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Modeling Protein Regulatory Networks that Control Mammalian Cell 

Cycle Progression and that Exhibit Near-Perfect Adaptive Responses 
 

Rajat Singhania 
 

ABSTRACT 

 

Protein regulatory networks are the hallmark of many important biological 

functionalities.  Two of these functionalities are mammalian cell cycle progression and 

near-perfect adaptive responses.  Modeling and simulating these functionalities are 

crucial stages to understanding and predicting them as systems-level properties of cells.   

 

In the context of the mammalian cell cycle, the timing of DNA synthesis, mitosis 

and cell division is regulated by a complex network of biochemical reactions that control 

the activities of a family of cyclin-dependent kinases. The temporal dynamics of this 

reaction network is typically modeled by nonlinear differential equations describing the 

rates of the component reactions. This approach provides exquisite details about 

molecular regulatory processes but is hampered by the need to estimate realistic values 

for the many kinetic constants that determine the reaction rates. To avoid this problem, 

modelers often resort to ‘qualitative’ modeling strategies, such as Boolean switching 

networks, but these models describe only the coarsest features of cell cycle regulation. In 

this work, we describe a hybrid approach that combines features of continuous and 

discrete networks. The model is evaluated in terms of flow cytometry measurements of 

cyclin proteins in asynchronous populations of human cell lines. Using our hybrid 

approach, modelers can quickly create quantitatively accurate, computational models of 

protein regulatory networks found in various contexts within cells.  

 

Large-scale protein regulatory networks, such as the one that controls the 

progression of the mammalian cell cycle, also contain small-scale motifs or modules that 

carry out specific dynamical functions. Systematic characterization of smaller, 

interacting, network motifs whose individual behavior is well known under certain 

conditions is therefore of great interest to systems biologists.  We model and simulate 

various 3-node network motifs to find near-perfect adaptation behavior.  This behavior 

entails that a system responds to a change in its environmental cues, or signals, by 

coming back nearly to its pre-signal state even in the continued presence of the signal.  

We let various topologies evolve in their parameter space such that they eventually 

stumble upon a region where they score well under a pre-defined scoring metric.  We find 

many such parameter sample sets across various classes of topologies. 
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Chapter 1.  Overview of the Research 

 
At the cellular level, many important biological functions are controlled by Protein Regulatory 

Networks (PRNs) that have evolved over time to help organisms survive and proliferate.  

Computational modeling can help to provide a better understanding of how the components of a 

PRN work together to carry out their collective function.  In this dissertation, we are specifically 

interested in modeling PRNs that control mammalian cell cycle progression (Chapter 2), and that 

exhibit near-perfect adaptive responses (Chapter 3).  While these contexts are quite different, 

they both help demonstrate the paradigm that there are underlying networks of interacting 

proteins that control many crucial physiological behaviors, and that these can indeed be modeled 

computationally.  

 

In Chapter 2, we describe the design of a new framework to model the network of cyclin-

dependent kinases that controls the timing of events in the cell cycle.  Existing frameworks to 

describe this network are either continuous or discrete.  In the continuous case, the Ordinary 

Differential Equations (ODEs) that model the cyclins and their regulators rely on estimations of 

numerous kinetic parameters that are hard to measure experimentally.  In the discrete case, the 

species involved are modeled using Boolean variables only, which makes it hard to simulate the 

smooth changes found in cyclin levels, and other fine-grained features of cell cycle behavior 

such as cell size and cell age.  Our ‘hybrid’ framework seeks to incorporate the best features 

from the two cases, while avoiding the problems inherent in both.   

 

In our model, we first separate the protein species involved in cell cycle regulation into two 

classes: (1) the cyclins, the proteins that are the primary drivers of cell cycle progression, and (2) 

the cyclin regulators, such as transcription factors and cyclin degradation pathway initiators.  The 

activity or inactivity of the cyclin regulators is represented by discrete (Boolean) variables that 

modulate the continuous ODEs used to model cyclin levels.  Apart from the continuous-discrete 

sense, our model is also hybrid in the deterministic-stochastic sense.  Progression through the 

ordered stages of the cell cycle is divided up into distinct “states”.  Each state comprises a 

specific combination of values of the Boolean-modeled cyclin regulators.  While this sequence of 

Boolean states is deterministic, the residence time in each state is modeled stochastically, using 

an exponential distribution prescribed by the average residence time of each state, which is 

estimated from experimental data.   

 

Apart from modeling the time spent in each state (and thus, in the whole cycle) in a more 

realistic manner than the Boolean framework, our framework also succeeds in incorporating 

measures of cell size.  We assume exponential growth in mass. 

 

We tested our hybrid model using flow cytometry data that characterizes changing cyclins and 

DNA levels across an asynchronous population of RKO (colon carcinoma) cells.  The cyclins we 

model are Cyclin A, which mediates entry into S phase (DNA Synthesis), and Cyclin B, which 

mediates entry into M phase (Mitosis).  We estimate the kinetic parameters for cyclin synthesis 

and degradation from the data itself.   
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To make our model more realistic, we also factor in sources of noise that affect the experimental 

data.  Intrinsic noise in the regulatory system is modeled by the stochasticity of the times spent in 

each state.  Instrumental measurement error, or extrinsic noise, is also taken into account in the 

simulations. 

 

Apart from simulating snapshots of flow cytometry profiles showing cyclins and DNA, we are 

also able to simulate dynamic profiles that show data for up to 6 days.  By accounting for contact 

inhibition among cells in a growing culture, our model also captures the varying daily 

distribution of the cell population across the phases of the cell cycle.   

 

The primary significance of our work is the development of a new and easy-to-use paradigm for 

modeling PRNs that control mammalian cell cycle progression.  Since the parameters come from 

the data itself, the models are relatively easy to build; yet, they are powerful and accurate in both 

a quantitative and qualitative sense.  Used correctly, the hybrid modeling framework can be 

extended to other molecular control systems as well. 

 

In Chapter 3, we seek to find 3-node motifs which exhibit the near-perfect adaptation behavior. 

A motif is a pattern of regulations, such as activations and inactivations, among the protein 

species, or nodes, of a small PRN.   Near-perfect adaptation describes a system that responds to a 

stepwise change in an environmental cue (or signal) by an initial pulse and then a return (nearly) 

to its pre-signal state, even in the continued presence of the signal.  This study is important as 

near-perfect adaptation is characteristic of a variety of biological responses, including 

chemotaxis in E. coli, and adenylate cyclase activation in Dictyostelium.   

 

In a 3-node PRN, we specify that the signal comes into Node 1, the response is read from Node 

3, while Node 2 adds complexity into the behavior of each motif through its interactions with the 

other two nodes.  Since each of the 3 nodes can regulate the other two nodes, there are six 

possible interactions.  Each interaction can take any of three forms: an activation, an inactivation, 

or no regulation.  Therefore, the total number of possible topologies is 3
6
 = 729.   

 

The change in level of each of the three nodes over time is modeled using a nonlinear ODE that 

incorporates several parameters describing (among other things) how a node is affected by the 

other nodes.  There are a total of 12 parameters, whose values together constitute a set.  Each set 

of parameter values is simulated on its own and assigned a score based on how well it shows 

near-perfect adaptation.  Scores are based on both the sensitivity of the response to the signal, 

and also on the precision with which the response comes back to its pre-signal level. 

 

We search for parameter sets with high scores by using an evolutionary algorithm.  This 

algorithm goes from one generation of parameter sets to the next.  Each generation consists of a 

certain number of parent sets that each spawn off a number of progeny parameter sets by 

introducing random changes in each of the parameter values.  The scores of all progeny sets are 

then calculated, and a selection procedure is used to determine which sets survive to become the 

parent sets for the next generation, and so on.  The evolutionary algorithm always tries to find a 

better scoring region in parameter space, and once such a region is found, it tends to remain 

there.  This property enables us to collect a representative sample of high-scoring parameter sets. 
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Instead of simulating each of the 729 topologies one-by-one, we start with a sample of 40 

different topologies, and let them mutate into other topologies using the evolutionary algorithm.  

We find that only two classes of motifs, or topologies, show average scores above a certain 

threshold.  Both these topologies belong to the category of Incoherent Feed Forward Loops 

(IFFLs), and are called IFFL-1’s and IFFL-4’s.   Another category called Negative Feedback 

Loops with Buffering (NFLBs) are also found, coupled with these IFFLs.  These NFLBs are 

simulated separately on their own (not allowed to evolve into other topologies) and found to be 

not as high-scoring as the two classes of IFFLs.  Among themselves, the ‘upper’ NFLBs - 

containing the negative feedback loop between Node 1 and Node 2 - score better than the ‘lower’ 

NFLBs, containing the negative feedback loop between Node 2 and Node 3.   The high-scoring 

IFFL sets were found to be almost exclusively coupled to upper NFLBs.  The contributions of 

the IFFLs and upper NFLBs in the various topologies are validated by examining the strengths of 

the relevant interaction coefficients. 

 

Also, when allowed to evolve into other topologies, all members of the IFFL-1 and IFFL-4 

classes stay within their own class, thus forming two distinct, high-scoring plateaus, or ‘mesas’ 

in topology space.  Almost all NFLBs that are not coupled to IFFL’s evolve onto the IFFL-1 

mesa, which shows their evolutionary superiority.  The two ‘mesas’ exist in contrast to other 

topology classes which score low and are therefore mostly in the ‘desert’ region.  We are able to 

find the regions in parameter space where the mesas exist.  We validate our findings by various 

analyses, and also characterize the robustness of an adaptive motif by calculating the volume of 

the multi-dimensional ellipsoid that approximates the size of the high-scoring region in the 

motif’s parameter space.   

 

Our work significantly extends previous work on near-perfect adaptation in the literature.  We 

establish the superiority of the IFFLs to the NFLBs, show which combinations of the two classes 

score best, which classes are evolutionarily stable, and finally, where in parameter space these 

classes of interest are most likely to score high.  We now have a much more nuanced idea of 

what kinds of PRNs exhibit the property of near-perfect adaptation, and we use a very efficient 

evolutionary algorithm to come to our conclusions.  Our approach can be easily extended to 

study other biological behaviors of interest within small-scale PRNs. 

 

The research summarized above occurs in two distinct contexts that still share some common 

themes.  The central idea behind the two projects is that physiological behaviors crucial to the 

cell’s survival and propagation are controlled by networks of interacting proteins that can be 

modeled mathematically.  The signal dictating the behavior is read or sensed by proteins, and the 

cellular response is carried out primarily through proteins as well.  The underlying network 

contains intermediary proteins that transmit the signal from the input component to the output 

component.  The specific pattern of regulations within and among all these components is crucial 

to determining the actual response of the cell.  Different network topologies can produce 

different behaviors.   Importantly, the behavior of the overall network may be unpredictable or 

counter-intuitive due to the complex web of regulations present.  This is where computational 

modeling approaches, such as the ones we use, can play a significant role in both checking our 

understanding of how a well-characterized physiological behavior (such as progression of the 

unperturbed mammalian cell cycle) is regulated, and in yielding new light on regulatory 

mechanisms that are relatively unknown (such as the PRNs controlling near-perfect adaptation).  
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Chapter 2. A Hybrid Model of Mammalian Cell Cycle Regulation
*1 

 

2.1 Introduction 
 

The cell division cycle is the fundamental physiological process by which cells grow, replicate, 

and divide into two daughter cells that receive all the information (genes) and machinery 

(proteins, organelles, etc.) necessary to repeat the process under suitable conditions (Mitchison, 

1971). This cycle of growth and division underlies all biological expansion, development and 

reproduction. It is highly regulated to promote genetic fidelity and meet the demands of an 

organism for new cells. Altered systems of cell cycle control are root causes of many severe 

health problems, such as cancer and birth defects. 

 

In eukaryotic cells, the processes of DNA replication and nuclear/cell division occur sequentially 

in distinct phases (S and M) separated by two gaps (G1 and G2). Mitosis (M phase) is further 

subdivided into stages: prophase (chromatin condensation, spindle formation, and nuclear 

envelope breakdown), prometaphase (chromosome attachment and congression), metaphase 

(chromosome residence at the mid-plane of the spindle), anaphase (sister chromatid separation 

and movement to opposite poles of the spindle), telophase (re-formation of the nuclear 

envelopes), and cytokinesis (cell division). G1 phase is subdivided into uncommitted and 

committed sub-phases, often referred to as G1-pm (postmitotic interval) and G1-ps (pre S phase 

interval), separated by the ‘restriction point’ (Zetterberg et al, 1995).  In this paper, we shall refer 

to the sub-phases G1-pm and G1-ps as ‘G1a’ and ‘G1b’ respectively.   

 

Progression through the correct sequence of cell-cycle events is governed by a set of cyclin-

dependent kinases (Cdk’s), whose activities rise and fall during the cell cycle as determined by a 

complex molecular regulatory network. For example, cyclin synthesis and degradation are 

controlled, respectively, by transcription factors and ubiquitin-ligating complexes whose 

activities are, in turn, regulated by cyclin/Cdk complexes.  

 

Current models of the Cdk control system can be classified as either continuous or discrete. 

Continuous models track the changes of protein concentrations, Cj(t) for j = 1, 2, …, N, by 

solving a set of nonlinear ordinary differential equations (ODEs) of the form: 

 

( )∑
=

=
R

r

Nrjr
j

CCC
dt

dC

1

21 ,...,,ρν          [Eq.2.1] 

 

where ρr is the rate of the r
th

 reaction and νjr is the stoichiometric coefficient of species j in 

reaction r. To each rate term is associated one or more kinetic constants that determine exactly 

how fast the reaction proceeds under specific conditions. These kinetic constants must be 

estimated from experimental data, and often there is insufficient kinetic data to determine their 

values. Nonetheless, continuous models, based on rate equations, have been used successfully to 

account for the properties of cell proliferation in a variety of cell types: yeast (Chen et al, 2004; 

                                                 
*
R. Singhania, R.M. Sramkoski, J.W. Jacobberger & J.J. Tyson, PLoS Comput. Biol.  7:e1001077 (2011). 
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Chen et al, 2000; Novak et al, 2001), fruit fly (Calzone et al, 2007), frog egg (Novak & Tyson, 

1993; Pomerening et al, 2005), and cultured mammalian cells (Aguda & Tang, 1999; Novak & 

Tyson, 2004; Qu et al, 2003). They have also proved successful in predicting novel cell-cycle 

characteristics (Pomerening et al, 2003; Sha et al, 2003). 

 

Discrete models, on the contrary, represent the state of each regulatory protein as Bj(τ) = 0 or 1 

(inactive or active), and the state variables update from one discrete time step to the next (τ = 0, 

1, 2, … = ticks of a metronome) according to the rule:  

 

Bj(τ +1) =  Bj(B1(τ), B2(τ), …, Bn(τ)),      [Eq.2.2] 

 

where Bj(…) is a Boolean function (i.e., it equates to either 0 or 1) determined by the topology of 

the reaction network. For Boolean networks (BNs), there is no notion of reaction ‘rate’ and, 

hence, no need to estimate kinetic constants. BN models of the Cdk regulatory network have 

been proposed for yeast cells (Davidich & Bornholdt, 2008; Li et al, 2004) and for mammalian 

cells (Faure et al, 2006). They have been used to study notions of ‘robustness’ of the cell cycle, 

but they have not been compared in detail to quantitative properties of cell cycle progression, and 

they have not been used as predictive tools.  

 

In this paper we propose to combine the strengths of both continuous and discrete modeling, 

while avoiding the weaknesses of each. Our ‘hybrid’ model is inspired by the work of Li et al. 

(2004), who proposed a BN for cell cycle controls. Their model employs 11 state variables that 

move around in a space of 2
11

 = 2048 possible states. Quite remarkably they found that 1764 of 

these states converge quickly onto a ‘super highway’ of 13 consecutive states that represent a 

typical cell cycle trajectory (G1b—S—G2—M—G1a). The results of Li et al. indicate that the 

cell cycle control network is ‘robustly designed’ in the sense that even quite large perturbations 

away from the usual sequence of cell cycle states are quickly restored to the super highway. In 

the model of Li et al., G1a is a stable steady state; they do not address the signals that drive cells 

past the restriction point (the G1a-to-G1b transition). 

 

Despite their intuitive appeal, Boolean models have severe limitations. First of all, metronomic 

time in BN’s is unrelated to clock time in the laboratory, so Boolean models cannot be compared 

to even the most basic observations of time spent by cells in the four phases of the division cycle 

(Mitchison, 1971). Also, these models do not incorporate cell size, so they cannot address the 

evident importance of cell growth in driving events of the cell cycle (Fantes & Nurse, 1981; 

Tyson, 1985; Tyson, 1987). Lastly, cyclins are treated as either absent or present (0 or 1), so 

Boolean models cannot simulate the continuous accumulation and removal of cyclin molecules 

at different stages of the cell cycle (Darzynkiewicz et al, 2004). 

 

Our goal is to retain the elegance of the Boolean representation of the switching network, while 

introducing continuous variables for cell size, cell age, and cyclin composition, in order to create 

a model that can be compared in quantitative detail to experimental measurements with a 

minimal number of kinetic parameters that must be estimated from the data. To this end, we keep 

the cyclin regulators as Boolean variables but model the cyclins themselves as continuous 

concentrations that increase and decrease due to synthesis and degradation. Next, we replace the 

Boolean model’s metronome with real clock time to account for realistic rates of cyclin synthesis 
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and degradation, and for stochastic variability in the time spent in each Boolean state of the 

model. Finally, we introduced a cell size variable, M(t), which affects progression through late 

G1 phase. M(t) increases exponentially with time as the cell grows and decreases by a factor of 

~2 when the cell divides. (The assumption of exponential growth is not crucial; similar results 

are obtained assuming linear growth between cell birth and division.) 

 

Since the pioneering work of Leon Glass (Glass & Kauffman, 1973; Glass & Pasternack, 1978), 

hybrid (discrete-continuous) models have been employed by systems biologists in a variety of 

forms and contexts (Bosl, 2007; Li et al, 2009; Matsuno et al, 2006).  Engineers have been 

modeling hybrid control systems for many years (Alur et al, 2001; Fishwick, 2007; Klee & 

Allen, 2011), and they have created powerful simulation packages for such systems (Mosterman, 

1999): SHIFT (Deshpande et al, 1997), CHARON (Alur et al, 2000), SIMULINK (Klee & Allen, 

2011), and UPPAAL (Bengtsson et al, 1996), to name a few. We have not used these simulation 

packages because our model can be solved analytically. 

 

2.2 Results 
 

Hybrid modeling approach 

 

The modeling approach we are proposing is hybrid in two senses. First, we employ both 

continuous and discrete variables, and second, we allow for both deterministic and stochastic 

processes. Concerning the components of the control system, we track cyclin levels as 

continuous concentration variables, but we use discrete Boolean variables to represent the 

activities (‘on’ or ‘off’) of the regulatory proteins (transcription factors and ubiquitinating 

enzymes) that control cyclin synthesis and degradation. This distinction is equivalent to a 

presumed ‘separation of time scales’: the activities of the regulatory proteins change rapidly 

between 0 and 1, while the concentrations of cyclins change more slowly due to synthesis and 

degradation. The Boolean variables, we assume, proceed from one state to the next according to 

a fixed sequence corresponding roughly to the super highway of Li et al. (2004). The time spent 

in each state, however, is not a ‘tick’ of the metronome but rather the sum of a deterministic 

execution time (which may be 0) plus a random, exponentially distributed waiting time. In this 

sense, the model combines deterministic and stochastic processes. 

 

In its present version, our model is not fully autonomous. The discrete variables do not update 

according to Boolean functions of the current state of the network. Rather, they go through a 

fixed sequence of states predetermined by the Boolean network model of Li et al. [14]. The 

discrete variables determine the rates of synthesis and degradation of the continuous variables 

(the cyclins), and the cyclins feedback on the discrete variables by determining how much time is 

spent in some of the Boolean states. This strategy keeps the model simple and is appropriate for 

the cases, considered in this paper, of unperturbed cycling of ‘wild type’ cells, which travel 

serenely along the super highway of Li et al. To consider more complicated cases, of mutant 

cells that travel a different route through discrete state space or of cells that are perturbed by 

drugs or radiation, we will have to elaborate on this basic model with additional rules governing 

the interactions of the discrete and continuous variables. We are currently working on alternative 

strategies to adapt this basic modeling paradigm to more complex situations. 
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Our model (see Figure 2.1(a)) tracks three cyclin species (A, B and E), two transcription factors 

(‘TFE’ and ‘TFB’) and two different E3 ubiquitin-ligase complexes (APC-C and SCF). TFE 

drives the synthesis of cyclins E and A early in the cell cycle (comparable to the E2F family of 

transcription factors) (Trimarchi & Lees, 2002), and TFB drives the synthesis of cyclins B and A 

late in the cell cycle (comparable to FoxM1 and Myc) (Laoukili et al, 2005; Wierstra & Alves, 

2007). The Anaphase Promoting Complex—Cyclosome (APC-C) is active during M phase and 

early G1, when it combines with Cdc20 and Cdh1 to label cyclins A and B for degradation by 

proteasomes. We make a further distinction between Cdc20 activity on cyclin A (Cdc20A, active 

throughout mitosis) from Cdc20 activity on cyclin B (Cdc20B, activated at anaphase). The SCF 

labels cyclin E for degradation via ubiquitination, but only when cyclin E is phosphorylated 

(Cardozo & Pagano, 2004), which we assume is correlated primarily with cyclin A/Cdk2 activity 

(Welcker et al, 2003).  

