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The free vibrations of a double-tapered cantilever beam with (1) end support and (2) end mass have
been investigated using the Bernoulli-Euler equation. The beam was tapered linearly in the

horizontal and in the vertical planes simultaneously with the taper ratio in the horizontal plane equal
to that in the vertical plane. A table is presented for the first case from which the fundamental
frequency, second, third, fourth, and fifth harmonic can easily be obtained for various taper ratios. A
chart, plotted from this table, shows the effect of taper ratio on the various harmonics. For the
second case, a table and resulting charts show the effect of taper ratio and ratio of end mass to
beam mass on the fundamental frequency and higher harmonics. Although previously presented, the
case of the beam with free end is also included for purposes of comparison.

Subject Classification: 40.22.

INTRODUCTION

This analysis is a continuation of the work!'=? started
by the authors several years ago on the vibration of
tapered cantilever beams. This type of beam tapered
linearly in either the horizontal or the vertical plane is
widely used for electrical contacts and for springs in
electro-mechanical devices. Occasionally, however, ,
the desired spring rate cannot be achieved by tapering
the beam in only one plane so that it is necessary to re-
sort to a taper in the horizontal and in the vertical plane
simultaneously. Both the single-tapered and the double-
tapered beams will require an end mass or an end sup-
port depending upon whether the beam is used for an
electrical contact (normally open) or for a spring. Single-
tapered cantilever beams with end mass and with end
support have been treated by the authors. +2

This paper deals with the vibration of double-tapered
cantilever beams with end support and with end mass for
the case where the taper ratio in the horizontal plane
equals that in the vertical plane. Tables have been de-
veloped from which the fundamental frequency, second,
third, fourth, and fifth harmonic can be obtained for
various taper ratios and ratios of end mass to beam
mass. Although the case of the double-tapered canti-
lever beam with free end has been presented in Ref. 3,
it is included in this work for comparative purposes.

I. BEAM OF LINEARLY VARIABLE THICKNESS AND
OF LINEARLY VARIABLE WIDTH

In Ref. 3 the differential equation of motion for a vi-
brating beam tapered in two planes as shown in Fig. 1
was developed from the Bernoulli—Euler equation

9% Ela?‘y)_ _LA)BZy )
m(—fax -'(g Pt (1)

where pA/g is the mass per unit length (p weight density,
A cross-sectional area, g gravitational constant), E the
modulus of elasticity, and Ithe moment of inertia. A
sustained free vibration at a frequency w of y(x, £)
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= 2(x) sinw? was assumed which gave the following:

d*z 2d%z[ 3(a-1) B-1 6d%z
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D+@-Dull1+(a-1)] [1+(a-Dup
_ (Ir)2 9
"M (e Daf @)
where
u=x/1,
a=hﬂ/h1’
B=by/by, .

k=12 pw?/Egh: .
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FIG. 1. Cantilever beam tapered linearly in horizontal and in

vertical planes simultaneously.
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FIG. 2. Frequencies for double~tapered cantilever beam with

free end with B=a.

A formal solution for this equation could not be obtained,
and it was solved by numerical integration to give values
of (I2) for various taper ratios of a and B.

A solution to Eq. 2 can be obtained by considering the
special case where the taper ratios @ and 8 are equal.
The resulting differential equation can then be solved in
terms of Bessel functions. If 8 =a is substituted in Eq.
2, the following equation results:

diz 8d3z[ (¢=1) ]+12d2z[

(a-1)
att ad [17(a-1)u @l

1+(a=1)ul

(Ir)'z

T+ (a-Dul" @)

Equation 3 may be placed in a more recognizable form
ifp=1+ (ct — 1) »; this substitution yields

( I J 9%z (4)

Siddall and Isackson! list the steps to put Eq. 4 into op-
erator notation for which Watson® gives the solution as

1 20k ) ( 20k )
¢[AJ2( Ve )+ BY S V¢

V) + o (25 ), (5)
where J, and ¥, are Bessel functions of the first and

second kind and L, and K, are modified Bessel functions
of the first and second kind.

