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Identifying Evolutionarily Conserved

Protein Interaction Networks

Corban G. Rivera

(ABSTRACT)

Our goal is to investigate protein networks conserved between different organisms. Given the

protein interaction networks for two species and a list of homologous pairs of protein in the two

species, we propose a model for measuring whether two subnetworks, one in each protein interac-

tion network, are conserved. Our model separately measures the degree of conservation of the two

subnetworks and the quality of the edges in each subnetwork. We propose an algorithm for finding

pairs of networks, one in each protein interaction network, with high conservation and high quality.

When applied to publicly-available protein-protein interaction data and gene sequences for baker’s

yeast and fruit fly, our algorithm finds many conserved networks with a high degree of functional

enrichment. Using our method, we find many conserved protein interaction networks involved

in functions such as DNA replication, protein folding, response to heat, protein serine/threonine

phosphatase activity, kinase activity, and ATPase activity.
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Chapter 1

Introduction

Genome scale biological assays measure many facets of cellular state. Genome sequencing, protein-

protein interaction assays, protein-DNA binding experiments, and DNA microarrays are some of

the sources of high-throughput biological data. With the extent of whole genome data available,

biologists have the capability to make inferences and hypothesis on a much broader scale than

before. The field of systems biology has emerged to study the mechanisms controlling many intri-

cate biological processes. Systems biologists construct mathematical models of biological systems

and computational methods to organize, analyze, and reason about the influx of high-throughput

biological data. The aim is to understand a cell not just as a collection of individual molecules but

as a set of modules that behave coherently and interact with each other.

We want to find modules in protein-protein interaction networks. Such a module is a set of inter-

acting proteins that perform a specific task in the cell. Many such protein interaction modules are

1
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likely to be conserved in many organisms, especially if they perform fundamental activities in the

cell. Motivated by these hypotheses, in this thesis, we will address the question of finding evo-

lutionarily conserved protein-protein interaction networks (PIN) among phylogenetically related

species.

1.1 Protein-Protein Interaction

Many biological processes require the collaboration of groups of proteins,which act together as a

complex. Protein complexes can be formed by covalent protein interactions,1 ionic and hydrogen

interactions,2, 3 and electrostatic interactions.3, 4 To detect these physically interacting proteins, bi-

ologists have developed high-throughput assay techniques. Most recently the two-hybrid technique

has been employed on yeast5–7 and fly.8 The two-hybrid protein interaction detection mechanism9

works by generating a signal if a pair of query proteins interact. Specifically, the signal generated

in the two-hybrid assay is the transcription of an indicator gene. For this gene to be transcribed, the

transcription factor that activates the gene must contain both a sequence binding and an activation

domain. In the high-throughput two-hybrid experiment, every gene in the genome is cloned and

augmented with a sequence binding domain. Another clone is made with each gene containing

an activation domain. Clone pairs from the cross product of the activation and binding domain

sets are systematically tested for resulting transcription. If the pair of clones bind to form a com-

plete transcription factor, the indicator gene is transcribed. From the pairs of clones that activate

transcription of the indicator gene, the set of interacting proteins is derived.
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Co-immunoprecipitation is another method to discover interacting proteins.10 The interaction de-

tection mechanism works by isolating a bait protein and any proteins bound to the bait. The bait

protein is cloned and augmented with a antibody binding tag. To isolate the bait from whole cell

lysate, an antibody which is known to bind to the antibody tag on the bait is added. Next, a G-

protein, known to bind to most antibodies, is used to extract the antibody, bait protein, and any

proteins bound to the bait protein.10 Subsequently, the purified protein complex is denatured into

its component proteins for identification. The experiment yields a complex of two or more proteins

containing the bait is derived. Co-immunoprecipitation has been applied on a genome wide scale

to detect many protein complexes.11

While protein interactions have potential to provide many useful insights into fundamental bio-

logical questions, high-throughput biological assays to detect protein-protein interactions may find

many interactions that do not take place in the cell.12

1.2 Genome Sequencing

The genome of an organism supplies all the information to create and sustain an organism. To

date, biologists have sequenced more and 220 genomes13 including bacteria, archaea, and higher

eukaryotes.14–17 The goal of genome sequencing projects is to identify the primary sequence of the

entire genome.

To begin sequencing, the human genome project used a method called hierarchical shotgun se-

quencing. In hierarchical shotgun sequencing, the whole genome is initially cut with into fragments
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of about 150 million bases. Biologists insert the fragmented sequences into a bacterial artificial

chromosome (BAC). Subsequently, the BAC is transfected into E. coli to be cloned. To allow se-

quencing on smaller fragments, biologists use shotgun sequencing to break the initial fragments

into smaller fragments. By looking for sequence overlap at the ends of the fragment, computa-

tional methods align the smaller sequenced fragments. With the BAC library sequenced, the whole

genome primary sequence is identified.16, 17

1.3 A Survey of Evolutionary Conservation Studies

Biologists have found that organisms have intrinsic parent-child phylogenetic relationships.18 Ex-

ploiting knowledge of evolutionary relationships, comparative genomics uses the wealth of DNA

sequence data generated from genome sequencing projects to discover similarities between bio-

logical features of different organisms. Once more than one genome was sequenced, researchers

developed methods to compare genomes. Using local alignment, algorithms were developed to lo-

cate regions in the genome with high sequence similarity.19 Each DNA sequence alignment reveals

evolutionary relationships between genes in different organisms.