 

(a)    

 

(b)
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Figure 2.1. The model. (a) The synthesis and degradation of cyclin proteins is regulated by transcription factors 

(TFE and TFB) and by ubiquitination machinery (SCF, Cdc20 and Cdh1). (b) Three successive cell cycles are 

simulated as explained in the Methods. Upper panel: gray curve, 30·M(t); blue curve, [CycE]·M(t); the gold line and 

the pink line indicate the time periods when TFE = 1 and SCF = 1, respectively. Lower panel: green curve, 

[CycA]·M(t); red curve, [CycB]·M(t); the colored bars indicate the time periods when the Boolean variables are 

active, according to the legend in the inset.      
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In our model, the two transcription factors and the four ubiquitination factors are each 

represented by a Boolean variable, BTFE, etc. For each cyclin component we write an ordinary 

differential equation, d[CycX]/dt = ksx – kdx[CycX],  where the rate ‘constants’ for synthesis and 

degradation, ksx and kdx, depend on the Boolean variables (see Table 2.1). Hence, each cyclin 

concentration is governed by a piecewise linear ODE. The parameters in the model ( '

sxk , "

sxk , 

etc.) are assigned numerical values (Table 2.1), chosen to fit observations of how fast cyclins 

accumulate and disappear during different phases of the cell cycle. 

 

Next, we must assign rules for updating the Boolean variables in the model. We assume that the 

Boolean variables follow a strict sequence of states (see Table 2.1) that corresponds roughly to 

the super highway discovered by Li et al. (2004). This sequence of states conforms to current 

ideas of how the mammalian cell cycle is regulated. Newborn cells are said to be in ‘G1a’ state, 

because they are not yet committed to a new round of DNA synthesis and mitosis. The 

transcription factors, TFE and TFB, are silent, and Cdh1/APC-C is active, so the levels of cyclins 

A, B and E are low in newborn cells. For a mammalian cell to leave the G1a state and commit to 

a new round of DNA replication and division, it must receive a specific set of extracellular 

signals (growth factors, matrix binding factors, etc.), which up-regulate the activity of TFE. We 

assume that these ‘proliferation signals’ are present and that our (simulated) cell spends only a 

few hours in G1a before transiting into G1b. 
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Table 2.1.  Hybrid model of mammalian cell cycle control. 

 

][
][

CycAkk
dt

CycAd
dasa −=  

][
][

CycBkk
dt

CycBd
dbsb −=  

][
][

CycEkk
dt

CycEd
dese −=  

M
dt

dM
⋅= γ  

 

TFBsaTFEsasasa BkBkkk '''''' ++=  

120 '''''' CdhdaACdcdadada BkBkkk ++=  

TFBsbsbsb Bkkk ''' +=  

 120 '''''' CdhdbBCdcdbdbdb BkBkkk ++=  

TFEsesese Bkkk ''' +=  

SCFdedede Bkkk ''' +=  

MM ⋅= δ at division 

 

5' =sak  

2.0' =dak  

5.2' =sbk  

2.0' =dbk  

02.0' =sek  

02.0' =dek  

029.0=γ hr
-1

 

 

6'' =sak  

2.1'' =dak  

6'' =sbk  

2.1'' =dbk  

2'' =sek  

5.0'' =dek  

G⋅= 5.0δ  

20''' =sak  

2.1''' =dak  

 

3.0''' =dbk  

 

 

 G is a Gaussian random variable with mean = 1,  

                                                              σ = 3.3% 

 

State Phase BTFE BSCF BTFB BCdc20A BCdc20B BCdh1 Condition for exit λ (h) 

1 G1a 0 0 0 0    0  1 none 2 

2 Early G1b 1 0 0 0 0 1 [CycE]*M = Eθ   0 

3 Late G1b 1 0 0 0 0 0 [CycA] > Aθ  0.01 

4 S 1 1 0 0 0 0 Tmin = 7 h 1 

5 G2 1 1 1 0 0 0 [CycB] > B'θ  0.5 

6 Prophase 0 1 1 0 0 0 none 0.75 

7 Metaphase 0 1 1 1 0 0 none 1.5 

8 Anaphase 0 1 1 1 1 0 none 0.5 

9 Telophase 0 1 0 1 1 1 [CycB] < B''θ  0.025 

                                                                                 Aθ = 12.5, B'θ = 21.25, B''θ = 3, Eθ = 80 
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In our model, the time spent in G1a is an exponentially distributed random variable with mean = 

2 h. When the cell passes the ‘restriction point’ and enters G1b, TFE is activated and CycE 

begins to accumulate. Among other chores, Cdk2/CycE inactivates Cdh1/APC-C, allowing 

Cdk2/CycA dimers to accumulate. In our model, the transition from early G1b to late G1b is 

weakly size dependent, because the condition for this transition is that [CycE]*Mass exceeds a 

certain threshold (ϴE). Because this transition depends on cell mass, those cells that are larger 

than average tend to make the transition sooner, and cells that are smaller than average tend to 

make the transition later. This effect allows the cell population to achieve a stable size 

distribution. In the late G1b state, CycA/Cdk2 level rises to a certain threshold (ϴA), when it 

triggers entry into S phase. Cdk2/CycA also promotes the degradation of cyclin E by SCF during 

S phase. We assume that DNA synthesis requires at least 7 h. 

 

Cyclin B begins to accumulate in late G1 and S, after Cdh1 is inactivated, but the major 

accumulation of cyclin B protein occurs in G2 phase, after DNA synthesis is completed and TFB 

is activated. The G2—M transition is delayed until enough Cdk1/CycB dimer accumulates 

([CycB] > ϴB’) to promote entry into prophase and the appearance Cdc20A/APC-C, which 

begins the process of cyclin A degradation (Geley et al, 2001; Harper et al, 2002; Peters, 2002). 

Cdc20B/APC-C is activated at the metaphase—anaphase transition, where it promotes three 

crucial tasks: (1) separation of sister chromatids by the mitotic spindle, (2) partial degradation of 

cyclin B, and (3) re-activation of Cdh1. Cdh1/APC-C degrades Cdc20 (Pfleger & Kirschner, 

2000), and then finishes the job of cyclin B degradation (telophase). When [CycB] drops below 

the threshold ϴB”, the cell finishes telophase and divides into two newborn daughter cells in G1 

phase (unreplicated chromosomes) with low levels of cyclins A, B and E. 

 

We assume that cell division is symmetric, with some variability; i.e., the mass of the two 

daughter cells at birth are δMdiv and (1-δ)Mdiv, where Mdiv = mass of mother cell at division, and 

δ is a Gaussian-distributed random variable with mean = 0.5 and standard deviation = 0.0167. In 

all simulations reported here we assume that cells grow exponentially between birth and division. 

However, we have also simulated linear growth, and the results are not significantly different. 

 

We introduce stochastic effects into the model by assuming that the time spent in each state of 

the Boolean subsystem, as it moves along the super highway, has a random component ( r

iT ) as 

well as a deterministic component ( d

iT ): d r

i i iT T T= + . From Table 2.1, we see that d 0iT =  for i = 

1, 6, 7, 8, and d

4 7T =  h. For the remaining cases (i = 2, 3, 5, 9), d

iT  is however long it takes for 

the cyclin variable to reach its threshold. The stochastic component for each transition is a 

random number chosen from an exponential distribution with mean = λi. The random time delay 

is calculated from a uniform random deviate, r, by the formula r

iT = )ln(riλ− . The values 

chosen for the λi’s are given in Table 2.1.  

 

In the Methods section, we describe how we simulate the progression of a single cell through its 

DNA replication/division cycle. Because the model’s differential equations are piecewise linear, 

they can be solved analytically, and an entire ‘cell cycle trajectory’ can be determined by 

computing a few random numbers and solving some algebraic equations. A typical result of such 

simulations, over three cell cycles, is illustrated in Figure 2.1(b). Not surprisingly, the 

accumulation and loss of the cyclins correlate with the activities of the cyclin regulators. At the 
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beginning of each cycle, the cell starts in State 1 (G1a phase in Table 2.1), with low levels of all 

cyclin because TFE and TFB are off and Cdh1 is on. When the cell leaves G1a, TFE turns on 

and cyclin E rises rapidly, but cyclin A increases only modestly, because Cdh1 is still active in 

early G1b. Cdh1 turns off when cyclin E level crosses ϴE, allowing cyclin A to increase 

dramatically in late G1b and drive the cell into S phase (State 4). Cyclin B increases modestly in 

late G1 and S phase, because Cdh1 is off but TFB has not yet turned on. Cyclin E is degraded in 

S phase, because SCF is now active. When the cell finishes DNA synthesis, TFB turns on, 

causing further increase of cyclins A and B. When cyclin B level rises above its first threshold, 

ϴB’, the cell enters prophase (State 6) and then prometaphase-metaphase (State 7). During State 

7, cyclin A level drops precipitously because Cdc20A is turned on. After the replicated 

chromosomes are fully aligned on the mitotic spindle, Cdc20B turns on (State 8) and cyclin B is 

partially degraded. Cdc20B activates Cdh1 (State 9) and cyclin B is degraded even faster. When 

cyclin B level drops below its second threshold, ϴB”, the cell divides and returns to G1a (State 

1).  

 

Cyclin distributions in an asynchronous culture 

 

Our first test for the hybrid model is to simulate flow cytometry measurements of the DNA 

content and cyclin levels in an asynchronous population of RKO (colon carcinoma) cells (Yan et 

al, 2004). In the data set, a typical scatter plot has about 65000 data points, each point displaying 

the measurements of two observables in a single cell chosen at random from the cell cycle (see 

Figure 2.2).  When the data are plotted in this way, they form a cloudy tube of points through a 

projection of the state space (say, cyclin B versus cyclin A). Because there will be some cells 

from every phase of the cell cycle, the tube closes on itself. If the system were completely 

deterministic and the measurements were absolutely precise, the data points would be a simple 

closed curve (a ‘limit cycle’) in the state space. The data actually present a fuzzy trajectory that 

snakes through state space before closing on itself. The indeterminacy of the points comes 

(presumably) from two sources: intrinsic noise in the molecular regulatory system (modeled by 

the random waiting times, r

iT ) and extrinsic measurement errors, which we shall introduce 

momentarily. Our strategy for simulating flow-cytometry data is explained in more detail in the 

Methods section. 

 

In Figure 2.2 we compare our simulated flow-cytometry scatter plots with experimental results of 

Yan et al. (Yan et al, 2004). We color-code each cell in the simulated plot according to which 

Boolean State (Table 2.1) the cell is in at the time of fixation. In Figure 2.3 we plot cyclin E 

fluctuations, as predicted by our model, along with a projection of the cell cycle trajectory in a 

subspace spanned by the three cyclin variables ((a), (b) and (e)).  

 

Contact inhibition of cultured cells 

 

As a further test of the utility of this modeling approach, we have used our hybrid model to 

simulate an exponentially growing population of an immortalized Human Umbilical Vein 

Endothelial cell line (HUVEC).  In the experiment (see Figure 2.4(a) and the subsection “Cells, 

culture, and fixation” in Methods), a culture is seeded with 5×10
4
 cells on ‘Day 0’ and allowed to 

grow. At Day 6, it reaches confluence and cell number plateaued at a constant level.  
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(a) 

 

(c) 

 

(e) 

 

(b) 

 

(d) 

 

(f) 

 

Figure 2.2. Scatter plots. (a,c,e) Flow cytometry data from Yan et al (Yan et al, 2004).  Used with permission per 

email from Dr. James W. Jacobberger, Case Comprehensive Cancer Center, to Rajat Singhania April 12, 2011, 

attached. DNA = 190 corresponds to G1 and DNA = 380 corresponds to G2/M. (b,d,f) Our simulations. We are 

plotting the total amount of cyclin A and cyclin B per cell, i.e., [CycA]·M(t) and [CycB]·M(t).  DNA = 1 in G0/G1 

phase; = 2 in G2/M phase. Some ‘instrumental noise’ has been added to the calculated levels of cyclins and DNA, as 

described in the Methods. The arrows in (a, b) indicate the rate of cyclin B accumulation in S phase in the 

measurements and in the model. The arrows in (c, d) indicate the cyclin A level at the onset of DNA synthesis, 

compared to the maximum expression level of ~600 AU. 

 

To apply the hybrid model to this data, we had to devise a way to model contact inhibition, 

which arrests cells in a stable quiescent state. To this end, we assume that the transition 

probability, p, for exiting State 1 is a function of the number of cells alive at that time, N:  

 

 .

exp1
1

0

0








 −
+

=

N

NN

p
p  [Eq. 2.3] 

For 0 < N1 << N0, p is a sigmoidal function of N that drops abruptly from p0 to 0 for N > N0. For 

each cell in this simulation, we set λ1 (the mean for the random time spent in G1a) to 1/p, and we 

choose p0 = 0.5 h
-1

 to conform to the value of λ1 in Table 2.1. As the population size N increases, 

the time spent in G1a phase increases until cells eventually arrest in State 1, and the growth 

curve, N(t), levels off. In this case, State 1 in our model corresponds to a quiescent state (G0) in 

which cells are alive but not proliferating.  
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(a) 

 

 

 

(b) 

 

 

 

Figure 2.3. Model predictions of cyclin E dynamics. (a,b) Scatter plots. (c,d) Stochastic limit cycle in the state space 

of cyclins A, B and E.  We provide two different perspectives of this three dimensional figure to help visualize how 

the cyclin levels go up and down.  In addition, we have added golden-colored balls to help guide the eye along the 

cell cycle trajectory.  Each ball represents the average of the cyclin levels of all the cells binned over a hundredth of 

the φi interval [0,1], where φi refers to the fraction of the cell cycle completed by cell i (as described in the Methods 

section). Finally, it may help to recognize that Fig. 2.2(e) is a projection of the data on the CycA-CycB plane, and 

Fig. 2.3(b) is a projection on the CycA-CycE plane. 

 

To make the simulation more tractable, we start off with 500 cells (instead of 50,000 cells) and 

follow the lineage of each initial cell until Day 10.  Every 24 hours, we compute the number of 

cells alive at that point of time and plot the results in Figure 2.4(a), along with the experimental 

data (scaled down by a factor of 100). The parameter values, N0 =11,000 and N1 = 500, are 

chosen to fit the simulation to the observed growth curve. From the model we can also compute 

the percentage of cells in G0/G1, S and G2/M phases on each day (see Figure 2.4(c)), and the 

results compare favorably with the experimental observations (see Figure 2.4(b)).  Lastly, we 



15 

 

also simulate the patterns of cyclin A2 and cyclin B1 expression on each day for the growing 

population of HUVEC cells (simulations not shown). 

 

(a) 

 

(b) 

 

(c) 

 

Figure 2.4. Contact inhibition of a culture of human umbilical vein endothelial cells. (a) Growth curve for the 

HUVEC population over 10 days, showing the base-10 logarithm of the cell count for both experimental data and 

our simulation (with N0 = 11000 and N1 = 500).  (b) Daily distribution of cells across the phases of the cell cycle, 

from experimental data.  (c) Model simulation of the phase distributions. 

 

2.3 Discussion 
 

We have constructed a simple, effective model of the cyclin-dependent kinase control system in 

mammalian cells and used the model to simulate faithfully the accumulation and degradation of 

cyclin proteins during asynchronous proliferation of RKO (colon carcinoma) cells. The model is 

inspired by the work of Li et al. (2004), who proposed a robust Boolean model of cell cycle 

regulation in budding yeast. Our goal was to retain the elegance of the Boolean representation of 

the switching network, while introducing continuous variables for cell size, cell age, and cyclin 

composition, in order to create a model that could be compared in quantitative detail to 

experimental measurements.   

 

We have shown that this model can accurately simulate flow-cytometric measurements of cyclin 

abundances in asynchronous populations of growing-dividing mammalian cells. The parameters 

in the model that allow for a quantitative description of the experimental measurements are 

easily estimated from the data itself. Now that the model is parameterized and validated for wild-

type cells, we are currently extending it to handle the behavior of cell populations perturbed by 

drugs and by genetic interference. In some cases, only modest extensions of the model are 

required; in other cases, a more thorough overhaul of the way the discrete and continuous 

variables interact with each other is necessary. 

 

We have chosen parameter values in our model to capture the major features of cyclin 

fluctuations as measured by flow cytometry during the somatic division cycle of mammalian 

cells. We have used a human tumor cell line to calibrate our model.  Between cell lines and 

normal human cultured cells, there are differences in the expressions of A and B cyclins (Gong 

et al, 1994); however, when the levels of cyclin B1 were rigorously compared for HeLa, K562, 

and RKO cells, both the patterns and magnitudes of expression are remarkably similar, 

apparently dependent to some degree on the rate of population growth (Frisa & Jacobberger, 
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2009). In addition, the patterns of expression of cyclins A2 and B1 are similar for these human 

tumor cell lines and stimulated normal human circulating lymphocytes (figures not shown). 

Overall, the simulation outputs have satisfying similarity both in pattern and magnitude to the 

real data for RKO cells, and our simulated expression patterns of cyclins A, B and E for the 

tumor cell line are quite similar to the simulated expression patterns in HUVEC cells (figures not 

shown).  

 

However, there remain some inconsistencies between our mathematical simulations and our 

experimental observations that point out where future modifications to the model are needed. For 

example, in the model DNA synthesis starts when cyclin A has accumulated to ~8% of its 

maximum level (see arrow in Figure 2.2(d); 50/600 ≈ 8%), whereas in our measurements DNA 

synthesis starts when cyclin A is ~5% of its maximum level (see arrow in Figure 2.2(c)). This 

discrepancy is tempered by the fact that we are not confident of the quantitative accuracy of 

cyclin A expression levels below ~4% of its maximum level in Figure 2.2(c). Where we place 

the minimum expression level of cyclin A in see Figure 2.2(d) affects our estimate of the cyclin 

A level at onset of DNA synthesis (50 AU at present). By lowering the minimum expression 

level of cyclin A below 10 AU in Figure 2.2(a) (e.g., by lowering k’sa), we could line up the two 

arrows in Figures 2.2(c) and 2.2(d). Nonetheless, we observe (figures not shown) that cyclin A 

expression correlates highly with BrdU incorporation, suggesting that significant accumulation 

of cyclin A begins simultaneously with the onset of DNA synthesis, whereas in our model cyclin 

A production begins in mid-G1 phase. This discrepancy could be minimized by lowering the 

cyclin A threshold (ϴA) in the model.  

 

The simulation (see Figure 2.2(b)) captures the observed accummulation of cyclin B in late G1 

(when Cdh1 turns off), but the simulated rise in cyclin B during S phase appears to be faster than 

the observed rise (Jacobberger et al, 1999) (compare the arrows in Figures 2.2(a) and 2.2(b)). 

The simulation does capture the rapid accumulation of cyclin B observed in G2. Finally, while 

we did not calibrate the cyclin E expression parameters to any specific dataset, the pattern of 

expression in Figure 2.3(a) is quite similar to expected expression patterns for normal human 

somatic cells and some human tumor cell lines (Darzynkiewicz et al, 1996). 

 

We believe that our hybrid approach will be generally useful for modeling macromolecular 

regulatory networks in cells, because it combines the qualitative appeal of Boolean models with 

the quantitative realism of reaction kinetic models.  

 

2.4 Methods 
 

Simulations 

 

We simulate a flow cytometry experiment with our hybrid model in two steps. 

 

Step 1: Creating complete ‘life histories’ for thousands of cells. At the start of the simulation, we 

specify initial conditions at the beginning of the cycle (State 1) for a progenitor cell. We used the 

following initial values of the state variables: [CycA] = [CycB] = [CycE] = 1 and M = 3. Our 

strategy is to follow this cell through its cycle until it divides into two daughters. We then choose 

one of the two daughters at random and repeat the process, continuing for 32500 iterations. We 
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discard the first 500 cells, and keep a sample of 32000 cells that have completed a replication-

division cycle according to our model. In the second step, we create a simulated sample of 32000 

cells chosen at random phases of the cell cycle, to represent the cells that were assayed by the 

flow cytometer. 

 

Let us consider cell i (1 < i < 32500) at the time of its birth, ti0. By definition, this cell is in State 

1, and we assume that we know its birth mass, M(ti0), and its starting concentrations of cyclins A, 

B and E. Denote the starting concentrations as [CycA(ti0)], [CycB(ti0)], [CycE(ti0)]. In the 

ensuing discussion, unless it is necessary for clarity, we drop the i subscript, it being understood 

that we are talking about a representative cell in the population. We will follow this cell until it 

divides to produce a daughter cell with known concentrations of cyclins.  

 

According to Table 2.1, a cell in State 1 has no special conditions to satisfy before moving to 

State 2. Hence the residence time in State 1 is a random number r

1T  chosen from an exponential 

distribution with mean λ1 = 2 h. The cell enters State 2 at t1 = t0 + r

1T . Assuming exponential 

growth, its size at this time is M(t1) = M(t0) exp{γ(t1- t0)} = M(t0) exp{γA1}, where γ is the 

specific growth rate of the culture and A1 = t1 – t0 is the age of the cell when it exits State 1. To 

compute the cyclin concentrations at t = t1, we use cyclin A as an example. During the interval t0 

< t < t1, [CycA] satisfies a linear ODE with effective rate constants ksa1 = k’sa = 5 and kda1 = k’da + 

k”’da = 1.4, because BTFE = BTFB = BCdc20A = 0 and BCdh1 = 1 for a cell in State 1. We can compute 

the concentration of cyclin A at any time during this interval from 
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Setting t = t1 in this equation gives the number we seek. In this fashion, we start tabulating the 

following information for each simulated cell: 

 

Time t0 t1 t2 … 

Enter State 1 2 3 … 

Age 0 A1 = t1 – t0 A2 = t2 – t0  

Size M(t0) M(t1) M(t2) … 

Cyclin A [CycA(t0)] [CycA(t1)] [CycA(t2)] … 

Cyclin B [CycB(t0)] [CycB(t1)] [CycB(t2)] … 

Cyclin E [CycE(t0)] [CycE(t1)] [CycE(t2)] … 

 

Notice that, at t = t1 when the cell enters State 2, the transcription factor (TFE) for cyclins E and 

A turns on, and these cyclins start to accumulate. The cell cannot leave State 2 until cyclin E 

accumulates to a sufficiently high level: [CycE](t)·M(t) = ϴE, according to Table 2.1. When this 

condition is satisfied, the cell leaves State 2 and enters State 3. The size dependence on this 

transition is a way to couple cell growth to the DNA replication-division cycle. According to the 

parameter settings in Table 2.1, there is no stochastic component to the transition out of State 2.  

