundary conditions. Careful examination of the behav-

ior of our analytical approximations at the boundary resolves the apparent paradox: these

analytical approximations satisfy only one of the two continuity equations at the boundary,

specifically equation (2.2.3). The other condition, equation (2.2.4) is satisfied only approx-

imately; (ϵin
∂ϕI

i

∂r
|A −ϵout

∂ϕII
i

∂r
|A) is strictly zero only for the exact infinite series solution

making the exact solution unique. Still, the fact that our analytical approximations satisfy

the Poisson equation is reassuring, since it means that these analytical approximations re-

tain some of the key physics of the problem. Their continuity across the boundary makes

this surface a natural location for simultaneously testing the accuracy of both the inside

and outside solutions. For this purpose we will use ϕII
i defined right outside the dielectric

boundary (molecular surface).

The specific form of the approximate solution of order k = 1 we have just derived is peculiar:

it is mathematically equivalent to the sum of scaled Coulomb potentials due to each source

charge plus a scaled Coulomb potential due to the total charge of the system placed in

the center of the solute sphere. The scaling factors are non-trivial, but do not depend on

the geometry (size) of the solute. In contrast to the multipole expansion, the applicability
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domain of the approximation includes distances from the solute surface considerably smaller

than the solute size A.

Accuracy For the exact spherical geometry considered so far, the error of the analyti-

cal approximation for the potential due to a single charge inside the dielectric boundary

originates solely from replacing the first infinite sum in equation (2.2.2) with the kth-order

approximation shown in equation (2.2.13). A rigorous error bound for this approximation

would provide useful general insights into the accuracy of the formulae we have proposed.

Such an upper bound is derived in section 2.5:

∣∣ϕII
approx(k)− ϕII

exact

∣∣ ≤ ∣∣∣∣qr
(

1

ϵin
− 1

ϵout

)(
tk

1− t

)(
β

1 + β

)[
1

(1 + k)

]∣∣∣∣ (2.2.14)

For any fixed order k of the approximation, the error decreases monotonically as the pa-

rameter t = (ri/r) approaches zero, i.e. as the test charge moves away from the source.

Specifically,
∣∣ϕII

approx(k)− ϕII
exact

∣∣ = O(r−k) in the limit r → ∞. Perhaps more interesting is

the converse statement, that is the error bound increases monotonically as the parameter

t = (ri/r) approaches unity. This corresponds to the point of observation approaching the

source charge, figure 2.1. Obviously, the closer to the source, the larger the potential itself

becomes, and so it is perhaps not so surprising that the absolute error of our approximation

also increases. However, for any realistic molecular structure the error stays finite. This

is because the largest value of t possible in real molecules is determined by the distance of

closest approach of the center of the source and test charges to molecular surface, which is

determined by the radius ρvdW of the atom carrying the charge. This physical restriction

sets the “worst case” value of t to be (A − ρvdW )/A, and thus suggests that in realistic

structures the approximation be tested at a distance of 1 Å to 2 Å from the surface. For

a fixed geometry of the source and test points, t = const, the error bound decreases with
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increasing order of the approximation, k, and approaches zero as k → ∞.

The error bound discussed above does not describe the beneficial effects of error cancelation

arising from a specific choice of α. In particular, how much of an additional benefit do higher-

order approximations, k > 1, provide? To investigate the accuracy of our approximations

further we compare the approximate formulae directly with solutions that can be considered

numerically exact.

εinεout

i
q

A

rir
θ

r

φ
di

jq
j

Figure 2.2: Geometric representation of the test cases. Two unit charges are located on the
diameter of a perfect sphere of radius A, equidistant from the center ri = rj. For the dipole
case, qi = −qj, and for the dual positive case, qi = qj. The potential ϕ(r, θ) is computed at
r = A for 0 ≤ θ ≤ π.

The exact solution of the Poisson equation on a sphere can be used to test the accuracy of our

analytical approximations directly. In practice, we take the sum of the first N = 1000 terms

in the infinite series in equation (2.2.2) to represent the exact solution. We use the test setup

shown in figure 2.2. For a sphere of radius 15 Å, which is the size of a typical small protein,

the partial sum converges to machine precision when ∼100 terms are retained, figures 2.3(a)

and 2.3(b). For a larger sphere, 100 Å, which is on the order of the size of a viral capsid,

all ∼1000 terms are needed for the sum to converge to machine precision, figures 2.3(c)

and 2.3(d). These plots demonstrate a key difference between our closed-form analytical

approximations, equations (2.2.10) and (2.2.12), and a brute-force approach in which the

first N terms in the infinite series (2.2.2) are retained to approximate ϕ(r). Depending on
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the size of the sphere, tens to hundreds of terms will need to be retained to achieve the same

level of accuracy provided by the closed-form approximations.
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Figure 2.3: The root-mean-square error, in kcal/mol per unit charge, of the various approxi-
mations to the exact solution of the Poisson equation on a sphere. The functions plotted are
the error of first-order (k = 1) analytical approximation, equation (2.2.10), with α = 0.750
(double-dashed red line), the third-order (k = 3) analytical approximation, equation (2.2.12),
with α = 0.875 (dashed blue line) and a partial sum solution obtained by retaining the first
N terms of equation (2.2.2) (black curve). The potentials are computed at the surface of the
sphere over the interval 0 ≤ θ ≤ π; the errors are computed with respect to the exact solu-
tion, which is the converged partial sum of equation (2.2.2). The test geometry is shown in
figure 2.2. (a) Sphere A = 15 Å, dipole charge distribution, charges located at |ri| = |rj| = 13
Å. (b) Sphere A = 15 Å, dual positive charge distribution, charges at |ri| = |rj| = 13 Å.
(c) Sphere A = 100 Å, a dipole charge distribution, and |ri| = |rj| = 98 Å. (d) Sphere with
A = 100 Å, a dual positive charge distribution, and |ri| = |rj| = 98 Å.

It should be stressed that the “controllability” of the approximations just derived strictly

applies only in the case of a perfectly spherical dielectric boundary. In particular, one cannot

a priori expect that limk→∞ |ϕapprox(k)− ϕexact| = 0 for realistic biomolecular structures. We

speculate that one may use higher orders k > 1 of the approximation to explore the limits
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of the sphere-based approach on different classes of realistic biomolecular shapes. Namely,

for some shapes and/or regions of space one may observe systematic improvement in the

accuracy with increasing k. For these shapes, one may consider the use of k > 1 formu-

lae. However, our first priority will be to adapt and test the basic k = 1 approximation

on realistic biomolecular shapes. This is because the error analysis presented above for the

spherical shape shows that the bulk of the agreement between the analytical approxima-

tions and the exact solution is already achieved within just the first-order approximation,

figure (2.3). The next step, the third-order approximation given by equation (2.2.12), only

marginally improves the agreement with the exact solution while substantially increasing

the approximation’s complexity. This additional increase in complexity may not be justified,

especially if one aims at using the formulae in applications where speed and stability of the

algorithms are critical.

2.2.2 Setting parameters of the model

Later in this work we will present additional arguments for using the simpler equations

(2.2.9) and (2.2.10) for real biomolecules. At this point we need to decide what value of the

parameter α in equations (2.2.9) and (2.2.10) is best. While we can simply take the ad hoc

value of α = 0.75 that was used in figure 2.3 above, we prefer to derive the optimal α based on

more rigorous grounds. A physically justified choice of α can come from the requirement that

it minimizes the error between the approximate and exact ϕ(r). There are many reasonable

ways to compare two scalar fields defined in 3D space (or 2D if one limits comparison to some

Gaussian surface around the charge distribution, for example, the molecular surface). Here,

we will use the following approach to set the value of α: require that the best α minimizes

the error in the solvation energy of a random charge distribution inside a sphere. We chose

this strategy because comparing two real numbers is more straightforward than comparing
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two scalar fields. This comparison also allows us to make a connection between the current

model and the previous ones such as the GB. To this end, we consider an arbitrary charge

distribution and define the reaction field potential Φ inside the sphere. The Φ is given by

the inside part of the analytical approximation, equation (2.2.9), less the Coulomb field:

Φ =
∑

i(ϕ
I
i − (1/ϵin)(qi/di)). The electrostatic part of the solvation energy is then:

∆Gel =
1

2

∑
j

qjΦ ≈ −1

2

(
1

ϵin
− 1

ϵout

)
1

1 + αβ

∑
ij

qiqj

(
1

fij
+

αβ

A

)
(2.2.15)

with fij = A−1
√
A2d2ij + (A2 − r2i )(A

2 − r2j ).

A closer look at the above expression reveals that it is equivalent to equation (3) of refer-

ence 80, which is the analytic, linearized Poisson-Boltzmann (ALPB) model developed in

references 52, 80. Thus, the ALPB model with the above fij can be considered a special

“discrete” case of the current first-order approximation, equations (2.2.9) and (2.2.10), for

ϕ(ri) defined only at the location of the point charges qi. This connection allows us to use

the optimal value of α = (32(3 ln 2 − 2))/(3π2 − 28) − 1 ≈ 0.580127 which was rigorously

derived for the ALPB model [52]. This value of α should be appropriate for a random charge

distribution inside the sphere. One can also check explicitly that the GB model (on a sphere)

is also just a particular case of the current theory in the limits ϵout → ∞ or α → 0. In the

ϵout → ∞ limit, the analytical approximations, equations (2.2.9), (2.2.10), and (2.2.12), all

become exact solutions of the Poisson equation on a sphere.

With the rigorously justified choice of an optimal value for α, our approximations, equations

(2.2.9) and (2.2.10), become parameter-free. Their performance for the entire range 0 ≤ θ ≤

π is compared to the exact solution on the surface of a sphere, figure 2.4. For comparison,

the “Null model” – screened Coulomb potential, (1/ϵout)
∑

i(qi/di), due to the same set of

charges qi – is also shown.
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In agreement with the considerations presented above for the error bound, the largest errors

of the approximation occur when the source charges are closest to the boundary, and the

test charge is closest to one of the sources. For the geometry used to produce the error

curves in figure 2.4 these maximal errors for k = 1 approximation are ∼0.4 kcal/mol/|e|, or

∼10% of the corresponding exact value. These are of the same order of what one may expect

from a “typical” numerical solution of the PB equation for a similar test charge geometry.

Namely, in an earlier study [81], a geometric setup similar to ours and the same reference—

numerically converged partial sum of the exact series solution for a sphere—was used to

assess the accuracy of a finite-difference algorithm that was at the time implemented in the

popular package DelPhi. The largest error reported in that study was ∼15% of the exact

reference, for the source charge located 1 Å deep inside the dielectric boundary, and the

test charges being 3 Å away from the source. One should be careful, however, not to over-

interpret such comparisons between two fundamentally different approaches: the accuracy

of both can be increased, albeit at additional computational expense. In the case of our

analytical approximation this can be achieved by using its higher-orders k > 1, while the

accuracy of the numerical PB solutions can be improved through a variety of techniques

that include focusing [81] or multi-grid methods [5].

The errors of the approximate electrostatic solvation energies, ∆Gel computed via equation

(2.2.15) for our test geometries are appreciably smaller than the errors (per unit charge) in

the potential itself. Namely, for the two source charge geometries described in figure 2.4 the

maximum error in ∆Gel is ∼0.13 kcal/mol or only 0.1% of the corresponding exact value. We

therefore conclude that direct comparisons between approximate and exact potential over the

entire dielectric boundary is a more sensitive test of the accuracy of the type of approximation

considered here. Though quite tedious, these comparisons may thus be preferred to “global

metrics” such as ∆Gel.
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2.3 Adaptation to Non-spherical Shapes.

The key question now is how well our analytical approximation for the solution of the Poisson

equation on a sphere will perform on shapes that are not exactly spherical. The extensive

testing on realistic biomolecular shapes will be presented in Chapter 3 of this work that

immediately follows this chapter. Here, we conclude by showing how our model can be

adapted to the non-spherical case.

The first step is to decide what order k of the analytical expressions derived above is ap-

propriate for realistic biomolecular shapes. We have already argued that since the first-

order equations (2.2.9) and (2.2.10) and the third-order equation (2.2.12) perform similarly

against the exact solution, figure 2.3, the extra computational complexity of introducing

dependencies on Legendre polynomials might be unwarranted. Therefore, we propose that

the adaptation of our approximations for realistic molecular shapes begins with the k = 1

equations (2.2.9) and (2.2.10).

Next, we need to define all the geometrical parameters that enter equations (2.2.10) and

(2.2.9) for the non-spherical case. The distance from the point charge to the point of ob-

servation, di, does not present a problem as it translates directly to the non-spherical case.

The distance from the center of the sphere to the observation point, r, is less straightfor-

ward. Fortunately, we do have a physical parameter that characterizes the global shape of

the structure and replaces the radius of the sphere in the general case – the so called effec-

tive electrostatic radius that was introduced earlier [52]. Once this parameter is computed,

which can be done analytically [80], the r distance can be defined as electrostatic radius plus

(or minus, if the point of observation is inside the structure) the distance p to molecular

surface, see figure 2.5.

The above definition of the geometric parameters that enter formulae (2.2.9) and (2.2.10)

26



for non-spherical geometries is attractive because it treats all regions of space on the same

footing. This is why it will be used throughout this work, particularly in Chapter 3. However,

depending on specific application, one may find some more restrictive alternatives useful.

We note in this respect that the accuracy of the outside solution, equation (2.2.10), is

rather insensitive to the precise definition of r. This is because the maximum error of the

approximation occurs closest to the source on the dielectric boundary, and at this region

the 1/di terms dominate. To be specific, consider the following example. Suppose the goal

is to get a quick estimate of just ϕII
i (solvent space), then one can proceed by determining

a meaningful geometric center of the structure, and then define r simply as the distance

to it. Since, according to the main definition in figure 2.5, r can not be less than A for

points outside the structure, one should set r = A for all r ≤ A. For an over-all neutral

molecule,
∑

i qi = 0, and the computation simplifies even further as the explicit dependence

on r cancels from the in total potential
∑

i ϕ
II
i obtained via equation (2.2.10).

2.4 Conclusions

In this study we have shown how the exact infinite series solution of the Poisson equation for

an arbitrary charge distribution inside a spherical dielectric boundary can be approximated

by a simple analytical formula. We have derived such expressions for the potential both

inside and outside the dielectric boundary, for arbitrary internal and external dielectrics.

Unlike the generalized Born model, our model defines electrostatic potential everywhere

in 3D space; this parameter-free approximate expression is itself a solution of the Poisson

equation, which means that it retains some of the key physics of the problem. We show how

an apparent contradiction with the uniqueness theorem of electrostatics is resolved. We have

extensively tested the accuracy of the approximation against the exact infinite series solution

represented by its numerically converged partial sum. The errors are assessed for two source
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charges placed inside the spherical boundary separating the solute of dielectric 1 and the

solvent of dielectric 80. We analyzed the errors resulting from several locations of the source

charges on the opposite sides of the diameter of the sphere. For unit source charges placed

within 2 Å from the boundary, and the test surface located on the boundary, we find the

root-mean-square error of the approximate potential to be less than 0.1 kcal/mol/|e| (per

unit test charge). In agreement with the predictions based on a rigorously derived error

bound, the largest errors in the approximate potential arise from configurations in which

the source charge is closest to the dielectric boundary and the test charge is closest to the

source. This maximum error of 0.4 kcal/mol/|e|, or ∼10% of the exact value, corresponds to

the source charges being 2 Å apart in our test geometry, that is less than a typical salt-bridge

distance. The errors of the approximate electrostatic solvation energies computed via the

approximation are noticeably smaller than the corresponding errors in the potential itself.

Thus, direct comparisons between approximate and exact potential over the entire dielectric

boundary, though tedious, appears to be a more sensitive test of the accuracy of the type of

approximation considered here than comparisons based on solvation energy.

Just like the perturbation theory, our approximation is fully controllable, at least in the

perfect spherical case considered in this work: it is rigorously shown that the error approaches

zero with the increasing order of the approximation. However, unlike the perturbation

theory, the approximation is not equivalent to a sum of the first few terms of the infinite-

series solution: it effectively retains all of the terms, albeit approximately. To achieve the

equivalent accuracy by a straightforward summation of the exact infinite-series solution,

tens or even hundreds of terms would have to be retained for realistic charge distributions.

While we cannot claim full “controllability” for realistic biomolecular shapes, we speculate

that for some shapes and/or regions of space one may observe systematic improvement in

the accuracy with increasing order of the approximation. These improvements are likely to

be small though: for the perfectly spherical shape the bulk of the agreement between the
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analytical approximations and the exact solution is already achieved within just the first-

order approximation. Thus, testing the first-order formulae on realistic molecular structures

should be the first priority. These tests are performed in Chapter 3 of this thesis that

immediately follows.

2.5 Derivation details

The derivation refers to the setup shown in figure 2.1. The fixed charges exist only in region

I, and so the corresponding Poisson equation is:

∇2ϕI
i = − qi

ϵin

1

|r− riêz|
(2.5.1)

where the point charge density ρ = qiδ(r− riêz) is placed on the z-axis at position ri.

In region II:

∇2ϕII
i = 0 (2.5.2)

These two regions in the spherically symmetric case are: 0 ≤ r ≤ A and A ≤ r < ∞, with

the charge located on the z-axis, a distance ri from the origin. The solution of the Poisson

equation for region I, equation (2.5.1), is the sum of the Coulomb’s potential due to the point

charge qi and the reaction field part. Due to azimuthal symmetry, the solution depends only

on the angle θ through Legendre polynomials Pl(cos θ):

ϕI
i =

qi
ϵin

1

|r− riêz|
+

∞∑
l=0

Blr
lPl(cos θ) (2.5.3)

Using the following definitions:
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if ri > r, then ri = r> and r = r<

if ri < r, then ri = r< and r = r>, (2.5.4)

and the well-known identity [79],

qi
ϵin

1

|r− riêz|
=

qi
ϵin

∞∑
l=0

r<
l

r>l+1
Pl(cos θ) (2.5.5)

the solution for region I is:

ϕI
i =

qi
ϵin

∞∑
l=0

r<
l

r>l+1
Pl(cos θ) +

∞∑
l=0

Blr
lPl(cos θ) (2.5.6)

No fixed charges are present in region II, which gives:

ϕII
i =

∞∑
l=0

Cl

rl+1
Pl(cos θ) (2.5.7)

where B and C are constants determined by the continuity conditions at the boundary

r = A: ϕI
i (A) = ϕII

i (A) and ϵin
∂ϕI

i

∂r
|A= ϵout

∂ϕII
i

∂r
|A. The remaining boundary condition, the

continuity of the tangential components of the electric field, ∂ϕi

∂θ
, will be satisfied automati-

cally for the unique exact solution of the Poisson equation.

The first boundary condition gives:

qi
ϵin

∞∑
l=0

ri
l

Al+1
Pl(cos θ) +

∞∑
l=0

BlA
lPl(cos θ) =

∞∑
l=0

Cl

Al+1
Pl(cos θ) (2.5.8)
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Because of the orthogonality of the Legendre polynomials, the equality simplifies to a relation

between Bl and Cl.

∫ 1

−1

Pl(x)Pm(x)dx =
2

2l + 1
δlm (2.5.9)

or, after integration

Bl =
1

A2l+1
(Cl −

qi
ϵin

(ri)
l) (2.5.10)

The second boundary condition equates the normal components of the electric displacement

fields of the two regions:

−ϵout

∞∑
l=0

(l + 1)
Cl

Al+2
Pl(cos θ) = ϵin

[ ∞∑
l=0

lBlA
l−1Pl(cos θ)

− qi
ϵin

∞∑
l=0

(l + 1)
ri

l

Al+2
Pl(cos θ)

]
(2.5.11)

The orthogonality relation between the Legendre Polynomials is used again to simplify equa-

tion (2.5.11) thus providing the second relationship between Bl and Cl.

Cl =
ϵin
ϵout

[
qi
ϵin

ri
l − l

l + 1
A2l+1Bl

]
(2.5.12)

Equations (2.5.10 ) and (2.5.12) are solved simultaneously to give independent expressions

for Bl and Cl:
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Bl =
qi

A2l+1
ri

l

(
1

ϵout
− 1

ϵin

)
1

1 + l
l+1

β
(2.5.13)

Cl = qiri
l

(
1

ϵout
− 1

ϵin

)
1

1 + l
l+1

β
+

qi
ϵin

ri
l (2.5.14)

Recall that the equation for region I is:

ϕI
i =

qi
ϵin

∞∑
l=0

r<
l

r>l+1
Pl(cos θ) +

∞∑
l=0

Blr
lPl(cos θ) (2.5.15)

Let t = (r</r>), then the equation for region I becomes:

ϕI
i =

1

ϵin

qi
r>

∞∑
l=0

tlPl(cos θ) +
∞∑
l=0

Blr
lPl(cos θ) (2.5.16)

After summing up the first infinite series, equation (2.5.16) becomes:

ϕI
i =

1

ϵin

qi
r>

1√
1 + t2 − 2t cos θ

+
∞∑
l=0

Blr
lPl(cos θ) (2.5.17)

Figure (2.1) represents the geometry definition and defines cosθ = (r2< + r2> − d2i )/(r< · r>).

By replacing cos θ with this identity and simplifying, the potential in region I, ϕI
i , becomes:

ϕI
i =

1

ϵin

qi
di

+

(
1

ϵout
− 1

ϵin

)
qi
A

∞∑
l=0

[
1

1 + l
l+1

β

](rir
A2

)l
Pl cos θ (2.5.18)

To simplify the equation, define the dimensionless distance parameter t = ((rir)/A
2). Then
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ϕI
i =

1

ϵin

qi
di

+

(
1

ϵout
− 1

ϵin

)
qi
A

∞∑
l=0

[
1

1 + l
l+1

β

]
tlPl cos θ (2.5.19)

For region II, the dimensionless distance parameter is t = (ri/r); substituting the result for

Cl into equation (2.5.7) yields the potential in region II:

ϕII
i = −qi

r

(
1

ϵin
− 1

ϵout

) ∞∑
l=0

[
1

1 + l
l+1

β

]
tlPl (cos θ) +

qi
r

1

ϵin

∞∑
l=0

tlPl (cos θ) (2.5.20)

2.5.1 Error bound

The error of the approximate analytic solution for the potential in region II for a single

charge in a sphere originates from replacing the first infinite sum in equation (2.2.2) with

the kth-order approximation shown in equation (2.2.13). Since the terms with l < k in this

approximation are exact, the error is:

∣∣ϕII
error(k)

∣∣ = ∣∣ϕII
approx(k)− ϕII

exact

∣∣ = ∣∣∣∣∣−q

r

(
1

ϵin
− 1

ϵout

) ∞∑
l=k

[
1

1 + αβ
− 1

1 + l
l+1

β

]
tlPl (cos θ)

∣∣∣∣∣
(2.5.21)

A relatively simple upper bound for the above infinite sum is available, which depends

on the value of k chosen for the order of the approximation. First, notice that since

|
∑

ab| ≤
∑

|a||b|, the above error is largest when all tlPl (cos θ) are largest and of the

same sign, which occurs at cos θ = 0 when Pl (cos θ) = 1 (t ≥ 0 by definition). Then, since

k/(k + 1) < α < 1, l/(l + 1) < 1, and l ≥ k in equation (2.5.21), one can check that:

|[1/(1 + αβ)− 1/(1 + (l/(l + 1))β)]| ≤ [1/(1 + (k/(k + 1))β)− 1/(1 + β)]. This yields the

following expression for the upper-bound on
∣∣ϕII

error(k)
∣∣:
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∣∣ϕII
error(k)

∣∣ ≤ ∣∣∣∣qr
(

1

ϵin
− 1

ϵout

)∣∣∣∣
[

1

1 + k
k+1

β
− 1

1 + β

]
∞∑
l=k

tl (2.5.22)

After performing the summation of the geometric series in the above equation along with

some algebraic manipulation, we arrive at:

∣∣ϕII
error(k)

∣∣ ≤ ∣∣∣∣qr
(

1

ϵin
− 1

ϵout

)∣∣∣∣ ( tk

1− t

)(
β

1 + β

)[
1

(1 + k + kβ)

]
(2.5.23)

In reality, β is always positive, which allows us to also write:

∣∣ϕII
error(k)

∣∣ ≤ ∣∣∣∣qr
(

1

ϵin
− 1

ϵout

)∣∣∣∣ ( tk

1− t

)(
β

1 + β

)[
1

(1 + k)

]
(2.5.24)

In the important case of aqueous solvation, β ≪ 1, this somewhat simpler expression has

essentially the same numerical value as the one above it.
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Figure 2.4: Absolute error, in kcal/mol per unit charge, of the first-order analytical approx-
imation, equation (2.2.10), with α = 0.580127 (solid lines). The error is computed as the
absolute difference between the analytical approximation and the exact solution (converged
partial sum). For comparison, the absolute error of the screened Coulomb potential pro-
duced by the same charge distribution is also shown (dashed lines). The geometric setup is
shown in figure 2.2. (a) Sphere A = 15 Å, dipole charge distribution, unit charges located
at |ri| = |rj| = 6 Å. (b) Sphere A = 15 Å, dual positive charge distribution, unit charges
at |ri| = |rj| = 6 Å. (c) Sphere A = 15 Å, dipole charge distribution, unit charges located
at |ri| = |rj| = 13 Å. (d) Sphere A = 15 Å, dual positive charge distribution, charges at
|ri| = |rj| = 13 Å.
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Figure 2.5: Definition of the geometric parameters that enter the analytical formulae (2.2.9)
and (2.2.10) and can be used to compute the electrostatic potential ϕi due to a single charge
located inside an arbitrary biomolecule (in the absence of mobile ions). Here di is the distance
from the point of observation where ϕi needs to be computed, to the source charge qi. The
distance from the point of observation to the molecular surface is p (p < 0 for points inside
the boundary). The so-called effective electrostatic size of the molecule, A, characterizes its
global shape and is computed analytically as described in Ref. 80. The distance from the
point of observation to the “center” of the molecule is then defined as r = A+ p. Likewise
the position of the charge, ri is defined as A minus the distance of the charge to surface (not
shown).
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Chapter 3

An Analytical Approach to
Computing Biomolecular Electrostatic
Potential II: Validation and
Applications

3.1 Introduction

The utility of the electrostatic potential for gaining understanding of the function of proteins

[9] and nucleic acids [39] has long been established [8–12, 31–38]. Electrostatic effects can be

expected to be critical to the function of viruses [82, 83]; in the emerging field of nanomateri-

als, electrostatic properties of viral capsids have been exploited to package non-viral cargoes

[84]. Traditionally, methods based upon numerical solutions of the Poisson-Boltzmann equa-

tion – the NPB approach – have been used to compute the electrostatic potential of biological

structures. While currently these methods are arguably the most accurate among practical

approaches based on the implicit solvent framework [46], the use of the NPB methodology to

study electrostatic properties of biomolecules is often associated with algorithmic complexity

and high computational costs, especially for large structures. For example, a 2001 pioneering

NPB-based study of the ribosomal complex – a structure of nearly 100,000 atoms – required
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sophisticated parallel computations on 343 CPUs of the Blue Horizon supercomputer [5].

Over the seven years that have passed since that landmark result, the computational costs

of NPB algorithms continued to decrease [7, 48], although the computational price one has to

pay for the associated accuracy is still non-trivial, as even larger atomic-resolution structures

such as viral capsids move into the focus of structural biology [85].

In Chapter 2 of this work, we have shown that a set of simple, closed-form expressions

valid everywhere in 3D space can be derived for the electrostatic potential produced by an

arbitrary charge distribution inside a highly symmetrical molecular shape. Since the goal of

this work is to deliver the most computationally effective implementation of the analytical

approximations from Chapter 2, we focus on the simplest of them. Should we find that the

accuracy of these approximations on realistic structures is acceptable, the implementation

of the analytical approximation will represent the first practical model based on the ideas

presented in Chapter 2.

