
The Unreasonable Usefulness of Approximation by Linear

Combination

Cannada A. Lewis

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State

University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Chemistry

Edward F. Valeev, Chair

Daniel T. Crawford

John R. Morris

Diego Troya

April 13, 2018

Blacksburg, Virginia

Keywords: Electronic Structure, Tensor Factorization, Linear Scaling

Copyright 2018, Cannada A. Lewis



The Unreasonable Usefulness of Approximation by Linear

Combination

Cannada A. Lewis

(ABSTRACT)

Through the exploitation of data-sparsity —a catch all term for savings gained from a variety

of approximations— it is possible to reduce the computational cost of accurate electronic

structure calculations to linear. Meaning, that the total time to solution for the calculation

grows at the same rate as the number of particles that are correlated. Multiple techniques

for exploiting data-sparsity are discussed, with a focus on those that can be systematically

improved by tightening numerical parameters such that as the parameter approaches zero

the approximation becomes exact. These techniques are first applied to Hartree-Fock theory

and then we attempt to design a linear scaling massively parallel electron correlation strategy

based on second order perturbation theory.



The Unreasonable Usefulness of Approximation by Linear

Combination

Cannada A. Lewis

(GENERAL AUDIENCE ABSTRACT)

The field of Quantum Chemistry is highly dependent on a vast hierarchy of approximations;

all carefully balanced, so as to allow for fast calculation of electronic energies and properties

to an accuracy suitable for quantitative predictions. Formally, computing these energies

should have a cost that increases exponentially with the number of particles in the system,

but the use of approximations based on local behavior, or nearness, of the particles reduces

this scaling to low order polynomials while maintaining an acceptable amount of accuracy.

In this work, we introduce several new approximations that throw away information in a spe-

cific fashion that takes advantage of the fact that the interactions between particles decays

in magnitude with the distance between them (although sometimes very slowly) and also

exploits the smoothness of those interactions, by factorizing their numerical representation

into a linear combination of simpler items. These factorizations, while technical in nature,

have benefits that are hard to obtain by merely ignoring interactions between distant par-

ticles. Through the development of new factorizations and a careful neglect of interactions

between distant particles, we hope to be able to compute properties of molecules in such a

way that accuracy is maintained, but that the cost of the calculations only grows at the same

rate as the number of particles. It seems that very recently, circa 2015, that this goal may

actually soon become a reality, potentially revolutionizing the ability of quantum chemistry

to make quantitative predictions for properties of large molecules.
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ĀB̄

from clustering. Domain sizes were fixed such

that pair ij would have the same number of PAO and OSV functions as cluster

pair IJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xv



4.2 Comparison of timings for our O (n) PNO-MP2 versus RI-MP2 for n-alkanes.

The formation of Gij
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3

Figure 1.1: Cephalexin, an antibiotic that your author was taking while writing this section.

Quantum chemistry and specifically electronic structure, or the study of the quantum nature

of electrons in molecules, can provide deep insights into the inner workings of chemical

processes in fields ranging from astro-biology to drug design. A particularly compelling

example for your author (who happened to have a slight infection while working on this

section) is the mechanism of the antibiotic Cephalexin[1] shown in Figure 1.1. Cephalexin, a

β-lactam antibiotic, is a bactericidal molecule that acts by inhibiting the synthesis of bacterial

cell walls. Unfortunately, antibiotic resistance is starting to become an issue for these and

many other types of antibiotics,[2] but drug design and discovery are costly and difficult

processes. So many theorists have proposed using quantum chemistry to reduce the cost

inherent in the design of drug molecules.[3] Using quantum chemistry we can understand how

drug molecules interact with their targets, how the bacteria are countering that mechanism,

and finally, how to design new antibiotics that circumvent the bacteria’s resistance. It is like

a deadly serious version of spy versus spy.



4 Chapter 1. Introduction

To understand how the study of electronic structure can be used to help elucidate the de-

tailed working of drug interactions, it is helpful to start at the very beginning, the Schrödinger

equation, followed by the modern techniques of how it is approximated to study the behavior

of electrons in molecules. The remainder of this chapter is organized as follows, first we will

discuss how the Schroödinger equation can be applied to simple molecules, then use those

ideas to discuss what is typically thought of as the most basic quantum mechanical approx-

imation to the wavefunction, the Hartree-Fock approximation. We will detail an example of

how Hartree-Fock fails and then discuss ways in which to improve upon our initial approx-

imation with an emphasis on Møller-Plesset perturbation theory. Then we will discuss one

tool of the trade that is used to make the implementation of these methods more compu-

tationally friendly. Finally, we will make an unusual analogy between electronic structure

methods and computer graphics that should help to put the types of approximations made

in a context that non-experts might find more familiar.

1.1 The Electronic Schrödinger Equation

Before beginning this section I would like to point the reader to the ever helpful source

Modern Quantum Chemistry by Attila Szabo and Neil S. Ostlund.[4] This book was not

only indispensable (multiple copies had to be replaced after falling apart from use), but

provides most of the background for this section. To avoid redundancy, and also prevent

what is almost surely a worse explanation, at points in this section I will refer the reader to

the appropriate section of this book.

The non-relativistic time-independent Schrödinger equation written in the compact form

HΨ = EΨ, (1.1)



1.1. The Electronic Schrödinger Equation 5

shows that the application of the Hamiltonian operator, H, to the wavefunction, Ψ, returns

the energy, E . The wavefunction is a function of 3N variables, where N is the number of

particles in the system

Ψ ≡ Ψ (r1, r2, . . . , rm,R1,R2, . . . ,Rw) , (1.2)

where r1 refers to the coordinates of electron 1 and R1 the coordinates of nucleus 1. For

the remainder of this chapter the use of bold face will denote a vector so that r1 defines the

vector {r1(1), r1(2), r1(3)}. The Hamiltonian can be written out as

H ≡−
∑
i

1

2
∇2
i −

∑
A

1

2MA

∇2
A −

∑
i

∑
A

ZA
riA

+
∑
i

∑
j>i

1

rij
+
∑
A

∑
B>A

ZAZB
rAB

,

(1.3)

where MA is the ratio of the mass of nucleus A, to the mass of the electron, ZA is the atomic

number of nucleus A, ∇2
i is the kinetic energy operator for electron i, similarly ∇2

A is the

kinetic energy operator of nucleus A and rij, riA, and rAB are the distances between electron

i and electron j, electron i and nucleus A, and nucleus A and nucleus B respectfully. With

Equation (1.3), which makes use of atomic units to simplify the expression, one can then

attempt to solve for Ψ, but no known analytical solutions exist for the general case.

To simplify the search for an approximate solution to Ψ, a common approach is to separate

or factorize (a term we will see again) Ψ into an electronic part that depends only on fixed

nucleus coordinates and a nuclear part that depends only on the average position of the

electrons

Ψ ≈ Φelec(r1, . . . rm, {RA})Φnucl(R1, . . .Rw, {ri}), (1.4)



6 Chapter 1. Introduction

Table 1.1: The symbols used to represent different types of functions in the text.

Ψ The exact electronic and nuclear wavefunction
Φ The exact electronic wavefunction

Φ̃ An approximate electronic wavefunction
Φ̄ A single Slater determinant
χk Molecular orbital k
ψk The spatial part of molecular orbital k
φk The kth function in a basis set
φµ The µth function in an atomic orbital basis set

Table 1.2: The notation used for various types of functions, the meaning and origin of the
indices will be explained in the text.

i, j, k, . . . Occupied molecular orbitals
a, b, c, . . . Unoccupied molecular orbitals
X, Y, . . . Auxiliary basis indices
µ, ν, ρ, . . . Atomic orbital indices

The approximation of Equation (1.4) is typically called the Born-Oppenheimer approxi-

mation, although perhaps it should really be called the clamped nucleus approximation.[5]

For the remainder of this work we will focus only on the electronic portion, Φelec, and the

electronic parts of the Hamiltonian:

Helec ≡−
∑
i

1

2
∇2
i −

∑
i

∑
A

ZA
riA

+
∑
i

∑
j>i

1

rij
, (1.5)

where the positions of the atoms centers are merely inputs to Φelec and the quantum mechan-

ical behavior of the electrons can be solved for independently of the nuclear wavefunction.

1.2 Hartree-Fock and the Factorization of Φelec

To start with we will define some notation used for the remainder of the introduction in

Table 1.1 and Table 1.2. After application of the clamped nucleus approximation has been
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applied our electronic wavefunction can be thought of as a function of 3M parameters where

M is the number of electrons

Φelec ≡ Φelec(r1, r2, . . . , rm). (1.6)

Historically Φ was approximated via trial functions (here labeled as Φ̃) using a Rayleigh

quotient (from this point forward we will drop the electronic designation):

E =

〈
Φ̃
∣∣∣H ∣∣∣ Φ̃〉〈
Φ̃
∣∣∣ Φ̃〉 , (1.7)

where 〈 | 〉 is Dirac’s bra-ket notation. Equation (1.7) allows the variational optimization of

any parameters that enter into Φ̃ with the guarantee that the computed energy will always

be an upper bound to the exact energy. For the smallest of molecules like H2 and helium

it is reasonable to create trial wavefunctions that depend explicitly on the r1, r2, and r12

distances, where the first two are the distances of electron 1 and electron 2 from the nucleus

and r12 is the distance from electron 1 to electron 2. One of the most successful forms of trial

function are those that depend explicitly on the distance between the electrons. A simple

example is the Hylleraas trial function

Φ̃(r1, r2) = e−ζr1e−ζr2(1 + cr12), (1.8)

which can be variationally optimized to give an energy of -2.8913 Hartrees, for the helium

atom, within 0.5% of the exact energy.[6, 7] While trial functions that explicitly account for

the interaction between particles can be used to achieve very high accuracy results, they

have a serious drawback: as the number of particles grows the number of interactions grows

extremely rapidly such that their computation becomes difficult.
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Instead of dealing explicitly with particle interactions, we can attempt to build a trial func-

tion where Φ is approximated as products of one particle functions

Φ̃ = ψ1(r1)ψ2(r2) . . . ψm(rm), (1.9)

which is known as a Hartree product. The Hartree product can be thought of as a fac-

torization of a high dimensional function into a product of one dimensional functions. If a

Hartree product or a small sum of Hartree products is a good approximation to Φ then for

this work we will say that Φ is factorizable, where factorizable means that some function

of dimension N can be represented as a small linear combination of products of functions

with dimension less than N . Perhaps the simplest test case for the type of factorization

in Equation (1.9) is the ground state of the helium atom. We can test one of the simplest

variationally optimizable Hartree products:

Φ̃(r1, r2) =
ζ

π
e−ζ(r1+r2), (1.10)

which when ζ = 27
16

gives an energy of -2.84766 Hartrees.[7] While this result is much worse

that Φ̃ from Equation (1.8) it only has a single variational parameter. To treat more general

cases than single states of the helium atom we will need to account for the fact that electrons

are fermions and thus Φ̃ must be anti-symmetric with respect to the swapping of any two

electrons. The most natural way to anti-symmetrize a Hartree product is to adapt it into a
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Slater determinant:

Φ̄(r1, r2, . . . , rm) =
1√
M !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(r1) χ2(r1) . . . χm(r1)

χ1(r2) χ2(r2) . . . χm(r2)

...
...

. . .
...

χ1(rm) χ2(rm) . . . χm(rm)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.11)

where Φ̄ is used to represent a single Slater determinant, it is possible to have Φ̃ = Φ̄ if

we approximate Φ as a single Slater determinant. A Slater determinant places M electrons

into M spin orbitals {χi}, also called molecular orbitals, and its form is basically a linear

combination of Hartree products such that the swapping of any two electrons changes the

sign of Φ̄. Next we must ask, what is the form of these χ functions? For calculations on

light atoms, where the effects relativity are small χ can be factorized (there is that word

again) into a spatial part and a spin part such that χi(ri) = ψi(ri)α(ωi) where the α(ωi)

designates the spin of particle i. Then the question becomes what is the form of the {ψi}?

It turns out that once again for general systems there is no analytical form for these ψ and

we must instead approximate them. This calls for the introduction of some basis —a set of

functions— in which the set of ψ can be approximated. Given a set of basis functions {φj}

we can approximate each ψi as a linear combination of the φ functions via:

ψi(r1) ≈
∑
k

Ckiφk(r1), (1.12)

where the Cki parameters are to be determined via optimization. The most common form

of basis set for typical electronic structure calculations are those based on the solutions to

the hydrogen atom, further discussion of basis sets is beyond the scope of this introduction,

but insight into how they are designed can be found in reference [8]. The use of these

atomic like basis sets for the molecular orbitals is usually termed the linear combination of
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atomic orbital approximation or LCAO. Once the {φµ} —lower case Greek letters designate

atomic orbital basis functions— have been chosen almost all wavefunction based electron

structure methods determine the Cki parameters via the Hartree-Fock method. For more

background on Hartree-Fock and a derivation of the following close shell equations the reader

is referred to chapters 2 and 3 of Modern Quantum Chemistry. After some amount of work

it can be shown that best set of Cki for each ψi is determined by taking the M
2

eigenvectors

corresponding to the M
2

smallest eigenvalues of the following generalized eigenvalue equation:

FC = λSC, (1.13)

where Sµν = 〈φµ |φν〉 is the overlap of the basis set and F, in closed shell form where every

orbital holds two electrons and the spin component of the {χi} has been integrated out, is

given by:

Fµν = Tµν + Vµν +
∑
ρσ

(2(µν|ρσ)− (µρ|νσ))Dρσ, (1.14)

where T is the kinetic energy operator in the basis {φµ}, V is the nuclear attraction felt by

the electrons and the sum over ρ and σ represents the repulsion felt by the electron from the

average of all the other electrons in the system, D is the density given by:

Dµν =
M∑
i=1

CµiCνi, (1.15)

and finally, (µν|ρσ) represents the integral

(µν|ρσ) =

∫∫
φ∗µ(r1)φν(r1)r−1

12 φ
∗
ρ(r2)φσ(r2)dr1dr2. (1.16)

The astute reader will realize that F depends on D and D depends on F. This means in
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practice these equations must be solved self consistently where a guess is made for D and

then a new F is generated and that F is used to construct a new D. Only once F and D

experience changes below some threshold do we consider the problem solved. For this reason

sometimes Hartree-Fock is also called SCF, which stands for self consistent field method, a

reference to how the equations are solved in practice.

It turns out that while Hartree-Fock is able to account for the vast majority of the total

energy of a molecule, it is not without failures. Even when using extrapolation schemes

that estimate the lowest possible Hartree-Fock energy we only get an energy of -2.86168344

Hartrees, for the helium atom, which is off by 1.4% from the exact value.[7] A poor result

relative to the very simple trial function of Equation (1.8) given that the Hartree-Fock

solution needs hundreds of variational parameters for this calculation while Equation (1.8)

needs only 2. Clearly, approximating the wavefunction as a simple product of well defined

orbitals prevents it from achieving the accuracy of even very simple trial functions. For

example, even the trial function:

Φ̃(r1, r2) = N(e−ζ1r1e−ζ2r2 + e−ζ2r1e−ζ1r2), (1.17)

where N is a normalization factor is more accurate than the Hartree-Fock basis set limit for

the helium atom. Figure 1.2 shows my personal favorite example of the failure of Hartree-

Fock as well as the difficulty in choosing a proper basis set. The hydrogen anion is a bound

system, but Hartree-Fock and even the exact —what exact means will be covered in the next

section— solution within a small non-diffuse basis set does not show this. The selection of

appropriate basis sets and their extrapolation to the complete basis set limit is beyond the

scope of this introduction, but it is evident that the Hartree-Fock approximation is woefully

inadequate for the prediction of chemical properties. But there is hope and Equation (1.17)

suggests to us the form of a possible improvement, we can construct Φ̃ not as a simple
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Figure 1.2: The energies for the hydrogen anion for Hartree-Fock and the Exact energy
(exact solutions within the given basis set were computed with CCSD) in two different types
of basis sets. The basis sets with diffuse functions (prefixed with aug-) show much better
convergence to the basis set limit (the basis set limit is displayed via dashed lines with no
markers, where the colors correspond to the limit for the matching method in the legend)
as would be expected with an anion. Most importantly though is that Hartree-Fock fails to
show that the hydrogen anion is lower in energy than the hydrogen atom itself.
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product of one-electron functions, or as is actually the case a single Slater determinant

(Φ̄), but instead include a linear combination of Slater determinants to approximate Φ. In

the next section we will see how it is possible to construct a linear combination of Slater

determinants that with the proper basis sets and extrapolation techniques (and infinite

computer memory and time) will give the exact energy of a molecule within the clamped

nucleus and non-relativistic approximations.

1.3 Post Hartree-Fock Methods

Based on the final trial function in the previous section (Equation (1.17)), we see a pos-

sible solution to our problems, Φ can be approximated as a linear combination of Slater

determinants (hopefully the reader is beginning to notice a pattern here):

|Φ〉 =
∑
z

Cz
∣∣Φ̄z

〉
, (1.18)

where each
∣∣Φ̄〉 represents a single Slater determinant. Given a complete basis of Slater

determinants |Φ〉 can be exactly represented and the energy of the system can be found by

diagonalizing the following matrix,

Hy,z =
〈
Φ̄y

∣∣H ∣∣ Φ̄z

〉
, (1.19)

with H’s most negative eigenvalue corresponding to the ground state energy and its cor-

responding eigenvector giving the values of the Cz coefficients from Equation (1.18). The

above approach, called configuration interaction, only requires two things: the first is the

ability to compute the integrals in Equation (1.20) the second, an approximation, is that

some suitable basis set of Slater determinants is used for the expansion. If both integrals
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and a good bases of Slater determinants are available then |Φ〉 can be approximated to arbi-

trary accuracy. Unfortunately, both of these requirements are non-trivial to fulfill, integrals

between Slater determinants are complicated, unless certain conditions are enforced and in

practice we end up needing a fairly large basis of Slater determinants for high accuracy

calculations.[9] Thankfully, for the study of most molecules, in their equilibrium geometries

and in their ground electronic states, there is a systematic way to converge towards the exact

solution while also simplifying the integrals between determinants.

When computing the Hartree-Fock wavefunction for a closed shell system, we calculate as

many orbitals as their are basis functions (let us call N the number of basis functions) in

the calculation, but we only end up using M/2 of those orbitals, where M is the number of

electrons. Thus at the completion of the SCF procedure we have V = N − M
2

extra orbitals.

These orbitals can be used to construct valid Slater determinants leading to a natural basis

of Slater determinants for our expansion of |Φ〉, where we can move each electron from one of

our M
2

(occupied) orbitals to one of our V (virtual) orbitals to form a new Slater determinant.

Leading to the following expansion of |Φ〉:

|Φ〉 = C0

∣∣Φ̄0

〉
+
∑
ia

Ci
a

∣∣Φ̄i
a

〉
+
∑
i<j
a<b

Cij
ab

∣∣Φ̄ij
ab

〉
+ . . . , (1.20)

where
∣∣Φ̄〉 is the minimal energy Hartree-Fock Slater determinant and

∣∣Φ̄ij
ab

〉
is the determi-

nant formed by removing electrons from orbitals i and j and placing them in orbitals a and

b respectfully. The quality of this expansion will depend heavily on the quality of the basis

set used for the Hartree-Fock calculation 1, but if all possible substitutions are made and the

appropriate basis set is chosen then the exact |Φ〉 can be approximated very accurately (at

great cost) and the systems ground state energy can be extrapolated to what is essentially

1see Figure 1.2 for the exact solution without diffuse functions for an example where this Slater determi-
nant basis fails
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the exact value. Unfortunately, this approach leads to an astronomical increase in costs as

the Hartree-Fock basis becomes larger, necessitating further approximation. Usually, this

approximation takes the form of truncating the expansion at a certain rank of substitu-

tion (also called excitation) such that all terms larger than X are dropped from the sum

in Equation (1.20) where X is usually D,T,Q,... Meaning that all terms including double,

triple, quadruple, ... replacements are kept. Once the basis of determinants has been cho-

sen we need to know how to compute matrix elements between determinants in this basis,

thankfully this particular basis we have chosen naturally leads to simplified integrals such

that
〈

Φ̄abc...
ijk...