 

We continue in this fashion until the cell leaves State 9 and returns to State 1, when cyclin B is 

degraded at the end of mitosis. This is the signal for cell division. The age of the cell at division 
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is A9 = t9 – t0, and the mass of the cell at division is M(t9) = M(t0) exp(γ·A9). The mass of the 

daughter cell at the beginning of her life history is Mdaughter(t0) = δ·Mmother(t9), where δ is a 

random number sampled from a normal distribution of mean 0.5 and standard deviation 0.0167 

to allow for asymmetries of cell division.  

 

Notice that simulating the life history of a single cell only requires generating about a dozen 

random numbers and performing a handful of algebraic calculations. At no point do we need to 

solve differential equations numerically. Hence we can quickly calculate the life histories of tens 

of thousands of cells. 

 

Step 2: Finding the DNA and cyclin levels of each cell in an asynchronous sample. In the flow 

cytometry experiments of Yan et al. (Yan et al, 2004), a random sample of cells is taken from an 

asynchronous population, the cells are fixed and stained, and then run one-by-one through laser 

beams where fluorescence measurements are made. So each data point consists of measurements 

of light scatter (related to cell size) and fluorescence proportional to DNA and cyclin content for 

a single cell taken at some random point in the cell cycle. To simulate this experiment, we must 

assign to each of our 32000 simulated cells a number φi selected randomly from the interval 

[0,1], where φi refers to the fraction of the cell cycle completed by cell i when it was fixed and 

stained for measurement. Because each mother cell divides into two daughter cells, the density of 

cells at birth, φ = 0, is twice the density of cells at division, φ = 1. The ‘ideal’ probability density 

for an asynchronous population of cells expanding exponentially in number is 

 

  ϕϕ −⋅= 12)2(ln)(f        [Eq. 2.5] 

 

According to the ‘transformation method’ (Press et al, 1992, Chapter 7.2), we compute φ as 

 

  








−
=

r2

2
 log2ϕ        [Eq. 2.6] 

 

where r is a random number chosen from a uniform distribution on [0,1]. In this way, we 

generate 32000 fractions, φi.  

 

If φi is the cell-cycle location of the i
th

 cell when it is selected for the flow cytometry 

measurements, then its age at the time of selection is ai = φi·Ai9, where Ai9 is the age of the i
th

 cell 

at division. Given a value for ai, we then find the state n (= 1, 2, … or 9) of the i
th

 cell at the time 

of its selection:  

 

  niiini tatt ,01, <+≤−        [Eq. 2.7] 

 

where ti,n (as defined above) is the time at which the i
th

 cell left state n to enter state n+1. 

 

Once we know the state n of the cell, we can compute the concentration of each cyclin in the cell 

at its exact age ai by analogy to Eq. [2.4]: 
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where ksa,n and kda,n are the synthesis and degradation rate constants for cyclin A in state n. This 

is a straightforward calculation because in Step 1 we stored the values of tn and [CycA(tn)] for 

every state of each cell. We can also calculate the mass of cell i at the time of its selection:  

 

)exp()()( 0 iii atMaM ⋅⋅= γ        [Eq. 2.9] 

 

where M(ti0) is the mass at birth of cell i and γ is the specific growth rate of the culture. Because 

the flow cytometer measures the total amount of fluorescence proportional to all cyclin A 

molecules in the i
th

 cell, we take as our measurable the product of [CycA(ai)] times M(ai).  

 

Lastly we determine the DNA content of cell i at age ai according to: 

 DNA = 1 for ti0 ≤ ti0 + ai < ti3 = entry of i
th

 cell into S phase 

 DNA = 1 + (ti0 + ai – ti3)/(ti4 – ti3) for ti3 ≤ ti0 + ai < ti4 = exit of i
th

 cell from S phase 

 DNA = 2 for ti4 ≤ ti0 + ai < ti9 

 

Now we have simulated values for the measurable quantities of each cell at the time point in the 

cell cycle when it was selected for analysis. Before plotting these numbers, we should take into 

account experimental errors, such as probe quality, fixation, staining and measurement. We do so 

by multiplying each measurable quantity (DNA content and cyclin levels) by a random number 

chosen from a Gaussian distribution with mean 1 and standard deviation = 0.03 for DNA 

measurements and 0.15 for cyclin measurements. These choices give scatter to the simulated 

data that is comparable to the scatter in the experimental data.   

 

Cells, culture, and fixation 

 

Culture and fixation of RKO cells have been described (Yan et al, 2004).  The immortalized 

HUVEC cells (Freedman & Folkman, 2005) at passage 93 were seeded at 2.5 × 10
3
 cells/cm

2
 in 

10 ml EGM-2 media with 2% fetal bovine serum (Lonza, Basel). Duplicate plates were prepared 

for each time point at days 1, 2, 3, 4, 5, 6, 7, 10, and 15. Cells were fed every other day by 

replacing half the volume of used media. At the indicated times, cells were trypsinized, washed, 

and cell counts performed with a Guava Personal Cytometer (Millipore, Billerica, MA). Fixation 

was as previously described (Schimenti & Jacobberger, 1992); briefly, cells were treated with 

0.125% formaldehyde (Polysciences, Warrington, PA) for 10 min at 37°C, washed, then 

dehydrated with 90% Methanol. Cells were fixed in aliquots of 1 × 10
6 

cells (days 1 – 3) or 2 × 

10
6
 (days 4 – 15). Fixed cell samples were stored at -20°C until staining for cytometry. 

 

Immunofluorescence staining, antibodies, flow cytometry 

 

Staining and cytometry for RKO cells have been described (Yan et al, 2004).  Briefly, cells were 

trypsinized, fixed with 90% MeOH, washed with phosphate buffered saline, then stained with 

monoclonal antibodies reactive with cyclin B1, cyclin A, � hosphor-S10-histone H3, and with 

4’,6-diamidino-2-phenylindole (DAPI).  For a detailed, updated version of antibodies, staining, 
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and cytometry for cyclins A2 and B1, Phosphor-S10-histone H3, and DNA content, see 

Jacobberger et al. [38]. 

 

Data pre-processing 

 

Data pre-processing was performed with WinList (Verity Software House, Topsham, ME). 

Doublet discrimination (peak versus area DAPI plot) was used to limit the analysis to singlet 

cells; non-specific binding was used to remove background fluorescence from the total 

fluorescence related to cyclin A2 and B1 staining. The phycoerythrin channel (cyclin A2) was 

compensated for spectral overlap from FITC or Alexa Fluor 488.  For simplification, very large 

2C G1 HUVEC cells and any cells cycling at 4C � 8C were removed from the analysis. These 

were present at low frequency. Data were written as text files then transferred to Microsoft 

Excel.   
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Chapter 3. Finding Protein Regulatory Networks that Exhibit Near-Perfect 

Adaptive Responses 

 

3.1 Introduction 
 

Living cells must adapt to environmental conditions in ways that promote their own survival and 

reproduction (for unicellular organisms), or the fitness of the multicellular organism to which 

they belong.  Cells have evolved sensory systems that detect environmental cues and signal 

processing networks that interpret these cues and determine the appropriate response of the cell.  

In many cases the appropriate response is to detect an abrupt change in the external signal and 

then to ‘adapt’ (i.e., return to the stable resting state) in the presence of constant stimulus.  For 

example, our sense of smell exhibits this sort of adaptive response.  A change in odors in a room 

will be first picked up, but eventually we will be desensitized to the odor.  In other words, we go 

back to the ‘resting state’ even though the signal (the odor) that triggered the response is still 

present.  It is always the change in the level of the signal that determines the adaptive response, 

not the absolute value of the signal.   

  

We might define ‘perfect’ adaptation as the case when the signal processing network always 

returns to the same steady state regardless of the final, constant level of stimulus (Figure 3.1, 

green line).  By this definition, perfect adaptation may be impossible (or extremely rare), but 

near-perfect adaptation (Figure 3.1, blue line) might be good enough to serve the purpose of a 

living, responding cell. 

 

 

 

Figure 3.1.  Perfect (green) and near-perfect adaptation (blue) in response to a persistent signal (black). 

 

The adaptation behavior is crucial in biological systems in contexts as varied as chemotaxis in 

Escherichia coli (Berg & Brown, 1972; Macnab & Koshland, 1972), adenylate cyclase activation 

in Dictyostelium (Dinauer et al, 1980) and osmo-response in yeast (Mettetal et al, 2008).  

Various types of theoretical models have been proposed to account for perfect or near-perfect 

adaptation in these contexts (Levchenko & Iglesias, 2002; Mello & Tu, 2003; Parent & 

Devreotes, 1999; Yi et al, 2000).  Initial models (Hauri & Ross, 1995; Knox et al, 1986) 

achieved perfect adaptation of receptor activity through fine-tuning of the biochemical 

parameters (reaction rate constants and enzyme concentrations).  In an alternative model for 

adaptation, put forward by Barkai & Leibler (Barkai & Leibler, 1997), the steady state receptor 
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activity is independent of the ligand level, and the biochemical parameters that produce near-

perfect adaptation can vary freely over orders of magnitude.   

 

The goal of our theoretical study is to identify the topologies of 3-node motifs that show near-

perfect adaptive responses.  A motif is a simple pattern of activation and inhibition among a 

small number of interacting molecular species (Tyson & Novak, 2010).  The idea that different 

motifs can carry out specific information-processing functions has been systematically 

investigated previously (Alon, 2007; Tyson et al, 2003). 

 

Each motif in our analysis consists of three nodes, representing three interacting molecular 

species (see Figure 3.2).  The signal goes into node 1 while the response is read from node 3.  

Node 2 adds complexity to the behavior of each motif through its interactions with the other two 

nodes.  There are six possible interactions within each of these three-node motifs, since each 

node can regulate the other two nodes.  Each regulation can be an activation, an inactivation, or 

just be absent.  Therefore, there are a total of 3
6
, or 729, possible 3-node topologies.  We exclude 

self-activation of nodes as we think that they are unlikely to occur frequently in protein 

regulatory networks. 

 

 
 
Figure 3.2.  The three nodes of a motif; the six regulations permitted in our motifs are shown by the green arrows. 

 

Quantifying the degree of near-perfect adaptation, using a scoring metric (see section 3.4 

Methods: ‘Generating a Single Score’), is essential to our process of identifying the 3-node 

topologies that show this biological behavior.  Interestingly, we find that the same topology can 

score high or low depending on the choice of the model parameters.  Therefore, another goal of 

our study is to identify the regions of parameter space in which each high-scoring motif does 

well. 

 

A study in the journal Cell is a welcome first step in finding near-perfect adaptation motifs (Ma 

et al, 2009).  They find that either Incoherent Feed Forward Loops (IFFLs) or Negative Feedback 

Loops with Buffering (NFLBs) are needed to get near-perfect adaptation.  We are able to 

validate these results, as well as significantly extend them in multiple ways by our more 

systematic, evolutionary approach to exploring the topology and parameter space in which near-

perfect adaptation occurs.  A detailed comparison of ours and Ma’s methodologies and results is 

presented in the Methods and Discussion sections, respectively. 
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3.2 Results 
 

Identifying the topologies of 3-node motifs that show near-perfect adaptive responses 

Initial exploration of the entire topology space 

 

As noted earlier, a total of 729 possible topologies can be formed by 3-node motifs without self-

activations.  We decided to explore the topology space by picking forty initial topologies, and 

letting them macromutate into other topologies.  Twenty of these topologies were generated by a 

process in which each of the six digits of a particular topology code were chosen randomly to be 

one of the three possible values of 1, 2, or 3 (see section 3.4 Methods: ‘Topology Representation 

and Parameters’).  This ensured that a wide variety of activation/inactivation patterns were given 

a chance to exhibit adaptation.  The other twenty topologies were fixed in advance.   Five 

categories were chosen, and each category was represented by four different topologies.  These 

five categories were: 2-edged topologies, Incoherent Feed Forward Loops (IFFLs), Coherent 

Feed Forward Loops (CFFLs), Negative Feedback Loops with Buffering Nodes (NFLBs) and 

Positive Feedback Loops with Buffering Nodes (PFLBs). 

 

Collectively, more than 500 unique topologies were generated across the forty runs.  A particular 

topology may be present in more than one run, so the outputs from all forty runs were collated 

before calculating all topologies’ average scores.  We find that the scores range from nearly 0 to 

14.18.  The remarkable pattern we noticed is that all topologies that scored more than 6 belonged 

to two specific categories of Incoherent Feed Forward Loops (IFFLs), as shown in Table 3.1.  

According to Uri Alon’s notation (Alon, 2007), the first category is called IFFL-1, and the 

second category IFFL-4 (see Figure 3.3). 

 

     IFFL-1            IFFL-2       IFFL-3    IFFL-4               

                       

 

Figure 3.3.  The four types of basic Incoherent Feed Forward Loops. Arrow heads represent activation, and circle 

heads inactivation. 

 

IFFL-1 topologies have the encoding XX3X31 in our notation, and IFFL-4 topologies XX1X33.  

“X” means that the digit can represent any of the three possible types of regulations. 

 



27 

 

           Table 3.1. The highest scoring topologies from the initial analysis. 

Code < Z > Code < Z > Code < Z > 

123331 14.18 113331 10.40 113231 7.81 

133231 13.84 233231 10.24 233331 7.40 

123231 13.46 121333 10.07 121233 7.26 

133331 13.35 333331 9.19 213331 7.04 

233131 13.31 333231 9.12 321233 6.83 

321133 12.10 131233 9.06 323231 6.50 

223131 11.42 223331 8.79 221333 6.41 

123131 11.14 133131 8.78 333131 6.07 

131133 11.11 223231 8.39   

111233 10.50 113131 8.08   

   
Topologies in red: IFFL-1’s (XX3X31); in green: IFFL-4’s (XX1X33). 

< Z > represents average scores. 

Examining IFFL-1 and IFFL-4 topologies 

 

When these two categories of IFFLs were identified from the initial analysis as showing the 

greatest propensity to show near-perfect adaptive responses, the next logical step was to examine 

the topologies belonging to both these categories.  Note that not all 27 members belonging to 

each category are present in this initial list.  All 54 topologies are simulated on their own, i.e., 

only with micromutations to their parameters, and without macromutations (see the subsection 

“Evolutionary Algorithm” in Methods).  Each simulation starts with randomly-chosen 

parameters that yield low scores.  We average the scores of the parental parameter sets in a 

generation, and keep track of these average scores across the simulation.  Four example IFFL-1 

and IFFL-4 runs are shown in Figure 3.4. 

 

(a) 
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(b) 

 

 
 

(c) 
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(d) 

 
Figure 3.4.  Examples of evolutionary simulation runs with N=20 and R=20.  Each depicted topology stays in a 

low-scoring region, or ‘desert’, for the first few generations, but then quickly climbs onto a high-scoring region, or 

‘mesa’, showing ‘punctuated equilibrium’.  (a) Topology 123231; (b) 133131; (c) 321333; (d) 331233. 

 

For each IFFL topology that is simulated, we are looking for a First Passage Time (FPT), which 

is the number of generations it takes for the average score to cross 10.  We stop the simulation 50 

generations after its FPT, and also calculate the topology’s overall average score using these last 

50 generations.  Table 3.2 shows the overall average scores and FPTs for all IFFL-1 and IFFL-4 

topologies. 
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Table 3.2. The average scores and First Passage Times of all IFFL-1 and IFFL-4 topologies. 

IFFL-1 Topologies IFFL-4 Topologies 

Code < Z > FPT Code < Z > FPT 

113131 16.87 118 111133 12.48 15 

113231 16.26 27 111233 11.45 70 

113331 16.10 20 111333 14.04 25 

123131 16.92 17 121133 11.96 31 

123231 17.15 28 121233 12.02 100 

123331 16.76 16 121333 13.47 26 

133131 17.68 11 131133 12.57 33 

133231 17.03 24 131233 13.64 23 

133331 16.77 22 131333 13.55 42 

213131 11.43 34 211133 11.41 18 

213231 13.19 49 211233 11.89 26 

213331 10.93 38 211333 13.25 12 

223131 15.18 7 221133 13.67 66 

223231 15.25 26 221233 11.96 30 

223331   9.34 17 221333 12.15 17 

233131 13.88 53 231133 11.27 53 

233231 14.38 69 231233 12.19 32 

233331 14.99 10 231333 12.61 80 

313131 13.14 28 311133 13.64 24 

313231 14.73 6 311233 12.73 31 

313331 10.33 134 311333 11.81 32 

323131 10.80 48 321133 12.94 10 

323231 15.62 5 321233 12.90 31 

323331 14.91 25 321333 12.53 17 

333131 15.49 21 331133 12.55 22 

333231 14.40 8 331233 14.36 16 

333331   9.19 41 331333 14.34 41 

        Topologies in red: IFFL-1’s (XX3X31); in green: IFFL-4’s (XX1X33).  < Z > represents  

        average score.  FPT represents First Passage Time.  These micromutations-only  

        simulations were done with N=20 and R=20. 

 

All 27 IFFL-1’s and 27 IFFL-4’s find high-scoring regions, even from a poor start, showing that 

these two classes of topologies can exhibit near-perfect adaptation.   

 

We performed a similar search with the 27 IFFL-2’s and 27 IFFL-3’s, but found that they have 

much lower average scores (see Appendix A).   

 

These simulations are done with N=20 parents per generation and R=20 offspring per parent.  If 

we use fewer than R=20 progeny, the evolutionary algorithm often does not find a high-scoring 

region (see Appendix B).   
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Following these simulations that only permit micromutations, we wanted to investigate what 

happens when we allow the initial IFFL-1 or IFFL-4 topologies to macromutate.  We start off 

each run from the highest-scoring parameter set obtained from the corresponding 

micromutations-only run.  We find that the IFFL-1 topologies drift among themselves, keeping 

their high scores, and likewise for the IFFL-4 topologies.  An example run with macromutations 

is shown in Figure 3.5. 

 

Figure 3.5.  A sample run with macromutations, starting from an IFFL-1 topology.  Each colored line depicts a 

unique topology.  The total number of parents in each generation is 20.  Each point shows how many of the 20 

parents a topology occupies in a generation.  The three dominant topologies remain based on the basic IFFL-1. 

 

We now propose that these two specific categories, IFFL-1’s and IFFL-4’s, form two separate 

‘mesas’ in topology space in the sense that (1) they both have very high average scores when 

examined on their own, and (2) they are evolutionarily stable, i.e., they stay within themselves 

when allowed to macromutate.  In fact, as we will see in due course, these are the only two 

mesas that exist (as represented in Figure 3.6), i.e., these are the only two classes that satisfy the 

criteria of scoring well on their own and also being evolutionarily stable. 
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Figure 3.6. The topology scores landscape.  The range of average scores for each topology class from 

micromutations-only runs.  The widths of the IFFL-1 and IFFL-4 cylinders correspond to their robustness, as 

calculated by hyper-ellipsoid volumes.  Other topologies include Classsic Negative Feedback Loops (see Appendix 

C). 

Examining all four NFLB classes that are not coupled with IFFLs 

 

After IFFLs, the next candidate category of topologies that merited investigation was the 

Negative Feedback Loops with Buffering, or NFLBs.  We specify four separate classes of 

NFLBs, as shown in Figure 3.7. 

 

   NFLB-1       NFLB-2       NFLB-3   NFLB-4              

             

 

Figure 3.7. The four types of basic Negative Feedback Loops with Buffering (NFLBs). NFLB-1 and NFLB-2 are 

called the “upper NFLBs” as the negative feedback is between node1 and node 2.  NFLB-3 and NFLB-4 are, by 

extension, called the “lower NFLBs”. 

 

A few of the topologies in the two IFFL-based mesas indeed contain NFLBs as well.  In the next 

section, we shall carefully examine the relative contributions of IFFLs and NFLBs to these 

topologies, but first we need to investigate NFLBs that are not coupled to IFFLs.  These NFLBs 

shall henceforth be referred to as “uncoupled NFLBs”. 
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            Table 3.3. The average scores of all topologies belonging to the four NFLB classes. 

NFLB-1 NFLB-2 NFLB-3 NFLB-4 

Code < Z > Code < Z > Code < Z > Code < Z > 

133131 17.68 331233 14.36 123331 16.77 221133 13.67 

123231 17.15 331333 14.34 133331 16.69 311133 13.64 

133231 17.03 311133 13.64 113331 16.11 133133 13.20 

123131 16.92 321133 12.94 233331 14.99 321133 12.94 

113131 16.87 321233 12.90 323331 14.91 131133 12.57 

123331 16.76 331133 12.55 213331 10.93 331133 12.55 

133331 16.77 321333 12.53 313331 10.33 111133 12.48 

113231 16.26 311333 11.81 223331 9.34 121133 11.96 

113331 16.10 311233 10.40 333331 9.19 211133 11.41 

133132 15.40 331332 8.20 122331 5.67 231133 11.27 

133232 15.00 331132 7.58 132331 5.67 123133 10.46 

133332 14.29 321132 7.39 112331 5.05 113133 8.63 

133133 13.20 321232 7.10 321331 4.55 322133 3.25 

133233 12.48 311132 6.23 121331 4.19 332133 3.22 

123332 12.29 321231 5.09 131331 3.91 312133 2.90 

123132 12.06 331232 4.78 212331 3.39 112133 2.74 

133333 11.99 331231 4.76 322331 3.36 122133 2.68 

123333 10.71 311232 4.74 312331 3.35 222133 2.64 

113332 10.69 331131 4.73 222331 3.13 212133 2.64 

123233 10.55 311231 4.55 332331 3.11 323133 2.63 

123133 10.46 321331 4.55 232331 2.96 313133 2.60 

113232 10.32 321332 4.42 311331 2.80 132133 2.59 

123232 9.80 311332 4.30 331331 2.80 233133 2.43 

113132 9.35 331331 2.80 231331 2.77 223133 2.27 

113333 8.97 311331 2.79 221331 2.49 213133 2.24 

113233 8.73 311131 1.64 211331 2.40 232133 2.12 

113133 8.63 321131 1.33 111331 2.13 333133 1.81 

The basic topologies are in italics.  Red topologies are NFLB’s coupled with IFFL-1’s; green with IFFL-4’s. High-

scoring Coherent Feed Forward Loops coupled with NFLB-1’s are underlined.  < Z > represents average score. 
 

