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The distinct characteristics of variable bit rate (VBR) video traffic and its quality of service (QoS) constraints have posed a unique
challenge on network resource allocation and management for future integrated networks. Dynamic bandwidth allocation at-
tempts to adaptively allocate resources to capture the burstiness of VBR video traffic, and therefore could potentially increase
network utilization substantially while still satisfying the desired QoS requirements. We focus on prediction-based dynamic band-
width allocation. In this context, the multiresolution learning neural-network-based traffic predictor is rigorously examined. A
well-known-heuristic based approach RED-VBR scheme is used as a baseline for performance evaluation. Simulations using real-
world MPEG-4 VBR video traces are conducted, and a comprehensive performance metrics is presented. In addition, a new con-
cept of renegotiation control is introduced and a novel renegotiation control algorithm based on binary exponential backoff (BEB)
is proposed to efficiently reduce renegotiation frequency.
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1. INTRODUCTION

Variable bit rate (VBR) video traffic, generated from di-
verse multimedia applications, is expected to be a signifi-
cant portion of traffic in future integrated services networks.
VBR videos require a sophisticated network resource allo-
cation and management (NRAM) mechanism to support
their strict delay and loss requirements. Due to the nature
that VBR videos typically exhibit burstiness over multiple
time scales [3, 4], it poses a unique challenge to the de-
sign of NRAM mechanism to achieve high overall network
utilization, while still preserving the desired quality of ser-
vice (QoS) requirements. The challenge is essential partic-
ularly for real-time VBR video transmission in which the
traffic trace is unknown in advance. Clearly, any static allo-
cating bandwidth (i.e., allocating exactly once for the entire
video transmission session) for real-time VBR video streams
would result in either inefficient utilization of bandwidth
due to over allocation of resource or insufficient to support
the required QoS due to the under allocation of resource.
Dynamic bandwidth allocation attempts to adaptively allo-
cate resources to capture the burstiness of VBR video traf-
fic, and hence could be particularly promising for real-time
VBR video transmissions [2, 5, 6]. One fundamental issue

in any dynamic bandwidth allocation mechanism is how to
sense the traffic dynamics in advance in order to determine
the resource needs. One approach is to devise some heuris-
tic method to estimate the future traffic characteristics, such
as RED-VBR scheme [2]. The other approach, called pre-
dictive or prediction-based dynamic bandwidth allocation, is
to develop more sophisticated online network traffic predic-
tor as a critical component in dynamic bandwidth alloca-
tion scheme to predict the future traffic [1, 5, 6]. Predictive
dynamic bandwidth allocation introduces more complexity
due to the additional complexity of online network traffic
predictor, in the hope of being able to capture more accu-
rately the dynamics of VBR video traffic and therefore to im-
prove the performance. Yet, another technique to address ef-
ficient VBR video transmission is smoothing (e.g., [7, 8]).

Several schemes regarding predictive dynamic bandwidth
allocation have been proposed. Chong et al. [5] presented a
method of real-time video traffic prediction in the frequency
domain to support VBR video transmission. Adas [9] stud-
ied adaptive linear regression traffic prediction for renego-
tiated CBR service. However, the work in both [5, 9] only
considered single-step-ahead traffic prediction. In contrast,
Liang [1] investigated multiresolution learning-based neural
network (MRL-NN) online traffic predictor for long-term
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traffic prediction up to hundreds of frames into the future,
but the performance of MRL-NN traffic predictor was eval-
uated in terms of normalized mean square error (NMSE)
not in a network setting. Wu et al. [6] investigated dy-
namic resource allocation through video content and traf-
fic statistics, but under the assumption of a simplified ser-
vice model/policy. Chiruvolu et al. [10] focused on alloca-
tion algorithm at ATM cell level, while Yoo et al. [11] fo-
cused on bandwidth allocation criteria rather than traffic
prediction. Although a number of concrete predictive dy-
namic bandwidth allocation methods exist, little research has
been conducted on predictive dynamic bandwidth alloca-
tion with a realistic service policy. The simplified service pol-
icy adopted in the previous studies (e.g., [6, 12]) assumes
that any video source will be blocked whenever its band-
width renegotiation is rejected, which is impractical. This
motivates our work. A long-term VBR video traffic predic-
tor is certainly desirable in such a study, because single-
frame-ahead network traffic predictors (e.g., [5, 9, 10, 12])
would result in too frequent bandwidth renegotiations and
thus the heavy reallocation control overhead which might
eventually eliminate all merits that could be obtained from
online traffic prediction. To this end, MRL-NN traffic pre-
dictor developed in [1] is employed and examined. Unlike
the existing work [1, 5, 6, 9–11] which was performed us-
ing MPEG-1 or MPEG-2 video traces, we investigate real-
world MPEG-4 video traces which have not been studied in
dynamic bandwidth allocation. MPEG-4 video traffic might
provide unique challenges to online traffic prediction and
predictive dynamic bandwidth allocation. As noted in [13],
the autocorrelation functions for MPEG-4 traces have more
significant long-range dependencies (LRDs) than those for
the similar MPEG-1 traces, and signals with significant LRD
are typically more difficult to predict. To carefully investigate
the strength and limitation of predictive dynamic bandwidth
allocation approach, RED-VBR scheme [2], a well-known
heuristic dynamic bandwidth allocation, is used as a baseline
for the performance evaluation. By applying realistic service
policy (described in Section 5.2), we are able to present our
simulation results using more comprehensive performance
metrics of utilization/delay, drop rate and renegotiation in-
ternal, as opposed to utilization/delay, and renegotiation in-
ternal used in the previous studies [6, 12]. This way, we are
able to provide new insight which has not been available yet.