¢4 ¢ P S ad ¢3+12¢2
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TABLE I. Factor (%)’ f=a, free end.
Funda-
mental Second Third Fourth Fifth
a frequency harmonic harmonic harmonic harmonic
1.0 3.51602 22. 03449 61,69721 120.9019 199.8595
1.2 4, 54997 25.46665 68. 98686 133.9884 220.6668
1.4 5.64828 28.87848 76.14960 146. 7374 240, 8424
1.6 6.80221 32.28233 83.21828 159. 2265 260, 5263
1.8 8.00478 35.68615 90. 21556 171. 5096 279, 8154
2.0 9.25030 39. 09523 97.15780 183. 6255 298.7798
2,5 12, 5226 47.6622 114, 3459 213.3596 345, 0885
3.0 15.9785 56. 3146 131, 3862 242,5213 390. 2255
3.5 19,5781 65. 0655 148.3511 271.2901 434.5191
4.0 23.2923 73.9188 165,2854 299, 7799 478.1801
5.0 30. 9820 91,9273 199.1682 356. 2088 564.1394
10.0

72,0487 186. 802 371.238 635. 049 981.657

A. Beam with free end

For a beam with a free end at x=0, the boundary con-
ditions are

at x=0or u=0, d®z/di’ =0 and d%z/du’® =0,
at x=lor u=1, dz/du=0 and z=0.

With these boundary conditions, the solution becomes
that of a double-tapered cantilever beam which is trun-
cated and tapers from the fixed end only. Imposing the
above boundary conditions on the general solution in Eq.
5 gives the following determinantal equation for obtain-
ing the natural frequencies of the beam:

L(OVe) Y, (0Ve) LOVa) KO Ve)

(@ Va) Yy®Ve) -L(©Va) KOVa)| ®
Jy(©) @ L)  K(©) )
J5(©) Y;5(0) -I;(©) K,(©)

The various values of © = [2l2/(a - 1)] were found. To
compare with values tabulated in Ref. 3, Table I was de-
veloped giving values of (Ik)® corresponding to funda-
mental, second harmonic, third harmonic, fourth har-
monic, and fifth harmonic frequencies for the free-end
case with B=a. Rearranging the equation %*=12pw?/

Eg I to obtain the term (Z%)?, it follows that

w(l?/m) (12p/Eg)*/? = (IR) . (7
TABLE II. Factor (#)? f=c, end support.
Funda-
mental Second Third Fourth Fifth
[] frequency harmonic harmonic harmonic harmonic
1.0 15.4182 49, 9649 104. 248 178.270 272.031
1.2 17.5615 55,4779 115,077 196, 337 299,264
1.4 19. 6505 60. 8528 125,577 213.801 325. 540
1.6 21.6980 66,1184 135. 817 230.790 351, 061
1.8 23.7128 71.2951 145. 847 247.391 375.967
2.0 25.7010 76.3976 155.702 263.671 400, 361
2.5 30. 5821 88.8974 179.735 303. 257 459, 572
3.0 35. 3696 101.117 203,108 341. 627 516. 841
3.5 40. 0904 113.129 225.989 379. 089 572.656
4.0 44,7611 124. 980 248.488 415. 841 627,331
5.0 53. 9936 148. 315 292,615 487,727 734.077
6.0 63.1233 171.289 335. 881 558, 001 838.218
10.0 99. 0859 261. 086 503, 841 829, 474 1239.11
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FIG. 3. Frequencies for double-tapered cantilever beam with

end support with 8= a.
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FIG. 4. Fundamental frequency for double-tapered cantilever
beam with end mass with B=a.
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lever beam with end mass with B=a.

Using this equation and the values of (Ik)? from Table I,
curves were plotted of w(12/4,)(120/Eg)*/? vs a for the
five harmonics as shown in Fig. 2.