 

Starting with the four basic NFLBs shown in Figure 3.7, we find that only basic NFLB-1 and 

NFLB-2, or the basic “upper NFLBs” score decently on their own, i.e., in runs with 

micromutations-only.  This is in contrast to the basic “lower NFLBs”, which score poorly on 

their own.  Their scores are italicized in Table 3.3, which also shows the average scores of all 

extended NFLBs in all four classes that are obtained by adding links to the basic NFLBs.   
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Following the cue of the basic NFLBs, the extended uncoupled upper NFLBs also score better as 

a group than the extended uncoupled lower NFLBs (all uncoupled NFLBs are in black). 

 

Surprisingly, we find that certain Coherent Feed Forward Loops (CFFLs) coupled with NFLB-

1’s, underlined in Table 3.3, score well too.  This is not true of topologies having CFFLs coupled 

with NFLBs belonging to the other classes.  We examine the interaction coefficients in these 

topologies, and from the high-scoring (Z ≥ 10) subset, find that only the regulations which are 

part of the NFLB-1 are strong, i.e., they are close to their highest possible absolute value of 1.  

On the other hand, ω32, the regulation that completes the CFFL, is termed weak as it is close to 

its lowest possible value, 0.1. (see Table 3.4).  Clearly, it is the NFLB-1 that is contributing to 

the good scores in these cases, and not the CFFL.  An example topology, 123233, that has the 

NFLB-1 and CFFL coupled together, is shown in Figure 3.8.   

 

Table 3.4.  The mean weights of all interaction coefficients from every NFLB-1 + CFFL topology’s high-scoring 

sample.  

NFLB-1 + CFFL Interaction Coefficients 

Code ω12 ω13 ω21 ω23 ω31 ω32 

113133 -0.99 -0.11 0.95 -0.23 0.99 0.12 

113233 -0.99 -0.11 0.95 0 0.99 0.12 

113333 -0.99 -0.11 0.95 0.47 0.99 0.12 

123133 -0.99 0 0.93 -0.2 0.99 0.12 

123233 -0.98 0 0.93 0 0.99 0.12 

123333 -0.99 0 0.92 0.28 0.99 0.12 

133133 -0.96 0.38 0.86 -0.2 0.96 0.13 

133233 -0.96 0.37 0.84 0 0.96 0.14 

133333 -0.97 0.37 0.84 0.23 0.97 0.13 
         

        Indicated in blue are the three ωij’s that form the NFLB-1, and in purple is ω32, the positive  

        regulation on node 3 from node 2, that completes the CFFL.  Note that ω32 is much weaker  

                     than the NFLB-1 ωij’s. 
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NFLB-1 + CFFL 

 
Code: 123233 

 

 

Figure 3.8.  A sample NFLB-1 + CFFL topology, encoded 123233.  Note that the three ωij’s that form the NFLB-1 

are in blue, like in Table 3.4, and ω32, which completes the CFFL, is shown in purple again also.   

Examining the effects of adding IFFLs to the four NFLB classes 

 

Now that we have established the scoring patterns among uncoupled NFLBs, we can compare 

their scores to those of NFLBs combined with IFFLs.  Shown in Figure 3.9 are the fundamental, 

4 links, topologies that result from those couplings.  The rest of the NFLB + IFFL topologies are 

based on these fundamental topologies. 

 

NFLB-1 + 

IFFL-1 

 
Code: 123231 

NFLB-2 + 

IFFL-4      

 
Code: 321233 

NFLB-3 + 

IFFL-1 

 
Code: 223331 

NFLB-4 + 

IFFL-4 

 
Code: 221133 

  

Figure 3.9.  The fundamental topologies that result from coupling the four NFLBs and the two dominant IFFLs. 
IFFL-1 links are shown in red, and IFFL-4 links in green. NFLB-1 and NFLB-2, the upper NFLBs, are shown in 

blue, and NFLB-3 and NFLB-4, the lower NFLBs, are shown in purple.                
 

Table 3.3 shows the averages scores of the extended NFLBs that are coupled with IFFLs (in 

color), and we see that in almost all cases, these topologies have higher average scores than the 

uncoupled NFLBs (in black).  To quantify the overall increase in scores of a certain class of 
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NFLBs from the addition of IFFLs, we build tables that show the exact percentage change in 

score per NFLB-1 topology.  For example, Table 3.5 shows the score of the coupled topology 

which corresponds to each of the NFLB-1 only topology.  The change in score is averaged over 

all NFLB-1 only topologies to get an overall change percentage.  These overall percentages are 

shown in Figure 3.10. 

 
Table 3.5. The percentage changes in scores going from each of the uncoupled NFLB-1 topologies to the NFLB-1 

topologies coupled with IFFL-1’s. 

   
NFLB-1 only NFLB-1 + IFFL-1 Percentage 

Code < Z > Code < Z > Change 

113132 9.35 113131 16.87 80 

113133 8.63 113131 16.87 95 

113232 10.32 113231 16.26 58 

113233 8.73 113231 16.26 86 

113332 10.69 113331 16.10 51 

113333 8.97 113331 16.10 79 

123132 12.06 123131 16.92 40 

123133 10.46 123131 16.92 62 

123232 9.80 123231 17.15 75 

123233 10.55 123231 17.15 63 

123332 12.29 123331 16.76 36 

123333 10.71 123331 16.76 56 

133132 15.40 133131 17.68 15 

133133 13.20 133131 17.68 34 

133232 15.00 133231 17.03 14 

133233 12.48 133231 17.03 36 

133332 14.29 133331 16.77 17 

133333 11.99 133331 16.77 40 

          The encoding for NFLB-1 + IFFL-1 topologies is 1X3X31.  The last digit  

          changes to 1 in each case.  < Z > represents average score. 
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Figure 3.10.  The overall percentage changes in NFLB scores when IFFLs are added.  The numbers in brackets 

indicate the number of topologies having that particular combination. 

 

This is clear evidence that adding IFFLs increases NFLB scores.  We still need to establish, 

though, if this combination of IFFLs and NFLBs relies more on IFFLs or on NFLBs.   

Examining the effects of adding the four NFLB classes to IFFL-1’s and IFFL-4’s 

 

We have seen so far that IFFLs combined with NFLBs score really well.  It is possible that it is 

the NFLBs that are contributing more significantly to this combination than the IFFLs.  We 

check this by constructing tables similar to Table 3.5 for checking the effect of adding NFLBs to 

IFFLs.  An example is shown in Table 3.6, in which we record the percentage change in scores 

when adding NFLB-1 to each uncoupled IFFL-1 topology.  We record the average change in 

score across all uncoupled IFFL-1 topologies.  
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Table 3.6. The percentage changes in scores going from each of the uncoupled IFFL-1 topologies to the IFFL-1 

topologies coupled with NFLB-1’s.   

 

IFFL-1 only NFLB-1 + IFFL-1 Percentage 

Code < Z > Code < Z > Change 

213131 11.43 113131 16.87 48 

313131 13.14 113131 16.87 28 

213231 13.19 113231 16.26 23 

313231 14.73 113231 16.26 10 

223131 15.18 123131 16.92 11 

323131 10.80 123131 16.92 57 

223231 15.25 123231 17.15 12 

323231 15.62 123231 17.15 10 

233131 13.88 133131 17.68 27 

333131 15.49 133131 17.68 14 

233231 14.38 133231 17.03 18 

333231 14.40 133231 17.03 18 

       The encoding for IFFL-1 + NFLB-1 topologies is 1X3X31.  The first digit  

       changes to 1 in each case.  < Z > represents average score. 

 

We calculate the average changes to IFFL-1 scores through the addition of only NFLB-1 and, 

separately, of only NFLB-3.  Since NFLB-1 and NFLB-3 topologies can both be added to IFFL-

1’s at the same time (see Figure 3.11 for an example), we also calculate (1) the change to IFFL-1 

scores when both the NFLBs are added at the same time, (2) the change to IFFL-1 + NFLB-1 

scores upon addition of NFLB-3’s, and (3) the change to IFFL-1 + NFLB-3 scores upon addition 

of NFLB-1’s.  These changes are summarized in Figure 3.12.   Similar calculations are made for 

the addition of NFLB-2 and/or NFLB-4 to IFFL-4’s (see Figure 3.13). 

 

We see in all these cases that adding either NFLB separately, or both the NFLBs together, 

increases the IFFL score by a much lower percentage than the cases in which the IFFLs are 

added to the NFLBs (see Figure 3.10 for comparison).  Therefore, we can say that IFFLs 

contribute much more significantly to the coupled topologies’ scores than the NFLBs. 
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IFFL-1  

+ NFLB-1  

+ NFLB-3 

 
Code: 123331 

IFFL-4 +  

NFLB-2 +  

NFLB-4 

 
Code: 321133 

 

 
Figure 3.11.  The topologies produced when the two high-scoring IFFLs combine with multiple NFLBs.  

 

A critical observation from Figure 3.12 is that adding NFLB-1, the upper NFLB, always 

increases the IFFL-1 scores much more than adding NFLB-3, the lower NFLB.  In fact, in these 

particular cases, adding the lower NFLB decreases the scores.  

 

 

 

 
Figure 3.12.  The overall percentage changes in scores when adding NFLB-1 and/or NFLB-3 to IFFL-1’s.  The 

numbers in brackets indicate the number of topologies having that particular combination. 
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We see this pattern repeated in Figure 3.13 when adding NFLB-2, the upper NFLB, always 

increases the IFFL-4 scores much more than adding NFLB-4, the lower NFLB.   

 

 

 

 
Figure 3.13.  The overall percentage changes in scores when adding NFLB-2 and/or NFLB-4 to IFFL-4’s.  The 

numbers in brackets indicate the number of topologies having that particular combination. 

 

These findings are consistent with our earlier observation that the uncoupled upper NFLBs tend 

to score better on their own than the uncoupled lower NFLBs.  In the next section, we shall 

validate the contributions of upper NFLBs to high-scoring IFFLs, as compared to lower NFLBs. 

Validating the evidence that upper NFLBs contribute much more significantly than lower NFLBs 

to high-scoring IFFL sets 

 

An appropriate way to check that the upper NFLBs contribute more significantly to high-scoring 

IFFLs than lower NFLBs is to compare the means of all relevant ωij’s (the interaction 

coefficients).  From each of the micromutations-only simulations presented earlier (see Table 

3.2), we separate the high-scoring sample, i.e., all sets having a score ≥ 10, and calculate the 

means of all six ωij’s.  Their values in IFFL-1’s are recorded in Table 3.7.  
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Table 3.7.  The means of the six interaction coefficients from all IFFL-1 topologies’ high-scoring samples. 

 

IFFL-1 Interaction Coefficients 

   Code ω12 ω13 ω21 ω23 ω31 ω32 

113131 -0.98 -0.14 0.89 -0.20 0.97 -0.96 

113231 -1.00 -0.13 0.93 0.00 0.95 -0.98 

113331 -0.97 -0.13 0.85 0.26 0.97 -0.88 

123131 -0.99 0.00 0.88 -0.17 0.97 -0.95 

123231 -0.99 0.00 0.89 0.00 0.97 -0.96 

123331 -1.00 0.00 0.95 0.16 0.97 -0.99 

133131 -0.92 0.52 0.82 -0.16 0.97 -0.63 

133231 -0.85 0.62 0.54 0.00 0.97 -0.90 

133331 -0.84 0.50 0.85 0.30 0.97 -0.64 

213131 0.00 -0.13 0.93 -0.29 0.95 -0.97 

213231 0.00 -0.16 0.92 0.00 0.96 -0.98 

213331 0.00 -0.19 0.56 0.17 0.66 -0.96 

223131 0.00 0.00 0.90 -0.34 0.96 -0.98 

223231 0.00 0.00 0.89 0.00 0.96 -0.98 

223331 0.00 0.00 0.52 0.79 0.97 -0.95 

233131 0.00 0.27 0.90 -0.28 0.95 -0.97 

233231 0.00 0.20 0.92 0.00 0.97 -0.98 

233331 0.00 0.29 0.91 0.34 0.97 -0.98 

313131 0.20 -0.15 0.91 -0.33 0.96 -0.97 

313231 0.27 -0.23 0.92 0.00 0.97 -0.98 

313331 0.15 -0.21 0.58 0.24 0.68 -0.96 

323131 0.12 0.00 0.48 -0.20 0.64 -0.95 

323231 0.33 0.00 0.92 0.00 0.97 -0.98 

323331 0.27 0.00 0.91 0.19 0.97 -0.98 

333131 0.18 0.38 0.90 -0.25 0.96 -0.98 

333231 0.27 0.36 0.92 0.00 0.97 -0.98 

333331 0.23 0.30 0.62 0.37 0.68 -0.96 

  The ωij’s shown in red represent the three links of the underlying IFFL-1.  ω12’s in blue  

  show the NFLB-1 cases; ω23’s in purple show the NFLB-3 cases. 

 

The first observation that can be made from the table is that for the three ωij’s corresponding to 

the underlying IFFL-1 class, most of the means have strong weights (marked in red in Table 3.7).   

In other words, in the case of positive regulations, they are close to their maximum possible 

value of +1, and in the case of negative regulations, they are close to -1.  The interaction 

strengths are also strong in the case of negative ω12’s (marked in blue), which accounts for the 

negative feedback loop of NFLB-1’s, the upper NFLB class (see Figure 3.11, left panel).  In the 

case of positive ω23’s (marked in purple), which accounts for the negative feedback loop of 

NFLB-3’s, the lower NFLB class, we see that the interaction coefficients are weak (close to their 

minimum possible value of 0.1).  This is clear evidence that it is the IFFL-1’s along with the 

NFLB-1’s, the upper NFLBs, that are driving the near-perfect adaptive responses.  In contrast, 
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the NFLB-3’s, the lower NFLBs, are playing a negligible role in such responses.  A similar 

narrative emerges for IFFL-4’s.  All six ωij’s mean values in high-scoring IFFL-4’s are recorded  

in Table 3.8.   

 
Table 3.8.  The means of the six interaction coefficients from all IFFL-4 topologies’ high-scoring samples. 

IFFL-4 Interaction Coefficients 

Code ω12 ω13 ω21 ω23 ω31 ω32 

111133 -0.30 -0.22 -0.87 -0.21 0.95 0.96 

111233 -0.39 -0.16 -0.86 0.00 0.95 0.96 

111333 -0.43 -0.14 -0.86 0.25 0.94 0.96 

121133 -0.29 0.00 -0.88 -0.26 0.95 0.97 

121233 -0.27 0.00 -0.88 0.00 0.96 0.97 

121333 -0.48 0.00 -0.83 0.22 0.93 0.96 

131133 -0.16 0.30 -0.90 -0.24 0.95 0.97 

131233 -0.31 0.47 -0.89 0.00 0.95 0.97 

131333 -0.50 0.38 -0.89 0.14 0.94 0.97 

211133 0.00 -0.21 -0.88 -0.25 0.96 0.97 

211233 0.00 -0.16 -0.87 0.00 0.96 0.96 

211333 0.00 -0.21 -0.88 0.25 0.95 0.96 

221133 0.00 0.00 -0.90 -0.17 0.96 0.97 

221233 0.00 0.00 -0.88 0.00 0.95 0.97 

221333 0.00 0.00 -0.85 0.21 0.94 0.96 

231133 0.00 0.30 -0.87 -0.15 0.95 0.97 

231233 0.00 0.46 -0.82 0.00 0.94 0.96 

231333 0.00 0.37 -0.87 0.20 0.95 0.96 

311133 0.88 -0.13 -0.81 -0.18 0.95 0.66 

311233 0.23 -0.15 -0.83 0.00 0.95 0.95 

311333 0.15 -0.27 -0.84 0.14 0.95 0.96 

321133 0.83 0.00 -0.77 -0.49 0.94 0.70 

321233 0.90 0.00 -0.82 0.00 0.95 0.67 

321333 0.85 0.00 -0.84 0.18 0.94 0.61 

331133 0.61 0.34 -0.82 -0.31 0.95 0.71 

331233 0.83 0.29 -0.83 0.00 0.94 0.57 

331333 0.77 0.45 -0.82 0.15 0.94 0.59 

  The ωij’s shown in green represent the three links of the underlying IFFL-4.  ω12’s in blue  

  show the NFLB-2 cases; ω23’s in purple show the NFLB-4 cases. 

 

Again, in addition to the ωij’s for the underlying IFFL-4 links (marked in red), the interaction 

strengths are strong in almost all cases of positive ω12’s (marked in blue), which accounts for the 

negative feedback loop of NFLB-2’s, the upper NFLB class (see Figure 3.11, right panel).  In the 

case of negative ω23’s (marked in purple), which accounts for the negative feedback loop of 

NFLB-4’s, the lower NFLB class, we see that the interaction weights are weak (close to their 

minimum possible absolute value of 0.1).  This shows that it is the IFFL-4’s along with the 
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NFLB-2’s, the upper NFLBs, that are driving the near-perfect adaptive responses, and not the 

NFLB-4’s, the lower NFLBs. 

 

Taken together, the last few results show that IFFLs combined with upper NFLBs score best 

among all classes, and that these regulations also tend to be most strongly present in the high-

scoring sets.   

Almost all NFLB topologies not coupled with IFFLs climb onto the IFFL-1 mesa 

 

While some of the NFLB-1’s that are not coupled with IFFL-1s score higher on the average than 

some IFFL-1’s and IFFL-4’s (see Table 3.3), we still cannot frame the uncoupled NFLB-1’s into 

a high-scoring mesa of their own as we find that they are not evolutionarily stable.  In fact, 

almost all of them evolve onto the IFFL-1 mesa (as shown in Table 3.9).  Furthermore, almost all 

of the uncoupled NFLB-2’s, NFLB-3’s and NFLB-4’s macromutate onto the IFFL-1 mesa as 

well (see Tables 3.10, 3.11 & 3.12). 

 

As noted in the previous sections, NFLB-1, the upper NFLB, contributes more significantly to 

the IFFL-1 mesa than NFLB-3, the lower NFLB.  Therefore, as a test of that property, we list all 

nine IFFL-1 + NFLB-1 topologies as columns in Table 3.9, and show that most of the uncoupled 

NFLB’s indeed evolve into at least one of them.   We take all high-scoring (Z ≥ 10) parameter 

sets from a particular uncoupled NFLB’s evolutionary run with macromutations, and record the 

percentage of those sets that belong to one of the nine IFFL-1 + NFLB-1 topologies.  Shown also 

are the cases in which other classes of high-scoring topologies are found, or in which no high-

scoring topologies are found at all. 

 

The pre-dominance of IFFL-1 + NFLB-1 topologies can also be seen from Table 3.2 which 

shows the scores of all IFFL-1 topologies without macromutations.  The topologies encoded 

1X3X31 are the IFFL-1 + NFLB-1 topologies (see Figure 3.9, far left panel), and they score 

better than the rest of the IFFL-1 topologies, and even better than all IFFL-4 topologies.   

 

The evolutionary superiority of the IFFL-1 + NFLB-1 topologies, together with the evidence 

presented in the previous section that the weights of the IFFL-1 and NFLB-1 regulations are 

strongest in high-scoring sets, gives us a clear picture of the specific regulatory patterns that tend 

to exhibit near-perfect adaptive responses. 
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Table 3.9.  NFLB-1 topologies (1X3X3X) macromutate predominantly into high-scoring IFFL-1 + NFLB-1 topologies. 

 

IFFL-1 + NFLB topologies 

113131 113231 113331 123131 123231 123331 133131 133231 133331 Others 

NFLB-1  

Topologies 

113132 0 0 0.001 0 0.954 0.024 0.001 0.009 0.004 0.006 

113133 0 0.004 0.001 0 0.957 0.008 0 0.022 0.001 0.007 

113232 0 0 0 0 0.006 0.385 0 0.329 0.277 0.004 

113233 0 0.001 0.002 0.001 0.651 0.331 0 0.007 0 0.006 

113332 NA NA NA NA NA NA NA NA NA NA 

113333 0 0 0 0.010 0.110 0.108 0.000 0.018 0.754 0 

123132 0 0 0 0 0.055 0.010 0.001 0.015 0.917 0.001 

123133 0.001 0.007 0 0.459 0.214 0.011 0.043 0.161 0.097 0.007 

123232 0 0 0 0.005 0.189 0.008 0.001 0.788 0.006 0.005 

123233 0 0 0 0.001 0.321 0.019 0.001 0.652 0.007 0 

123332 0 0 0.000 0.001 0.210 0.352 0.001 0.004 0.431 0 

123333 0 0 0 0.001 0.976 0.015 0 0.007 0.002 0 

133132 0 0 0.002 0.005 0.020 0.359 0 0.106 0.505 0.002 

133133 0.001 0 0 0.471 0.003 0 0.476 0.030 0.014 0.005 

133232 0 0 0 0 0.003 0.004 0.002 0.543 0.447 0 

133233 NA NA NA NA NA NA NA NA NA NA 

133332 0 0.000 0.000 0.001 0.320 0.280 0.000 0.393 0.004 0.001 

133333 0 0 0 0.000 0.278 0.346 0 0.206 0.169 0 

 
  The basic NFLB-1 (123232) is marked in italics.  Bold percentages indicate cases where an IFFL-1 + NFLB-1 topology occupies more than  

  15% of the high-scoring sample in a macromutation run.  Percentages bordered in red show cases where a topology occupies more than 50% of 

  the high-scoring sample.  NA means no high-scoring topologies were found. 
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Table 3.10.  NFLB-2 topologies (3X1X3X) macromutate predominantly into high-scoring IFFL-1 + NFLB-1 topologies. 