∣∣∣H ∣∣∣ Φ̄def...
lmn...

〉
can be readily computed by Slater-Condon rules,[4] the details of

which are widely available. Perhaps the largest benefit of this approach is that any two

determinants that differer by more than two orbitals will not contribute to H due to the

Slater-Condon rules, limiting the number of determinants that any specific determinant will

interact with. Historically the way the coefficients were determined was via CI,[4] but even-

tually the coupled cluster (CC) approximation became dominate within the field. References

[10] and [11] provide ample background on the coupled cluster approach.

1.3.1 Møller-Plesset Perturbation Theory

In addition to configuration interaction and the coupled cluster approximation there is one

other technique commonly used for determining the expansion of |Φ〉 in terms of Slater

determinants, Møller-Plesset perturbation (MP) theory. Unlike CC and CI we will take

the time to discuss MP theory since a reduced scaling approximation to the second order

variant is the focus of Chapter 4. The main idea of perturbation theory is that we split our

Hamiltonian H into two pieces such that H = H0 +V , where H0 is a part of the Hamiltonian

that we have eigenvalues and eigenfunctions for and V is a perturbation. When H0 is a

good approximation for H then the inclusion of V should only have a small effect that can
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be approximated. The main choice in electronic structure theory for H0 and V is the one

used in Møller-Plesset (MP) perturbation theory, named after Christian Møller and Milton

Plesset.[12]

Rayleigh-Schrödinger perturbation theory, the theory on which MP is based, takes our sep-

arated Hamiltonian from the previous paragraph and adds an ordering parameter λ to V :

H = H0 + λV . (1.21)

Then the exact energy and the exact wavefunction can be expanded in a Taylor series in λ,

E = E(0) + λE(1) + λ2E(2) + . . .

Φ = Φ̃(0) + λΦ̃(1) + λ2Φ̃(2) + . . . ,

(1.22)

where Φ̃(0) is the lowest energy eigenfunction of H0 and E(0) is the energy of Φ̃(0). By

applying the Hamiltonian in the form H0 + λV and using Equation (1.22) we can group

terms that have the same powers in lambda to obtain a series of equations:

H0

∣∣∣Φ̃(0)
〉

= E(0)
∣∣∣Φ̃(0)

〉
H0

∣∣∣Φ̃(1)
〉

+ V
∣∣∣Φ̃(0)

〉
= E(0)

∣∣∣Φ̃(1)
〉

+ E(1)
∣∣∣Φ̃(0)

〉
H0

∣∣∣Φ̃(2)
〉

+ V
∣∣∣Φ̃(1)

〉
= E(0)

∣∣∣Φ̃(2)
〉

+ E(1)
∣∣∣Φ̃(1)

〉
+ E(2)

∣∣∣Φ̃(0)
〉 (1.23)

By choosing Φ̃(n) (n 6= 0) to be orthogonal to Φ̃(0) and projecting on the left by
〈

Φ̃(0)
∣∣∣ in
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Equation (1.23) we can solve for the corrections to the energies:

E(0) =
〈

Φ̃(0)
∣∣∣H0

∣∣∣ Φ̃(0)
〉

E(1) =
〈

Φ̃(0)
∣∣∣V ∣∣∣ Φ̃(0)

〉
E(2) =

〈
Φ̃(0)

∣∣∣V ∣∣∣ Φ̃(1)
〉

E(3) =
〈

Φ̃(0)
∣∣∣V ∣∣∣ Φ̃(2)

〉
.

(1.24)

Our task then becomes determining the Φ̃(n) in terms of the eigenfunctions of H0. Coming

back to MP perturbation theory where the choice of H0 is the Fock operator meaning that∣∣∣Φ̃(0)
〉
≡
∣∣Φ̄(0)

〉
and V becomes:

V =
∑
i<j

1

rij
−
∑
i

vHF(i), (1.25)

where vHF is the potential from Hartree-Fock. Given V , and using the same basis of deter-

minants as before (the basis where determinants differ by which orbitals from Hartree-Fock

they include) we can now approximate Φ̃(n) by expanding it in this basis. Within MP per-

turbation theory the first energy that is an improvement on Hartree-Fock is the second order

treatment and as it turns out Φ̃(1) can be expanded only in the determinants where two

orbitals have been replaced. Since by design Φ̄(0) is orthogonal to all other determinants

in our Slater basis, we can project Φ̃(1) into the basis of all determinants that are not the

ground state one forcing it to be orthogonal to Φ̄(0)

Φ̃(1) =
∑
abc...
ijk...

∣∣Φ̄abc...
ijk...

〉 〈
Φ̄abc...
ijk...

∣∣∣ Φ̃(1)
〉

, (1.26)

where we assume the summation only goes over unique determinants. In reality, the Brillouin

condition (which says that matrix elements of the type
〈
Φ̄
∣∣H ∣∣ Φ̄a

i

〉
are zero) and the fact
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that 1
rij

can couple determinants that differ by at most 2 orbitals allows us to expand Φ̃(1)

only in terms of double replacements.

Φ̃(1) =
∑
ab
ij

∣∣Φ̄ab
ij

〉 〈
Φ̄ab
ij

∣∣∣ Φ̃(1)
〉

, (1.27)

By making use of the projection of Equation (1.27) and the second term from Equation (1.23)

we can eventually arrive at the following expression for the E(2), in closed shell form:[4]

E(2) =
∑
ijab

(2(ia|jb)− (ib|ja))(ia|jb)
εi + εj − εa − εb

, (1.28)

where

(ia|jb) =

∫∫
ψ∗i (r1)ψ∗j (r2) 1

r12
ψa(r1)ψb(r2)dr1dr2, (1.29)

and εa is the eigenvalue of eigenfunction to the Fock operator, ψa. The calculation of E(2) is

commonly called the MP2 method and although it is not sufficiently accurate for quantitative

study it is an improvement on the Hartree-Fock energy and does often give qualitatively

correct results as can be seen in Figure 1.3.

1.3.2 Brief Introduction of Big O

In order to discuss the relative cost of different algorithms in this section, we will define

a notation that loosely differentiates between algorithms with different orders of scaling.

Any algorithm will have some cost associated with it that is a function of the size of the

input to that algorithm. For example, the number of mathematical operations that must be
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Figure 1.3: A calculation very similar to Figure 1.2, except that the non-diffuse basis sets
have been removed and MP2 is now compared with Hartree-Fock. It is clear that while MP2
is quite aways off from the exact —CCSD— energy for this system, it does qualitatively
predict that the hydrogen anion will be bound. The dashed black line represents the basis
set limit for MP2.

undertaken in a matrix multiplication can be determined from:

Cm,n = Cm,n +
∑
k

Am,k ∗Bk,n. (1.30)

Equation (1.30) shows us that the number of operations needed to update a single element

of C is k multiplications and k additions. Since C has m × n elements that means that

the cost of computing all elements of C must be m × n × k multiplications and m × n × k
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additions. We can write out the cost of updating C as

Cost(C) = mnk +mnk = 2mnk (1.31)

and if m = n = k then the cost is 2m3. In order to avoid the requirement of listing out

the exact cost of every algorithm we will adopt a shorthand called Big O notation.2 Big

O notation designated by a O gives us a fast way to see what the asymptotic scaling of an

algorithm is, although it does not always tell us what the most expensive step for a specific

input might be. To apply Big O to the cost of our matrix update we will keep only the

fastest growing terms and then we will drop the prefactor of those terms, so the Big O of

Equation (1.30) becomes O (m3). This description of Big O is far from complete, but should

help the reader for the remainder of this document and hopefully it captures the informal

way in which Big O is actually used within the electronic structure community.

1.3.3 Relative Cost of Electronic Structure Methods

While post Hartree-Fock methods can offer significant improvement in the energy and wave-

function, they do have their downsides. The time to apply these corrections (with the

exception of exact methods which grow as O (n!)) at best grows as large polynomials with

an increase in either the number of electrons treated or as the size of the basis set is in-

creased. For a large enough system these methods require anywhere from slightly more

computer time, than Hartree-Fock, to what might as well be an infinite amount of computer

time to compute. In fact Hartree-Fock itself is formally O (n4), although in practice, for

three dimensional systems and accurate basis sets, approximations allow for calculations on

2 Computer scientist may object that what we are going to call Big O should really be called Big Θ
notation, but unfortunately the use of Big O is so well established in many fields that trying to switch to
more formal notation would likely be more confusing than helpful.
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Table 1.3: The formal asymptotic computational complexity of commonly used electronic
structure methods with respect to the number of particles.[11]

MP2 O (n5)
CCSD O (n6)

CCSD(T) O (n7)
CCSDT O (n8)

CCSDT(Q) O (n9)

large molecules that are dominated by a high-prefactor O (n2) step. The formal cost of some

of the most commonly used corrections to Hartree-Fock are listed in Table 1.3

One cost that all of the above methods share is the O (n5) integral transformation of the four-

center two-electron integrals from the atomic orbital space to the molecular orbital space.

This step shown in Equation (1.32), while only a computational bottleneck for MP2, is

expensive and deserves mentioning. Upon first glance, it may appear that the transformation

to molecular orbital integrals is O (n8)

(ia|jb) =
∑
µνρσ

CµiCνa(µν|ρσ)CρjCσb, (1.32)

where C is the coefficient matrix that describes the molecular orbitals in terms of the atomic

orbital functions. But it is possible to rearrange the sums and use temporary storage to

reduce this cost to four O (n5) operations:

(µν|ρb) =
∑
σ

(µν|ρσ)Cσb

(µν|jb) =
∑
ρ

(µν|ρb)Cρj

(µa|jb) =
∑
ν

Cνa(µν|jb)

(ia|jb) =
∑
µ

Cµi(µa|jb).

(1.33)
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Some methods also require the more costly transform that generates the (ab|cd) integrals,3

although it has the same O (n5) complexity —notice the imprecise nature of Big O nota-

tion and how it can only be used to compare methods with different scaling. The integral

transformation of Equation (1.33) is almost always the first step for any post Hartree-Fock

calculation and since it is shared among many methods the next section will investigate a

commonly used approximation that reduces the time required to compute these integrals,

but does not change their scaling.

1.4 Density Fitting

The previous sections contain all of the information needed to compute accurate electronic

energies and wavefunctions, but they make no mention about the how to compute them

efficiently. In this section, we will discuss one approximation that while not new, has recently

seen rapid adoption for post Hartree-Fock methods and some adoption for Hartree-Fock

(although the benefits are less pronounced). This approximation at the most basic level

takes the integrals of the type:

(µν|ρσ) =

∫∫
φ∗µ(r1)φν(r1)φ∗ρ(r2)φσ(r2)

r12

dr1dr2, (1.34)

and asks the question: can the product of terms for a single particle (think r1) be expressed

not as a product of functions, but as a linear combination of one particle functions. More

precisely is the following approximation a good one:

φ∗µ(r1)φν(r1) ≈
∑
X

Cµν
X φX(r1)? (1.35)

3Since the size of the virtual space is almost always greater that M
2 these integrals are more expensive in

absolute terms
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The answer of course will depend on many things such as how many X are need for suf-

ficient accuracy, the form of the {φX}, and how difficult is it to solve for the Cµν
X co-

efficients. Too attempt to solve these equations we might try projecting on the left by∫∫
φY (r2)M(r1, r2)dr1dr2 :

∫∫
φY (r2)M(r1, r2)φ∗µ(r1)φν(r1)dr1dr2 =

∑
X

Cµν
X

∫∫
φY (r2)M(r1, r2)φX(r2)dr1dr2

(1.36)

(Y |M|µν) =
∑
X

Cµν
X (Y |M|X) (1.37)

where Equation (1.37) is a concise short hand for these integrals and M is some positive

definite operator, usually 1
r12

. Realizing then that Equation (1.37) is a system of equations

then it can be solved by inverting the matrix MY,X = (Y |M|X) and using M−1 to solve for

the Cµν
X coefficients:

Cµν
X =

∑
Y

M−1
Y,X(Y |M|µν). (1.38)

Once these coefficients have been determined the integral from Equation (1.34) can be ap-

proximated:

(µν|ρσ) ≈
∑
XY

Cµnu
X Cρσ

Y

∫∫
φX(r1)φY (r2)

r12

dr1r2 (1.39)

(µν|ρσ) ≈ Cµν
X (X|Y )Cρσ

Y , (1.40)

where M(r1, r2) ≡ 1
r12

and in Equation (1.40) the summation over X and Y is assumed.

Now that we have an approximation for (µν|ρσ) that splits particles 1 and 2 we will see

how it helps with equation Equation (1.33), assuming that the number of X is linear in the
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number of particles in the calculation:

C
′µa
X = C

′µν
X Cνa O

(
n4
)

(1.41)

C
′ia
X = CµiC

′µa
X O

(
n4
)

(1.42)

Bia
Y = (Y |X)C

′ia
X O

(
n4
)

(1.43)

(ia|jb) ≈ Bia
Y C

′jb
Y O

(
n5
)

, (1.44)

where C′ is the coefficients from Equation (1.38), unfortunately C is often used for the fitting

coefficients as well as the molecular orbital coefficients in the literature. Equations (1.41)

to (1.44) take a process that would have four expensive O (n5) steps and approximates

it using an approach that only has one O (n5) step. This is also an example where Big

O notation fails to capture the true cost of the operations; due to the nature of modern

computer architectures Equation (1.44) is typically more efficient than any of the O (n5)

steps in Equation (1.33).

As the title of this section suggests, it this type of factorization is often called density fitting,

but sometimes it is abbreviated RI after resolution of the identity. Density fitting plays an

important role in all of the remaining chapters, and a more in-depth discussion of it along

with many historical references is given in Chapter 3

1.5 LCAO Electronic Structure by Analogy

To make what I think is a useful analogy for non-chemists we will compare electronic structure

theory to the bust of President Obama in Figure 1.4. Let us think of Figure 1.4 as a good

approximation for President Obama himself. In that sense, then we can think of the bust as

being Φ̃ or the approximation to President Obama. For this analogy to work, it is important
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Figure 1.4: Bust of the 44th President of the United States.[13]

to know how this bust was made. This bust of the former President was constructed not by

a skilled sculptor but instead is a 3D printed bust where the 3D model was created using

the light and camera array in Figure 1.5. At this point you —the reader— are probably

asking yourself what could this possibly have to do with electronic structure and why are we

comparing the bust to Φ̃. Well dear reader we are going to potentially over do an analogy

(really the only right way to do analogies) and compare the construction of this bust to the

picture we have painted of approximations within electronic structure theory all the way

down to the deepest of levels. As I have already stated let us think of the bust as Φ̃ and

then outline a list of all the other comparisons: section.

• The 3D model for the bust is made of combinations of pictures much like Φ̃ ≈∑
k Ck

∣∣Φ̄k

〉
where each

∣∣Φ̄k

〉
is a single Slater determinant. This means in our analogy

a Slater determinant must be similar to one 2D picture. This is a nice idea in the sense

that each determinant captures some low dimensional slice of the behavior of the true

wavefunction, a picture captures a 2D slice of some 3D object.
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Figure 1.5: Array of lights and cameras used to capture the 3D information of President
Obama’s face. That information was then used to create the bust in Figure 1.4 (taken by
Pete Souza).[14]
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• A Slater determinant must be constructed using some basis though, in our case this is

usually atomic like orbitals since we work in the LCAO framework. Similarly, a digital

pictures can be though of as being represented by a collection of pixels. Just like how

Slater determinants get more accurate as the number of basis functions increase, so

too pictures become a more faithful representation of reality as the number of pixels

used in their representation increases.

• Finally, one detail which I neglected to mention earlier in this section is that usu-

ally those atomic functions that we use to form our basis sets are not truly atomic

functions, for technical reasons it is difficult to integrate atomic functions so they are

approximated as a linear combination of Gaussian functions. Eerily pixels are also

not actually little specks of pure color, but instead the color of each pixel is generated

based on a combination of a red, a green, and a blue light (at least for RGB monitors,

also interestingly at least circa 2018 digital cameras actually mainly detect these three

colors). So the final part of our analogy is that our atomic basis functions are actually

approximated just like the color of each pixel in an image is really a combination of

three simple colors.

The remainder of this section will discuss the last two analogies in greater detail.

1.5.1 Atomic Orbital Functions are Like Pixels

Let us start with a regular 2D picture of President Obama given in Figure 1.6. This portrait

of President Obama is made up of 340500 pixels (500× 681) and it does a reasonably good

job of representing the President, but Figure 1.7 and Figure 1.8 show that if too few pixels

are used then important information is lost and we can imagine that a bust made from

pictures of their quality would be a poor approximation indeed. Very similar to how too few
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Figure 1.6: An official portrait of the 44th President of the United States.[15]

Figure 1.7: The portrait from Figure 1.6 compared to one using only 3400 pixels (50× 68).
At this point I think that it is still possible to tell who is in the picture on the right, but
clearly a significant amount of detail has been lost.
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Figure 1.8: The portrait from Figure 1.6 compared to one using only 140 pixels (10 × 14).
At this point it is really impossible to tell what this is a picture of except maybe to suggest
it might be a representation of a person.

pixels leads to a very approximate representation of an exact 2D slice of President Obama’s

face, using too few atomic orbitals to expand our Slater determinants leads to a poor and

only qualitative description of our wavefunction. Notice for example, how in Figure 1.3 the

smallest basis (aug-cc-pVDZ) is noticeably worse for both Hartree-Fock and MP2 than the

other larger basis sets. It is only by increasing the size of the atomic orbital basis that we

can obtain accurate approximations to our wavefunctions.

1.5.2 Gaussian Functions are Like RGB Channels

As was briefly mentioned not all Atomic orbitals are created equally, due to the fact that in-

tegrals for the functions that mirror the solutions to the hydrogen atom are hard to compute.

In fact, most calculations today are undertaken by approximating these functions as a sum

of Gaussians. This approximation is not unlike how RGB subpixels are used to create colors
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Figure 1.9: Representation of Figure 1.6 using only 2 shades for each of color channels in
each pixel leading to 8 unique colors.

in image pixels. And just like with an image, where if too few shades of red, green, and blue

are available the colors suffer, if the sum over Gaussians is not a good representation for

the desired atomic orbital the calculation accuracy will suffer. Figure 1.9 and Figure 1.10

show what happens to our presidential portrait when too few colors are used to represent

each pixel. Similarly in LCAO calculations if each atomic orbital is not sufficiently accurate

then accuracy of the calculation will suffer. A similar effect can be seen in Figure 1.2 where

the basis sets without diffuse functions not only require more functions to achieve a given

level of accuracy than the ones with the diffuse functions, but also converge to the incorrect

limit. This last point is slightly more in line with the idea that a certain color channel was

removed from our subpixel array but the other channels have a sufficient number of shades.

