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l . INTRODUCTION

In order to construct a large multi—functional digital system

using iterative arrays, we would like to have in the array cells which

are functionally complete and which can be dynamically reconfigured

to perform alternate functions. Since the modular tree is functionally

complete and its behavior is totally determined by programming its

accessible control leads [6], it is a promising candidate for this

application. However, another important parameter, reliability,

l
in the design of a digital system, should never be ignored, especially

in a large system. (Introducing redundancy in the system is one way

to improve reliability, but system reconfigurability may be more

powerful and desirable particularly where manual service is not

available. Error detection in a system with redundant components

can be done by voting. However, in a reconfigurable system, the

system itself must be able to detect errors if they exist, locate

them, and make a decision to reconfigure itself properly. In such

a system, fault detection and location of each fault is obviously

desirable, but, the ability to reconfigure the faulty component for

masking faults is also important. Again, the modular tree structure

proves itself superior in this respect for the design of systems of

array structures. Fault masking by reconfiguration can be easily

implemented.[2,9]

Fig. la shows a modular tree structure for realization of any

combinational function of n primary input variables (xl,.......,xn).

1
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By applying suitable patterns of ZEROS and ONES on the control

leads (CO,......C2¤_1) of the tree, any eombinational function of n

primary input variables can be realized. (An ordered set of values

for CO, Cl,......... C2n_l will be called a control pattern). In
fact there are 2n control leads in the tree and there exists a one-

to one correspondence between the 22n control patterns that can be

applied to the control leads and the 22H combinational functions of

n primary input variables. And that is why the tree structure is

claimed functionally complete. lf all those control leads are

' accessible, then, obviously, the change of function is done

by just reassigning (reprogramming) the ONES and ZEROS on

the control leads. The basic cell structure with m inputs,

shown in Fig. lb, is a two level network with 2m AND gates on I

the first level and a single OR gate on the second level. One of the

m+l inputs of each AND gate is the control lead; all the other inputs

are from the m primary inputs (possibly inverted). Primary inputs

are common to each AND gate in a cell, but each AND gate has a

separate control lead. For instance, in Fig. 4, xl, x2 are primary

inputs, CO to gate O, Cl to gate l, etc. are control leads.

By simple modification of both the cell and the modular tree,

as shown in Fig. 2a and 2b, the modified tree structure is able to

realize any binary definite machine with order of definiteness d

[7I.’ Freidman [8] has shown that any sequential machine can be

realized by a sequential network with a single feedback wire. Using

this result, Arnold I7] gave a universal structure as shown in Fig. 3

I r -
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for realization of any binary sequential machine.

Because of so many interesting features possessed by the modular

tree structure, extensive work. on the fault detection

problem in this structure has been done. However, before reviewing

the previous work done on fault detection in a tree

and introducing the work done in this thesis, those faults which

are going to be discussed in the following chapters either for de-

tection or location are defined to avoid confusion. Positive

· logic is going to be used consistently throughout this thesis.

A stuck—at-fault (s—a—f) on a wire will cause the wire to be either

logic 0 (s—a—O) or logic l (s—a—l), for all time.

A short circuit (SC) fault will cause all those wires involved to stay

at logic O, unless all of them are pulled high (logic l)

simultaneously.

A broken and short circuit (BASC) fault will cause the broken wire

to follow the wire to which it is shorted.

The faults are illustrated in Fig. 5.

Cioffi & Fiorillo [ll] have considered fault detection under

unrestricted fault assumptions in combinational trees of the type

shown in Fig. la. The test requires all the control leads of the

tree to be accessible. If the tree in question is required to realize

only a particular function, then the value assigned to each control

lead should be constant logical ZERO or ONE which can be done

during fabrication. Under this condition, it is necessary only to
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teet whether the tree realizes the particular function or not. Ramos

and Smith [12,13] consider such a fault detection problem in trees

shown in Fig. 2a and 3 with s—a—f's only on the control path

(a control path is a path from a control lead to the output of the

tree).

An algorithm for detecting multiple s—a—f's in a modular tree is

given by Prasad and Gray [1,2]. ln fact, the whole procedure only

tests whether the tree can realize two special functions. ln other

words, if assuming only s—a—f's may happen and the tree with n input
l

variables passes the test, the tree can realize any one of the 22n

combinational functions of n binary variables. Fault detection of

another fault model, relaxed fault model in a tree, is also considered

in [1,2] and a testing algorithm is given there. Both of the two al-

gorithms have been modified for definite trees.

But BASC fault and SC fault are more difficult to analyze than

s—a—f's. Even though a bridging fault model (equivalent to SC fault

model) has been considered by Mei [14], the discussion is not in

connection with modular trees. At this time, detection of

BASC and SC faults is discussed under certain restrictions in Chapter

4.

In fact, the main theme of this thesis is on the s—a-f location

problem in a modular tree which is an untouched topic also. The

location problem of s—a—f's is studied in Chapter 2 and 3 of this

thesis. ·
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2. FAULT LOCATION IN CELLS

In this chapter, distinguishability among s—s—f's in a modular

tree is briefly studied from the viewpoint of both physical

constraints and utilization of the faulty tree[l,9]. Then, important

tools (control patterns) are introduced and their particular

properties useful for fault location are discussed. Even though, a

‘ single cell is analyzed in this chapter, the special structure of the

tree enables the results to be applied to the whole modular tree

with slight modification.

2.l Distinguishability of s-a—f's in a Cell

Definitions:

fo fault in a gate: any s—a—f which is indistinguishable from a

s—a—0 on some gate input.

fl fault in a gate: any s—a—f which is indistinguishable from a

s—a—l on some gate input.

For example, if there is an inverter between a primary input and

an AND gate input, an fo (fl) may be caused by a s—a—l (or s—a—O)

on the primary input or a s—a—0 (or s—a—l) on the output of the

inverter. Referring to Fig. 4, wl s—a—0 or w2 s—a—l are both fl
faults on gate l and wl s—a—l or wz s—a—0 are both fo faults on gate l.
Since wl s—a—l(0) and w2 s—a—0(1) are indistinguishable, we do not

need to consider them separately. Similary, all fo faults in an

AND gate are indistinguishable from each other, and all fl faults

10 p
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in an OR gate are indistinguishable. The former is equivalent to

s-a-O on the output of the AND gate, the latter to s—a—l on the

output of the OR gate. Therefore, if an AND gate (OR gate) has any

fo (fl) fault, it will be able to perform only the constant function

0(l). So from the viewpoint of faulty tree utilization, indistinguish-

able faults present no problems. Once the faulty gate is located,

possible reconfigurations of the faulty tree are uniquely defined

no matter which wire in that gate causes the error.

Nevertheless, there are many faults which we do want to locate

. to the wire level because they lead to different tree utilizations.

To utilize a faulty tree with a s—a—0 (s—a—l) fault on some

control lead, a control pattern must be applied with O(l) on the

faulty lead. But, fl faults on primary inputs to an AND gate lead

to different tree utilizati0n[l,2]. The reason for this is illustrated

briefly in the following example.

Example 2-1: Refer to Fig. 4

z = axzxl + bxzxl + cxzxl + dxzxl is the correct output function.
lf an fl fault occurs on the x2 input of gate l,

then z' = axzxl + bxl + cxzxl + dxzxl
= axzil + b(x2+x2)x1 + cxzxl + dxzxl
= axzil + bxzxl + cxzxl + (b+d)x2xl

For this example, if b=O or b=d=l then z=z'. Therefore the

tree can be utilized to perform any function for which one of these

two conditions is satisfied. Specific conditions on control patterns
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that satisfy these conditions can be found in [2,9]. '

Due to different tree utilizations, fl faults on an AND gate

must be located to the precise gate input. However, in Fig. 4,

a s-a-1 fault on wz is still equivalent to a s-a-O fault on wl.
Some terminology useful for later discussion is stated below.