    

IFFL-1 + NFLB-1 Topologies 

113131 113231 113331 123131 123231 123331 133131 133231 133331 Others 

NFLB-2  

Topologies 

311131 0 0.005 0.317 0 0.620 0.045 0 0.003 0 0.011 

311132 0.001 0 0 0.838 0.015 0.002 0.117 0.005 0.004 0.016 

311231 0.001 0 0 0.128 0.015 0.002 0 0.002 0 0.853
a
 

311232 0 0 0 0 0.017 0.326 0 0.010 0.646 0.002 

311331 0 0.001 0 0 0.006 0 0.003 0.946 0.011 0.033 

311332 NA NA NA NA NA NA NA NA NA NA 

321131 0.001 0.006 0.004 0 0.399 0.578 0 0.001 0.004 0.008 

321132 NA NA NA NA NA NA NA NA NA NA 

321231 NA NA NA NA NA NA NA NA NA NA 

321232 0 0 0 0 0 0 0 0 0 1.000
b
 

321331 0 0.001 0.002 0.013 0.293 0.682 0 0.001 0.001 0.007 

321332 0.005 0.003 0 0.016 0.635 0.328 0 0.003 0.003 0.006 

331131 0.527 0.003 0.005 0.448 0.005 0.002 0.003 0.002 0 0.005 

331132 0 0.004 0.501 0.001 0.116 0.331 0 0 0.037 0.009 

331231 0.002 0.220 0.002 0 0.005 0.008 0.001 0.230 0.520 0.011 

331232 NA NA NA NA NA NA NA NA NA NA 

331331 NA NA NA NA NA NA NA NA NA NA 

331332 0 0.001 0 0 0.973 0.004 0 0.018 0 0.005 
  a

The other dominant topologies in this case are NFLB-1’s not coupled with IFFL-1’s, viz. 133232, 123232 (basic NFLB-1), and 123132. 
  b

The other dominant topologies in this case are IFFL-4 + NFLB-2’s, viz. 331333, 321233, and 321133.  

 

  The basic NFLB-2 (321232) is marked in italics.  Bold: More than 15% of cases in an IFFL-1 + NFLB-1 topology; red border: more than 50%.  

  NA means no high-scoring topologies were found. 
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Table 3.11.  NFLB-3 topologies (XXX331) macromutate predominantly into high-scoring IFFL-1 + NFLB-1 topologies. 

 

IFFL-1 + NFLB-1 Topologies 

113131 113231 113331 123131 123231 123331 133131 133231 133331 Others 

NFLB-3  

Topologies 

111331 0.001 0.004 0.564 0 0.372 0.047 0 0.007 0 0.005 

112331 0 0 0.009 0 0.015 0.956 0.001 0.007 0.005 0.006 

121331 0 0.001 0 0.005 0.542 0.439 0 0.006 0 0.007 

122331 0 0 0.002 0 0.038 0.949 0 0 0.006 0.006 

131331 0 0 0 0.001 0.031 0.957 0 0 0.006 0.005 

132331 0 0.001 0.002 0.001 0.031 0.691 0.001 0.001 0.247 0.025 

211331 0 0 0 0 0 0.003 0 0.409 0.588 0 

212331 0 0.003 0 0.001 0.001 0.002 0.001 0 0 0.992
a
 

221331 0 0.003 0 0.001 0.109 0.876 0 0.001 0.005 0.005 

222331 0 0 0 0.002 0.004 0.987 0 0.001 0.005 0.001 

231331 0 0.002 0 0 0.957 0.029 0 0.006 0.002 0.002 

232331 0 0.003 0.001 0 0.012 0.008 0 0.021 0.951 0.003 

312331 0 0 0 0 0.006 0.006 0.002 0.541 0.444 0.002 

322331 0 0.001 0.003 0.007 0.028 0.911 0 0.042 0.005 0.002 

332331 0.001 0.004 0 0 0.543 0.007 0 0.429 0.003 0.013 
  a

The other dominant topologies in this case are IFFL-1’s not coupled with NFLB-1’s, viz. 213231, 323331, 323231, 333331, and 223231  

  (basic IFFL-1). 

 

  The basic NFLB-3 (222331) is marked in italics.  Bold: More than 15% of cases in an IFFL-1 + NFLB-1 topology; red border: more than 50%.  

  NA means no high-scoring topologies were found. 

 

 

 

 

 

 



47 

 

Table 3.12.  NFLB-4 topologies (XXX133) macromutate predominantly into high-scoring IFFL-1 + NFLB-1 topologies. 

 

IFFL-1 + NFLB-1 Topologies 

113131 113231 113331 123131 123231 123331 133131 133231 133331 Others 

NFLB-4  

Topologies 

112133 0 0 0 0 0 0.003 0 0.008 0.989 0 

122133 0 0 0 0 0.015 0.001 0 0.974 0.009 0.001 

132133 0 0 0.001 0.004 0.878 0.006 0 0.007 0.004 0.101 

212133 0 0 0 0.003 0.096 0.004 0 0.001 0 0.896
a
 

213133 0.005 0 0 0.644 0.329 0.005 0.011 0.003 0.002 0.003 

223133 NA NA NA NA NA NA NA NA NA NA 

222133 0 0 0 0 0 0 0 0 0 1.000
b
 

232133 0 0.003 0.051 0 0.436 0.503 0 0.001 0.006 0 

233133 0 0 0 0.063 0 0.003 0.905 0.018 0.003 0.010 

312133 0 0 0 0 0.006 0.014 0 0.250 0.729 0.001 

313133 0 0 0 0 0.007 0.003 0.254 0.707 0.026 0.002 

322133 0.001 0.004 0.001 0 0.476 0.001 0.001 0.198 0.313 0.005 

323133 0 0 0 0 0 0.013 0 0.008 0.975 0.004 

332133 0 0 0 0.001 0.013 0.119 0 0.533 0.331 0.003 

333133 0 0 0.001 0.002 0.606 0.377 0 0.005 0.007 0.002 
  a

The other dominant topologies in this case are NFLB-1’s uncoupled with IFFL-1’s, viz. 123332 and 123232 (basic NFLB-1). 
  b

The other dominant topologies in this case are IFFL-4 + NFLB-2’s, viz. 331133 and 321133. 

   

  The basic NFLB-4 (222133) is marked in italics.  Bold: More than 15% of cases in an IFFL-1 + NFLB-1 topology; red border: more than 50%.  

  NA means no high-scoring topologies were found. 
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Identifying the regions in parameter space in which high-scoring motifs score well 

 

A major goal of our study is to find and characterize regions of parameter space where a 

particular motif generates high scores.  We do this by analyzing the high-scoring parameter sets.  

For the present, we identify the high-scoring region for each parameter independently and ignore 

the cross-correlations between the interaction coefficients. (A study that takes cross-correlations 

into account shall be done in due course). 

Extracting and validating parameter distributions from high-scoring samples 

 

We observe from earlier simulations that when given random initial conditions, all IFFL-1 and 

IFFL-4 topologies start with very low scores in a ‘desert’ region, and quickly climb onto the 

high-scoring ‘mesa’, but only after some generations in which they wander around in the desert 

looking for the mesa.  Using the high-scoring sample from these random start simulations, we 

want to derive ‘conducive’ parameter distributions for each topology, and see if (1) they lead to 

higher average scores and lower First Passage Times when used as starting conditions for 

simulations with only micromutations, and (2) they give enriched histograms when used to 

generate a large number of new scores de novo, as compared to scores generated de novo from 

random parameters.   

 

In order to be able to extract the conducive parameter distributions, for every topology, we 

simply calculate the mean and standard deviation of each parameter from the high-scoring (Z ≥ 

10) sample obtained from the corresponding random-start simulations run with only 

micromutations. These means and standard deviations are shown in Appendix D. 

 

For every IFFL-1 and IFFL-4 topology, we use these conducive parameter distributions to start a 

new set of simulations. Just like in the random-start case, a simulation stops 50 generations after 

finding its FPT. Again, a topology’s overall average score is calculated using these last 50 

generations. 

 

From Table 3.13, we see that for most of the topologies (26 out of 27 for both IFFL-1 and IFFL-

4 runs), the average scores are indeed higher for the conducive-start runs, as compared to the 

random-start runs.  The mean percentage change in average scores of IFFL-1 topologies is 13.5 

%; for IFFL-4 topologies, it is 15.6 %.  Also, as expected, conducive-start runs have decreased 

First Passage Times in most of the topologies when compared to the random-start runs (21 out of 

27 for IFFL-1, and 17 out of 27 for IFFL-4 runs).  Collectively, these results show that in most of 

the cases, it is indeed possible to define a conducive parameter set that can serve as a reliable 

starting point to quickly find a higher-scoring sample set.   
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Table 3.13.  Statistics for IFFL-1 and IFFL-4 topologies with conducive-start runs. 

 

IFFL-1 Topologies IFFL-4 Topologies 

Code < Z > % ∆ < Z >  FPT ∆ FPT Code < Z > % ∆ < Z >  FPT ∆ FPT 

113131 18.15 7.6 3 -115 111133 14.17 13.5 27 12 

113231 17.10 5.2 9 -18 111233 14.49 26.6 6 -64 

113331 17.35 7.8 11 -9 111333 13.95 -0.6 36 11 

123131 16.97 0.3 10 -7 121133 14.79 23.7 12 -19 

123231 17.21 0.3 15 -13 121233 14.42 20.0 26 -74 

123331 17.46 4.2 5 -11 121333 15.41 14.4 4 -22 

133131 17.79 0.6 9 -2 131133 14.72 17.1 23 -10 

133231 17.87 4.9 9 -15 131233 14.88 9.1 24 1 

133331 17.89 6.7 14 -8 131333 14.63 8.0 5 -37 

213131 15.82 38.4 12 -22 211133 13.98 22.5 34 16 

213231 16.91 28.2 3 -46 211233 14.71 23.7 25 -1 

213331 12.08 10.5 5 -33 211333 14.37 8.5 16 4 

223131 15.79 4.0 11 4 221133 14.33 4.8 18 -48 

223231 16.77 10.0 5 -21 221233 14.63 22.3 12 -18 

223331 16.47 76.3 31 14 221333 14.88 22.5 28 11 

233131 16.33 17.7 5 -48 231133 13.97 24.0 8 -45 

233231 17.04 18.5 4 -65 231233 13.91 14.1 27 -5 

233331 16.31 8.8 19 9 231333 15.70 24.5 3 -77 

313131 16.82 28.0 2 -26 311133 14.28 4.7 21 -3 

313231 14.80 0.5 13 7 311233 14.02 10.1 18 -13 

313331 11.91 15.3 19 -115 311333 13.69 15.9 29 -3 

323131 12.07 11.8 50 2 321133 14.09 8.9 21 11 

323231 15.82 1.3 24 19 321233 14.88 15.3 26 -5 

323331 16.57 11.1 5 -20 321333 14.32 14.3 24 7 

333131 14.83 -4.3 11 -10 331133 16.62 32.4 31 9 

333231 17.42 21.0 3 -5 331233 15.91 10.8 21 5 

333331 12.04 31.0 20 -21 331333 15.73 9.7 32 -9 
< Z > represents average score. FPT stands for First Passage Time.  Also shown is the percentage change in average 

scores from the random-start runs (Table 3.2), and ∆ FPT = FPT (conducive-start) – FPT (random-start). 

 

We can visualize what the parameter distributions look like with these conducive-start runs by 

constructing histograms.  A sample collection of parameter histograms is shown in Figure 3.14.   
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Figure 3.14. Parameter histograms from an IFFL-1 topology’s conducive-start run.  The topology’s six interaction coefficients are labeled. 
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We are able to further validate the conducive parameter sets’ propensity to yield high scores by 

constructing enrichment histograms.  For every topology, we generate 1,000 scores de novo 

using parameters derived from the conducive means and standard deviations (while also making 

sure to enforce the parameter bounds, as described in “Topology Representation and Parameters” 

in Methods, and shown in Table 3.16), and compare those scores to 1,000 random scores also 

generated de novo.  An example enrichment histogram is shown in Figure 3.15.  The white bars 

represent the scores generated using the conducive parameters, and the red bars are for the scores 

obtained using parameters randomly selected from the uniform distributions within the pre-

specified bounds. 

 

 

 

Figure 3.15.  An example ‘enrichment’ histogram.  White bars: distribution of the 1,000 scores generated using the 

conducive parameters.  Red bars: distribution of the 1,000 scores generated using the random parameters. 

 

As evident from Figure 3.15, the scores are greatly ‘enriched’ in the conducive parameters case 

when compared to the random parameters case.  In fact, all scores generated using random 

parameters are in the ‘desert’ region.  Table 3.14 shows, for both IFFL-1 and IFFL-4 topologies, 

the percentage of random scores above 0.5, and the percentage of conducive scores above 10.  

Clearly, most of the topologies find a significant number of good scores using the conducive 

parameters. 

 

Overall, we see that even favorable topologies need to be in a certain region in parameter space 

to score high; if the parameters are chosen at random, the topologies score poorly.   
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Table 3.14.  Enrichment statistics for IFFL-1 and IFFL-4 topologies.   

 

IFFL-1 Topologies IFFL-4 Topologies 

Code 

% Random   

Z > 0.5 

% Conducive  

Z > 10 Code 

% Random    

Z > 0.5 

% Conducive 

Z > 10 

113131 8 72 111133 10 63 

113231 9 100 111233 9 43 

113331 10 59 111333 8 58 

123131 9 89 121133 9 56 

123231 8 81 121233 8 49 

123331 10 100 121333 8 63 

133131 7 53 131133 7 64 

133231 8 55 131233 6 71 

133331 8 45 131333 8 56 

213131 8 78 211133 11 61 

213231 9 48 211233 8 64 

213331 10 24 211333 9 61 

223131 9 54 221133 9 64 

223231 8 72 221233 8 57 

223331 7 19 221333 8 59 

233131 7 46 231133 8 51 

233231 7 50 231233 5 57 

233331 8 81 231333 6 44 

313131 9 47 311133 9 46 

313231 8 77 311233 10 47 

313331 9 17 311333 9 64 

323131 9 28 321133 11 46 

323231 9 85 321233 7 52 

323331 8 76 321333 6 44 

333131 6 73 331133 9 21 

333231 7 73 331233 7 44 

333331 6 72 331333 6 33 
The percentages of scores above a certain cutoff are shown from 1,000 sets generated de novo using either random 

or conducive parameter distributions. 

Characterizing the robustness of high-scoring regions in parameter space 

 

Now that we have a handle on the regions of parameter space in which we can expect to see 

near-perfect adaptive responses, we want to get an idea of how large this region is, and to 

compare such measurements across the various topology classes.  The approach we take is to 

calculate the volume of the hyper-ellipsoid containing the high-scoring sets within the n-

dimensional parameter space.  More robust topologies will have larger volumes.   

For each topology, the high-scoring sets are within an 8 to 11-dimensional parameter space, 

depending on the number of links in the topology.  The first 2 parameters are γ1 and γ2, the next 3 
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are the offsets ω10, ω20, and ω30, and the final 3 to 6 are the interaction coefficients that are non-

zero.  γ3 does not add an extra dimension to the parameter space since we keep its value at 1.  See 

Table 3.16 for the fixed range assigned to each parameter. 

 

Since we are interested in robustness to parameter variation, we use the technique of Principal 

Component Analysis (Jolliffe, 1986) to define orthogonal axes that are oriented in a way such 

that the first axis accounts for as much variability in the data as possible, the second axis for the 

next highest variability, and so on.  The eigenvectors of the covariance matrix of the original 

sample specify the directions of these orthogonal axes, and the corresponding eigenvalues are 

proportional to the lengths of the semi-axes that are used to calculate the hyper-ellipsoid 

volumes.   

 

The length of a semi-axis is the square root of its eigenvalue (Delforge et al, 1989), multiplied by 

a factor from Snedecor’s F distribution that is set according to the confidence intervals over 

which the volume of the hyper-ellipsoid is to be calculated.  We use a 99% confidence interval.   

 

The calculation of a hyper-ellipsoid volume is done by taking the product of all semi-axes 

lengths, multiplied by a pi-related factor which depends on the number of dimensions involved.  

The formula for an n-dimensional hyper-ellipsoid volume is: 
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Here, ak is the length of the k-th semi-axis; Γ is the gamma function
*
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Since the semi-axes lengths are proportional to the eigenvalues, and the eigenvalues tend to be 

less than 1, multiplying all semi-axes lengths gives volumes which are much lower than 1. 

 

The hyper-ellipsoid volumes for all IFFL-1’s and IFFL-4’s, the two topology classes which form 

high-scoring mesas, are recorded in Table 3.15.  From the IFFL-1 and IFFL-4 random start 

simulations, the parameters sets that score more than 10 are used to calculate these volumes. 

At the bottom of Table 3.15 we record, for each dimension n, the geometric mean of the volumes 

over all topologies with an n-dimensional parameter space.  Comparing the mean volumes of 

IFFL-1 and IFFL-4 topologies (at each value of n), we see that IFFL-4 topologies are more 

robust (i.e., have significantly larger volumes) than IFFL-1 topologies.  This is depicted 

graphically in Figure 3.6 by the broader width of the IFFL-4 mesa compared to the IFFL-1 mesa. 

  

 

 

 

 

 

 

 

                                                 
*
 Γ(x) = (x-1)!  For odd values of n, Γ(n/2) = Γ(0.5 + m), where m = (n-1)/2;  Γ(0.5 + m) = Π

0.5
 (2m)! / (4

m
m!). 
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Table 3.15.  The hyper-ellipsoid volumes from the high-scoring sets of every IFFL-1 and IFFL-4 topology. 

 

IFFL-1 Topologies IFFL-4 Topologies 

Code n Volume Code   n Volume 

223231 8 0.006023 221233 8 0.045432 

123231 9 1.81E-05 121233 9 0.03279 

213231 9 0.007867 211233 9 0.015247 

223131 9 0.007039 221133 9 0.016123 

223331 9 4.05E-05 221333 9 0.009664 

233231 9 0.03449 231233 9 0.031321 

323231 9 0.003137 321233 9 0.024289 

113231 10 7.50E-10 111233 10 0.000881 

123131 10 3.29E-06 121133 10 0.013688 

123331 10 5.07E-09 121333 10 0.002011 

133231 10 0.000187 131233 10 0.041824 

213131 10 0.001461 211133 10 0.021005 

213331 10 0.000114 211333 10 0.002865 

233131 10 0.025292 231133 10 0.009422 

233331 10 0.02663 231333 10 0.14719 

313231 10 0.00507 311233 10 0.009128 

323131 10 1.37E-06 321133 10 0.097554 

323331 10 0.004951 321333 10 0.009356 

333231 10 0.003072 331233 10 0.029844 

113131 11 2.09E-08 111133 11 0.003432 

113331 11 0.000334 111333 11 0.000168 

133131 11 0.001513 131133 11 0.019135 

133331 11 0.056351 131333 11 0.001859 

313131 11 0.00125 311133 11 0.00346 

313331 11 5.06E-08 311333 11 0.002358 

333131 11 0.006195 331133 11 0.33748 

333331 11 0.001948 331333 11 0.033626 

n 

 

<Volume> n <Volume> 

8 6.02E-03 8 4.54E-02 

9   1.28E-03 9 1.97E-02 

10 7.42E-05 10 1.29E-02 

11   1.60E-04 11 6.10E-03 
The IFFL-1 and IFFL-4 topologies are sorted according to number of dimensions n.  Shown in the lower panel are 

the geometric means of volumes across n. 

 

A related analysis that collects statistics on FPT and hyper-ellipsoid volumes over 100 iterations 

for each topology is presented in Appendix E. 
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Visualizing high-scoring regions in Principal Component space 

 

We can visualize a topology’s high-scoring parameter sets using the first three principal 

components only.  Sample plots are shown in Figure 3.16.  As evident, only one cluster, or 

distinct region, is found in parameter space.  The sharp edges on the scores are due to bounds we 

put on parameter values (see Table 3.16). 

 

 

 
 Figure 3.16. Sample Principal Component Analysis plot. The high-scoring parameter sets belonging to 

 topology 123231 (IFFL-1 + NFLB-1) are plotted in the Principal Components space both in 2D and 3D.  

 Each red dot represents the ‘score’ assigned to a particular parameter set.  The blue arrows show the 

 ‘loadings’ – the contributions of the annotated parameters to the Principal Components. 
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3.3 Discussion 
 

It is evident from our analyses that both Incoherent Feed Forward Loops (IFFLs) and Negative 

Feedback Loops with Buffering (NFLBs) favored near-perfect adaptive responses.  Within these 

categories, we narrowed down the classes which performed better using our scoring metric.  

Specifically, IFFL-1 and IFFL-4 (see Figure 3.3) along with the upper NFLBs, NFLB-1 and 

NFLB-2 (see Figure 3.7) scored higher than the other classes, as pictured in Figure 3.6. 

 

To give a fair chance to a wide variety of topology categories, we started off our exploration of 

the topology space with 40 unique topologies that were allowed to macromutate into other 

topologies.  This procedure covered more than 500 topologies, and identified IFFL-1’s and 

IFFL-4’s as the best classes showing the desired response (see Table 3.1).  Next, we explored all 

54 member topologies of these two classes in greater detail by running our evolutionary 

algorithm with the criterion that only the values of the parameters changed, but not the topology 

itself.  We find that they all yielded high average scores (see Table 3.2), confirming the results of 

the initial analysis in which these two classes were filtered as the best scoring.  Moreover, even 

upon allowing these topologies to change to other topologies, we found that they remained 

within their respective categories (as exemplified in Figure 3.5).  This evolutionary stability, 

along with their propensity to score high, let us say that IFFL-1’s and IFFL-4’s formed two 

distinct ‘mesas’ in topology space.  We also found that NFLB-1’s and NFLB-2’s had high 

average scores when examined on their own (see Table 3.3), but these topologies were not 

evolutionarily stable.  Therefore, we called them ‘shoulders’ instead of ‘mesas’.  The rest of the 

landscape was composed of topologies in the ‘desert’ (see Figure 3.6).   