1.3.1 Conserved Genes

Comparative genomics helps determine the evolutionary relationships between genes by compar-

ing the gene sequences of related organisms.20 Individual genes can be evolutionarily conserved.21

Conserved genes contain similar sequence motifs.22 We refer to a pair of genes with shared ances-
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try as a homologous pair of genes. The conserved motifs found in the sequence of genes provide

a mechanism to systematically compare genes in the search for homologues. We refer to a pair

of homologous genes from different organisms as an orthologous pair of genes. Local sequence

alignment search tools for comparative genomics like BLAST help identify orthologous pairs of

genes in different species.23

1.3.2 Conserved Interactions

The notion of a conserved interaction or interlog was first proposed by Walhout et al.24 Using

BLAST to find genes in different organisms with high sequence similarity, Walhout et al. con-

structed a set of potential orthologues. Given a pair of interacting proteins a and b in one organism

and a pair of interacting proteins a′ and b′ in another Oona’s, the quadruple {(a, b), (a′, b′)} is an

interlog if a and a′ are orthologous and b and b′ are orthologous. Knowing that a and b interact,

Walhout et al. suggested that a′ and b′ might also interact. Yu et al.25 continued the work by

specifying a joint confidence score to be assigned to pairs of orthologous edges. Yu et al. compute

the joint confidence e-value in an interlog {(a, b), (a′, b′)} J as the geometric mean of the BLAST

e-values of two homologous pairs (a, a′) and (b, b′. If the geometric mean of the two e-values is

less than 10−70, Yu et al. say that interactions can be transferred. Yu et al. suggest 90,000 possible

interactions to be transferred from yeast to worm. Yu et al. found that 45 suggested annotations

overlapped with known protein-protein interactions.
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1.3.3 Conserved Paths

By finding that protein pathways and complexes are typically either conserved or eliminated from

genomes, Pellegrini et al.26 inspired the search for conserved networks. In the study, annotations

of known complexes or pathways were transferred to orthologous complexes or pathways in other

organisms. Kelly et al.27 extended the notion of conserved interactions to conserved paths. Kelly et

al. convert two protein-interaction networksN(V,E) andN ′(V ′, E ′) and a relation of homologous

gene pairs θ into a combined protein interaction network U(θ, Z) such that ((a, b), (c, d)) ∈ Z if

the length of the shortest path in N between proteins a and c is less than 3 and the length of the

shortest path in N ′ between proteins b and d is less than 3 for all (a, b) ∈ θ and all (c, d) ∈ θ.

Conserved paths consist of two paths < a1, a2, . . . , an > and < a′1, a
′
2, . . . , a

′
n > where ai ∈ V

and a′i ∈ V ′ and ai is homologous to a′i for 1 ≤ i ≤ n. Gaps and mismatches are used to allow

non-homologous genes to be included in the path. A gap occurs when ai interacts with ai+1 but a′i

and a′i+1 do not directly interact. A mismatch occurs when ai and ai+1 do not directly interact and

a′i and a′i+1 do not directly interact. A conserved path is a path P in U(θ, Z). A combined score

S(P ) defines the confidence assigned to the nodes v and edges e in the path P .

S(P ) =
∑

v∈P
log10

p(v)

prandom
+
∑

e∈P
log10

q(e)

qrandom

In this score, p(v) denotes the probability of true homology for vertex v ∈ θ. q(e) represents the

probability that the underlying interaction edges represent a protein interaction that takes place

in the cell, and prandom and qrandom are the expected values of p(v) and q(e) respectively in the
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combined protein interaction network U(θ, Z).

Kelly et al. use dynamic programming to search for conserved pathways in an acyclic combined

interaction graph U(θ × θ, Z). Constraining the length of the path l, the highest scoring path in

an acyclic graph can be found in linear time using dynamic programming. As U(θ × θ, Z) is

not typically acyclic, many acyclic subgraphs of G are constructed. The results from the acyclic

subgraphs are compared, and the top scoring paths are reported. Between yeast and bacteria, Kelly

et al. find the mitogen-activated protein kinase (MAPK) signaling and ubiquitin ligation pathways.

Further work on conserved paths incorporated models of evolution. Koyuturk, Grama, and Sz-

pankowski also construct a combined protein interaction network.28 Like the previous model by

Kelly et al., direct interactions in the combined protein interaction network improve the score.

Likewise, the score is reduced by the occurrence of gaps. The novel feature in the model is the

integration of evolutionary forces that result in gene duplication. With the understanding that gene

duplication decreases the conservation of function, a penalty for gene duplication is incorporated

into the score for conserved interactions. Given two protein-interaction networks N(V,E) and

N ′(V ′, E ′) and a relation of homologous gene pairs θ, a combined protein interaction network

U(θ, Z) such that ((a, b), (c, d)) ∈ Z if πN (a, c) < 3 and πN ′(b, d) < 3 for all (a, b) ∈ θ × θ and

all (c, d) ∈ θ×θ. To evaluate the evolutionarily conservation between a set of nodes from different

organisms P ∈ V and Q ∈ V ′, Koyuturk, Grama, and Szpankowski construct the set M ⊆ Z such

that ((u, u′), (v, v′) ∈M if u and v interact with u′ and v′ respectively; the set of gaps G ⊆ Z such

that ((u, u′), (v, v′) ∈ M if either u interacts with u′ or v interacts with v′; and the set D ∈ θ such

that (a, b) ∈ D if a, b ∈ V or a, b ∈ V ′. With the sets M , G, and D defined, the score S(P,Q)
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becomes.

S(P,Q) :
∑

m∈M
µ(m)−

∑

g∈G
ν(g)−

∑

d∈D
δ(d)

Different choice for the scoring functions µ, ν, and δ alter the conserved paths returned by the algo-

rithm. Koyuturk, Grama, and Szpankowski search for conserved pathways of maximum weight in

the combined network. For each node in the combined network, they repeatedly add the node to the

conserved pathway such that the score is reduced the most. Koyuturk, Grama, and Szpankowski

find a conserved portion of the DNA-depended transcription regulation pathway shared between

mouse and human protein interaction networks. They also find the transforming growth factor beta

receptor signaling pathway conserved between mouse and human protein interaction networks.