Let us say that we just did not have a blue subpixel, then colors that had a significant frac-

tion of blue in them would be very poorly represented, similarly in the hydrogen anion the

second electron is very weakly held and likely has a significant probability of being found far
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Figure 1.10: Representation of Figure 1.6 using only 4 shades for each of color channels in
each pixel leading to 64 unique colors.

away from the nucleus, for this reason it is necessary to include diffuse functions that have

significant tails far away from the nucleus as well. Just like how our representation of say

purple would suffer without a blue subpixel, so does our representation of this weakly held

electron suffer without the long range diffuse functions.

Putting it all together we see that to make the bust of Figure 1.4 we needed high resolution

pictures, and although the bust is colorless, we can imagine that if the bust was to have color

we would have needed each picture to also capture a significant amount of RGB information

such that the real colors were closely approximated. This is similar to how we construct

accurate wavefunction using perturbation theory or coupled cluster theory. All of the post

Hartree-Fock methods depend on first obtaining a good basis of Slater determinant for

expansion of our wavefunction. But for that basis to lead to high accuracy we must include

an ample number of Gaussian basis functions and those functions that we include must

have both the correct structure and must accurately represent the atomic functions they are
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approximating. Just as the presidential bust would suffer if too few images had been used or

if those images had been of poor quality, so to will our wavefunction suffer if it is expanded

in too few Slater determinants or if the quality of those determinants is not high enough.

Hopefully this analogy has been useful for both experts and non-experts alike. I personally

find that analogies like this help us not only to understand what is happening in a complicated

field such as electronic structure, but can also help lead us to new ways of thinking about

things and potentially maybe even lead to new ideas. Also it is easy to get bogged down in

the details of our complicated field and sometimes analogies like this can help by providing

a mental map of where all the approximations lie and provide a nice visual example of

how approximations at one stage of a calculation can effect the steps further down in the

hierarchy.

1.6 Conclusions

The main purpose of this introduction has been to introduce the framework within which we

compute electronic structure for well behaved molecules, where Φ̃ = Φ̄ is a reasonable but

insufficient approximation. This section has been rather concise but that is largely because

a correct treatment of this topic would require your author to reproduce the tome Molecular

Electronic-Structure Theory [9], which incidentally is the source I recommend if for both a

broad and in-depth coverage of the majority of topics in electronic structure. To end this

section we will simply summarize the remaining chapters:

1. Chapter 2 discusses a novel technique for the factorization of blocks of the atomic

orbital integrals used to make the computation of the exchange contribution to the

Fock matrix, F, more efficient
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2. Chapter 3 discusses a similar idea for the linear scaling exchange, except instead of our

factorization from Chapter 2 it uses local density fitting

3. Chapter 4 discusses a massively parallel linear scaling implementation of MP2 that

makes use of pair natural orbitals

4. Finally, Chapter 5 presents a summary of the work and ties it all together.

These chapters each touch on how to take the ideas from this section and make further

approximations to them in order to decrease the time it takes to compute energies and

wavefunctions for Hartree-Fock and MP2. They are each self-contained and can be read

independently of each other.



Chapter 2

Clustered Low Rank Tensor

Approximation

Adapted with permission from C.A. Lewis, J.A. Calvin, and E. F. Valeev, J.

Chem. Theory Comput., 2016, 12 (12), pp 5868–5880. Copyright 2016 American

Chemical Society.
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2.1 Introduction

Despite the exponential complexity of many-body quantum mechanics —a manifestation of

“the curse of dimensionality”— many important classes of problems, such as the electronic

structure in chemistry and materials science, have robust polynomial solutions that become

exact for some practical purposes.[16, 17, 18, 19, 20, 21] However, such solutions are lim-

ited by the high-order polynomial complexity in data and operations. For example, the

straightforward implementation of CCSD[22] —the coupled-cluster[23] model with 1-body

and 2-body correlations— has O (N6) operation and O (N4) data complexities. This is sig-

nificantly more expensive than the corresponding O (N4) and O (N2) complexities of hybrid

Kohn-Sham density functional theory (KS DFT) that dominates chemistry applications.

Thankfully, fast algorithms improve on these figures.

Fast numerical algorithms trade precision and/or small-N cost for improved asymptotic scal-

ing. A classic example is Strassen’s algorithm for matrix multiplication[24] that has a higher

operation count than the näıve algorithm for small matrices but is faster for large matrices,

namely O
(
N log2 7

)
vs. O (N3). The operation count of Strassen-based implementation of

CCSD is therefore O
(
N2 log2 7

)
≈ O (N5.6). While Strassen’s algorithm is formally exact,

typically fast algorithms trade-off precision: A notable example of particular importance to

the field of electronic structure is the Fast Multipole Method (FMM),[25, 26] which applies

an integral (e.g. Coulomb) operator in O (N) operations, instead of O (N2), for any finite

precision ε.

In molecular electronic structure, fast algorithms traditionally take advantage of the sparse

structure of operators and states. Such structure typically takes form of element or block

sparsity. For example, the one-electron density matrix is conjectured[27, 28, 29] to decay

exponentially in insulators when expressed in real space or in a localized, AO or Wannier,
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basis (for noninteracting electrons the exponential decay can be shown exactly[30]). This

result is key to fast density matrix formulation of one-particle theories and also rationalizes

the exponential decay of the “exact” (Hartree-Fock) exchange operator appearing in hybrid

DFT and many-body methods. Linear scaling methods based on direct density minimization

(i.e. avoiding solving for orbitals) have been demonstrated by multiple groups.[29, 31, 32, 33,

34, 35] While the element-sparsity-based strategy is appropriate for LCAO in small basis sets

and low-dimensional systems, the sparsity of the density matrix in three-dimensional systems

is remarkably low,[36, 37, 38] especially in realistic (triple- and higher-ζ) basis sets, that are

necessary for many-body methods and even hybrid DFT; e.g., the density matrix of a 32000-

molecule water cluster is only 83% sparse (!) even when expressed in a double-ζ basis.[38]

Similar conclusions can be drawn from the early attempts to develop practical many-body

methods solely by using sparsity of correlation operators in the AO basis.[39] It is clear that

the element sparsity alone is hardly sufficient for practical fast electronic structure. Another

strategy used in fast electronic structure methods exploits rank sparsity. For example, the

Coulomb operator, V̂ f(x) ≡
∫

dx f(x′)/|x − x′|, has a dense matrix representation due to

the slow decay of the integral kernel, but the rank of the off-diagonal blocks when expressed

in localized basis is low, due to the smoothness of the kernel; of course, this is the basis of

FMM.[25] The key lesson here is that while globally the Coulomb operator has no non-trivial

rank-sparsity, ranks of the off-diagonal blocks are low in its localized matrix representation.

Remarkably, similar local rank-sparsity is seen in other areas of electronic structure, not

merely as a direct consequence of the integral operator properties. For example, blocks

of many-body wave functions have low rank when expressed in localized basis; such rank-

sparsity is the foundation of fast many-body methods based on local pair-natural orbitals

(PNO)[40] recently demonstrated in linear-scaling form.[41, 42]

In this work we propose a practical approach to recovering element and rank sparsities
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(termed here data sparsity) using a general tensor format framework called Clustered Low-

Rank (CLR). Some existing approaches, such as PNO-based many-body methods, can be

viewed as a specialized application of CLR. However, we demonstrate in this paper that

CLR has powerful applications beyond this particular context.

Just as the motivation for the CLR format is familiar, the mathematical structure of the CLR

approach is related to the existing ideas in rank-structured matrix algebras, e.g. semisepara-

ble matrices [43], H-matrices[44, 45], H2-matrices[46, 47], and hierarchically semiseparable

matrices[48, 49]. These ideas have occurred in various forms for many decades, and interested

reader is referred to Ref. [43] for a long list of references; only a very brief recap is given here.

Most relevant to us is the connection of these matrix algebras with the rank-sparse matrices

arising in integral boundary problems, studied first by Rokhlin[50] and Hackbusch[51]. Later,

Tyrtyshnikov generalized this type of approximation to matrices arising in integral equations

via a method he calls the mosaic-skeleton approximation (MSA). While more general, MSA

still mandates that the integral kernels first satisfy a necessary set of conditions.[52] The

main tenet of MSA is that matrices fitting these conditions contain a non-overlapping block-

ing called a mosaic in which many of the blocks have reduced rank.[53, 54] Shortly after

Hackbusch premiered the H-matrix concept, the H stands for hierarchical, much like MSA,

approximations previously specific to certain integrals are cast into a general matrix frame-

work. The main difference between MSA and H-matrix is H-matrices use a hierarchical

block structure while MSA does not. In this regard CLR can be viewed as a refinement of

MSA for general tensor data, with domain-specific geometric prescriptions for blocking the

tensor dimensions; the lack of hierarchy is deemed important for compatibility with stan-

dard algorithms for matrix and tensor algebra in high-performance computing where tensor

blocks are distributed across regular cartesian grid of processors.

The rest of the paper is organized as follows: in Section 2.2 we will discuss the details of
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CLR, in Section 2.3 we discuss an application of CLR to density fitting approximation in

the context of the Hartree-Fock (exact) exchange (CLR-DF-K) evaluation, and in Section

4.6 we discuss our findings as well as future applications of CLR in electronic structure and

generally in numerical tensor computation.

2.2 Clustered Low Rank Approach

CLR may be thought of as a general-purpose tensor representation framework, which divides

a tensor into sub-blocks (tiles) that are stored in either low-rank or full-rank (dense) form.

For example, consider an order-k tensor T over ring R, with dimension sizes {n0, . . . nk−1}:1

T : x→ R, ∀x ≡ {x0 . . . xk−1}, xi ∈ [0, ni) ≡ {0, 1, ..ni − 1}, i ∈ [0, k), (2.1)

In other words, a tensor is a map from a k-dimensional integer index x in domain [0, n0)×

· · · × [0, nk−1) to a value in R. All possible values of tensor can be represented as an n0 by

n1 by ... nk−1 array. The elements of this array are indexed by k-dimensional indices x and

are denoted as Tx.

The CLR representation of tensor T is defined as follows:

1. Each dimension i of the index domain is tiled by dividing the integer interval [0, ni)

into νi nonoverlapping intervals, or tiles. Tiles are encoded by their boundaries δ
(i)
χ

as [δ
(i)
0 , δ

(i)
1 ), [δ

(i)
1 , δ

(i)
2 ), . . . [δ

(i)
νi , δ

(i)
νi+1), with δ

(i)
0 = 0 (to reduce complexity, Greek letters

will henceforth refer to tile quantities, and roman letters will refer to dimensions and

element quantities). Tiles in each dimension i are indexed by tile indices χ ∈ [0, νi)

1Without sacrificing generality, we only consider real-valued tensors (R ≡ R in Eq. (2.1)) and do not
distinguish between contravariant and covariant indices.
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and are denoted as τ
(i)
χ . β

(i)
χ denotes the size of tile χ in dimension i, β

(i)
χ ≡ τ

(i)
χ+1− τ

(i)
χ .

τ (i) ≡ {τ (i)
0 , . . . τ

(i)
νi−1} denotes the set of tiles for dimension i and will be termed its

tiling.

2. A tiling of the k-dimensional tensor domain is obtained as a tensor product of tilings

for each dimension, τ (0) ⊗ . . . τ (k−1). The k-dimensional tile index χ ≡ {χ0, . . . χk−1}

refers to the k-dimensional index interval τ
(0)
χ0 ⊗ · · · ⊗ τ

(k−1)
χk−1 . The tensor tile is the set

of tensor elements addressed by the element indices in tile χ. It can be viewed as a

k-dimensional array with dimensions {β(0)
χ0 . . . , β

(k−1)
χk−1 }.

3. Tensor tile Tχ is set to zero and not stored if shape predicate z(χ) evaluates to false.

In this work z(χ) is true if the per-tile-element Frobenius norm of Tχ exceeds model

threshold εsp (see Eq. (2.22)).

4. Each non-zero tensor block Tχ is compressed using an approximate low-rank tensor

decomposition, whose precision is determined by model threshold εlr.

It is evident from the above description that CLR is similar to H-matrices and MSA with

respect to the structure of the matrix representations. However, the choice of tiling, shape,

and low-rank decomposition schemes as well as the specific application chemical knowledge

differentiates these methods. In the following Sections, we will specialize CLR for a particular

set of tensors, but first a brief discussion of the design elements of CLR framework is in order.

• To maximize the computational savings from CLR the tensor indices must be ordered so

that the functions that are “near” each other in the Hilbert space have nearby indices.

In all applications in this paper this is possible by a priori ordering basis for each

dimension according to geometric positions of atomic orbital and localized molecular

orbital functions, using the k-means algorithm adapted to the atomistic context. (see
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Section 2.2.1 for details). The index clustering improves not only the extent of data

sparsity, but also is essential to maximize the data locality in the context of parallel

computing[55].

• The shape predicate defines the block-sparse structure of CLR matrices, dictating

whether a specific tile is kept and used in subsequent computation. In this work

the shape predicate is based on vector norms of tiles (or the norm estimates); however,

in electronic structure shape predicates are often imposed by the model and not deter-

mined by the actual tensor data. The imposed sparsity usually leads to reduced costs

by skipping work a priori, but can introduce uncontrolled or suboptimally-controlled

errors.

• The choice of tile compression methods must necessarily be problem-specific since the

low rank is a consequence of the physical properties of tensors. Since tensor rank is not

uniquely defined, there is no optimal decomposition for tensors, thus carefully-chosen

heuristics are important. Even for matrices, SVD is usually not the optimal choice due

to its high computational cost; rank-revealing decompositions are usually preferred in

practice.

• Another factor in the choice of decomposition is its suitability for use in algebraic

operations, where frequent recompressions will often be necessary. For example, for

matrices SVD provide optimal low-rank representation for a given accuracy, but usually

trading optimality for speed will be desired.

To demonstrate the utility of the CLR tensor format in practical applications, we applied

it to a reduced-complexity construction of the Hartree-Fock, or exact, exchange (usually la-

beled by K) using density fitting (DF-K) as an initial example. DF (also known as resolution

of the identity) technology reduces the computational cost of the Fock operator construc-
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tion by decreasing its prefactor, especially in triple- or higher-ζ basis sets. Yet, relative

to conventional methods for constructing the exchange matrix that requires O (N2) stor-

age and is straightforwardly evaluated in O (N) cost, DF-K has O (N3) storage and O (N4)

operation complexities. As we demonstrate here, CLR-based formulation of DF-K readily

outperforms DF-K already for small systems, all with robust control of precision. When

applied to medium-sized molecules with large basis sets CLR-DF-K also outperforms the

standard LinK algorithm[56], which is one of several well-known O (N) approaches to the

exchange build in LCAO representation[56, 57, 58, 59]. Although the apparent complexity

of CLR-DF-K for the largest systems considered here exceeds that of LinK, the CLR-DF-K

approach should be useful in the context of more advanced schemes for the exchange build

with the properly-linear complexity with the system size,[60, 61, 62, 63] as well as in the

context of reduced-scaling many-body methods such as coupled-cluster.[64, 65]

2.2.1 Basis Clustering

It is well recognized that clustering of basis functions helps to reveal the element and rank-

sparse structure of the data. In the context of “flat” (i.e. hierarchy-free) tensor data in

atomistic quantum mechanics this is usually achieved by locality-preserving basis function

reordering using space-filling curves. [66, 67] In this work we use a much simpler approach to

clustering based on the standard k-means algorithms[68, 69, 70] augmented with additional

heuristics for the atomistic context.

Given a set of Cartesian coordinates {r1, r2, . . . , rn} (either atomic coordinates when cluster-

ing atoms/AOs, or the expectation values of the position operator r̂ when clustering localized
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MOs) and the target number of clusters m, k-means seeks clusters that minimize

m∑
i=1

∑
r∈Xi

||r−Ri||2, (2.2)

where Xi represents the ith cluster (in our case, cluster is a group of atoms or orbitals) and

Ri is the centroid of cluster Xi. It is known that finding the global minimum for a given

number of clusters is NP hard, but standard k-means algorithms[68] can be used to find

acceptable clusterings relatively quickly. In practice k-means is both accurate and fast, and

the clustering never takes a significant portion of the computation cost; see Ref. [71] for a

deeper analysis of k-means.

The clusters of atoms are seeded using the k-means++ algorithm[69], except the hydrogen

atoms are always placed in the same cluster as its nearest heavy atom. Clusters are then

optimized with the standard k-means in which the cluster center is defined by its center of

mass rather than the centroid. We stop when the center of mass of each clusters reaches

a (local) minima, or after 100 iterations. The procedure is repeated 50 times with random

starting seeds (note that the use of pseudo-random number generators allows to ensure

reproducibility of clustering, if so desired). From these 50 clusterings we use the one that

has the lowest value for the objective function, Eq. (2.2). The clusters of atoms are then

used to determine the clusters of AOs.

To determine the clusters of molecular orbitals, we initially seed our clusters with random

orbital centers and perform 5 iterations of standard k-means. Because MO clustering must

happen on every single SCF iteration we use a less robust initialization procedure than

in the atom clustering in order to save time. Initializing clusters with random centers is

computationally efficient, but may lead to less well balanced clusters than the k-means++

algorithm.
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2.2.2 Block Sparsity in CLR Tensors

The DF-K method involves at most order-3 tensors, e.g. the so-called three-center two-

electron Coulomb integral:

(κ|µν) ≡
∫∫

φκ(r1)
1

r12

φ∗µ(r2)φν(r2) dr1dr2. (2.3)

To reduce the computational complexity of the exchange term we seek to exploit both the

data sparsity of this tensor and tensors derived from it. Due to the local nature of the

atomic orbitals this tensor has only O (N2) nonzero tiles. To avoid computing zero tiles it

is mandatory to be able to estimate the tile norms accurately. For the Coulomb 3-index

tensor (2.3) in an AO basis, blocks can be readily screened by using AO shell-wise integral

estimators, e.g. ref [72]. An extension to atom and multi-atom blocks is straightforward.

Tile-norm estimates define the sparsity of computed tensors (see Section 2.2.4 for details).

For simplicity, we did not skip the computation of any blocks a priori, but did avoid com-

putation of negligibly-small shell sets whose Schwartz estimate of Frobenius norm is below

10−12. Tensor blocks were removed if the per-element Frobenius norm of the block is below

a predetermined threshold, εsp.

2.2.3 Low-Rank Block Representation and Arithmetic

For each block of a CLR tensor an attempt is made to compress it to a low-rank matrix form.

The choice to represent the tensors as matrices internally is largely due to the existence of

robust and efficient low-rank factorizations for matrices; investigation of practical tensor

factorizations is left to future work.2

2 As of April 13th, 2018 we have not attempted to use tensor factorization within the CLR framework.
Current work in the group on tensor factorizations may soon make this possible though.



44 Chapter 2. Clustered Low Rank Tensor Approximation

Representing a tensor as matrix is commonly known as matricization, or flattening. For the

order-3 tensors in density fitting the auxiliary basis index is always used as either a row or

column index of the matrix while the other two indices, either both AO or one AO and one

MO, are fused to create the remaining index. Using this approach a tile of the three center

two electron integrals can be represented in low rank form:

(Q|µν) =
∑
r

SQ,rTµν,r. (2.4)

Before discussing multiplication and addition of CLR matrices, we must first consider the

algebra of tiles in the low-rank representation.