 

We noticed that the IFFL-1’s and IFFL-4’s were coupled with NFLBs as well.  We therefore first 

tested NFLBs separately to see how they did on their own, i.e., without macromutations.  

Looking at NFLBs that were not coupled with IFFLs, or uncoupled NFLBs, we saw that it was 

the upper NFLBs, NFLB-1’s and NFLB-2’s, that scored better than their lower NFLB 

counterparts, NFLB-3’s and NFLB-4’s.   

 

Keeping this evidence in mind, we next examined the relative contributions of the IFFLs and the 

NFLBs to the topologies which had both IFFLs and NFLBs combined.  Going from the 

uncoupled NFLBs to these combinations, or adding IFFLs (see Figure 3.10), produced much 

higher increases in scores than reaching these combinations from uncoupled IFFLs (see Figure 

3.12 and Figure 3.13).  Therefore, we could say that it was the IFFLs which played a more 

significant role than the NFLBs in the coupled topologies.  A related finding was that adding the 

lower NFLBs in fact decreased the score of uncoupled IFFLs.   

 

To validate the idea that it was the upper NFLBs that contributed much more significantly than 

the lower NFLBs to the high-scoring IFFL sets, we examined the interaction coefficients that 

corresponded to each of these classes.  The IFFL and upper NFLB interaction coefficients had 

strong weights, whereas the lower NFLB interaction coefficients were mostly weak (see Table 

3.7 and Table 3.8).  Furthermore, the results from macromutating the uncoupled topologies from 

all four NFLB classes allowed us to establish that IFFLs are in a sense “superior” to NFLBs in 

showing near-perfect adaptive responses.  Nearly all of these macromutations climbed to the 

highest peaks of the IFFL-1 mesa, which were composed of the 9 combinations of the IFFL-1 
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topologies with NFLB-1, the upper NFLB (see Tables 3.9 – 3.12).  These 9 topologies also 

scored better than the rest of the IFFL-1 topologies, and also all of the IFFL-4 topologies, when 

simulated without macromutations (see Table 3.2).  The IFFL-1 + NFLB-1 combination may 

therefore be the regulatory network most conducive to showing near-perfect adaptation. 

 

The binning of the IFFL-1 and IFFL-4 classes into mesas came with the observation that even 

these topologies needed to be in a certain region of parameter space to be able to climb from the 

desert region on to the mesa. Whenever these topologies started with ‘random’ initial conditions, 

they scored poorly and it took many generations of the evolutionary algorithm for these 

topologies to stumble into their high-scoring region in parameter space.  We were able to extract 

the parameter values belonging to these regions from the high-scoring samples obtained from the 

random-start runs.  Using these new ‘conducive’ initial conditions, we showed that it was indeed 

possible to climb to the top of the mesa quicker, for most of the topologies, while getting higher 

average scores (see Table 3.13).  Scores generated de novo using both random and conducive 

parameters confirmed that the same topology could do much better in the latter case (see Figure 

3.15 and Table 3.14).  Lastly, using Principal Components Analysis (PCA), we found evidence 

that the high-scoring parameter space for IFFL-4’s was more robust than for IFFL-1’s (see Table 

3.15).   

 

The summary of results presented so far confirms that we have extended the work published in 

Cell  (Ma et al, 2009)  in multiple directions.  Not only have we quantified in more precise terms 

the dominance of the IFFLs over the NFLBs, we have also shown which particular classes 

belonging to these two categories scored better.  In fact, one of these classes, IFFL-4, has been 

incorrectly identified by Ma et al as not showing adaptation at all.  Specifically, in Figure 2B of 

their paper, they provide evidence in the right-hand side motif of the lower panel that adaptation 

cannot be achieved when both node A (node 1 in our setup) and node B (node 2) exert the same 

regulation on node C (node 3).  In other words, they contend that the regulations on node 3 from 

node 2 and node 1 must have the opposite signs, as supported by the adaptation classification of 

the minimal network shown in the right-hand side motif of the upper panel in the same figure, 

which is IFFL-1 in our analyses.  We showed clearly that both of these minimal motifs could 

exhibit adaptation to a very high degree, and that they both formed the basis of two separate 

mesas in topology space. 

 

An important mathematical difference between our and Ma et al’s models needs to be 

highlighted.  They are able to linearize the underlying Michaelis-Menten ODEs as they only 

consider a small change in the input to the system (from 0.5 to 0.6).  From their linearized 

equations, the condition for NFLBs to show perfect adaptation, or for adaptation error to be zero, 

is satisfied in their mathematical setup only when 00

22 ≅J .  0

22J represents the rate of change of 

the value of Node 2 with respect to itself, and is a diagonal element of the Jacobian matrix of the 

system at steady state. 

 

00

22 ≅J is satisfied when the enzymes acting on Node 2 are in saturation, or when the ODE for 

Node 2 has Michaelis constants much smaller than substrate concentrations.   Under this 

condition, Node 2 implements integral feedback control in NFLBs by integrating the difference 

between the activity of response Node 3 and Node 3’s signal-independent steady state value.  See 

equations 2-4 in Ma et al (Ma et al, 2009) for the mathematical details. 
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In our model however, there is no requirement for 00

22 ≅J to achieve adaptation in NFLBs, or for 

integral feedback control.  Upon differentiating Eq. 3.2, we find 2

0

22 γ−=J , which is small but 

not zero.  This difference may be due to the fact that we are looking for near-perfect, not perfect, 

adaptation.  We also introduce a much higher change in the input signal level (from 0 to 1). 

 

In summary, we were able to extend Ma et al’s work by narrowing down the specific 

combination of IFFLs and NFLBs that favored near-perfect adaptation the most.  We were able 

to further validate our results by directly testing the evolutionary stability of the concerned 

topology classes, a procedure which was beyond the scope of the methodology used by the other 

investigators.  Finally, we were able to give a more concrete picture of the region in parameter 

space where the high-scoring topologies showed the desired response. 

 

Examples of IFFLs and NFLBs from Biological Networks 

 

IFFLs and NFLBs are common motifs in large-scale regulatory networks.  In the transcription 

network of Escherichia coli, for example, of the 138 known feed-forward loops, 25-30% are 

known to be IFFL-1, whereas 5% or less are known to be the other three types of IFFLs (Mangan 

et al, 2006).  Similarly, in yeast, between 35 and 40% of the 56 known FFLs are IFFL-1.  The 

investigators go on to show how a typical IFFL-1 in E. coli helps to accelerate the response time 

of galactose utilization genes upon glucose starvation.  After a rapid increase in synthesis rate of 

these genes via the direct arm of the IFFL-1, there is a net decrease in their levels as the 

inactivating indirect arm kicks in. This case, however, is not illustrative of near-perfect 

adaptation because the system ends up at a much higher steady state.  

In Dictyostelium discoideum and neutrophils, the proposed mechanism for perfect adaptation in 

chemotaxis, in response to a chemoattractant gradient, is based on an IFFL-1 (Levchenko & 

Iglesias, 2002).  The G-protein-associated chemokine receptors convey opposite signals to PIP3, 

which is a phosphoinositide phosphate that is an important upstream node in a cascade whose 

downstream nodes are the signaling components.  The G-protein upregulates PI3-kinase, a PIP3 

activator, while at the same time also upregulating PTEN, a phosphatase that inactivates PIP3. It 

has to be noted though that as per the investigators, the role of PTEN has not been 

experimentally verified yet.  Still, an IFFL motif remains one of the few plausible explanations 

for the perfect adaptation observed in the levels of PIP3.  

 

Yet another major role for IFFLs has been identified in the events of the cell cycle in budding 

yeast (Csikasz-Nagy et al, 2009).  Both mitotic exit and DNA replication require transient 

activation of the appropriate ‘executor’ proteins, which are found to be both directly and 

indirectly regulated by cyclin-dependent kinases (Cdk1).  For example, an IFFL-3 plays a major 

role in initiating mitotic exit via opposite regulation of the ‘executor’ protein Dfb2.  Cdk1 

inactivates Dbf2 directly (by phosphorylation) and regulates it indirectly by activating the 

transcription factor (Fkh2) that upregulates the production of Dbf2.  

 

IFFL-1 also plays a major part in maintaining phenotypic robustness during animal development 

in a process called canalization (Hornstein & Shomron, 2006).  It is microRNAs that play the 

role of the inactivating intermediary node in this case.  Transcription factors activate both the 

target gene and a miRNA that down-regulates translation from the target gene.  An example from 
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cell cycle regulation is upregulation of gene E2F1 by the transcription factor c-myc, which also 

upregulates miR-17-5p and miR-20a, microRNAs that reduce translational efficiency of the 

mRNA for E2F1 (O'Donnell et al, 2005).   

 

An IFFL-1 has been studied as a stand-alone motif in a synthetic biology context as well (Basu et 

al, 2004).  The pulse-like response shown to an inducer (LuxR) and repressor (C1 of phage 

lambda) working simultaneously is also akin to the near-perfect adaptive response.  The 

investigators go on to show that the amplitude and timing of the pulse differs according to the 

concentration of the signal, but that the GFP expression level finishes at around the same 

(slightly higher) steady-state for each signal concentration. 

 

The major example of NFLBs in adaptive motifs is in the network that controls chemotaxis of E. 

coli in response to a chemoattractant gradient (Alon et al, 1999).  The output of the system is 

measured by activity of the enzyme CheY (Node 3) which controls the tumbling frequency of the 

bacteria. CheY is directly activated by CheA, which is in complex with the receptor (Node 1).  

Upon binding to ligand, the autophosphorylation rate of CheA decreases, which causes a 

transient decrease in CheY.  CheY can now only come back up when CheA comes back, which 

happens when the CheA/receptor complex becomes methylated.  In essence, the decreased 

activity of the receptor due to addition of ligand is offset by the methylation process, which 

occurs via a negative feedback loop from Node 1 to the ‘buffering’ Node 2 which represents the 

enzyme CheB.  Decreased production of CheA leads to reduced phosphorylation of CheB, which 

in turn leads to decrease demethylation of CheA.  In our context, this motif is NFLB-2, an upper 

NFLB. 

 

These examples illustrate the important role of IFFLs and NFLBs in carrying out physiological 

functions that are akin to (or actually are cases of) near-perfect adaptation. 

 

In addition to near-perfect adaptation, our evolutionary approach can also be applied to finding 

motifs and parameter sets displaying other behaviors, such as cock-and-fire, bistability, 

oscillations, and even chaos.  Once the appropriate scoring function has been designed in each 

case, the rest of the approach can be the same as the one taken in this study.  By confirming that 

our approach works for the case of near-perfect adaptation, we have taken the first step in 

creating a topological structure-function map that would be a very useful tool for systems 

biologists. 

 

3.4 Methods 
 

Modeling Regulatory Networks with Wilson-Cowan Equations 

 

We model our 3-node regulatory networks using equations first proposed by Wilson & Cowan 

(Wilson & Cowan, 1972) in the context of modeling excitatory and inhibitory interactions in 

neural networks.  Our ODEs are of the following form: 

      ],)([ iii

i CWF
dt

dC
−= γ     

          ∑
≠

++=
ij

jijiii CωωδtSW ,01)( .,...,1 Ni =                                        [Eq. 3.2] 
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Here, Ci is the i-th continuous variable, representing the concentration (or activity) of species i in 

the system, γi is the timescale on which the variable changes value, and F(Wi) is the production 

rate of Ci.  The function Wi
 
represents the net regulation on variable i by all other variables j.  

Each interaction coefficient ωij represents the weight of the regulation on variable i by variable j 

(ωij is positive for an activation, negative for an inhibition, and zero if the interaction is absent).  

The offset ωi0 determines Wi in the absence of any regulation on node i from the other nodes j in 

the network. We do not allow for self-regulations in our setup.  Also, for node 1, a signal term 

S(t) is added to the net regulation.  Details on how S(t) varies with time are described below in 

the section “Generating a single score”. 

 

We desire that the function F(Wi)  be sigmoidal in shape (see Figure 3.17).  A convenient choice 

for F(Wi) is the hyperbolic tangent-based function or soft Heaviside function 
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where, for σ > 0, Fσ(Wi) ≅  0 when Wi << -1/σ, and Fσ (Wi) ≅ 1 when Wi >> 1/σ.  Hence, the 

steepness of the sigmoidal curve is controlled by the parameter σ.  If Wi  = 0, i.e., the net 

regulation on variable i is zero, then the function simply evaluates to 0.5, signifying that variable 

i is neither activated nor inhibited.  The form of this hyperbolic tangent-based function also 

ensures that, if 0 ≤  Ci(0) ≤  1, then 0 ≤  Ci(t) ≤  1 for all t > 0.  In particular, the steady state 

value, Ci
ss

 = F(Wi
ss

), must lie between 0 and 1. 

 

In all our calculations, we choose σ = 10, so we suppress the σ subscript and simply use the 

notation F(Wi) for the function in Equation 3.3. 

 

Reinitz and colleagues (Mjolsness et al, 1991) have modeled gene regulatory networks using the 

same mathematical formulations, albeit with a Hill function instead of a hyperbolic tangent-

based function. 

 

 

 
Figure 3.17.  The sigmoidal function Fσ(Wi) = [1 + tanh (σ Wi/2)] / 2, with σ = 10. 

 

Topology Representation and Parameters 
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A network topology is collectively represented by the signs (+, -, 0) of the six interaction 

coefficients (ω12, ω13, ω21, ω23, ω31, ω32).  Hence, we can encode a topology by six digits: 

d1d2d3d4d5d6 where dk = 1, 2 or 3 for each k.  Specifically, dk = 1 for an inactivation (ωij < 0), 3 

for an activation (ωij > 0), and 2 for an absent regulation (ωij = 0).  The 1
st
 digit refers to ω12; the 

2
nd

 digit to ω13; the 3
rd

 digit to ω21; the 4
th

 digit to ω23; the 5
th

 digit to ω31; and finally, the 6
th

 

digit to ω32.  For example, the code 223231 represents the Type 1 Incoherent Feed-Forward 

Loop (IFFL-1) topology, depicted in Figure 3.3’s far left panel.  The third digit from left, 3, 

encodes the activation of node 2 by 1; the fifth digit, 3, the activation of node 3 by 1; and the 

sixth digit, 1, the inactivation of node 3 by node 2. 

 

Every 3-node motif can be described by Equation 3.1 with 6 interaction coefficients (ωij’s), 3 

offsets (ωi0’s), and 3 timescale parameters (γi’s).  We assign a finite, continuous, range to each of 

these parameters.  We keep the interaction coefficients between 0.1 and 1 for positive 

regulations, between -1 and -0.1 for negative regulations, and, obviously, to 0 for absent 

regulations.  The offsets can assume any value between -2 and 2.  They determine whether a 

node turns on or off in the absence of any external regulation on it.  The timescale parameters, 

which determine how slow or fast the level of a node changes, can be any value between 0.1 and 

3, except for γ3, which we fix at 1 so that the rate of change of node 3 sets the characteristic 

timescale of the model.  This is appropriate as node 3 is the response-measuring node of the 

topology.  Table 3.16 summarizes the role and range of each parameter used in our models. 

 
Table 3.16.  The role and range of each parameter used in our models. 

Parameter Role  Range  

γi Timescale  
[0.1, 3] 

γ3 =1  

σ Sigmoidicity  10  

ωi0 Offset  [-2, 2]  

ωij 
Interaction 

Coefficient  

[0.1, 1] 

[-1, -0.1]  

0 

    Index i and j = 1, …, N where N = 3;  j ≠ i. 

 

Generating a Single Score 

For any parameter set, we start off looking for adaptation by setting the initial values for all three 

continuous variables to 0.  Initially, the signal S is at 0 as well.  We give the system sufficient 

time - 250 time units - to find its steady state levels of C1, C2, and C3 for S = 0.  If a steady state 

is found within that time, the signal is switched abruptly from 0 to 1; otherwise, a score of 0 is 

recorded for that parameter set. Keeping the signal at 1, we follow the time courses of the three 

variables until a new steady state is reached (or until another 250 time units have passed and no 

steady state is found, in which case also the score is recorded as 0).  Since we are mostly 

interested in the time course of node 3 (the response variable), we record its value at the time 

point when the signal is applied (O1); its maximum value in the presence of the signal (Omax); 
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and its value when the simulation ends (O2) in order to determine the adaptation score (see 

Figure 3.18). 

 

 

 

Figure 3.18.  The response (blue), measured by node 3, to the signal (black).  Score Z ≅  7.30. 

 

The expression we use to get the score Z is: 
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=                                [Eq. 3.4] 

This scoring function strongly favors a high peak response with a concomitant return close to the 

initial steady state value.  We add 0.05 to the denominator so as not to give undue significance to 

cases for which |O2 – O1| is close to 0.  The scores can range from as low as 0 (no adaptation) to 

as high as 20 (perfect adaptation), since |Omax – O1| ≤  1.  A decent score is Z ≥  5; a high score is 

Z ≥  10.  The score that a motif exhibits depends on its topology (its code) and on the specific 

values assigned to its parameter set Q  = {γ1, γ2, ω10, ω20, ω30, ω12, ω13, ω21, ω23, ω31, ω32}. 

 

Evolutionary Algorithm: Generating scores over many generations 

 

The scoring function described above is only for one parameter set.  The aim is not to optimize 

the scoring function, but to find a sample of parameter sets that all exhibit high adaptation scores.  

In order to do so, we developed an evolutionary algorithm that systematically explores the 

parameter space.  As the name suggests, the evolutionary algorithm we use operates in 

generation k with a set of Nk ‘parental’ parameter sets that each spawn off Rk ‘progeny’ 

parameter sets; these Nk*Rk = Mk total progeny compete against each other to yield the Nk+1 

parental parameter sets of generation k+1. 

 

As shown later in this section, it is not necessary that Nk+1 = Nk.  Each simulation has a 

‘characteristic’ value of N, R, and therefore, M = N*R.  For generation k+1: 
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where Rk+1 is the number of progeny parameter sets spawned by each of the Nk+1 parents.  The 

total number of progeny spawned in generation k+1 is Mk+1 = N k+1*R k+1.  The Mk+1 total progeny 

compete against each other to yield the Nk+2 parental parameter sets, and so on. 

 

Each parameter of a progeny set QOffspring is derived by mutating the corresponding parameter of 

the parental set QParent.  There are two types of mutations that can occur.  The first is called a 

macromutation.  Macromutations involve changing the sign of one of the six interaction 

coefficients ωij, resulting in the progeny having a different topology than its parent.  If ωij < -0.2, 

the macromutation converts ωij to zero or a positive value; if ωij > 0.2, ωij becomes zero or 

negative; and, if ωij = 0, ωij becomes positive or negative.  Also, if -0.2 < ωij < 0.2, but ωij ≠ 0, 

ωij is reset to 0.  The newly positive ωij is always chosen from a Gaussian distribution with a 

mean of 1 and standard deviation of 0.1, and a newly negative ωij is chosen with a mean of -1 

and standard deviation of 0.1.  The particular interaction coefficient which is chosen to 

macromutate is selected at random, and so is the direction of the mutation. 

 

One important feature of the macromutation step is that not all N parent parameter sets are 

macromutated.  The percentage Gmacro of the N sets that is macromutated is defined as follows: 

4
1

5.0

max
macro Ζ

G

+

= .   [Eq. 3.6] 

Here, Zmax is the highest score within the N parent parameter sets.  This function ensures that the 

higher the maximum score, the fewer the number of sets that are macromutated.  For example, if 

Zmax = 16, the number of sets that will undergo a macromutation out of the total N, say 20, 

parents, would be Gmacro * N = 0.1 * 20 = 2. 

 

As we will see later, in certain evolutionary algorithms, we choose not to introduce 

macromutations in order to examine the parameter space of only one topology at a time.  

Therefore, the use of macromutations is optional. 

 

The second type of mutation, which happens on all parameters of the parental set, is called a 

micromutation.  Micromutations always occur after the optional macromutation has occurred.  

These set of mutations involve introducing random fluctuations by multiplying each of the 

parameters by 1 + r, where r is a Gaussian random number with mean = 0 and with standard 

deviation = 0.1 (for γ1 and γ2), = 0.25 (for the ωi0’s), and = 0.15 (for the ωij’s).  Note that γ3 is 

never micromutated – it stays at 1.  Unlike macromutations, micromutations do not change the 

sign of any of the interaction coefficients. 

 

After all mutations have been applied, the values of the parameters are checked to make sure that 

they remain within their pre-specified ranges.  For example, any ωij > 1 is set to 1; any ωij < -1 is 

set to -1.  Also, any positive ωij < 0.1 is set to 0.1, and any negative ωij > -0.1 is set to -0.1.  

Similarly, the offsets ωi0’s are constrained to be between -2 and 2, and the γ’s between 0.1 and 3. 

Once the mutations have occurred and the total M progeny parameter sets have been derived, 

they are all scored one-by-one using the procedure described in the previous section.  Only the 

M’, out of M, progeny which score above 0 are considered. The selection criteria for choosing 

which N of these total M’ progeny will survive to become the parental population for the next 
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generation is described in the next section.  We will use p to index the progeny; 1 ≤ p ≤ M’.  Qp 

is the parameter set of this offspring, and Ζp is its score. 

 

Evolutionary Algorithm: Parent Selection Criteria 

 

The “Beta” Criterion 

 

We assign a survival probability q for each progeny p that determines the likelihood of that 

parameter set getting selected as a parent for the next generation.  This probability q is a function 

of the score of that progeny relative to the highest and lowest score of all M’ progeny in that 

generation.  Formally, the relative score Ζp,rel is: 

                ,
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=                                     [Eq. 3.7] 

where Ζp is the actual score of the progeny parameter set, as calculated by Equation 3.3; Ζmax is 

the maximum score of all progeny in the current generation, and Ζmin is the minimum score of all 

progeny in that generation. 