1.3.4 Conserved Complexes

Previous research has shown that dense subgraphs in protein interaction networks correspond to

functionally coherent protein complexes. Researchers modeled the dense subgraphs by either

cliques,29 quasi-cliques30 or other dense subgraphs with high average node degree.31 Extending

the technology developed by Kelly et al. to find conserved complexes, Sharan et al.32 designed

a method for finding evolutionarily conserved complexes. They begin by creating a model of a

complex in a single protein-protein interaction network. For control, their probabilistic model con-

tains a conserved complex model Mc and a null model Mn. Assuming a clique-like organization

for conserved complexes, the conserved complex model assumes that all pairs of proteins in the
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complex interact with a high probability β. In contrast, the null model assumes that pairs of pro-

teins in a complex interact with a probability equivalent to the probability that any two proteins in

the network interact. For a subset of nodes O and a set of interactions among those nodes OU in

the network, a log likelihood ratio is used to generate a score L(U) for O. The score under the

conserved complex model for a set of nodes O represents the similarity of the set of nodes to the

conserved complex model compared to the random model.

L(U) = log
P (OU |Mc)

P (OU |Mn)

Since it is unknown if an observed protein-protein interaction takes place in the cell, the model

uses conditional probabilities to score the likelihood of true interaction.

Subsequently, the conserved complex model is extended from a single protein interaction network

to a combined protein interaction network. As described previously, the combined protein in-

teraction network aligns two protein interaction networks N(V,E), and N ′(V ′, E ′) and relation

between homologous gene pairs (a, b) ∈ θ. For a set of genes from each organism U ⊆ V and

U ′ ⊆ V ′, the log likelihood ratio becomes the following.

L(U,U ′) = log
P (OU |Mc)

P (OU |Mn)
+ log

P (OU ′|Mc)

P (OU ′|Mn)

In a combined protein interaction network graph, nodes correspond to pairs of orthologous genes.

As BLAST e-values are used to determine orthology between genes, it is unknown if a pair of puta-
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tive orthologues are truly orthologous. Conditional probabilities are used to model the uncertainty

of homology.

With this probabilistic model for conserved complexes, Sharan et al. define a complete weighted

orthology graph to search for conserved complexes. In the combined protein interaction graph,

nodes have a weight corresponding to the likelihood of orthology between the genes corresponding

to that node. Edges in the complete weighted orthology graph have two weights associated with

them. The two weights correspond to the probability of interaction for the two interaction edges of

the interlog.

The search algorithm first constructs a set of high weight graphs of size at least three then the

algorithm refines each such graph using an iterative process. The iterative process either removes

low scoring nodes in the complex or adds high scoring neighbors. The process converges when

neither removing nodes nor adding nodes increases the conserved complex score. Sharan et al. say

that the highest scoring graphs are putative conserved complexes. Sharan et al. find 11 conserved

pathways using the conserved complex model. Also, Sharan et al. suggest a functional annotation

for a few bacterial proteins involved in a nuclear pore complex.

1.4 Contributions of this Thesis

Previous research confirms that protein interaction networks are conserved in different species.33, 34

Given the protein-protein interaction networks of two organisms, this thesis addresses the problem

of finding subnetworks in each protein-protein interaction network that are evolutionarily con-
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served. In order to facilitate the computation of biologically significant conserved networks, we

develop a formal model of conserved networks. Our model requires that conserved networks have

two properties. First, the genes in the conserved networks must share a high degree of evolution-

ary conservation. Secondly, each protein-protein interaction in a conserved network must be of

high confidence. Given our model for conserved networks, we propose an algorithm to search for

conserved networks. The algorithm begins with a set of interlogs. For each interlog in the set,

the algorithm iteratively increases the degree of conservation around the interlog by adding pro-

teins. An interlog converges into a conserved network when adding proteins no longer increase the

degree of conservation. At each step of the iteration, the algorithm maintains a pair of networks

G and G′ and their conservation score. The algorithm keeps one networks, say G fixed. Using

orthology relations, the algorithm identifies nodes in the other PIN that could potentially be added

to G′. The algorithm adds a node to G′ only if the conservation score reduces. If there is such

a node, the algorithm continues by keeping G′ fixed and expanding G. Thus, our thesis provides

a systematic method for finding conserved protein interaction networks, confirming the results of

previous research.33, 34

Our conserved network model has several advantages over the proposed models by Kelly et al.,27

Koyuturk, Grama, and Szpankowski,28 and Sharan et al.32 Our conserved network model does

not assume a pattern of interaction for proteins in conserved networks. Also, our conserved net-

work model allows evolutionary conserved proteins to interact through more than one intermediate

protein. We detail the comparison in section 3.6

We find many conserved pathways and complexes detected from previous research like kinase
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cascades, the DNA replication factor C complex, and a protein folding complex. We also find

many conserved networks with functions not found using prior models like actin cytoskeleton

organization and biogenesis, GTPase activity, and hydrolase activity.



Chapter 2

Mathematical Background

The chapter introduces the mathematical notation used throughout this thesis. As we model our

problem with graphs, we describe the properties of a graph here. A graph provides a way to reason

about objects and relationships between those objects. The objects are referred to as nodes, and

the relationships between nodes are referred to as edges. A basic understanding of graph theory is

crucial to understanding this thesis.

2.1 A Formal Graph Model

A graph G is defined as a tuple G(V,E) containing a set of nodes V and a set of edges E. Each

edge e = (a, b) ∈ E represents an undirected relationship between the nodes a ∈ V and b ∈ V .

Each edge e can have an associated weight. A subgraph G′(V ′, E ′) of graph G is a subset of edges

E ′ ∈ E and a subset of nodes V ′ ∈ V such that a ∈ V ′ and b ∈ V ′ for all (a, b) ∈ E ′. In an

13



Corban G. Rivera Chapter 2. Mathematical Background 14

unweighted subgraph graph, all edges have weight 1. The weight of a subgraph G denoted wG

is the sum of the weights over all of the edges. Given a subset of nodes V ′ from a graph G, an

induced subgraph is a graph G′(V ′, E ′) such that (a, b) ∈ E ′ if and only if (a, b) ∈ E and a ∈ V ′

and b ∈ V ′. We say that a graph G is bipartite if the nodes of the graph can be partitioned into two

sets such that no edge is incident on two nodes in the same set. A directed acyclic graph (DAG) is

a graph with the property that for each node in the graph there does not exist a path that starts and

ends at that node.