Another unique contribution of this work is to introduce
a new concept and method of renegotiation control in pre-
dictive dynamic bandwidth allocation architecture. Renego-
tiation control is about to handle the reissue of renegotiation
request whenever the previous renegotiation request fails due
to lack of resource. A novel renegotiation control algorithm
is proposed based on binary exponential backoff (BEB). Our
simulation shows that the proposed renegotiation control al-
gorithm can significantly reduce the renegotiation frequency.

The rest of the paper is organized as follows. Section 2 de-
scribes the general architecture of predictive dynamic band-
width allocation. Section 3 briefly reviews MRL-NN traffic
predictor [1]. In Section 4, renegotiation control algorithm
based on BEB is proposed. Section 5 presents our empirical

study with careful analysis, and provides new insight. Con-
clusions and future work are given in Section 6.

2. PREDICTIVE DYNAMIC BANDWIDTH ALLOCATION

A general architecture of predictive dynamic bandwidth al-
location can be illustrated as in Figure 1, in which the com-
ponent of renegotiation control is newly proposed in this pa-
per and will be discussed in Section 4. The other components
shown in Figure 1 are briefly described as follows.

(1) Extraction of traffic statistics/video content
of VBR video streams

This is preprocessing for the online traffic prediction. Differ-
ent types of preprocessing are required for the different ap-
proaches of online traffic prediction. For example, with video
traffic-based predictor, some simple traffic statistics will be
calculated as the input for the predictor, while with video
content-based predictor, some sophisticated video content
analysis technique will be performed to extract content fea-
tures as the input for the predictor. Therefore, the complexity
of this component is largely dependent upon the approach
used for the online traffic prediction.

(2) Online traffic predictor

This is a critical component of any predictive dynamic band-
width allocation schemes. In principle, three types of on-
line traffic predictors are currently available: traffic-based ap-
proach (e.g., [1, 5, 9]), video-content-based approach [12],
and a combination of the above two [6].

(3) VBR traffic descriptor computation

The traffic descriptor computation is based on the traffic
model to be used for VBR video streams, such as determin-
istic bounding interval-length dependent (D-BIND) model
[14], leaky bucket model [15] and so forth, and traffic de-
scriptor attempts to describe and capture the characteristics
of VBR video streams as accurately as possible.

(4) Segmentation and future resource determination

Segmentation is to determine when individual VBR streams
should renegotiate bandwidth resource with the system in or-
der to preserve their required QoS. In other words, segmen-
tation algorithm is about how to choose the renegotiation
points along the VBR video transmission session, by which
renegotiation intervals are generated. Two basic methods for
segmentation are the fixed intervals and adaptive intervals,
and the latter can be further divided into two categories:
traffic-based and content-based. More details can be found
in [6]. Future bandwidth determination is to determine how
much bandwidth resource should be reserved for each rene-
gotiation request.
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Figure 1: Dynamic bandwidth allocation architecture.

(5) Reallocation control

This is to determine, based on the traffic model/descriptor
used, whether the requested resource is honored or rejected
due to the availability of resource. Connection admission
control can also be consolidated into this component. Once
the requested resource is honored, the resource reservation
for the corresponding VBR video streams should be up-
dated to reflect this new change. It also signals the schedul-
ing and/or policing to be updated accordingly. The overall
updated resource reservation will be used in the connection
admission control later to determine if a new connection can
be admitted.