 

The survival probability qp for progeny p is calculated by: 

,
)rel,Ζ1( pβ

p eq
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=                                        [Eq. 3.8] 

where β is a parameter controlling how many of the M’ progeny are likely to be selected.  We 

want to target selecting 2*N parents out of the M’ progeny so that we are more or less guaranteed 

of getting at least N parents from this selection process.  This is done by setting the average 

survival probability <qp> to 2*N/M’.  As a first guess for β, we compute the survival probability 

when Ζp,rel = 0.5, which evaluates to: 
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Hence, we get: 
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which is our initial guess for β in Equation 3.7. 

The survival probability qp for a progeny is compared to a uniform random number r between 0 

and 1 generated de novo for each progeny.  If qp ≥  r, then the progeny is selected as a parent for 

the next generation.  Otherwise, the progeny parameter set is discarded.  Note that this process 

gives even low-scoring progeny a chance to survive.  For example, with β = 2, and Zmin = 0, q ≈ 

0.15, a higher than negligible survival probability.  

If, by chance, we get more than 2*N survivors, we increase β by a factor of 1.33 and repeat the 

selection procedure (with the same progeny set) in order to decrease the number of survivors.  

Likewise, if we get less than N survivors, we decrease β by a factor of 0.5 to increase the number 
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of survivors.  In the end, between N and 2*N survivors are chosen for the next generation.  The 

stochastic nature of the selection method makes it unlikely that Nk+1 = Nk.  However, in the case 

of macromutations, we select exactly N parents per generation by randomly choosing that many 

sets from all survivors.   

In some sets of simulations, we set a maximum value for β, and in others we don’t.  Also, within 

a simulation, setting βk+1 = βk as the initial guess did not speed up the process of getting the 

correct value of β.  So the initial guess for β is always the value calculated from Equation 3.10. 

Our selection criterion is not perfect, however.  In the process of getting to the high-scoring 

region, β usually increases to and remains at a large value.  This is because at lower values of β, 

even very-low scoring sets have a fair chance to survive (as illustrated with the β = 2 example 

above), and therefore there is a good chance that the selection step ends up with more than 2*N 

survivors. At this point, we keep increasing β by a factor of 1.33 until we get the desired number 

of survivors.  With β high, there is a bias towards selecting only the best-scoring parameter sets.  

Even though this helps the search algorithm remain in the high-scoring region once such a region 

is found, ideally, the evolutionary algorithm should give low-scoring parameter sets the same 

chance to be selected at any stage in the search process. 

 

 

 

Figure 3.19.  The evolutionary algorithm pipeline. 

 

An alternative criterion for selecting parents, tournament selection, is presented in Appendix F. 

 

Comparison of our methodology with Ma et al’s 

 

In the work done by Ma et al (Ma et al, 2009), scoring for adaptation is based on two separate 

quantities: sensitivity and precision.  Sensitivity is defined as “the height of output response 

relative to the initial steady-state value”, whereas precision is calculated by the inverse of “the 

difference between the pre- and post-stimulus steady states”.  The system is said to be adaptive 

when the response is both highly sensitive and highly precise, i.e., the response shows a high 

peak when the signal is applied along with a return close to the initial steady state.  Both the 

sensitivity and precision calculations are scaled relative to | Spost – Spre |, where the post-stimulus 



66 

 

signal value Spost = 0.6 and the pre-stimulus signal value Spre = 0.5.  In our case, Spre = 0 and Spost = 

1.   

 

In our work, we combine sensitivity and precision in a single scoring function, Eq. 3.3.  

Sensitivity is in the numerator of the scoring function and the inverse of precision is in the 

denominator.  In this way, a highly sensitive and highly precise system will give a high score. 

Ma et al use a different approach from ours to characterize the near-perfect adaptation property 

of a topology.  They use a precision vs. sensitivity grid in which the upper-right quadrant has 

both high precision and high sensitivity.  For a given topology, they simulate 10,000 parameters 

sets and require that 10 of them fall within this pre-defined quadrant for that topology to be 

classified as exhibiting near-perfect adaptation.  Therefore, their notion of score is not associated 

with the degree of near-perfect adaptation of a single parameter set, like in our case; instead, 

their score is associated with how many parameter sets out of 10,000 show near-perfect 

adaptation.   We classify a topology as exhibiting near-perfect adaptation if its average score is 

found to be high over a large number of parameter sets that are generated from an evolutionary 

search strategy. 

 

Our evolutionary search strategy is pretty efficient in the sense that we are always looking for 

better scoring parameter sets than the ones the simulation has already found.  We test a variety of 

parameter sets every generation, and favor the selection of those that increase the overall score. 

So not only are we exploring the parameters in a broad sense, we are also going deeper at each 

iteration towards the region in parameter space that consistently shows very high scores, 

assuming that such a region exists at all.  Crucially, the simulation is able to stay in the high-

scoring region once such a region is found.  Even in the cases in which we are not able to find 

high scores, our broad search over a very large number of generations provides evidence that a 

high-scoring region does not exist.  The size of the parameter space, with 11 dimensions, 

presents a problem for our methodology though.  It may take many generations to stumble into a 

high-scoring region of parameter space. This process naturally takes plenty of computing time 

and resources. 

 

The dynamical equations used to model regulatory motifs in both our work and Ma et al’s work 

(Ma et al, 2009) are phenomenological in nature.  In Ma et al, all three nodes are assumed to be 

proteins present in either an active or inactive form.  The regulation of each protein (node i) by 

the other proteins (node j ≠ i) is described by Ordinary Differential Equations (ODEs) with 

Michaelis-Menten kinetics.  For example, if node 3 is activated by node 1 and inactivated by 

node 2, then: 
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In this case, X3 is considered as a ‘substrate’ that is modified by the ‘enzymes’ X1 and X2, and the 

use of Michaelis-Menten rate law requires that total enzyme concentration << total substrate 

concentration.  But in the ODE for X1(t) or X2(t), X3 may appear as an ‘enzyme’ modifying the 

‘substrate’ X1 or X2 according to the Michaelis-Menten rate law.  Because the nodes change their 

roles as ‘substrate’ and ‘enzyme’, the use of Michaelis-Menten rate laws is internally 

inconsistent.  Therefore, the dynamical system used by Ma et al, as the authors acknowledge (in 

their supplementary material) is not mechanistic but phenomenological. 
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In our case also, a topology’s activations and inactivations, and the nonlinearity of the reactions, 

is captured in a phenomenological way using a limited number of parameters. 
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APPENDICES  

 

Appendix A:  Examining IFFL-2 and IFFL-3 topologies.  
 

We find that IFFL-2 and IFFL-3 topologies (Alon, 2007) do not score as well as IFFL-1’s and 

IFFL-4’s.  The distinguishing factor between these two classes and the IFFL-1 and IFFL-4 

classes is the regulation from node 1 to node 3.  While it is positive in the latter, the IFFL-2 and 

IFFL-3 topologies always have a negative regulation from node 1 to node 3 (see Figure 3.3).   

  
    Table A.1. IFFL-2 and IFFL-3 average scores. 

 

IFFL-2 Topologies IFFL-3 Topologies 

Code < Z > Code < Z > 

111111 3.52 113113 2.33 

111211 4.07 113213 2.25 

111311 3.38 113313 1.54 

121111 4.31 123113 2.27 

121211 3.74 123213 2.28 

121311 3.42 123313 1.84 

131111 4.52 133113 2.18 

131211 4.09 133213 2.38 

131311 3.85 133313 1.62 

211111 2.48 213113 2.38 

211211 2.60 213213 2.52 

211311 2.29 213313 1.63 

311111 2.35 223113 2.24 

311211 2.55 223213 2.20 

311311 2.19 223313 1.67 

221111 3.94 233113 2.38 

221211 3.38 233213 1.87 

221311 3.19 233313 1.65 

231111 4.22 313113 2.41 

231211 3.50 313213 2.22 

231311 3.27 313313 1.91 

321111 3.03 323113 2.20 

321211 3.31 323213 2.39 

321311 3.17 323313 1.44 

331111 3.50 333113 2.21 

331211 2.95 333213 1.98 

331311 3.17 333313 1.51 
  < Z > represents average scores. 
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When we simulate the IFFL-2 and IFFL-3 topologies on their own, i.e., without macromutations, 

we find that they all have low average scores.  For its 27 members, the IFFL-2 topologies’ 

average scores range from 2.19 to 4.5.  The IFFL-3 topologies’ average scores range from 1.43 

to 2.40.  Table A.1 shows the average scores for the IFFL-2 and IFFL-3 sets – these were run 

with N=20 and R=20.   

 
 Table A.2.  The hyper-ellipsoid volumes from the high-scoring sets of every IFFL-2 and IFFL-3 topology. 

IFFL-2 Topologies IFFL-3 Topologies 

Code n Volume Code n Volume 

221211 8 0.000524 223213 8 0.000118 

121211 9 0.000113 123213 9 1.14E-05 

211211 9 6.16E-05 213213 9 3.77E-05 

221111 9 0.000521 223113 9 0.000141 

221311 9 0.000158 223313 9 3.90E-06 

231211 9 0.001529 233213 9 0.000165 

321211 9 0.000615 323213 9 8.25E-05 

111211 10 0.000217 113213 10 1.69E-05 

121111 10 7.03E-05 123113 10 5.33E-05 

121311 10 2.06E-05 123313 10 5.43E-06 

131211 10 4.65E-05 133213 10 2.26E-05 

211111 10 1.79E-05 213113 10 3.22E-05 

211311 10 1.66E-05 213313 10 3.43E-06 

231111 10 0.000934 233113 10 5.38E-05 

231311 10 0.000201 233313 10 6.62E-07 

311211 10 1.51E-06 313213 10 1.74E-05 

321111 10 0.000595 323113 10 0.000279 

321311 10 0.000186 323313 10 6.45E-05 

331211 10 0.001559 333213 10 1.71E-05 

111111 11 0.000514 113113 11 1.64E-05 

111311 11 4.38E-05 113313 11 4.40E-07 

131111 11 3.51E-05 133113 11 1.26E-05 

131311 11 1.62E-05 133313 11 1.66E-07 

311111 11 2.66E-06 313113 11 6.37E-05 

311311 11 1.95E-07 313313 11 2.76E-06 

331111 11 0.000535 333113 11 1.60E-05 

331311 11 7.68E-05 333313 11 1.10E-07 

n <Volume> n <Volume> 

8 5.24E-04 8 1.18E-04 

9 2.85E-04 9 3.842E-05 

10 8.789E-05 10 1.908E-05 

11 2.688E-05 11 2.875E-06 
  The IFFL-2 and IFFL-3 topologies are sorted according to number of dimensions n.  Shown in the  

  lower panel are the geometric means of volumes across n. 
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An in-depth analysis of these runs shows that most of them have a population of high-scoring 

sets along with a population of very low-scoring sets.  We also find that the hyper-ellipsoid 

volumes of their high-scoring sets are at least one or two orders of magnitude smaller than those 

for IFFL-1’s and IFFL-4’s, making them less robust (compare the average ellipsoid volumes for 

each number of dimension in Table 3.15 to Table A.2).  This leads us to believe that the 

Gaussian noise we introduce while micromutating the parameters, with a standard deviation of 

0.15, may be too high for the IFFL-2 and IFFL-3 simulations to remain in the much narrower 

high-scoring region of parameter space, even after finding such a region.  
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Appendix B: Fewer progeny runs. 
 

We have already established that given a random start in parameter space, all IFFL-1 and IFFL-4 

topologies eventually evolve to a high-scoring region when allowed to evolve without 

macromutations, in the case of N=20 and R=20.  We tested if these topologies would still evolve 

to a high-scoring region when R was decreased to 10 and 5, while keeping N at 20.  We did this 

analysis only for IFFL-1 topologies with random starts. The results are shown in Table B.1.   

 

Table B.1.  IFFL-1 random start simulation results with N=20 and R=10 and 5. 

IFFL-1 N=20 X R=10 N=20 X R=5 

Code < Z > FPT < Z > FPT 

113131 14.21 46 9.52 92 

113231 13.86 34 9.62 60 

113331 13.25 56 9.04 91 

123131 15.13 26 12.78 23 

123231 14.64 29 12.5 37 

123331 14.66 22 13.55 127 

133131 15.81 31 14.23 127 

133231 15.19 23 13.92 39 

133331 15.21 38 12.51 74 

213131 1.55 (500) 1.19 (1000) 

213231 11.05 103 11.08 354 

213331 5.5 (500) 6.44 (1000) 

223131 9.57 146 10.15 29 

223231 10.54 40 6.64 260 

223331 7.58 (500) 5.72 (1000) 

233131 11.94 83 5.13 (1000) 

233231 1.43 (500) 1.39 (1000) 

233331 11.67 22 6.93 (1000) 

313131 3.94 (500) 7.92 129 

313231 11.75 11 8.26 43 

313331 5.51 (500) 4.69 (1000) 

323131 6.02 (500) 8.61 134 

323231 12.29 10 7.81 41 

323331 12.03 28 6.08 (1000) 

333131 5.31 (500) 7.96 64 

333231 12.41 8 7.87 219 

333331 7.57 104 6.17 (1000) 
  < Z > represents average scores.  FPT stands for First Passage Time.  Cases where  

  the FPT is not found are indicated by the maximum number of generations in brackets. 

 

Other runs were done via tournament selection with R decreased to 5 and 2, as shown in Table 

F.2. 
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Again, the First Passage Time (FPT) records the generation at which the mean score of the 

topology crosses 10, and the average score is calculated from the last 50 generations.  

The maximum number of generations, Tmax, for which we ran the simulation with R=20 was 250.  

To make a fair comparison, we increase Tmax by the same factor with which R is decreased.  

Therefore, with R=10, Tmax = 500, and with R=5, Tmax = 1000.  The topologies which do not 

have a FPT are recorded with their Tmax in brackets. 

 

Note that these topologies get exactly the same initial conditions as the corresponding N=20 and 

R=20 runs.  While the R=10 runs have 19 out of the 27 topologies finding a high-scoring region, 

the R=5 runs have 18 such topologies.  Also, a comparison across topologies between the R=20 

(Table 3.2) and R=10 and R=5 runs shows that the average score is always higher in the former 

case.  This is despite a comparable swathe of parameter space being explored in each case.   
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Appendix C: Examining Classic Negative Feedback Loops. 
 

For the sake of a more rigorous examination of negative feedback loops, we examined eight 

“classic” 3-edge networks that have negative feedback with all 3 nodes involved.  Four of these 

topologies had higher than negligible scores – they are shown in Figure C.1.   

 

            NFLC-1         NFLC-2        NFLC-3        NFLC-4 

                  
Code: 122332    Code: 322132         Code: 213223        Code: 211221 
Figure C.1. The four Classic Negative Feedback Loops (NFLCs) that have a higher than negligible score. 

 

All topologies were given low-scoring, random-starts in parameter space and given 250 

generations to find a high-scoring region.  The average scores, as computed from the last 50 

generations, were approximately 4.5 for NFLC-1, 3 for NFLC-2, and 1.5 for both NFLC-3 and 

NFLC-4.  Also, when allowed to macromutate, one of these topologies, NFLC-2, went to an 

IFFL-4 motif, and the other three went to IFFL-1 motifs, specifically 133231, 133331 and 

123331.  These three NFLB-1 coupled IFFL-1 motifs were also among the 9 dominant motifs 

found from the uncoupled extended NFLBs’ macromutations analysis described earlier.   
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Appendix D: Listing of conducive parameters sets for the 27 IFFL-1 and 27 

IFFL-4 topologies. 
 

Mean and standard deviation of each parameter, for each of the 27 IFFL-1 and 27 IFFL-4 

topologies. For each topology, the statistics were calculated over a sample of high-scoring 

parameter sets (Z ≥ 10) from a random start run with N=20 and R=20. 
 

Table D.1.  IFFL-1 topologies’ conducive-start parameters. 

 

113131 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.45 0.11 -0.02 -0.02 0.00 -0.98 -0.14 0.89 -0.20 0.97 -0.96 

S.dev. 0.63 0.01 0.03 0.03 0.00 0.11 0.10 0.14 0.11 0.06 0.07 

113231 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.18 0.13 0.00 0.00 0.04 -1.00 -0.13 0.93 0.00 0.95 -0.98 

S.dev. 0.58 0.06 0.01 0.00 0.04 0.01 0.04 0.11 0.00 0.07 0.04 

113331 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.03 0.14 -0.07 -0.06 -0.10 -0.97 -0.13 0.85 0.26 0.97 -0.88 

S.dev. 0.58 0.08 0.09 0.07 0.11 0.07 0.04 0.16 0.23 0.06 0.16 

123131 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.05 0.16 -0.05 0.00 0.04 -0.99 0.00 0.88 -0.17 0.97 -0.95 

S.dev. 0.53 0.09 0.05 0.00 0.04 0.03 0.00 0.13 0.08 0.06 0.08 

123231 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.43 0.12 -0.06 0.01 0.06 -0.99 0.00 0.89 0.00 0.97 -0.96 

S.dev. 0.52 0.03 0.07 0.01 0.05 0.06 0.00 0.13 0.00 0.06 0.07 

123331 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.18 0.12 0.00 0.00 0.02 -1.00 0.00 0.95 0.16 0.97 -0.99 

S.dev. 0.66 0.04 0.00 0.01 0.02 0.01 0.00 0.09 0.09 0.06 0.03 

133131 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.45 0.11 -0.38 -0.06 -0.26 -0.92 0.52 0.82 -0.16 0.97 -0.63 

S.dev. 0.44 0.02 0.18 0.06 0.15 0.12 0.24 0.19 0.09 0.06 0.21 
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133231 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.48 0.19 -0.46 -0.01 -0.01 -0.85 0.62 0.54 0.00 0.97 -0.90 

S.dev. 0.46 0.14 0.16 0.02 0.01 0.16 0.22 0.12 0.00 0.06 0.12 

133331 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.35 0.18 -0.38 -0.10 -0.26 -0.84 0.50 0.85 0.30 0.97 -0.64 

S.dev. 0.50 0.11 0.17 0.13 0.12 0.26 0.22 0.16 0.22 0.06 0.20 

213131 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.96 0.13 -0.43 -0.49 -0.41 0.00 -0.14 0.94 -0.32 0.98 -0.99 

S.dev. 0.72 0.10 0.12 0.12 0.09 0.00 0.06 0.09 0.14 0.04 0.03 

213231 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 0.65 0.14 -0.42 -0.50 -0.33 0.00 -0.16 0.92 0.00 0.96 -0.98 

S.dev. 0.47 0.12 0.14 0.14 0.11 0.00 0.09 0.11 0.00 0.08 0.05 

213331 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.51 0.12 -0.44 -0.11 0.01 0.00 -0.17 0.64 0.18 0.68 -0.96 

S.dev. 0.53 0.02 0.15 0.04 0.02 0.00 0.11 0.22 0.16 0.08 0.08 

223131 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.24 0.25 -0.47 -0.49 -0.39 0.00 0.00 0.93 -0.24 0.97 -0.99 

S.dev. 0.34 0.37 0.14 0.14 0.10 0.00 0.00 0.11 0.14 0.06 0.04 

223231 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.60 0.11 -0.43 -0.44 -0.40 0.00 0.00 0.89 0.00 0.96 -0.98 

S.dev. 0.67 0.02 0.16 0.14 0.12 0.00 0.00 0.14 0.00 0.08 0.05 

223331 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.53 0.11 0.00 -0.46 -0.33 0.00 0.00 0.55 0.78 0.98 -0.97 

S.dev. 0.43 0.01 0.01 0.09 0.11 0.00 0.00 0.13 0.21 0.04 0.06 

233131 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 
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Mean 0.75 0.21 -0.51 -0.48 -0.38 0.00 0.27 0.90 -0.28 0.95 -0.97 

S.dev. 0.32 0.22 0.17 0.14 0.11 0.00 0.19 0.13 0.14 0.08 0.06 

233231 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 0.91 0.19 -0.50 -0.49 -0.37 0.00 0.20 0.92 0.00 0.97 -0.98 

S.dev. 0.45 0.27 0.17 0.15 0.10 0.00 0.16 0.11 0.00 0.07 0.05 

233331 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.27 0.14 -0.52 -0.43 -0.40 0.00 0.29 0.91 0.34 0.97 -0.98 

S.dev. 0.49 0.08 0.18 0.13 0.10 0.00 0.24 0.13 0.29 0.06 0.06 

313131 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 0.48 0.19 -0.42 -0.52 -0.40 0.21 -0.15 0.94 -0.37 0.97 -0.99 

S.dev. 0.27 0.18 0.13 0.12 0.10 0.16 0.07 0.10 0.13 0.06 0.04 

313231 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.30 0.13 -0.40 -0.45 -0.41 0.27 -0.23 0.92 0.00 0.97 -0.98 

S.dev. 0.49 0.04 0.14 0.13 0.11 0.22 0.18 0.11 0.00 0.06 0.05 

313331 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.76 0.11 -0.44 -0.13 0.00 0.15 -0.21 0.58 0.24 0.68 -0.96 

S.dev. 0.85 0.01 0.15 0.05 0.00 0.05 0.12 0.21 0.12 0.07 0.07 

323131 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.14 0.13 -0.53 -0.08 0.00 0.12 0.00 0.48 -0.20 0.64 -0.95 

S.dev. 0.66 0.04 0.17 0.02 0.00 0.03 0.00 0.15 0.08 0.07 0.07 

323231 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.33 0.11 -0.45 -0.45 -0.42 0.33 0.00 0.92 0.00 0.97 -0.98 

S.dev. 0.51 0.01 0.16 0.13 0.10 0.26 0.00 0.11 0.00 0.06 0.05 

323331 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.36 0.13 -0.45 -0.46 -0.39 0.27 0.00 0.91 0.19 0.97 -0.98 

S.dev. 0.42 0.06 0.16 0.13 0.10 0.21 0.00 0.12 0.12 0.06 0.05 
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333131 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.01 0.13 -0.53 -0.43 -0.42 0.18 0.38 0.90 -0.25 0.96 -0.98 

S.dev. 0.54 0.04 0.18 0.14 0.12 0.10 0.27 0.14 0.14 0.08 0.06 

333231 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.04 0.11 -0.52 -0.47 -0.40 0.27 0.36 0.92 0.00 0.97 -0.98 

S.dev. 0.66 0.01 0.19 0.14 0.10 0.18 0.20 0.11 0.00 0.07 0.05 

333331 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.13 0.13 -0.66 -0.12 0.01 0.23 0.30 0.62 0.37 0.68 -0.96 

S.dev. 0.54 0.04 0.24 0.05 0.02 0.16 0.23 0.23 0.27 0.09 0.07 

 
 

Table D.2.  IFFL-4 topologies’ conducive-start parameters. 