The main result of Chapter 2 is a set of analytical approximations to the Poisson equation

that give the electrostatic potential produced by a single point charge, qi, inside the molecule.

The analytical potential is defined everywhere in space, both inside and outside the dielectric

boundary separating the solvent from the solute:

ϕinside
i = −qi

A

(
1

ϵin
− 1

ϵout

)
1

1 + α ϵin
ϵout

[
A2√

(A2 − r2i ) (A
2 − r2) + A2d2i

+ α
ϵin
ϵout

]
(3.1.1)

+
1

ϵin

qi
di

ϕoutside
i =

qi
ϵin

1

(1 + α ϵin
ϵout

)

[
(1 + α)

di
−

α(1− ϵin
ϵout

)

r

]
(3.1.2)

where the proposed adaptation of the geometric parameters of the formula to realistic ge-
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ometries is given in figure 2.5. In what follows, we will be using the value [52] of the constant

α = 0.580127 for consistency with Chapter 2. Although this value is only optimal in the

specific sense discussed in Chapter 2 that pertains to perfect spherical geometry, we will see

below that for real biomolecular structures of variable shapes the “optimal” interval is very

broad and includes α = 0.580127.

The above formulae represent the potential generated by a single charge qi; the total potential

due to a realistic charge distribution is obtained by the superposition principle via summation

over all charges inside the molecule. Note that the analytical approximation for the potential

in the solvent space is non-singular everywhere, while the analytical approximation for the

inside potential diverges at every point charge.

Two additional steps are required for the equations (3.1.1) and (3.1.2) to be useful in practice.

First, the model must be adapted to incorporate the effects of non-zero ionic strength in the

solvent space. Second, the accuracy of the model must be assessed for realistic biomolecular

shapes. In particular, one has to identify and classify regions of space where the approxima-

tion may break down.

We begin by incorporating salt effects into the approximation given by equations (3.1.1)

and (3.1.2). It is unclear whether the approach we used in Chapter 2—starting from the

exact infinite series solutions of the (linearized) Poisson-Boltzmann equation—can preserve

the appealing simplicity of these formulae in the case of κ ̸= 0. This is because, in κ ̸= 0

case, the mathematical structures of the solution of the PB equation inside and outside

the dielectric boundary are significantly more complex and substantially different from each

other, unlike in the κ = 0 case. We therefore follow a different strategy: the use of a

physically realistic ansatz that becomes exact in a set of limiting cases considered below.

The ansatz is constructed to give the desired approximate solution in the Debye-Hückel

limit. We note that this general strategy has been successfully used to adapt the generalized
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Born model for the case of non-zero ionic strength [54].
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Figure 3.1: The definition of geometrical parameters that enter equations (3.1.3-3.1.8) in
the case of non-zero ionic strength of the solvent. A sharp dielectric boundary is assumed;
the inside of the molecule, region I, is characterized by its constant dielectric value ϵin; the
dielectric of the outside (solute, region II and III) is also a constant, ϵout. Salt ions exist
only in region III. The boundary between regions II and III – the Stern layer – is shown
as a dashed line. The geometrical parameters are the same as the κ = 0 case, figure 2.5,
with the addition of one new parameter si, defined as the distance from the charge qi to the
intersection of the Stern layer with the “distance to surface” line. The thickness of the Stern
layer — distance from the surface of the molecule to the Stern layer — is denoted by b.

Compared to the no salt case, figure 2.5, the space is now partitioned into three regions:

solute (region I), solvent in the immediate vicinity of molecular surface (region II), and

solvent containing mobile ions (region III), see figure 3.1. The Stern layer accounts for

the effects of ion hydration, which sets a minimal distance, b, around the molecular surface

beyond which mobile ions do not penetrate.

There are no mobile ions in regions I and II, and thus the ansatz we seek in these regions

can differ from the no-salt formulae, equations (3.1.1) and (3.1.2), by the same additive

constant. We find an approximate ansatz for electrostatic potential in the region with mobile

ions, region III in figure 3.1, by noting that without mobile ions the equation (3.1.2) is

mathematically equivalent to the sum of two point charge potentials proportional to 1/di

and 1/r respectively. A point charge potential in the presence of a homogeneous ionic

environment has the form of a Yukawa potential: ∼(e−κr/r). Therefore, it is natural to try
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the following ansatz (we denote ϵin/ϵout = β):

ϕI
i ≈ 1

ϵin

qi
di

− qi
A

(
1

ϵin
− 1

ϵout

)
1

1 + αβ

[
A2√

(A2 − r2i ) (A
2 − r2) + A2d2i

+ αβ

]
(3.1.3)

+ F

ϕII
i ≈ qi

ϵout

1

1 + αβ

[
1 + α

di
− α(1− β)

r

]
+ F (3.1.4)

ϕIII
i ≈ qi

ϵout

(
D
e−κr

r
+ E

e−κdi

di

)
(3.1.5)

The ansatz has introduced three unknown constants, D, E, and F . The approach we take

to determine the value of the constants is as follows. We assume a spherical geometry and

apply a set of boundary conditions and limiting cases for which exact solutions of the PB

equation are known for some simple charge configurations. The first two constants, D and

E, are determined by i) requiring that equation (3.1.5) becomes the exact solution of the

(linearized) Poisson-Boltzmann equation for a point charge at the center of a sphere; and

ii) by requiring the continuity of the tangential components of the electric field at the Stern

layer, (∂ϕII
i /∂θ) |A+b= (∂ϕIII

i /∂θ) |A+b. The value of constant F is chosen to ensure the

continuity of the approximate potential between regions II and III.

D =
α(β − 1)

1 + αβ

eκ(A+b)

1 + κ(A+ b)
(3.1.6)

E =
1 + α

1 + αβ

eκsi

1 + κsi
(3.1.7)

F =
qi
ϵout

1

1 + αβ

[
1 + α

si

(
1

1 + κsi
− 1

)
− α(1− β)

(A+ b)

(
1

1 + κ(A+ b)
− 1

)]
(3.1.8)

with si defined in figure 3.1.
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When constructing the above equations we had a choice of boundary conditions to satisfy. As

discussed in Chapter 2, the approximate solution cannot satisfy all of the boundary conditions

simultaneously: in the no-salt case the continuity of dielectric displacement perpendicular

to the dielectric boundary was not enforced. For consistency, we also do not enforce this

condition here. As it turns out, this choice results in algebraically simpler approximate

formulae. One can also check explicitly that with F,D and E so defined, in the limit κ → 0

equations (3.1.3), (3.1.4), and (3.1.5) reduce to the no-salt case of equations (3.1.1) and

(3.1.2).

3.2 Methods

3.2.1 Structures

The structures used to test the analytical electrostatic potential against the numerical PB

reference are selected as follows. We start from the 600 representative biological molecules

used for the testing purposes in earlier works [80, 86]. Then, numerical PB solvers DelPhi-II

[9, 87] and MEAD [4] with settings described in Section 3.2.3 below are used to generate the

electrostatic potentials on a 255× 255× 255 cubic grid. Then, 20 of the 600 structures are

excluded from the test set because either DelPhi-II or MEAD fail to output the potential map.

For most of the failed cases the attempted calculation fails due to the requested memory

exceeding the 1GB RAM capability of our PC. In addition to the above structures, we have

also considered a 12 base-pair fragment of B-DNA constructed with canonical parameters.

This important test case is discussed separately and is not included in the bulk statistical

analysis of the above 580 structures.

The Tobacco Ring Spot Virus (TRSV) capsid is constructed from 60 identical monomers.
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The Protein Data Bank (PDB) file 1A6C contains the x-ray crystallographic coordinates

of the single monomer at 3.50 Å resolution; the transformation matrix given in the PDB

file header is used to properly rotate and align each monomer to form the complete capsid

icosahedral structure.

3.2.2 Generation of molecular surfaces

For each of the 580 bio-molecules in the test set described above, we obtain the molecular

surface through the program MSMS [88]. Unless otherwise specified, we use a probe radius

of 2.0 Å and a triangulation density of 3.0 vertices per square Å. The molecular surface

sets the boundary between the solute and solvent dielectric environments. The vertices that

make up the MSMS molecular surface are then used as a basis for the sample points used to

test the analytical formulae against the NPB reference. We use 2.0 Å probe radius instead

of the more typical 1.5 Å as a means of mitigating the effects of differences in the surface

representation used by the reference NPB solvers and MSMS.

3.2.3 Generation of reference NPB electrostatic potential

The reference electrostatic potential around each of the test structures is computed using

DelPhi-II [9, 87] with a 255 × 255 × 255 cubic box. The default MEAD and DelPhi-II

convergence criteria are used in all cases. Grid spacing is 0.5 Å.

The following physical conditions have been used for the 580 realistic biomolecular structures.

The solvent is assumed to have a dielectric constant of 80, a salt content of 0.145 M, and an

ion exclusion radius of 2.0 Å. The internal medium is assumed to have a dielectric constant

of 4.
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3.2.4 Sampling points

The electrostatic potential estimations provided by numerical solvers at the molecular surface—

which is taken to represent the dielectric boundary in this work—are sensitive to the details

of the definition of the surface. To make a connection with physical reality (finite ligand

size) and to avoid artifacts related to surface definition, the points are sampled 1.5 Å away

from the surface by projecting each MSMS surface vertex outwards 1.5 Å along its surface

normal.

For each sample point defined above, two potential values are obtained: ϕ (the analytical

approximation) and ϕNPB (the numerical reference). The ϕ is calculated via equations (3.1.4)

and (3.1.5). We use κ = 0.122 throughout, which corresponds to 0.145 M concentration of

monovalent salt in the solvent. ϕNPB is taken to be the value of the potential of the nearest

finite-difference grid point.

When testing a potential field on a surface in the vicinity of the dielectric boundary, one has

to make sure that all the test points lie within the intended region of interest: either the high

dielectric solvent space, regions II and III (outside the boundary), or the low dielectric solute

regions I (inside the boundary), see figure 2.5. One can check that this condition is satisfied

for the set of parameters used here: NPB grid resolution R = 0.5 Å, probe radius used to

compute the molecular surface probe = 2.0 Å, and the projection length along surface normal

p = 1.5 Å. In general, the condition proberadius > p + R/2 ensures that a normal vector

of length |p| that begins at the dielectric boundary remains entirely within one dielectric

region. It also ensures that the NPB grid point closest to the end of that vector—where the

reference potential is sampled—is also in the same region.
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Visualization

The potential ϕ or ϕNPB computed at each sampling point as described above is visualized

at the corresponding vertex point right on molecular surface; that is the potential value

is “projected back” on the dielectric boundary along the normal to the surface. We use a

continuous color scale and the accepted color scheme, in which red corresponds to negative

values of the potential, blue to positive, and white to zero. All analytical calculations and

visualizations are performed by the GEM package described below.

3.2.5 Protonating the TRSV Capsid

The standard continuum electrostatics methodology [89, 90] is used to protonate the viral

capsid. The full structure contains 4617 titratable groups – too many for this methodology.

We therefore reduce the number of titratable groups via the following steps: we generate a

subsection of the capsid surface such that one monomer unit is completely surrounded by

other monomers. This results in a nine monomer (enneamer) subsection of the surface with

one unit in the center and eight units surrounding it. The enneamer contains 981 titratable

sites, which is still too many for the standard approach. Only the groups in the central

unit are considered to be titratable in the calculations, the others are set in their standard

protonation states. The total number of groups treated as titratable is therefore reduced to

125.

The AMBER [91] set of partial atomic charges is used here for the protein charges. For the

protonated states of Asp and Glu, in which the correct location of the proton is not known a

priori we use a “smeared charge” representation in which the neutralizing positive charge is

symmetrically distributed: 0.45 on each carbonyl oxygen atom and 0.1 on the carbon atom.

The web server H++ [89] is used to perform the calculations with the following settings:
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0.145 M monovalent salt concentration, internal dielectric 4, and external dielectric 80. The

computed pKas of the central unit are used to set its protonation state at each pH. The full

capsid is then constructed from this protonated unit as described above. The biologically

relevant pH interval from 4 to 9 is divided into 100 equidistant points: for each pH value

we construct the full capsid in the corresponding protonation state.

3.2.6 Software Implementation of the Analytical Model

Analytical formulae described in this work are implemented in a software package, GEM

(“generalized electrostatic maps”), freely available from the authors upon request. GEM

is a tool for computing, extracting, visualizing, and outputting the electrostatic potential

around macromolecules. Basic selection tools and structural representations are available.

In addition, GEM supports reading and writing potential field files in the format adopted

by the DelPhi-II package, reading potential field files in the format of the MEAD package,

mapping electrostatic potential to the molecular surface, image output in Targa file format

(TGA), and a graphical user interface. There is no pre-defined limit on the spatial reso-

lution of the input/output potential field maps. All electrostatic surface images used in

this chapter were generated through GEM. The program can either be run in batch mode or

through a graphical user interface and is currently available for Linux and Macintosh OSX

(http://people.cs.vt.edu/∼onufriev/software).

GEM performance analysis: Memory Overhead

One attractive feature of GEM, that sets it apart from all available packages based on NPB

methodology, is the ability to solve for electrostatic potential at points of interest indepen-

dently from each other. NPB based solvers must solve for the entire domain in order to
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provide solutions to even a single point of interest; this prerequisite is the source of ex-

tremely high memory requirements when those methods are applied to large molecules. The

freedom from this limitation that GEM provides is a crucial practical advantage when an-

alyzing the electrostatic properties of such molecules. As an example, the RAM required

by GEM to store the potential map of the surface of the TRSV virus consisting of 651, 544

surface grid points is only 30 MB. This is an insignificant overhead for even a modest desk-

top computer. The corresponding requirements are orders of magnitude larger for the NPB

solutions. For example, in order to store a typical finite mesh (at a typical resolution of 0.25

Å per grid point) of floating point values for a molecule of the size of TRSV virus, about

12003 (1, 440, 000, 000) separate grid points would be need, requiring a minimum of nearly

13 GB of memory, assuming 8 byte double representation per mesh point.

GEM performance: Computational Overhead

Due to the additivity of the electrostatic potential, GEM must compute the contributions from

each charge in the molecule to each point of interest; without any further approximations

its time complexity is O(NP ) where N is the number of atoms in the molecule and P is the

number of points of interest. The algorithm scales well with the number of points of interest

or the number of charges in the molecule. Of course, the current implementation does not

scale so well if the problem is such that the number of points of interest are a function of the

number of atoms in the molecule. Work is now in progress to improve the time complexity

in the worst case using standard numerical techniques such as multipole expansion.
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3.3 Results

3.3.1 Accuracy of the analytical approach

Exact solutions of the PB equation for realistic biomolecular shapes are not available in

practice; we therefore resort to the accepted approximate numerical solutions to test our

analytical approximations for the electrostatic potential. For testing, we use a set of 580

representative biomolecules [86], see “Methods”.

The reference numerical solutions are generated with the popular finite-difference PB solver

DelPhi-II [9, 87] using the default parameter settings. As discussed in Part I, there is no

unique way of comparing two scalar fields in 3D. One could, for example, consider a global

metric such as root-mean-square deviation (rmsd) from the reference over the entire solute

space. The metric would have to be appropriately defined to ensure convergence. However,

such a metric would likely underestimate the errors involved: note that by construction the

approximate ϕ becomes asymptotically exact far away from the charge sources. Conversely,

one expects the error to increase as one approaches the molecular surface. We therefore

argue that comparing the potentials at or right outside the dielectric boundary (which is

defined as molecular surface) is a reasonable choice for the purposes of testing the quality of

our analytical approximation ϕ. As was shown in part I for idealized geometries, this metric

is a more sensitive test of accuracy of the approximation than one based on electrostatic part

of solvation free energy, which is an indirect metric. An additional argument for assessing

the errors of the potential directly is that due to continuity of ϕ at the boundary, this

metric will automatically test both the inside and the outside analytical approximations.

Also, we shall soon see that the ability to visualize the potential at the 2D surface proves

critical for investigating the performance of the approximate solutions in various regions of

space. To make connection with physical reality—ligand probe of finite size—we compute
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the actual error not right at the dielectric boundary, but at a surface located 1.5 Å outside

the dielectric boundary, see “Methods”. In this work, the error is estimated as ϕ − ϕNPB

over a combined total of approximately ten million vertex points that define the sets of

triangulated molecular surfaces for the test molecules. The distribution of the error is shown

in figure 3.2; the deviation from the NPB reference is within kT (per unit charge |e|) for the

vast majority of points.
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Figure 3.2: The distribution of error, (ϕ − ϕNPB), between the electrostatic potential val-
ues computed via the analytical approach introduced here and the standard numerical PB
reference DelPhi-II. The error value is computed 1.5 Å outside the dielectric boundary,
for every vertex on the corresponding molecular surface of each of the 580 representative
bio-molecules used as the test set. A total of 9, 421, 303 vertices are analyzed; to obtain the
distribution, the horizontal axis is partitioned into 1000 equidistant bins. For 91.5% of the
vertices, the error |ϕ − ϕNPB| lies within kT/|e|. The error is within 2kT/|e| for 98.1% of
the vertices.

An examination of molecular structures corresponding to the tails of the error distribution

in figure 3.2—cases where the per vertex deviation from the NPB reference far exceeds kT—
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should give clear clues as to what one may expect from the analytical approximation in the

worst case. To this end, we have identified the maximum value of the deviation |ϕ−ϕNPB| for

each of the 580 structures in the test set. For a given structure, the maximum deviation was

determined among all vertices on the test surface described above. The structures were then

sorted down, from the worst performers to the best, according to these maximal deviations

from the NPB reference. A careful analysis of 15 structures at the top of this list reveals that

all of the worst performers share the same geometrical characteristic: the largest |ϕ−ϕNPB|

deviation occurs in deep and narrow indentations on molecular surface. The two typical

cases, actually corresponding to the first and second worst performers, are shown in figure

3.3.

Several conclusions can be made by examining the distribution of (ϕ−ϕNPB) in the near vicin-

ity of the dielectric boundary. First, it is clear that inside some of the deepest and narrowest

indentations on the dielectric boundary the analytical approximation significantly underes-

timates the maximum absolute value of the reference NPB potential, by 8.5 kcal/mol/|e|

in the worst case, and by 7.1 kcal/mol/|e| the next worst. This type of underestimation

of |ϕNPB| for these regions of solvent space should not be surprising: the solutions of the

Poisson equation around deep narrow regions of high dielectric are very different from that

for a sphere [79]. Similar deviations were observed and discussed earlier in the context of the

generalized Born model [92]. Note that the radius of curvature of a sphere can, in principle,

range from zero to +∞ (plane), but can never be negative. The indentations shown in figure

3.3 correspond to regions of high negative curvature.

At the same time, these large deviations of the approximate potential from the NPB reference

occur only at a small subset of points deep inside the narrow indentations, and do not occur

outside these regions of highly negative curvature. This is easily seen both from the potential

maps, figure 3.3, and from the rms values of (ϕ−ϕNPB) computed over the entire test surface:
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Figure 3.3: The distribution of the deviation of the approximate analytical potential from
the NPB reference, (ϕ− ϕNPB), near the dielectric boundary of the two “worst performer”
biomolecular structures. These exhibit the largest and second largest absolute deviation from
the NPB reference among all the 580 molecule test set. Top: PDB ID 1BXO, bottom: 1C1D.
The difference (ϕ − ϕNPB) is computed 1.5 Å outside the dielectric boundary (molecular
surface), and visualized on the surface using a continuous color scale. Blue: positive values,
White: zero, Red: negative. The numerical value of the largest deviation for each structure,
in kcal/mol/|e|, is shown on the surface near the region where it occurs. The largest deviation
is reduced considerably, right panel, if a smoother dielectric boundary is used. The smoothing
effect is achieved by using a larger probe radius of 3.0 Å to compute the molecular surface
that represents the boundary. The GEM package is used for computing the approximate
analytical potential and visualizing the deviation from the NPB reference potential computed
by DelPhi-II.

51



for the two structures shown in the figure, the rmsd are 1.3 and 1.2 kcal/mol/|e| respectively.

Although several kcal/mol difference with the NPB reference may seem like a very large error,

we argue that most of it may not be physically realistic. Both the analytic and the NPB

models are based on the linear response, continuum solvent approximation, which certainly

breaks down inside the narrow crevices that can barely host a single water molecule along at

least one dimension. These strongly confined water molecules are unlikely to have properties

of the bulk, and certainly cannot be described by a continuum dielectric of ϵ = 80 used to

compute the potentials. We argue that the |ϕ − ϕNPB| deviations become much smaller if

one excludes regions of space where the continuum approximation is definitely inapplicable.

While the exact boundaries of the applicability of the continuum model are unknown, one

can get a rough idea of how the |ϕ− ϕNPB| deviation behaves as these regions are reduced.

Namely, we have re-calculated both potentials at the molecular surface obtained with the

probe radius of 3.0 Å, that is twice the typical water radius, figure 3.3 right panel. Clearly,

the analytical vs. NPB deviations are now substantially reduced: for the worst performer the

max|ϕ − ϕNPB| is 3.4 kcal/mol/|e|, and the rmsd over the entire dielectric boundary is 0.5

kcal/mol/|e|. Interestingly, the qualitative prediction of our analytical approximate model

for this structure—that the potential is highly negative inside the crevice relative to the rest

of the surface—appears to be consistent with the NPB result regardless of the probe radius

used (results not shown). The max|ϕ−ϕNPB| deviation that remains after smoothing of the

dielectric boundary is even less for the second worst performer structure: 1.1 kcal/mol/|e|,

with rmsd of 0.4 kcal/mol/|e|. The reduction is so significant in this case because the deep

“burrow” seen in this structure in figure 3.3 has completely disappeared when the smoother

dielectric boundary is used.

Having explored the relatively rare cases of large deviations from the NPB reference, we

now turn our attention to the performance of the analytical approximation on structures

that fall within the bulk of the error distribution in figure 3.2. Somewhat unexpectedly, even
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structures whose global shape deviates considerably from the perfect spherical, perform quite

well as judged by visual inspection, figure 3.4, and by the computed max|ϕ− ϕNPB| values.

In fact, for the top two structures in Fig. 5, these maximum deviations from the reference

are within ∼1 kcal/mol/|e|, rmsd is less than 0.3 kcal/mol/|e|, and thus the analytical

approximation is quantitatively correct for these shapes.

Not surprisingly, the largest deviations are seen for the lysozyme structure that features a

distinct region of negative curvature of the dielectric boundary–the enzymatic pocket. At

a single point in the pocket region |ϕ − ϕNPB| reaches 2.2 kcal/mol/|e|; however, the rmsd

over the entire surface of the protein is 0.4 kcal/mol/|e|. The smoothing of the dielectric

boundary, performed as described in the legend to figure 3.3, reduces the maximum deviation

to 1.7 kcal/mol/|e|, and the rmsd to 0.3 kcal/mol/|e|. Unlike the very narrow indentations

and deep narrow “burrows” in the dielectric boundary seen in figure 3.3, which most likely

hold only highly structured water, the enzymatic pocket of lysozyme is large enough so that

the continuum approximation is expected to have a reasonable degree of physical realism

in this region. Thus, the deviations from the NPB reference in this case are meaningful.

Exactly how significant is the ∼2 kcal/mol/|e| maximum error relative to the NPB reference

for biological function of lysozyme is less clear: this question is beyond the scope of this

methodological work. One should bear in mind that the continuum solvent PB framework

itself is only an approximation to the more realistic explicit solvent representation: the

differences between the two are not negligible [93]. Despite the quantitative deviations from

the NPB, our approximate method correctly identifies the enzymatic pocket of lysozyme as

the region of the highest negative electrostatic potential, relative to the rest of the structure.

Thus, we conclude that the approximation provides a correct qualitative picture in this case,

within the framework of the continuum model. We have also examined the accuracy of the

approximation for the important case of the DNA structure. For a 12 base-pair fragment

in canonical B-form, max|ϕ − ϕNPB| is 1.2 kcal/mol/|e|, or 25% relative error to ϕNPB. In
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Figure 3.4: Electrostatic potential computed near the dielectric boundary of various
biomolecules whose shape deviates considerably from spherical. The potential is computed
1.5 Å outside the dielectric boundary (molecular surface), and visualized on the surface us-
ing a continuous color scale. Blue: positive values, White: zero, Red: negative. The range
indicated on the color bar corresponds to the absolute maximum of the potential for a given
structure. Left column: numerical reference. Right column: approximate analytical
potential. Structures: The Alzheimer’s disease amyloid A4 peptide, PDB ID 1AML (top);
Human apolioprotein C-II, PDB ID 1I5J (middle); Lysozyme, PDB ID 2LZT (bottom). The
GEM package is used for the computation of the analytical potentials and the visualization.
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agreement with the conclusions made above, the deviation occurs inside the deepest part of

the minor groove. The over-all agreement with the NPB reference is similar to that for the

proteins shown in figure 3.4, with the rmsd from the reference of 0.5 kcal/mol/|e|. We stress

that both ϕ and ϕNPB used here correspond to the linearized form of the PB equation.

We have already seen that the NPB reference potential is approximated by the analytical

approach within kT per unit charge for the vast majority of the points sampled from just

outside the dielectric boundaries for all of the 580 test molecules. Cases of significant de-

viations in localized regions of space have been identified and analyzed. However, it is in

principle possible that for a small subset of structures, the agreement between ϕ and ϕNPB

may still be uniformly poor over-all for most surface points of these few structures (although

better than the local deviations seen in the worst performers in figure 3.3). Such errors

would be “lost” in figure 3.2, as this particular representation does not distinguish between

contributions coming from separate molecules. As a means of investigating the role that the

overall molecular shape plays in the accuracy of the approximate method, we have calculated

the average absolute vertex error per molecule as:

⟨|ϕ− ϕNPB|⟩i =
ni∑
j=1

|ϕ(j)(i) − ϕNPB(j)(i)|
ni

(3.3.1)

where the summation extends over ni test surface vertices for each structure i. As seen

in Figure 3.5, the distribution of the average error has a finite width, and so molecular

shape does indeed play a role in determining the accuracy of the method. However, no

extreme outliers with average errors above kT per unit charge are seen. This conclusion

is consistent with the qualitative agreement between ϕ and ϕNPB on globally non-spherical

shapes presented in figure 3.4.

At this point, we can also provide an additional support for the statement made in the
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Figure 3.5: Distribution of the deviation in average potential between the analytical approx-
imation and the NPB reference. The potentials are computed as described in figure 3.2.
Horizontal axis: the average absolute error per structure, ⟨|ϕ − ϕNPB|⟩i, equation (3.3.1).
Vertical axis: number of structures corresponding to the given average error.

beginning of this work, that the maximum errors of the analytical approximation are likely

to occur in regions closest to the dielectric boundary. The claim is further substantiated

by the results in figure 3.6 where the decrease of max|ϕ − ϕNPB| is seen for the three very

different molecular shapes shown in figure 3.4. While the origin of this behavior for large

distances from the boundary is obvious—the approximate solution is asymptotically exact

far away from the sources—the fact that the same result holds near dielectric boundaries of

rather complex shapes may appear puzzling. While we do not have a rigorous mathematical

proof for it in the case of an arbitrary surface, we note that the error bound derived in Part

I for a single source charge below the spherical boundary does decrease monotonically with

distance from the boundary. Presumably, this rigorous result is not far off the mark for

realistic shapes that do not exhibit drastic deviations from spherical in the sense discussed

above, that is do not have regions of very high negative curvature. This may explain the

low and decreasing max|ϕ − ϕNPB| for 1ALM and 1I5J structures in figure 3.6. For the

lysozyme (2LZT), the rigorous result is unlikely to hold, but note that max|ϕ − ϕNPB| is
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known to occur inside its enzymatic pocket, that is in the region of negative curvature. As

the test surface moves outside the pocket, the error is expected to decrease substantially

simply because the test points move out of the region where the sphere-based approximation

is less accurate compared to the rest of the space. Consistent with this explanation, the

noticeable decrease in max|ϕ− ϕNPB| is seen in figure 3.6 for lysozyme.
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Figure 3.6: The decrease of the maximum deviation max|ϕ− ϕNPB| between the analytical
approximate potential and the NPB reference as a function of distance to the dielectric
boundary for the three structures shown in figure 3.4. The “smooth” surface (solvent probe=
3 Å) is used.