2.2 Properties of (i,k)— and (i,k)'-patterns

Definition:

A binary string of length 2k (keN, N is the set of positive integers)

l •

' ' ' '

•

consisting of 2 0 s (1 s) followed by 2 1 s (0 s) is called

a k-pattern.

Example 2-2: l—patterns: 01, 10 2-patterns: 0011, 1100

Definition:

Representing the elements of the k-pattern with binary codes from

k-0 to 2 1, the label of each such binary code is 0 if the value of

the corresponding pattern element is 0, and is l if the value of

the corresponding pattern element is 1.

Example 2-3:

Pattern Binary Code

l 00

l 01 The binary codes 00 and 01

0 10 have l—labels, 10 and ll

0 ll have O—labels.
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Definition:
.

l
i+k . .An (1,k)-pattern of length 2 is constructed by concatenating a

k-pattern recursively with itself until the string has the length

i+k ,2 . (ln fact, each k—pattern is a (0,k)-pattern.)

Example 2-4:

(0,1)-patterns: 01, 10 (l,l)—patterns: 0101, 1010

(2,l)—patterns: 01010101, 10101010

Definition:
, „ i+k _ _ ,

An (1,k) —pattern of length 2 is constructed from an (1-1,k) —P8C—

tern by complementing it and concatenating with the original pattern.

(A (0,k)'—pattern is a k-pattern.)

Example 2-5:

(0,1)'-patterns: 01, 10 (l,l)'-patterns: 0110, 1001

(2,1)'-patterns: 01101001, 10010110

Definition:

For an (i,k)'—pattern, i+l is the index number of that pattern.

The following two lemmas illustrate some interesting properties

possessed by (i,k) and (i,k)'-patterns respectively.

Lemma l: In an (i,k)-pattern (k6N), each 0(l)-label code c has

exactly one other l(0)—label code which is Hamming distance ONE from

c and the difference occurs at the kth bit.

Proof: For any (0,k)-pattern (k€N), the binary number used to

represent the elements of the pattern is k—bits wide. Obviously, the

kth bit (most significient) will be 0 in the first half of the
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representation, and l in the second half. Two codes from different

halves are HD ONE from each other if they are different only

in the kth bit. Obviously, each code in a k—pattern always has

exactly one other code which is HD ONE from it at the kth bit.

Also, the two halves of the representation are differently labeled.

The Lemma is proved for (O,k)¢patterns.

lnduction basis: the argument above proves the Lemma for

(O,k)—patterns.

lnduction hypothesis: assumed true for (i—l,k)—patterns
l

Now to show it is true for (i,k)—patterns:

Any (i,k)—pattern is constructed by cancatenating two identical

(i—l,k)patterns together. So, the binary representation of the

(i,k)—pattern will consist of (i+k)—bit codes instead of (i+k—l)—bit

codes. Those codes representing the first (i—l,k)-pattern always

has O on its most significant bit but those codes representing the

, second (i—l,k)—pattern will have l on that bit. There obviously

can be only one code in the first (i—l,k)—pattern HD ONE from each

code in the second pattern, and these codes will be identical except

for the (i+k)—bit. This means they represent the same bit in the

two (i-l,k)—patterns and hence have the same label; any other codes

HD ONE apart must both represent bits in the same (i-l,k)—pattern,

and hence are covered by the induction hypothesis. Therefore, for

each code c in (i,k)—pattern, there is exactly one code which is

labeled differently and HDl from code c.



15 Ä
I

Lemma 2: In an (i,k)'—pattern, for each O(l)—label code c, the

index number, (i+l), gives the exact number of l(O)-label codes

which are Hamming Distance ONE from c.

Erppf: Lema will be proved by induction on i.

Basis: it is true when i is equal to O by the proof of Lemma l.
Ä

lnduction hypothesis: assumed true for i—l

Now to show it is true for i.

Same argument of the proof of lemma l can be followed except

that those two codes occupying corresponding positions in two patterns

Ä are differently labeled. Therfore, each code in an

(i,k)—pattern will have one more code with different label and HD ONE

from it than those in ((i—l),k)-pattern have. By induction hypothesis,

the index number of ((i-l),k)'-pattern, that is i, gives the number

of such codes. Therefore, for (i,k)'—pattern, i+l is the number of

different—labeled HDl codes of code c.

Example 2-6: ,

(1,1)-pattern (l,l)'—pattern code
Ä O O 00

1 1 O1
O 1 1O
1 O 11

In this example, OO is a O—label code in both patterns. Codes O1

and lO are the only codes Hamming distance ONE from OO. As predicted

by Lemma 1, there is exactly one code O1 with a 1—label that is HD

ONE from OO in the (1,1)—pattern. Lemma 2 says there should be two

1—labeled codes HD ONE from OO in the (l,1)'—pattern.
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2.3 Unique Detection Condition of s—a-f's in a Cell

In addition to the terminology already introduced, the notion of

unique detection condition and some useful notation must be presented

before handling the problem of fault location.

Lemma 3: lf C = (CO, Cl, ......, C2¤_l) is the control pattern

needed to realize the function f(xl, x2,......., xn) using the module

shown in Fig. 1b, then f(ol, oz,......, on) = Cj, for all j where

[jjlo = [on¤n_l....¤2¤l]2 (read j base 10 equals dndn_1...o2al base 2).

The proof of this lemma appears in [2].

r
Example 2-7: Refer to Fig. 4.

If C = (CO, C1, C2, C3) = (a, b, c, d) where CU=Cl=C3=0 and C2=l,

then input 00, 01 or 11 will produce output 0 from the module since the

value of the corresponding control leads CO, C1, and C3 are 0. Similarly,

if we input 10 to the module, the output will be 1 since C2 equals 1.

Definition:

For each j where [j]l0 = [qn...qk....¤1]2, the number jä is defined as
ul]2 for each k in the range 1_i k_i n.

Example 2-8: Refer to Fig. 4.

Let j = 2, then [j]l0 = [2]lO = [10]2

and [aala]10 Z [ZY]10 Z [ll]2 Z [3]10
and ÜÜ]10 Z Z [nn]2 Z [0alO

Let j = 3, then [j]lO = [3]lO = [11]2

ann [al]10 Z [al]10 Z Z mm
°‘

: 7Y = :
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Summarizing, 2i = 3, 2; = 0, 3T = 2, and 3; = l.
The notion of sensitizing a s—a—f is introduced briefly below.

If wi is stuck at O, the fault will be sensitized if and only if a

test assigns value l on wi and a path is provided to propagate the

error to the output. Because of Lemma 3, a sensitized path always

exists for each s—a—f, so the basic problem is assigning the faulty

wire a value opposite to the s—a—f.

Unique detection condition is the next topic to be discussed

' and gives the theoretical basis for choosing appropriate control

patterns to detect and locate s-a—f's in a cell in a tree structure.

Lemma Q: In a single cell, as in Fig. lb, an fl fault on the Xk

input wire of the jth AND gate where l §_k, and O j_j i_2n-l, can be

detected if and only if Cj = l, Cjä = 0 and (al, dz, ......., on)
is input where [d¤dn_l.......dl]2

Let [j]l0 = [nn....ql]2 and [jä]lO = [dn....Up.......dl]2.
Sufficiency:

Since Cjä = O and input is [j§]lO the output of the cell should

be O by Lemma 3. However, the fl fault on the input wire of kth

input variable to the jth gate together with Cj = l will cause the

cell output l when input is [jä]lO. Error occurs.

Necessity:

Suppose there is another test that will work and let it be:

Cj = x, Cjü = y and {rn........1l]2 = [2]10 where [Q]lO % [jü]1O.
If [2]l0 = [j]l0, then output will follow the value of Cj and no

l
l -
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error will occur. This is contradiction.

If [ ]lO ¢ [j]l0 and since [ ]l0 # []ä]10, there is at least one rh
(h # k) which is not equal to dh. Then, inputting [2]10 to the cell

will always turn off the jth gate. So, fl fault in jth gate can

never be detected under this situation. This is contradiction.