 

111133 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.22 0.12 -0.11 0.42 -1.39 -0.30 -0.22 -0.87 -0.21 0.95 0.96 

S.dev. 0.57 0.02 0.10 0.14 0.15 0.18 0.14 0.15 0.17 0.08 0.07 

111233 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.19 0.13 0.00 0.47 -1.39 -0.39 -0.16 -0.86 0.00 0.95 0.96 

S.dev. 0.59 0.14 0.01 0.16 0.15 0.17 0.08 0.15 0.00 0.08 0.07 

111333 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.19 0.12 0.02 0.42 -1.41 -0.43 -0.14 -0.86 0.25 0.94 0.96 

S.dev. 0.59 0.03 0.02 0.14 0.15 0.14 0.04 0.15 0.13 0.09 0.07 

121133 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.61 0.13 -0.16 0.43 -1.38 -0.29 0.00 -0.88 -0.26 0.95 0.97 

S.dev. 0.58 0.04 0.16 0.15 0.15 0.17 0.00 0.15 0.19 0.08 0.07 

121233 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.29 0.16 -0.15 0.45 -1.38 -0.27 0.00 -0.88 0.00 0.96 0.97 

S.dev. 0.42 0.20 0.12 0.15 0.14 0.16 0.00 0.14 0.00 0.08 0.06 
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121333 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.72 0.12 -0.13 0.45 -1.42 -0.30 0.00 -0.89 0.23 0.96 0.98 

S.dev. 0.51 0.03 0.12 0.15 0.14 0.15 0.00 0.14 0.14 0.08 0.06 

131133 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.29 0.14 -0.33 0.44 -1.39 -0.16 0.30 -0.90 -0.24 0.95 0.97 

S.dev. 0.59 0.06 0.18 0.15 0.15 0.07 0.26 0.13 0.21 0.08 0.07 

131233 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.34 0.17 -0.38 0.47 -1.41 -0.16 0.54 -0.91 0.00 0.97 0.98 

S.dev. 0.51 0.12 0.17 0.13 0.14 0.09 0.29 0.12 0.00 0.07 0.06 

131333 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.48 0.17 0.02 0.50 -1.40 -0.50 0.38 -0.89 0.14 0.94 0.97 

S.dev. 0.70 0.15 0.04 0.15 0.13 0.18 0.20 0.12 0.05 0.07 0.06 

211133 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.21 0.15 -0.36 0.45 -1.38 0.00 -0.21 -0.88 -0.25 0.96 0.97 

S.dev. 0.62 0.08 0.14 0.14 0.16 0.00 0.12 0.14 0.19 0.08 0.07 

211233 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.46 0.15 -0.36 0.41 -1.39 0.00 -0.16 -0.87 0.00 0.96 0.96 

S.dev. 0.44 0.08 0.14 0.13 0.15 0.00 0.09 0.14 0.00 0.07 0.07 

211333 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.44 0.12 -0.39 0.44 -1.40 0.00 -0.21 -0.88 0.25 0.95 0.96 

S.dev. 0.55 0.02 0.14 0.15 0.14 0.00 0.12 0.13 0.10 0.07 0.07 

221133 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.62 0.14 -0.41 0.45 -1.39 0.00 0.00 -0.89 -0.19 0.97 0.98 

S.dev. 0.67 0.10 0.14 0.14 0.13 0.00 0.00 0.14 0.13 0.06 0.05 

221233 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.60 0.14 -0.43 0.43 -1.38 0.00 0.00 -0.88 0.00 0.95 0.97 

S.dev. 0.68 0.06 0.16 0.16 0.15 0.00 0.00 0.15 0.00 0.08 0.06 
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221333 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.15 0.12 -0.46 0.39 -1.40 0.00 0.00 -0.85 0.21 0.94 0.96 

S.dev. 0.49 0.02 0.17 0.15 0.16 0.00 0.00 0.17 0.12 0.09 0.08 

231133 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 0.98 0.12 -0.51 0.43 -1.36 0.00 0.30 -0.87 -0.15 0.95 0.97 

S.dev. 0.45 0.05 0.19 0.15 0.15 0.00 0.21 0.15 0.06 0.08 0.07 

231233 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.06 0.11 -0.56 0.34 -1.36 0.00 0.46 -0.82 0.00 0.94 0.96 

S.dev. 0.56 0.02 0.22 0.14 0.17 0.00 0.28 0.18 0.00 0.10 0.08 

231333 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.70 0.18 -0.50 0.43 -1.39 0.00 0.37 -0.87 0.20 0.95 0.96 

S.dev. 0.80 0.20 0.20 0.16 0.16 0.00 0.28 0.15 0.11 0.08 0.08 

311133 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.36 0.14 -1.13 0.14 -0.97 0.88 -0.13 -0.84 -0.17 0.96 0.67 

S.dev. 0.48 0.08 0.15 0.08 0.20 0.15 0.04 0.18 0.11 0.07 0.20 

311233 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.94 0.13 -0.61 0.36 -1.35 0.23 -0.15 -0.83 0.00 0.95 0.95 

S.dev. 0.57 0.07 0.21 0.14 0.17 0.14 0.05 0.15 0.00 0.07 0.09 

311333 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 1.90 0.14 -0.53 0.45 -1.40 0.14 -0.15 -0.89 0.15 0.97 0.97 

S.dev. 0.70 0.09 0.15 0.15 0.14 0.06 0.06 0.13 0.06 0.06 0.06 

321133 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.32 0.13 -1.15 0.13 -0.95 0.83 0.00 -0.77 -0.49 0.94 0.70 

S.dev. 0.56 0.04 0.17 0.08 0.21 0.19 0.00 0.20 0.32 0.09 0.22 

321233 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 
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Mean 2.54 0.15 -1.18 0.11 -0.90 0.88 0.00 -0.87 0.00 0.95 0.59 

S.dev. 0.42 0.10 0.14 0.07 0.18 0.16 0.00 0.15 0.00 0.09 0.19 

321333 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.07 0.11 -1.17 0.12 -0.95 0.85 0.00 -0.84 0.18 0.94 0.61 

S.dev. 0.57 0.02 0.16 0.07 0.19 0.18 0.00 0.17 0.10 0.10 0.21 

331133 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.43 0.16 -1.08 0.20 -1.05 0.61 0.34 -0.82 -0.31 0.95 0.71 

S.dev. 0.45 0.11 0.35 0.14 0.27 0.35 0.23 0.18 0.21 0.09 0.26 

331233 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.09 0.12 -1.26 0.09 -0.88 0.83 0.29 -0.83 0.00 0.94 0.57 

S.dev. 0.55 0.02 0.19 0.07 0.20 0.19 0.20 0.18 0.00 0.10 0.21 

331333 γ1 γ2 ω10 ω20 ω30 ω12 ω13 ω21 ω23 ω31 ω32 

Mean 2.52 0.14 -1.24 0.11 -0.93 0.77 0.45 -0.82 0.15 0.94 0.59 

S.dev. 0.45 0.07 0.25 0.09 0.22 0.28 0.24 0.19 0.06 0.09 0.24 
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Appendix E: Exploring First Passage Times over multiple iterations. 
 

Earlier, in Table 3.2, we recorded the First Passage Times (FPTs) for all IFFL-1 and IFFL-4 

topologies run with micromutations-only.  Again, FPT refers to the generation in which the mean 

score of a parental set crosses 10.  We now repeat the procedure 100 times for each topology so 

that we can calculate average FPTs.  All 100 runs start with different, randomly chosen, initial 

parameters.  We collect all parameter sets that score above 10, across these 100 runs, and 

calculate the hyper-ellipsoid volume for each topology using these high-scoring sets. 

 

The maximum number of generations allowed per run, Tmax, is 400.  If a run goes all the way to 

this upper limit of generations without crossing Z = 10, we stop the run and record that FPT as 

not found.    

 

Also, we set a condition under which a run can abort early.  In the Methods section, we introduce 

the parameter β which controls how many of the progeny sets survive to become parental sets for 

the next generation.  We increase β if we want to decrease the number of survivors, and vice 

versa.  In some cases, despite repeated increases to the value of β, a run is not able to narrow 

down the number of survivors, perhaps due to a flat distribution of all the progeny scores.  If, in 

this process, β exceeds 250, the run is immediately aborted. 

 

Due to the time-consuming nature of these new simulations, we have so far only been able to get 

statistics on 19 out of the 27 IFFL-1 topologies.   

 

In Table E.1, “Total Iters” refers to the number of runs out of 100 that do not abort.  Of these, the 

number of runs that find a FPT are recorded under “FPT Iters”.  Therefore, the number of non-

aborted runs that go all the way till Tmax without finding an FPT is simply Total Iters - FPT Iters.  

The average FPT, standard deviation, along with the minimum and maximum FPT are also 

recorded for a topology. 

 

We were looking for an inverse correlation between the average FPT and hyperellisoid volume, 

with the hypothesis being that a larger high-scoring parameter space would be found more 

quickly, on the average.  However, the collected statistics do not show such a correlation.   
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Table E.1.  First Passage Time (FPT) statistics on the 19 IFFL-1 topologies run for 100 iterations each.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n is the number of dimensions of the hyper-ellipsoid whose volume is recorded. 

 

Topology   n Ellip Vol Total Iters FPT Iters Avg FPT SDev FPT Min FPT Max FPT 

123131 10 6.68E-05 19 19 49.32 27.35 16 114 

123231 9 0.00269685 46 46 38.63 26.32 12 134 

123331 10 0.005257436 41 41 37.46 34.49 8 232 

133131 11 0.000647999 30 30 45.33 21.21 10 105 

133231 10 0.00834577 36 36 31.56 16.72 11 73 

133331 11 0.01674151 37 37 22.57 9.88 8 51 

213131 10 0.01387888 55 10 72.9 67.73 19 245 

213231 9 0.02556658 63 24 100.71 81.17 27 349 

213331 10 0.02899178 58 35 89.69 77.11 7 314 

223131 9 0.009330953 21 13 60.92 42.95 16 149 

223231 8 0.08485527 26 12 70.92 53.74 19 195 

223331 9 0.08700994 36 29 54.17 41.36 14 164 

233131 10 0.001573423 20 12 77.5 31.95 38 136 

233231 9 0.1110491 34 22 46.59 24.52 6 95 

233331 10 0.134142 29 22 64.59 63.49 12 317 

313231 10 0.01564209 56 18 68.22 69.69 17 326 

323331 10 0.05660934 28 13 31.62 14.49 10 62 

333231 10 0.1564729 41 24 70.46 48.36 17 192 

333331 11 0.08528936 46 26 53.23 45.66 9 211 
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Also, to get an idea of the distribution of the FPTs for each simulated topology, we construct 

plots with the number of generations t as the independent variable, and the probability P(t) that 

FPT > t as the dependent variable.  Therefore, P(0) = 1, and the probability curve steadily 

decreases as the increasing FPT values are taken into account.  Figure E.1 shows these curves for 

the first 12 topologies.  

 
Figure E.1. Probability curves for 12 IFFL-1 topologies. 

 

Only the first six topologies in the table (which happen to be IFFL-1 + NFLB-1’s) have all their 

valid iterations find a FPT, and only their curves are amenable to be modeled using the 

exponential distribution e
-kt

.  The k’s range between 0.03 and 0.095.   

 

For the other six topologies, the reason for many of the non-aborted iterations not having a FPT 

may be that the threshold we set for the mean score, 10, is too high.  Indeed, a few iterations did 

have maximum mean scores between 7 and 9. Therefore, we tested the already collected 

simulation profiles with a lower threshold of 5 to see how many more of them find a FPT under 

the new relaxed criteria.  Those results are shown in Table E.2.  As evident from the table, a 

significantly higher number of non-aborted total iterations find an FPT with the lower threshold 

of 5. 

 

We went on to construct similar plots as shown in Figure E.1 with the FPT threshold being 5.  

Again, we calculated k and average FPT for every topology which showed an exponential 

distribution of the FPTs, but could not find any correlation between those two parameters and the 

(re-calculated) hyper-ellipsoid volumes.  Those results are listed in Table E.2, sorted by the 

number of dimensions n over which the volumes are calculated.  The volumes are used to sub-

sort the table. 
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Table E.2.  Comparing First Passage Time (FPT) statistics from FPT thresholds 10 and 5.   

Topology Total Iters FPT Iters (10) FPT Iters (5) 

123131 19 19 19 

123231 46 46 46 

123331 41 41 41 

133131 30 30 30 

133231 36 36 36 

133331 37 37 37 

213131 56 10 32 

213231 64 24 59 

213331 59 35 56 

223131 22 13 22 

223231 27 12 25 

223331 37 29 36 

233131 20 12 19 

233231 35 22 31 

233331 30 22 29 

313231 58 18 46 

323331 28 13 28 

333231 43 24 28 

333331 46 26 31 
 

For each topology, we list the “Total Iters” and “FPT Iters” just as in Table E.1.  Listed in brackets are the FPT 

thresholds used.   

 

Table E.3.  Relevant  statistics from Table E.1 re-calculated with threshold 5.   

Topology n Ellip Vol k Avg FPT 

223231 8 0.189 0.01 44.32 

123231 9 0.0669 0.016 32.43 

223131 9 0.1223 0.006 67.36 

213231 9 0.1342 0.006 84.76 

223331 9 0.5551 0.019 25.72 

233231 9 0.645 0.01 36.03 

123131 10 0.0051 0.012 45.68 

213331 10 0.0595 0.005 54.68 

123331 10 0.1005 0.036 32.15 

133231 10 0.1678 0.026 24.72 

313231 10 0.1942 0.003 115.46 

323331 10 0.2228 0.016 36.48 

233131 10 0.356 0.003 115.32 

233331 10 0.4956 0.024 37.9 

133131 11 0.0073 0.025 40.97 

133331 11 0.1067 0.09 18.24 
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Appendix F: Tournament selection runs. 
 

Tournament Selection Criteria 

 

In lieu of assigning survival probabilities to each progeny parameter combination, another 

method we tested to select N parents for the next generation was the tournament selection 

criteria.  This criteria yielded mixed results – a few topologies managed to find a high-scoring 

region, and a few did not.  Two versions of it were tried, a more primitive “short shuffle” 

method, and a more sophisticated “long shuffle” method. 

 

“Short Shuffle” Method 

In this method, the M progeny were divided into M/2 sets (all cases had an even number of M 

progeny) of 2 progeny each.  Next, the higher scoring progeny in each pair was selected to go to 

the next round, where it would pair up with another “winner”, and so on.  These multiple rounds 

of selection were continued until N progeny were left.  As shown in the results section later, this 

method was much less effective in finding a high-scoring region in parameter space for a given 

topology, and even more importantly, in staying in it even after finding one.   

 

“Long Shuffle” Method 

The procedure in this more successful method was to divide the M progeny into N sets, or 

brackets, of R progeny each, and select the best-scoring parameter combination from each set.  

The R progeny in each set were chosen randomly from the M progeny to avoid the scenario in 

which only the progeny from one parent compete against each other, which would result in 

mediocre-scoring combinations being almost certain of surviving.  Competition amongst 

progeny from different parents favors the best scoring combinations’ survival, while still giving 

the mediocre-scoring ones a slim chance to survive to become parents for the next round.  

Collectively, this would ensure that the mean score of all N surviving parameter combinations 

would continue to stay high over successive generations once, of course, a high-scoring region in 

parameter space had been found. 

 

These methods were tried only with the 27 IFFL-1 topologies starting with completely random 

initial conditions.  The short shuffle results are presented first in Table F.1. 
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Table F.1.  Short shuffle tournament selection runs. 

 

IFFL-1 N=20 X R=10 N=10 X R=20 N=16 X R=8 

Code < Z >  FPT < Z >  FPT < Z >  FPT 

113131 11.05 210 15.74 46 12.23 92 

113231 13.41 49 12.12 27 12.47 46 

113331 14.12 135 15.41 49 11.84 61 

123131 15.93 73 0.95 (250) 13.29 197 

123231 13.39 80 15.12 200 12 47 

123331 10.37 59 0.95 (250) 12.92 29 

133131 13.48 143 15.29 135 15.77 52 

133231 12.77 23 15.65 93 15.04 87 

133331 12.06 153 13.19 59 15.94 77 

213131 1.46 (250) 1.82 (250) 1.6 (250) 

213231 1.01 (250) 1.79 (250) 10.79 57 

213331 2.31 (250) 4.75 (250) 5.91 (250) 

223131 1.52 (250) 0.95 (250) 11.51 61 

223231 1.45 (250) 2.9 (250) 12.54 36 

223331 5.38 (250) 6.71 (250) 8.45 (250) 

233131 9.17 148 0.95 (250) 13.37 40 

233231 0.94 (250) 5.38 (250) 12.61 58 

233331 2.08 (250) 2.65 (250) 10.94 21 

313131 6.27 152 4.33 (250) 1.78 (250) 

313231 7.86 25 15.04 9 12.52 10 

313331 5.24 (250) 2.07 (250) 7.39 (250) 

323131 4.89 (250) 1.62 (250) 2.29 (250) 

323231 10.19 14 16.21 6 13.17 7 

323331 7.4 (250) 6.64 (250) 12.57 25 

333131 0.89 (250) 0.92 (250) 1.9 (250) 

333231 10.57 12 15.69 3 11.83 12 

333331 5.75 (250) 8.77 87 12.97 34 
  < Z > represents average score.  FPT stands for First Passage Time.  Cases where  

  the FPT is not found are indicated by the maximum number of generations in brackets. 

 

Again, the First Passage Time (FPT) indicates the generation at which the mean score of the 

topology crosses 10; the simulation is followed for another 49 generations; and, the average 

score is calculated from the last 50 generations.  The topologies were given a maximum of 250 

generations to find a high-scoring region, and if they were unsuccessful, their FPT is simply 

recorded as (250). 

 

In some cases, when we looked into the mean score vs. generation plot of some of these 

topologies, we found that the topology does not necessarily stay in a high-scoring region.  For 

example, in the plot below (Figure F.1) for topology 323231 (an Incoherent Feed-Forward Loop 

Type 1), the mean score crosses 10 at generation 14, but then eventually it claws back to nearly 5 

by the time the simulation ends.   
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Figure F.1.  Mean score vs Generation Number plot for a “short shuffle” tournament selection run with N=20 and 

R=10. 

 

Let us now examine the results generated using the “long shuffle” tournament selection criterion, 

as shown in Table F.2. 

 

In this set of simulations, with N=16 and R=16, the topologies that did not cross a mean score of 

10 even after 500 generations are marked with a (500) in their FPT column. Only 5 such 

topologies are found out of a total of 27.   

 

Fewer progeny runs, with N=20 and R=5 and 2, are also shown.  Many of the topologies in these 

runs do not have a FPT.  The maximum number of generations with R=5 is 1000, and that with 

R=2 is 2500. 
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Table F.2.  Long shuffle tournament selection runs. 

 

IFFL-1 N=16 X R=16 N=20 X R=5 N=20 X R=2 

Code < Z > FPT < Z > FPT < Z > FPT 

113131 17.01 33 14.8 29 9.6 110 

113231 16.83 22 15.19 29 9.76 72 

113331 17.03 9 15.15 20 10.19 47 

123131 17.43 23 15.33 71 11.07 85 

123231 17.64 109 14.8 28 9.95 100 

123331 17.26 291 14.11 20 11.14 55 

133131 0.95 (500) 0.95 (1000) 12.47 128 

133231 17.3 107 15.53 312 9.3 182 

133331 17.14 19 16.6 23 13.19 53 

213131 2.04 (500) 13.51 42 6.23 (2500) 

213231 13.67 15 13.11 40 7.97 156 

213331 16.04 31 14.08 44 7.09 616 

223131 9.5 67 6.92 (1000) 4.67 (2500) 

223231 7.4 (500) 6.66 (1000) 7.86 96 

223331 16.12 9 13.28 63 4.48 (2500) 

233131 16.6 20 8.95 95 6.44 (2500) 

233231 15.9 10 14.18 18 4.52 (2500) 

233331 16.61 7 14.04 30 6.2 (2500) 

313131 14 19 2.49 (1000) 3.98 (2500) 

313231 16.46 10 14.07 17 5.63 (2500) 

313331 6.87 (500) 6.09 (1000) 4.31 (2500) 

323131 15.5 18 13.5 24 8.88 70 

323231 15.72 10 14.57 5 8.44 44 

323331 14.43 55 14.07 16 7.95 242 

333131 4.55 (500) 2.31 (1000) 3.7 (2500) 

333231 16.44 4 14.17 6 7.52 117 

333331 12.32 86 7.6 (1000) 4.51 (2500) 
< Z > represents average score.  FPT stands for First Passage Time.  Cases where the FPT is not found are indicated 

by the maximum number of generations in brackets. 

 

Overall, the tournament selection criteria do show a fair degree of success in helping topologies 

score well, although compared to the Beta selection criterion, they sometimes fail to help a 

topology reach a high-scoring region, even with exactly the same initial parameters. 

 