3. ONLINE NETWORK TRAFFIC PREDICTOR

Aimed at maximizing the merit of prediction-based dy-
namic resource allocation, online VBR video traffic predic-
tion has attracted a lot of attention. Most of the existing
work (e.g., [5, 9, 10, 12]) only considered one-frame-ahead
(i.e., single-step-ahead) traffic prediction due to the diffi-
culty of highly burst, nonlinear, and self-similar nature of
the VBR video traffic. In contrast, MRL-NN traffic predic-
tor is for long-term VBR video traffic prediction [1], and is
a three-layer feedforward neural network (NN) using mul-
tiresolution learning paradigm [16]. The inputs of the traf-
fic predictor are the recent and current frame sizes and the
output of the predictor is the predicted next frame size in
the future. With iterated multistep prediction method, the
predictor can predict as many frames into the future as
needed. The multiresolution learning paradigm attempts to
exploit the correlation structures in video stream traffic at

multiple resolution levels by first decomposing the original
training traffic and approximating the traffic at different lev-
els of detail, and then training the neural network traffic pre-
dictor from the coarsest resolution level to the finest resolu-
tion level during the learning process. Multiresolution anal-
ysis in wavelet theory is employed as a mathematical tool to
decompose and approximate the original training traffic data
for the MRL-NN traffic predictor. The MRL-NN traffic pre-
dictor is adopted in this predictive dynamic bandwidth allo-
cation study.

Our online MRL-NN traffic predictor has structure 24-5-
1, indicating a dimension of 24 for input layer, 5 hidden neu-
rons with typical sigmoid activation function in the hidden
layer, and one linear output neuron in the output layer. The
choice of 24 input dimensions is to cover one or a few full size
of group of picture (GOP) to readily capture traffic dynamics
in a GOP and some dynamics between GOPs in video traffic.
The chosen 24-5-1 structure is mainly empirical. With the
multiresolution learning paradigm, three-resolution learn-
ing process is employed to construct the online traffic pre-
dictor, as an ordered sequence of learning/training activi-
ties A1(r1) → A2(r2) → A3(r3), where A1(r1) represents a
training activity for network traffic predictor using traffic
data representation r1 at the coarsest resolution level, while
A3(r3) represents a training activity at the finest resolution
level of the original traffic data r3. The first training activity
A1(r1) starts with randomly initialized connection weights,
and each subsequent learning activity starts with the con-
nection weights resulting from the previous learning activity
(see [1] for more details). In our study, 512 frames of each
video trace will be initially used to train the online traffic pre-
dictor, and then the online predictor will be able to predict
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the future M consecutive video frames iteratively. Here M is
the look-ahead window size for the predicted future frames.
Toward the end of each current window, online traffic pre-
diction is activated for every admitted VBR video stream to
produce the traffic prediction for the next M frames. In this
study, we use fixed look-ahead prediction window size M
(e.g., M = 48). Note that, as the admitted video streams
proceed, the accuracy of the online traffic predictor will be
gradually degraded. To overcome this, a periodical online up-
dating of traffic predictor is necessary to maintain prediction
accuracy. In our simulations, the traffic predictor is updated
(e.g., slightly retrained) after every 10 800 frames (i.e., 7.2
minutes). It is an advantage of the MRL-NN traffic predic-
tor that only the finest resolution learning is conducted for
updating [1], as the fast dynamics of video traffic is more
associated with the finest resolution. Thus, the traffic predic-
tor’s updating is much faster than its initial training.

4. RENEGOTIATION CONTROL

When a renegotiation request is issued for any video trans-
mission session, it will be checked immediately by realloca-
tion control to verify if there is sufficient resource to meet the
request. If the renegotiated resource can be accommodated,
the renegotiation request is accepted, and otherwise is re-
jected. Currently, whenever a renegotiation request fails due
to lack of resource, a dynamic bandwidth allocation scheme
is simply to reissue the renegotiation request consecutively at
the next frame time (e.g., RED-VBR). Given a frame rate f
(frame/sec.), any two consecutive renegotiation requests are
only at one frame time 1/ f apart. Although this approach
tries to explore the statistical multiplexing gain (SMG) at
fine resolution level, it could unnecessarily introduce a lot of
renegotiation and control overhead due to potential consec-
utive renegotiation failures when the system lacks resource.
In view of this, we introduce a new concept and method, re-
ferred to as renegotiation control, into dynamic bandwidth
allocation architecture (as illustrated in Figure 1). The idea
of the proposed renegotiation control is to avoid consecutive
renegotiation requests after the previous renegotiation fail-
ure, by exponentially slowing down the process of reissuing
renegotiations when the system is undergoing resource in-
sufficiency. In this regard, the current aggressive (frame-by-
frame) practice of re-renegotiations can be viewed as a de-
fault renegotiation control method. Inspired by the success
of binary exponential backoff (BEB) algorithm in Ethernet
and IEEE 802.11 distributed coordination function (DCF)
for wireless local area networks, we believe that BEB can also
naturally fit in the renegotiation control situation identified
above. Thus, a BEB-based renegotiation control algorithm is
proposed as in Algorithm 1, and is evaluated through simu-
lations in Section 5.