The lemma is proved.

Theorem l: ln a single cell, as in Fig. lb, any single s—a—f, except

an fl fault in the OR gate and s-a—O or s—a—l on the cell output, can

_ be detected by a unique detection condition.

Proof: The unique detection condition of fl fault in an AND gate

is already proved in Lemma 4; what remains is fl on a control lead Cj

or fo fault in jth AND gate.

a. To detect fl on Cj: Cj=O and input [j]lO = [dn.....¤1]2 is the
unique detection condition for this fault.

Sufficiency: Even if O is applied to Cj, fl on Cj will output l

when input is [j]lO = [ou....o1]2.(Lemma 3)

Error occurs.

Necessity: Since all other inputs will not sensitize the value

of Cj to the putput and if Cj is not assigned opposite

to l, error can not be found at all.

b. To detect fo in jth AND gate: Cj=l and input [j]lO = [an....dl]2 •
is the unique detection condition

for this fault.

Sufficiency: Even if l is applied to Cj, fo in jth AND gate will
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cause the output to be 0 when input is [j]l0=[dn...dl]2.
This is an error output by Lemma 3.

Necessity: Other inputs will not sensitize the putput of jth AND

gate to the output, error can not be detected under those

inputs. Even, if Cj=0 and if [j]1O = [on...¤l]2 is input,

the output is still correct.

With the result of Lemma 4, the theorem is proved.

The result of the above lemma and theorem is illustrated briefly

. by the following example.

Example 2-9: Refer to Fig. 4.

1. input "a" s—a-O can be detected if and only if CO=1 and xzxl = OO.

2. w3 s—a-O can be detected if and only if CO=1, Cl=O, and xzxl = 01.
(j = O, k = 1)

j 3. b s-a-1 can be detected if and only if Cl=O and xzxl = O1.
4. w5 s-a-1 can be detected if and only if C2=1, C0=O and xzxl = OO.

(j=k=2)
From the above example, obviously, if a control pattern satisfies

condition 2, it will be able to detect not only w3 s-a-0 but also b

s-a-1 if it exists. Therefore, some other patterns are necessary to

distinguish between these faults in order to be able to locate faults.

Fortunately, the all-O pattern and well chosen (i,k)—patterns are

found suitable for that job and will be discussed later.

According to the definition of jä, the binary code representation

of j and jä are Hamming Distance(HD) ONE from each other on the kth
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bit. From Lemma 1 and 2, for the jth gate in a cell with m primary
4

inputs, an (i,k)—pattern with i+k=m and zero on its jth element will

provide only one detection condition for an fl fault on the kth primary

input to the jäth gate, but an (i,k)'—pattern similarly characterized

may provide any one of i+l detection conditions for that kind of

fault. Note that, in the above paragraph, we treat j and jü inversely

as stated in Lemma 4.

As a matter of fact, for a cell with m variables the index number

I of the (i,1)'-pattern where i+l=m is the maximum index number of any

(j,k)‘-pattern where j+k=m. Therefore, from the viewpoint of detection,

the (i,1)'—pattern is the most powerful control pattern and has been

used for multiple s—a—f's detection in the modular tree structure[1,2].

However, for the purposes of location, the (i,k)—pattern is most

valuable because of its ability of partitioning the fault set.

The following algorithm can be used to detect multiple s—a—f's

and locate a single s—a-f if only one s—a-f occurs in a single cell

with m input variables.

2.4 Fault Location Algorithm I and Example

Fault Location Algorithm 1

1. Apply all possible input combinations under the two (i,l)'-patterns

where i+l = m.

(1) lf no error is detected, terminate the procedure. (No s—a-f

exists in that cell.)

(2) lf all outputs are constant 1 or 0, terminate the procedure.

(fl fault in the OR gate or s-a—O on the cell output.)
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(3) 1f.the detection test set for errors has two or more elements,

terminate the procedure.(Multiple s-a—f's occur in that cell.)

(4) If the detection test set for errors has only one element

and the error output is 0, terminate the procedure. (lf the

only element in the test set is w, let [j]l0 = [w]2, then

the jth AND gate in the cell has an fo fault on it where

O jj _; 2“-1.)

(5) lf the detection test set has only one element and the error

output is 1, more tests are required to locate the fault.
r

11. Apply the al1—0 pattern to the control leads of the cell and input w

if w is the only element in the test set.

(1) lf the output is 1, terminate the procedure. (Let

[j]l0 = [w]2; the jth control lead of the cell is s—a—1.)

(2) lf the output is 0, further tests are required.

Let k=l.

III. If the only element in the test set is w, let [j]l0 = [w]2.

Apply the (m—k,k)-pattern whose jth element is O and input w

to the cell.

(1) If the output is 1, terminate the procedure. (There is

an fl fault on the kth primary input to the jith AND gate.)

(2) lf the output is 0, set k = k+l, and repeat Step lll.

Example 2-10: Refer to Fig. 4 and table I.

Those s-a—f's in the leftmost column of table I are chosen such

that the algorithm is terminated at each different step.

In fact, those YES's, NO's, two—bit binary codes and blanks in
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columns I(2), I(3), II and III provide enough clues for locating the

s—a—f's in the corresponding leftmost columns. Now, the fault case

in the sixth row, wa s-a—l, is discussed in detail. Q

After the detection test in step I, the NO in column I(2) negates ‘

any s—a—f on zlor its equivalent. Then, "OO" restricts those faults

that might happen to: an fo fault in gate O, s-a—l on the control lead

of gate 0, or an fl fault on the kth input wire to the Oäth gate.

Existence of the first two faults are negated by the two NO's in

column I(4) and II. But, the YES in column III(1) verifies the fl
Q

fault on the lst input wire to the Oäth gate, that is, the xl input

wire to gate l. Under the single s—a—f assumption, the algorithm is

terminated and wa s-a—l is located to the wire level.

V
I

All the rest fault cases in this example can be located in the

same way described above and are omitted here.

Note that since the two (i,l)'—patterns applied to the cell in

Step I are complements of each other; the detection condition for each

s—a—f which has a unique detection condition (Theorem l) will be

provided only once during Step I. In other words, only one error can

appear throughout the whole detection test if only one s—a—f of

that kind happens in the cell.
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Table I: Demonstration of Fault Location Algorithm l(Refer to
Figure 4.)

STEP: I(2) I 3) I(l+) II III

Constant The ls the ls the 1 2

output ? error error output k=l k=2

·outputs output l? ls the Is the

occur O'? output output
M

for w= l? l'?

Z Z·Z·1 (ZZ (1)
and NO

wl s—a—l 10
M Siadg M I---
W1 s—a—l No 01Yesb

s—a—l No 01 NoYeswa
s—a—l No No No Yes

-

w5 s—a—l No No No No Yes
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3. FAULT LOCATION IN MODULAR TREES

In this chapter, fault location in combinational trees is

discussed first; the result is applied to definite trees with slight

n modification[1,2]• Eventually, the number of tests required for fault

location is tabled for both the combinational and definite tree.

3.1 Fault Location in Combinational Trees

The most important feature of a tree structure, the unique

sensitized path for each control lead, exists not only in a single

‘ cell (see Lemma 3) but also in the whole tree[1,2]. That is, the

value of any control lead in the tree can be propagated to the output

only when a specific input combination is applied to the tree.

Conversely, any input to a tree sensitizes a unique path from some

control lead to the network output. Since, inside a tree, the

output of a cell is a control lead of a cell in the next level, an

error from the output of a faulty cell can be propagated to the out-

put of the network only when the unique path is sensitized. The

above characteristics of a tree simplifies the problem of fault

location to a great extent.

3.1.1 Under Single s—a-f Assumption

Except for the last cell in the tree, faults on the output of a

cell are indistinguishable from faults on the corresponding control

lead of a cell at the next lower level. We treat them both as a

s—a-f on the control lead and get the following conclusion.