We have also explored the possibility that the parameter α that enters all of our analytical

formulae may not be optimal for realistic molecular shapes. Perhaps not surprisingly, we

find that varying α within most of its range (0.5 to 0.8) resulted in virtually no change in the

shape or width of the error distribution curve in figure 3.2. Thus, as long as we are looking

for a single value of α optimal for an average shape relevant to biomolecular computations,

the “first principle” value we derived earlier is acceptable.

The reasonable performance of our analytical approach to compute the electrostatic poten-

tial around realistic biomolecules is not completely unexpected; after all, successful use of

simple shapes in a related problem—deriving approximate expressions for biomolecular sol-
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vation energy—has had a long history [13, 50, 80]. Given the accuracy of our analytical

approximations in the perfect spherical case, see part I, we speculate that for some of the

more spherical molecules, and for some regions of space in most structures, the analytical

approximations introduced here may even be closer to exact results than the corresponding

NPB solutions obtained with commonly used parameter settings.

3.3.2 Application Example: Surface Potential of the TRSV Viral

Capsid

The TRSV belongs to the Comoviridae family of the Genus Nepovirus. The TRSV virus is

believed to represent a very simple (the capsid is made of single protein subunit, no lipid coat,

no cleavage sites in polyproteins) precursor to the nepovirus, picornavirus, and comovirus

families [94]. Despite its apparent structural simplicity, the capsid is extremely selective

for its RNA [95]. The precise mechanism underlying the selectivity of the TRSV capsid

for its RNA is still unknown, although experimental evidence suggests that it is structure-

based rather than sequence-based [96, 97]. Since electrostatic factors play a major role in

protein–nucleic acid interactions, taking these effects into account is expected to be critical

for solving the puzzle.

In what follows we use the analytical approach presented above to compute the electrostatic

potential on the surface of the TRSV capsid at full atomic resolution. We will show how

the details of the potential distribution might hint at plausible mechanisms of the capsid’s

puzzling selectivity for its RNA. A detailed study of the “capsid selectivity” puzzle is well

beyond the scope of this purely methodological work; the analysis of the TRSV surface

potential presented below should not be viewed as a rigorously justified solution of the

problem, but rather as a way of demonstrating the computational potential of the proposed
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analytical approach.

From the structural standpoint, the capsid can be considered as serving a dual purpose,

one from the exterior and one from interior. The outside interacts with the environment

during the various stages of the virus’ life cycle. As the virion moves from the vertical vector

to the cytoplasm of a tobacco plant cell to the plant sap, it experiences environments of

different pH. As we shall see, the induced changes in the outside electrostatic potential are

nearly uniform. In contrast, the inside of the capsid has a set of repeated pockets of distinct,

positive electrostatic potential that persist over a wide range of pH. These areas are located

at the center of a 5–monomer subunit (pentamer); we will speculate that these pockets might

serve as RNA binding locations.

The Outer Surface

The electrostatic potential at the molecular surface of the TRSV capsid is computed for a

wide range of pH values, figure 3.7 contains three representative snapshots from the range

of values used. The potential appears to be nearly uniform on the outer surface and changes

distinctly and uniformly with the pH of the environment. The computed isoelectric point of

the capsid is at pH 7.15, and the potential is distributed uniformly across the outer surface,

see figure 3.7. The surface potential is uniformly close to zero at neutral pH, figure 3.7,

middle panel. The absence of strong electrostatic repulsion in the capsid leading to its

structural stability in the neutral pH range makes sense biologically; the virion is known to

use the sap of a healthy tobacco plant of pH 6.2 as a means for circulating through the plant

in attempt to find other mechanically damaged cells to infect [98]. The buildup of a fairly

uniform negative charge across the capsid at high pH, figure 3.7 (right panel), diminishes

its stability due to Coulombic repulsion. This is consistent with the swelling of the capsid

at pH greater than 8.0 [82]. In living cells, swelling might be the mechanism allowing the
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virion to release its RNA in cell compartments that have high pH.

Figure 3.7: The outer surface of the TRSV viral capsid color-coded according to the elec-
trostatic potential computed 1.5 Å outside the surface. Continuous color scale is used, from
red (corresponding to -4.68 kcal/mol/|e|), to white (zero) to blue (+4.68 kcal/mol/|e|). The
charge state of the capsid changes with the pH of the environment: the computations are
performed at a constant salt concentration (0.145 M) and three different pH values shown
under each structure. The molecular surface of the capsid is triangulated with the resolution
of 2.5 Å; the electrostatic potential is computed at the end of the outward surface normal at
each vertex point via the closed-form analytical approximations of the PB equation presented
in this work. The GEM package is used for all the computations.

The Inner Surface

In contrast to the relatively featureless outer surface potential, the inner surface reveals a

distinct pocket of highly positive potential (blue region in the middle of the pentamer in

figure 3.8) which is robust to pH changes in the physiologically relevant range.

The source of the positive potential is two adjacent arginines (R453 and R454) in each of the

five monomers that form the pentamer structure. In the assembled capsid, these 2× 5 = 10

arginines form a “ring” of positive charges near the inner surface of the capsid. The pocket

resembles a narrowing dome: near the surface it is approximately 50 Å wide, and it narrows

deeper in to a more cylindrical shape with a diameter of roughly 20 Å. The entire site from

top to bottom is roughly 40 Å deep. We conjecture that this pocket represents the RNA
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Figure 3.8: The inner surface of the pentamer subunit color-coded according to the computed
electrostatic potential. The computations are performed at three different pH values shown
under each structure with a constant salt concentration of 0.145 M. A continuous color scale
is used from red (corresponding to -4.00 kcal/mol/|e|) to blue (+4.00 kcal/mol/|e|). The
regions of zero potential are shown in white. The proposed RNA binding pocket is seen as a
bright blue spot in the center of the structure which remains distinct throughout the entire
pH range. The primary source of this region of intense positive potential is a “ring” of ten
arginines. Each monomer of the pentamer provides two sequential arginines (residues 453
and 454) which are in close proximity to each other in the pentamer structure. The potential
is computed 1.5 Å outside molecular surface, and visualized on the surface. The GEM package
is used.

binding site and plays a role in the observed high selectivity of the TRSV capsid for its RNA.

The positively charged arginine ring attracts RNA; geometry determines which RNAs are

structurally compatible with the pocket.

Computational arguments alone rarely provide a definitive proof of structure-function re-

lationships in complex systems such as TRSV. In this purely methodological work we will

not pursue this issue any further, and thus our conclusions about the structure-function

relationships in the TRSV capsid should be considered as conjectures. Still, we believe that

the observations we have made and tools we have developed might provide useful leads and

starting points for further experimental and theoretical studies of this intriguing system.
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3.4 Conclusions

In part I of this work a simple closed-form expression for calculating molecular electrostatic

potentials everywhere in space was rigorously derived for an ideal spherical geometry. Here,

we use a physically justified ansatz to extend the approximation to include the screening

effects of mobile ions in the Debye-Hückel limit. We have tested the accuracy of the approxi-

mate potential ϕ extensively against numerical Poisson-Boltzmann (NPB) reference on a set

of 580 molecular structures representing various structural classes. Among various possible

accuracy metrics we chose direct deviation (ϕ− ϕNPB) computed where it is expected to be

largest: near the dielectric boundary. For each structure, (ϕ − ϕNPB) is computed under

typical conditions of aqueous solvation for a large number of test points placed 1.5 Å outside

molecular surface that defines the sharp dielectric boundary. The absolute error, |ϕ−ϕNPB|,

averaged over all test points in each structure is within 0.6 kcal/mol/|e| ∼kT per unit charge

for all structures tested. For 91.5% of the individual test points, the absolute deviation from

the NPB potential is within 0.6 kcal/mol/|e|; the deviation is within 1.2 kcal/mol/|e| ∼2kT

per unit charge for 98.1% of the individual test points.

For an approximation originally derived for perfect spherical boundary, one may expect that

its accuracy would decrease dramatically for structures whose global shape deviates consider-

able from spherical, such as structures with aspect ratio≫ 1. This, however, does not appear

to be the case: we analyzed several structures that appear very non-spherical globally, and

found that the maximum deviations from the NPB reference are within 1 kcal/mol/|e|, with

a rmsd between 0.2 to 0.4 kcal/mol/|e|. The understanding of this somewhat unexpected

result came from the analysis of the absolute largest deviations from the NPB reference, and

regions of space where they occurred. We have identified 15 “worst performer” structures—

those that exhibited the largest maximum deviations from the NPB in at least one test point

near the dielectric boundary. In all 15 cases, these largest deviations of several kcal/mol/|e|
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occurred only in localized pockets of highly negative curvature, that is inside very deep and

narrow indentations on the dielectric boundary. Outside of these regions, the deviations were

generally within ∼1 kcal/mol/|e|. This behavior of the approximation based on a sphere is

not unexpected: a spherical surface can have any curvature from zero to positive infinity

(plane limit), but never a negative one. The idea that the approximation is least accurate

near regions of locally highly negative curvature is supported by the fact that the maximum

deviations from the NPB are reduced dramatically when the dielectric boundary is smoothed

by using a larger probe radius (3 Å) to generate the molecular surface. From a practical

standpoint, the above extreme cases may not be relevant though: the dimensions of the re-

gions where these largest deviations occurred were such that they likely can host only highly

constrained solvent with properties very different from the bulk dielectric continuum implied

by the PB model itself. In the case of lysozyme that features a functionally important re-

gion of negative curvature (an enzymatic pocket) on its dielectric boundary, the maximum

deviation of the approximate potential from the NPB reference is 2.2 kcal/mol/|e|, and is

reduced to 1.7 kcal/mol/|e| when the smoother boundary is used. The rmsd from the NPB

potential for this structure is 0.4 kcal/mol/|e|. All qualitative features of the distribution

of the reference NPB potential for lysozyme are preserved by the analytical approximation.

The approximation behaves as expected in the case of another important structure that

contains pronounced regions of negative curvature on its dielectric boundary: the DNA. For

a 12 base-pair fragment in canonical B-form, the maximum deviation of 1.2 kcal/mol/|e| or

25% relative error to NPB occurs in the deepest part of the minor groove. Outside of that

spot, the agreement with the (linearized) PB is considerably closer, and is similar to that

for the proteins discussed above.

The computational complexity of the analytical method based on a simple formula is fun-

damentally lower compared to the NPB. This advantage has been exemplified by using the

new approach to compute electrostatic potential on the surface of the capsid of Tobacco
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Ring Spot Virus at atomic resolution. The analysis of the electrostatic potential of the inner

surface of the capsid reveals what might be an RNA binding pocket: this observation might

provide a useful lead for further experimental and theoretical studies of this intriguing molec-

ular system. All computations on this large structure—nearly half a million atoms—were

performed on a desktop PC. In contrast, the use of the traditional numerical approach to

study electrostatic properties of molecular systems of this size at atomic resolution would

most likely require sophisticated algorithms and supercomputers.

From the methodological standpoint, the presented analytical approach is particularly well

suited for the analysis of the electrostatic potential around very large structures. The addi-

tional computational expense associated with “zooming-in” on a local region of interest is

small - to increase the spatial resolution locally one needs to perform extra computations

only at the positions of the added sampling points. This example highlights a fundamental

difference between field-based approaches such as NPB where the potential everywhere in

space is found as a solution of a partial differential equation and the source-based approaches

such as the one presented here. In the latter case, the approximate Green’s function is

known, and so the computational cost of computing the potential at a single point is virtu-

ally zero, whereas to obtain the single point potential using a field-based method one would

still require a much more expensive self-consistent solution over a large number of points in

a finite 2D or 3D region of space.

The need for computationally facile theoretical tools for analysis of molecular electrostatic

properties exists in many areas. The general approach presented here provides an analytical

approximation for the potential everywhere in space, and might provide a concrete starting

point for development of other practical alternative tools to be used alongside the traditional

numerical PB treatment.
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Chapter 4

Charge state of the globular histone
core controls stability of the
nucleosome

4.1 Introduction

The important role of chromatin organization in key cellular processes such as DNA repli-

cation, repair, transcription, and epigenetic inheritance, i.e., inheritance that is not coded

by the DNA sequence, is now well recognized [99]. The principle component for DNA com-

paction in eukaryotic organisms is the nucleosome which consists of 146-147 base pairs of

DNA wrapped ≈ 1.75 superhelical turns around a roughly cylindrical core of eight histone

proteins [100, 101], figure 4.1.

The nucleosome in vivo has two competing properties: it must be highly stable, preserving

its unique spatial structure, while simultaneously allowing for easy retrieval of the DNA’s

information content when needed by the cell. Modulation of the nucleosome’s stability is

implicated as a mediator of chromatin function [99, 105–107]. However, the underlying

principles that govern the stability of the system in vivo remain unclear.
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Figure 4.1: Different representations of the structure of the nucleosome. (Left) The atomic-
resolution X-ray structure of an isolated nucleosome [100, 101] used here as the basis for
the fine-grained representation of the system. The molecular surface is shown. The DNA
is colored red and the globular histone core is colored blue. The histone proteins, H2A,
H2B, H3, H4, are either part of two dimers (H2A − H2B) or one tetramer (H3 − H4)2.
We use a previous definition [102] of the globular histone core which includes residues 13-
119 of H2A, 24-122 of H2B, 27-135 of H3, and 20-102 of H4. The histone tail regions are
green. The wrapped DNA covers almost all of the “side” surface of the globular histone
core, with the “tails” primarily protruding into the solvent. (Right) The coarse-grained
representation of the isolated nucleosome. The DNA is represented as a smooth concentric
cylinder surrounding the globular histone core. The left image was created using the VMD
software package [103] with the Tachyon renderer [104].

While a great variety of reversible structural modifications to the components of chromatin

are known to occur, such as acetylation, methylation or phosphorylation of specific amino-

acids of the histone proteins, which broad classes of these modifications are most important

for the intrinsic stability of the nucleosome remains a mystery. Until very recently, exper-

imental research focused exclusively on modifications in the histone tail regions, figure 4.1.

However, evidence is now mounting that these modifications, while likely to be important for

the compaction of higher level chromatin structures [108], may have relatively little effect on

the nucleosome’s stability [100, 102, 109, 110]. Conversely, the role of the globular histone

core (GHC), shown as the blue region in figure 4.1), which was once believed to be limited

to guiding the DNA folds, clearly needs reassessment. A number of post-translational mod-

ifications (PTMs) in this region have recently been discovered [105, 111]. Their associated
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biological functions have so far been investigated in only a handful of cases [112–120]. There

is a pressing need for a clear quantitative understanding of the relative roles of the various

histone regions in controlling the nucleosome’s stability [121]. However, presently developing

such a detailed understanding is difficult. A large part of the difficulty is that no unifying

quantitative, causal model exists that connects PTMs with the stability of the nucleosome.

As the amount of diverse data on PTMs will undoubtedly increase, the absence of such a

unifying model could hamper progress towards development of a detailed understanding of

the nucleosome dynamics and its connection with the biological function. In the long term,

such a model might serve as a conceptual centerpiece for building a larger framework for un-

derstanding the much more complex structure-dynamics-function relationships in chromatin

[105].

Here we describe the construction, validation, and predictions of a model that provides a

quantitative and causal connection between the nucleosome’s stability and a class of PTMs

that directly affect the charge of the histones (such as acetylation or phosphorylation). We

show how the model can help gain insights into key structure-function relationships in the

nucleosome. Our guiding principle is that the underlying physics behind some of the robust

mechanisms that control the stability of the nucleosome in vivo can be revealed by in vitro

experiments in conjunction with carefully crafted theoretical models.

Experiments have implicated electrostatic interactions to be the dominant factor that con-

trols the nucleosome’s over all stability which is consistent with the highly charged nature of

both the histone core and the DNA. Several physical-chemical experiments have studied the

response of the nucleosome to changes in parameters (e.g. salt and pH) that directly affect

the strength of electrostatic interactions [122–127, 127–136]. The results of these experiments

provide the critical advantage of validating a model based on the electrostatic interactions in

the nucleosome against the diverse quantitative experimental data accumulated over almost
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three decades.

Several physics-based models focusing on various aspects of the nucleosome’s dynamics have

become available recently. These models can be roughly divided into two broad categories ac-

cording to the level of approximation used to represent the nucleosome’s structure. “Coarse-

grain” models based on highly idealized geometries [137–145] drastically simplify the elec-

trostatic problem that needs to be solved which greatly facilitates the investigation of the

phase diagram and various parameter regimes of the system. The more complex, “fine-grain”

models are based on the detailed molecular geometry of the nucleosome [146] and are more

restrictive in this sense, but they provide a greater degree of physical realism.

A unique feature of our approach is that it uses a hybrid model in which an analytically

solvable, “coarse-grain” model based on an idealized geometry structure of the nucleosome

is integrated with a “fine-grain” numerical model based on its fully atomistic description.

The model yields qualitative insights into the physics of nucleosome stability combined with

quantitative free energy estimates of the effects of a wide class of charge-altering PTMs both

in the globular core and tail regions. These insights and predictions are as yet unavailable

experimentally, and should be useful for rationalizing and guiding the experiment.

4.2 Methods

The section describes the key methods and computational procedures; extra details, including

the derivations, numerical constants used, and dimensions of the nucleosome, are presented

in section 4.4.
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4.2.1 Model based on idealized geometry

We represent the nucleosome as a two-state system: the wrapped state in which the DNA is

fully wrapped around the histone core, and the unwrapped state with the DNA completely

separated from the histone core, figure 4.2. Experimental evidence suggests that transitions

in the nucleosome induced by altering the charge-charge interactions are indeed two-state,

at least when effected through changes in ionic strength of the environment in the physi-

ologically relevant range [122] in vitro. Although in vivo conformational transitions in the

system may be more complex, we show that our main conclusion — the biologically relevant

strong dependence of the nucleosome’s stability on the charge of its GHC — is robust to the

assumptions of the model.

The geometry and the associated surface charge distributions for the coarse-grained model

are shown in figure 4.2. All charges are assumed uniformly distributed on the respective

surfaces. The values used for all the input parameters, see section 4.4, come from the

experiment or previously used and accepted values in theoretical calculations [100, 145, 147–

149]. In particular, the fraction of the DNA charge exposed to the solvent is determined

by the actual geometry of the nucleosome core particle (NCP), from its atomic-resolution

structure.

4.2.2 Electrostatic contribution to ∆G

We used the Linearized Poisson-Boltzmann equation (LPBE) to compute the electrostatic

potential ϕ(r) produced by a molecular charge distribution ρ(r):

∇ · ϵ(r)∇ϕ(r) = −4πρ(r) + κ2ϵ(r)ϕ(r). (4.2.1)
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where ϵ(r) is the position-dependent dielectric constant, and the electrostatic screening effects

of monovalent salt enter via the Debye-Hückel screening parameter κ.

The electrostatic free energy of building a given charge distribution within the linear Poisson-

Boltzmann theory is given by [150]:

W =
1

2

∫
V

ϕ(r)ρ(r)d3r (4.2.2)

For the uniform surface charge distributions present in our model, equation (4.2.2) reduces

to W = Q
2
ϕ (R); where ϕ (R) is the potential at the given surface charge, and Q is the total

charge that is uniformly distributed on the surface.

The wrapped state has one cylinder, the NCP, containing two surface charges, and we refer

to the electrostatic free energy of this state as Wwrapped. However, the unwrapped state

contains two independent cylinders, the GHC and the free DNA, each with a surface charge.

The combined electrostatic free energy of the GHC and the free DNA is referred to as

Wunwrapped. Using the notation of figure 4.2, the electrostatic free energy of the NCP folding,

∆Gelectro = Wwrapped −Wunwrapped, is given by:

∆Gelectro =
(QD −QD1)

2
ϕI +

(QC +QD1)

2
ϕII

−QC

2
ϕIII −

QD

2
ϕIV (4.2.3)

where ϕI and ϕII are the values of the potential at the NCP external surface and the interface

between the GHC and the DNA in the wrapped state, respectively. ϕIII and ϕIV are the values

of the potential at the external surface of the GHC and the external surface of the free DNA

in the unwrapped state, respectively. See equations (4.2.6) - (4.2.9) for the exact forms of
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these potentials.

To obtain a closed form expression for ∆Gelectro, we approximate all ϕ(R) values by the

exact infinite cylinder solutions of the LPBE. The electrostatic potential at the exterior

surface, ϕext(R), of an infinitely long cylinder of radius R in a solvent with monovalent salt

is [151, 152]:

ϕext(R) =
2Q

ϵoutL

[
1

κR

K0(κR)

K1(κR)

]
(4.2.4)

where K0 and K1 are modified Bessel functions of the second kind, ϵout is set to 80 for water,

Q is the total charge on the surface of the cylinder, and L is the length of the cylinder. We

expand upon equation (4.2.4) by incorporating ion exclusion effects with a standard Stern

radius b by R → R + b [153] for any surfaces exposed to the solvent.

The values of the potential at three of the four charged surfaces are determined by equation

(4.2.4). The other charged surface is inside the concentric cylinder of the wrapped state and

has the following form for the potential:

ϕint(R) =
2Q

ϵinL
ln (R) + C (4.2.5)

where C is a constant, and ϵin is set to 15 to account for the water trapped between the two

wrapped helices of DNA being more ordered than free water [154, 155]. Thus, the potentials

at the surface of the various cylinders defined in figure 4.2 are:
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ϕI =
2(QC +QD)

ϵoutLN

[
1

κ(RN + b)

K0(κ(RN + b))

K1(κ(RN + b))

]
+
2(QC +QD)

ϵoutLN

ln

(
RN + b

RN

)
(4.2.6)

ϕII =
2(QC +QD)

ϵoutLN

[
1

κ(RN + b)

K0(κ(RN + b))

K1(κ(RN + b))

]
+
2(QC +QD)

ϵoutLN

ln

(
RN + b

RN

)
+
2(QC +QD1)

ϵinLN

ln

(
RN

RC

)
(4.2.7)

ϕIII =
2(QC)

ϵoutLN

[
1

κ(RC + b)

K0(κ(RC + b))

K1(κ(RC + b))

]
+
2(QC)

ϵoutLN

ln

(
RC + b

RC

)
(4.2.8)

ϕIV =
2(QD)

ϵoutLD

[
1

κ(RD + b)

K0(κ(RD + b))

K1(κ(RD + b))

]
+
2(QD)

ϵoutLD

ln

(
RD + b

RD

)
(4.2.9)

The corresponding total ∆Gelectro from equation 4.2.3 is:
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∆Gelectro =
(QC +QD)

2

ϵoutLN

[
1

κ(RN + b)

K0(κ(RN + b))

K1(κ(RN + b))
+ ln

(
RN + b

RN

)]
+
(QC +QD1)

2

ϵinLN

ln

(
RN

RC

)
− (QC)

2

ϵoutLN

[
1

κ(RC + b)

K0(κ(RC + b))

K1(κ(RC + b))
+ ln

(
RC + b

RC

)]
− (QD)

2

ϵoutLD

[
1

κ(RD + b)

K0(κ(RD + b))

K1(κ(RD + b))
+ ln

(
RD + b

RD

)]
(4.2.10)

Equation 4.2.10 is the main result of the derivation and serves as the foundation for the results

discussed below. The first two terms in equation 4.2.10 correspond to the wrapped, state and

the last two terms correspond to the unwrapped state of the nucleosome. The critical term

with respect to a dependence on the charge state of the GHC is the one proportional to the

total charge at the interface between the GHC and DNA, (QC +QD1)
2/ϵin. Implications on

how this term affects the nucleosome’s stability are discussed below and in section 4.4.

The approximation of using the infinite cylinder solutions for finite cylinders is limited to

ionic strengths such that the associated Debye length is less than that of the shortest object.

The shortest length-scale associated with the model is the length of the nucleosome, LN = 57

Å, which corresponds to a monovalent salt concentration of ∼ 0.0028 M. For lower salt

concentrations we can only expect general qualitative trends to be correct. The low salt and

high salt limits for equation 4.2.10 are discussed in section 4.4.

The full atomistic structure of the nucleosome, PDB ID 1KX5 [101], with only the residues

forming the GHC (figure 4.1, left panel), was used to compute the parameters of the model.

We excluded the tails because they have little effect on the stability of individual nucleosomes

[100]. We estimated the nucleosome’s total charge state by the charge states of the ionizable

amino acids within the GHC at pH 7.5 which is appropriate for the nucleus [156], via the
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H++ server [89, 157] which employs the standard continuum electrostatics methodology for

determining the pKs of amino acid residues [158].

For DNA, the electrostatic free energies computed with the LPBE are in a reasonable agree-

ment with the full non-linear PB equation (NLPBE) – the associated relative errors are

expected to be a few percent [153] in the most relevant ionic strength regime κRD & 1,

where RD ∼ 10 Å is the DNA radius [145, 148]. The LPBE was also successfully used in the

past to describe DNA’s A → Z transition [151]. Our calculations also agreed with previous

experiment and theory in a similar context in the low salt limit of equation (4.2.10) [159–162],

see section 4.4. Furthermore, significant approximations were already made in the conversion

from the full atomistic model to an idealized geometry model of the nucleosome, and there

was an inherent uncertainty of at least 10% [149] in the DNA radius which corresponded to

a ±7 kcal/mol uncertainty in the calculated stability of the nucleosome, thus we did not see

a clear justification for the use of the NLPBE within our model.

4.2.3 Non-electrostatic Contribution

In addition to the non-electrostatic component of the DNA elastic energy, ∆Gnon includes

the free energy of binding between the DNA strands and the GHC. The size and complexity

of the nucleosome make a first principles calculation of the non-electrostatic contributions

(∆Gnon) impractical [163]. We instead estimate ∆Gnon from the experimentally known mid-

point of the salt-induced wrapping transition (∆G(κref ) = 0) [122]. A similar approach

previously led to correct quantitative predictions in the context of the pH dependence of

protein stability [164]. This method assumes that all non-electrostatic contributions lack salt

dependence, which allows us to write ∆G(κ) = ∆Gelectro(κ) + ∆Gnon and solve for ∆Gnon,

∆Gnon = −∆Gelectro(κref ). From experiment, κref = 0.294 (0.8M [NaCl]) [122, 165], which

gives ∆Gnon = +68.5 kcal/mol. Incorporating the difference between the nucleosome density
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in in vitro and in vivo [166] leads to a modest correction, ≈ +3.7 kcal/mol to ∆Gnon, see

section 4.4.

4.2.4 Model based on full atom-level structure

We represented the wrapped state with the full (including the tails) atomic structure of the

nucleosome, see figure 4.1 left panel; protonation states of the ionizable residues are set

using the methodology specified above. The unwrapped state was represented by the same

structure with the DNA removed; the free DNA conformation in the unwrapped state does

not affect ∆∆G as defined below.