B. Beam with end support

For a beam with end support at =0, the boundary
conditions are: ’

at x=0or =0, d%z/di’=0 and z=0;
at x=lor u=1, dz/du=0 and z=0.
Imposing these boundary conditions gives the following

determinantal equation for obtaining the natural fre-
quencies of the beam with end support:

J@Va) Y @Va) LOVa) K(eVa)

B@Va) YeVa) -L©Va) KO Va) ) )
Jy(©) Y,(©) IAG) K,(©)

J2(0) Y,(©) 5(©) K5(0)

Table II was developed to give values of (Ik)? corre-
sponding to the fundamental, second, third, fourth, and
fifth harmonic frequencies for the end support case with
B=a. From Table II, curves were plotted of w(I2/%,)+
(120/E2)'/2 vs « for the five harmonics as shown in
Fig. 3.

C. Beam with end mass

For the case of a concentrated mass M located at
x=0, the boundary conditions are:
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TABLE III. (continued)

TABLE III. Factor (k) B =a, end mass.

Funda- Funda-
mental Second Third Fourth Fifth mental Second Third Fourth . Fifth .
a R frequency  harmonic  harmonic harmonic  harmonic a R frequency  harmonic harmonic  harmonic harmonic
1.0 0 3.51602 22,0345  61.6972  120.902 199,860 2.0 3.00974  35.7003 101,376 203.334  341.838
1 2.96784  19.3558  55.5182  110.708  185.346 5.0 1.92138  35.5028  101.221 203,199 341,712
2 2.61275 18,2078  53.5586 108,192  182.431 10.0  1.36289  35.4363  101.169  203.153 341,670
4 2,16799  17.1763  52.0632  106.457 180,544 .
'S i':giéi 12'1;’21 pl.4451  105.781 179,834 3.5 .0 19.5781 65.0655  148.351 271,290 434,519
. ) . 51.1080  105.421 179,461 382 541
1.0 1.55730  16.2501 50,8958 105,198 179,232 -1 12,2504 45,3044 117.324  229.703 .
2.0 1.15820  15.8609  50.4476  104.735 178760 .2 9.55820  42.9227  115.324 227.905 380,856
5.0 .756937 15.6024 50,1623  104.446 175 468 .4 7.14473  41.5643  114.252 226.962  379.983
10.0  .541375 15,5115 50,0644  104.347 178 369 -6 504889 41,0857 113,883 226,641  379.687
. : ‘ .8  5.20359  40.8416  113.697 226.479 379,539
1.2 .0 4.54997  25.4666  68.9869  133.988 220,667 1.0 4.68250  40.6036  113.585 226,382  379.449
.1 3.75054  21.9023  61.1597  121.434  203.130 2.0 3.35188  40.3942  113.358 226,186  379.269
.2 3.25843 20,5336 59,0259  118.835 200,220 5.0 2.13578  40.2124  113.221 226,068  379.161
.4 2.66608  19.3789  57.4964  117.138 198,423 10,0  1.51400  40.1515  113.175 226.028  379.125
.6 2.31036  18.8692  56.8871  116.496  197.763
.8 2.06697  18.5825  56.5601  116.159 197,420 4.0 o 23,2023 73.9188  165.285 299,780  478.180
1.0 1.88708  18.3988  56.3562  115.951  197.210 1 13 8168 49.7958 128,823 251,811  418.887
2.0 1.39383  18.0022  55.9301  115.523 196,780 2 10,6353 47.4353 126, 967 250,189  417.392
5.0 .90655  17.7434  55.6620  115.257  196.516 4 7.87962  46.1360  125. 990 249.348  416.623
10.0 -64725  17.6534 55.5705  115.167  196.427 .6 6.53887 45,6857  125.657 249.064  416.364
1.4 .0 5.64828 28,8785  76.1496  146.737 240,842 .8 5.70965  45.4575  125.489 248,921 416.234
1 4.54374 24,3118 66. 5588 131. 742 220,249 1.0 5.13237 45,3196 125. 388 248.834 416.155
.2 3.89751 22.7418 64. 3072 129.126 217.404 2.0 3.66580 45,0417 125.185 248.661 415,998
J4 3.14824  21.4913  62.7768  127.492 215,711 5.0 2.33262  44.8736 125,062 248,557  415.904
.6 2.71077 20.9598 62.1850 126,887 215.100 10.0 1.65278 44,8174 125. 021 248.522 415,872
.8 2,41594  20.6662  61.8715  126.573  214.785 :