For any single s—a-f in a cell at the highest level where its

24
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control leads are accessible from the outside world, the input com-

bination which may detect the fault and sensitize it is unique. This

result follows the unique detection condition and the unique sensitizing

path in a tree.

3.1.1.1 Awß Form

To analyze faults buried within a tree, partition the tree into

segments as shown in Fig. 6. The gate w is located in cell marked C

where w represents the input in binary form that activates the gate.

· And, the corresponding control lead of gate w is wire w. Subtree TC

includes all cells between the output of the cell C and the root of

the whole tree. Subtree Tw is the subtree whose root is wire w and
whose leaves are also leaves of the whole tree. From previous

discussion, we must input a fixed string (B) to TC in order to sensitize

the unique path from the output of cell C to the system output z.

Input w is the input that activates gate w. Each input string

(o) to subtree Tw propagates one of the two (i,l)'—patterns to cell C.

The notation Awß will be used to represent the situation discussed

above, where: A

A is the set of all elements in 1* having length R for some integer

SL. (0jß)
w6I

661*

and R + lg(w) + lg(B) = n (lg(x) denotes the length of binary

string x.)

If a single s—a—f exists anywhere in the tree, say in cell C shown
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Figure 6: Modular Tree Segmemted by owß where o6A
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in Fig. 6, the set of input strings that produce erroneous outputs

during the fault detection test to be described in Step 1 of Algorithm

ll will be in Awß form for some integer 2. The set A consists of

all input strings to Tw that propagate control patterns to faulty cell

C capable of detecting the single s—a—f. Some input w with the

appropriate pattern propagated by d provides the unique detection

condition for that s—a—f. Then input string B is the unique input to

TC that propagates the faulty condition to the tree output.

Since B is unique for each faulty cell in the tree, the faulty

cell can be located by determining B. Once the faulty cell is located

by B, the remaining tests to locate the specific faulty wire will be

identical to those in Algorithm I.

3.1.1.2 Fault Location Algorithm ll and Example

Fault Location Algorithm ll (Location of single s-a—f in a combinational

tree with n primary input variables)

I. Apply all possible input combinations to the tree under the two

(i,1)'—patterns where i+1 = n.
I

(1) lf no error is detected, terminate the procedure. (No s-a—f exists

in the tree.) lf an error is detected, the set of inputs

producing error outputs will be in Awß form.

(2) lf all error outputs are O, terminate the procedure. (The

faulty cell can be located directly by B. Let [j]1O = [w]2,

then the jth AND gate in the cell has an fofault in it.)

(3) lf any error output is 1, further tests are required.

Il. Apply the all—O pattern to the control leads of the tree and input

1
1,-
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awß (any dcA). If the output is 1, terminate the procedure. (Let

[j]lO = [w]2, the jth control lead of the faulty cell which is

located by ß is stuck at 1,)

Let k = 1.

III. Apply the (mi—k,k)—pattern, where mi = lg(w), to the faulty cell

that will propagate O to the jth control lead. (That is, to the

whole tree, a (n—k—1g(d),k+lg(o))—pattern which will propagate a

0 to the jth control lead of the faulty cell under any ¤(a6A)) and

input [w]2.
4

(1) If the output is 1, terminate the procedure. (An fl fault

occurs on the kth primary input to the jäth AND gate in the

faulty cell located by B.)

(2) If the output is 0, set k=k+1, repeat Step III.

We now illustrate the above argument by the following example.

Example 10: Refer to Figure 7, table II and III.

Table II displays the B that uniquely corresponds to each cell.

Table III contains an analysis of five faults. It should be

noted that w = B = A(null string) (see the bottom row in table III),

indicates s¥a—f on the tree output. All the rest of the table is

self—explanatory.

3.1.2 Under Multiple s—a—f's Assumption

Unfortunately, the error detecting inputs found at STEP I,

Algorithm II, may be in Awß form for some multiple s—a—f's as well

as for all single s-a-f's. In this section, a study of multiple

s—a—f's will be undertaken.
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Table II: Displaying of the Unique B of

Each Cell in Figure 7

Cell . Uni•ue B (x x X )
1 -00
2 -10
3 -01
4 ' -11
5 --0
6 --1
7 ....-

Table III: Demonstration of Fault Location Algorithm II(Refer to
Figure 7.)

Algorithm II
1

Ste•: I II III Fault
Fault (l) List all (2) Is (3) Is Is the k=l Diagnosis

input combina— any any output Is th-
tions with error error l? outpu

_ error output output output l?
in Awß form. O? l?
If none, halt.

13 s—a—0 x x x =ll0 2nd cell,
l 2 3 fo on lst

A=¢, w=l, Yes AND gate
B=l0 (s-a-0

22 s—a—0 x x x =OO1,101 6th cell,
(or) 1 2 3 fg on oth
22' s-a-l A={0,l}, w=0 Yes AND gate

B=l (s—a—0)
23 s-a-l x x x =011,111 6th cell,

1 2 3 lst con-
A={0,l}, w=l No Yes Yes trol lead

' B=l s—a—l

30' s—a—0 xlx2x3=lOl,O11 7th cell,
_ 001,111 7 fl fault

A={00,01,10,11} No Yes No Yes on lst
w=l, B=Ä primary
(kznull string) on 0th

AND gate
z s—a—l x1x2x3=000,0O1, s—a—l on

010,011, the
100,101, output z
110,111 or its

A={O00,001,010, No Yes equiva—
011,100,101, lent
110,111}

w=B=Ä
Aznull string)

1
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3.1.2.1 Pseudo—Single s—a-f 1

Definition: E

A pseudo—single s—a-f is a multiple s—a-f that is indistinguishable

from a single s—a-f during the detection test in STEP I, Algorithm II.

A pseudo—single s—a-f is located to within a specific area of the

tree by Lemma 5 and Theorem 2. More tests are then applied to locate

the faults to the wire level.

Lemma: During the multiple s—a-f's detection test for a single cell,

l the only distinguishable multiple s—a—f's in that cell that can

simulate in the same cell a single s—a—f(which has a unique detection

condition) must look like an fl fault. These can be distinguished by
1

applying (i,k)—patterns to the cell. (i+k=m and kzl)

Pooof: Since those single s—a—f's in a cell mentioned here are those

which have a unique detection condition (Theorem 1), By the remark at

the end of Chapter 2, only one error can be detected by the multiple

s—a—f's detection test if a single such s—a-f occurs.

fo fault: If the only error output is O and is detected by the test

with Cj=1 and input [j]lO, then a single fo fault in the
jth AND gate is simulated.

Assume that no fo fault exists in the jth AND gate, then this gate

will be activated and output 1 when input is ljllo and Cj=1. But, the

actual output of the cell is O now, that means, the output 1 from 1

the jth AND gate is blocked somewhere between the gate output and the
,

cell output by some s-a-f. The fault has to be a s—a—0 on the cell out-

put, but by Theorem 1, this s—a-f will be detected by some other tests
1
1
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for sure. This is a contradiction.

fl fault: Assume the only error output is 1 and is detected by the

‘ test with Cj=O and input [j]lO and that Cj is not stuck at

1 and no fl faults occur in a jäth AND gate for any k which

are supposed to be detected by this test.(see Example 2-9)

Assume the error is caused by s-a—f's in the ith AND gate where

‘ OEij2m—1 and i¢j.

Case 1: Ci is assigned to be 1 by the (i,1)'—pattern which assigns

Cj=0.
1

Cj can not have s—a-0 on it since the error output in question is

1. Therefore, there are at least two fl faults in the gate and suppose

one of them is on the input wire of the hth input variable to the ith

gate. Since Ci is set 1, so, Ciä will be certainly assigned to be 0

by that (i,1)'-pattern(lemma 2). That means when the input to the

cell is {iällo, the correct output should be O. But, fl faults in the

ith AND gate will cause the gate to be activated by input [iä]l0 and

the cell output will be 1 since Ci=1. This is a contradiction.
Case 2: Ci is assigned to be O by the (i,1)'-pattern which assigns

Cj=O.
In this case, not only does some fl faults in the ith AND gate

exist but also the ith control lead of the cell has to be stuck at 1.