The neighbor set for a node v is N(v) = {v′ ∈ V |(v, v′) ∈ E}, the set of nodes connected to v

by an edge in E. We say a path PG(a, b) exists between nodes a ∈ V and b ∈ V in graph G if

there exists an integer k ≥ 1 and a set of edges {(ai, ai+1), 1 ≤ i ≤ k} such that (ai, ai+1) ∈ E

for each 1 ≤ i ≤ k and a1 = a and ak = b. We say that nodes a ∈ V and b ∈ V are connected if

there exists a path PG(a, b); the weight of PG(a, b) is the total weight of the edges in PG(a, b). We

use |πG(a, b)| to denote the weight of πG(a, b). The shortest path πG(a, b) in a graph G between

nodes a ∈ V and b ∈ V is a path of least weight connecting a and b. A spanning tree of graph

G is a subgraph G′(V,E ′) such that there exists exactly one path connecting PG(a, b) in G′ for all

a ∈ V and b ∈ V . Given a graph G, the minimum spanning tree (MST) is the spanning tree of G

with least weight.
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2.2 Steiner Tree Problem

In the algorithm presented in this thesis, we will often need to find a subgraph of small weight that

connects a set of nodes. Formally, given a graph G(V,E) and set of nodes in the graph W ⊆ V ,

the problem is to find a subgraph T (X,Y ) such that W ⊆ X and the weight of T is the smallest

among all subgraphs of G that contains W . This problem is called the Steiner tree problem.35–37

Since the Steiner tree problem is NP-Hard,38 we use the following algorithm given by Kou et al.39

to find an approximate solution.

1. Construct the complete weighted graph G′(W,E ′), where the weight of an edge (a, b) ∈ E ′

is |πG(a, b)|, the weight of the shortest path in G between nodes a and b

2. Construct a minimum spanning tree T (W,A) of G′40

3. Construct G∗(N ∗, E∗) as follows: for each (a, b) ∈ A, add the shortest path πG(a, b) to G∗

The algorithm outputs the graph G∗. Kou et al.39 prove that the weight of G∗ is at most two

times the weight of the minimum weight Steiner tree connecting the nodes in W . Solutions to the

steiner tree problem help to identify minimal, connected subgraphs constrained by the requirement

of including a subset of the nodes.
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2.3 Hypergeometric Distribution

In this thesis, we often need to assign a score to the likelihood of randomly selecting a given

number of marked elements from a universe U of elements. Let T ⊆ U be the set of marked

elements. Suppose we have a computational procedure that selects a set of elements U ′ ⊆ U

and that U ′ contains a subset T ′ of T . Let u, u′, t, and t′ denote the sizes of the sets U , U ′, T ,

and T ′ respectively. We are interested in computing the probability that this event is statistically

significant. The null hypothesis H0 is that if we select u′ items from a set of u items uniformly at

random without replacement, our random sample will contain at least t′ samples from the set T .

The alternative hypothesisH1 is that this event cannot happen at random. We acceptH1 if and only

if the probability of H0 is less than a user specified threshold. The number of ways of choosing t′

elements from a set of t elements is
(
t
t′
)
. The number of ways of choosing the remaining elements

of T is
(
u−t
u′−t′

)
. The total number of ways of choosing u′ elements from a set of u elements is

(
u
u′
)
.

Therefore, the probability of this event is

H(u, t, u′, t′) =

(
t
t′
)(

u−t
u′−t′

)
(
u
u′
)

SinceH0 is the probability that the random sample contains t′ or more samples from T , to calculate

the probability that H0 is true, we sum H(u, t, u′, i) for t′ ≤ i ≤ t.

Pr(H0 is true) = ω(u, t, u′, t′) =

min(t,u′)∑

i=t′

(
t
i

)(
u−t
u′−i
)

(
u
u′
)
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We will often perform many such tests simultaneously. In this case, we need to correct for the

possibility that one of the tests might be true by random chance. We use the Bonferroni correction41

in this thesis to correct for testing n hypotheses simultaneously, we multiply the probability of each

event by n and accept the hypothesis only if the resulting probability is less than the user-specified

threshold..



Chapter 3

Methods

In this chapter, we present a formal model for conserved PINs. We also describe the algorithm for

detecting conserved networks. For each of the conserved network model parameters, we describe

how we select their values. We also make a comparison between our conserved network model

and previous models.27, 28, 32

3.1 Protein-Protein Interaction Networks

A natural representation for the set of protein-protein interactions in an organism is as a graph

G(V,E). Formally, V is the set of genes in the genome of the organism. For each observed protein

interaction between genes a ∈ V and b ∈ V , we include the edge (a, b) in E.

In this thesis, we use the weight of an edge to represent our confidence in the fact that correspond-

18
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ing interaction is a true interaction. Many methods have been developed to assign the reliability

of protein-protein interactions.12, 42 In this thesis, we use the method developed by Goldberg and

Roth.42

Many researchers have observed that the degree distribution of protein interaction networks is well

described by the power law distribution.43, 44 Other researchers42 have also observed that protein

interaction networks have the small world property. There are many informal way of defining this

property including the fact that the average distance between all pairs of nodes in the network

is small and that the neighbors of a node are themselves connected. Goldberg and Roth use the

second property to access confidence in an interaction; if the nodes incident on an edge have more

common neighbors than would be expected by chance, then they assign a high confidence to that

edge. It is natural to use the hypergeometric distribution to calculate the true significance of the

observed number of common neighbors of the node incident on an edge. Let the edge e connect

nodes a and b. Following Goldberg and Roth, we set the weight of e to be

ρe : ω(|N(a) ∪N(b)|, |N(a)|, |N(b)|, |N(a) ∩N(b)|)

ρe measures the probability that if we select the neighbors of b from the set N(a) ∪N(b), we will

select N(a) ∩N(b) or more neighbors from the marked set N(a), This number is small if a and b

share many common neighbors. In this thesis, we delete all edges with weight less than 0.05. We

then consider the graph to be unweighted. Specifically, we set the weights of all remaining edges

to be 1.
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3.2 A Formal Model for Conserved Networks

In order to facilitate the computation of biologically significant conserved networks, a formal def-

inition is necessary. Our model requires that conserved networks have two properties. First, the

genes in the conserved networks must share a high degree of evolutionary conservation. Secondly,

conserved networks must contain edges in which we are very confident.