Low-Rank Matrix Approximation

Matrix Ar ∈ Rn×m has rank r ≤ min (n,m) if it can be represented exactly as a sum of outer

products of no fewer than r linearly independent vectors

Ar =
r∑
i=1

sAi
(
tAi
)†

(2.5)

≡ SA
(
TA
)†

, (2.6)

where SA ≡
[
sA1 , s

A
2 , . . . s

A
r

]
is a matrix of column vectors sAi and, similarly, TA ≡

[
tA1 , t

A
2 , . . . t

A
r

]
.

We seek to approximate a full-rank matrix A with a rank-r matrix Ar which satisfies

||A−Ar||F ≤ εlr (2.7)

and permits efficient arithmetic in decomposed form. In this work, we approximate matrices

using the rank-revealing QR decomposition (RRQR) since it is more efficient than SVD

and approximates the SVD (optimal) ranks well.[73, 74, 75] The column-pivoted RRQR
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decomposition of an m× n matrix A (we assume without loss of generality that m ≤ n) is

represented as

AP = QR, (2.8)

where P is an n× n permutation matrix, Q is an m×m unitary matrix, and R is an m× n

upper-triangular matrix. Selecting first r columns of matrix R partitions it into

R ≡

R11 R12

0 R22

 , (2.9)

where R11 is an r × r upper-triangular matrix, R12 is an r × (n− r) matrix, and R22 is an

(m− r)× (n− r) upper-triangular matrix. The maximum singular value of R22 is an upper

bound to the r+ 1-st singular value of A; furthermore it is easy to come up with a practical

bound that only requires vector (Frobenius) norm computation:

σr+1(A) ≤ ||R22||2 ≤ ||R22||F . (2.10)

Thus to estimate the rank of A for given precision εlr (Eq. (2.7)) we compute full R (using

the DGEQP3 LAPACK function) and numerically find r such that the ||Rr
22||F ≤ εlr. While

this method is not optimal, it is more efficient than SVD.

A given block A is stored in low-rank form only if the total storage of SA and TA is below

that of A. For example, a square m × m matrix A is stored in low-rank form if its rank

r < m
2

.
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Multiplication of Low-Rank Matrices

Clearly, C = AB can be directly computed in low-rank form C = SC
(
TC
)†

using low-rank

representations of A and B with rank min(rank(A), rank(B)):

SC
(
TC
)†

=SA
(
TA
)†

SB
(
TB
)†

(2.11)

=


SA
(((

TA
)†

SB
) (

TB
)†)

rA < rB(
SA
((

TA
)†

SB
)) (

TB
)†

rA ≥ rB

, (2.12)

in which the order of evaluation and hence the definitions of SC and TC are specified by the

parentheses. Note that the multiplication never increases matrix rank.

The special cases where either A or B is full rank are also straightforward.

Addition of Low-Rank Matrices

Unlike the multiplication, addition of low-rank matrices may increase rank as can be imme-

diately seen:

C =SA
(
TA
)†

+ SB
(
TB
)†

=SA+B
(
TA+B

)†
(2.13)

where SA+B =
[
SA,SB

]
and TA+B =

[
TA,TB

]
. The maximum rank of C in (2.13) is the

sum of the ranks of A and B if columns of SA+B and/or TA+B are linearly independent.

Of course it is often the case that the ranks of these matrices can be reduced further with

controlled error. We can reduce the ranks of SA+B and TA+B as follows. Starting with QR
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decompositions of these matrices,

SA+B = QSRS (2.14)

TA+B = QTRT, (2.15)

Eq. (2.13) is rewritten

C = QSRS
(
RT
)† (

QT
)†

, (2.16)

Intermediate M ≡ RS
(
RT
)†

is then RRQR decomposed resulting in reduced rank r ≤

rank(A) + rank(B).

M = Q̃R̃
εlr≈ Q̃rR̃r (2.17)

where for Q̃ and R̃ the tilde indicates the use of RRQR as opposed to traditional QR.

The final result for the low-rank form of C is

C =
(
QSQ̃r

)(
R̃r

(
QT
)†) ≡ SC

(
TC
)†

, (2.18)

where

SC = QSQ̃r (2.19)(
TC
)†

= R̃r

(
QT
)†
. (2.20)

if after compression rank(C) ≥ fullrank
2

then C is converted to its full rank representation

since no space savings is available.
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When performing addition if exactly one of A or B is in the full rank representation, the

addition is efficiently expressed as a single generalized matrix-matrix multiplication (GEMM)

available as part of a standard-compliant implementation of BLAS. For example if A is low

rank and B is full rank the addition proceed as follows:

C = SA
(
TA
)†

+ B, (2.21)

where C is in its full rank representation. The use of GEMM avoids the storage overhead of

constructing a temporary full-rank form of A.

2.2.4 Block-Sparse Arithmetic with CLR Tensors

An arithmetic operation on matrices/tensors composed of CLR-format blocks can be per-

formed as a standard operations on dense matrices/tensors with standard block operations

replaced by their CLR specializations. For the sake of computational efficiency, however, it is

necessary to screen arithmetic expressions involving CLR-format blocks to avoid laboriously

computing blocks that have small norms. Therefore we represent CLR matrices/tensors as

their block-sparse counterparts, in which only some blocks are deemed to have non-zero

norms; the surviving blocks are represented using CLR format. This allows us to exploit

both block-sparsity and block-rank-sparsities. In the limit εlr → 0, CLR matrices/tensors

become their ordinary block-sparse counterparts. Here we describe how the block-sparse

structure of CLR tensors is utilized in arithmetic operations.

Block Aξ of CLR tensor A that is the result of an arithmetic operation is nonzero (hence,

it will be computed) if its Frobenius norm satisfies

‖Aξ‖F ≥ εsp volume Aξ (2.22)
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where εsp is a non-negative threshold, and volume Aξ is the block volume, i.e. the number of

elements in the block. Because the volume of each block within a tensor varies with the tiling

details, the choice of a basis, etc., taking into account the block area defines the sparsity in

a manner that is more robust than the Frobenius norm alone.

The sub-multiplicative property of the Frobenius norm is utilized to estimate the norm in

addition and contraction operations, e.g. for addition

‖Aξ + Bξ‖F ≤ ‖Aξ‖F + ‖Bξ‖F (2.23)

the upper bound provided by the RHS is used to estimate whether computing the block is

warranted according to (2.22). Similarly, the norm of a contraction of two tensor blocks is

bounded as

‖Aξi...ξk...Bξk...ξj ...‖F

≤‖Aξi...ξl...‖F‖Bξl...ξj ...‖F

, (2.24)

where ξi . . . and ξj . . . are the outer block indices of the left- and right-hand tensors, respec-

tively, and ξk . . . is the set of block summation indices. Eqs. (2.23), and (2.24) are combined

to estimate the norm of the result blocks in a contraction operations:

‖Cξi...ξj ...‖ ≤
∑
k

‖Aξi...ξk...‖F‖Bξk...ξj ...‖F (2.25)

where Ci...j... is equal to
∑

k... Ai...k...Bk...j.... Note that we do not screen individual contri-

butions to the result blocks, although others have done so.[76] In our case all contributions

are computed when the estimated result block norm satisfies Eq. (2.22). Additionally, we

avoid explicit computation of norms of low-rank blocks by using the multiplicative property
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of Frobenius norm:

‖Aξ‖ ≈ ‖SA
ξ (TA

ξ )†‖F ≤ ‖SA
ξ ‖F‖TA

ξ ‖F. (2.26)

It is clear that computing norm estimates in complex expressions using upper bounds can

quickly lead to poor norm estimates. Therefore, it is sometimes necessary to recompute the

block norms and/or truncate zero blocks that are the result of computation. Similarly, after

a CLR tensor contraction or addition operation it is possible that the rank of certain blocks

are overestimated. Therefore in this work we recompute block norms and recompress after

a sequence of tensor contractions to minimize the ranks and reduce the storage whenever

beneficial.

2.3 Application: CLR-based Density Fitting Exchange

2.3.1 Density Fitting and Hartree-Fock Method

Density fitting (also known as the resolution-of-the-identity)[77, 78, 79, 80, 81] in the context

of electronic structure involves fitting the electron density or more often any product of (one-

electron) functions as a linear combination of basis functions from a fixed (auxiliary) basis

set to minimize some functional. This allows us to compute standard 4-center 2-electron
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integrals in terms of 2- and 3-center integrals:

(µν|ρσ) ≈
∑
QP

EQ,µν
(
V−1

)
Q,P

EP,ρσ (2.27)

=
∑
X

BX,µνBX,ρσ, (2.28)

BX,µν ≡
∑
Q

EQ,µν
(
V−1/2

)
Q,X

(2.29)

where EQ,µν ≡ (Q|µν) (defined in Eq. (2.3)) and VP,Q ≡ (P |Q) are the three- and two-center

Coulomb integrals. In practice, instead of V−1/2 we use the inverse of Cholesky decompo-

sition of V; this is more efficient than computing the square root inverse and incidentally

leads to better CLR compression in B.

There are many different strategies for DF-K, here we use the standard MO-based approach[82]

using Boys-Foster localized MOs[83], rather than the density-based (AO-only) algorithm:

1. Compute and store tensor B defined in Eq. (2.29).

2. Compute an intermediate tensor W with one index transformed from the AO to MO

space as follows

WX,µi =
∑
σ

BX,µσCσi (2.30)

where the column vectors of C are the occupied molecular orbitals.

3. Form the exchange contribution to the Fock matrix

Kµν =
∑
Xi

WX,µiWX,νi. (2.31)

The two most expensive steps in computing the exchange matrix, for a given SCF iteration,
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are the formations of W and K, each of which requires approximately 2Nn2o floating point

operations where N is the size of the auxiliary basis, n is the size of regular basis, and o is

the number of occupied orbitals in the system. The occ-RI algorithm can improve the times

for K by computing only the occupied contribution to the exchange matrix[84], but was not

used in this work.

Although the use of density fitting for Hartree-Fock exchange has the same formal complexity

as the conventional Fock operator construction, namely O (N4), great increase in efficiency

is observe for small and medium-size systems in large orbital basis (triple-ζ and larger)

due to avoiding the relatively expensive and repeated (once-per-iteration) computation of 4-

center integrals. These advantages are exacerbated by the poor suitability of highly-irregular

integral kernels to modern wide-SIMD architectures; in contrast, the dense matrix arithmetic

of Eq. (2.29) can attain closer to peak performance on most modern architectures.

Despite the cost advantages of DF, its cubic storage requirements and quartic cost prohibit di-

rect application to large systems. Local density fitting reduces the storage and computational

complexity of density fitting by expanding localized products in terms of auxiliary basis func-

tions that are “nearby” in some sense (geometric or otherwise)[61, 62, 85, 86, 87, 88, 89, 90]

Local DF approximations can be difficult to make robust and accurate, thus our hope for

the CLR-based DF-K algorithm was to serve as a black-box reduced-scaling density fitting

methodology without ad hoc imposition of local density fitting approximations.

2.3.2 Linear Scaling Exchange

In addition to comparison against the traditional O (N4) DF-K, we compared timings and

accuracy with the O (N) LinK algorithm[56]. LinK achieves linear scaling by neglecting

individual shell contributions to the Fock matrix smaller than threshold ε using standard
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Schwarz bounds for the Coulomb integrals[91] and careful reformulation of shell loop nests

to avoid the O (N2) overhead of loop iterations in the conventional shell-pair-list approach.

The LinK algorithm was implemented in a modified version of the Libint library’s four-center

direct Hartree-Fock test program.[92] For simplicity, our implementation uses a O (N2) pre-

screening step, but even though it constitutes a minuscule fraction of the total time, we

exclude it from the reported timings. The linear computational complexity was confirmed

by performing exchange matrix computation for n-alkanes C50H102 and C100H202 in def2-SVP

and cc-pVDZ basis sets; the estimated computational complexity of the algorithm is N1.2.

2.3.3 Results

Computational Details

The CLR-DF-K method was implemented with the help of the open-source TiledArray

parallel tensor framework[93]. We tested the performance and precision of the CLR-DF-

K method by computing Hartree-Fock energies of quasi-one-dimensional (n-alkanes) and

3-D (water clusters) systems. Reference calculations for CLR-DF-K were computed using

εsp = 10−16 and εlr = 0. For non-reference calculations in compact basis sets εsp = 10−11

and in diffuse basis sets εsp = 10−12. Precision of the HF orbitals was further tested by

computing Hartree-Fock dipole moments (see Figures S1 and S2 in Supporting Information)

and canonical second order Møller-Plesset (MP2) energies for select systems.

Cartesian geometries for n-alkanes were generated using the Open Babel toolbox.[94]

Cartesian coordinates for the water clusters were taken from ErgoSCF’s public repository;[95]

these clusters are random snapshots of molecular dynamics trajectories and are representa-

tive of liquid water structure at ambient conditions.[36]

Dunning’s correlation consistent basis sets and the matching auxiliary basis sets were utilized
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throughout this work.[8, 96] We also tested the def2-SVP[97] and cc-pVDZ-F12[98] basis sets.

The AO and MO dimensions were tiled as follows:

• Orbital AO basis was tiled naturally to contain one monomer (H2O molecule or CH2/3

unit) per tile; such tiling arises automatically when our k-means-based clustering is

applied to (H2O)n / CnH2n+2 with the target number of clusters set to n.

• The auxiliary/density-fitting AO basis was tiled via k-means to produce half as many

tiles as the orbital AO basis;

• The target number of tiles in the occupied MOs for (H2O)n / CnH2n+2 was set to n.

The details of the k-means-based clustering were given in Section 2.2.1.

To simplify the timing comparisons the low-rank addition (Section 2.2.3) was limited to the

computation of the B tensor (Eq. (2.29)); the only exception was the parallel scaling tests,

in which the low-rank addition was used throughout.

All computations were carried out on Virginia Tech Advanced Research Computing’s NewRiver

cluster where each node has 2 Intel Xeon E5-2680v3 2.5ghz CPUs, for a total of 24 cores

and are available with either 128 GB or 512 GB of memory. Each node has a theoretical

peak performance of 960 Gflops/s with a measured peak of 780 Gflops/s in Intel MKL’s

multithreaded implementation of DGEMM.

Our implementation supports massive distributed memory parallelism in the Fock matrix

build due to the use of the TiledArray framework.[93, 99] For technical reasons, two

versions of TiledArray used in our work. For the most faithful comparison against the

serial LinK method implementation we used a copy of TiledArray that does not use the

Intel Thread Building Blocks (TBB) runtime. The rest of the computations (parallel scaling

and block-size testing) used Intel TBB for task scheduling as it yields higher parallel efficiency
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on modern multicore processors. The default configuration of TiledArray enables the use

of Intel TBB if it is available.

The single threaded build of the CLR-DF-K code (not using TBB) was compiled with gcc

5.2.0 using single threaded Intel MKL 11.2.3 for linear algebra. The LinK test code was

compiled using Intel icpc version 15.0.3. For parallel scaling and block size tests the CLR-

DF-K code was compiled using icpc version 15.0.3 with single threaded Intel MKL 11.2.3 for

linear algebra, Intel TBB 4.3.5 for task based parallelism, and the Intel impi 5.0 library for

node based parallelism.

Impact on Storage Requirements of DF-K

To demonstrate the storage reduction attained by the CLR representation for the key order-3

tensors in the density-fitting-based exchange build, we reported the memory footprint of the

B (compressed) and W (not compressed) tensors as a function of the orbital basis set size

and the low-rank threshold εlr in Figs. 2.1, 2.2, and 2.3.

As expected, even without the low-rank compression (εlr=0), the observed scaling of storage

B with compact (non-diffuse) basis sets is better than O (N3) of the fully-dense tensor

representation due to savings from the block-sparsity (εsp > 0).3 Even for the 3D systems

the observed scaling is only slightly worse than the expectedO (N2) asymptote. For example,

in cc-pVTZ basis the use of block-sparsity alone results in 36.7% storage savings for (H2O)32;

for linear systems the savings are even more dramatic, e.g. 82.3% for C50H102. In diffuse

basis sets the savings from sparsity are greatly reduced and the observed scaling of storage is

close to cubic. Note that the onset of sparsity with a diffuse basis set is artificially protracted

since the use of atom-based (i.e. not shell-based) clustering causes each AO tile to contain

3 Note that due to the lack of support for permutational symmetry in TiledArray (the feature is under
current development) the storage size for B is twice what it should be in practice.
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at least one diffuse orbital; alternative clusterings that group diffuse shells together can help

to increase the amount of sparsity but are not considered here.

The use of low-rank compression (εlr > 0) together with the block-sparsity further reduces

the storage for tensor B in CLR representation, especially with compact bases. E.g., with

the cc-pVTZ basis the storage savings of εlr = 10−6 over εlr = 0 (block-sparsity alone) were

85.6% for (H2O)32 and 83.2% for C50H102. For the largest 1-D and 3-D systems considered the

storage savings from the low-rank compression are more than an order of magnitude relative

to the block-sparse (εlr = 0) representation. Furthermore, with the low-rank compression

the observed storage complexity is significantly better than quadratic in compact basis sets.

The benefit of the low-rank compression in CLR is also noticeable with diffuse basis sets,

where it allows nearly quadratic scaling in 3D systems.

Note that we did not utilize compression in W because its memory footprint is much smaller

than that of B by a factor of n
o

where n is the number of AOs and o is the number of occupied

MOs. This is because for triple-zeta and larger basis sets the storage for W is completely

negligible compared to B in the traditional dense representation. However, the low-rank

compression of B in compact bases is so efficient that even in cc-pVTZ basis the CLR

footprint of B becomes smaller than the storage needed for block-sparse uncompressed W.

This result suggests that the CLR approach can help improve the traditional density-fitting

formulations which often trade-off speed for space by recomputing three-index 2-e integrals

every SCF iteration. In the CLR-based algorithm it appears possible to reduce the memory

footprint of B to where it can be stored in memory for systems with hundreds of atoms and

thus avoid the need to use the integral-direct formulation (note that B does not depend on

orbitals, hence can be computed once and used every SCF iteration). It is however clear

that compression of W via rounded addition will be necessary to treat even larger systems;

for simplicity we do not investigate this approach here as it would complicate the analysis
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Figure 2.1: Variation of the order-3 tensor storage in CLR-DF-K with respect to number of
basis functions and the compression threshold εlr for water clusters in tight basis sets.
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Figure 2.2: Variation of the order-3 tensor storage in CLR-DF-K with respect to number of
basis functions and the compression threshold εlr for n-alkanes in tight basis sets.

of the errors introduced by the low-rank compression.

CLR-DF-K vs LinK: Performance and Precision

Computational cost and precision of the CLR-DF-K method was compared against the

highly-robust LinK algorithm for computing the exchange matrix. The computational cost

was defined as the wall time needed to compute the exchange matrix in serial (single-

threaded) fashion to simplify the performance analysis. Of course, it only makes sense
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Figure 2.3: Variation of the order-3 tensor storage in CLR-DF-K with respect to number of
basis functions and the compression threshold εlr for water clusters in diffuse basis sets.

to discuss speed in the context of precision, since both methods compute the exchange ma-

trix approximately, with precision governed by one or more parameters. Hence our goal here

is to compare the speed of a given CLR-DF-K computation against the LinK computation

with comparable precision. Precision of a given LinK computation is thereby defined relative

to the near-exact LinK method with the truncation threshold for exchange set to machine

precision, or 2.2× 10−16 (to save computational resources the Coulomb contribution to the

Fock matrix was always evaluated with the truncation threshold of 10−12, rather than ma-

chine precision). Similarly, precision of CLR-DF-K is defined here relative to the (near)exact

DF-K method where εsp = 10−16 and εlr = 0 (such definition excludes the error introduced

by the density-fitting approach itself, since it is well-behaved and largely cancels for relative

energy differences and other molecular properties).