A numerical solver for equation (4.2.1), APBS [5], was employed to compute changes in

the nucleosome’s stability, ∆∆G, due to changes in charge states of the histones. We re-

ferred to the total free energy of the state without any modifications to the GHC charge as

∆G(native). Any states where PTMs, e.g., acetylation, were applied has an associated total

free energy of ∆G(PTMs). We defined ∆∆G = ∆G(PTMs)−∆G(native), and computed

this quantity for the acetylation of a select number of lysines shown in Table 4.1 We assumed

that the effect of the PTMs on ∆Gnon was negligible compared to its effect on ∆Gelectro, so

that ∆∆G ≈ ∆Gelectro(PTM) − ∆Gelectro(native). Since there are two copies of each his-

tone protein in the core, we applied the PTMs in pairs, e.g., acetylation of K56 on both H3

histones.

APBS was used with the following parameters: the internal dielectric set to 4, the external

dielectric set to 80, and the monovalent salt concentration set to 145mM with an ion radius

of 2.0Å. The boundary between the two dielectrics was set to be the molecular surface as

determined by a probe radius of 1.4Å. The grid spacing of 0.75Å with 4803 grid points was

used. We also verified that the use of non-linear solver, with the same settings as used with
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the linear solver, does not affect our key conclusions. Specifically, the relative effect on ∆∆G

due to the acetylation of residues in the GHC versus residues in the tails shown in Table

4.1 is preserved. In Table 4.1, the largest ∆∆G from the core comes from the acetylation

of H3K56, and the largest ∆∆G from the tails comes from the acetylation of H2BK5. The

non-linear solver shows 93% agreement to the linear solver when comparing the ratio (core

vs. tail) of these two ∆∆Gs. Similarly, when comparing the ratio (core vs. tail) of the other

two residues, H4K91 and H3K4, the non-linear solver shows 65% agreement with the linear

solver. The exact ∆∆G values of the non-linear solver are shown in Table 4.3.

4.3 Results and Discussion

We compute the free energy associated with the wrapping and unwrapping transition of

the DNA from the globular histone core (GHC). Our self-consistent estimates are based on

two distinct representations of the nucleosome structure, see “Methods”. The coarse-grain

representation is based on an idealized geometry in which the nucleosome and its wrapped

DNA is represented as coaxial cylinders of appropriate dimensions, figure 4.2, while the fine-

grain model corresponds to the full atomic resolution structure of the nucleosome, figure

4.1.

4.3.1 The physics of the nucleosome wrapping/unwrapping

We present in figure 4.3 the calculated stability phase diagram of the nucleosome with respect

to the two most commonly used variables in experiments that study the nucleosome’s stability

in vitro – the salt concentration of the solution and the total charge of the GHC. Remarkably,

we observe that all of the trends where a phase boundary is crossed or approached (shown as

red arrows) agree quantitatively or at least semi-quantitatively with experiment [122, 124–
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126, 129–132], see section 4.4 for details. The horizontal, red arrows show that in either

direction of salt changes, the wrapped state destabilizes. The vertical, red arrow shows that

an increase in core charge initially increases the stability of the wrapped state but then

destabilizes the system. The observation that is perhaps the most relevant to biology is that

even a slight decrease of the GHC charge from its “physiological” value should generally

destabilize the nucleosome, figure 4.3.

The physical origin of this effect is primarily in the destabilizing free energy of the electric

field “trapped” inside the low dielectric bulk of the DNA; it is revealed by the analysis

of the analytical expressions for ∆Gelectro available within the idealized geometry model,

see section 4.4. Essentially, a large portion of the electric field flux from the GHC goes

through the low dielectric environment of the DNA wrapped around the histone core. At

physiological conditions, the charge of the GHC is such that this flux is (nearly) canceled

by the opposite field due to the charge on the surface of the DNA in contact with the core.

The existence of this strong trapped field is the consequence of the peculiar topology of the

wrapped conformation, figure 4.1, and will be absent from any model that treats DNA as a

zero-thickness thread.

Specifically, a decrease in the GHC charge increases the destabilizing energy associated with

the trapped field and reduces the natural electrostatic attraction between the nucleosomal

DNA and histone core. This synergistic effect is what amplifies the nucleosome’s sensitivity

to slight decreases in the total GHC charge. The fundamental question of how this effect

may be used for precise control of the nucleosome’s stability is discussed below.1

1The trapped field effect is also responsible for the counter-intuitive decrease in the nucleosome’s stability
when a large increase in the GHC charge occurs, figure 4.1. As the magnitude of the GHC charge increases,
the destabilizing energy associated with the trapped field rapidly builds up in the low dielectric bulk of the
DNA, eventually overwhelming other stabilizing contributions to ∆G and thus driving the system towards
the unwrapped state.
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4.3.2 Implications to the nucleosome’s stability control in vivo

Stability vs. accessibility. Predictions of the model immediately suggest how the nu-

cleosome’s stability vs. DNA accessibility dilemma may be resolved by the nucleosome and

suggest specific mechanisms for biologically relevant control of the stability of the nucle-

osome. At physiological conditions, our model predicts the absolute stability, |∆G|, of a

single isolated nucleosome to full unwrapping of its DNA to be 38 ± 7 kcal/mol which lies

within experimental rough estimates for the upper and lower bounds of |∆G| [134, 167–169].

However, the system lies very close to the phase boundary between the wrapped state and

unwrapped state, figure 4.3. The “border line” position of the system means that small vari-

ations of the proper control parameters can significantly loosen the structure, or unwrap it

completely if needed for a specific biological function. Our model provides insights into how

this control can be effected.

As can be seen from the phase diagram, the monovalent salt concentration is unlikely to be

used by the cell in vivo to control the stability of the nucleosome – the phase boundary along

the “salt” axis is almost flat. The changes in [NaCl] that would have to occur in the nucleus

during the cell cycle for this kind of stability control would be ten-fold, which is biologically

unreasonable. While the addition of multi-valent ions could shorten the boundary along the

“salt” axis, the analysis of their effects on the nucleosome’s stability is beyond the scope

of this work. Regardless, these effects of changing ionic strength are inherently non-local –

generic changes in equilibrium ionic strength cannot be confined to individual nucleosomes.

Globular histone core charge as stability control parameter. In contrast to ionic

strength modulations, change in the GHC charge offers a possibility to exert selective control

over the stability of an individual nucleosome. Notice that within our model, ∆G is very

sensitive to changes in the GHC charge, figure 4.3: according to our calculations based on

the idealized geometry model, a change in one unit charge can cause a ∼ 15 kcal/mol change
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in the stability of the nucleosome at physiological conditions. Therefore, a decrease of the

GHC charge by only a few unit charges can cause a complete unwrapping of the DNA. A

careful analysis of the analytical model (see section 4.4) shows that the system owes its

extreme sensitivity to changes in the charge of the GHC to the same destabilizing effect

of the “trapped field” described above, which increases rapidly as the system moves away

from the physiological conditions. In fact, among the many contributions to the derivative

of the total free energy with respect to the GHC charge, the main contribution comes from

the “trapped field” term unique to the wrapped state of the nucleosome. Thus, as long as

the unwrapped state(s) break the unique topology of the wrapped state in which the DNA

fully encloses the histone core on the sides, we can still expect ∆G to be sensitive to the

GHC charge. This is why the two-state assumption made in this work may not be entirely

necessary for its main result. See a detailed discussion in section 4.4.

Application to histone acetylation: Core vs. tails. The analytical solutions based

on an idealized geometry model of the nucleosome have given us valuable insights into the

physics of the nucleosome’s stability. In what follows, we verify our key conclusions using the

full atomic resolution structure of the nucleosome in conjunction with accurate numerical

solutions of the Poisson-Boltzmann equation, see the “Methods”. The goal is to mimic

histone acetylation experiments and compute the effect of the charge change in the GHC on

the nucleosome’s stability. To this end, we purposely selected a set of four pairs of lysine

residues that have known biological significance and are located in very different regions

within the nucleosome, figure 4.4. To mimic acetylation, we neutralize each of the selected

lysines by changing its charge distribution as was done previously [170] (the over-all charge

changes from +1 to 0, see section 4.4) and compute the relative impact of the change on the

stability of the nucleosome, estimated as ∆∆G per neutralized lysine, see the “Methods”.

These impacts are qualitatively illustrated in figure 4.4; the numerical ∆∆G estimates are

provided in Table 4.1.
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Table 4.1: The destabilization (∆∆G) of the nucleosome due to selective acetylation (neu-
tralization) of each of the two lysines in the globular histone core and in the tails. The ∆∆G
values are computed based on the full atomic level structure of the nucleosome using the
numerical Poisson-Boltzmann solver. The labels from 1 to 4 are the same as in figure 4.4.

Acetylated Lysines Destabilization ∆∆G (kcal/mol)
(1) core H3K56 8.7
(2) core H4K91 7.2
(3) tail H2BK5 1.8
(4) tail H3K4 0.07

We note that the analytical coarse-grained model should not be expected to yield highly

accurate quantitative estimates of the ∆∆G value associated with specific GHC residues as

the dependence on their relative location inside the GHC is not accounted for within this

model: for example, it would predict the (∆∆G = 30.8kcal/mol) for acetylation of any pair

of residues inside the globular histone core and zero for any tail residue. What is important,

however, is that the key prediction holds — the system is sensitive to small changes in the

GHC charge, regardless of the precise location of the change. This is in contrast to the

minimal effect the tail charges are predicted to have on the nucleosome’s stability, and is

in agreement with the experimental observations discussed above [102]. The physics behind

the difference is simple: the tail charges lie in the high dielectric solvent, outside of the DNA

shell wrapped around the core.

Specific predictions and examples. Targeted acetylation of lysines or phosphorylation of

serines or threonines within the GHC is one way to decrease its charge with minimal disrup-

tion to the over-all nucleosome structure. For example, consider a situation when loosening

of the nucleosome structure is required for a specific biological process, such as transcription

(or initiation of it). Within our model, the latter will be facilitated by acetylation of GHC

lysines. And vice-versa: de-acetylation of these lysines will hamper transcription because

de-acetylation increases the charge of the GHC. Accordingly, recent experimental genome-

wide evidence suggests that acetylation of K56 of histone H3 is necessary for efficient gene
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transcription [171] in vivo. A similar observation has been made for acetylation of K36 of H3

[172]. Moreover, acetylation of K56 also enables DNA replication and prevents epigenetic

silencing [117, 119], consistent with a looser state of the nucleosome acetylated at H3K56

as predicted by our model. Conversely, de-acetylation of K56 of histone H3 tightens the

nucleosome structure thereby facilitating compaction of heterochromatin [112]. This finding

is also consistent with the predictions of our model: de-acetylation of a site in the GHC at

physiological conditions increases its charge by one unit thus increasing the stability of the

wrapped state of the nucleosome, figure 4.3. Also consistent with the model is the obser-

vation that acetylation of lysine 91 on histone H4 results in a disruption of the chromatin

structure and increases the system’s sensitivity to DNA damage and unsilences many genes

near the telomers [115]. As further evidence that these changes came primarily from the

relative charge change, an experiment was conducted in which H4K91 was replaced with a

glutamine to mimic the acetylated state and then replaced with an arginine to mimic the

original charged state. The mutant with the glutamine showed similar phenotypes as the

acetylated lysine and the mutant with the arginine showed similar phenotypes to the wild

type (non-acetylated lysine) [115]. Another piece of supporting in vivo evidence comes from

previous assays on chicken erythrocytes showing that phosphorylation of serine 28 (located

in the GHC) destabilized the nucleosome while phosphorylation of serine 10 (located on a

tail) did not appreciably affect the stability of the nucleosome. The same study also showed

that phosphorylation of serine 28 on the H3 histone was predominantly in active/competent

regions of the chromatin [116], which is where one would expect the DNA accessibility to be

higher – lower stability of the associated nucleosomes. Finally, phosphorylation of threonine

45 on the H3 residue has been associated with DNA replication in S. cerevisiae [173] and

with apoptosis in human neutrophil cells [174].

In addition to histone acetylation and phosphorylation, other electrostatics-based mecha-

nisms for changing the nucleosome’s stability may exist that are consistent with our model.
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For example, small changes in ambient pH around the physiological value may also have

the desired effect of altering the charge of the GHC. However, similar to changing the ionic

strength, this effect would be non-local and therefore may only be suitable to controlling

spatially extended regions of chromatin rather than individual nucleosomes. To exert selec-

tive control at the level of individual nucleosomes, one may consider a scenario in which a

charged protein binds to the exposed face the nucleosome GHC, figure 4.1, thereby loosening

the structure. Recent experimental work has suggested such a mechanism [175, 176].

Implications for nucleosome assembly. Our model can also give insight into how the

nucleosome assembly process might work. The process would begin with the system initially

being just outside the phase boundary in the unwrapped state, figure 4.3. The nucleosome

would then be driven across the boundary to the wrapped state by a gradual increase of

the effective charge on its histone core. Indirect evidence that in vivo systems may need

to use slow adjustment of the electrostatic interactions to assemble the nucleosome comes

from in vitro experiments where the process of reconstituting the nucleosomes from free

DNA and histone cores is based on gradually turning on the electrostatic attraction between

the core and the DNA by slow dialysis from high salt down to physiological ionic strength

[177]. It is known that simply mixing the components at physiological conditions results

in improperly wrapped nucleosomes. This suggests a kinetic trap brought on by strong

electrostatic attraction that rapidly brings the DNA and histone core together before the

DNA has a chance to properly wrap around the core. The trap is not unexpected given

the complex topology of the nucleosome structure and the depth of the “folding funnel”

manifested by the high ∆G of formation predicted by our model. Assuming that such a trap

also exists in vivo, gradual turning on of the interactions through core charge increase would

be one way to circumvent it.

While a handful of in vivo studies have so far investigated the link between charge state of
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the GHC and chromatin assembly [113–115], the observations made in these works appear

to be consistent with this model. For example, acetylation of free histone H3 at lysine 56

promotes subsequent (replication independent) chromatin assembly [113], implying that the

assembly process indeed starts with a lower charge state of the GHC. At the same time, the

existing assembled chromatin is driven towards the disassembled state by a decrease in the

GHC charge via H3K56 acetylation [114] – recall that according to our model such decrease

reduces the stability of the wrapped state of the nucleosome.

Limitations of the model. We emphasize that within our model the simple and straight-

forward relationship between changes in the charge of the GHC and corresponding changes

in the nucleosome’s stability holds only when the stability change ∆∆G is dominated by the

electrostatic contribution. This is likely to be true for point-like alterations such as acety-

lation, phosphorylation and protonation, may be possible for some mutations, and even

binding of some proteins to the exposed surface of the nucleosome. At the same time, there

are many situations where this condition is not expected to hold. PTMs that significantly

affect the structure of the GHC is one such example. Changes in amino-acid composition

that may accompany histone substitution with a variant form, e.g. H2A → H2A.Z, may

also bring about large unknown changes in the non-electrostatic component of the total free

energy. In the cases where there are large changes in the non-electrostatic component of the

total free energy, the model should not be expected to yield accurate predictions unless one

can account for these changes.

The main conclusion of our study is that cells may utilize the sensitivity of the nucleosome’s

stability to the charge of the globular histone core (GHC) for effective loosening or tight-

ening of the structure when needed by specific biological processes. Given the dominant

role of electrostatics in the thermodynamic stability of the nucleosome, and agreement of

our model’s predictions with a variety of in vitro and recent in vivo experiments focused
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on the role of charge-altering PTMs of residues within the globular histone core (such as

H4K91, H3K36, H3K56, H3T45 and H3S28) in various cellular functions, we believe that

the proposed electrostatics-based mechanism of its control is an important one, although it

is probably not the only one. We emphasize that alternative explanations for the in vivo

observations cannot be completely excluded at this point. And while it would be naive

to expect a “first principles” physics-based model such as one presented here to provide a

comprehensive description of structure-function connections in the nucleosome in vivo, the

model may nevertheless be expected to correctly describe the over-all causal trends within its

bounds of applicability. As such, it may serve as a useful general guide to experimentalists.

4.4 Additional details

4.4.1 Non-electrostatic contribution to ∆G: concentration depen-

dence

The estimate for ∆Gnon that we have made so far is, strictly speaking, only applicable at

the experimental conditions of reference[122]. While a solution at pH=7.5 used in that

experiment is a reasonable approximation for the environment inside the cell nucleus, the

concentration of nucleosomes used in the experiment, [Cin vitro] ∼ 0.5 µM may be quite

different from what is relevant in vivo. To take this difference into account we define the

nucleosome particle concentration dependent adjustment to ∆Gnon as: ∆Gnon → ∆Gnon +

∆∆G†, where

∆∆G† = kT ln
( [Cin vivo]

[Cin vitro]

)
(4.4.1)
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We estimate the order of magnitude of [Cin vivo] as follows. The total length of human DNA

is ∼ 3m ∼ 1010 base pairs (bp). Assuming the nucleus to be a sphere with a radius of

∼ 3µm, assuming 200 bp per NCP, and assuming that most of eukaryotic DNA is wrapped

on nucleosomes, we arrive at Cin vivo ∼ 300µM . We note that this estimate is in fairly good

agreement with the experimentally measured value in a HeLa cell of 140µM [166]. Substi-

tuting our estimate for Cin vivo into equation 4.4.1 results in a relatively small correction of

∆∆G† ∼ +3.7 kcal/mol (∼ 6kT ) to ∆Gnon reported in the main text.

4.4.2 Parameter values for the idealized geometry model

We use RD = 10.9 Å as the mean of the range (9.8 Å to 12.0 Å) suggested by Schellman

and Stigter[149] for the effective electrostatic radius of the DNA. Others have used a similar

value of RD = 10.0[145, 148]. The full length of the 147 bp DNA cylinder is LD = 490

Å, corresponding to 3.32 Å/bp[147]. The NCP has a diameter of 105 Å and a length of

LN = 57 Å[100]. We estimate the radius of the histone octamer, RC = 30.7 Å, as the radius

of the NCP (RN = 52.5 Å) minus the diameter of the DNA (21.8 Å). The solvent is modeled

implicitly with a dielectric constant ϵout = 80. The charge screening effects of monovalent salt

are accounted for by the Debye-Hückel parameter, κ = 0.329
√
[salt][141, 145]. To account

for the water trapped between the two wrapped helices being more ordered than free water,

we use a dielectric constant of ϵin = 15 for the wrapped DNA[154, 155].

We set the following parameters for estimating the charge state of the NCP: 0.8 M of mono-

valent salt, ϵin = 12.5, ϵout = 80, and a pH value of 7.5. The value of ϵin = 12.5 was estimated

as the volume averaged value between the DNA (ϵin = 15) and the core (ϵin = 4). The value

of pH=7.5 was used in the experiments that observed the unfolding at 0.8 M of monovalent

salt[122], and serves as a good estimate of the pH inside the nucleus[156]. The resulting

total charge of the structure (QC + QD) is -199|e|. We then separated the DNA from the
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globular histone core (GHC) and determined the individual charge contributions. The DNA

had a total charge: QD = −292|e|, and the GHC had a total charge of QC = +93|e|.

The fraction of the DNA’s charge at the DNA-GHC interface is assumed to be equal to the

fraction of DNA’s surface area at the interface. To determine the fraction of DNA’s surface

area at the interface, we use the cylindrical setup as shown in figure 2 of the main text. The

surface area at the DNA-GHC interface is 11,640 Å2, and the outer DNA surface area is

18,802 Å2. Thus, the inner surface of the DNA accounts for 38% of the total surface area.

We assume uniform charge distribution on the surface of the cylinder, excluding the ends,

which results in QD1 = −292|e| × 0.38 ≈ −112|e|. Finally, in all the calculations we have

accounted for ion exclusion effects with a standard Stern radius of b = 2.0Å. While many

sources contribute to the error margin of ∆G within our model, the value is most sensitive

to the uncertainty in the effective DNA radius, RD. We estimate the corresponding error as

half the difference between ∆Gelectro computed with RD = 9.8 and RD = 12.0 Å[149].

4.4.3 Information for the atomistic model

To mimic the change in charge of a lysine residue that has been acetylated, we alter a subset

of the lysine’s atomic partial charges as was done previously [170]. Table 4.2 shows in bold

which partial charges of lysine were altered to change the total charge of the residue from

+1 to 0.

To further test the claim that core residues have a substantially greater impact on ∆∆G

than tail residues when altering localized charges, we performed four more computational

acetylation experiments as described in the main text, but this time choosing a different

set of lysines to acetylate. Each residue was randomly chosen such that there would be

one residue for each histone protein: H2AK75, H2BK31, H3K36, and H4K44. Overall, the
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Table 4.2: The conversion table for mimicking an acetylated lysine. The atoms with altered
charges are shown in bold font.

Atom Type Original Charge Acetylated Charge
N -0.348 -0.348
H 0.274 0.274
CA -0.240 -0.240
HA 0.143 0.143
CB -0.009 -0.009
2HB 0.036 0.036
3HB 0.036 0.036
CD -0.048 0.000
2HD 0.062 0.000
3HD 0.062 0.000
CE -0.014 0.000
2HE 0.114 0.000
3HE 0.114 0.000
CG 0.018 0.018
2HG 0.010 0.010
3HG 0.010 0.010
NZ -0.385 -0.075
1HZ 0.340 0.000
2HZ 0.340 0.000
3HZ 0.340 0.000
C 0.734 0.734
O -0.589 -0.589

∆∆G values from these acetylated residues are similar to the values from the acetylated core

resides from the main text, see table 4.3.

4.4.4 Experimental bounds on absolute stability of the nucleo-

some

Observed partial detachment of DNA fragments off the GHC led to estimates of the contact

energy per length of DNA to be ≈ 2.0 kT per 1 nm of the DNA length[168, 169]. Applying

this to the full length of the wrapped DNA and adding a DNA bending cost of ∼ 21 kcal/mol

per wrapped turn of DNA[169] yields the total free energy favoring the wrapped state to be
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Table 4.3: The destabilization (∆∆G) of the nucleosome due to the acetylation (neutraliza-
tion) of the lysines from the main text and a randomly selected lysine in the GHC from each
histone protein (H2A, H2B, H3, and H4). The ∆∆G values are computed based on the full
atomic level structure of the nucleosome using the numerical Poisson-Boltzmann equation
(PBE) solver, as described in the main text. Also included are the non-linear PBE results
(NLPBE) along with the linear PBE (LPBE) results. The analytical model would predict
the (∆∆G) of acetylation for any pair of residues inside the core to be 30.8 kcal/mol.

Acetylated Lysines LPBE: ∆∆G (kcal/mol) NLPBE: ∆∆G (kcal/mol)
H3K56 8.7 5.0
H4K91 7.2 2.1
H2BK5 1.8 1.1
H3K4 0.07 0.03
H2AK75 10.6 6.5
H2BK31 15.3 8.8
H3K36 3.7 2.6
H4K44 13.3 9.5

∼ 23 kcal/mol ∼ 40 kT . However, the fragments that “peeled off” in the experiment were

limited to about 70 base pairs which is roughly half of the nucleosomal DNA. Since the

strand-strand repulsion is largest in the compact conformation, the complete unwrapping

of the nucleosomal DNA is expected to be relatively more unfavorable, per base-pair, than

partial unwrapping. Thus, the above estimate could be considered as an approximate lower

bound for true ∆G, consistent with our theoretical prediction.

An upper bound for the free energy of the wrapped state of NCP can be estimated from

experiments involving pulling the DNA off the GHC by holding the nucleosome in place

with an optical trap while the DNA attached to a cover slip is slowly moved away from the

trap[134]. Here, the free energy of reversible dissociation of the first 76 bp was reported to

be about 12 kcal/mol, while the cost of peeling off the remaining length of DNA was about

22 kcal/mol, yielding the total of 34 kcal/mol ≈ 60 kT . Since reversibility was not achieved

when the GHC dissociated from the DNA[134], this number can be considered an upper

bound on the true ∆G. Our predicted value, see main text, is consistent with this estimate,

within the error margin.
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4.4.5 Comprehensive list of post-translational modifications

This section contains the results from a comprehensive study of the effect of histone phos-

phorylation and acetylation on the nucleosome stability. All of the post-translational modi-

fications that change the total charge of the GHC are presented in Tables 4.4, 4.5, 4.6, and

4.7.

Table 4.4: The ∆∆G values using the NLPBE solver for all acetylation and phosphorylation
sites on the H4 histone. The values are color-coded based on the strength of the ∆∆G
values. Dark blue represents minimal change relative to the experimental upper bound (34
kcal/mol), and dark red represents values greater than the experimental upper bound.

Histone Residue PTM ∆∆G (kcal/mol) %Diff
H4 THR 80 P 34+ 0.21
H4 THR 30 P 34+ 2.19
H4 SER 47 P 25.82 1.69
H4 THR 82 P 13.75 2.60
H4 THR 73 P 10.74 2.25
H4 LYS 79 A 10.71 0.18
H4 LYS 44 A 8.08 30.53
H4 LYS 31 A 6.96 5.28
H4 THR 54 P 6.82 10.87
H4 LYS 77 A 5.63 0.23
H4 THR 96 P 2.41 15.53
H4 THR 71 P 2.38 3.75
H4 LYS 91 A 1.96 9.39
H4 LYS 20 A 1.22 1.36
H4 LYS 59 A 0.53 7.48

4.4.6 The physics of the nucleosome wrapping/ unwrapping: agree-

ment with experiment

The model agrees with experiment on a number of observed trends and transitions in the

nucleosome. We use our model to explain the physics behind the observed trends. Note, this

section refers the reader to figure 3 in the Main Text when describing the different trends.
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Table 4.5: The ∆∆G values using the NLPBE solver for all acetylation and phosphorylation
sites on the H3 histone. The values are color-coded based on the strength of the ∆∆G
values. Dark blue represents minimal change relative to the experimental upper bound (34
kcal/mol), and dark red represents values greater than the experimental upper bound.

Histone Residue PTM ∆∆G (kcal/mol) %Diff
H3 THR 118 P 34+ 1.59
H3 THR 45 P 34+ 81.80
H3 SER 86 P 16.10 6.06
H3 SER 87 P 11.49 9.41
H3 SER 57 P 6.83 57.77
H3 THR 58 P 6.15 63.94
H3 LYS 64 A 5.74 16.61
H3 THR 107 P 5.66 13.35
H3 SER 96 P 5.49 16.36
H3 LYS 115 A 4.53 2.87
H3 LYS 122 A 4.03 3.68
H3 SER 28 P 3.48 59.72
H3 LYS 37 A 3.39 75.05
H3 THR 80 P 2.76 0.93
H3 LYS 56 A 2.74 90.68
H3 LYS 79 A 2.27 0.66
H3 LYS 36 A 2.00 45.34
H3 THR 32 P 1.61 34.47
H3 LYS 27 A 1.13 89.19

As expected, the nucleosome is in its “wrapped” state at physiological conditions indicated

by the red dot in figure 3. Experimentally, its stability starts to gradually decrease[122,

126] as soon as the ionic strength (salt concentration) of the solution increases beyond

the physiological value. When the salt concentration reaches about 0.8 M [NaCl][122], the

nucleosome is known to remain in the unwrapped state. These trends are clearly reproduced

by the model: as the system moves away from the red dot towards higher salt concentrations,

it approaches and eventually crosses the physical phase boundary into the unwrapped state.

The physics behind this behavior is intuitively clear: an increase in the ionic strength of the

solution screens out the favorable attraction between the positively charged GHC and the

oppositely charged DNA. Within our model, the screening is controlled by the inverse Debye
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length κ ∝
√

[salt]; as it increases beyond the physiological value of κ ≈ 0.1Å
−1
, the region of

existence of the wrapped state of the nucleosome begins to shrink, see figure 3. Conversely,

it was experimentally observed that a small decrease of the salt concentration from the

physiological conditions leads to the increased stability (“freezing”) of the structure[125].

Indeed, the predicted region of the wrapped state of the nucleosome particle slightly to the

left of the physiological conditions corresponds to a larger (more stable) |∆G| value, see

figure 3.