Let S1(V1, E1) and S2(V2, E2) be protein interaction networks in different organisms. H is a

bipartite graph where each edge (a, b) ∈ V1 × V2, where a is homologous to b, specifies the set of

homologous pairs of proteins. An edge e(a, b) ∈ H has a weight Be equal to the DNA-sequence

similarity between genes a and b. Specifically, we denote be as the BLAST e-value between genes

a and b.

We use two parameters κ and λ to filter our protein-protein interaction networks. Given a protein

interaction network S1(V1, E1), we compute edge weights as described in Section 3.1 given a

parameter κ > 0, we remove edges e ∈ E1 such that ρe > κ. We apply a similar operation to S2.

The parameter κ establishes a minimum confidence threshold for protein interaction edges. Given

a set of homologous pairs of proteins H and a parameter λ, we remove edges of e ∈ H such that

be > λ. The parameter λ sets a minimum degree of confidence between putative orthologues a and

b.

Definition 1: Conserved Network

We define a conserved network as a triple C(T1, T2, O) where T1(P1, Q1) and T2(P2, Q2) are con-

nected subgraphs of S ′1 and S ′2 respectively and O ⊆ H ′ such that (a, b) ∈ O if and only if a ∈ P ′1
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and b ∈ P ′2. Thus, O is a subset of H induced by the nodes in P1 and P2. Therefore, if O contains

more relations than would be expected if we selected P1 and P2 randomly from T1 and T2, then

the evolutionary conservation between T1 and T2 is high. Given a universe of |V1 × V2| pairs of

proteins, of which the |H| orthologous pairs are marked, what is the probability that if we select

|P1 × P2| pairs uniformly at random from the universe, we will obtain |O| or more protein pairs

that are orthologous? It is natural to use the hypergeometric distribution to determine if O contains

more relations than would be expected by chance. Therefore, we define the conservation score

φ(P1, P2) to be

φ(P1, P2) = ω(|V1 × V2|, |H|, |P1 × P2|, |O|)

where ω() is the function for calculating the hypergeometric probability introduced in section 2.3.

Our goal is to find conserved networks with low conservation scores. We can now formally state

the problem we want to solve as follows:

Given two protein-protein interaction networks S1(V1, E1) and S2(V2, E2), a relation H between

homologous pairs of genes, and parameters α, κ, λ > 0 find all conserved networks

C(T1(P1, Q1), T2(P2, Q2), O) that satisfy the following property:

i φ(P1, P2) ≤ α

ii for each e ∈ Q1 ∪Q2, ρ(e) ≤ κ

iii for each (a, b) ∈ O, Ba,b ≤ λ

We show that to exhaustively search for all conserved networks with a conservation score less than
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a threshold is NP-complete. A biclique is a bipartite graph such that there exists an edge between

every pair of nodes in different partitions. Given a bipartite graph G and positive integer k, does

there exist a biclique with at least k edges. Given that the maximum edge biclique problem is

NP-complete,45 we show that deciding if any conserved interaction networks exist between two

organisms can be reduced to the maximum edge biclique problem in polynomial time. Let the

protein-protein interaction networks be fully connected. We denote the orthology graph as the set

of all proteins from both protein interaction networks with orthology relationships between the

proteins. We have that conserved networks have a conservation scores less than α. The conser-

vation score is minimum for a set of proteins from each protein interaction network that is fully

connected by orthology relationships. To determine if there exists a conserved network with con-

servation score less than α, we must find the conserved network with the least conservation score.

We have that finding the conserved network with least conservation score can be solved by finding

the maximum edge biclique in a bipartite orthology graph.

3.3 Species Hopping: An Algorithm for Finding Conserved Net-

works

Since finding networks with small conservation scores is computationally hard, we have developed

a novel ”species hopping” heuristic for finding such networks. The algorithm is not guaranteed to

find all networks with a conservation score less than α. The algorithm starts with a basis set, a

conserved network with a small set of nodes. Iteratively, the algorithm expands the conserved
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network to reduce the conservation score. At each step of the iteration, the algorithm maintains

a pair of networks G and G′ and their conservation score. The algorithm keeps one networks,

say G fixed. Using orthology relations, the algorithm identifies nodes in the other PIN that could

potentially be added to G′.

Henceforth, we assume that S1 and S2 only contain edges with weights less than κ and that H only

contains relations with BLAST e-value less than λ. Therefore, all conserved networks constructed

by the algorithm we describe will satisfy properties (ii) and (iii).

Basis Set We say that a pair of proteins in a PIN are closely interacting if they directly interact

or they share a common neighbor. By capturing closely interacting homologous pairs of genes, the

species hopping algorithm is seeded with basic units of conservation. The elements of the basis set

closely resemble interlogs.24

Given protein interaction networks S1(V1, E1) and S2(V2, E2) and a set of homologous pairs of

protein H , we construct a basis set B of conserved networks where each conserved network

C(T1, T2, O) has the following properties (i) O contains 2 pairs of nodes (a, a′) ∈ H and (b, b′) ∈

H , (ii) T1 = πS1(a, b) and T2 = πS2(a′, b′), and (iii) πS1(a, b) < 3 and πS2(a′, b′) < 3. B consists

of all such conserved networks

Inductive Step After iteration k of the algorithm, we have a conserved network Ck(T k1 , T
k
2 , O

k).