5. EMPIRICAL STUDY

Before we present our empirical study, we will briefly discuss
the traffic descriptor used, the formalization of network link
utilization computation, and the RED-VBR scheme which is

used as baseline for performance evaluation in our empirical
study. (See [2, 14] for more details.)

5.1. Traffic descriptor, link utilization, and RED-VBR

5.1.1. Traffic descriptor

VBR video traffic descriptors describe the characteristics of
VBR video traffic in integrated services networks with the
use of countable parameters. Among available VBR video
traffic descriptors, D-BIND-model-based traffic descriptor
[14] is aimed to capture the traffic burstiness over differ-
ent time scales. The D-BIND model has been widely stud-
ied and demonstrated in heuristic dynamic bandwidth allo-
cation, such as RED-VBR scheme [2]. Therefore, D-BIND
descriptor is adopted in our study. Let A[τ, τ + t] denote the
cumulative bits generated by a source arriving in an interval
ranging from τ to τ+1, the so-called empirical envelop B∗(t),
the tightest time-invariant bound over the interval, is

B∗(t) = sup
τ>0

A[τ, τ + t] ∀t > 0. (1)

The D-BIND traffic model [14] characterizes the arrival traf-
fic with a set of rate-interval pairs RT = {(rk, tk) | k =
1, 2, . . . ,P}, where rk = qk/tk, the bounding rate over any
internal of length tk, and qk is the maximum total number
of bits over any interval of length tk. Here P is the dimension
of D-BIND traffic descriptor. Therefore, the traffic constraint
function BRT of the D-BIND traffic model is

BRT = rktk +
rktk − rk−1tk−1

tk − tk−1

(
t − tk

)
, tk−1 ≤ t ≤ tk, (2)

with the assumption of BRT (0) = 0 at t0 = 0. For a video
sequence with M frames, the tightest D-BIND traffic con-
straint function B∗RT

can be constructed by the consecutive
M rate-interval pairs (i.e., P = M). The relationship among
the cumulative arrival function A(0, t), the empirical enve-
lope B∗(t), the tightest D-BIND traffic constraint function
B∗RT

(t), and the general D-BIND traffic constraint function
BRT (t) is illustrated in Figure 2 (see [14] for more details).

5.1.2. Network link utilization

Let d denote delay bound. Assume that the maximum capac-
ity Qmax of network buffer is sufficiently large for all possible
delay bounds in the study. For a first-come-first-serve (FCFS)
queuing policy, the upper bound on delay for all connections
is computed as

d = 1
C

max
t∈tk

{

0,

{ N∑

j=1

B
j
RT

(t) + QL(t)− Ct

}}

,

j = 1, 2, . . . ,N , QL(0) = 0,

(3)

where C is the capacity of the outgoing link, N is the max-
imum number of connected video streams at delay bound
d, and QL(t) is network buffer occupancy at time t. Given
a certain blocking/rejection probability, link utilization u(d),
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Notation: F: the number of consecutive renegotiation rejections;
Delay: the total time (number of frames) to be delayed for the next renegotiation;
M: the look-ahead window size of predicted frames;
( f1, f2, . . . , fM): M consecutive frame sizes;
flag: FAILURE/SUCCESS, the indication of renegotiation failure/success;
w: the number of frames being waited before issuing the next renegotiation request.