These fl faults however guarantee another occurrence of error output

1 under the same pattern and input [illo. This is a contradiction.

The lemma is proved
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Theorem 2: In a tree, a multiple s—a—f that simulates a single s—a—f

in some AND gate j under multiple s—a—f's detection test must exist

either '

(l) in the subtree with control lead Cj as the root and simulate

a s—a—0 or a s—a—l on the control lead Cj.
or (2) in the same cell where gate j is located and can be distin—

guished by applying (i,k)-patterns where 1<k.
U

groofz Assume the set of inputs which propagate error outputs 1(or O)

. to the tree output under the multiple s—a—f's detection test is in the

'Awß form, that means either a real or a pseudo single s—a—f happens

in the tree. Then, Tw, C, and TC can be located as shown in Fig. 6.
Now, let's segment the tree into two regions as shown in Fig. 8.

Region II is the subtree with the cell C as the output cell; the rest

of the tree is region I.

First, we want to prove that no s—a—f may exist in Region I, if

the set of the tests with error outputs is in Awß form. '

(I) Assume there are s—a—f's scattered around Region I.

Let C' be the faulty cell in Region I nearest to the output of

the tree .

Case IA: Cell C' is not on a path from cell C to the tree output.

As shown in Fig. 9, the subtree T; is rooted at C' and its
output can be propagated to the tree output only when ß' is input

to the subtree T6

That means only B' can sensitize the error caused by a s—a—f

in cell C' to the tree output. Certainly, B' is different from B.
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Figure 8: Modular Tree Segmented into Two Regions
Region Il is the Subtree Rooted at the Output of

Cell C. The Rest of the Tree forms the Region I.
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Figure 9: Modular Tree Segmented by ocwß and u'w'ß‘
where B#B'
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Thus, the error detecting test set is not in AwB form and it is

a contradiction.

Case IB: Cell C' is on a pathrfrom cell C to the tree output.

The tree may be partitioned into segments as in Fig. 10 where

3 is divided into three strings aß w' and B'. But, this time, a'

is unique.
W

lBl. If some s—a—f in C' has input [w"]2 as part of its unique

detection condition which has to be provided for detecting

Now let [w']2=[j']l0, and [w"]2=[j"]l0.

Unless these s—a—f's are masked by some other s—a—f's

which is discussed in lB2 or there are contradictions.

lB2. lf s—a—f's in C' have [w']2 as part of their detection

conditions then they have to fall into one of the following ß

three categories of s-a—f's.(see Theorem 2)

a. fl on input wire of kth primary input to the j'§th AND gate

of C' where lglsgnäv and mC,= lg(w').
”b.

fl on the j'th control lead of C'

c. fo in the j'th AND gate of C'

Faults of type a. and b. may occur simultaneously, but

faults of type a will be masked by those of type b. Faults of

type c will mask those of type b but not of type a. So, faults

of type a and c can't occur simultaneously to simulate a s-a—f.
6

Now, we consider them separately. ß

a. Detection conditions for these faults are Cj,=O, Cj,ü=l and
input = [vv']2.
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u w · B

Figure 10: Modular Tree Semented by uwß and a'w'B'
where B' is the End Part of the Binary
String B.

I
I
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There is at least one input string 1 ow¤' and lg(r)=

lg(uw¤') where a 6 A which is supposed to propagate the desired

(i,1)'—pattern to C' to detect these fl faults.

(1) If the pattern is propagated to C' correctly at Cj, and

Cj;ä, that is, Cj,=O and Cj,§=1.
If there are one or more fl faults in gate j'§ of C'

other than the Cj,§ s—a-1, then, certainly, cell C' will
output 1 under input [Tw'B']2 but rw'B' ¢ Awß. It is a

contradiction.
u

· (2) If the pattern propagated to C' sets Cj,=O and Cj,ü=O, then

fl faults in gate j'; will not be detected by inputting

[rw'B']2. However, this error will be either detected by

inputting (Contradiction occurs.) or masked by

some gate,say v, which outputs 1 at that time.([w'§]2=[j'ü]1O)

(2a) If [v]1O=[(j'§)ä,]1Ofor some k'#k, then CV should have

O on it. But, it outputs 1 as mentioned, therefore, either

CV is stuck at 1 or some erroneous propagation happens

again. Anyhow, this fault will be detected under input

[v]1O. This is a contradiction.

(2b) lf [v]l0¢[(j'§)§,]1Ofor any k',and

if CV=1 is propagated wrong, error will be output under

input [v]10. This is a contradiction.

But, even if CV=1 is correctly propagated, error

still occurs under input [vä]l0 for some k. .This is a
contradiction.
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(3) Assume the pattern propagated to C' set Cj,=1.

(3a) If there is no fo fault in gate w', then error certainly

occurs when input is [rw'B']2. This is a contradiction.

(3b) If there are fo faults in gate w', they will be delt in

the discussion in case c.

b. Since this fault can not be masked under multiple s-a—f's

detection test, therefore, the set of inputs which output errors

at least contains a subset in A'w'B' form where lg(r')=lg(a)+

lg(w)+lg(a') and 1'eA'. This is a contradiction.

c. This fault can be detected when Cj=1 and by inputting [w']2.

There is at least one input string r'=¤wd' where deA and

lg(T')= lg(dwu') which is supposed to propagate the desired

(i,1)'-pattern to C' to detect this fo fault in gate w'.

_ So, the error caused by fo fault in gate w' should be

sensitized by inputting [r'w'B']2 unless it is masked. That

means some other AND gate, say gate v', outputs 1 when

the input is [r'w'B']2. Then the argument is the same as

those in (2a)and (2b) except for v now is v' and (j'§)§, is

j'§. Similarly, all the arguments end in contradictions.

Now, we conclude that there are no s-a—f's which may exist in

Region I with the error detecting test set in Awß form. Therefore,

s-a—f's in the tree must exist in Region II as shown in Fig. 8.

(II) 1. Multiple s-a—f's except those which can be distinguished under
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(i,k)—patterns (lfk) can not simulate a single s—a—f in cell

C by Lemma 5.

2. Any s—a—f in Region I but not in C and Tw will produce an

error to some control lead of C under some input u" to that

part. Since, during the detection test, all possible input

combinations are applied to the tree under the two (i,l)‘-

patterns, all _possible. w's will appear between a"

and B. That means, a thorough multiple s—a—f's detection is

undertaken there. In the proof of Lema 5, this is exactly the
U

case which has a s—a—f on some control lead and it may not

simulate another s-a—f. So, once these s—a—f's occur, Awß

can never happen, so it is a contradiction.

So, the area where the multiple s—a—f may exist to simulate a

single s—a—f is already confined to either the cell C or the subtree Tw.

(III) 1. If the multiple s—a—f exists in cell C, by Lemma 5, they must

look like an fl fault in cell C, and can be distinguished by

applying (i,k)—patterns and inpurting [j]l0 to the cell

where l f k.

2. If the multiple s—a—f exists in subtree Tw, since the subtree

is rooted at Cj, obviously, Cj s-a-O or s-a-l is the only
fault which it may simulate and also make the set of inputs

which output errors in the Awß form. The theorem is proved.

So, if the result of the multiple s—a—f's detection test

indicates the existence of a single s—a—f (real or pseudo) inside a

.‘ tree, by the above theorem, we know that the fault exists in the cell C
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located by B, or in the subtree TW where [w]2=[j]lO.
If the fault is an fo in the jth gate of cell C or an fl on the

jth control lead of cell C, then no matter which other s—a—f's may

exist in Tw or fl's in gate jä of cell C, possible utilization of the

faulty tree is uniquely defined. That is, the function which can be

correctly performed by the faulty tree must have on all-O (or all—l)

pattern on the leaves of Tw.
However, if in cell C, some fl faults on the kth input variable

to the jüth gate of cell C occur, but niether an fl nor an fo fault
· occurs on Cj, the situation is quite different and further testing

is required.