In iteration k + 1, we construct a new conserved network Ck+1(T k+1
1 , T k+1

2 , Ok+1) such that

φ(Ck+1) < φ(Ck). If k is odd then T k1 = T k+1
1 and T k2 ⊆ T k+1

2 . If k is even then T k2 = T k+1
2
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T k1 ⊆ T k+1
1 . In other words, in iteration k+ 1, we keep either T k+1

1 or T k+1
2 fixed and ”expand” the

other graph. Without loss of generality, we assume that k is odd in the following discussion. We

use two operations to construct T k+1
2 from T k2 . First, we use the cross-over operation to find a set

P ′2 ⊆ V2 of nodes. Each node in P ′2 is adjacent to a node in T k+1
1 in the bipartite graph H . We then

use the expansion operation to find a small subgraph containing P ′2 in S2. The process is shown in

figure 3.1.

The cross-over operation defines the process of how to step between species. Given a set of ho-

mology pairs H and a conserved network C(T1(P1, Q1), T2(P2, Q2), O), the cross-over opera-

tion ηH(T1) returns the set P ′2. The cross-over operation ηH(P1) selects the element a1 such that

φ(P1, P2∪{a1} < φ(P1, P2∪{a}) and φ(P1, P2∪{a1} < φ(P1, P2) for all (a, b) ∈ H and b ∈ P1.

The cross-over operation returns P ′2 = P2 ∪ {a1}.

As we would like a small subgraph connecting the nodes of P2 in S2, the expansion operation

connects a set of nodes in a graph. Given a graph S2(V2, E2) and a set of nodes P2, the expansion

operation ζS2(P2) uses the algorithm by Kou et al.39 described in section 2.2 to construct the

Steiner tree.

Therefore we construct P k+1
2 by applying the cross-over followed by the expansion operation

of P k
2 , ie P k+1

2 = ζS2(ηH(P k
1 )). After computing P k+1

2 , we compute the induced subgraph

T k+1
2 (P k+1

2 , Q2). We add edges e(a, b) ∈ H to O iff a ∈ P k+1
1 and b ∈ P k+1

2 . The conserved

network C(T k+1
1 , T k+1

2 (P k+1
2 , Q2), O) is prepared for the next inductive step.
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Stopping Condition The iterative process stops when subsequent cross-over and expansion op-

erations no longer reduce the conservation score. Specifically, if there does not exist an element

a1 during the cross-over operation, the species hopping process has converged. Given a converged

network C(T1(P1, Q1), T2(P2, Q2), O), we add converged network to the set N if α > φ(P1, P2)

The species hopping algorithm returns the set N .

Figure 3.1: An example of a species hopping inductive step from k to k + 1. Networks connected
by solid lines denote protein-protein interaction networks. Dashed edges denotes a homologous
relationship between proteins. (Left) Conserved networks at the end of iteration k. (Middle) Cross-
over and expansion operations are used to construct a new conserved network during k+1. (Right)
End of iteration k+ 1 In this example the conservation score is calculated as ω(14 ∗ 16, 9, 5 ∗ 6, 7).

3.4 Conserved Network Functional Enrichment

In this section, we discuss how we post-process computed conserved networks to characterize them

in terms of the functions of the constituent proteins. If the number of genes in a conserved network

that share a particular function is more than would be expected by chance, we say that the network

is enriched in the function. Given a protein-protein interaction network S(V,E) and a subgraph

T (P,Q) of S , we compute the functions enriched in T as follows: Let Fg be the set of functional

annotations for gene g, and let FP =
⋃
g∈P Fg the set of functions annotating all proteins in P . For
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each function f ∈ FA, we compute the functional enrichment score

φf,T = ω(V,G, P,W )

where G is the set of proteins in V annotated by f and W is the set of proteins in P annotated

by f , and ω() is the function that computes the hypergeometric probability (see Section 2.3). We

say f is enriched if φf,T is at most a user-defined p-value. In this thesis, we use a p-value of

1× 10−4. Since we perform the test for enrichment for each function in FP . we perform multiple

hypothesis correction. We use the Bonferroni correction (described in Section 2.3) to account for

testing multiple hypotheses simultaneously.

3.5 Value Selection for Model Parameters

For the three model parameters α, κ, and λ, we describe the method used to select their values.

The value of α is determined empirically. We observe a correlation between the conservation score

of a conserved network and the score of the most enriched function in the conserved network. Our

hypothesis is that a good correlation between the conservation score and the score of the most

enriched function indicates the ability to find conserved networks using our model. For a sample

of 283 conserved networks with conservation score δ < 10−40, we find a correlation of 0.85. The

value of the correlation indicates that 70.8% of the variation in the score of the most enriched

function for a conserved network is explained by the conservation score see figure (3.2). To gain a

desired level of maximum functional enrichment in conserved networks, we obtain a corresponding
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value for α. For the results presented in this thesis, we have selected the value 10−40 for α.
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Figure 3.2: We find a positively correlated relationship between the conservation score and the
maximum functional enrichment. For each conserved network, we plot the log of the conservation
score of the network on the x-axis and the log of the score of the most enriched function in the
conserved network on the y-axis.

We select the value for the model parameter λ such that between genes sequence similarity is

rarely found by random chance. A BLAST e-value of 10−5 corresponds to a Bonferroni corrected

e-value of 0.01. We also have that genes with high sequence similarity are likely to be ortholo-

gous.46 Therefore, to obtain a high confidence set of homologous pairs of genes, we assign 10−20

to λ. We select the value for the model parameter κ to ensure that we consider only reliable pro-

tein interactions. Goldberg and Roth42 generate a probability to represent the reliability of each

protein-protein interaction as described in section 3.1. To select high confidence protein-protein
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interactions, we assign κ to 0.05.

3.6 Comparison to Existing Methods

Our conserved protein interaction subnetwork model is more general and flexible in interaction

patterns for proteins in conserved subnetworks. Wagner estimated that nearly half of all the protein-

protein interactions get replaced every 300 million years.47 The evolutionary distance between

species is described by the amount of time since their speciation from the least common ancestor.