The nucleosome also becomes destabilized as the ionic strength is lowered well below the

physiological regime, see figure 3. Such a transition might seem counterintuitive since a

reduction in the total number of screening ions increases the affinity between the positively

charged core and negatively charged DNA. However, the over-all stability is a fine balance

between these favorable interactions and the like charge repulsion within the DNA that

disfavors conformations in which the DNA is bent. This low salt transition is experimentally

known to occur near a monovalent salt concentration of approximately 0.001 M[124], in

qualitative agreement with our results, see figure 3.

The “charge coordinate”, see figure 3 can be conveniently accessed experimentally by modu-

lating the pH of the environment. Lowering the pH of the solution (and thus increasing the

GHC charge) leads to an increase in the stability of the nucleosome[124, 129]. Our model

predicts this intuitive behavior; an increase in GHC charge just beyond the physiological

value, red dot in figure 3, results in increased stability of the nucleosome. However, con-

trary to intuition, the model predicts the nucleosome to begin to destabilize as one continues

to increase the core charge (e.g., decrease pH) well beyond the physiological value. This

destabilization effect has also been observed experimentally[126].

Although the GHC charge and ionic strength of the environments are independent param-

eters within the model, their variations affect the stability of the nucleosome through the
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same general mechanism of altering the electrostatic interactions. Thus, one expects that

destabilization caused by changing one of the parameters can be offset by appropriate ad-

justment of the other. Indeed, in experiments the nucleosome is unwrapped at low salt and

physiological pH; however, decreasing the pH, hence increasing the core charge, drives the

system back to the wrapped state. This transition was shown to occur at a monovalent salt

concentration of 0.1 mM near pH 5[124]. Our model qualitatively predicts this transition in

the lower left region of the phase diagram, figure 3.

4.4.7 The physics behind the transitions in the nucleosome: quan-

titative details

The origins of the the nucleosome unwrapping at high salt concentrations can be seen directly

from equation (10) in the Main Text. For the sake of argument, in the following discussion

we neglect the small terms arising from the presence of the Stern layer, i.e., set b → 0.

1) The high salt limit. When κ ≫ 1, the ratio of the modified Bessel functions of the second

kind goes to 1. Now the entire ∆Gelectro is composed of two terms. The first term is negative

and inversely proportional to κ, and the second term is a positive, constant contribution

from the trapped field effect, see equation 4.4.2. At physiological salt, κ ≈ 0.1, ∆Gelectro

is overall negative and overwhelms the unfavorable non-electrostatic part in the total ∆G

and the system remains in the wrapped state. However, as κ increases, the favorable term

inversely proportional to κ decreases and the balance shifts towards the unwrapped state.

∆Gelectro|κ≫1 ≈ − 1

κϵout

[
(QC)

2

LNRC

+
(QD)

2

LDRD

− (QC +QD)
2

LNRN

]
+
(QC +QD1)

2

ϵinLN

ln

(
RN

RC

)
(4.4.2)
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2) The low salt limit. The unwrapping of the system at low salt concentrations comes from

an interplay between the favorable interactions of the core and DNA and the like charge

repulsion within the DNA. These opposing interactions can be seen within our model, which

in the low salt regimes gives:

∆Gelectro|κ≪1 ≈
Q2

D (1 + 2QC/QD)

LNϵout
ln

(
1

κRD

)
(4.4.3)

Equation (4.4.3) shows that in the small κ regime the sign and magnitude of the electrostatic

contribution to the stability of the nucleosome is controlled by the ratio of DNA’s total charge

to the charge of the GHC. If the ratio |QC |/|QD| is less than 1/2, then, for small enough κ,

∆Gelectro > 0. This can be interpreted as the DNA’s strand to strand repulsion overwhelming

the attraction between the DNA and the oppositely charged GHC and thus favoring the

unwrapped state. The linear dependence on the natural log of the salt concentration in

equation (4.4.3) has been seen before in experiment and theory in a similar context[159–

162].

At physiological ionic strength, ∆Gelectro is the dominant contribution to the total stability.

Within our model, if one alters the value of QC such that |QC |/|QD| ∼ 0.31 or less, the

system will favor the unwrapped state. The physics responsible for this behavior can be seen

from the second term in equation (10) from the Main Text:

∆Gtrapped field
electro =

(QC +QD1)
2

LNϵin
ln

(
RN

RC

)
(4.4.4)

This contribution always favors the unwrapped state, but it is relatively small when the GHC

charge approximately equals the magnitude of the DNA charge at the interface, |QC | ≈

|QD1|. As discussed above, this is the case under physiological conditions which keeps the
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nucleosome stable. However, considerable deviation between the core charge and the charge

of the DNA at the interface makes ∆Gtrapped field
electro the dominant contribution compared to

other terms in the full expression of ∆Gelectro: note the low ϵin in the denominator and

ln
(

RN

RC

)
which is not close to 0. As |QC + QD1| becomes large, the always destabilizing

∆Gtrapped field
electro eventually drives the system to the unwrapped state. The physical meaning

of ∆Gtrapped field
electro is that it describes the destabilizing free energy of the electric field created

by the unbalanced charge at the core/DNA interface. Given the topology of the folded

nucleosome, figure 2 in the main text, most of this field is trapped in the low dielectric

region of the DNA bulk. Electrostatic models that treat the DNA as a charged string of zero

thickness[137, 138, 140, 141] do not include the destabilizing effects of an electric field in the

low dielectric bulk of the DNA. Therefore, it appears that these models lack a mechanism

to account for the experimentally observed destabilization of the structure caused by a large

core charge. Models that do account for non-zero thickness of the DNA, but do not explicitly

consider the core-DNA dielectric boundary[143, 145] also miss the “trapped field” effect and

are therefore unlikely to predict the above trend as well.

4.4.8 Stability sensitivity to globular core charge is robust to

model assumptions

The origin of the extreme sensitivity to small changes in the total charge of the GHC near

and at in vivo conditions lies in the wrapped state energy contribution to ∆G, specifically

in a term corresponding to a trapped electric field inside the wrapped DNA. This term is

proportional to (QD1 + QC)
2/ϵD, where QC is the total (positive) charge of the GHC, QD1

is the (negative) charge of the DNA in contact with the core, and ϵin represents the low

dielectric constant for the DNA bulk. When the system is near and at in vivo conditions,

the sum of QD1 and QC is relatively small –maintaining stability. However, as QC changes,
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|QC +QD1| becomes large and eventually drives the system to the unwrapped state.

The following quantitative analysis confirms that the contribution from the trapped electric

field inside the low dielectric bulk of the DNA dominates all of the other two terms in the

model for parameter values closely around in vivo conditions.

(
∂∆Gtot

∂QC

)
=

2(QD +QC)

ϵoutLN

(
ln

[
RN + b

RN

]
+

1

κ(RN + b)

K0[κ(RN + b)]

K1[κ(RN + b)]

)
+
2(QD1 +QC)

ϵinLN

ln

[
RN

RC

]
− 2QC

ϵoutLN

(
ln

[
RC + b

RC

]
+

1

κ(RC + b)

K0[κ(RC + b)]

K1[κ(RC + b)]

)
(4.4.5)

Equation (4.4.5) shows the partial derivative of ∆Gtot with respect to the GHC charge,

QC . The second term is the contribution from the trapped electric field and dominates the

other two terms for parameter values near and at in vivo conditions. In fact, it remains the

dominant term for values of QC above +119|e| and below +96|e| in the model. Since the

trapped electric field only exists in the wrapped state, the predicted sensitivity to changes

in the GHC charge should be robust relative to any type of unwrapped state that does not

allow for the trapped field to persist.
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Figure 4.2: The two states of the nucleosome in the idealized geometry model: the fully
wrapped nucleosome core particle and the globular histone core plus free DNA. The computed
stability, ∆G, corresponds to the unwrapped state → wrapped state transition. The large
arrows pointing from top to bottom represent the direction of the state transition. A) The
charge distribution of the idealized geometry model. For all cylinders, the total charge is
uniformly distributed on the surface excluding the ends. The labels QC , QD1, and QD

correspond to the total charge of the globular histone core, the charge of the DNA not
exposed to the solvent, and the total charge of the DNA. B) The potentials and geometric
dimensions used in the model. The labels RN , LN , RC , LC , RD, and LD correspond to
the radii and lengths of the nucleosome, histone core, and DNA respectively. ϕI specifies
the value of the potential at the external surface of the nucleosome. ϕII is the value of the
potential at the interface between the histone core and DNA. ϕIII represents the value of
the potential at the external surface of the histone core, and ϕIV is the value of the potential
at the external surface of the unwrapped DNA. See equations (4.2.6) - (4.2.9) for the exact
forms of these potentials.
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Figure 4.3: Phase diagram of the nucleosome two-state system as a function of globular
histone core charge and monovalent salt concentration of the surrounding solution. The
green area represents the wrapped state, ∆G < 0. The darker the shade of green, the more
stable the system is. The blue area represents the unwrapped state, ∆G > 0. The darker
the shade of blue, the more unstable the system is. The white band at the interface between
the two states is defined as |∆G| < 5 kcal/mol. The red dot in the lower left region of the
graph indicates physiological conditions at which the predicted stability of the nucleosome is
∆G = −38± 7 kcal/mol. The red dashed arrows correspond to predicted trends that agree
with experiment as conditions are changed from the physiological conditions.
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Figure 4.4: The location of each of the acetylated (neutralized) lysine residues and its relative
impact on nucleosome’s stability, ∆∆G. The relative intensity of the residue color roughly
corresponds to the computed ∆∆G values shown in Table 4.1: the darker the color the
stronger the effect. Each lysine pair is labeled from 1 to 4 as in Table 4.1 for the ease
of identification. This image was created using the VMD software package [103] with the
Tachyon renderer [104].
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Table 4.6: The ∆∆G values using the NLPBE solver for all acetylation and phosphorylation
sites on the H2B histone. The values are color-coded based on the strength of the ∆∆G
values. Dark blue represents minimal change relative to the experimental upper bound (34
kcal/mol), and dark red represents values greater than the experimental upper bound.

Histone Residue PTM ∆∆G (kcal/mol) %Diff
H2B THR 88 P 34+ 0.04
H2B SER 87 P 34+ 0.07
H2B THR 32 P 34+ 0.32
H2B SER 36 P 20.37 6.07
H2B SER 56 P 17.33 82.97
H2B THR 90 P 14.03 0.22
H2B SER 55 P 10.61 80.54
H2B LYS 28 A 9.64 1.05
H2B LYS 31 A 8.67 2.43
H2B SER 60 P 8.05 24.11
H2B SER 91 P 7.79 0.38
H2B SER 64 P 6.22 17.61
H2B THR 122 P 5.70 0.25
H2B SER 78 P 5.64 2.32
H2B LYS 85 A 5.52 1.86
H2B LYS 34 A 4.95 6.16
H2B THR 96 P 4.85 1.32
H2B THR 21 P 4.80 2.02
H2B LYS 43 A 4.64 7.16
H2B LYS 57 A 3.95 50.95
H2B LYS 27 A 3.76 5.75
H2B LYS 24 A 3.15 3.32
H2B THR 52 P 3.07 81.37
H2B THR 115 P 2.88 1.34
H2B THR 119 P 2.83 0.80
H2B LYS 46 A 2.80 63.89
H2B LYS 23 A 2.30 5.23
H2B SER 123 P 2.09 1.25
H2B LYS 125 A 1.42 0.06
H2B SER 112 P 0.86 5.97
H2B LYS 120 A 0.76 6.12
H2B LYS 116 A 0.37 8.94
H2B LYS 108 A 0.36 7.31
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Table 4.7: The ∆∆G values using the NLPBE solver for all acetylation and phosphorylation
sites on the H2A histone. The values are color-coded based on the strength of the ∆∆G
values. Dark blue represents minimal change relative to the experimental upper bound (34
kcal/mol), and dark red represents values greater than the experimental upper bound.

Histone Residue PTM ∆∆G (kcal/mol) %Diff
H2A THR 76 P 23.64 97.40
H2A THR 16 P 16.20 1.17
H2A SER 18 P 13.86 1.74
H2A SER 19 P 7.85 2.06
H2A THR 120 P 6.75 43.23
H2A LYS 13 A 5.64 0.94
H2A SER 123 P 5.14 38.80
H2A LYS 36 A 4.58 2.41
H2A THR 59 P 4.50 23.68
H2A SER 122 P 4.28 51.43
H2A SER 127 P 3.63 51.12
H2A LYS 75 A 3.48 92.28
H2A LYS 124 A 3.00 49.96
H2A SER 125 P 2.83 34.54
H2A SER 113 P 2.71 32.70
H2A LYS 119 A 2.58 21.05
H2A LYS 118 A 2.32 78.64
H2A THR 101 P 2.20 29.84
H2A LYS 15 A 1.60 3.03
H2A LYS 74 A 1.59 96.31
H2A LYS 126 A 1.46 82.56
H2A LYS 95 A 0.45 19.43
H2A LYS 128 A 0.16 71.07

100



Chapter 5

A model for signal transduction
during quorum sensing in Vibrio
harveyi

5.1 Introduction

Bacterial survival critically depends on regulatory networks which integrate multiple inputs

to implement important cellular decisions. A prominent example is the global regulatory net-

work involved in “quorum sensing”, commonly defined as the regulation of gene expression

in response to cell density. During the process of quorum sensing (QS), bacteria produce,

secrete and detect signaling molecules called autoinducers [21–23]. These signals are then

processed by the QS pathway to regulate critical bacterial processes such as biofilm forma-

tion and virulence. The observation that quorum sensing is linked to both biofilm formation

and virulence factor production suggests that many virulent bacteria can be rendered non-

pathogenic by the inhibition of their QS pathways [178]. Quantitative modeling of the QS

pathway can thus provide useful inputs for treating many common and damaging bacterial

infections.

One of the most studied model organisms for QS based regulation is the bioluminescent ma-
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rine bacterium Vibrio harveyi. Experimental studies have led to a detailed characterization

of regulatory elements in the pathway [24–28]. The network (see figure 5.1) includes multiple

autoinducers and corresponding sensor proteins which act together to control the phosphory-

lation of the response regulator protein LuxO. The phosphorylated form of LuxO (LuxO-P)

activates the production of multiple small RNA (sRNA)s which in turn post-transcriptionally

repress the QS master regulatory protein LuxR. At low cell density, the sRNAs are activated

and act to effectively repress LuxR expression. In contrast, sRNA production is significantly

reduced at high cell density, thereby giving rise to increased levels of LuxR which leads to

the activation of luminescence genes. The corresponding luminescence output per cell profile

(i.e., colony luminescence/cell output as a function of cell density) is frequently used as a

reporter to characterize the state of the QS pathway.

Recent experiments [24] have analyzed the effects of mutagenesis of different pathway com-

ponents on the corresponding luminescence profile in V. harveyi. It was observed that there

are distinct luminescence profiles as the network is perturbed corresponding to different

pathway mutants. The changes in the luminescence profile were used to infer pathway char-

acteristics such as relative kinase strengths for the different sensors. Given the complexity of

the network which involves integration of multiple inputs, it would be desirable to develop

a quantitative framework for inferring pathway characteristics based on network perturba-

tions. The corresponding quantitative model can then be used to make testable predictions

for future experiments as well as to further analyze existing experimental data. The aim of

this work is to develop such a minimal model for the QS pathway in V. harveyi.

The starting point of our analysis is the observation that luminescence/cell output is con-

trolled by the degree of phosphorylation of the response regulator LuxO. We thus develop a

simplified model which connects external autoinducer concentrations to the degree of phos-

phorylation of LuxO for the wild type (WT) strain and for different mutants. Our analysis
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identifies key dimensionless parameters which control the system response and which can be

determined using the experimental results for luminescence phenotypes. Determination of

the effective parameters, in turn, leads to predictions for the systems response to a broader

range of perturbations, i.e., perturbations distinct from those used to infer the effective pa-

rameters. The corresponding analysis sheds light on previously obtained experimental results

and also gives rise to testable predictions for future experiments.

The rest of this chapter is organized as follows. In Section 5.2, we give an overview of the QS

network in V. harveyi. We then develop a minimal model of the QS pathway and define key

dimensionless parameters which control the network response characteristics. In Section 5.3,

we connect our model to experimental data on different luminescence curves and thereby

determine model parameters. In Section 5.4, we discuss experimentally testable predictions

based on the model and conclude with a summary.

5.2 Overview and Model

The QS network in V. harveyi is shown in figure 5.1. The key upstream components of the

pathway are the three sensors, LuxN, LuxPQ and CqsSV h and the corresponding autoin-

ducer synthases, LuxM, LuxS, and CqsAV h which are responsible for producing the three

autoinducers: H-AI1, AI-2, and CAI-1, respectively. The binding of a single autoinducer

to a sensor is highly specific, i.e., HAI-1 binds only to LuxN, AI-2 binds to LuxPQ only,

and CAI-1 binds specifically to CqsSV h (figure 5.1). The overall network is conveniently

described in terms of functional modules. The first (input) module includes interactions be-

tween autoinducers ([AIi] (i = 1, 2, 3)) and the corresponding sensor proteins which, through

a phosphorelay mechanism, determine the overall phosphorylation state of a σ54-dependent

response regulator LuxO.
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Figure 5.1: Schematic representation of quorum sensing network in Vibrio harveyi at high
and low cell densities. The dotted rectangle is the input module which controls phosphory-
lation of LuxO in response to external autoinducer concentrations. Solid line, active path;
Dotted line, inactive path; IM, inner membrane; OM, outer membrane.

104



Cell Density

L
ig

h
t

Figure 5.2: Schematic representation of typical luminescence curves from experiment. The
green curve represents the response from a wild type (WT) colony. The turnaround point
in the curve corresponds to cell density necessary for the activation of the genes responsible
for luminescence output per cell. The red curve represents the luminescence/cell curve for a
mutant strain that is able to achieve the same activation at a lower cell density.

The second module focuses on the regulated production of sRNAs (dependent on the phos-

phorylation state of LuxO) and the interaction between the sRNAs and the master regulator

protein, LuxR. The interactions between small RNAs and their regulated targets have been

modeled in several recent studies which shed light on how target protein expression is con-

trolled by small RNA-mediated regulation [179–184]. In V. harveyi, LuxR serves as the

target protein whose expression is controlled by the small RNAs in combination with the

RNA-binding protein Hfq. The resulting concentration of LuxR determines the level of acti-

vation or repression of a multitude of genes including the genes involved in bioluminescence

[27]. The corresponding change in the luminescence/cell output determines the lumines-

cence profile which is frequently used to infer network characteristics such as relative rates

of kinase/phosphatase activities by the sensor proteins [24].

A schematic representation of typical luminescence/cell curves is shown in figure 5.2. Since

the starting point is obtained by the dilution of cells in the high density limit, the lumines-

cence output per cell is maximal at the initial time points. The luminescence output per cell
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then declines steadily with increasing cell density, since luminescence genes are no longer

activated in the cells. At a specific cell density, the luminescence curve starts to rise again

signalling the start of de novo luminescence gene activation by cells in the growing colony.

The cell density necessary for activation can vary from the WT and mutant strains resulting

in different luminescence phenotypes (see figure 5.2).

Current data indicates that increasing cell density leads to increasing dephosphorylation of

LuxO leading to lower production rates for the sRNAs. Correspondingly, the turnaround

point in the luminescence curves corresponds to unphosphorylated LuxO reaching a crit-

ical level above which sRNA production is not effective at repressing LuxR levels below

the threshold for observable luminescence activation in the population of cells. Thus, un-

derstanding how external signals (i.e., AI concentrations as a function of cell density) are

translated into the degree of LuxO phosphorylation (i.e., the input module) is critical for

analyzing luminescence profiles. Furthermore, pathway mutants which function upstream of

LuxO are not known to have any direct effects on sRNA production or LuxR levels, apart

from the indirect effects mediated by LuxO. Therefore we expect that the critical level of

LuxO phosphorylation corresponding to the turnaround in the luminescence profile is the

same for all mutants. The observation that the luminescence profiles are different for different

pathway mutants indicates different functional relations between external AI concentrations

and LuxO phosphorylation levels for the different mutants. In the following, we derive a

simple model which connects cell density to LuxO phosphorylation and uses information

from luminescence profiles of different mutants to infer system parameters.

The sensor proteins in the QS pathway can be modeled as two state systems [185, 186]. We

consider a further simplification which takes the sensors to be existing either in the kinase

mode, Ski, or in the phosphatase mode, Spi (where i = 1, 2, 3 corresponds to the distinct sen-

sor proteins in V. harveyi). In the kinase mode, the sensors can autophosphorylate and then
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transfer the phosphate group to the downstream protein LuxU, whereas in the phosphatase

mode the phosphate flow is reversed. Experiments indicate that at low cell density (corre-

sponding to low autoinducer concentrations) the sensors are primarily in the kinase mode,

whereas at high cell density (corresponding to high autoinducer concentrations), the sensors

are primarily in the phosphatase mode. Correspondingly, we consider a simplified model

wherein the free sensor corresponds to the kinase mode, whereas binding of autoinducer

results in a transition to the phosphatase mode.

At a given cell density, the external autoinducer concentrations will be proportional to the

colony forming units N . Since the time scale for changes in N (i.e., the doubling time) is

large compared to the time scales for binding/unbinding of ligands and subsequent phophory-

lation/dephosphorylation, the corresponding reactions can be considered in steady state for

a given N . Furthermore, since the typical number of sensor proteins of each type is large,

the concentration of sensors of type i is well approximated by the mean value [Si] = ci[S0]

(where [S0] is some reference concentration). At a given cell density, external AI concentra-

tions determine the fraction of the receptors which exist in either the kinase or phosphatase

mode. For the simplest case of autoinducers binding to their cognate sensors, we have the

kinetic scheme:

Ski + AIi
ki

k−i

Spi, (5.2.1)

from which the mean steady state concentrations of the sensors in either the kinase or

phosphatase mode can be obtained. More generally, to account for cooperative effects in

binding, we take the kinase/phosphatase fractions to be:

[Ski] = (1− gi)ci[S0] and [Spi] = gici[S0], (5.2.2)
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where

[Ski] + [Spi] = ci[S0], gi = ani /(1 + ani ), ai = [AIi]/κi. (5.2.3)

and κi = k−i/ki.

Equation (5.2.2), with Hill coefficient n = 1, corresponds to the steady state fractions for

equation (5.2.1), higher n values correspond to sharper switching from kinase to phosphatase

mode which mimics cooperative effects in binding. Finally, since the concentration of the i-th

autoinducer, [AIi], is proportional to the colony forming units (CFU), N , i.e. [AIi] = νiN ;

we renormalize the binding constant κi to define the scaled effective parameter κ̄i = κi/νi.

Typically in bacterial signal transduction, the sensor proteins in the kinase/phosphatase

modes serve as enzymes which transfer the phosphate group to/from a response regulator

protein or a phosphorelay protein [187–190]. In V. harveyi, this step involves phosphotransfer

to the phosphorelay protein LuxU (U). Phosphorylated LuxU (UP ) can then transfer the

phosphate group to the response regulator LuxO (O); similarly, unphosphorylated LuxU

serves as a receiver for removing the phosphate group from phosphorylated LuxO (OP ) . We

represent these processes by the following equations:

Ski + U
kki→ Ski + UP , (5.2.4)

Spi + UP
kpi→ Spi + U, (5.2.5)

UP +O
kf

kb

U +OP . (5.2.6)

For the above kinetic equations, it is convenient to define key dimensionless parameters of

the model as follows

αri = cikki/kkr, βi = (kf/kb)(kki/kpi). (5.2.7)
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The parameter αri is a measure of the relative kinase strength of i-th sensor with respect

to the r-th sensor (scaled by the mean concentrations of the two sensors), e.g., α12 is the

relative kinase strength of sensor 2 with respect to sensor 1. Another set of key parameters

is the ratio of the scaled kinase to phosphatase rates, βi, of the i-th sensor. Using these

dimensionless parameters, we then solve the rate equations (5.2.4-5.2.6) at steady state to

derive the following expression for the fraction of unphosphorylated LuxO at steady state,

fLuxO = [O]/[O]0 (with [O]0 being the total LuxO concentration)

fLuxO =

∑
i αri(gi/βi)∑

i αri(1− gi) +
∑

i αri(gi/βi)
. (5.2.8)

5.3 Connection to experimental data

We now connect the model for LuxO phosphorylation developed in the previous section to

experimental luminescence curves. Recall that the typical luminescence profile shows a well

defined switching point which signals observable de novo production of luminescence by the

population of cells. As argued earlier, this corresponds to a critical value for the concentration

of unphosphorylated LuxO. Let us denote this critical fraction of unphosphorylated LuxO

by f c and the corresponding value of the colony forming units by N c. At fLuxO = f c, for the

WT luminescence curve we have the following relation:

∑
i

αri(1− gi) =

(
1− f c

f c

)∑
i

αri(gi/βi), (5.3.1)

where the factors gi are evaluated at N = N c. Since N c is known from experiments corre-

sponding to the WT luminescence curve, the above equation can be regarded as a constraint

on the dimensionless parameters.
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We now consider the corresponding equations for luminescence phenotypes of the mutant

strains. Current knowledge of the QS network in V. harveyi indicates that pathway proteins

functioning upstream of LuxO primarily control LuxO phosphorylation levels and have no

direct interactions with the qrr sRNAs or the master regulator LuxR. This suggests that

for each mutant the degree of LuxO phosphorylation needed to activate luminescence is the

same (i.e., f c is the same) since upstream proteins affect LuxR only via LuxO-P levels. The

observation that the luminescence profiles are distinct for different pathway mutants is a

consequence of the altered functional relationship between LuxO phosphorylation levels and

external autoinducer concentrations for the mutants. Given the defined roles of the pathway

proteins, these altered functional relationships can readily be derived within our model for

all the mutants. For example, equation (5.3.1) for the single sensor mutant cqsSV h (i.e. the

strain with a deletion for the gene cqsSV h) takes the form:

(1− g1) + α12(1− g2) =

(
1− f c

f c

)[
g1
β1

+ α12
g2
β2

]
.

Note that the quantity (1 − f c)/f c can be absorbed into the scaled kinase to phosphatase

ratios β1 and β2. This is equivalent to setting f c = 1/2 in the above equation, and since

f c is the same for all pathway mutants, a similar rescaling can be done for the functional

relationships for all the mutants. The corresponding equations are presented in Section 5.5.

In the following, we show how these equations can be used along with WT and mutant

luminescence phenotypes to determine effective system parameters and to make testable

predictions.

From previous experiment [24], the critical threshold in colony forming units (N c) can be

estimated for a range of pathway mutants. The different mutant strains studied were i)

luxN , ii) luxQ, iii) cqsSV h, iv) luxN luxQ, v) luxN cqsSV h, and vi) luxQ cqsSV h. To

connect the sensors of V. harveyi with our model, we designate sensors LuxN, LuxQ, and
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CqsSV h as 1, 2, and 3, respectively. The ordering of the CFU/volume for the different strains

at their critical threshold shows the following hierarchy [24]:

N c
12 ≪ N c

2 ∼ N c
23 < N c

wt < N c
3 < N c

1 ∼ N c
13, (5.3.2)

where N c
12 is the number of colony forming units for mutant strain luxN luxQ at which

fLuxO = f c and so on. Although the values N c
2 , N

c
23 and N c

1 , N
c
13 appear to be indistin-

guishable based on available experimental data, based on the model developed we expect a

small difference in the threshold values. For example, the difference between the luxN strain

and luxN cqsSV h strain is that CqsSV h is active as phosphatase in the luxN mutant (close

to the switching threshold). This implies that the switching in the luminescence phenotype

should occur at a lower N c value for the luxN cqsSV h strain i.e., N c
1 < N c

13. Since CqsSV h

has weak effect on the luminescence phenotype, the switching values are indistinguishable

experimentally. However to develop a consistent model, we have to impose a small difference

between the switching values based on the constraint N c
1 < N c

13 (and similarly for N c
2 and

N c
23).