Initialization:
F ← 0; w ← 0; Delay← 0;

Renegotiation Control:
if (w ≥ Delay) then

for j ← 1 to number-of-admitted-streams do
Predict the next M frames ( f1, f2, . . . , fM) for stream j;
Update stream j’s traffic descriptor based on the ( f1, f2, . . . , fM);

end for
flag← Renegotiation Request();
if (flag = SUCCESS) then

F ← 0; w ← 0; Delay← 0;
else

F ← F + 1; w ← 0;
Delay← Randomly choose an integer from [0, 2F − 1];
Delay← min (Delay,M);

end if
end if

Video Transmissions:
while (outgoing buffer 	= ∅)

Transmit the video frame from the head of the outgoing buffer;
if (F > 0) then

w ← w + 1;
end if

end while

Algorithm 1: A BEB-based renegotiation control algorithm.
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Figure 2: Illustration of traffic constraint functions.

a function of delay bound d, can be defined as follows:

u(d) =
∑N

i=1 Ri
(
1− drop rate(d)

)

C
, (4)

where Ri is the ith video sources ultimate average rate, and
drop rate(d) is the overall average drop rate at delay bound d.

5.1.3. RED-VBR scheme

RED-VBR [2] is used as a baseline to evaluate the perfor-
mance of predictive dynamic bandwidth allocation. RED-
VBR is a renegotiated VBR service and uses D-BIND traffic
descriptor. Two parameters α and β are used in RED-VBR to
determine resource renegotiation. When D-BIND traffic de-
scriptor indicates that the currently measured bandwidth ex-
ceeds the reserved resource, a renegotiation takes place, and
it will reserve a new amount of bandwidth by multiplying
the currently measured value by a factor α (α > 1). When D-
BIND traffic descriptor indicates that the currently measured
bandwidth is consistently less than the reserved resource by a
factor β (β < 1), the currently reserved resource level will be
lowered to release some resource, and any release renegotia-
tion will be always successful. The choice of (α,β) then im-
pacts the tradeoff between average of renegotiation frequency
and the overall network link utilization [2]. The larger α and
smaller β will result in smaller renegotiation frequency but at
the expense of decreased network utilization. Typical values
of (α,β) are, for example, (1.1, 0.9) and (1.3, 0.7).

5.2. Service policy

Focused on the renegotiated VBR (R-VBR), our empirical
study is conducted using trace-driven simulation. While the
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simulation method seems similar to that in [6, 12], one es-
sential distinction is the different service policies used. It was
assumed in [6, 12], for simplicity, that once a renegotiation
request for more bandwidth from a video source is rejected,
that video source will be completely blocked (i.e., stopped)
until its resource request is finally satisfied later. This ser-
vice policy is, however, impractical. In contrast, we assume
that when a request of a video source for more bandwidth is
rejected, that video source will not be blocked but (shaped
instead) will continuously transmit with its previously allo-
cated bandwidth. Clearly, the service policy we adopted is
more realistic. It also allows us to observe and study video
data drop rate under each dynamic bandwidth allocation
scheme in addition to link utilization and renegotiation in-
terval, which has not been reported in literature yet. When
D-BIND traffic descriptor is used, R-VBR service could be
deterministic at segment level (a segment is an interval be-
tween any two consecutive renegotiation points) but would
be stochastic at connection session level due to the possibil-
ity of bandwidth renegotiation failures. Once a renegotiation
request fails, bit drop becomes not only possible but also im-
portant with the realistic service policy adopted in our study,
but would not occur with the simplified service policy as-
sumed in [6, 12]. This insight explains why the drop rate
was not considered in the previous studies (e.g., [6, 12]). As
a result of adopting the realistic service policy, we are able
to present a comprehensive network performance metrics as
utilization/delay, drop rate, and renegotiation interval in our
empirical study. This approach would enable us to systemat-
ically investigate and better understand the fundamental as-
pects of prediction-based dynamic resource allocation. Note
that as admission control is not a focus of this work, admis-
sion is simply considered as a usual bandwidth renegotiation,
with which if the requested bandwidth resource cannot be
satisfied the video source is declined, otherwise the source
is admitted. More sophisticated admission control will be a
future work.

5.3. MPEG-4 video traces and simulation setup

MPEG-4 provides very efficient video coding covering a wide
range from low bit rates for wireless communications to high
bit rates for high-quality levels. In our work, two real-world
MPEG-41 VBR video traces are used: movies Mr. Bean (high
quality) and Robin Hood (low quality) [17]. The resolution of
display is 176 pels (width) ×144 pels (height). Frame rate is
25 frames/s. The GOP of the video traces is IBBPBBPBBPBB.
For high-quality encoding, the quantization parameters for I
frames, P frames, and B frames were fixed at 4, while for low-
quality encoding, the quantization parameters were fixed at
10 for I frames, 14 for P frames, and 18 for B frames. Mean bit
rates are 0.58 Mb/s for Mr. Bean (high quality) and 0.19 Mb/s
for Robin Hood (low quality), respectively. More details about
the video traces can be found in [17]. The simulation has
been carried out on 40 000 frames of each video trace (ap-
proximately 26 minutes). For the experiments for each video

1 MPEG-4 Part2.

trace, multiple video sources are generated through random
starting points of the video trace. The link capacity C =
45 Mb/s for high-quality Mr. Bean, and C = 11 Mb/s for low-
quality Robin Hood, respectively. For our prediction-based R-
VBR, we have the following.