1.0 2.20010 20,4800  61.6773 126,380 214,593 5.0 .0 30.9820 91.9273  199.168 356,209 564,139
2.0 1.61576  20.0832  61.2750  125.985  214.202 1 166644 58.6146 151,581 295.344  490.174
5.0 1.04678  19.8282  61.0241  125.741  213.963 .2 12.5670 56.3745 149,980 293,999  488.964
10.0  .74633 19,7401 60.9389  125.659 213,882 .4 9.19450  55.1988  149.155 293.312 488,349
1.6 .0 6.80221  32.2823  83.2183  159.227  260.526 -6 7.59518  54.8000  148.877  293.081 482'332
.1 5.33828  26.6067  71.7742  141.743  236.870 -8 6.61634  54.5994 148,737 292,965 488
5 - 1.0 5.93881  54.4788  148.653 292.895  487.976
.2 4.52367  24.8590  69.4525  139.154  234.125 > 5902 7on 487 852
.4 3.61163  23.5373  67.9436  137.595  232.540 2.0 4.22934  54.2366 148,484 . :
a ) 5.0  2.68636  54.0909 148,382 202,671  487.7T7
.6 3.09243 22,9936  67.3741  137.028 231,976 e e o4 oazs 14 oas 292 643 487 752
.8 2.74709  22.6977  67.0753 136,735  231.687 : : : : : :
1.0 2,49632  22.5117  66.8913  136.556  231.511
2.0 1.82461  22.1195  66.5125  136.192  231.154
5.0 1,17831  21.8703  66.2779  135.968  230.936
10.0 83915  21.7848  66.1985  135.893 230,863 R 52 o?
1.8 .0 8.00478 35,6862 90.2156  171.510  279.815 at x=0, 8%y/8x%=0 and — (EI—ZX):— V= zy;
.1 6.12761  28.8055  76.8494  151.509  253.106 ax 8x ot
.2 5.13319 26,9054  74.4959  148.979 250,481
.4 4.05537  25.5335  73.0228  147.498  249.000 at x=1I, 8y/8x=0 and y=0.
.6 3.45551 24,9849 724776 146,968 248,478
-8 3.06105  24.6901  72.1938  146.695  248.212 For the assumed free vibration y(x, f) = z(x) sinw?, the
1.0 " 2.77658  24.5061 72,0199 146,529  248.051 L .
2.0 2.02142 24,1213 71.6634 146,192  247.724 boundary conditions at x =0 transform into
5.0 1.30198  23.8792 71,4439  145.986  247.525
10.0  .92637  23.7965  71.3697 145,917  247.458 d?z/dx?=0
2.0 L0 9.25030  39.0952  97.1578  183.626  298.780
.1 6.90715 30,9239  81.8171  161.094 269,036 and
.2 5.72408  28.8964  79.4612  158.641 266,537
.4 4.47965 27,4920  78.0323  157.239 265,154
.6 3.80088  26.9438  77.5118  156.742  264.671 d%z/dx® = Mw2y/ EL ,
.8 3.35894 26,6522  77.2427  156.488  264.425
1.0 3.04210  26.4714  77.0782 156,334 264,277 :
2.0 2.20735  26.0959 76,7426 156,021  263.976 where
5.0 1.41865  25.8613  76.5367  155.831  263.794
10.0  1,00862  25.7815  76.4674 155,767  263.733
Io =ﬂ' bl hf .
2.5 .0 12.52258  47.6622  114.3459  213.360 345,088
.1 8.79472  35.9508  93.9102  184.480 307,844
.2 7.11589  33.7041  91.6299  182.253  305.657 Therefore,
.4 5.46099  32.2738  90.3256  181.032  304.485
.6 4,59487  31.7411  89.8638  180.609 304,082 d%2/dx® = 12Ma?z,/ Eby 1
.8  4.04183  31.4633  89.6277 180,394 303,878
1.0 3.64982 31,2928 89,4842 180,263 303,755
2.0 2.63178  30.9433  89.1934  180.001  303.507 2
5.0  1.68463  30.7280 89,0164  179.842 303,358 = (E‘l“%— (%ﬁ)
10.0  1.19606  30.6553  88.9570  179.788  303.308 Eghi J\ pbiy
.0 ) . 56,3146  131.386 242.521 390,225 .
3 f 13 g;g: 43. 3}06 Lo5. 707 ;07_291 545 583 The volume of the beam is (#/3)b.%,(0® + @ + 1) so that
.2 8.38981 38,3575  103.559 205.290  343.670 the mass of the beam m can be expressed as
.4 6.34346 36,9508  102.377 204,222 342.665
.6 5.30525  36.4437  101.966 203,856 342,323 o\[{1
¢ .8  4.65153 36,1827  101.757 203.671 342,151 m =(—)[(— )(b1h1) (®ra+l)] .
1.0 4.19184 36,0237 101,631 203.559 342,047 g/1\3
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Therefore,