Based on the above reasoning, we initially considered a ∼10% difference between N c
2 , N

c
23 and

N c
1 , N

c
13 to solve equations (5.5.1), (5.5.4) and (5.5.8-5.5.10) from Section 5.5. Accordingly,

the values for critical thresholds (switching values, in the units of CFU/volume) used as

initial inputs for these equations were

N c
12 ∼ 105, N c

2 ∼ 14× 105, N c
23 ∼ 15× 105, N c

wt ∼ 40× 105,

N c
3 ∼ 70× 105, N c

13 ∼ 110× 105, N c
1 ∼ 100× 105.

From the discussion of the previous section, we have seen that the input module provides

us eight key parameters: two relative kinase strengths (α12 and α13), three scaled kinase

111



to phosphatase ratios (β1, β2, and β3) and three effective binding constants (κ̄1, κ̄2, and

κ̄3). Given that we have experimental data for threshold cell densities for seven strains, this

indicates that if one of the parameters is fixed, the other parameters can potentially be de-

termined by solving the corresponding threshold equations (see Section 5.5). Since previous

work indicated that the effect of CqsSV h on luminescence phenotypes is minimal, we initially

fixed the parameter α13 (the relative kinase strength of sensor 3 (CqsSV h) with respect to

sensor 1 (LuxN)) to 0.001.1 We then proceeded to determine the effective model parameters

by solving the threshold equations using the above experimental inputs for switching cell

densities. We also checked the stability of the solutions to the above equations based on

small perturbations to the input parameters and found that the solutions are stable with

respect to perturbations that maintain the initial ∼10% difference between N c
2 , N

c
23 and

N c
1 , N

c
13. However the solutions are sensitive to changes in the parameters controlling the

small differences in Nc values. Since experiments cannot guide us in determining the precise

value of these differences, the values of N c
2 and N c

1 do not serve as useful inputs in deter-

mining model parameters. Thus additional experimental data is needed to determine model

parameters as outlined below.

The experimental, luminescence data at high cell densities (hcd) for different sensor mutants

[24] provides an indirect means of estimating model parameters. The basic experimental

observations can be summarized as follows: while the WT strain shows a bright phenotype at

hcd, the luxS strain has a dim phenotype and the luxM strain has low levels of luminescence

and is classified as being dark. Furthermore the cqsSV h strain has a luminescence output

that is intermediate between WT and luxS and the cqsAV h luxS double mutant is dark

and produces significantly less luminescence than a luxM strain. Given our definitions of

model parameters, fLuxO = 1/2 corresponds to value at which observable luminescence/cell

is produced. Higher values of fLuxO will correspond to brighter luminescence phenotypes,

1This assumption will be relaxed in the subsequent analysis as described below.

112



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

103 104 105 106 107 108

f L
ux

O

colony forming units (CFU)/volume

WT
luxN
luxQ

cqsSVh
luxN luxQ

luxQ cqsSVh
luxN cqsSVh

f c

Figure 5.3: Profile of fLuxO as a function of colony forming units (CFU)/volume for wild
type (WT) and different sensor mutant phenotypes. The cell density at which fLuxO = f c

corresponds to the turnaround point in the experimental luminescence curves.

whereas a dark luminescence phenotype implies fLuxO < 1/2. Thus we expect that, at hcd,

we have fLuxO for luxS mutants to be around 0.5 (given the dim luminescence phenotype)

and fLuxO for the cqsSV h strain to be significantly greater than the corresponding value for

the luxS strain but significantly lower than 1 (the value for the WT strain). Based on these

constraints, we set the fLuxO values for 3 synthase mutant strains at hcd as follows: cqsAV h

= 3/4, luxM = 1/3 and cqsAV h luxS = 1/4. In combination with the expression derived for

fLuxO (equation (5.2.8)), these equations can be used, along with the luminescence switching

cell density equations, to determine model parameters.
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First, considering equation (5.3.1) for the double sensor mutants, we have the relation be-

tween the three β-s and three κ̄-s,

N c
23 = κ̄1β

1/n
1 , N c

13 = κ̄2β
1/n
2 , N c

12 = κ̄3β
1/n
3 . (5.3.3)

Also from equation (5.3.1), we have the expressions for the wild type and one single sensor

mutant (cqsSV h) with five unknown parameters: three kinase to phosphatase ratios (β1, β2

and β3) and two relative kinase strength (α12 and α13). (Note that we are now considering α13

to be variable). Using fLuxO = f c = 1/2, the switching values for WT and cqsSV h, (N
c
wt and

N c
3) and the fLuxO for three synthase mutants at hcd we solve the five equations to determine

the five unknown parameters. The corresponding values for the key parameters of the model

are: α12 ∼ 0.14, α13 ∼ 0.19, β1 ∼ 8.99, β2 ∼ 0.29 and β3 ∼ 7.14, for the Hill coefficient

n = 4. We note that there are two sets of solutions obtained using the above approach,

however only one of these corresponds to the experimentally observed hierarchy of switching

cell densities (5.3.2). Furthermore no solutions were obtained for n 6 2. For n = 3, the

equations can be solved and yield parameters that are close to the those inferred for n = 4.

However the n = 4 results are more consistent with the experimental observation that the

switching cell densities are experimentally indistinguishable for N c
1 and N c

13 (similarly for

N c
2 and N c

23). The high value of n = 4 suggests that there might be cooperative effects in

the switch from the kinase to phosphatase mode for the sensors. Now using these values

for the effective parameters, we calculate the values of fLuxO as a function of CFU/volume

(see figure 5.3) for the WT and different sensor mutant phenotypes of V. harveyi. Since the

effective parameters are determined, we can now use our model to generate similar curves

and make predictions for mutants that have not yet been studied experimentally. We have

checked the stability of the obtained solutions with respect to small changes in the input

values (see Section 5.5). We have also considered larger changes in the input fLuxO values
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consistent with the constraints noted earlier. While the precise values of the effective model

parameters do change as the inputs are varied, there are several robust predictions that can

be made. These are discussed further in the concluding section.

5.4 Conclusion and outlook

The preceding analysis helps determine the parameters in our minimal model. While these

parameters cannot directly be compared to experiments, they can lead to several predictions

which are testable experimentally. In the following, we outline some of the key predictions

based on our analysis.

1) The parameter βi is a measure of the relative kinase to phosphatase rates for the i-th

sensor. Based on the values determined, the following ordering is predicted for the relative

kinase to phosphatase rates of the three sensors LuxN > CqsSV h >LuxQ. LuxN is predicted

to be the strongest kinase which is consistent with results from previous experiments showing

that LuxN has a greater effect on LuxO phosphorylation than LuxQ [191]. Furthermore, it

is interesting to note that recent experiments have demonstrated high kinase to phosphatase

rates for the sensor LuxN [26]. While the corresponding value estimated by our model

(β1 ∼ 9) cannot directly be compared to experiments since it involves additional parameters,

the ratio βi/βj (i ̸= j) should correspond to experimental estimation of the ratio of kinase

to phosphatase rates of two sensors. From our model we consistently find that β2/β1 ≪ 1

and β2/β3 ≪ 1 indicating the the effective kinase to phosphatase activity ratio for LuxQ

is much lower than the other two sensors. Note that this prediction differs significantly

from the previous characterization [24] that kinase to phosphatase activity ratio for LuxQ

is greater than that of CqsSV h. It would thus be of interest to carry out experiments to

measure relative kinase to phosphatase rates for the sensors LuxQ and CqsSV h to see if the
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Table 5.1: Predictions for luminescence output per cell of different synthase mutants and
mixed sensor-synthase mutants.

Phenotype Mutant
dark luxM , luxM luxS, luxS cqsAV h, luxM cqsAV h,

luxN luxS, luxQ luxM , luxQ cqsAV h, cqsSV h luxM
dim luxS, cqsSV h luxS
bright cqsAV h, luxN cqsAV h

predictions are borne out.

2) Experiments with mutant strains (besides those used as inputs to our model) indicate

that at high cell densities, the luminescence phenotypes can be broadly categorized into 3

types: dark, dim and bright. Since f c = 1/2 is the threshold for luminescence activation in

our model, we take these categories to correspond to the following: dark (0 6 fLuxO < 0.4),

dim (0.4 < fLuxO < 0.6) and bright (0.6 < fLuxO 6 1.0). Using these criteria, we can now

predict the luminescence phenotypes at high cell density for other pathway mutants (i.e.

those not included in the experimental inputs used to determine model parameters). The

corresponding results are listed in Table 5.1. We note that all mutant strains with LuxM

deleted (luxM) are dark. This is consistent with previous experimental results [192]. Other

interesting predictions are

i) While cqsAV h luxN is bright (comparable to cqsAV h) at hcd, the strain cqsAV h luxQ is

predicted to be dark;

ii) luxS is brighter than luxM at hcd , however cqsAV h luxS is predicted to be darker than

cqsAV h luxM (note that this is consistent with previous observations [24]).

It should be noted that the results presented in figure 5.3 are just for sensor mutants whereas

Table 5.1 is for synthase mutants and mixed sensor-synthase mutants. For the different

mutants given in Table 5.1, the maximal value of the fLuxO curve differs from 1 and stays

within the defined range (according to the broad categories discussed in this chapter) even

at the hcd in contrast to the behavior shown in figure 5.3 for the sensor mutants.
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3) To determine the values of the effective parameters of the model, we used the switching

value (N c) of WT, cqsSV h and double sensor mutants from experiment [24]. With these de-

rived values of the effective parameters, we can now predict the switching values of the other

two bright sensor mutant strains (luxN and luxQ) at hcd (in the units of CFU/volume),

N c
1 ∼ 100× 105, N c

2 ∼ 14× 105.

It is interesting to note that the above switching values are in good agreement with the

observation that N c
1 is experimentally indistinguishable from N c

13 and N c
2 is experimentally

indistinguishable from N c
23 (see figure 5.3). In addition, the effective parameter set predicts

the switching values (N c, in units of CFU/volume) for the two bright mutant strains cqsAV h

and luxN cqsAV h mentioned in Table 5.1 as ∼ 130× 105 and ∼ 156× 105, respectively.

4) Recent experiments have probed the response of the QS pathway to externally con-

trolled autoinducer concentrations [25]. In these experiments, the autoinducer production

is switched off by deleting the corresponding synthases and then autoinducers are added

back exogenously in controlled amounts. In our model this behavior can be mimicked by

controlling the quantity gi in equation (5.2.3). For each synthase mutation the autoinducer

production is switched off so that gi = 0 as AIi = 0 (i = 1, 2, 3). As autoinducers are added

to the network from outside, the quantity gi grows and tends to one as AIi → ∞. For

this setup, our analysis indicates a situation wherein the sensor CqsSV h plays an important

role in regulating the response which is contrary to what is normally assumed. Consider

the situation for which all the autoinducer synthases have been deleted and subsequently

saturating amounts of AI1 are added. In this case, we predict a significant difference be-

tween the luminescence output per cell for the two cases corresponding to i) low external AI3

concentrations and (ii) high external AI3 concentrations. The difference between these two

cases is that the sensor CqsSV h is primarily in kinase mode for case (i) and in phosphatase
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mode for case (ii). Our analysis thus suggests a testable prediction for an experimentally

realizable situation wherein signaling through CqsSV h significantly changes the output from

the QS pathway.

5) Finally, we examine predictions from our model for the expression of genes that are also

controlled by fLuxO through LuxR but are not directly related to luminescence/cell. Previous

experimental work studied several genes regulated by LuxR and classified them into different

categories based on the activation/repression induced by the presence of high concentrations

of either AI1 or AI2 or both [27]. We will focus on the category of genes (labeled “class

3” genes) which are defined as genes that show an equally notable change in expression

when either AI1 and/or AI2 are present in high concentrations. Within our model, we can

calculate the the values of fLuxO for the 3 cases : (i) High concentration of AI1 only, (ii) high

concentration of AI2 only and (iii) high concentration of both AI1 and AI2. Out of these

the lowest value of fLuxO corresponds to case (ii) i.e., high concentration of AI2 only. Since

class 3 genes are fully activated/repressed when high concentrations of AI2 only are present,

it follows that the f c for all genes in this category must be lesser than the value of fLuxO

when only AI2 levels are high (fLuxO = 0.33). (Note that we have assumed that AI3 levels

are at high concentrations in the above experiments since they are at high cell densities).

This observation indicates that an upper bound for activation/repression of class 3 genes

corresponds to f c = 0.33. Using this, the following testable predictions can be made

• The synthase mutant luxM can fully activate/repress class 3 genes at high cell density.

Note that luminescence genes, in contrast, are not activated at high cell density in a

luxM mutant.

• Similarly, the sensor-synthase mutants luxM cqsSV h and luxQ cqsAV h cannot acti-

vate luminescence genes at high cell density whereas they are predicted to fully acti-

vate/repress all class 3 genes at high cell density .
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The minimal model presented in this work can be generalized further as more experimental

data becomes available. An important generalization would be to relax some of the assump-

tions made by considering a two-state model [186] which incorporates non-zero phosphatase

activity in the on (free) state and nonzero kinase activity in the off (bound) state. We

note that this will add several additional parameters to our current model. With additional

experimental data, the generalized model could be used to estimate the expanded set of

effective parameters. While the effective parameters so determined are likely to be different

from the values determined using the minimal model, the framework connecting the model

parameters to experimental data will essentially be the same.

In summary, we have proposed a minimal model to study the quorum sensing network in V.

harveyi. Using experimental data for luminescence phenotypes of WT and different mutant

strains, we provide a framework to estimate the effective dimensionless parameters of the

model. Correspondingly, the model can be used to predict the luminescence phenotypes of

other pathway mutants which have not been experimentally studied to date. The proposed

framework captures the key features of the signal transduction in V. harveyi and can con-

tribute to guiding and interpreting experimental efforts analyzing the QS pathway in the

Vibrios.

5.5 Additional details

For the relative kinase strength (αri = cikki/kkr for i = 1, 2, 3) of the sensors we generally

use the kinase strength of LuxN, i.e., kk1(r = 1), as the reference kinase. Now using equation

(5.3.1) we explicitly write the functional relation for WT strain evaluated at N = N c
wt for
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fLuxO = f c:

(1− g1) + α12(1− g2) + α13(1− g3) =

(
1− f c

f c

)[
g1
β1

+ α12
g2
β2

+ α13
g3
β3

]
. (5.5.1)

Similarly for luxN mutants we use kinase strength of LuxQ, i.e., kk2(r = 2), as the reference

kinase whereas for luxQ and cqsSV h we use kinase strength of LuxN as the reference kinase

as in WT. Thus the functional relations for the single sensor mutants luxN , luxQ and cqsSV h

evaluated at N c
1 , N

c
2 and N c

3 , respectively, are:

For luxN (r=2):

(1− g2) +
α13

α12

(1− g3) =

(
1− f c

f c

)[
g2
β2

+
α13

α12

g3
β3

]
. (5.5.2)

For luxQ (r=1):

(1− g1) + α13(1− g3) =

(
1− f c

f c

)[
g1
β1

+ α13
g3
β3

]
. (5.5.3)

For cqsSV h (r=1):

(1− g1) + α12(1− g2) =

(
1− f c

f c

)[
g1
β1

+ α12
g2
β2

]
. (5.5.4)

For double sensor mutants value of the relative kinase strengths become 1 as there is

only 1 sensor. Hence the functional relations for the double sensor mutants luxN luxQ,

luxQ cqsSV h and luxN cqsSV h evaluated at N c
12, N

c
23 and N c

13, respectively, are:

For luxN luxQ (r=3):

(1− g3) =

(
1− f c

f c

)
g3
β3

. (5.5.5)

120



For luxQ cqsSV h (r=1):

(1− g1) =

(
1− f c

f c

)
g1
β1

. (5.5.6)

For luxN cqsSV h (r=2):

(1− g2) =

(
1− f c

f c

)
g2
β2

. (5.5.7)

To find the unknown parameters of the system of equations (α12, α13, β1, β2, and β3), we use

equations (5.5.1) and (5.5.4) evaluated at N = N c
wt and N = N c

3 , respectively, along with

the following three equations all evaluated at N = N large:

f luxM
LuxO =

α12(g2/β2) + α13(g3/β3)

1 + α12(1− g2) + α13(1− g3) + α12(g2/β2) + α13(g3/β3)
, (5.5.8)

f cqsA
LuxO =

(g1/β1) + α12(g2/β2)

α13 + (1− g1) + α12(1− g2) + (g1/β1) + α12(g2/β2)
, (5.5.9)

f luxS cqsA
LuxO =

(g1/β1)

α12 + α13 + (1− g1) + (g1/β1)
. (5.5.10)

Equations (5.5.8-5.5.10) are the fLuxO values for the three mutants luxM , cqsAV h, and

luxS cqsAV h once the system has reached steady state (N = N large). Equations (5.5.1),

(5.5.4) and (5.5.8-5.5.10) are then numerically solved using Mathematica (Wolfram Research,

Inc., Version 6, 2008) which yielded two solutions subject to the constraint that all the pa-

rameters must be real and positive. We keep the solution that best agrees with experimental

data. When solving these equations, we used f luxM
LuxO = 0.33, f cqsA

LuxO = 0.75, f luxS cqsA
LuxO = 0.25

and n = 4.

We next analyzed the changes to the solutions based on small perturbations to the input

parameters. Each perturbation for the input values is drawn from a random Gaussian
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distribution whose mean is the base value and variance is the base value×σ, where σ is

chosen such that 68% (98%) of the perturbed values lie within 2% (5%) of the base value.

For example, to generate a list of perturbed N c
12 values, we set the mean of the Gaussian

distribution to be N c
12 and the variance to be N c

12 × σ, etc. Using this scheme, we generated

100 random data points for the input values (the switching values) and numerically solve

equations (5.5.1), (5.5.4) and (5.5.8-5.5.10) with n = 4 to generate the effective parameters.

Note, f luxM
LuxO , f cqsA

LuxO, f
luxS cqsA
LuxO are also perturbed in the same fashion.

The resultant data of the sensitivity analysis are shown in figures 5.5 and 5.5. The nature

of the data shown in figures 5.5 and 5.5 suggests that the parameter set obtained using the

experimental switching values [24] is robust against small perturbations.
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Figure 5.4: Results of sensitivity analysis for the input base values. The blue line represents
the unperturbed data and the red dashed line is the mean of the 100 perturbed data points
represented by scattered red points.
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Figure 5.5: Results of sensitivity analysis for the effective parameters. The blue line, red
line and red scattered points have the same meaning as in figure 5.5.
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Chapter 6

Computational modeling of
differences in the quorum sensing
induced luminescence phenotypes of
Vibrio harveyi and Vibrio cholerae

6.1 Introduction

Bacterial survival is critically dependent on regulatory networks which monitor and respond

to environmental fluctuations. An important example of such a regulatory network is the

pathway responsible for bacterial “quorum sensing”, commonly defined as the regulation of

gene expression in response to cell density [20]. Quorum sensing bacteria produce, secrete and

detect signalling molecules called autoinducers (AIs) which accumulate in the surroundings

as the cell population increases. Differential expression of certain sets of genes occurs when

the local concentration of AIs exceeds a critical threshold. Several processes critical to

bacterial colonization and virulence e.g. biofilm formation, bioluminescence, and secretion

of virulence factors [21, 22, 193–196] were shown to be regulated in this manner, leading to

increased interest in characterizing quorum sensing based regulation in bacteria.

The quorum sensing networks in Vibrio harveyi and Vibrio cholerae were recently analyzed
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in considerable detail [197]. The basic network components are highly homologous in the

two species, to the extent that the bioluminescence genes from V. harveyi1 were used to

characterize the regulatory network in V. cholera using luminescence assays [179, 198, 199].

In both species, the central regulatory module consists of multiple quorum regulatory small

RNAs (qrr1-4 in V. cholerae and qrr1-5 in V. harveyi) which control levels of the master

regulator for quorum sensing: LuxR in V. harveyi and HapR in V. cholerae. LuxR/HapR

levels are maintained below the threshold for luminescence activation at low cell densities due

to repression by the small RNAs (sRNAs), whereas at high cell densities quorum sensing leads

to a reduction in sRNA production rates, thereby increasing LuxR/HapR levels above the

threshold leading to luminescence activation. By observing luminescence levels as a function

of cell density for different mutants (corresponding to different deletions in the quorum

sensing pathway components), several characteristics of pathway structure and function were

inferred.

The above studies documented striking differences in luminescence phenotypes in the two

species even though the regulatory components of the pathways are very similar. The most

dramatic differences were seen in the luminescence phenotypes of the qrr sRNA mutants. In

V. cholerae, the four qrr sRNAs acted redundantly [179] – all mutants with only one sRNA

present had luminescence phenotypes that were identical to the WT luminescence phenotype.

In contrast, the corresponding sRNAs in V. harveyi acted additively such that different

mutants with only one sRNA present had distinct luminescence phenotypes compared to the

WT phenotype. Thus in V. harveyi all the sRNAs must be present in order to mimic the

wild-type luminescence phenotype [28]. Apart from these differences in the luminescence

phenotypes of the sRNA mutants, there were also significant differences in the luminescence

phenotypes of strains corresponding to deletions of upstream pathway elements in the two

species. An important challenge for computational analysis of quorum sensing pathways is

1The corresponding bioluminescence genes are absent in V. cholerae.
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to present a unifying explanation for the various, apparently unrelated, differences in the

luminescence phenotypes for the two species despite the fact that the pathway elements are

very similar (see figure 6.1).

Figure 6.1: The V. harveyi and V. cholerae quorum sensing gene networks. (Left) V. harveyi
and (Right) V. cholerae employ multiple AIs whose signals are integrated together in order
to regulate either LuxR or HapR. V. harveyi produces and monitors the concentrations
of three different AIs (HAI-1, CAI-1, and AI-2), while V. cholerae produces and monitors
the concentrations of two different AIs (CAI-1 and AI-2). Via very similar phosphorelay
networks composed of highly homologous components, the bacteria transduce the signal
produced by the external AI concentrations through the network. In both bacteria, the
sensors transfer phosphate groups to the protein LuxU when the external concentration
of AIs is low. LuxU then passes the phosphate groups to the protein LuxO which, when
phosphorylated, is responsible for the production of sRNAs. The flow of phosphate groups
slows and then reverses when the external concentration of AIs continues to increase, thus
reducing the production of the sRNAs.

Previous work modeling the pathway elements, in particular the interaction of sRNAs with

target mRNAs, showed that the corresponding rate equations (for a range of parameter

values) contained a sharp transition from a steady state wherein the target mRNA was
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strongly repressed to one in which the sRNA was strongly repressed [179–184]. Since the

WT luminescence phenotype also showed a sharp transition as cell density increased, it

was initially suggested that this transition corresponded to the sharp transition seen in the

sRNA-target rate equations. However, recent experimental results provide indications that

this identification is not necessarily valid and correspondingly the picture needs to be revised.

First, experiments in V. cholerae showed that the expression levels of the virulence regulator

AphA [200] to be about three-fold lower in WT at low cell densities compared to a ∆hapR

mutant. This indicates that WT V. cholerae maintains HapR at low but significant levels

at low cell densities (such that it can effectively repress AphA to the extent noted) rather

than fully repressing it. Furthermore, experiments in V. harveyi examining regulation of

additional targets by LuxR indicated that LuxR levels change in a graded manner as opposed

to a sharp, ultrasensitive switch [27]. Thus, there is a need for computational analysis of

sRNA-target regulatory interactions in the context of the quorum sensing pathway, which

is consistent with these experimental results and which also provides a unifying explanation

for observed luminescence phenotypes.

In what follows, we will present a simplified model for luminescence regulation during quo-

rum sensing in V. harveyi and V. cholerae, which is an extension of work done in Chapter

5. For a given choice of parameters, the model accounts for the dramatic differences in the

luminescence phenotypes for the sRNA mutants in the two species based on a single pa-

rameter difference. The analysis also provides a unifying explanation for currently unrelated

differences between the luminescence phenotypes of different mutants in the quorum sens-

ing pathways and gives rise to testable predictions for future experiments. This work thus

provides a framework for systems-level analysis of the quorum sensing pathway in the V.

harveyi and V. cholerae while complementing previous models of V. fischeri [201–203] and

suggests future experiments that can help in further unraveling the function of this critical

regulatory pathway.
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6.1.1 Overview of experimental results

We begin with an overview of the two pathways and associated luminescence phenotypes

in the two species. A schematic representation of the two pathways is shown in figure 6.1.

The core elements are the same in both species: a multi-component phosphorelay involving

sensor proteins (which can function as kinases as well as phosphatases), the phosphotransfer

protein LuxU, and the response regulator protein LuxO. Phosphorylated LuxO is responsible

for the activation of multiple qrr sRNAs which in turn repress the quorum sensing master

regulator (LuxR in V. harveyi and HapR in V. cholerae).

The pathways do exhibit some differences in the number of autoinducer synthase/sensor

protein pairs and in the number of sRNAs present. V. harveyi has three known autoin-

ducer synthase/sensor protein pairs whereas V. cholerae has only two known autoinducer

synthase/sensor protein pairs. Furthermore, V. harveyi has five qrr sRNAs as opposed to

four in V. cholerae [197]. However, our current understanding indicates that these differ-

ences are not significant under the conditions tested. For example, it was shown that qrr5 in

V. harveyi is not quorum sensing regulated or expressed under normal conditions [28] and

one of the autoinducer synthase/sensor protein pairs in V. harveyi has minimal effects on

quorum sensing based regulation [24]. Thus, both pathways can effectively be considered as

having two autoinducer synthase/sensor protein pairs and four qrr sRNAs. Furthermore,

the pathway components are highly homologous, e.g. LuxR is greater than 90% identical to

HapR. However, despite these common features and similarities between components, the

luminescence phenotypes show dramatic differences as detailed below.

The luminescence curves for WT strains of V. harveyi and V. cholerae (based on experi-

mental data from [28] and [179]) are shown in figure 6.2. In both cases, the luminescence

per cell begin at a high value since the initial state corresponded to a dilution of the high

cell density culture which was maximally bright. As the colony density increases, the lumi-
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Figure 6.2: Wild-Type luminescence curves for V. harveyi and V. cholerae. The solid, red
curve represents the change in luminescence relative to optical density (OD) for V. harveyi.
There is a smooth transition in luminescence near OD 10−1 as the distribution of cells
switch from “off” to “on” [28]. The dashed, red curve represents the change in luminescence
relative to OD for V. cholerae. There is a sharp transition in luminescence near OD 100 as
the distribution of cells switch from “off” to “on” [179]. The vertical solid and dashed lines
represent possible OD concentrations that correspond to the beginning of the cells in the
population reaching a LuxR/HapR concentration necessary for luminescence for V. harveyi
and V. cholerae respectively. Regions indicated by (1), (2), and (3) reflect the relative
protein distributions labeled similarly and shown in figure 6.4.

nescence level drops until a critical cell density is reached, after this critical point there is a

subsequent rise in luminescence back to the initial level. While the luminescence curves of

WT V. harveyi and V. cholerae look similar, there are important differences between the

two curves. Wild-type V. harveyi showed an almost symmetric parabola centered around

OD600 ∼ 0.1 [28]; however, wild-type V. cholerae showed a continued decline in relative light

unit (RLU) output until the colony reached an OD600 ∼ 1.0. The luminescence levels then

increased by several orders of magnitude over a timescale during which cell density changed

by a small factor (≈ 4 fold) [179].