With compact basis sets (cc-pVDZ, cc-pVTZ, and def2-SVP, see Figs. 2.4 and 2.5) the

apparent computational complexity of CLR-DF-K is below the O (N4) figure of the standard
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Figure 2.4: Computational cost and precision of CLR-DF-K and LinK exchange matrix
builds for water clusters in tight basis sets.
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Figure 2.5: Computational cost and precision of CLR-DF-K and LinK exchange matrix
builds for n-alkanes in tight basis sets.
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DF-K approach for both n-alkanes and water clusters. Some of this reduction is purely

due to the use of block-sparsity alone: the observed complexity is subquartic even when

no low-rank compression is used (εlr=0). When using CLR compression in cc-pVTZ with

εlr = 10−6, additional performance gains, as large as 38.6% and 35.3% over block-sparsity

alone, were obtained for (H2O)32 and C50H102, respectively. Since the errors in absolute

energies introduced by the low-rank compression are robustly controlled by the εlr, the use

of CLR-DF-K method seems warranted as a black-box alternative to DF-K.

Of course, the complexity of CLR-DF-K is still too high to compete with the highly-optimized

LinK approach. With compact basis sets the apparent complexity of LinK is subquadratic in

most cases, and approaches near-linear for 1D systems in double-zeta basis. Thus although

for smaller systems CLR-DF-K is significantly faster than LinK, the latter becomes faster

for sufficiently large systems with compact bases. Although there is significant room to

improve the performance of CLR-DF-K by optimizing tile sizes (see Fig. 2.9), it is clear that

CLR-DF-K is unlikely to be useful as an alternative to LinK for compact basis sets.

The relative performance changes dramatically when diffuse basis sets are used (see Fig.

2.6 ) In all computations CLR-DF-K was faster than LinK, usually by a significant margin.

E.g., for (H2O)32 in the aug-cc-pVDZ basis with εlr = 10−6 CLR-DF-K was 10 times faster

than LinK using a threshold of 10−8. Since the complexity of CLR-DF-K is still higher than

that of LinK, we expect that eventually LinK will become faster than CLR-DF-K, however

it is clear that for a significant range of molecular applications that call for the use of diffuse

basis sets, such as in computations of molecular anions, response properties, and explicitly-

correlated many-body methods the use of CLR-DF-K will be an economical alternative to

LinK and DF-K.

To demonstrate that the accuracy of CLR-DF-K is not limited to energies, we used the

Hartree-Fock orbitals computed with the CLR-DF-K method to evaluate the electric dipole
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Figure 2.6: Computational cost and precision of CLR-DF-K and LinK exchange matrix
builds for water clusters in diffuse basis sets.
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moments and DF-MP2 energies (see Figs. S1, S2 and 2.7, respectively). Precision of these

properties, just like that of the Hartree-Fock energy, is robustly controlled by the two CLR

threshold parameters.

Performance Analysis

The performance comparison between LinK and CLR-DF-K must be judged cautiously since

different factors will influence their computational efficiencies. The performance of LinK is

largely determined by the computational expedience of the 4-center ERI evaluation, and our

ERI engine is reasonably well optimized for at least single-thread execution. Compare this to

CLR-DF-K which is dominated by small-matrix linear algebra in serial regime. Optimization

of small-matrix linear algebra only recently received attention from the CS community, and

mainstream linear algebra libraries perform poorly in this regime. Thus our implementation

of CLR-DF-K should be considered highly preliminary, with significant potential for further

optimization.

To understand the performance of the current CLR-DF-K implementation we compared it to

the theoretical peak of traditional O (N4) DF-K for which it is easy to build an accurate per-

formance model by counting the number of floating point operations and converting to the

wall time using the measured peak performance of DGEMM on our hardware, 780 GFlops

per-node (see Fig. 2.8). Unsurprisingly, with the cc-pVDZ basis the block-sparsity alone

is sufficient to best the performance of the hypothetical DF-K calculation, while with the

cc-pVTZ basis we require the computational savings obtained by computing in the low-rank

representation to best the hypothetical dense calculation. Thus even our preliminary imple-

mentation is sufficiently efficient to beat the optimal DF-K implementation for a sufficiently

large system.
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Figure 2.7: Errors in DF-MP2 energy for various water clusters. εsp = 10−15 for all calcula-
tions, and the reference energy used εlr = 0. There was no CLR approximation used in the
DF-MP2 calculation, thus the error comes from error in the CLR-DF-K Fock matrix. The
εlr = 10−4 (H2O)47 aug-cc-pVDZ data point is omitted since the SCF did not converge.
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Figure 2.8: Time of CLR-DF-K for water clusters versus a hypothetical traditional O (N4)
DF-K running at a measured machine peak of 32.5 Gflops for a single core. εsp = 10−11.

The next most important factor to consider is the tile size. Varying the tile size will not

only change the amount of data sparsity in the tensors, but also severely affect the actual

throughput of linear algebra operations on the tiles. Due to the complexity of the analysis,

we did not attempt to optimize the tile size here and leave it to the future. Nevertheless,

to convince readers that there is substantial room for optimization by varying tile size we

performed a simple test in which the number of blocks in each dimension is varied, shown in

Fig. 2.9. The data demonstrated that varying the blocking scheme can have a large effect

on the performance of this CLR-DF-K implementation.

Another performance consideration is the amenability of an algorithm to parallel execution

on multiple CPUs. We tested the scalability of our CLR-DF-K implementation with respect

to the number of threads on a single multicore node, shown in Fig. 2.10, and on multiple

nodes of a distributed memory cluster, shown in Fig. 2.11. The computations were performed

on 20- and 32-water clusters in the aug-cc-pVTZ basis, respectively. This larger basis was
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auxiliary (DF) basis for n-alkanes in cc-pVDZ. These calculations were computed with 24
threads using εsp = 10−10 and εlr = 0. When there is 1 heavy atom per block the blocking
is uniform. When there is more than one heavy atom the blocking is non-uniform so the
average number of heavy atoms per block is reported.
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Figure 2.10: Performance versus number of threads for 20 waters in aug-cc-pVTZ basis. Note
that the thread scaling begins at 2 (see text). The calculations were run using εsp = 10−11

and εlr = 0.

chosen not to artificially improve scaling performance, but instead to provide performance

estimates for traditionally expensive calculations.

Parallelism was obtained from the TiledArray library, using TBB for intranode tasks and

the message passing interface (MPI) for internode communication in an MPI+X fashion. For

the single node scaling calculation, we use 2 threads as a baseline because we have assumed

a model where 1 thread is exclusively used to schedule work, with perfect task scaling this

would lead to a maximum of 23 times speedup when using 24 threads versus 2 threads. For

the multiple node calculations a 2 node baseline is used because the 32 water aug-cc-pVTZ

calculation without CLR compression could not fit in 512 GB of memory. The strong scaling

in Fig. 2.11 shows that communication overhead does not lead to negative performance until

we reach one node per water molecule! Finally, the improved speedup when CLR compression

is used, seen in Fig. 2.11, can be attributed to the decrease in internode communication due
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Figure 2.11: Multiple node times and speedup of 32 waters in aug-cc-pVTZ. The calculations
were run using εsp = 10−11. When εlr 6= 0 rounded addition was used in computation of W.

to block compression.

2.4 Conclusions and Perspective

In this work we introduced the Clustered Low Rank (CLR) framework for block-sparse

and block-low-rank tensor representation and computation. Use of the CLR format for

the order-2 and order-3 tensors that appear in the context of density-fitting-based Hartree-

Fock exchange significantly reduced the storage and computational complexities below their

standard O (N3) and O (N4) figures. Even for relatively small systems CLR-DF-K becomes

more efficient than the standard DF approach while negligibly affecting molecular energies

and properties. Although the apparent cost complexity of CLR-DF-K is higher than that of

the standard LinK method for computing the exchange matrix, CLR-DF-K is faster for small

and medium size systems, especially when higher-zeta and diffuse basis sets are required.
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Making CLR-DF-K asymptotically competitive with LinK should be possible by combining

it with local density-fitting ideas.

The entire computation framework that we described here depends on 2 parameters that

control precision. One controls the block rank truncation and the other controls screening of

small contributions in arithmetic operations on CLR tensors; as they approach 0 the CLR

arithmetic becomes exact. There are no other ad-hoc heuristics, such as domains.

This is an initial application of the CLR format, and many significant optimization opportu-

nities remain to be explored. Nevertheless, the efficiency of CLR-DF-K method immediately

makes it useful on its own and as a building block for other reduced scaling methods. For

example, the fast CLR-DF-K methodology should also be immediately applicable in other

contexts where density fitting is key, e.g. the reduced scaling electron correlation methods.

We should note that the CLR framework should be naturally beneficial for massive paral-

lelism necessary for ab initio dynamics, since the CLR data compression should reduce the

traffic through the memory hierarchy, whether between memory tiers in the next generation

of “accelerators” or through the network in a cluster. Previously we demonstrated that CLR

can improve scaling with respect to the number of processors used relative to the dense

formulation by computing inverse square roots of the Coulomb Metric.[99]

Although it was not demonstrated in this work, it is trivial to also use CLR for construction

of the Coulomb contribution to the Fock matrix (CLR-DF-J). CLR-DF-J was only avoided

in order to isolate errors to the exchange term, making a direct comparison to LinK possible.

Last, but not least, it is exciting to imagine uses of the CLR framework for exploiting the

data sparsity in other tensors that appear in electronic structure and related fields, such

as the wave function projections (e.g. cluster amplitudes), density matrices and Green’s

functions. Some work along these lines is already underway.
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3.1 Introduction

The Hartree-Fock approximation is the basic building block of modern wavefunction methods

in electronic-structure theory. The Fock matrix, in closed shell form, is computed, with

formal complexity O (n4), via the equation:

Fµν = Hµν +
∑
ρσ

Dρσ [2(µν|ρσ)− (µρ|νσ)] , (3.1)

with D as the Hartree-Fock density and (µν|ρσ) as the four-center two-electron integrals.

Over the years, significant effort has lead to efficient implementations based on avoiding, or

screening, computation of small magnitude four-center two-electron integrals reducing the

computational complexity of the Fock matrix formation to the often cited O (n2).[91, 100]

Further work has succeeded in reducing this complexity to O (n) by splitting the formation

of the Fock matrix into a Coulomb (J) part:

Jµν =
∑
ρσ

(µν|ρσ)Dρσ, (3.2)

that can take advantage of fast multipole methods.[101] And an Exchange (K) part:

Kµν =
∑
ρσ

(µρ|νσ)Dρσ, (3.3)

with the most well known O (n) approaches being Linear scaling exchange (LinK)[56] and

Order-N exchange (ONX).[57, 102]

An alternative approach for the efficient construction of the Fock matrix is to factorize the

four-center integrals into two three-index tensors. This strategy, most commonly referred to

as resolution of the identity (RI) or density fitting (DF), takes the integral ket |ρσ), which
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contains products having basis functions on up to two centers and fits it within a basis of

single center functions:

|ρσ) ≈
∑
X

CX
ρσ|X), (3.4)

where C is the tensor of fitting coefficients and the X functions come from some auxiliary

basis. Approximations of this type have been in use since the 1950s,[77, 78, 103, 104, 105, 106]

but became more mainstream with the development of optimized auxiliary basis sets[96, 107,

108, 109] and demonstrations that the performance of both SCF methods[80] and correlation

methods[79] could be improved with acceptable loss of accuracy. We can solve for the fitting

coefficients via projection onto the auxiliary basis:

(Y |ρσ) =
∑
X

CX
ρσ(Y |X), (3.5)

and by rewriting this as a tensor expression (summation notation will be used from this

point forward), with EY
ρσ = (Y |ρσ) and MY X = (Y |X) we find

EY
ρσ = CX

ρσMY X (3.6)

M−1
Y XE

Y
ρσ = CX

ρσ. (3.7)

Usually, M−1 is decomposed such that M−1 = ZZ†, where Z is either the Cholesky decom-

position or the square root of M−1. The reconstruction of the (µν|ρσ) tensor then becomes:

(µν|ρσ) ≈ EX
µνM

−1
XWMWRM

−1
RYE

Y
ρσ (3.8)

≈ EX
µνZXQZ

†
QWMWRZRPZ

†
PYE

Y
ρσ (3.9)

≈ EX
µνZXSZ

†
SYE

Y
ρσ (3.10)
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This decomposition of (µν|ρσ) allows for a small prefactor O (n3) implementation of Equa-

tion (3.2) (DF-J). But Equation (3.3) (DF-K) formally remains O (n4). Even so, in small

molecules with large and/or diffuse basis sets the density fitting approach to exchange (DF-

K) is competitive with LinK.

To decrease both the memory and computational complexity of DF-K the number of coef-

ficients used to fit each ρσ product must become constant with respect to the number of

atoms in the system. This is accomplished by constructing C from functions that are nearby

or local to the ρσ product, called local density fitting (LDF). In LDF C is constructed from

a restricted set of functions in a way similar to Equation (3.4):

(Ylocal|ρσ) = CXlocal
ρσ MXlocalYlocal , (3.11)

where the subset of functions in the auxiliary indices Xlocal and Ylocal depends in some

approximation specific way on ρ and σ.

It is well known that fitting with the Coulomb metric yields errors in (µν|ρσ) that are second

order with respect to errors in C,[81] but the use of the Coulomb metric leads to slow decay

with respect to the distance between centers in E, but not necessarily in C.[110, 111] This

slow decay makes reducing the computational complexity of Equation (3.7) below O (n3)

difficult. To overcome this limitation a number of techniques have been explored: the use

of metrics with more rapid decay,[60, 78, 110, 112] using the Coulomb metric with auxiliary

functions coming from a local domain,[85, 90, 112] and an extreme version of domains that

limits the auxiliary functions to the atoms on which functions ρ and σ sit ,[62, 78, 87, 113,

114, 115, 116, 117, 118] herein called concentric atomic density fitting (CADF) and elsewhere

known as pair atomic resolution of the identity (PARI).
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In CADF, C becomes sparse by construction and is found by solving:

(Y∈{a,b}|ρaσb) = C
X∈{a,b}
ρaσb MX∈{a,b}Y∈{a,b} , (3.12)

where a designates the center for function ρ and b for function σ. Constructing C using the

CADF definition of locality proves to be a very inaccurate approximation[62] necessitating

the use of Dunlap’s robust fitting:[81]

(µν|ρσ) ≈ EX
µνC

Xcd
ρσ + CYab

µν E
Y
ρσ − CRab

µν MRPC
Pcd
ρσ , (3.13)

where subscripts ab and cd designate a local fit (from this point forward we will assume

that robust fitting is used). The accuracy of CADF is well established[62, 114, 116] and

ref. [117] shows errors in the range of 1 cal
mol

per electron for the Rx25 data set in a cc-

pVQZ basis, when used for exchange only. But unfortunately robust fitting can suffer from a

loss of positive semi-definiteness in the approximate (µν|ρσ) allowing the SCF procedure to

converge to unphysical densities and attractive electrons.[114] Some options to mitigate this

behavior are discussed in references [114] and [62]. Alternatively, CADF can be used only

for the computation of Hartree-Fock exchange (CADF-K), avoiding these issues.[116] With

only basic integral screening the computational complexity of CADF-K is O (n3) in each SCF

iteration. While CADF-K has a reduced prefactor relative to traditional four-center exchange

builds, it requires further approximation to achieve complexity O (n). There has been some

effort to devise a O (n)-CADF-K algorithm in our group, ref. [118], and others, ref. [115], in

this work we will take an approach similar to the latter that rapidly achieves reduced scaling

at only a small loss of accuracy relative to O (n3) CADF-K. Because the tensors involved

in CADF-K are generally sparse, except for the three-center two-electron integrals, we will

use techniques developed for sparse tensor algebra to achieve reduced scaling. To handle the
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lack of sparsity in the three-center integrals we will use an approach akin to the sparse maps

of linear scaling correlation methods[41, 42, 119, 120, 121] and the methods discussed in ref.

[115].

Exploiting approximate element and block-wise sparsity is an active area of research in

quantum chemistry. For the remainder of the work, when we refer to sparsity we will assume

block-wise sparsity, exploiting element-wise sparsity has been attempted in the context of

electronic-structure,[122, 123, 124] but for performance reasons the majority of work focuses

on the block-wise variant. A dizzying array of approaches for sparse matrix multiplication

(SpGEMM), an operation which is sufficient to compute tensor contractions, are currently

under development, including but not limited to: no output truncation (no approximation is

made for the given inputs),[124, 125, 126] truncation of blocks with small norms based on a

threshold parameter,[66] radius based criteria for functions with well defined locality,[35, 127,

128, 129] output norm estimation to avoid computing blocks that will be known to have small

norm,[99, 130] avoiding small contributions to significant result blocks,[131, 132, 133] an idea

that appears in integral driven construction of the Fock matrix.[56, 91, 100, 134] Multiple

approaches, such as skipping small contributions and using a radius, can be combined[135]

and also these techniques can be used in conjunction with advanced data structures[67,

136, 137, 138, 139] to reduce the computational complexity required even further. Other

strategies, many of which arise naturally in reduced scaling correlation methods, define

tensor sparsity using a variety of criteria.[42, 115, 140, 141, 142] Finally, novel methods to

gain performance have been explored.[130, 143]

Our sparse tensor library described in Section 4.3 uses a threshold εsp such that a block B

is treated as zero if:

εspVol(B) > ||B||F , (3.14)
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where Vol(B) is the number of elements in block B and ||||F is the Frobenius norm. A more

thorough overview of our sparse tensor library is outside the scope of this work, its general

performance is discussed in references [130], [99], and [144]. In this work, we will only discuss

performance with respect to CADF-K.

The remainder of the paper is organized as follows: in Section 3.2 we discuss our algorithm for

O (n) CADF-K, Section 4.3 provides some implementation details, Section 4.5 provides both

timings and accuracy for our method relative to traditional CADF-K, and finally Section 4.6

relays our comments on the successes and failures of our approach.

3.2 Concentric Atomic Density Fitting Exchange

3.2.1 Algorithm

We tested an algorithm for O (n)-CADF-K bases on that of Manzer et al.[116]

Algorithm 1 CADF-K using localized MOs

1: procedure CADF-K(C, C̄) . Compute K from the fitting coefficients and the LMOs,

C̄

2: ZX
µi = CX

µρC̄ρi

3: FX
νi = F

(
EX
νσC̄σi,Z

)
−F

(
0.5MXYZ

Y
νi,Z

)
4: Lµν = ZX

µiF
X
νi

5: Kµν = 1
2

(Lµν + Lνµ)

6: return K

Our changes include the use of localized molecular orbitals (LMO) and a screening function

F , which can be set to the identity function to reproduce the original algorithm.
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Algorithm 2 Identity function for F
1: procedure F(Q, Z) . Q is an expression for a three-index tensor, which will be

screened by Z

2: for all a, b, c do

3: Compute and store Qa
bc in a normal fashion

4: return Q

Manzer’s procedure simplifies the construction of K yielding promising results relative to

LinK for linear n-alkanes in the cc-pVTZ basis set. The downside is that this approach

cannot easily scale below O (n2) due to term 3 in Algorithm 1 where the three-centered

integrals are needed, and in practice they report approximately O (n3) for their algorithm

using canonical molecular orbitals.