_ (12pwz\ Mzl +a+1)] 2
“\Eghi /(p/g) byiu[3l(a®+ a+1)] *°
=E(M/m) (1/3) (P + a+1) z.

d®z
dx’

Substituting ¢ =1+ [(a - 1)/1] ,
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The boundary conditions at x=0 or ¢ =1 are therefore

d%z
ap? =0
and
d’z (MN(UR|[P+a+l
dTls-(m/l. 3 ][(a—ﬁf]z'

The boundary conditions at x=17 or ¢ =& become

z=0
and

dz

%=0.

Imposing the boundary conditions given by Eqs. 9 on Eq.

(9a)

(9p)

5 gives the following determinantal equation for obtain-

ing the natural frequencies of the beam with an end mass

lever beam with end mass with f=c.
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L©Va) Y0Va) Leva) K (0Va)
Jy@Va) Yy@+va) -I40Va) Ki©Ve) 20, (10)
J4(6) v,(e) L(©) Ky(©)
A B c D
where
As %][%k] (e +a+1) 4y(©) +J5(0),

B- %] k| (024 a+1) ,(0)+ Y4(0),

C= (M [l—k- (?+a+1)L(©) - KO),

D= Dl—4][E (o + a+1) K;(©) + K4(©) .

Table III was developed to give values of (1%)® corre~
sponding to the fundamental, second, third, 'fourth, and
fifth harmonic frequencies for a beam with end mass
with B=a. In this table R is the ratio M/m of the mass
of the concentrated load to that of the beam.

Figures 4-8 show curves of w(?/h,) (120/Eg)"/? vs R
for the five harmonics plotted from the data in Table III.
It is interesting to note that the curves of w(%2/h,) (120/
Eg)'/2 ys R, after the fundamental frequency (Fig. 4),
are almost independent of R. This is especially true

J. Acoust. Soc. Am., Vol. 55, No. 5, May 1974

for the higher harmonics and higher values of a.

Figure 9 shows a plot of w(I?/h,) (120/Eg)'/? vs a for
the fundamental frequency for 8= o and 8 =1 for several
values of R. The values for 8 =1 were taken from the
previously solved case given in Ref. 1. It can be seen
that as the value of R increases, the spread of the two
curves decreases for a particular R. This is particu-
larly significant for the values of R>0.4. In these
cases the value of the fundamental frequency is approxi-
mately the same whether the beam has a double taper or
whether it tapers only in the vertical plane (8=1).
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