With greater evolutionary distance between organisms, proteins have a greater change in their

patterns of interaction. Consequently, when looking for conserved networks between species with

greater evolutionary distance, it is necessary to allow proteins in conserved networks to have a

more diverse pattern of interaction.

Our conserved protein interaction subnetwork model provides more generality than the conserved

protein interaction subnetwork models proposed of Kelly et al.,27 Koyuturk, Grama, and Sz-

pankowski,28 and Sharan et al.32 The improved sensitivity of our model arises from the lack of

presumption about conserved protein interaction network topology. The conserved protein interac-

tion subnetwork model of Kelly et al. assumes a linear structure for conserved protein interaction

networks. The conserved protein interaction model of Sharan et al. assumes a clique-like interac-

tion structure between all the genes in the conserved protein interaction subnetwork. Our conserved

network model subsumes both these graph topologies naturally.

Since we do not construct a combined protein-protein interaction network, our conserved network
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model allows a more flexible pattern of interaction for proteins in conserved networks. The previ-

ous methods for finding conserved subnetworks of,27 Koyuturk, Grama, and Szpankowski,28 and

Sharan et al32 construct a combined protein interaction network. The construction of the combined

network has the property that evolutionarily conserved interactions requires proteins to interact

directly or through a single intermediate protein. Previous methods defined gaps and mismatches

to account for variation of protein interaction patterns in conserved networks. Provided the de-

gree of evolutionary conservation is high, our conserved protein interaction network model allows

interaction between proteins with homologous counterparts through more than one intermediate

protein.



Chapter 4

Results and Discussion

The analysis of conserved networks requires the integration of a broad base of whole-genome bio-

logical data. The Database of Interacting Proteins (DIP)48 provided the protein-protein interaction

data for yeast and fly. Whole genome yeast two-hybrid, co-immunoprecipation, and other protein-

protein interaction experiments contribute their findings to the DIP database. Of 14271 yeast and

20947 fly protein-protein interactions, we find 8485 and 14646 respectively with clustering co-

efficient less than 0.05. The FlyBase Consortium49 and the Saccharomyces Genome Database50

provided the gene sequences for fly and yeast respectively. Running BLAST on all yeast genes

against all fly genes, we find 64433 homologous pairs of proteins, and 18943 with e-value less

than 10−20. 5525 have proteins in both of the protein interaction networks. With 21954 basis sets,

we find 940 conserved networks with an evolutionary conservation score less than 10−40. The

Gene Ontology Consortium51 provided the functional annotations for proteins.

30
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4.1 Orthologous Genes Share Function

To determine whether we could find conserved networks that share function, we first assessed

whether orthologous genes share function. Since the functions in GO are related by parent-child

relationships, we can represent these relationships in a directed acyclic graph (DAG) as described

in section 2.1. If two genes do not share a common function, we measure the distance between

these functions in the underlying DAG. We consider the DAG to be an undirected network so as to

capture the situation when two functions are related by a common child or parent. We denote this

graph by L. Let Fa denote the set of functions in GO annotating a gene a. For each pair (a, b) of

homologous genes, we define the functional distance fd(a, b) to be the smallest distance between

all pairs of functions annotating a and b. fd(a, b) = minf∈Fa,g∈Fb |πL(f, g)|, ie for all the annota-

tions given to a each gene in the homologous pair (a, b), we find the pair of annotations with the

smallest distance in L We perform the analysis separately for each GO category. Additionally, we

exclude GO terms referring to unknown functional annotations. We compute the shortest distance

between any two nodes in the graph computed using breath first search.

We find a large number of homologous pairs between yeast and fly that share a GO function

(see figure 4.1). Also, many homologues share functions that are close to each other in L. If

fd(a, b) = 0, then a and b have at least one shared function. If fd(a, b) = 1, then either a or

b has a function that is either a specialization or generalization of a function performed by its

orthologue. The large number of homologues with high functional similarity suggests that we

might find conserved networks that share function. Of 18943 orthologues between yeast and fly,
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we have that 8372 share a molecular function, 13589 share a biological process, and 2060 share a

cellular component.

We find that many homologous pairs of genes share similar functions. For pairs of homologous

genes with a BLAST e-value less than 10−20, we calculate the distance in the GO DAG between

nearest functions for each pair of orthologous genes. For each distance, we plot the ratio of the

number of homologues to the total number of homologous pairs of genes such that both genes have

functional annotations in the GO category.
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4.2 Conservation Score of Conserved Networks

To validate the significance of conserved networks found by the species hopping algorithm, we

run the species hopping algorithm on randomly constructed protein-protein interaction data. Like

Sharan et al.,52 we construct a randomized protein-protein interaction network from G(V,E) by

crossing the edges in E. Formally, we select two edges (u, u′) and (v, v′) uniformly from E. We

add the edges (u, v′) and (v, u′) to E and remove (u, u′) and (v, v′) from E. Additionally, we

require that no self-loops are created as a result of the operation. We repeat the crossing procedure

|E| times. The procedure maintains node degree while randomizing the network. As the edges

are selected uniformly at random, we have that the expected value for the number of crossings for

each edge is 2.

We obtain 20 sets of conserved networks from running the species hopping algorithm on 20 differ-

ent pairs of randomized protein-protein interaction networks. To facilitate comparison of conserva-

tion scores, we take the reciprocal of the conservation score. For each set of conserved networks,

we compute the mean and standard deviation of the conservation score over all conserved net-

works in the set. Over these 20 sets of conserved networks, the summary statistics included a mean

conservation score of 308.043 and a standard deviation of 222.44. When we run the species hop-

ping algorithm on the original protein-protein interaction data for yeast and fly, we have a mean

conservation score of 4220.35 and standard deviation of 1656.08. We observe that the mean con-

servation score of conserved networks found using original protein interaction data is at least an

order of magnitude greater than the mean conservation scores of conserved networks found using
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randomized protein-protein interaction data.