3.2.2 Contraction Screening

If we set F to the identity (Algorithm 2) then in Algorithm 1 the most expensive step is

the construction of F. In order to achieve reduced scaling we need to find a way to compute

only a linear number of blocks of F. Since sparse tensor algebra alone cannot achieve this,

due to the contraction of E with the LMOs, we must look at the only tensor expression in

which F is used,

Lµν = ZX
µiF

X
νi , (3.15)

to try and reduce the cost of construction of F. Here we propose a method to limit the

construction of F to only compute blocks in which X and ν are “near” i. It turns out that

the natural sparsity of F is sufficient to ensure that ν is close to molecular orbital i, but
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due to the 1
r

decay between X and νi in E the number of significant blocks of F will decay

slowly. On the other hand Z only includes X near i by construction, thus we propose using

the structure of Z to screen which blocks of F are computed. To do so we make lists of all

significant X and µ blocks for a given group of i in Z according to:

||ZX
µi||F ≥ εf . (3.16)

We then only compute a block FX
νi if either X or ν is in our list of indices close to i. Using

this idea, our O (n) algorithm for F is given in Algorithm 3.

Algorithm 3 Screening function for F
1: procedure F(Q, Z) . Q is an expression for a three-index tensor, which will be

screened by Z

2: x = {} . Set for important blocks in X

3: n = {} . Set for important blocks in ν

4: for all c do

5: for all a, b do

6: if ||Za
bc||F ≥ εf then

7: Add a to x

8: Add b to n

9: for all c do . Construct Q

10: for all a, b do

11: if a ∈ x or b ∈ n then

12: Construct block Qa
bc

13: else

14: Skip Qa
bc

15: return Q
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While the motivation for this approach is based on selecting only functions “near” to a shared

index, in practice it is much easier to explain algebraically. Looking at Equation (3.15) we

see that our idea to screen the construction of F based on “nearness” is the same as only

computing those blocks of FX
νi which are multiplied by at least one block of Z with norm

greater than εf . Essentially, we avoid computation of blocks of F that only interact with

nearly negligible blocks of Z. While this procedure does not provide rigorous bounds on

the norm error for L, because the magnitude of the avoided blocks in F is never taken into

account, in practice choosing a sufficiently small εf should lead to good accuracy and as εf

approaches 0 this method becomes exact within the CADF-K framework.

Finally, we make one additional approximation, we apply an additional truncation parameter

to the LMOs, where if the Frobenius norm of a block of the LMOs is smaller than εc that

block is treated as zero.

3.3 Implementation

3.3.1 Software

Our implementation of these ideas took place in a developmental version of the Massively

Parallel Quantum Chemistry (MPQC) package,1 which takes advantage of the sparse tensor

algebra provided by the library developed in our group TiledArray.[93] A version of LinK

was developed for comparison based on the hartree-fock++ example from the Libint2 integral

library.[92, 145]

In principle the algorithm that we outlined in Section 3.2 would compute the significant

blocks of E on demand, which would minimize storage at the cost of some computation on

1 An older version of the project can be found at https://github.com/ValeevGroup/mpqc

https://github.com/ValeevGroup/mpqc
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every SCF iteration. Due to a technical limitation of the TiledArray library with regards to

direct computation we could not easily implement a O (n) direct version of our algorithm. To

overcome this limitation we made use of the Clustered Low Rank (CLR) tensor compression

technique, described in ref. [130], for storage of E. CLR allows for E to be computed once, at

computational cost O (n2), and stored in a compressed fashion that depends on the blocking

and on a parameter εlr. While reducing our per-iteration prefactor the substitution of CLR

should not change the scaling of our method relative to direct computation.

Throughout all O (n)-CADF-K calculations we used the sparse threshold εsp = 10−11, Our

block were built by taking the functions from each hydrogen and combined them with the

functions from the nearest heavy atom (LMOs were blocked to have the same number of

blocks as the AOs), and we used Foster-Boy’s localization for the LMOs.[83, 146] Although

any localization providing sparse orbitals should work. It is likely that we could have obtained

better performance by using a slightly looser εsp and by searching for the ideal block size for

each tensor and dimension, but these optimizations will be left for future publications.

3.3.2 Hardware

All computations were carried out on Virgina Tech’s NewRiver system where each node has

2 Xeon E5-2680v3 2.5ghz Intel processors, with 24 cores and available with either 128 GB

or 512 GB of RAM. Each node has a theoretical peak performance of 960 Gflops/s with a

measured peak of 780 Gflops/s in Intel MKL’s DGEMM routine.



82 Chapter 3. Linear Scaling Concentric Atomic Density Fitting

3.4 Results

3.4.1 Molecules and Basis Sets

To test our algorithm we chose to use linear n-alkanes, Cartesian geometries generated

with Open Babel,[94] and water clusters, Cartesian geometries —taken from random snap-

shots of molecular dynamics trajectories at ambient conditions[36]— were obtained from

ERGOSCF’s public repository.[95] Dunning’s correlation consistent basis sets were used,[8]

with augmented diffuse functions for cc-pVDZ.[8, 147] 2 matching auxiliary basis sets were

used for fitting.[96] Unlike some works we did not increase the ζ of the auxiliary basis to

help correct errors arising from the local fitting.

3.4.2 CLR Compression

CLR compression, of the three-center two-electron integrals allows for both efficient storage

and contraction of the tensor (X|µν). Figures 3.1 and 3.2 show significant compression of

the these integrals, with 92% improvement over block sparsity alone for C120H242 in cc-pVDZ

with εlr = 10−6. CLR also provides compression in three dimensional systems with tight and

even diffuse basis sets. For (H2O)47 a compression of 67% was obtained in aug-cc-pVDZ and

a compression of 95% for (H2O)139 in cc-pVDZ with εlr = 10−6, relative to block sparsity

alone.3

2We experienced convergence issues with the large n-alkanes in aug-cc-pVDZ, so only tested them on
water clusters

3CLR is able to achieve higher compression percents for water clusters over linear alkanes because of the
comparison to the storage required for block-sparsity. If the comparison was the full size of the dense tensor
versus data-sparsity then the alkanes would have a significantly larger compression percentage.
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Figure 3.1: n-alkanes CLR storage for (X|µν) integrals

Figure 3.2: Water cluster CLR storage for (X|µν) integrals
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Figure 3.3: n-alkanes timings for O (n)-CADF-K versus LinK. Both methods were run using
a single thread

3.4.3 Timings

Single-Thread

Figure 3.3 shows that O (n)-CADF-K achieves linear scaling at approximately the same

system sizes as LinK, but does so with a significantly reduced prefactor. For C100H202 in

the cc-pVDZ basis our O (n)-CADF-K implementation had an average iteration time of 38

seconds and a scaling exponent of 1.3, while LinK, with a screening threshold of 10−8, had

an average iteration time of 536 seconds and a scaling exponent of 1.17. The effect is similar

for cc-pVTZ.

Figure 3.4 shows that O (n)-CADF-K also nearly matches LinK’s scaling with improved

prefactor for water clusters. For (H2O)47 in cc-pVTZO (n)-CADF-K had an average iteration

time of 459 seconds with a scaling exponent of 1.75, while LinK, with a threshold of 10−8,

had an average iteration time of 1034 seconds and a scaling exponent of 1.90. Similarly, our

average iteration times are better than LinK for aug-cc-pVDZ, and cc-pVDZ while having
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Figure 3.4: Water cluster timings for O (n)-CADF-K versus LinK. Both methods were run
using a single thread
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Figure 3.5: n-alkane timings for O (n)-CADF-K at various approximation levels, using 24
threads

roughly the same scaling exponents.

Multi-Thread

Figure 3.5 shows the multi-threaded performance of ourO (n)-CADF-K method for n-alkanes

at different levels of approximation. Showing that CLR doesn’t significantly contribute to

the reduced scaling. Almost all of the scaling improvements come from a combination of

truncating the LMOs and the special screening of terms —that is the subject of this paper.

Figure 3.6 shows that water clusters have similar behavior to the n-alkanes, except that

reduced scaling onset is delayed. In cc-pVDZ and cc-pVTZ it is clear that we have obtained

near linear behavior and in cc-pVQZ there is a significant reduction of cost, with larger

calculations needed to determine when reduced scaling arises. Additionally, Figure 3.6 shows

that while we are able to run larger systems in diffuse basis sets we do not approach linear

scaling, approximate four-center methods also exhibit this delayed onset of reduced scaling

behavior.
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Figure 3.6: Water cluster timings for O (n)-CADF-K at various approximation levels, using
24 threads
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Figure 3.7: n-alkane O (n)-CADF-K errors from the different approximations used

3.4.4 Errors

All errors are computed relative to CADF-K where the only approximations made are

Schwarz screening of the three-center two-electron integrals with a threshold of 10−12 and

application of our sparse tensor library with εsp = 10−11. Figure 3.7 shows the errors for

n-alkanes from each of the approximations we make to CADF-K. For linear alkanes it is ob-

vious that the errors arising from the CLR approximation of (X|µν) are significantly smaller

than the other errors in our reduced scaling method justifying its use in avoiding repeated

integral computation. The errors from the other approximations —truncation of the LMOs

and our screening approach— are not as easy to untangle. In cc-pVDZ it appears that most

of the error comes from truncation of the LMOs, but in cc-pVTZ the errors appear to come

from skipping terms in the formation of F. The combined error is not always a simple sum

of the other errors suggesting that there is some cancellation of error between the LMO

truncation and the screening. Figure 3.8 shows that in water clusters we see a similar effect

to the linear alkanes, with the additional observation that the errors grow more rapidly with

respect to system size when using aug-cc-pVDZ. Once again a similar trend appears with
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Figure 3.8: Water cluster O (n)-CADF-K errors from the different approximations used
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the LMO truncation being larger for cc-pVDZ and it is unclear which effect is larger for

cc-pVTZ, although error cancellation still keeps the combined error smaller than the sum of

its parts. Finally with the chosen parameters of εlr = 10−7, εf = 10−7, and εc = 10−3, the

errors appear to fall around 10−4 Hartrees which is less than the errors introduced by the

CADF-K method. Also fortuitously the errors appear to be smaller for the smaller basis sets,

this is helpful because in these basis sets the rank reduction, obtained from using LMOs,

that gives an advantage over density based methods is not as large as in the higher ζ basis

sets, necessitating looser thresholds to be competitive with LinK.

3.5 Conclusions and Perspective

In summary, we have developed a linear scaling implementation of Hartree-Fock exchange

using the CADF approximation. By combining localized molecular orbitals with the imposed

sparsity of the CADF fitting coefficients and screening intermediate contractions we have

demonstrated similar scaling to LinK with a significantly reduced prefactor. Errors, while

large, are below the method errors in CADF-K and are also improvable by tightening the

approximation parameters. CLR compression for the three-center two-electron integrals

was used in this study to demonstrate that the CLR approximation can usefully allow for

the storage of large integral tensors and also provides some efficiency improvement in their

contraction, but the use of CLR was not necessary to achieve linear scaling—a reasonable

direct integral approach would also have worked.

Future work entails testing the method on larger systems in high-zeta (ζ ≥ 4) basis sets

and attempting to improve the errors from truncation of the LMOs. Ideas developed in

this paper are now being used for efficient construction of exchange in periodic systems

and in construction of approximate atomic orbital basis integrals in reduced scaling electron
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4.1 Introduction

Density functional theory (DFT) is the computational workhorse in the domains of chemistry

and material science due to its acceptable quantitative accuracy and low cost.[148] However,

the lack of systematic improvability of DFT prevents its use for high accuracy predictions.

Many-body electronic structure methods, such as the coupled-cluster method[10], are, on

the other hand, systematically improvable but suffer from unacceptably high complexity

with respect to size and precision, which limit their applications to small molecules. For

example, the coupled cluster singles, doubles, and perturbative triples (CCSD(T)), routinely

described as the gold standard of quantum chemistry, has a O
(
n7ε−1/4

)
computational

complexity in LCAO representation, where n is proportional to system size and ε is the target

precision. While the use of explicitly correlated (F12) LCAO formulations[149, 150, 151] have

largely alleviated the precision problem, the steep size scaling still limits the use of CCSD(T)

method to systems with up to 20 atoms on a single computer, and up to 100 atoms on a

supercomputer.

Reduction of cost and scaling with size has been an area of much recent progress. Complexity

reduction approaches can be broadly classified in one of three groups. The first group includes

so-called divide-and-conquer methods, in which the grand problem is split into subprob-

lems by partitioning the original problem’s space. Examples include the divide-and-conquer

method,[152] various embedding techniques (QM/MM,[153, 154] QM/QM[155, 156]) , and

various local correlation techniques;[142, 157, 158, 159, 160] each of these generic realizations

are further specialized by the numerous technical details, such as how the subproblems are

coupled to each other, whether the partitioning is refined adaptively, etc. Another group of

approaches approximate the energy and other properties as a truncated many-body expan-

sion, i.e. as a sum of 1- and higher-body terms. Again a number of realizations of this idea

have appeared over the years; an incomplete list of examples includes the fragment molecu-
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lar orbital (FMO) method,[161] the incremental correlation scheme[162, 163, 164], and the

Many-Body-Expansion approach.[165]Lastly, it is possible to reduce complexity by changing

the numerical representation and employing fast algorithms for application of operators. For

example, the use of real-space representation makes possible to reduce the complexity of the

second-order Møller-Plesset (MP2) to O (n3) from the traditional O (n5) figure in the LCAO

representation.[166, 167]

The current paper builds on recent successful efforts in complexity reduction based on the

concepts of local correlation and truncated pair-natural orbitals (PNO). Although linear and

reduced scaling realizations of traditional many-body methods up to CCSD(T) were realized

some time ago, their combination with pair-natural orbitals (and other related ideas) greatly

reduce the cost to achieve supremacy to canonical implementations for systems with 20

atoms (note that introduction of PNOs alone into CCSD(T) also reduces the scaling with

system size[168, 169]). Combination with the explicit correlation[120, 121, 168, 170, 171]

leads to robust methods that provide nearly numerically exact for most application pur-

poses and applicable to three-dimensional systems with hundreds of atoms on a single

workstation.[41, 42, 119, 120, 121, 172] Further reductions of time-to-solution are possible

by harnessing the massively-parallel computer hardware of today, as demonstrated system-

atically by the Werner group.[170, 171, 173, 174, 175]

As one of the simplest correlated methods to derive and implement a large amount of ef-

fort has gone into the development of linear scaling second order Møller-Plesset perturba-

tion theory (MP2), including Laplace transform techniques,[176, 177, 178] projected atomic

orbitals,[142, 157, 179, 180, 181], and PNO based methods that often are built on top of re-

duced sized intermediate bases.[41, 173, 182] This work will build upon these techniques and

combined with the idea that groups or clusters of occupied orbitals can share an intermediate

basis in which to look for PNOs.



4.2. Formalism 95

The goal of this work is to present an improvement to the linear-scaling formulation of the

PNO approach by employing clustered basis of orbitals. The use of a clustered basis not only

leads to reduced cost, but also improves the utilization of data parallelism which is crucial

to efficient execution on modern and future computer architectures with wide vector units,

such as all CPUs, general-purpose graphical processing units (GPGPUs), and accelerators

like Intel Xeon Phi. To demonstrate the utility of clustered orbitals, in this work, we report

on a massively parallel implementation of PNO-MP2 within the Massively Parallel Quantum

Chemistry (MPQC) package that takes advantage of said clustering.

The remainder of the paper is organized into 5 more sections, Section 4.2 discusses the tools

and tricks used to achieve linear scaling PNO construction, Section 4.3 discusses our specific

implementation along with the idea of using pairs of clustered orbitals instead of just pairs

of orbitals, Section 4.4 briefly discusses computational resources and molecular examples

chosen, Section 4.5 shows the performance of our implementation, and finally Section 4.6

wraps up and discusses ideas for the future.

4.2 Formalism

Our approach here builds on the basic formalism for linear-scaling PNO evaluation of MP2

energy established by Pinski and co-workers (including one of us) [41] and by Werner and

co-workers.[173] These formulations, which differ in technical details, largely build on the

same ideas put forth much earlier by many others.[40, 142, 157, 179, 180, 181, 183, 184, 185,

186, 187] To introduce the idea of clustered orbitals, and how they advance the state-of-

the-art, here we briefly recap the essential ingredients of the linear-scaling PNO methods.

Additional technical details are given in Section 4.3. Interested readers are referred to the

literature cited above for the more complete discussion of the technical details.
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Table 4.1: Index notation used in this paper.

µ, ν, ρ, . . . Atomic orbitals (AOs)
i, j, k, . . . Localized occupied orbitals (LOOs)
a, b, c, . . . Canonical virtual orbitals
w, x, y, . . . Density-fitting (auxiliary) atomic orbitals (DFAOs)
µ̃, ν̃, ρ̃, . . . Projected atomic orbitals (PAO)

ãi, b̃i, c̃i, . . . Orthonormal orbital-specific PAOs

ãij, b̃ij, c̃ij, . . . Orthonormal pair-specific PAOs
ai, bi, ci, . . . Orbital-specific virtuals (OSVs) for orbital i

āij, b̄ij, c̄ij, . . . OSV basis for pair ij
aij, bij, cij, . . . Pair natural orbitals (PNOs) for pair ij
M,N,R, . . . Clusters of AOs
I, J,K, . . . Clusters of LOOs
W,X, Y, . . . Clusters of DFAOs

ÃIJ , B̃IJ , C̃IJ , . . . Orthonormal clustered-pair-specific PAOs
ĀIJ , B̄IJ , C̄IJ , . . . Clustered-pair-specific unionized OSVs

4.2.1 Local correlation

Standard expression for the MP2 energy with a closed-shell spin-restricted reference reads:

EMP2 =g̃abij T
ij
ab (4.1)

where gpqrs ≡ 〈φr(1)φs(2)| r−1
12 |φp(1)φq(2)〉, Õpq

rs ≡ 2Opq
rs − Opq

sr , and Einstein summation con-

vention is used. The index space notation used throughout this paper is specified in Table

4.1. Amplitudes T ijab are determined by solving the MP1 equations:

0 = Rij
ab ≡g

ij
ab + F c

aT
ij
cb + F c

b T
ij
ac − F i

kT
kj
ab − F

j
kT

ik
ab . (4.2)

TheO (n5) cost of computing the MP1 residual Rij
ab dominates theO (n3) cost of the standard

Hartree-Fock LCAO solvers applicable in realistic basis sets. It is possible to reduce the

complexity of MP2 to that of Hartree-Fock purely by switching to a representation which
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permits fast application of operators, i.e. real space/grids.[166, 167, 188] However, this

greatly increases the verbosity of the representation, especially in the high-precision limit.

Hence to reduce the complexity while preserving the compactness of LCAO representation, it

is necessary to switch to localized bases for both the occupied and unoccupied orbitals in Eqs.