First, if fl's occur in the jüth gate, all error outputs during

the detection test would be l and the multiple fault will simulate

an fl fault on (B of cell C. That is, the input is Ljllo and Cj§=l
where Cj should be O by the proof of Lemma 2. But, in this case,

whether Cj=0 or Cj=l, the error output will always be l. In other

words, the output of Tw has no effect on the tree output when those

fl faults occur in cell C. Unfortunately, the exact fl's that occur
in Tw will effect tree utilization. That means, we have to worry

about locating them even after s—a—f's in cell C have been located.

A recursive procedure for fault location is inevitable in this

situation. Note that there can be no detectable fo in Tw in this
situation, because that would imply an error output of O during

the detection test.

I
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3.1.2.2 Fault Location Algorithm III and Example

Fault Location Algorithm III (For detecting multiple s—a-f's and

Olocating real—single or pseudo—sing1e

s-a-f's in a combinational tree with

n input variables.)

I. Apply all possible input combinations to the tree under the two

(i,l)'—patterns where i+l=n

(l) If no error is detected, terminate the procedure. (No s—a—f

. exists in the tree.)

(2) If errors are detected, but the set of inputs producing error

outputs is not in Awß form, terminate the procedure. (Non-

locatable multiple s—a—f's occur.)

If errors are detected, and the set of inputs producing error

outputs is in Awß form, then continue.

(3) If all error outputs are not the same, terminate the procedure.

(Non—locatable multiple s—a-f's occur.)

(4) If all error outputs are O, terminate the procedure. (The

faulty cell can be located by B- Let [jllo = [W12; Che jth

gate in the cell has an fo fault on it.)

(5) If all error outputs are l, and if w=B=A(null string), terminate

the procedure (s—a—l on output of the tree occurs.); otherwise

further tests are required.

Let W=w, B=B, J=j, and A'=A.

II. Locate the faulty cell C by B, then the.subtree having the Jth
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control lead of the faulty cell as its root is named as Tw.

Apply one of the two (i,l)'-patterns to Tw while setting all the

remaining control leads of·the tree to O. The set of test inputs

16 { Ywß | M2 = [M10 and ch = 0

inappliedto the subtree° TW }. Apply the other (i,l)'—pattern

to Tw and repeat the above procedure under that pattern.

(l) If no error is detected, go to III. (No s—a—f exists in Tw.)

(2) If all outputs are l, terminate the procedure. (A s·a—1 on CJ

of the faulty cell or its equivalent occurs.)

(3) If errors are detected, but the set of inputs producing error

outputs is not in Awß form, then terminate the procedure.

(Non—locatable multiple s—a—f's exist in Tw.)

(4) If the set of input detecting error outputs is in Awß form

where B=B'WB for some B'eI. Go to III'.

Let K=l and
d‘eA

III. (l) Apply to TJ one of the two (n-lg(d')-K, lg(d')+K)—patterns

which, under fault—free conditions and any input, always

propagates an (mi-K,K)-pattern whose Jth element is 0 to

cell C. Apply 0 to all the remaining control leads of the

tree. Input to the tree any YWB which gives the correct output

„ in Step II. (If output is l, there is an fl fault on the

Kth primary input to the Jäth AND gate of the cell C.)

(2) Let K=K+l.If mi—K<O (mi=lg(W)), then, terminate the procedure;

otherwise, go to III(l).

III' (l) The same as Step III(l)
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(2) Let KFKil. If mi+Kä0_(where miélg(W)) then go to III(1)';

2 ouhemse, w=w, and B=6wB. If A'=¢,
go to ll. Otherwise, still go to II, but apply the all—0

pattern to the tree instead of the (i,l)'—patterns.

Example: Refer to Fig. 7 and Table IV.

This is example is similar to the previous two examples

demonstrating the functions of Algorithm I and II. The primary

difference in this case occurs for s—a-f‘s in the last row of the

n leftmost column where the recursive part in the algorithm is

illustrated.

Cell 7 where wire 3l' s-a-l exists is located by B=A (given in

column l(2)). Wire 30 and the subtree rooted to it are tested by

Step Il for fl faults. The test result indicates the existence of a
single fl fault(real or pseudo), but wire 30 stuck at 1 is eliminated

by "NO" in column II(2). Then, wire 3l' s-a-1 is locatable and

located by the positive answer to Step IIl'(l), w=0 and Bék. Since

the existence of an fl fault in the subtree rooted at wire 30 has
been verified, the algorithm is applied to the subtree again starting

at Step Il. Eventually, wire 2l' s-a-l is located by the "YES" in

column.IIIY(1), w'=0 and B°=O§ and wire 10' s-a—0 is located by the

"YES" in column III(l), w"=1 and ß"=00.·
ab

' 3.2 Fault Location in Definite Trees

Fig. 11a and 11b show a kd—ary definite tree of order of definite-

ness(depth) d and the cell structure, respectively.
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Table IV: Demonstration of Fault Location Algorithm III(Refer to
Figure 7.) .

IH'<l
Inputs (2) (3) (4) (5) Inputs (2) (3) K=1 K=1
hich In Are Are Are hich ·re & Is Is

produc= form all all all produce:l1 (4) •utpu output
EIIOI Awß €*.IIOI QIIO {IO EIIOI ut

IIIIoutputs? outputs •ut- •ut— 0utputs•uts Awß
_ _ a •uts puts ; 1? ?

constan O? l?
v

20 s—a- 000
100 No

. 15 s—a-I 101
14 s—a—• 001 ·={0,
15 s—a-• 101 1}
(equiva— Yes Yes
lent to -0

22 s-a—0 B=l
20 s—a- 000 ·= 0,

100 1} Yes No Yes 000 Yes
-0 100

B=0
20* 5-8-• 110 ·={0,

010 1} Yes No Yes None Yes
-1

6=0
31' s—a- 000 ·= 00,

110 01,
21' s—a- 010 10, No

100 11
l3' s-a—0 =0

B=1
31' s—a- 000 ·= 00,

·‘=

110 01, {0,
21' s—a- 010 10, Yes No Yes 000 No 1} Yes

100 11} 100
10' -0 °=O

6-1 :*-0I100 No "=l Yes** I
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All of the above discussion on combinational trees is also

relevant to definite trees [6,7,8]. However, each output of a definite

tree is dependent on the inputs at the previous d time-intervals. In

a definite tree, a time input sequence is used for each input combina-

tion to a similar combinational tree. So, the number of tests for

detecting and locating s-a-f's will increase. But, by efficiently

arranging the input sequences, overlapping among them may reduce the

number of tests considerably [4,12].

Since, the algorithms for combinational trees can be applied
u

directly to the definite tree except for changing all the input

combinations used in the algorithms to time input sequences, detailed

algorithms for fault detection or location in definite tree are omitted.

However, the number of tests for those purposes are formulated in the

next section. ·

3.3 Upper Bounds on the Length of the Fault Location Experiment

The upper bound on the number of tests for locating a (real or

pseudo) single s-a—f in combinational trees and definite trees are

formulated and listed in Table V.

The underlined part in those expressions in Table V gives the

magnitude of multiple s-a-f's detection test(ND); the rest gives the

number of tests for locating single (real or pseudo) s—a-f's(NL).

The following example describes the effects of variation on m,.

mh, kd and d on the number of tests for locating s—a—f's in
combinational and definite trees.

Example: Refer to Fig. la and 1la and Table VI, VII, and VIII.