4.3 Conserved Protein Interaction Networks between Yeast and

Fly

Our algorithm constructs 21954 basis sets. We find 940 conserved networks with an evolutionary

conservation score less than 10−40. For comparison, we compute the functions enriched in T1

(with respect to S1), T2 (with respect to S2), and T1 ∪ T2 (with respect to S1 ∪ S2). By calculating

the functions enriched in both individual protein interaction subnetworks and the whole conserved

network, we can determine if the individual conserved protein interaction subnetworks share a

similar function. We can also use the conserved network to find enriched functions that are not

found in individual protein interaction subnetworks. Using the conserved network model, we find

the DNA replication factor C complex (function enrichment 2.4 × 10−18) The complex is also

found by Sharan et al.52 using the conserved complex model (see figure 4.2).

The conserved networks with the most significant conservation scores are collections of genes with

kinase activity (4.3). It is well known that kinase catalytic domains are evolutionarily conserved.53

In conserved networks of kinases with conservation scores less than 2.6× 10−319, we find a func-

tional enrichment score of 1.43×10−41 for protein amino acid phosphorylation. Our result provide

additional evidence for the conservation of the kinase catalytic domain.

Using the species hopping algorithm, we find many conserved networks with highly significant
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Figure 4.2: Using the conserved network model, we find the DNA replication factor C complex
(function enrichment 2.4 × 10−18). Proteins are denoted by boxes. The colors above the boxes
represent the enriched functions for the protein. Dark edges represent protein-protein interactions.
Light edges represent relationships between homologous pairs of proteins.
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Figure 4.3: We find a large degree of evolutionary conservation in the kinase catalytic domain. The
kinase catalytic domain is known to be conserved from prior research.

http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YDR217C
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YPL153C
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YDL101C
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YKL166C
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YJL164C
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YDR490C
http://flybase.net/.bin/fbidq.html?FBgn0003744
http://flybase.net/.bin/fbidq.html?FBgn0000489
http://flybase.net/.bin/fbidq.html?FBgn0025743
http://flybase.net/.bin/fbidq.html?FBgn0011754
http://flybase.net/.bin/fbidq.html?FBgn0004462
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YMR001C
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YDR052C
http://flybase.net/.bin/fbidq.html?FBgn0034950
http://flybase.net/.bin/fbidq.html?FBgn0014006
http://flybase.net/.bin/fbidq.html?FBgn0003124
http://flybase.net/.bin/fbidq.html?FBgn0044826
http://flybase.net/.bin/fbidq.html?FBgn0037804
http://flybase.net/.bin/fbidq.html?FBgn0001079
http://flybase.net/.bin/fbidq.html?FBgn0011598
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YKR048C
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YDR507C
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YCL024W
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=S000006071
http://flybase.net/.bin/fbidq.html?FBgn0040345
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YLR314C
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YJR076C
http://flybase.net/.bin/fbidq.html?FBgn0011817
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YOL100W
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YPL004C
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=S000005610
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YDR158W
http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YPL209C
http://flybase.net/.bin/fbidq.html?FBgn0014362
http://flybase.net/.bin/fbidq.html?FBgn0031621
http://flybase.net/.bin/fbidq.html?FBgn0031859
http://flybase.net/.bin/fbidq.html?FBgn0036616
http://flybase.net/.bin/fbidq.html?FBgn0039631
http://flybase.net/.bin/fbidq.html?FBgn0031810
http://flybase.net/.bin/fbidq.html?FBgn0037059
http://flybase.net/.bin/fbidq.html?FBgn0032005
http://flybase.net/.bin/fbidq.html?FBgn0050183
http://flybase.net/.bin/fbidq.html?FBgn0026753
http://flybase.net/.bin/fbidq.html?FBgn0000181
http://flybase.net/.bin/fbidq.html?FBgn0026777
http://flybase.net/.bin/fbidq.html?FBgn0035967
http://flybase.net/.bin/fbidq.html?FBgn0032175
http://flybase.net/.bin/fbidq.html?FBgn0032246
http://flybase.net/.bin/fbidq.html?FBgn0034744
http://flybase.net/.bin/fbidq.html?FBgn0019644
http://flybase.net/.bin/fbidq.html?FBgn0032635
http://flybase.net/.bin/fbidq.html?FBgn0038965
http://flybase.net/.bin/fbidq.html?FBgn0058460
http://flybase.net/.bin/fbidq.html?FBgn0010015
http://flybase.net/.bin/fbidq.html?FBgn0034018
http://flybase.net/.bin/fbidq.html?FBgn0020496


Corban G. Rivera Chapter 4. Results and Discussion 37

conservation score and functional enrichment. A few examples are presented here to illustrate

observations (4.4). The remaining conserved networks are available online at:

http://bioinformatics.cs.vt.edu/∼cgrivera/hop/

4.4 Future Work

We would like to extend the conserved network model and species hopping algorithm to accommo-

date greater than two species. As we find many putative proteins in conserved networks, we would

like to use conserved networks to transfer functional annotations to unannotated proteins. With

many new high-throughput protein-protein interaction data sets, we would like to find conserved

protein interaction networks between other organisms. In addition to protein-protein interaction

data, we could incorporate gene co-expression data. By combining protein-protein interaction and

synthetic lethality data, we could use species hopping to find functionally parallel pathways within

the same organism.
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Figure 4.4: Examples of evolutionarily conserved networks. Top Left We find a conserved network
for protein folding (functional enrichment 7.4× 10−24). Protein folding is a function that is known
to be conserved by evolution. Top Right The conserved network involved in actin cytoskeleton
organization and biogenesis (functional enrichment 3.7× 10−14). This conserved network demon-
strates the ability to detect conserved networks with a high degree of change in protein interaction
patterns Lower Left We find a conserved network involved in GTPase activity (functional enrich-
ment 4.3× 10−18). There are few references to suggest that GTPase activity is conserved, but this
study suggests that the function is evolutionarily conserved. Lower Right A conserved network
involved in hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides
(functional enrichment 8.4 × 10−14). The conserved network illustrates the detect conserved net-
works with non specific topologies.
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