(4.1) and (4.2). Techniques for the localization of occupied states, leading to compact wave

function representations with reduced formal complexity, were developed around the same

time as the robust modern many-body methods.[189] The basis of occupied orbitals can be

directly localized using a number of available approaches,[83, 146, 190, 191, 192, 193] whereas

direct localization of unoccupied (virtual) states is more difficult. Pulay and others[142, 157,

179, 183, 184, 194] proposed the use of projected atomic orbitals (PAOs) as the building

block for the localized basis of unoccupied orbitals. PAOs are linear combinations of atomic

orbitals that span the unoccupied space, i.e.

|µ̃〉 ≡
∑
ν

|ν〉C µ̃
ν , (4.3)

where for a closed-shell system PAO coefficients are defined as

C = I− 1

2
DS, (4.4)

where I is the identity matrix in AO basis, D is the density matrix, and S is the overlap

matrix. For systems with nonzero gap, PAOs are exponentially localized and thus lead to

sparse representations; e.g. gijµ̃ν̃ has O (n2) significant elements when i and j are localized,

and thus can be sparsified by thresholding. PAO µ̃ was produced from AO µ, hence PAOs

preserve the atom-centered structure of the AO basis. This is crucial for defining sets of

PAOs (a.k.a. domains) that are closed under unitary transformations of atom blocks; PAO

domain associated with a given localized occupied orbital i is a set of PAOs, {µ̃i}, that form
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“significant” products iµ̃; the measure of significance is defined using geometric/topological

criteria[173] or using Hilbert space distance between i and µ̃.[41] This strategy is generalized

to any tuple of orbitals by taking unions of domains for the constituent orbitals; e.g. for

pair ij {µ̃ij} = {µ̃i} ⊕ {µ̃j}. However, PAOs are nonorthogonal and rank-deficient (nPAO =

nAO > nv, where nv is the number of virtual orbitals). Thus for each tuple-specific domain of

PAOs we must compute its rank and remove the linearly dependent vectors. Before making

PAOs orthogonal they are sparsified, then the resulting sparsified PAOs are orthogonalized.

The standard construction of orthonormalized domain PAOs, due to Boughton and Pulay,

is described in Ref. [183]; in this work we follow the somewhat simplified procedure of Ref.

[41].

In terms of PAOs Eqs. (4.1) and (4.2) become

EMP2 =g̃
ãij b̃ij
ij T ij

ãij b̃ij
(4.5)

0 = Rij

ãij b̃ij
≡gij

ãij b̃ij
+ F

c̃ij
ãij
T ij
c̃ij b̃ij

+ F
c̃ij

b̃ij
T ijãij c̃ij − F

i
kT

kj

ãkj b̃kj
S
ãkj
ãij
S
b̃kj

b̃ij
− F j

kT
ik
ãik b̃ik

S ãikãij
S b̃ik
b̃ij

. (4.6)

Note the appearance of the overlaps between PAO domains in the last two terms of Eq.

(4.6), due to the fact that PAOs for pair ij and pairs {ik, kj} are not orthogonal. If the

gap is nonzero, PAO MP2 energy costs O (n2) without considering the cost of the integrals;

the key to this scaling is the exponential decay of the exchange component of the Fock

operator. In practice, the cost of PAO MP2 is usually dominated by the cost of computing

the integrals, which is also O (n2) assuming exponential localization (hence nonzero gap).

The use of local density fitting approximation for the integrals, which allows to reduce the

prefactor (but not the complexity) of their computation, was popularized by Manby, Werner,

and co-workers.[181, 195]

Note that PAO MP2 has lower complexity than real space formulation of MP2,[167, 188] but
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only by assuming exponential localization of orbitals. Further reduction of the complexity

of PAO MP2 to O (n) requires multiscale treatment of electron correlation, e.g. by truncat-

ing pair interactions past certain distance range, or by employing hybrid quantum-classical

approach where correlation energies of weak pairs are treated classically.[179, 196]

4.2.2 Pair-Natural Orbitals

Pair natural orbitals, introduced under the name pseudonatural orbitals by Edmiston and

Krauss[186, 197], were explored extensively[185, 198, 199, 200, 201, 202, 203] as a compact

basis in which to express electronic wave functions. PNOs are pair-specific orbitals orthogo-

nal to the occupied subspace, defined as eigenstates of the corresponding pair’s contribution

to the unoccupied block of the 1-particle reduced density matrix (or, simply, pair density),

which for a closed-shell spin-restricted reference state can be constructed from 2-body cor-

relation amplitudes (Tij)ab ≡ {T ijab} as

Dij =
2

1 + δij

(
(T̃ij)†Tij + T̃ij(Tij)†

)
, (4.7)

with T̃ij ≡ 2Tij − (Tij)†. Eigenvectors Uij of Dij,

Dij = Uijd
(
Uij
)†

, (4.8)

are the coefficients of PNOs:

|aij〉 =
∑
a

|a〉U ij
aaij

. (4.9)

PNOs are truncated by only keeping PNOs whose corresponding eigenvalues (“occupation

numbers”) are greater than threshold τPNO. Once truncated PNOs have been determined,
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amplitudes in the truncated PNO basis are determined by solving the corresponding equa-

tions. PNO equations are identical to those in the PAO basis, e.g. PNO MP1 amplitudes

are obtained by solving Eq. 4.6 where all PAO indices ãij are replaced by their PNO coun-

terparts ãij. Note that PNOs are typically canonicalized to make quasi-Newton solvers for

amplitude equations more robust.

To determine PNOs it is necessary to have a good guess of 2-body amplitudes in Eq. (4.7). In

the context of ground-state CC-type methods exact MP1 amplitudes can be used as the guess

amplitudes for PNO formation. However, following Neese[40] approximate (semicanonical)

MP1 amplitudes are typically used as the PNO guess:

(T scMP1)ijab =
gijab

F a
a + F b

b − F i
i − F

j
j

. (4.10)

in which only the unoccupied orbitals are assumed canonical (i.e. due to localization F i
j is

not diagonal). scMP1 PNOs were found by Neese to be nearly as good as older renormalized

perturbative choices, however recently we found that substantial improvement is possible in

the context of higher-order methods like CCSD.[204]

The use of PNOs alone (without additional approximations) affords a modest reduction

of size complexity of CCSD, from O (n6) to O (n4), and greatly increased costs of the in-

tegral transformation (which in the untruncated PNO basis costs O (n7) compared to the

standard O (n5) figure). Thus in practice PNO-based methods must leverage ideas of local

correlation and local density fitting. To reduce the cost of computing integrals in the PNO

basis Neese[40, 187] pioneered the use of local density fitting technology, which had already

been used in the context of PAO-based reduced-scaling many-body methods by Werner and

co-workers.[181, 205] Although LDF does not reduce the complexity of PNO CCSD, it is

crucial to making PNO-based methods practical by reducing the overall costs such that the
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supremacy to conventional methods is achieved for systems with 20 atoms.

To reduce formal scaling further it is necessary to express PNOs in terms of intermediate

local bases, such as PAOs, i.e. Eq. (4.9) is replaced by

|aij〉 =
∑
ãij

|ãij〉U ij
ãijaij

(4.11)

in which U ij
ãijaij

are the eigenvectors of Dij evaluated in the basis of orthogonal PAOs for

pair ij. The use of PAOs as the intermediate basis reduces the cost of PNO construction

from O (n5) (or O (n4), if using an iterative eigensolver) to O (n2) and reduces the cost of

the integral transformation. PAO-based PNO coupled-cluster methods were first simulated

(implemented in a canonical CCSD program) by Krause and Werner.[206] First production

implementation was reported by Riplinger and Neese for up to CCSD(T)[65, 207] and further

improved by Neese, Valeev, and co-workers[41, 42, 119, 120, 121, 172]; implementation of

PNO methods by Werner and co-workers[170, 171, 173, 174, 175] also supports PAO-based

expansion of PNOs.

Another intermediate basis for expanding PNOs are orbital-specific virtuals (OSVs). First

proposed by Yang et al.[208] as a standalone basis for compressed representation of clus-

ter operator, OSVs were almost immediately proposed as the intermediate basis for PNO

construction[182] OSVs are typically (but not always)[209] defined as eigenstates of pair

densities in Eq. (4.7) of the diagonal pairs ii derived from MP1 amplitudes; OSVs are

subsequently truncated in the same manner as PNOs, but using a separate (and tighter)

criterion τOSV. The use of OSVs in PNO methods allows to reduce the O (n5) cost of PNO

construction to O (n4) (or even to O (n3) by using an iterative eigensolver and sparse integral
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transformations[210]). However, using PAOs as the intermediate basis for OSV expansion,

|ai〉 =
∑
ãi

|ãi〉U ii
ãiai

(4.12)

in combination with local density fitting allows to reduce the cost of OSV construction to

O (n). Although the PAO → OSV → PNO strategy does not change complexity relative to

the simpler PAO → PNO strategy, its advantages are substantially cheaper PNO construc-

tion and integral transformation.

The ultimate reduction of complexity of PAO-(OSV)-PNO MP2 from O (n2) to O (n) is

only possible through mixed classical-quantum treatment of electron correlation. One such

approximate treatment proposed by Werner in Ref. [173], called the OSV-SC-DIP approach,

involves a very simple dipole-dipole approximation to estimate the pair energy of weak pairs.

That energy estimation is given as:

Eest
ij = − 8

R6
ij

∑
āi

∑
b̄j

[
〈i | r | āi〉 ·

〈
j
∣∣ r ∣∣ b̄j〉]2

εia + εjb − fii − fjj
, (4.13)

where Rij is the distance between the centers of orbitals i and j and εia signifies the quasi-

canonical energies for the OSV a for orbital i. This energy estimation is used both to estimate

weak pairs and can also to estimate the contribution of the correlation energy from pairs

that will thrown away during the full PNO-MP2 procedure.

4.2.3 Orbital-Clustered PNO MP2

To date, the use of orbital-based domains has focused on the most fine-grained construction

possible, where every single orbital (or orbital tuple) receives its own unique set of virtuals.

The main contribution of this work will be to show that a more coarse-grained partitioning,
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specific to clusters and pairs of clusters of orbitals, will lead to significant savings in the

context of PNO-MP2 based methods. While not shown, the same approach will also lead to

savings in PAO-based PNO coupled-cluster methods as well.

For example, consider computing integrals gij
ãij b̃ij

, which is one of the most expensive steps

in the formation of the PNOs. In this construction, the orthogonalization and removal of

linear dependencies of the PAOs in the domains of pair ij (taking the {µ̃} ∈ ij to the {ãij})

takes considerable effort since it requires solving a fixed size, but large, eigenproblem for

every single pair ij. But solving all of these eigenproblems likely leads to a large amount of

redundant work, since for many pairs {µ̃}ij is similar to {µ̃}kl, assuming that pairs kl and ij

are “similar”. In order to reduce the amount of redundant work, we propose the clustering of

localized occupied orbitals into spatially close groups and the sharing of a domain of PAOs

between all of the orbitals in the cluster. Then instead of needing to solve an eigenproblem

for each pair of orbitals ij we can solve one for each pair of orbital clusters IJ . Assuming

the size of the domains of the clusters is not significantly larger than the size of the domains

of the individual pairs, the savings can be significant. If each cluster of orbitals contains

exactly four orbitals then we will be able to solve one eigenproblem for 16 pairs at a time.

Moreover, the clustering of orbitals can make the transformation from AOs to PAOs signifi-

cantly more efficient by allowing for more effective data parallelism within the linear algebra

routines used for the integral transformations. This clustering is not without costs though.

The most obvious objection will be that the size of the PAO domains needs to grow, and that

it is not entirely obvious how to apply an intermediate basis of OSVs when this approach

is used. To address the question of how to go from gIJ
ÃIJ B̃IJ

to gIJ
ĀIJ B̄IJ

we formed OSVs

not for the diagonal pairs ii but instead formed OSVs for the diagonal clusters II. We did

this by summing all of the pair densities contained in the cluster II and then diagonalizing

the resulting matrix to determine a basis in which to represent the orbitals in the cluster
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Figure 4.1: Estimated performance improvements (approximate number of operations) in
the formation of gIJ

ÃB̃
and gIJ

ĀB̄
from clustering. Domain sizes were fixed such that pair ij

would have the same number of PAO and OSV functions as cluster pair IJ .

I. While this does slightly increase the cost of forming OSVs, it should not be large when

the sizes of the clusters are reasonable. In this work we were able to demonstrate significant

savings in time to solution by using clusters of LOOs even though the time needed to form

OSVs was slightly increased.

To estimate the performance gains that we could obtain in the formation of gIJ
ÃB̃IJ

and

gIJ
ĀIJ B̄IJ

we made a simple performance model,1 for 360 orbitals. In this performance model

we added up the cost of all major operations (Eigenvalue decompositions, Cholesky solver,

and matrix multiplications), ignoring prefactors and efficiency. This means that in our model

1 A Mathematica notebook to generate the data for Figure 4.1 is given in the supporting information
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an eigenvalue decomposition on an n×n matrix has the same cost as a matrix multiplication

between two n × n matrices. The results of our model can be seen in Figure 4.1 and show

that for relatively small orbital clusters there is a rapid improvement in performance, but

that as the sizes of the clusters grow the benefit tapers off. Of course in reality as the size

of the I clusters grow it is clear that the number of atoms in the domain of IJ must also

grow to retain accuracy. But for small orbital clusters, say less than 5 orbitals per cluster,

it should be possible for the sizes of the domains to increase only modestly or not at all.

Although there are many ways one might think to cluster orbitals, we made use of a method

that we had already used in a previous work (ref [130]). Where orbitals were clustered by

first determining their centers from the integrals 〈i | r | j〉 and then using a simple k-means

procedure to spatially group the orbitals. Technically, this procedure scales as O (n2), but

the time to form the integrals and to compute the clusters is insignificant relative to the

total time for PNO-MP2.

Finally, we did preliminary testing of clustered PNOs by summing the densities of every

pair ij in the cluster pair IJ , but the number of PNOs needed grew rapidly with increase in

cluster size (we also tested with averaged densities, which helped but did not eliminate the

issue). That is not to say that we never saw speedups relative to unclustered calculations

—we did— but we quickly realized that the majority of the speed up was due to the benefits

of sharing PAO domains between orbitals. Because of this we elected to switch exclusively

to forming PNOs only for individual pairs. Once an integral had been constructed (either

gIJ
ÃIJ B̃IJ

or gIJ
ĀIJ B̄IJ

) we unclustered it and found the PNOs using gij
ÃIJ B̃IJ

(or the OSV variant).

Essentially, after preliminary testing we determined that clustering was highly effective for

forming intermediate bases in which to find PNOs, but that, at least for MP2, PNOs really

do work best for pairs.

Throughout the paper we have used the general cluster notation of capital letters to refer to
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clustered indices, but in reality for the calculations performed in this work all indices that

were not LMO indices were clusters of hydrogen attached heavy atoms. This simplified the

work needed to determine thresholds and remains very similar to the atom based clustering

(domains) used in the vast majority of PAO and LDF work. We leave it to future work to

determine if clustering of other indices besides I and J is appropriate.

4.3 Implementation

In this section we will outline the actual implementation details of the work in this paper.

The development of our parallel O (n) PNO-MP2 code was largely based on references [41]

and [173], the majority of the implementation details are well handled in those papers, here

we will only discuss a basic outline of our strategy.

4.3.1 Sparse Maps

The concept of sparse maps, while falling under the domain of LDF, deserves a special

mention here. While the idea is certainly not unique, the term sparse map was coined in

the original set of DLPNO papers,[41, 42, 119, 120, 121] a sparse map between LMOs and

PAOs, SI→Ã, is nothing more than a boolean matrix of dimension number of orbital clusters

I by number of PAO clusters Ã with value 1 if Ã is important for orbitals I and 0 if not. In

the sparse map SI→Ã each row represents a single I and each column a single Ã providing a

simple way to determine if cluster A is in the domain of I. In a slight violation of our usual

notation we will represent indices of sparse maps not by subscripts, but by parenthesis such

that the element between orbital cluster J and PAO cluster B̃ in the map, SI→Ã, is given

by SI→Ã(J, B̃). This way of thinking about sparse maps allows for easy construction of the
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PAO domains for pairs IJ as unions by simply summing the pairs of orbital rows of SI→Ã

SIJ→Ã(KL, B̃) = SI→Ã(K, B̃) + SI→Ã(L, B̃). (4.14)

Similarly we can construct new sparse maps from two other maps that share an index. A

sparse map for auxiliary blocks X and PAO blocks Ã can be constructed as:

SX→Ã(Y, B̃) =
∑
J

SI→X(J, Y ) ∗ SI→Ã(J, B̃), (4.15)

by contracting over the J index. Map SX→Ã tells us which combinations of auxiliary function

blocks and PAO blocks were connected by at least 1 orbital block, information that is useful

the for the O (n) construction of LDF integrals. We see that Equation (4.15) is really just a

matrix multiplication of SI→X and SI→Ã,

SX→Ã = S†I→XSI→Ã (4.16)

This realization opens the door to a generalization of sparse maps to weighted maps where

each element is not a boolean, but instead an integer or floating point number representing

the importance of the connection between two indices. This generalization was not explored

in this work but should be looked into in future work. Lastly, we should not fail to mention

that others have worked with similar ideas.[115, 173]

4.3.2 Sparse Map Construction

There are several sparse maps which are needed for the O (n) construction of LDF integrals,

discussed in Section 4.3.3, they are SI→Ã the orbital PAO map, SI→X the orbital auxiliary

map, SI→M the orbital to AO map, SI→J a map that defines the list of significant pairs
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—here computed with the OSV-SC-DIP approach using threshold tcutIJ—, SM→N a map

of AO block pairs, and SX→M a map between auxiliary and AO blocks. Lastly, there were

two maps SU
I→Ã and SUI→X that represent the unions of all important Ã and X for every J

in I or more formally:

SU
I→Ã(K, B̃) =

∑
L

SI→J(K,L)SI→Ã(L, B̃), (4.17)

where SUI→X was formed in the exact same way.

SI→Ã and SI→X were formed based on Mulliken populations via the matrix Λ constructed

as:

ΛMI = LRI
∑
N

SMNLNI , (4.18)

where L is the matrix of LMOs and S is the AO overlap. Once Λ has been constructed

domains for SI→Ã were chosen if the norm of ΛMI was larger than a threshold tcutIA and

SI→X domains were chosen the same way except that a threshold tcutIX was used. We

require that Ã, M , and X all have the same clustering structure. In this work each was

clustered by hydrogen attached heavy atoms. This was mainly done because the limited

number of basis functions that typically appear on hydrogen makes linear algebra over the

hydrogen only blocks inefficient.

Next, we truncated the blocks of LMO coefficients that had norms less than a parameter

tcutC and the structure of SI→M was initialized based on the remaining blocks of the LMOs.

Next we formed a map SM→Ã based on the sparse block structure of the PAO projector and
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farther pruned SI→M elements according to the following:

SI→M(J,N) =


SI→M(J,N), If 0 <

∑
B̃ SUI→Ã(J, B̃)SM→Ã(N, B̃)

0, If 0 =
∑

B̃ SUI→Ã(J, B̃)SM→Ã(N, B̃)

 (4.19)

In this way a block connection in SI→M was only important if it was important in the LMOs

and if for the orbital block J there was a PAO block that interacted with AO block M , unlike

in other works we did not truncate our PAO projector beyond the default block truncation

of 10−11 used by TiledArray.

SM→N was initialized based on the estimated norm of the (MN |MN) integrals obtained by

Schwarz screening, using a threshold tcutRS, and then its intersection was taken with the

result of S†I→MSI→M .

Finally, the map SX→M was formed from the product (SUI→X)†SI→M . Once all of these maps

have been defined it is rather easy to construct the integrals needed for LDF in a linear

scaling fashion.