The luminescence phenotypes of strains corresponding to deletions of various pathway el-

ements also depicted important differences between the two species. As mentioned in the

Introduction, luminescence curves of qrr sRNA mutants in the two species suggested that
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the sRNAs functioned additively in V. harveyi [28] but were redundant in V. cholerae [179].

Another striking difference was seen in the luxU mutant which was always bright regardless

of cell density in V. harveyi whereas the luxU mutant showed a density-dependent lumines-

cence phenotype in V. cholerae. Furthermore, while deletion of the sensor kinases (e.g. for

the cqsS,luxQ mutant) changed the luminescence phenotype with respect to WT for V. har-

veyi, the corresponding WT and deletion mutant luminescence curves were almost identical

for V. cholerae [199]. These observations based on experimental luminescence curves lead

to some important questions which need to addressed:

1) How can we understand changes in RLU (Relative Light Unit)/cell over several orders of

magnitude corresponding to small changes in cell density?

2) How are the phenotypes dramatically different despite the basic components/circuitry

being the same?

3) Is there a unifying explanation for the seemingly unrelated differences in luminescence

phenotypes for different mutant strains?

6.2 Methods

6.2.1 Modeling framework

In order to address the issues raised above, we will first discuss the modeling framework and

key assumptions of our model. They are schematically illustrated in this section and more

quantitatively developed in following sections.

We assume that the measured luminescence levels per cell are proportional to the rate of

transcription of the luminescence genes. Since these genes are activated by the quorum
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sensing master regulators, the transcription rate is a function of cellular concentrations

of LuxR/HapR. We assume that this function has a sharp threshold; as a simplification

we represent it by a step function such that cells with LuxR/HapR concentrations below

the threshold produce no light whereas cells with LuxR/HapR concentrations above the

threshold produce maximal luminescence. Since the experimentally measured quantity is

the population average of the luminescence output/cell, we need to consider the steady

state distribution of LuxR/HapR levels across all cells. Recent work showed that the steady

state protein distribution for proteins can be characterized as a Gamma distribution [204].

Accordingly, we represent the LuxR/HapR distribution by a Gamma distribution with a

given variance and whose mean value is determined by solving the rate equations of our

model (see next section).

Figure 6.3: An illustration depicting luminescence activation as LuxR/HapR concentra-
tions cross a sharp threshold for activation. More (less) than the threshold, luminescence
is (not) activated. The different distributions depicted in this illustration are examples of
LuxR/HapR concentration distributions and the corresponding luminescence profile for a few
examples. (left - cyan) A protein distribution that remains below the threshold regardless
of cell density. (middle - green) A protein distribution that transitions across the threshold
and is a function of cell density. (right - magenta) A protein distribution that is entirely
past the threshold regardless of cell density.

With the assumptions mentioned above, we can make significant inferences about quorum
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sensing networks based on the luminescence data. The change in RLU/cell over several

orders of magnitude corresponds to the steady state distribution for LuxR/HapR crossing

the luminescence activation threshold (see figure 6.3). Thus the mean concentration of

LuxR/HapR must change by the minimal amount indicated in the figure during the transition

from the ‘dark’ phenotype to the maximally luminescent phenotype. The WT luminescence

curves indicate that this change occurs gradually in V. harveyi (positions (1) and (2) in

figure 6.2) as compared to V. cholerae (positions (2) and (3) in figure 6.2). Since the change

in mean HapR levels in V. cholera (at OD ∼ 1.0) occurs without a corresponding significant

change in cell density, it is unlikely to be driven solely by quorum sensing. Instead we infer,

based on the luminescence phenotype, that there is a sharp rise in HapR levels around OD

∼ 1.0 in V.cholerae. One potential cause for this rise is a further reduction in the available

regulatory sRNAs allowing for more available hapR transcripts. A possible source of the

sRNA reduction is that as the cells move into stationary phase from growth phase, there is

a decrease in the production of the Hfq chaperone [205]. A decrease in Hfq corresponds to

a decrease in the concentration of sRNA-Hfq complexes which are necessary to regulate the

target mRNA. Recent experiments in V. cholerae have indeed found evidence for a sharp

rise in HapR levels at OD ∼ 1.0 [206].

In contrast, the transition in the WT luminescence phenotype for V. harveyi occurs at lower

OD values and is more gradual suggesting that it is driven by the quorum sensing pathway.

This observation leads to the suggestion that the crucial difference between the two species

lies in the location of the threshold for luminescence activation: in V. harveyi, quorum

sensing based regulation suffices for moving the steady state LuxR distribution across the

threshold, whereas in V. cholerae this requires an additional jump in HapR levels at OD

∼ 1.0.
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6.2.2 A minimal model for luminescence activation

We focus on quorum sensing pathway elements corresponding to the production of sRNAs,

the transcription of the target mRNA (luxR or hapR), and the interaction between the

sRNAs and target mRNA. We start with a model containing only one sRNA species and

neglect autoregulation of the target protein. Then we add the contributions of multiple

sRNAs and autoregulation to the model.

The basic equations for a simplified model of sRNA-target interaction have been introduced

and analyzed in previous work [179–181, 184] and are given below (equations (7.2.1) and

(7.2.2)). Consider first the case of a single sRNA species regulating one target mRNA

species. If [x] denotes the concentration of the sRNA and [y] the concentration of the target

mRNA, the corresponding equations are:

d[x]

dt
= kx − γ[x][y]− µx[x], (6.2.1)

d[y]

dt
= ky − γ[x][y]− µy[y], (6.2.2)

where the k’s are the production rates of each species, the µ’s are the degradation rates of

each species, and γ is an effective parameter for mutual degradation of sRNA and target

mRNA.

To generalize the above equations (7.2.1) and (7.2.2) while taking care of the effective pa-

rameter constraints (see Appendix A), we include the effects of 1) multiple sRNAs regulating

luxR/hapR and 2) autoregulation of LuxR/HapR [207, 208]. The corresponding equations

134



are,

d[xi]

dt
= kxi

− γi[xi][y]− µxi
[xi], (6.2.3)

d[y]

dt
=

ky
1 + ([y/[yD])

−
∑
i

(γi[xi][y])− µy[y], (6.2.4)

The constant [yD], represents the threshold concentration for binding of the target protein

to its own mRNA. When the target protein is bound to the promoter region, transcription

of the target gene is effectively blocked.

Bioinformatic analysis [179] indicates that the 32 bp region in the qrr sRNAs which is

involved in regulation of hapR/luxR is absolutely conserved for all the sRNAs. Thus, we

make the assumption that all the sRNAs have the same affinity for the target mRNA, i.e.

we set γi = γ. We further assume that the degradation rates of all sRNAs are the same

(µi = µ). However, the model does consider differences in the sRNAs production rates (kxi
)

as demonstrated by experiment [209].

At steady state, the mean protein concentration is the mean mRNA concentration scaled

by a constant – the ratio of the protein translation rate to the protein degradation rate.

Therefore, we use the scaled mRNA concentration in place of the protein concentration (see

Appendix).

To make the connection to luminescence curves, we have to consider the distribution of pro-

tein levels across cell populations. Recent work by Friedman et al. showed the distribution of

the protein concentration per cell for the colony can be represented by a Gamma distribution

[204]. Furthermore, recent flow cytometry work showed the distributions of fluorescence per

cell from a luxR-gfp fusion had a nearly constant variance for a variety of conditions related

to the concentration of AIs [27]. Therefore, we model the protein distribution as a Gamma

distribution with a fixed variance. The mean of the distribution is obtained from the equa-
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tions above for a given choice of parameters. Using this framework, we show in the following

section how a single parameter difference can account for the vastly different luminescence

phenotypes of V. harveyi and of V. cholerae.

6.3 Results and Discussion

In this section we show how the minimal model discussed above with only one essential

difference (the threshold for luminescence activation) between the V. harveyi and V. cholerae

pathways can explain the observed differences in luminescence phenotypes as well as lead to

testable predictions.

We note that bacterial colonies are observed to change their luminescence production by

many orders of magnitude in a relatively short amount of time, see figure 6.2. However, the

changes in the level of the master regulator proteins and sRNAs are not nearly as dramatic

[27, 28]. We interpret this as indicating that a significant fraction of all the cells in the

colony reach the conditions necessary for luminescence activation upon a small change in

the master regulator protein levels. We model this as corresponding to a significant fraction

of the master regulator distribution moving across sharp threshold values of concentrations

necessary to activate luminescence (see figure 6.3).

The protein distributions for WT strains

Using the model equations with parameter values guided by experiment (see Appendix), we

plot the the distribution of the protein concentration for a WT colony (representing either

V. harveyi or V. cholerae) at the low-cell density limit, high-cell density limit, and entering

stationary phase labeled as positions (1), (2), and (3) respectively, see figure 6.4. Since the

protein distributions for WT and all the mutants in either V. harveyi or V. cholerae are
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not available, we plot the distributions with respect to fold changes relative to the mean

protein concentration for a WT colony at the low-cell density limit.2 Specifically, the first

two distributions in figure 6.4 are representative of the maximal relative change in protein

concentration in going from low-cell density to high-cell density based on changes due to

quorum sensing alone. The third distribution in figure 6.4 is the resulting distribution after

the final reduction in sRNA production leading to a rise in HapR due to entering stationary

phase.
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Figure 6.4: The distributions of the protein concentration across a WT bacterial colony
for the: (1) low-cell density limit, (2) high-cell density limit, and (3) entering stationary-
phase limit. The x-axis depicts the fold change difference relative to the mean protein
concentration value for a WT colony at the low-cell density limit. The solid, vertical bar
between distributions (1) and (2) and the dashed, vertical bar vertical between distributions
(2) and (3) represent the threshold values for luminescence for V. harveyi and V. cholerae
respectively.

The distributions at positions (1) and (2) in figure 6.4 represent the maximally dark and

maximally bright WT V. harveyi colonies, respectively. Similarly, the distributions at posi-

tions (1-2) and (3) in figure 6.4 represent the maximally dark and maximally bright WT V.

cholerae colonies, respectively. Ideally none of the bacteria in the dark colony should be “on”

2At the time of this work, the experimental protocol for measuring the exact protein concentration per
cell in vivo was not available and has now only recently been published [210].
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and none of the bacteria in the bright colony should be “off”, therefore we set the threshold

of light activation for V. harveyi at a fold change directly in between the two distributions

– depicted as the solid, vertical line in figure 6.4. Since experiments have shown that the

activation of V. cholerae to occur at a larger cell density than V. harveyi, we propose the

threshold of light activation for V. cholerae to be at a larger fold change– depicted as the

dashed, vertical line in figure 6.4. As indicated in the figure, this corresponds to lumines-

cence activation occurring in V. harveyi using quorum sensing alone, whereas for V. cholerae

luminescence activation requires both transition to the high-cell density limit for the quorum

sensing pathway and additional changes in HapR levels associated with entry into stationary

phase. In what follows, we will discuss how assuming V. cholerae has a different threshold

of light activation than V. harveyi can consistently explain the differences in the sRNAs and

luxU mutant phenotypes.

Additivity vs redundancy

We account for each of the four active qrr sRNAs having a different production rate and set

the rates with the following hierarchy: qrr4 > qrr2 > qrr3 > qrr1, which is consistent with

experimental results in V. harveyi [28]. Figure 6.5 shows the distributions of the protein

concentrations for mutant colonies containing only one of the four active qrr sRNAs for both

V. harveyi and V. cholerae – each sRNA mutant is represented as a different shade of green

in figure 6.5.

In the low-cell density limit, position (1) in figure 6.5, the distributions all have regions

extending past the threshold for luminescence in V. harveyi. This is a representation of the

qrr “additivity” response seen in V. harveyi as all qrrs are needed to prevent any appreciable

region of the protein distribution from extending past the threshold in the low-cell density

limit [28]. For the sRNA mutants, the regions of the distributions in the low-cell density
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limit that extend past the threshold represent the amount of bacteria in the colony that are

“on” regardless of cell density.

The story is different from the perspective of V. cholerae. In the high-cell density limit,

position (2) in figure 6.5, the distributions are all below the threshold for luminescence in

V. cholerae, which corresponds to complete light repression and mimics the WT V. cholerae

response [179]. We suggest that once the final reduction in sRNA production occurs, e.g.

entering stationary phase, all the distributions cross the threshold for luminescence, position

(3) in figure 6.5. The resulting phenotype looks to be the same as the WT V. cholerae

phenotype with the conclusion that the sRNAs act “redundantly”. However, the prediction

from our model is that the sRNAs behave the same in both V. harveyi and V. cholerae, but

the associated thresholds for luminescence are different.
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Figure 6.5: The distributions of the protein concentration across a mutant colony containing
only one active qrr sRNA: (1) low-cell density and (2) high-cell density limits. The x-axis
depicts the fold change difference relative to the mean protein concentration value for a WT
colony at the low-cell density limit. The solid, vertical bar between distributions (1) and
(2) and the dashed, vertical bar vertical between distributions (2) and (3) represent the
threshold values for luminescence for V. harveyi and V. cholerae respectively.
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The luxU mutant

The luxU mutant is another example of a difference in luminescence phenotypes between

V. harveyi and V. cholerae. The protein LuxU is responsible for coupling the autoinducer

input signal to the rest of the quorum sensing network, see figure 6.1. If LuxU is removed

from the pathway, the total sRNA transcription rate would drop to minimal levels, and the

system would no longer respond to changes in cell density. Therefore if the quorum sensing

pathway is the only factor controlling the luminescence phenotypes, removal of the the luxU

gene should result in a bright, density independent phenotype. For V. harveyi, this is indeed

the case – the luxU mutant is bright regardless of cell density.

The story, as before with the sRNAs, is different with V. cholerae. In V. cholerae, the

luxU mutant shows a density dependent luminescence phenotype, but the shape of the

luminescence curve is different from the canonical quorum sensing luminescence curves [198].

In the low-cell density limit, there is a detectable level of light production that is larger than

WT value or any of the sRNA mutants values but much less than the maximal level of light

production. This low level of luminescence remains stable for a significant portion of the

exponential phase, and then sharply increases to the maximum level of luminescence – a

feature present in most V. cholerae luminescence curves.

Our model reproduces this observed luxU mutant behavior in V. harveyi and V. cholerae.

In figure 6.6, there are only two distributions: one for the high-cell density limit (position

(2)) and one for the high-cell density limit entering stationary phase (position (3)). From the

perspective of LuxR/HapR regulation, the removal of luxU effectively decouples the quorum

sensing pathway from the outside inputs. Therefore, the system effectively starts at the

high-cell density limit, and the associated protein distribution is always past the V. harveyi

luminescence threshold. This results in a fully bright, density independent phenotype, see

figure 6.6. However, the distribution associated with the high-cell density is only partially

140



0. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Relative Protein Fold Change

Pr
ob

ab
ili

ty

2 3

Figure 6.6: The distributions of the protein concentration across a mutant colony where
luxU has been removed from the system: (2) high-cell density limits and (3) high-cell density
limit entering stationary phase. The x-axis depicts the fold change difference relative to the
mean protein concentration value for a WT colony at the low-cell density limit. The solid,
vertical bar between distributions (1) and (2) and the dashed, vertical bar vertical between
distributions (2) and (3) represent the threshold values for luminescence for V. harveyi and
V. cholerae respectively.

across the V. cholerae luminescence threshold resulting in a small concentration of the cells

being “on” and a majority being “off”. The V. cholerae colony will remain in this state until

it enters stationary phase where the protein distribution completely crosses the V. cholerae

luminescence threshold, see figure 6.6.

Finally, the luminescent behavior of the cqsS and luxQ double mutant in V. cholerae is

also consistent with the model. Essentially, this double mutant shows a WT response even

though the both autoinducer sensors are removed [199]. In our model, this would correspond

to the system starting in the WT high-cell density limit, position (2) in figure 6.4, which

is below the threshold for luminescence in V. cholerae. Therefore, the observed phenotype

should be nearly identical to WT.

By just having two thresholds separating three distinct regions of protein regulation, our

model is able to consistently link the sRNAs acting additively in V. harveyi [28], the sR-
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NAs acting redundantly in V. cholerae [179], and the density dependent phenotype in V.

cholerae for the luxU mutant [198]. With the relative positions of the thresholds and protein

distributions now in place, we now discuss the predictions that come from our model.

6.3.1 Predictions

Current experimental techniques can produce a variety of different mutant strains of V.

harveyi and of V. cholerae. Depending on the genes and sRNAs being removed from the

strain, the experimental techniques generate even up to triple knock-out mutants (and pos-

sibly more if required). Since our simplified model, with the given choice of parameters,

reproduces features of the observed luminescence phenotypes, it is of interest to examine the

model predictions for luminescence phenotypes of different gene and sRNA mutant strains

that should be experimentally feasible to test.

The model distinguishes the varying behaviors of V. harveyi and of V. cholerae as a difference

in the threshold protein concentration of the master regulatory gene, and the concentration

of the master regulatory gene at any position is determined by the associated production

rate of the sRNAs. Therefore, there is an effective total sRNA production rate that coincides

with the distribution of the master regulatory protein being centered at a given threshold

value. We refer to this critical value of total sRNA production as kc.

Since we assume the threshold values are different for V. harveyi and V. cholerae, their

associated critical value of total sRNA production, kc, is different. Each mutant has an

associated total sRNA production rate at low-cell density and high-cell density limits. A

hierarchy of sRNA production rates for different mutants and colony cell densities relative to

kc explains currently seen phenotypes, and we will use this hierarchy as a basis for predicting
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new phenotypes.

WTl > sRNAl > kc > WTh > sRNAh > ∆U > ∆O, (6.3.1)

WTl > sRNAl > WTh > sRNAh > ∆U > kc > ∆O. (6.3.2)

Equations (6.3.1) and (6.3.2) represent the hierarchies for V. harveyi and V. cholerae, re-

spectively. Those rates greater than kc correspond to “dark” phenotypes, and those rates

less than kc correspond to “bright” phenotypes. In equations (6.3.1) and (6.3.2), WTl and

WTh represent the total sRNA production rate for wild-type bacteria in the low-cell density

and high-cell density limits before the transition to stationary phase. sRNAl and sRNAh

are the sRNA production rates for any mutant with at least one active sRNA removed from

the system in the low-cell density and high-cell density limits before the transition to station-

ary phase. Finally, ∆U and ∆O in equations (6.3.1) and (6.3.2) are the sRNA production

rates for the mutants where LuxU and LuxO has been deleted, respectively. Now that the

hierarchy is established, we discuss below the resulting predictions.

One way to explore the different quorum sensing responses of the network is to add an

external concentration of autoinducers to a low-cell density colony, also know as “cross-

feeding”. The additional autoinducers will “trick” a colony into behaving as if it is in the

high-cell density limit which causes a transition in the total sRNA production rate. Since the

production rates specifically dependent on cell density, WTl, sRNAl, WTh, and sRNAh are

separated by kc in equation (6.3.1), the model predicts a low-cell density colony of wild-type

or any sRNA mutant V. harveyi will start to luminesce when extra autoinducers are added

to the colony.

However, for V. cholerae, the production rates specifically dependent on cell density are all

greater than kc in equation (6.3.2). Even the production rate of the luxU mutant is greater
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than kc. Therefore, the model predicts that a low-cell density colony of wild-type or any

sRNA mutant V. cholerae will remain dark when extra autoinducers are added to the colony.

Also, the model predicts this outcome for any mutant V. cholerae corresponding to a total

sRNA production rate greater than kc, including the luxU mutant and the cqsS and luxQ

double mutant.

The model also predicts cases where the sRNAs act “additively” in the luxU mutant V.

cholerae. Since the total sRNA production rate associated with the luxU mutant (6.3.2)

is adjacent to kc, reducing the total sRNA production rate to a value less than kc will

result in light production. This could be achieved by combining luxU with sRNA mutants.

Therefore, the different sRNA triple mutants in combination with the luxU mutant for V.

cholerae should show the associated HapR concentration changing in a graded manner. Thus

our model predicts that, in a luxU mutant background, the different triple sRNA mutants

will appear to behave additively with regards to the luminescence – a phenotypic response

similar to sRNA mutants in WT V. harveyi.

6.3.2 Discussion

In this study, we have shown how a simple set of equations, with appropriate choice of

parameters, can effectively mimic the quorum sensing luminescence phenotypes of V. harveyi

and V. cholerae. While the components of the quorum sensing regulatory network in each

of the bacteria are biologically similar in both homology and function, there are striking

differences in luminescence phenotypes for the same mutant, e.g. luxU . Even the sRNAs,

which are virtually identical in their sequence specificity to the target gene, act additively

versus redundantly for V. harveyi and V. cholerae.

We account for the striking differences by suggesting that the threshold concentration of the
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master protein needed for the bacteria to start luminesce activation is larger in V. cholerae

than V. harveyi. The larger threshold concentration correspondingly implies the need for a

mechanism that increases the levels of the master regulator in addition to the increases due

to quorum sensing. The increase in master regulator levels can be effectively modeled as a

sharp drop in sRNA productions rates and one possible source of this reduction can arise

from the transition from exponential growth phase to stationary phase.

We considered solutions of the model equations for specific parameter choices motivated

by experiments and analyzed the effect different mutants have on the sRNAs’ production

rates. In V. harveyi, the removal of either LuxO or LuxU causes a sufficient reduction in the

sRNAs’ production rate to result in the bacterial colony achieving maximal luminescence at

any cell densities. Only the removal of LuxO from V. cholerae results in a similar response.

Removing LuxU does not drop the sRNAs’ production rates enough for the bacteria to

luminesce at any cell density. The extra reduction in the sRNAs’ production rates from the

transition to stationary-phase is required for the luxU mutant of V. cholerae to luminesce.

The relationship between the threshold concentration and the total of all the sRNAs’ pro-

duction rates leads to experimental predictions. The first predication is the inability to

prematurely initiate luminescence in a low-cell density colony of V. cholerae through the

addition of a large concentration of autoinducers. Thus cross-feeding based activation of

luminescence should work in V. harveyi but not in V. cholerae We also predict that a luxU

mutant of V. cholerae combined with sRNAs mutants will result in a phenotype where the

sRNAs act additively.

In summary, we have presented a simplified model for quorum sensing induced luminescence

phenotypes in V. harveyi and V. cholerae. Our analysis suggests that a single parameter

difference in our model effectively reproduces many features of observed luminescence curves

which were hitherto unconnected. Thus large sequence-based differences are, in principle, not
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required to explain the dramatic differences between the luminescence phenotypes in these

two species. Our model also makes testable predictions for observable luminescence pheno-

types (specifically in V. cholerae) which, if validated, should shed new light on luminescence

regulation by quorum sensing.

6.4 Additional Details

6.4.1 Single sRNA model

Here we provide additional details for the single sRNA model. For convenience, we introduce

the following dimensionless parameters; x̃ = (µx/kx)[x], ỹ = (µy/ky)[y], α = (γky)/(µxµy),

and β = (γkx)/(µxµy) in equations (7.2.1) and (7.2.2) so that the corresponding equations

at steady state become:

0 = 1− αx̃ỹ − x̃, (6.4.1)

0 = 1− βx̃ỹ − ỹ. (6.4.2)

These equations can be readily solved to determine how steady state sRNA-mRNA levels

change as system parameters are varied. In the limit α, β ≫ 1, the solutions show a sharp

transition as the ratio α/β changes from (α/β) < 1 to (α/β) > 1. This parameter regime lets

the system respond in an ultrasensitive manner as discussed in previous works [179, 184].

During quorum sensing, the production rate of the sRNA (kx) decreases and hence the

parameter β is lowered as bacteria make the transition from low-cell density to high-cell

density. Correspondingly the system evolution traces out a trajectory in (α, β) phase space.

For α, β ≫ 1 the target mRNA levels show a sharp change as the line α = β is crossed; thus

it seems natural to identify the sharp transition observed in the luminescence profile with the
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sharp transition in target mRNA levels as β is lowered. However, as argued in the previous

sections, this identification is unlikely to be valid based on the following observations: 1) the

quorum sensing response in V. harveyi is observed to be graded rather than all-or-none [27].

2) Recent experiments have shown that HapR represses aphA at low cell density [200], thus

target mRNA levels are significant even at low cell densities. 3) northern blots show little

difference in the amount of sRNA in V. cholerae when the target mRNA (hapR) is deleted

[179].

Observation 3.) from above suggests that the sRNA and mRNA interactions occur in a

parameter regime where the sRNA is never fully suppressed. To adhere to this constraint,

we look at the limit α ≪ 1 and β > 1 which effectively holds the sRNA concentration

constant regardless of the target mRNA concentration. In this limit, the system no longer

has an ultrasensitive response, but instead responds in a controlled manner. As sRNA

production rates double, the mRNA concentrations are about halved, thus allowing for a

graded response. Applying the limits α ≪ 1 and β > 1 to equations (7.2.3) and (7.2.4) in

the steady state explicitly shows the controlled response:

x̃ ≈ 1, (6.4.3)

ỹ ≈ 1/(1 + β). (6.4.4)

6.4.2 Multiple sRNA with autoregulation model

Here we provide additional details for the multiple sRNA with autoregulation model. In

V. harveyi, there are a total of five sRNAs; however, only four are actively controlling the

concentration of luxR mRNA. Likewise, V. cholerae contains four active sRNAs. Including

multiple sRNAs has generated the new constants: kxi
, γi, and µxi

. However, we make the

assumptions that each sRNA has equal affinity to the target mRNA and all the sRNAs
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have the same degradation rate in both bacteria. These assumptions return γi to γ and

µxi
to µx. To model autoregulation, we introduce the dimensionless parameter ỹD as the

threshold concentration for effective autoregulation of the target gene. In dimensionless

units, the system should be tuned in such a way that ỹD is not larger than the maximum

value obtainable by ỹ which is 1.

Using similar dimensionless parameters as the single sRNA model, we replace β with βi =

(γkxi
)/(µxµy), and introduce the dimensionless parameter ϵ = µy/µx, which is only necessary

in the time dependent solutions of the model. Equations (6.2.3) and (6.2.4) are therefore

rewritten as the following set of dimensionless equations

ϵ
dx̃i

dt̃
= 1− αx̃iỹ − x̃i, (6.4.5)

dỹ

dt̃
=

1

1 + (ỹ/ỹD)
−
∑
i

βix̃iỹ − ỹ. (6.4.6)

The addition of multiple sRNAs to the model does not change the production rate of the

target mRNA; therefore, we still consider the system to be in the parameter space where

α ≪ 1. At steady state, x̃i ≈ 1 and the summation in equation (6.4.6) reduces to
∑

i βiỹ.

Since ỹ is independent of the summation, the sum is only of βi, which results in just a

constant representing all the contributions of the sRNAs,
∑

i βi → βtotal. The effects of

multiple sRNAs are all integrated into the constant βtotal, and their removal via mutations

to the wild-type bacteria is equivalent to reducing the maximum and minimum value of βtotal

as the bacteria moves from low cell density to high cell density respectively. The steady state

concentration of ỹ therefore becomes:

ỹ

(
1 +

ỹ

ỹD

)
=

1

1 + βtotal

. (6.4.7)
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The effect of the autoregulation is best seen via different limiting cases of ratio ỹ/ỹD in

equation (6.4.7). When ỹD ≪ 1, then ỹ/ỹD ≫ 1 resulting in ỹ ≈
√
ỹD/(1 + βtotal) ≈ 0. This

corresponds to the case where autoregulation is maximally on which prevents the system

from sustaining any appreciable amount of protein. When ỹD ≫ 1, then ỹ/ỹD ≪ 1 resulting

in ỹ ≈ 1/(1 + βtotal) which is similar in form to equation (6.4.4) where autoregulation is

absent from the system. Since the amount of ỹ is constrained to a value between 0 and

1, and ỹD is the effective concentration needed of the target protein before autoregulation

occurs, we set ỹD = 0.75, which corresponds to the production rate dropping by close to half

as seen by experiment [207].