(i) A traffic predictor is applied to each VBR video stream.
(ii) For simplicity, a fixed size M of look-ahead prediction

window is adopted, with which a basic fixed renego-
tiation interval of M frames is used for any admit-
ted video stream for renegotiation request. That is, for
each admitted video stream, its online traffic predictor
periodically predicts next M frames at the end of each
current prediction window. However, whenever the
admission of a new video source into the network takes
place, the online prediction will be made immediately
or based on the renegotiation control algorithm. The
bounding rates of D-BIND traffic descriptor are up-
dated accordingly based on new prediction of the next
look-ahead M frames. If any updated traffic descrip-
tor indicates a demand of the incoming traffic of a
video source exceeding or falling below its currently al-
located bandwidth resource, a renegotiation request is
issued. Note that renegotiation for bandwidth release
will be always satisfied. In our prediction-based R-
VBR scheme, if any admitted video stream’s bounding
rates are updated, the bounding rates of D-BIND de-
scriptors for the other admitted video streams will be
updated simultaneously also to ensure that the band-
width reallocation for all video streams is based on the
most updated predictions.

(iii) The prediction window size M is chosen as 48 frames
for Robin Hood and as 36 frames for Mr. Bean, which
equals to their D-BIND window size used in RED-VBR
scheme, respectively, in our study.

(iv) Two renegotiation methods are tested with prediction-
based R-VBR scheme. One is the commonly used
default method which keeps renegotiating consecu-
tively at the next frame time (i.e., frame-by-frame)
whenever the previous renegotiation request has failed
[2]. The other method is based on the renegotiation
control algorithm proposed in Section 4.

5.4. Results and analysis

We first conduct our simulation using the same setup of
blocking probability of 1% for our prediction-based R-VBR
scheme and the benchmark scheme RED-VBR [2] as the way
used in [6, 12]. The simulation results are shown in Fig-
ures 3 and 4, for low-quality Robin Hood and high-quality
Mr. Bean, respectively, where RED-VBR scheme is simulated
with two sets of parameters α and β. Moreover, both schemes
use the common default method of renegotiation control.
As we see, for both video traces, the network utilization
of prediction-based R-VBR is consistently and significantly
higher than that of RED-VBR for any given delay bound.
The average renegotiation interval of the prediction-based
R-VBR is 1.28 second and 1.11 second for Robin Hood and
Mr. Bean, respectively, which is in between that of RED-VBR
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Figure 3: Comparison between online prediction-based R-VBR
scheme and RED-VBR scheme for Robin Hood.
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Figure 4: Comparison between online prediction-based R-VBR
scheme and RED-VBR scheme for Mr. Bean.

(α = 1.3, β = 0.7), that is, 1.47 second and 1.77 second, re-
spectively, and that of RED-VBR (α = 1.1, β = 0.9) that
is, 0.52 second and 0.65 second, respectively. This clearly in-
dicates that the performance gain of the prediction-based R-
VBR is beyond the adjustment of parameters α and β of RED-
VBR.

Table 1 shows the average drop rates for both schemes.
While higher, the average drop rate of the prediction-based

R-VBR is still below 1%, which should well satisfy a wide
range of real-time video applications. RED-VBR achieves a
lower bit drop rate at the expense of significant lower net-
work utilization. RED-VBR may be used to provide the video
service with a very low (close to zero) drop rate. Prediction-
based R-VBR can achieve around 20% utilization improve-
ment with an average drop rate less than about 1%. Table 1
also lists the number of video streams accommodated into
the network during our simulation. Clearly, the link uti-
lization gains are due to the fact that the prediction-based
R-VBR can accommodate significantly more simultaneous
VBR video streams given the same link capacity. This indi-
cates that prediction-based R-VBR can exploit SMG signifi-
cantly better and utilize link capacity more efficiently.