I
49

All the combinational trees discussed in„this example are

assumed uniformly constructed. That is, mh is the same integer for

all h. (ljhjk) ·

Table VI indicates the variation of the number of tests with m

for detecting s—a—f in combinational tree under the single s—a—f

assumption. The worest faulty condition that a combinational tree ‘

may have is that multiple locatable s—a—f's exist in each level of

that tree. The numbers of tests needed when mh of a tree varies are
given in Table VII, with the assumption that the worst case occurs

in the tree. Table VIII displays the growth of the number of tests

_ with the increase of d where kd·d is a constant



I

so I

Table V '

Refer to Figure la.

4
‘ mh : the number of input variables to the h-th level of a

1
combinational tree ‘

m : the maximum mh
n : the total number of input variables to the combinational tree

. n = E<
k )

Refer to Figure lla.

d : the depth of a definite tree l
kd : the number of input variables to the definite tree

under single s—a—f under multiple s-a—f

_ • assumption assumption

h
n n k n_·§2micombinational 2•Q2 }+uHl 2·Q2 )+hE2(2 1 +mh)+ml+1

_ kd·d · kd•d kd·d
definite 2•Q2 +d—lQ+d·(kd+l) 2•Q2 +d—1Q+(d—1)•(2 +d—l)

+(d+l)•d·kd+d

l a -
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Table VI

Single s—a—f assumption

no. of detection tests ND 128 128 128 128 128 128
no. of location tests NL 2 3 4 5 6 7

Table VII

Under Multiple s—a—f's
Assumption

no. of detection tests ND 128 128 128 128
no. of location tests NL 67 27 15 7
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· Table VIII
Single s—a-f assumption

no. of detection tests ND 128 130 132 138
no. of location tests NL 7 8 9 12
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' 4. DETECTION OF BASC AND SHORT

CIRCUIT FAULTS IN MODULAR TREES

In this chapter, the problem of detecting BASC faults and short

circuit faults is discussed under certain restrictions. The fault may

involve only two wires and these two wires can be only primary inputs,

primary input wires or control leads to a single cell. For instance,

in Fig. 13, xl and x2 are primary inputs, wlz and w32 are primary

input wires, and CO and C2 are control leads. From now on, R fault

will be used to represent the BASC and SC faults in the restricted

sense described above.

For the convenience of later discussion, R faults which may

_ happen in a single cell are classified into 9 froups, and short

symbolized notation is given to each group respectively.

Group 1: Control lead Ci is short circuited to control lead Cj.

C. SC C.(1 J)
Group 2: Control lead Ci is broken and short circuited to control

lead C,. (C, BASC C,)
J 1 J

Group 3: Control lead Ci is short circuited to a primary input xk.

(Ci SC xk)
Group 4: Control lead Ci is broken and short circuited to a primary

input xk. (Ci BASC xk)
Group 5: Primary input wire wik is broken and short circuited to

control lead Cj. (wik BASC Cj)
Group 6: Primary input wire wik is broken and short circuited to

one of the other primary inputs, say xh. (wik BASC xh)

53
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Group 7 Primary input xk is short circuited to another primary input

xh. (xk SC xh)
Group 8 Primary input xk is broken and short circuited to another

primary input xh. (xk BASC xh)

Group 9 Primary input xk is broken and short circuited to control

lead Ci. (xk BASC Ci)
Notice that none of these R faults consists of two broken wires,

because, in that case, they both would turn out to be s—a—f's.

V 4.1 Detection Condition for an R Fault in a Cell

The detection condition for an R fault is discussed in the

following paragraph, and test sets for detecting single R—faults

in a cell or in modular trees are designed.

Before a detection test can be designed, conditions which has

to be provided for detecting an R fault should be studied. Except

for groups 1, 2, 7 and 8, each group requires- one ·or two

different detection conditions. The detection conditions with

corresponding faults are enlisted below, and short proofs are given.

Notation: Refer to Fig. 12

[£]lO = [i;]10 where 1 i_k i_m will be used throughout
1

this chapter.

wik: the input wire from input variable xk to gate i

Ci : the control lead of gate i

xk : the common wire connecting input variable xk to every

AND gate in the cell

1
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l

Faults Detection Condition

Group 1: C, SC C_ Let C, # C, and input either
1 J 1 J

' [i]lO or [j]l0 depending on

whether C. or C, is 11 J

Group 2: Ci BASC Cj Let Ci Cj and input [w]2= [i]l0.

Group 3: Ci SC xk
1. wik 1S not inverted to gate 1 Ci=O, C£=1, input [w]2= [i]1O

2. wik is inverted to gate i Ci=1, input [w]2= [i]l0
I Group 4: Ci BASC xk

1. wik is not inverted to gate i Ci=0, input [w]2= [i]10

2. wik is inverted to gate i Ci=1, input [w]2= [i]lO

Group 5: wik BASC Cj
1. i = j and wik is not inverted Ci=l, C£=O, Cj=Ü(if i¥J),

to gate i or if i#j and wik is input [w]2= [ßjlo

inverted to gate i

2. i = j and wik is inverted to Ci=1, input [w]2= [i]1O

gate i

3. i # j and wik is not inverted Ci=1, Cj=0, input [w]2= [i]l0

to gate i

Group 6: wik BASC xh
1. wik is inverted but input [w]2= [i]lO

not inverted to gate i

2. wik and wih are both or Ci=1, C£=0, input [w]2= [ß]l0

both not inverted to gate i
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Group 7: xk SC xh Let Ci=1 where wik is inverted
to gate i but wih is not and

· input [w]2= [i]10.

Group 8: xk BASC xh same as that of group 7

Group 9: xk BASC Ci
1. wik is not inverted to gate input [w]2= [i]10

i

2. wik is inverted to gate i Ci=1, input [w]2= [i]lO

i
Proof:

Group 1: Since Ci#Cj then they will both stay at a low Voltage leVel

(logic 0). When input is [i]1O(or [j]lO) if Ci (or Cj) is set to

logic 1, the error will be detected.

Group 2: Since Ci always follows Cj and the input is lw]2=[i]lO,

the output will be the logic Value of Cj but the original

assigned Value of Ci is not equal to that of Cj. Error is

detected.

Group 3:

l. Since wßk is inverted to gate Z and Ci is set to 0 and shorted

to xk, then w£k will be held low eVen when xk is high.

That means the Zth gate will output l (so the cell) when the

input is [i]l0. It is an error.

2. Since wik is inverted to the gate i, the necessary condition

to output l will be xk.= 0. »HoweVer, Ci is shorted to xk,

so Ci is pulled low when xk=O and the gate output will be O,

1
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A
(so is the tree output under single fault assumption), when

input is [i]iO=—[w]2. It is an error.

Group 4: '

l. Input [w]2= [i]iO, will keep Ci high, so the output of the

gate will be l. It is an error.

2. Input [w]2= [i]i0, will pull Ci low, so the output will be „

”
O. It is an error.

Group 5:

l. If i = j, Ci will keep wik high and the output will output l,

even when CQ = O and input [w]2 =[£]lQ where xk is at low

voltage. It is an error.

If i ¢ j, since Cj = 0 will hold wik low and gate i will

output l when C2 = 0, Ci = l and input is [w]2 = [ß]lg.

It is an error.

2. If i = j, Ci will hold wik high and make the output of

gate i O when Ci = l and input [w]2 = [i]iO. It is an

error.

3. If i # j, Ci = O will hold wik low (logic 0), so the output

of the gate i will be O when Ci = l and input [w]2 = [i]ig.

It is an error.

Group 6:

l. It's equivalent to xik BASC to xih. If one of them is invert-

ed to gate i and the other is not, any value on xh (or xk)

will eventually turn off the ith gate by either xih or xik.

SO input [wjz = [i]lO and set Ci = 1 to detect the
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error.

2. No matter what xk is, wik = wih. So, Ci = 1, C2 = O,
and input [w]2 = [£]lU will cause the output of the cell

to be 1. It is an error.