4.3.3 O (n) LDF

To construct the (Y |IÃ) integrals in O (n) complexity we took advantage of TiledArray’s

sparse GEMM capability and a feature that allows for construction of only selected output

blocks. Given the sparse maps from the previous section is is rather trivial to determine the

needed output blocks. Our construction followed the next three steps:

• Construct all blocks (Y |RS) where SX→M(Y, S) ∗ SX→M(Y,R) ∗ SM→N(R, S) > 0

• Next perform the contraction ZY
JR =

∑
S(Y |RS)LSJ constructing output blocks only

when SUI→X(J, Y ) ∗ SI→M(J,R) ∗ SX→M(Y,R) > 0



110 Chapter 4. Linear Scaling Parallel Pair Natural Orbital MP2

• Finally, perform the contraction ZY
JB̃

=
∑

R Z
Y
JRPRB̃, where P is the PAO projector,

forming output blocks only when SU
I→Ã(J, B̃) ∗ SUI→X(J, Y ) > 0, we did not try to use

a map SX→Ã because forming it from SU
I→Ã and SUI→X would be redundant.

The screening of the above three contractions using the sparse maps as described is suffi-

cient to construct all (Y |IÃ) blocks needed to form the (IÃ|JB̃) integrals used for PNO

construction with O (n) complexity.

The distribution and parallelization of integral construction is handled via TiledArray.

The sparse maps algebra is formally O (n2) and serial, but it is extremely efficient and was

not noticeable in any of our calculations.

Finally, the integrals gIJ
ÃB̃

are constructed in the standard way using the Cholesky decom-

position of (YKL|ZKL) with domains SI→X(K,W ) + SI→X(L,W ). The distribution of the

final integral formation step is done jointly with the formation of PNOs and is described in

Section 4.3.4.

4.3.4 Pair Distribution

Once the (Y |IÃ) integrals are available we chose to form PNOs for i ≥ j in a round robin

fashion over nodes, where each node would request the blocks of (Y |IÃ) that were needed

for the pairs that it had been assigned. Other matrices that were needed: the PAO overlap,

the PAO Fock matrix, and (X|Y ) were replicated across all nodes to avoid communication.

To avoid repeated request for integrals each node kept a cache of blocks that it had already

requested. Once the pair specific data had been computed for each pair had been computed

all the relevant terms (gijaijbij , eigenvalues of Faijbij , etc.) were shipped to the final destination

of that pair.
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Once the PNOs were formed the terms needed for Equation (4.6) were distributed by orbital

index j. We also distribute all ij pairs this way, not just i ≥ j, allowing each node to compute

all of the overlaps that and most of the residual terms it needs without data movement.

4.4 Computational Details

4.4.1 Software

Our implementation of these ideas took place in a developmental version of the Massively

Parallel Quantum Chemistry (MPQC) package,2 which takes advantage of the sparse tensor

algebra provided by the library developed in our group TiledArray.[93]

The Hartree-Fock reference for all MP2 calculations was computed using the direct RI-RHF

wavefunction avalible in MPQC and a TiledArray sparse threshold of 10−11 was used

throughout for all sparse tensor contractions.

The code used was compiled using the g++ 6.1.0 compiler with compiler flags ‘-O3 -

DNDEBUG -std=c++14’. The 2017.0.098 serial version of MKL was used for BLAS and

Lapack calls.

4.4.2 Hardware

All computations were carried out on Virgina Tech’s NewRiver system where each node has

2 Xeon E5-2680v3 2.5ghz Intel processors, with 24 cores and is available with either 128 GB

or 512 GB of RAM. Each node has a theoretical peak performance of 960 Gflops/s with a

measured peak of 780 Gflops/s in Intel MKL’s DGEMM routine.

2 An older version of the project can be found at https://github.com/ValeevGroup/mpqc

https://github.com/ValeevGroup/mpqc
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4.5 Results

4.5.1 Basis Sets and Molecules

In this work, we tested our O (n) PNO-MP2 implementation on linear n-alkanes generated

using OpenBabel[94] and three dimensional water clusters, the construction of which is

outlined in reference [36], and which are publicly available online.[95] Finally, we tested

our method on the 10 largest (in number of atoms) molecules in the Rx200 database, from

reference [62].

4.5.2 Proof of O (n)

For proof of linear scaling we used thresholds of tcutIX = 10−4, tcutIA = 2× 10−4, tcutIJ =

10−6, and tcutPNO = 10−8 which were sufficient to achieve approximately 99.9% accuracy

for both linear n-alkanes and water clusters. For n-alkanes Figure 4.2 shows that we rapidly

achieve a near linear scaling of O (n1.1) measured from C50H102 to C80H162. Waters do not

scale as well, but Figure 4.3 shows that we achieve O (n2.74) complexity going from (H2O)47

to (H2O)76, which is significantly more performant than RI-MP2.

4.5.3 Parallel Efficiency

To test the distributed-memory performance of our code we tested n-alkanes from 1 to 24

nodes in Figure 4.4 and the overall scaling was pretty poor with only about a 2 times increase

in performance from 1 to 24 nodes for C80H162 in def2-TZVP. But importantly the PNO

formation part of the code scaled acceptably well achieving about 50% parallel efficiency,

and only taking about 6 seconds for the 16 node calculation. The parts of the code that do
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not scale well, or at all, such as the formation of the SM→N and the SI→J start to become

bottlenecks for linear systems such as n-alkanes. Water clusters on the other hand, shown in

Figure 4.5, exhibit decent parallel scaling for all important steps. The two most costly steps,

the formation of PNOs and the computation of (Y |IÃ) both achieved greater than 50%

efficiency when going from 1 to 16 nodes and still has high efficiency all the way to 32 nodes.

Currently we make no effort to optimize the distribution of work except to distribute the

pairs of ij by orbital index j for the residual equations. The PNO formation is distributed by

round robin and integrals are distributed with TiledArray’s default distribution. Neither

of these is likely the ideal distribution to minimize communication of our data. An obvious

strategy to improve the scaling of both the (Y |IÃ) formation and the PNO formation is to

attempt to minimize the communication needed between PNO pairs for both steps. Two

such strategies could be hierarchical clustering of indices or the use of graph partitioning

algorithms. We suspect that either of these approaches would show a large increase in the

scalability for linear molecules where the bandwidth of the SI→J is easily minimized, but the

effect for three dimensional systems should be less pronounced.

4.5.4 Effect of Clustering LMOs

During the development of our O (n) PNO-MP2 code we noticed that many ij pairs have

very similar PAO domains. Given our experience using TiledArray, which already requires

clustering for efficiency, it was relatively easy to adapt our code to allow for clustering of

occupied orbitals i into groups of orbitals I.

To test the real world performance of clustering we choose our clusters to have an average

of 4 orbitals per cluster and we choose new parameters for tcutIA, tcutIX, and tcutIJ, while

tcutPNO = 10−8 was kept constant throughout all calculations. This was done to keep
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Figure 4.6: Effect of clustering occupied orbitals for n-alkanes with an average of 4 orbitals
per cluster.

the final number of ij pairs, the number of domains, and the accuracy similar. Although

not a perfect comparison; no calculations reported are below 99.8% error and usually the

calculations with clustered LMOs have very similar errors. The parameters for the clustered

calculations were tcutIA = 6 × 10−4, tcutIX = 10−4, and tcutIJ = 3 × 10−5. For water

clusters we also tested an even looser set of parameters tcutIA = 8 × 10−4, tcutIX = 10−3,

and tcutIJ=4× 10−5.

To start, we look at the effect of clustering on n-alkanes in Figure 4.6 and see that while

not drastic, clustering does decrease the time to solution and makes a large —but not

quite the estimated 5 times— improvement in the cost of computing the semi-canonical

gIJ
ÃIJ B̃IJ

integrals and thus reduces the time needed to compute PNOs by more than half.

But it appears that clustering did not help improve the integral computation time, we

believe this is because the integrals are already very fast for n-alkanes and that a significant

portion of the integral time is actually preparing the sparse maps and performing Schwarz

screening, both steps that do not gain from clustering. In the case of n-alkanes the parameters

that were chosen actually increased the accuracy of the calculations while improving the

performance. For waters the effect is even more pronounced as can be seen in Figure 4.7,

with the largest loose parameter clustered calculation taking a total of 2236 seconds versus
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about 6800 seconds for the calculation in which clusters were not used. Our calculations

that do not take advantage of clustering only become faster than our implementation of

RI-MP2 around (H2O)47, but both the clustered calculations cross over with the canonical

method before (H2O)5. While impressive, it is likely that the block sizes chosen to make

RI-MP2 efficient at large systems sizes are too large for maximally efficient small molecule RI-

MP2, still though this early crossover was unexpected and welcome. For the more accurate

calculations using orbital clusters we observed a speed up in the formation of g of 3.4 and a

speedup in overall PNO formation of 2.1. In order to try and get closer to the theoretical 5

times speed up that 4 orbital clusters could bring to the semi-canonical integral formation

we chose the loose parameters for the water clusters to try and bring the average number of

waters in the maps SIJ→X and SIJ→Ã to be as close as possible to the calculations without

clusters. To that end the clustered calculations with loose parameters spent a total of 8042

seconds (accumulated over tasks) in the formation of gIJ
ÃIJ B̃IJ

while the calculations that

didn’t use clusters took about 54820 seconds a 6.8 times improvement! We are able to

best the performance improvement of our model likely because the model ignores operation

prefactor, but in reality the eigenvalue decompositions used for semi-canonicalization, which

all ij ∈ IJ can share, have a much higher prefactor than the contractions that form g. It

is clear that trying to match the domain sizes does result in a small loss of accuracy, but

as the n-alkanes calculations show it is possible to maintain accuracy while at the same

time improving the performance. Finally, for water clusters we see that the computation of

(Y |IÃ) improved by about 2.2 times, which we attribute to more performance friendly block

sizes in the integral contraction steps.

It is clear that clustering can lead to large performance improvements in g formation. Per-

haps more importantly clustering of LMOs can improve the efficiency of (Y |IÃ) formation

by allowing more optimal blocksizes for GEMM operations. Clustering is the ideal way to
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Figure 4.7: Effect of clustering occupied orbitals for water clusters with an average of 4
orbitals per cluster. The definition of Loose is defined in the text.

take advantage of the fact that many ij pairs, while having different PNO spaces share a

very similar PAO space thus groups of pairs from clustered orbitals can share semi-canonical

transformations as demonstrated here. Distributed-memory scaling performance of clus-

tered PNOs is not shown here because at present the clustering makes exploitation of the

fine grain task parallelism more complicated leading to their being too few tasks to effectively

parallelize over hundreds of threads. This should be relatively easy to fix in future work by

changing the formation of PNOs for all pairs in IJ from a single task to individual tasks for

all pairs ij ∈ IJ , giving about the same amount of parallelism that is available in the code

that does not cluster.

To show that the idea of orbital clustering and specifically the use of an average of 4 orbitals

per cluster is not somehow unreasonably useful for water clusters we applied it to the 10

largest molecules in the Rx200 set of commonly prescribed drug molecules (here called Rx10)

the results are shown in Figure 4.8 demonstrating that is is relatively easy to achieve about

a 2 time improvement in the total PNO-MP2 time just by orbital clustering.
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Figure 4.8: Performance and accuracy of our O (n) PNO-MP2 for the ten largest molecules
in the Rx200 molecule set.
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4.6 Conclusions

In this work we demonstrate a distributed-memory O (n) PNO-MP2 implementation that

can exploit the similarity of auxiliary and PAO domains for small clusters of LMO orbitals.

The use of clustered orbitals for 76 waters in an augmented double zeta basis allowed us to

improve the total PNO-MP2 time by 3, the time for forming (X|IÃ) by 2.7, the time spent

forming PNOs by 3.5, and the time spent semi-canonicalizing and forming PAO integrals

by 6.8, all while maintaining a similar level of accuracy. It is clear that LMO clustering is

a valid strategy to improve the efficiency of both PNO formation as well as the efficiency

of the integral transform step required to form PNOs. All calculations shown in this work

matched their RI-MP2 energies to greater than 99.8%, without the use of any corrections,

such as a dipole dipole estimate for weak pairs, to the PNO-MP2 energy. Thus we could

further improve the accuracy of our methods with these corrections. A simple performance

model also showed that our clustering strategy should apply equally well to methods that

use OSVs as an intermediate basis, although it would require OSVs for the orbital clusters

II as opposed to just single orbitals ii. We do not foresee this being a large issue since our

code currently computes these II OSVs for the construction of SI→J , and in the case of 76

waters the time to compute II OSVs (with an average of 4 orbitals per cluster) was only

about twice as expensive as constructing OSVs for ii.

Future development will consist of the following steps:

• improve the distributed-memory performance of clustered LMOs by adding more fine

grain parallelism.

• add the option of using OSVs as an intermediate basis

• internally adapt the threshold parameters with respect to the clustering of LMOs,
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instead of requiring input modification

• continue the development of PNO-CCSD in MPQC

• implement linear scaling F12 corrections in MPQC
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Summary

124
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5.1 Recap

This dissertation has really been a study in approximation via factorization within the LCAO

electronic structure framework. We started out in Chapter 1 by realizing that Hartree-Fock

theory is a particular type of factorization of the true wavefunction Ψ, and is in some sense

the best rank 1 approximation of Ψ. It turns out that while Hartree-Fock is able to obtain

the majority of the total energy for a molecule, it is not accurate enough for quantitative

prediction —really it is not even always accurate enough for qualitative prediction either. It

turns out that we can improve the quality of our approximation by taking linear combinations

of Slater determinants and thus increasing the rank of the approximation. We briefly covered

several methods for determining this expansion including configuration interaction, coupled

cluster, and MP theory.

Next we talked about another approximation called density fitting which tries to represent

the product of two functions as a linear combination of single functions. We found in

Chapter 1 that density fitting of the four-center two-electron integrals was an effective way

of reducing the cost of the molecular orbital transformation, in Chapter 2 that it could lead

to a reduced prefactor in Hartree-Fock, in Chapter 3 that further approximations could even

lead to O (n) scaling of Hartree-Fock, and finally in Chapter 4 that local density fitting is

an important part of linear scaling correlation treatment. I suppose this paragraph really

makes a good case that this thesis is really the story of density fitting. It is only the main

focus of Chapter 3, but it really is the tool that makes all of the work in this document

possible. CLR with four-center integrals has a massive compression percent, but the amount

of memory needed is still much too large to store in RAM. Linear scaling computation of

the exchange term in Hartree-Fock is now over 20 years old, but in practice four center

integrals are so costly that often density fitting, let alone reduced scaling density fitting,

still pays off from medium sized molecules in realistic basis sets. Finally, the difficulties in
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molecular integral construction when using PNOs are largely alleviated when density fitting

is used, making PNO based correlation methods useful for large systems. Density fitting and

especially local density fitting are not perfect though, they require special basis sets, depend

heavily on error cancellation, and it is still an open problem on how to best achieve O (n)

scaling of Hartree-Fock and even post Hartree-Fock methods when using it. For example, in

O (n)-PNO correlated methods eventually, for large enough systems, computation of local

density fitting integrals will become the bottleneck.

5.2 Ideas and Future Directions

Ultimately the use of O (n) correlation methods will open up areas of research that until now

have been the domain of either semi-classical treatment or parameterized methods. Given

the large number of calculations on water clusters presented, it should come as no shock that

one area where highly efficient methods can make a difference is in the study of the behavior

of bulk water. To the lay observer it might seem surprising that there is still much we do

not understand about the nature of possibly the most important substance, for life, on our

planet —water. But even in 2018 we are still hard at work trying to pin down the exact

details of the smallest of water clusters, the dimer![211] But to make quantitative predictions

and develop a general model for bulk water we must go larger than just the water dimer, for

example, the water hexamer is the first cluster to exhibit pronounced 3D structure making

it an obvious staring point on the quest to understand the properties of bulk water.[212]

It is well known that the potential energy surface of water clusters is both complicated

and full of local minimum, necessitating the use of high accuracy methods if we want to

determine the true structure of larger water clusters.[213] But these larger clusters have too

many atoms and arrangements to be treated by traditional accurate wavefunction methods
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(such as CCSD(T)). To cope with this one strategy is to create models that combine highly

accurate calculations, on very small water clusters, with many body methods.[214] But these

methods require at least two things from ab initio calculations: 1) that the potential energy

surface of small clusters can be simulated by many thousands of individual calculations on

different geometries and 2) that the results of the model can be validated against ab initio

methods for small to medium sized clusters.

Finally, we see where our O (n) correlated methods come into this. While perhaps one day

ab initio methods may allow for on-the-fly calculations of the interactions of a large number

of waters possible, a more near term goal is to allow for the parameterization of models not

with dimers and trimers, but with hexamers and larger n-mers. Due to the 3D nature of

these larger clusters their use could allow for a more accurate models. Also massively parallel

O (n) methods will allow for the benchmarking of these models on systems that more closely

resemble the bulk water they intend to represent.

Many developments are needed before this type of undertaking is possible though. To ac-

curately describe large water clusters we need more accurate methods than MP2, CCSD

and CCSD(T) being good examples. Next, we would need the development of analytic force

computations. Both of these tasks are non-trivial, but the work of this document coupled

with the work of references [41, 42, 119, 120, 121, 172] and [170, 171, 173, 174, 175] provide

a path toward achieving these goals. Efficient O (n) methods are still in their infancy, but

one day make make the calculations described in this section actually worth attempting.

Now that I have outlined one possible future use of O (n) methods, I will outline some ideas

that I did not attempt or see to completion as a graduate student, but that I think are good

ideas or are obvious follow-ups to the work in this document:

• Potentially the most pressing task should be a massively parallel implementation of
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O (n) PNO-CCSD, while not really interesting anymore from a flag planting standpoint

since other implementations already exist, a truly massively parallel version would

allow for CCSD calculations on molecules having potentially thousands of atoms. This

coupled with linear scaling F12 corrections has the potential to allow wavefunction

based methods to be used for systems that previously were exclusively within the

purview of density functional theory.

• A truly efficient and accurate linear scaling CCSD(T) or CCSDT implementation.

Unlike CCSD this is somewhat of an unsolved problem. It seems that we are getting

close, though. The groups of Werner and Neese are both hard at work on this problem.

The real benefit to including the triples correction is that suddenly true quantitative

accuracy becomes possible for many systems of chemical interest.

• Semi-exact integral approximations, this is an idea that is very similar to H-matrix

and H2-matrix approaches, where certain blocks or regions of a matrix or tensor are

not approximated. A former postdoc in our group David Hollman explored this idea

where certain blocks of the four-center two-electron integrals were computed exactly

and the rest were computed using CADF. It turns out that it works exceptionally well

... until it does not. Edward and I tried something very similar which was to compute

certain blocks of the density in Hartree-Fock with exact four-center integrals and then

compute the other blocks with CADF. We found amazing results, where for some basis

sets, without diffuse functions, we could achieve better errors than density fitting at

roughly the cost of linear scaling CADF, the best of both worlds if you will. There

was a hidden danger though, we were subtly altering the spectrum of (µν|ρσ) and once

diffuse functions entered the basis SCF convergence sometimes catastrophically failed

so we abandoned the idea. I think this avenue might still be the best way to achieve

a truly reduced scaling Hartree-Fock implementation, but it is not yet clear to us how
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to maintain the positive definiteness of the integrals in an efficient way.

• The CLR contraction implementation is far from optimized and I think my biggest

regret is not having put more effort into making it efficient. Also, CLR is very perfor-

mant for DF-J in Hartree-Fock, but because J is rarely a bottleneck it is hard to get

excited about this.

• Finally, we really could use better distributed memory linear algebra that does not

depend on uniform blocksizes, but that is a pipe dream that I would not hold my

breath for.
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