It would be interesting to see the performance of the two
approaches when they both accommodate the same number
of video streams. To this end, we further conduct simula-
tions with a different setup where the blocking probability
for RED-VBR is increased until it accommodates the same
number of video streams as those for the prediction-based R-
VBR (i.e., both should have similar link utilization). Table 2
lists the performance results for both video traces. It is inter-
esting to see that the average renegotiation interval for RED-
VBR is dramatically reduced and much smaller than that of
our prediction-based R-VBR (i.e., only about 1/3 for Robin
Hood, and less than 1/2 for Mr. Bean, resp.).

To illustrate the limitation of single-step-ahead (i.e.,
single-frame-ahead) traffic prediction approach in dy-
namic bandwidth allocation, we further conduct simula-
tions to compare the predictive dynamic bandwidth allo-
cation schemes based on single-step-ahead predictor (SSP)
with those based on the MRL-NN traffic predictor and RED-
VBR. Our approach is to create a perfect SSP with zero pre-
diction error in the simulations. Thus, a dynamic bandwidth
allocation scheme based on the perfect SSP yields the perfor-
mance upper bound for any possible SSPs. Movie Mr. Bean
(high quality) is used in this experiment. The simulation
setup is the same as that described in Section 5.3. Note that
the prediction window size for Mr. Bean is 36, indicating that
the employed MRL-NN traffic predictor is a 36-frame-ahead
predictor. The simulation results are listed in Table 3. While
the dynamic bandwidth allocation based on the perfect SSP
can yield slightly better utilization performance compared
to RED-VBR, its renegotiation interval is dramatically re-
duced to 0.04 second. Notice that the lapse of 0.04 second
is one frame time given the frame rate of the video trace be-
ing 25 fps. This is not surprising because with single-frame-
ahead traffic prediction, next frame has to be predicted for
every frame. Accordingly, the dynamic bandwidth allocation
has to be renegotiated for every frame time.

The second part of our empirical study focuses on exam-
ining the proposed renegotiation control algorithm applied
to the prediction-based R-VBR scheme employing MRL-NN
predictor through simulation. The link utilization results are
shown in Figures 5 and 6, while the results of renegotia-
tion frequency and bit drop rate are listed in Table 4. As can
be expected, the proposed renegotiation control algorithm
achieves slightly lower network link utilization compared to
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Table 1: Comparison of bit drop rate and the number of video streams accommodated.

Video trace
Delay

Average bit drop rate Number of video streams accommodated

bound (s)
RED-VBR RED-VBR Prediction- RED-VBR RED-VBR Prediction-

(α = 1.1, (α = 1.3, based (α = 1.1, (α = 1.3, based

β = 0.9) β = 0.7) R-VBR β = 0.9) β = 0.7) R-VBR

Robin Hood

0 0.01% 0 0.09% 8 7 9

0.05 0 0 0.13% 17 15 20

0.1 0.16% 0.07% 0.93% 23 21 30

0.15 0.27% 0.20% 0.82% 25 24 30

0.2 0.32% 0.25% 0.91% 26 25 31

Mr. Bean

0 0 0 0.63% 18 15 27

0.05 0.05% 0 0.26% 34 30 38

0.1 0.14% 0.02% 0.68% 37 35 44

0.15 0.17% 0.06% 0.97% 39 37 47

0.2 0.16% 0.08% 0.96% 40 38 48

Table 2: Performance comparisons of the prediction-based R-VBR versus RED-VBR with comparable network utilization.

Video trace
Delay

RED-VBR (α = 1.1, β = 0.9) Prediction-based R-VBR without BEB

bound (s)
Average

Utilization
Average Average

Utilization
Average

drop rate
(%)

renegotiation drop rate
(%)

renegotiation

(%) interval (s) (%) interval (s)

Robin Hood

0.05 0.13 35 0.326 0.13 35 1.073

0.10 0.93 52 0.323 0.93 52 1.279

0.15 0.82 52 0.431 0.82 52 1.349

0.20 0.91 54 0.439 0.91 54 1.279

Mr. Bean

0.05 0.23 53 0.536 0.27 53 1.257

0.10 0.61 61 0.467 0.68 61 1.107

0.15 0.89 65 0.446 0.97 65 1.071

0.20 0.90 66 0.450 0.97 66 1.080

that commonly used default method. This is because that
the BEB-based renegotiation control algorithm will not in-
tend to explore as much fine resolution SMG as the aggres-
sive default method which keeps renegotiating consecutively
frame-by-frame until success. Nevertheless, its utilization is
still consistently and significantly better than that of RED-
VBR (α = 1.1, β = 0.9). A unique gain of the proposed
renegotiation control algorithm is to greatly reduce further
the renegotiation frequency as shown in Table 4, and in ad-
dition, the lower average bit drop rate is also achieved. The
dramatically reduced renegotiation frequency means the sig-
nificant reduction of the overhead of traffic prediction, rene-
gotiation computation and bandwidth reallocation control,
compensated to the slightly decreased link utilization. There-
fore, the proposed renegotiation control algorithm is favor-
able for better overall performance.