6.4.3 Parameter space analysis

Here we discuss the various parameter values and their associated experimental motivation

used in the preceding models. Fluorescence experiments involving the expression of V. har-

veyi ’s qrr2 in the low-cell density and high-cell density limits provide a possible measure for

estimating the sRNA fold change between the two cell density limits [27]. The same type of

fluorescence experiment shows the translational rate of luxR [27] when LuxR autoregulation

is removed. A direct determination of relative fold differences using Real-Time Quantitative

PCR for qrr1, qrr2, qrr3, qrr4, qrr5, and luxR with autoregulation intact has also been done

[28]. In the case without autoregulation, luxR translational levels change ∼10 fold and qrr2

expression levels also change ∼10 fold.

With regards to the experimentally shown constraints, we let βi change 10 fold between the

low-cell density and high-cell density limits. Since we are in the limit where βi is always

greater than 1, we chose βi ≈ 20 for the low-cell density resulting in βi ≈ 2 for the high-cell

density limit. We set α = 0.1 to satisfy the previously discussed constraint: α ≪ 1. The

values chosen for α and βi minimally satisfy the limits set on parameter space; and yet, the
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system behaves in a manner consistent with experiment. Smaller values of α and/or larger

values of βi are also consistent with experiment showing robustness of the system in this

parameter regime.

To incorporate the effect of the system entering stationary phase, we introduced the param-

eter δ such that kxi
→ δkxi

. we set δ to the fixed value 0.025 – the maximal value necessary

to have a clear enough distinction between the distributions at position (2) and (3) for the

luxU mutant, where position (3) represents the colony entering stationary phase (see figure

6.6).

α, βi, and δ are the only parameters necessary to determine the (normalized) mean values

of LuxR/HapR. Furthermore, α and δ remain a fixed value throughout our analysis, 0.1

and 0.025 respectively. βi, which is a function of the sRNA production rates, only changes

in value between the low-cell density limit and the high-cell density limit. The effects of

the different mutants are also embedded into βi as they represent variations to the sRNA

production rates relative to the WT.

The critical factor in determining the decomposition of βi is the fraction of LuxO (f) that

is capable of promoting the production of sRNA. Therefore, βi is a function of f , βi(f). To

better understand the contributions of LuxU and LuxO to βi(f), we specify the different val-

ues βi(f) can achieve depending on cell density and genotype. First, quantitative real-time

PCR experiments show a basal rate sRNA production that is independent of the presence

of LuxO which we label: βi(0) [28]. Next there is the rate, βi(fO), that depends on the pres-

ence of LuxO which is evident in the ∆luxU mutant showing a wild-type like luminescence

phenotype in V. cholerae [198]. Then there are the rates associated with phosphorylating

LuxO, the dominant factor in sRNA production, in the low cell density limit (βi(fLCD)) and

in the high cell density limit (βi(fHCD)). The different values βi(f) for WT, ∆luxU, ∆luxO,

and the qrr mutants are listed in table 6.1.
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Table 6.1: A table of the different βi(f) values for WT, ∆luxU, ∆luxO, and the qrr mutants.

LCD (1) HCD (2) Stationary (3)
WT βi(fLCD) = 20.4 βi(fHCD) = 2.04 δβi(fHCD) = 0.051
qrr1 β1(fLCD) = 4.5 β1(fHCD) = 0.45 δβ1(fHCD) = 0.0125
qrr2 β2(fLCD) = 5.4 β2(fHCD) = 0.54 δβ2(fHCD) = 0.0135
qrr3 β3(fLCD) = 4.8 β3(fHCD) = 0.48 δβ3(fHCD) = 0.0120
qrr4 β4(fLCD) = 5.7 β4(fHCD) = 0.57 δβ4(fHCD) = 0.0143
∆luxU βi(fO) = 0.3264 βi(fO) = 0.3264 δβi(fO) = 0.00816
∆luxO βi(0) = 0.0 βi(0) = 0.0 δβi(0) = 0.0
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Chapter 7

Stochastic analysis of small RNA
interactions

7.1 Overview

Small RNAs (sRNAs) are short sequences of RNA (usually less than 300 nucleotides) that

have partial sequence complementarity to the messenger RNA (mRNA) of the genes they

regulate. The sRNAs bind via base pairing with the mRNA causing a change in the overall

structure. This change can act as a signal for mutual degradation of the mRNA and sRNA

along with promotion/prevention of ribosome binding. In bacteria, small RNAs have been

studied extensively in recent years [211] in part due to the critical roles they play in cellular

post-transcriptional regulation in response to environmental changes. In this chapter, we

focus on the case where the sRNAs invoke the mutual degradation of the mRNA and sRNA.

By removing the mRNA from the system post-transcriptionally, the sRNAs effectively reg-

ulate a gene in a way different from most proteins involved in gene regulation. Proteins

usually regulate a gene by either disrupting the DNA promoter site of the gene or by inter-

acting directly with the gene’s protein product. In the first case, protein regulation results

in a reduction in the overall production rate of the mRNA while the second case does not
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change the available mRNA. The sRNAs tend to regulate at the intermediary region of an

mRNA’s production cycle by precipitating out already transcribed copies of mRNA.

7.2 sRNA-mRNA Modeling

The basic equations for a simplified model of sRNA-target interaction have been introduced

and analyzed in previous work [179–181, 184], and discussed in Chapter 6. To expand upon

this work, we first consider the case of a single sRNA species regulating a single mRNA

species. Let [x] denote the concentration of the sRNA and [y] denote the concentration of

the target mRNA, the corresponding equations are:

d[x]

dt
= kx − γ[x][y]− µx[x] (7.2.1)

d[y]

dt
= ky − γ[x][y]− µy[y] (7.2.2)

where the k’s are the production rates of each species, the µ’s are the degradation rates of each

species, and γ is an effective parameter for mutual degradation of sRNA and the mRNA.

It is convenient to introduce the following dimensionless variables; x̃ = [x]µx

kx
, ỹ = [y]µy

ky
,

α = γky
µxµy

, and β = γkx
µxµy

. The corresponding equations at steady state are:

0 = 1− αx̃ỹ − x̃ (7.2.3)

0 = 1− βx̃ỹ − ỹ (7.2.4)

These equations can readily be solved to determine how steady state sRNA-mRNA lev-

els change as system parameters are varied. Previous works tend to stress the ability for

the interactions to show a sharp transition between the concentrations of the sRNA and
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mRNA[179–181]. This sharp transition is apparent in the limit α, β ≫ 1. In this limit, as

the ratio α
β
changes from α

β
< 1 to α

β
> 1, the system switches from an sRNA dominated state

to an mRNA dominated state. However, the parameter space, and thus, solution space of

the equations provides a much richer set of responses than just a sharp transition. This leads

to the question, which subset of these responses does nature choose to employ in biological

systems?

In the hopes of providing an answer or even partial answer to the preceding question, we will

focus on expanding the analytical tools available for modeling sRNA and mRNA interactions.

First, we will add a second sRNA and the translated protein from the mRNA into the

preceding equations. Then we will look at how to solve these equations using a master

equation approach in the limit where there is a low copy number of mRNA and proteins are

produced at rate significantly faster than the average lifetime of the mRNA. This limit will

be referred to as the ‘bursty protein production’ limit.

Multiple sRNAs - Mean Field

To add the contribution of another sRNA and the translated protein, we introduce [Y ], as

the representation of the protein and [xi] (where i is 1 or 2) as the representation for the two

sRNAs. The resulting set of equations are given below:

d[x1]

dt
= kx1 − γ1[x1][y]− µx1 [x1] (7.2.5)

d[x2]

dt
= kx2 − γ2[x2][y]− µx2 [x2] (7.2.6)

d[y]

dt
= ky − γ1[x1][y]− γ2[x2][y]− µy[y] (7.2.7)

d[Y ]

dt
= kY [y]− µY [Y ] (7.2.8)
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One can generalize the above equations for n number of sRNAs as follows:

d[xi]

dt
= kxi

− γi[xi][y]− µxi
[xi] (7.2.9)

d[y]

dt
= ky −

n∑
i

(γi[xi][y])− µy[y] (7.2.10)

However, we will only be examining the case where two sRNAs are present and make the

note that each additional sRNA increases the order of the polynomial that needs to be solved

in the mean-field approach.

As before, it is convenient to introduce dimensionless parameters for analyzing the different

responses of the system; x̃i = [xi]
µxi

kxi
, ỹ = [y]µy

ky
, Ỹ = [Y ]µyµY

kykY
, αi =

γiky
µxiµy

, and βi =
γikxi
µxiµy

.

The corresponding equations at steady state are:

0 = 1− α1x̃1ỹ − x̃1 (7.2.11)

0 = 1− α2x̃2ỹ − x̃2 (7.2.12)

0 = 1− β1x̃1ỹ − β2x̃2ỹ − ỹ (7.2.13)

0 = ỹ − Ỹ (7.2.14)

The resulting polynomial that tracks the mean of ỹ at steady state is:

ỹ3 + (
β1

α1

+
β2

α2

+
1

α2

+
1

α1

− 1)ỹ2 + (
β1

α1α2

+
β2

α1α2

− 1

α1

− 1

α2

+
1

α1α2

)ỹ − 1 = 0 (7.2.15)

Solving equation (7.2.15) for various values of α1, α2, β1, and β2 gives the approximate mean

value of ỹ which can readily be converted into the mean concentration of [Y ]. If one wants

to know more about the concentration of the protein, for instance the distribution of the
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protein concentration across a colony of bacteria, then a more thorough approach to solving

equations (7.2.5 - 7.2.8) must be applied.

Single and Multiple sRNAs - Master Equation

To explore all the states the system can occupy, we will look at the time evolution for the

probabilities of the possible states. The master equation is the set of differential equations

that govern the time evolution of the probabilities. The full description of the problem

involves four species, two sRNAs, one mRNA, and one protein. Since the production of the

protein is directly dependent on the mRNA which is partially dependent on the sRNAs, the

total system is highly non-linear. As far as we know, the non-linear behavior of the system

prevents us from finding an analytical solution. Therefore, we look at a simpler version of

the problem that is motivated by experiment from many different biological systems.

Single molecule studies have shown that protein production often occurs in ‘bursts’ and

that the distribution of protein levels across a population of cells can be characterized by

determining the distribution of burst sizes and the frequency of the burst occurrence [212].

To model the bursts in protein production, we look at the limit where the mean mRNA

concentration is effectively one copy in the volume of interest. So long as the mRNA is

present, protein can be quickly produced. Once the mRNA decays, either through interaction

with a sRNA or natural degradation, the system stops producing proteins until a new mRNA

is transcribed from the DNA. Operating in this limit allows us to decouple the protein

production from the mRNA and sRNAs. Instead, we focus on the survival probability of the

mRNA and the distribution of proteins produced per mRNA.
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Single sRNA Case

We will first show the analysis for the single sRNA case and then follow it with the two sRNAs

case. To determine the survival time of the mRNA, we write down the master equation that

contains the probabilities for the production and degradation of the sRNA, the interaction

between the single copy of the mRNA and a sRNA, and the degradation of the mRNA at

some time t+ dt with ns number of sRNA in the system.

∂P (ns, t)

∂t
= ks[P (ns − 1, t)− P (ns, t)]

+ µs[(ns + 1)P (ns + 1, t)− nsP (ns, t)]

− µmP (ns, t)− γnsP (ns, t) (7.2.16)

We take the generating equation approach to solving equation (7.2.16) by defining:

F (z, t) =
∞∑

ns=0

(znsP (ns, t)) (7.2.17)

Multiplying equation (7.2.16) by
∑∞

ns=0 z
ns lets us rewrite equation (7.2.16) as a function of

F (z, t).

∂F (z, t)

∂t
+ [(µs + γ)z − µs]

∂F (z, t)

∂z
= [ks(z − 1)− µm]F (z, t) (7.2.18)

The method of characteristics states that the general solution is obtained by solving the

following auxiliary equations:
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dt

1
=

dz

[(µs + γ)z − µs]
=

dF

[ks(z − 1)− µm]
(7.2.19)

Integrating two of the auxiliary equations results in the following:

[(µs + γ)z − µs]e
−(µs+γ)t = A (7.2.20)

e(
γks

µs+γ
+µm)t− ks

(µs+γ)(z−
µs

(µs+γ))F (z, t) = B (7.2.21)

where A and B are constants. We can write a functional relationship between the above

two equations, where Φ is an arbitrary function which is determined by appealing to the

boundary conditions.

e(
γks

µs+γ
+µm)t− ks

(µs+γ)(z−
µs

(µs+γ))F (z, t) = Φ([(µs + γ)z − µs]e
−(µs+γ)t) (7.2.22)

Next we look at the limit where t → 0 and define the quantity ξ as:

ξ = lim
t→0

[(µs + γ)z − µs]e
−(µs+γ)t = (µs + γ)z − µs (7.2.23)

Using ξ, equation (7.2.22) reduces to:

Φ(ξ) = F (z, 0)e
− ksξ

(µs+γ)2 (7.2.24)

To find F (z, 0), we note that if no mRNA is present in the system, the sRNA would be

created and destroyed in a Poisson process. Therefore, we approximate the initial probability
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distribution of the sRNA as a Poisson distribution with parameter ks/µs.

F (z, 0) =
∞∑

ns=0

(znsP (ns, 0)) = e−
ks
µs

∞∑
ns=0

(
(z ks

µs
)ns

ns!

)
= e

ks
µs

(z−1) (7.2.25)

Using equation (7.2.25) in equation (7.2.24) gives the final form of Φ(ξ):

Φ(ξ) = e
ks
µs

ξ−γ
µs+γ

− ksξ

(µs+γ)2 (7.2.26)

Together, equations (7.2.22) and (7.2.26) will give the full form of the generating function

F (z, t). By definition, the value of F (z, t) at z = 1 is
∑∞

ns=0(P (ns, t)), which is the survival

probability of the mRNA at time t. Let S(t) = F (1, t), then from equations (7.2.22) and

(7.2.26), we determine the survival probability S(t):

S(t) = e(
ks
µs

− ks
µs+γ )

γ
µs+γ

(e−(µs+γ)t−1)−
(

γks
(µs+γ)2

+ µm
µs+γ

)
(µs+γ)t

(7.2.27)

We simplify equation (7.2.27) by introducing three dimensionless parameters:

α =

(
ks
µs

− ks
µs + γ

)
γ

µs + γ

β =
γks

(µs + γ)2
+

µm

µs + γ

τ = (µs + γ)t

Rewriting equation (7.2.27) as a function of α, β, and τ gives:

S(τ) = eα(e
−τ−1)−βτ (7.2.28)
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Multiple sRNA Case

We will now go through a similar derivation to the single sRNA case to derive the survival

probability of the mRNA when there are two species of sRNA in the system. As before,

we write down the master equation that contains the probabilities for the production and

degradation of each sRNA, the interaction between the single copy of the mRNA and a

sRNA, and the degradation of the mRNA at some time t+ dt with ns1 and ns2 numbers of

sRNAs in the system.

∂P (ns1, ns2, t)

∂t
= ks1[P (ns1 − 1, ns2, t)− P (ns1, ns2, t)]

+ ks2[P (ns1, ns2 − 1, t)− P (ns1, ns2, t)]

+ µs1[(ns1 + 1)P (ns1 + 1, ns2, t)− ns1P (ns1, ns2, t)]

+ µs2[(ns2 + 1)P (ns1, ns2 + 1, t)− ns2P (ns1, ns2, t)]

− µmP (ns, t)− (γ1ns1 + γ2ns2)P (ns1, ns2, t) (7.2.29)

We define the generating function for this case as:

F (z1, z2, t) =
∞∑

ns1=0

∞∑
ns2=0

(z1
ns1z2

ns2P (ns1, ns2, t)) (7.2.30)

Multiplying equation (7.2.29) by
∑∞

ns1=0

∑∞
ns2=0 z1

ns1z2
ns2 lets us rewrite equation (7.2.29)

as a function of F (z1, z2, t).
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∂F (z1, z2, t)

∂t
= [ks1(z1 − 1) + ks2(z2 − 1)− µm]F (z1, z2, t)

− [(µs1 + γ1)z1 − µs1]
∂F (z1, z2, t)

∂z1

− [(µs2 + γ2)z2 − µs2]
∂F (z1, z2, t)

∂z2
(7.2.31)

By performing a similar set of steps using the method of characteristics as in the single sRNA

case, we obtain the following survival probability of the mRNA at time t:

S(τ1, τ2) = eα1(e−τ1−1)+α2(e−τ2−1)−β1τ1−β2τ2 (7.2.32)

where,

α1 =

(
ks1
µs1

− ks1
µs1 + γ1

)
γ1

µs1 + γ1

α2 =

(
ks2
µs2

− ks2
µs2 + γ2

)
γ2

µs2 + γ2

β1 =
γ1ks1

(µs1 + γ1)2
+

µm

µs1 + γ1

β2 =
γ2ks2

(µs2 + γ2)2

τ1 = (µs1 + γ1)t

τ2 = (µs2 + γ2)t
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7.2.1 Burst Distribution

Now that we have the survival probabilities for the mRNA in the cases where one or two

sRNA species are present, we can proceed and calculate the generating function Gb(x) of the

protein burst distribution for each case. Since protein production occurs at a constant rate

kp during the mRNA lifetime, the number of proteins produced by a surviving mRNA in

time t is given by the Poisson distribution, with the corresponding generating function given

by ekp(x−1)t. Since the difference S(t)− S(t + dt) of survival probabilities is the probability

that the mRNA degrades within the time interval {t, t+ dt}, we obtain the burst generating

function as

Gb(x) = −
∫ ∞

0

∂S(t)

∂t
ekp(x−1)tdt (7.2.33)

For the case with one sRNA species present, we differentiate equation (7.2.28) with respect

to t and changing the variable of integration in equation (7.2.33) from t to T = e−τ simplifies

the integral to:

Gb(x) = 1− k(1− x)

∫ 1

0

eα(T−1)T k(1−x)+β−1dT (7.2.34)

where k = kp
µs+γ

. The above integral is expressible in a closed form using an incomplete

Gamma Function. The case with two species of sRNAs present is not as easily expressible.

Using the variable change t to T = e−τ1 reduces the complexity of the integral, but not

enough to be able to write it in a closed form.
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Gb(x) =

∫ 1

0

(Tα1 + β1) e
α1(T−1)+α2(T δ−1)T k(1−x)+β1+β2δ−1dT

+ δ

∫ 1

0

(
T δα2 + β2

)
eα1(T−1)+α2(T δ−1)T k(1−x)+β1+β2δ−1dT (7.2.35)

where k = kp
µs1+γ1

and δ = µs2+γ2
µs1+γ1

.

7.2.2 Limiting Cases For The Survival Probabilities

Since the full forms for the generating functions of the burst distributions are either unwieldy

or not solvable, we look at the asymptotic behavior of the survival probabilities in a few

different limits of the parameters αs and βs. The reduced forms of the survival probabilities

will allow us to solve for the generating functions of the burst distributions. Once we have

the generating functions of the burst distributions, then the mean of the burst size can be

calculated by taking the partial derivative of Gb(x) with respect to x at the value x = 1.

To find S(τ) in the limit where α+β ≫ 1, we expand around the e−τ term in the exponential

to get:

S(τ) ≃ e−(α+β)τ (7.2.36)

The associated mean of the burst size is:

< nburst >=
k

α+ β
(7.2.37)

In the limit where α + β ≈ 1, we keep one extra term from the expansion in the first limit,

163



and then expand around that term. Then survival probability takes on the form:

S(τ) ≃
(
1 +

ατ 2

2

)
e−(α+β)τ (7.2.38)

The associated mean of the burst size is:

< nburst >= k
α+ (α+ β)2

(α+ β)3
(7.2.39)

Finally, for the limit where α + β ≪ 1, we expand the exponential raised to any power

proportional to α. This results in:

S(τ) ≃ (1− α)e−βτ + αe−(1+β)τ (7.2.40)

The associated mean of the burst size is:

< nburst >= k
1 + β − α

β + β2
(7.2.41)

We tested each of the survival probabilities in the different limiting cases. Each of the

approximations have strong agreement with the true solution in their respective limit, see

figure 7.1. In fact, the approximation in the α + β ≈ 1 limit works equally well as the

approximation in the α + β ≫ 1 limit. Since both solutions are proportional to e−(α+β)τ ,

this is not surprising.

To verify the validity of the mean burst sizes in the different limiting cases, we need to find

the means at steady state. This is done by scaling all the burst size means by the factor

km/µp, which takes care of the production rate of the mRNA and the degradation rate of the

164



0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Τ

Su
rv

iv
al

P
ro

ba
bi

lit
y

Α=0.1, Β=0.1

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Τ

Su
rv

iv
al

P
ro

ba
bi

lit
y

Α=1, Β=1

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

Τ

Su
rv

iv
al

P
ro

ba
bi

lit
y

Α=10, Β=10

0.00 0.01 0.02 0.03 0.04
0.0

0.2

0.4

0.6

0.8

1.0

Τ

Su
rv

iv
al

P
ro

ba
bi

lit
y

Α=100, Β=100

Figure 7.1: The survival probabilities in the different limiting cases. Each panel contains
the all the different approximations and the true solution: (Upper Left - α = β = 0.1) The
true solution is plotted in green. The dashed, orange curve is α + β ≪ 1 limit. The blue
and red dashed lines are the α+ β ≈ 1 and α+ β ≫ 1 approximations, respectively. (Upper
Right - α = β = 1) The true solution is plotted in green. The α + β ≈ 1 approximation
is plotted as the dashed blue line. The other two solutions lay on top of each other.(Lower
Left - α = β = 10) The true solution is plotted in green. All the approximations do fairly
well except for the α + β ≪ 1 limit, plotted as the dashed orange line. (Lower Right -
α = β = 100) The true solution is plotted in green. All the approximations work equally
well except for the α+ β ≪ 1.

protein. Next, we compare the steady state means from two approximations (α+β ≪ 1 and

α + β ≈ 1) to a large sample set of mean protein values taken from stochastic simulations.

We also compare the mean-field solution to the stochastic simulations as a baseline. The

results, seen in figure 7.2, show that the approximation in the limit α + β ≈ 1 does not do

too well. The cumulative error in this regime relative to the mean-field cumulative error is

considerably worse. However, in the limit α+β ≪ 1 (where most of stochastic data is from),
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the approximation performs significantly better than mean-field.
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Figure 7.2: Scatter and cumulative error plots in the regimes α+ β ≥ 1 and α+ β < 1. The
upper left panel shows the scatter plot of the approximate mean versus stochastic mean (red
dots) and the mean-field versus stochastic mean (green dots) in the regime α + β ≥ 1. The
upper right panel shows the corresponding cumulative error of the approximation (red) and
mean-field (green) results. The lower left panel shows the scatter plot of the approximate
mean versus stochastic mean (red dots) and the mean-field versus stochastic mean (green
dots) in the regime α + β < 1. The lower right panel shows the corresponding cumulative
error of the approximation (red) and mean-field (green) results.

7.3 Conclusion

We have presented an in depth framework for analyzing sRNA-mRNA interactions. Included

in the framework is a purely mean-field approach for tracking changes in a gene’s concentra-
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tion as different parameters of the system are changed. For most problems, the mean-field

approach is adequate to describe the behavior of the system. However, when the system

contains many different interacting components at low copy number, tracking the fluctua-

tions becomes important. Therefore, we also included the beginnings of a full probabilistic

description of the system from which one can obtain the distribution of a gene’s protein

concentration across a colony of cells.

Our analysis of the approximations with respect to stochastic simulation seems to show that,

in general, the approximation in the α + β < 1 limit works very well, especially compared

to mean-field. However, in the other limit α + β ≈ 1, the approximation does not work

nearly as well. Therefore, we note that the value of α + β can act as a simple metric for

quickly determining which analytic method (mean-field or approximate generating function)

one should use when modeling these type of interactions. The simple metric will not hold

up for all cases, but it should prove useful when doing preliminary analysis of a system.
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Chapter 8

Conclusions

In this thesis, we propose a number of new models for analyzing different biological systems.

The models all elucidate the principle physics that govern the biological systems and provide

testable predictions.

8.1 Chapter Specific Contributions

In this section, we highlight the contributions and findings associated with the projects

discussed in this thesis.

8.1.1 Biomolecular Electrostatics

In Chapters 2 and 3, we have derived a simple analytical formula from the exact infinite

series solution of the Poisson equation for an arbitrary point charge distribution inside a

spherical dielectric cavity surrounded by an arbitrary dielectric. Extensive testing on charge

distributions inside a spherical cavity showed excellent agreement with the original infinite

series solution. Also, the simple analytical formula is itself a solution of the Poisson equation,

suggesting that it retains some of the key physics of the problem.

168



We extended the simple analytic formula for use with biomolecules by adding the screening

effects of mobile ions in the Debye-Hückel limit. Testing the accuracy of the analytic formula

with the effects of mobile ions against a numerical Poisson-Boltzmann (NPB) reference on a

set of 580 molecular structures representing various structural classes resulted in a surprising

level of agreement. Of the over 9 million test points sampled, 91.5% (98.1%) of them are

within 0.6 (1.2) kcal/mol/|e| – where thermal noise is 0.6 kcal/mol/|e|.

Since our formula is analytic, the computational complexity is significantly lower than the

NPB approaches. Particularly, the reduced memory requirements allow for computing the

electrostatic potential of very large biomolecules. As a proof of principle, we computed

electrostatic potential on the surface of the capsid of Tobacco Ring Spot Virus at atomic

resolution, which is nearly half a million atoms, using a desktop PC. Similar studies using

numerical approaches required sophisticated algorithms and supercomputers [5, 85].

8.1.2 Nucleosome Stability Analysis

The main conclusion of our analysis of the nucleosome from Chapter 4 is that altering the

electrostatic interactions via charge modulation of the globular histone core is a possible way

of the cell controlling DNA accessibility. We have shown that the stability of the nucleosome

is sensitive to changes in the total charge via a “first principles” physics-based model and a

comprehensive computational analysis of all the relevant residues inside the globular histone

core. These results are consistent with a variety of in vitro and recent in vivo experiments that

apply post-translational modifications to residues within the globular histone core. Ideally,

the tabulated values from the computational analysis will serve as a useful guide for future

experiments.
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8.1.3 Quorum Sensing and sRNA Regulation

In Chapters 5 and 6, we performed analyses on two regions of the quorum sensing regulatory

pathway. The first region focuses on the system’s response as the size of the bacterial colony

changes, and the second region focuses on how the available small RNAs regulate the master

regulatory gene. Both regions contain an abundant amount gene interactions, many of which

have associated experimentally determined phenotypes when perturbed.

For the input region of the quorum sensing regulatory network in Vibrio harveyi, we pre-

sented a minimal model capable of reproducing known experimental results while predicting

new ones. Within the model is a framework for estimating the values of the dimension-

less parameters using experimental data. Combined, the work captures the key interactions

within this region of the regulatory network and can be used as a tool for guiding future

experiments.

In the region where the concentration of the master regulatory protein is directly controlled,

we have shown how a simple set of equations, with an appropriate choice of parameters,

can effectively explain all of the experimentally seen luminescence phenotypes in Vibrio

harveyi and Vibrio cholerae. This includes those phenotypes from identical mutants that

are drastically different between the two bacteria, e.g. ∆luxU . We suggest that the key

to understanding the drastically different phenotypes is that the threshold concentration of

the master regulatory protein needed for the bacteria to produce light is larger in Vibrio

cholerae than Vibrio harveyi. Based on the differences in activation thresholds, our model

offers many different experimental predictions. Finally, we extended the mean-field model

for small RNA - mRNA regulation from Chapter 6 to include stochastic effects allowing for

a better description of the system.
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