6. CONCLUSIONS

The key contributions of our work are (1) noting that a re-
alistic service policy in trace-driven simulation for dynamic

resource allocation study is critical in revealing and under-
standing fundamental aspects of predictive dynamic band-
width allocation approach; (2) showing significant improve-
ment in performance of our predictive dynamic bandwidth
allocation approach based on long-term online traffic pre-
diction over RED-VBR and the predictive dynamic band-
width allocation based on single-step-ahead traffic predic-
tion; and (3) introducing the new concept of renegotiation
control, and proposing and examining a BEB-based rene-
gotiation control method. Rigorous empirical study has
been conducted with MPEG-4 real-world VBR video traf-
fic traces. The MRL-NN long-term traffic predictor [1] is
examined. By adopting a realistic service policy, we present
comprehensive performance metrics including bit drop rate
for predictive dynamic bandwidth allocation simulation
study. Our work suggests that the simplified service pol-
icy used in the previous studies (e.g., [6, 12]) might result
in overestimating the benefits of prediction-based R-VBR
as compared to heuristic-based R-VBR such as RED-VBR.
The proposed BEB-based renegotiation control algorithm
can effectively reduce potentially unnecessary connective
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Table 3: R-VBR performance comparisons among perfect single-step-ahead prediction (SSP) based scheme, multistep-ahead prediction
MRL-NN based scheme, and RED-VBR scheme.

Performance Delay
Schemes

metrics bound (s)
R-VBR with

R-VBR with RED-VBR

perfect SSP
MRL-NN (α = 1.1,

predictor β = 0.9)

Utilization

0 27.9% 37.4% 25.1%

0.05 48.8% 52.9% 47.5%

0.1 53.0% 61.0% 51.6%

0.15 55.7% 64.9% 54.4%

0.2 57.1% 66.3% 55.8%

Drop rate

0 0.02% 0.63% 0.01%

0.05 0.10% 0.27% 0.05%

0.1 0.19% 0.68% 0.14%

0.15 0.22% 0.97% 0.17%

0.2 0.22% 0.97% 0.16%

Renegotiation interval (s)

0 0.04 1.03 0.66

0.05 0.04 1.26 0.65

0.1 0.04 1.11 0.66

0.15 0.04 1.07 0.64

0.2 0.04 1.08 0.64
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Delay bound (s)
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0.3
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0.4
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0.65

0.7

U
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High-quality Mr. Bean

Prediction-based R-VBR without BEB
Prediction-based R-VBR with BEB
RED-VBR with α = 1.1, β = 0.9

Figure 5: Effect of the BEB-based renegotiation control algorithm
for Mr. Bean. (The performance of RED-VBR is also plotted to il-
lustrate the minimal impact of the link utilization with BEB-based
approach.)

renegotiation failures, which is important for reducing rene-
gotiation overhead. Although this study is conducted using
R-VBR as a research vehicle, the insights and methodology

0.20.180.160.140.120.10.080.060.040.020

Delay bound (s)

0.1

0.15

0.2
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0.3

0.35

0.4

0.45

0.5

0.55

0.6

U
ti

liz
at
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Low-quality Robin Hood

Prediction-based R-VBR without BEB
Prediction-based R-VBR with BEB
RED-VBR with α = 1.1, β = 0.9

Figure 6: Effect of the BEB-based renegotiation control algorithm
for Robin Hood. (The performance of RED-VBR is also plotted to
illustrate the minimal impact of the link utilization with BEB-based
approach.)

can also be applied to other types of dynamic bandwidth al-
location schemes, such as renegotiated CBR (R-CBR). Future
work includes investigating and quantitatively evaluating
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Table 4: Effect of BEB-based renegotiation control algorithm on
renegotiation interval and bit drop rate.

Video trace
Using BEB-based

Average
Average

renegotiation
drop rate

renegotiation

control interval (s)

Robin Hood
No 0.58% 1.18

Yes 0.37% 1.81

Mr. Bean
No 0.70% 1.11

Yes 0.52% 1.37

prediction-based R-CBR, as well as implementing real exper-
imental system to conduct subjective comparison.
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