Group 7: Either wik is inverted to gate i and wih is not or vice versa.
I

Input [w]i = [i]i0 will always turn off gate i even when

9 Ci = 1. It is erroneous.
Group 8: as the proof of Group 7.

Group 9:
l

1. Ci = 0 will set wik = O, that is, an l input to gate 2 all

the time. Therefore Ci = l even with input [w]2 = [i]l0

will cause the cell to output l. This is an error.

. 2. Ci = l will always turn off gate i, even when the input is

[w]2 = [i]l0 and Ci = 1. This is an error.

For a single cell, a detection set which is able to detect any

R fault have to provide all the above detection conditions to the cell.

The multiple s-a—f'S detection test is not adequate for this job.

For instance, in Fig. 13, CO short to C3 will not be detected
by that test. By using both multiple s—a—f's detection test and

s—a-f location test while inputing all possible input combinations

to the cell will do the job. But, for detecting an R fault in a

modular tree, the work of propagating those (i,k)-patterns to each

cell becomes too tedious and hopefully can be avoided.

However, the test, designed by Cioffi and Fiorillo [ll], for

detecting unrestricted faults in a tree shown in Fig. la, can detect
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any single R fault in that tree also. The testing procedure is reviewed

briefly as followsz
4

l. Fixed 0 Test: Set all the.control leads to 0. Input all the Zn

binary n—tuples at the primary input wires and observe the outputs.

2. Fixed 1 Test: Set all the control leads to l. Input all the 2H

binary n—tuples at the primary input wires and observe the outputs.

3. Traveling 0 Test: Set all the control leads except the ith control

lead to l and the ith control lead to 0. Input a binary n-tuple

corresponding to the binary equivalent of i at the primary input
U

wires and observe the output. Do this step for every i,

0;1;2¤—1.
4. Traveling l Test: Set all the control leads except the ith control

lead to O and the ith control lead to 1. Input a binary n—tuple

corresponding to the binary equivalent of i at the primary input

wires and observe the output. Do this step for every i,

0j_ii2“—l.

In the above procedure, it takes 2H+l tests to detect faults in

a combinational tree but note that, this procedure involves 2'(2n+l)

patterns, two of them for the first two tests and the rest for the

last two tests. The new test designed in this chapter may take more

tests for detecting R faults in a tree with n input variables, but,

the number of patterns needed is much smaller than 2•(2n+l). Also, the

test conditions can be easily derived as described in the next section.
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4.2 N(mM)—pattern and Fault Detection Algorithm A and B

Before actually constructing the test set, some special control

patterns are introduced below.'

Definition: _
‘

An mM—pattern (where l j_M i_2m, msN) has length 2m; its Mth bit is

one and all other bits are zero's.

Definition:

· An N(mM)—pattern (where 2 j_N, l j_M_i_2m, m€N) has length 2N°m and
U

is formed by cancatenating (N-l)(mM), (N—l)(mM+l),.....(N—l)(m2m),

(N—l)(ml),........(N—l)(mM_l) together.

Example:

2l—pattern: l000 22—pattern: 0100 23-pattern: 0010

24-pattern: 0001

2(21)—pattern: 2(21) = (2l)(22)(23)(2g)
Q

= 1000010000100001

2(23) = (23) (2;,) (21) (22)
0010000110000100

Note that, when m=1, the only two N(1M)—patterns, N(11)— and

N(12)— patterns, are exactly the two (i,1)'—patterns where N=i+1.

Fault Detection Algorithm A (For detecting any single R fault in a

cell with m input variables)

Let M = 1

I. Set mM—pattern to the cell and input [w]2 = [(M—1)]1O and [(M—1)ä]1O

for each k where 1 < k < m. (The cell should output 0's

1
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except when the input is [(M—l)]lO.)

II. Let M = M+l; if M j m go to Step I, otherwise terminate the procedure.

It is easy to see that this test will detect any single R fault in

a cell. Since if we input [w]2 = [(M—1)ä]10 for 1 j k j m under each

mM—pattern we satisfy detection condition 3(l), 4(1), 5(2), 6(Z) and

9(I). All the rest will be taken care of by inputting ßw]2 = [(M—1)]lO.

Note that the above test can also detect any single s—a—f in

a cell, because it obviously provides all detection conditions for those

s-a—f's mentioned in Lemma 4 and Theorem
l.,

l
Since we can detect an R fault in a cell, the only problem left

for designing a detection test for a whole modular tree is how to

propagate mM—patterns efficiently to those cells inside the tree. In

other words, repeating algorithm A for each cell in the tree should be

avoided. Patterns which will propagate mM—patterns to every cell inside

the tree by inputting proper input combinations need to be found. For-

tunately, the N(mM)—patterns are just adequate for that job. And, if

N(mM)—patterns are used, the number of patterns needed for detecting an

R fault in a tree only depends on m, where m is the maximum mh. More

clearly speaking, if the biggest cell in a tree has m input variables,

2m is the number of patterns needed for detecting an R fault.

The algorithm for detecting an R fault in a modular tree with n

input variables is given below.

Fault Detection Algorithm B

(m: the maximum mh, refer to Fig. la)

Let M = 1
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I. Input all possible input combinations to the tree under the N(mM)—

pattern. (N is chosen such that (N—1)·m j n j N·m.)

(If
2N.m > Zn, use the first Zn bits of the N(mM)-pattern.)

II. Let M = M+1. If M E m go to Step I, else terminate the procedure.

As mentioned previously, the two N(1M)—patterns are exactly the

two (i,1)'—patterns where N = i+1. Therefore, for a binary tree (mh =

1_for all h as shown in Fig. la) the multiple s-a-f's test procedure

can detect any single R fault at the same time. Nevertheless, the

’ capability of the above test algorithm to detect single s—a—f in a

combinational tree shown in Fig. la should not be ignored.

‘ The number of tests needed to detect an R fault in both combina-

tional and definite trees is formulated as follows:

1. For a combinational tree shown in Fig. la, the number of tests for

detecting an R fault is 2T•2n

where m is the maximum number among mh
_ _ kn is equal to hilmh. g

2. For a definite tree shown in Fig. 11a, by the same argument given

in Section 3.2, instead of input combinations to a combinational

tree, a time sequence of inputs has to be applied to the definite

tree. For a tree shown in Fig. 11a, a sequence which contains as

subsequence all kd-ary sequences of length d has length 2kd·d+d-1.

However, the number of patterns needed in this case is dependent

only on kd and is Zkd.
Therefore, the number of tests for detecting an R fault in a

l - -



ß
64

kd kd•d
definite tree shown in Fig.' lla is 2 ·(_2 +d—l).

The underlined part of both formulae indicates the number of

patterns used during the detection test.
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5. CONCLUSIONS

5.1 Summary

In this thesis, several algorithms for either fault location or

fault detection are presented. Three fault models, stuck-at faults,

short circuit faults and broken and short circuit faults are involved

in the discussion. But, only for the first model, s—a-f's, is the

location problem studied. Algorithms for locating single (real or

pseudo) s—a-f's in either a faulty cell
oria faulty tree are presented.

· ' For the other two models, Detection Algorithms for faults in a U
I restricted sense are designed. Because of the special structure of a

I
modular tree, appropriate selection of control patterns becomes the

main work of designing a test for either fault detection or fault

location in the tree. L

In Chapter 2, special detection conditions for single s-a—f's in

a cell are introduced in Lemma 4 and Theorem l and special control

patterns, (i,k)— and (i,k)'— patterns, are defined. An algorithm,

Location Algorithm I, for locating single s-a-f's in a cell is designed

by using (i,k)—patterns.

Location Algorithms II and III for fault location in a combination-

al tree under either single or multiple s-a—f's assumption are given A

in Chapter 3. Awß form, the most inportant tool for fault location

in a tree, is defined there also. The results of Lemma 5 and Theorem 2

prove the locatability of s—a—f's which simulate a single s-a-f under

the multiple s—a—f's detection test. So, in fact, Fault Location65
1
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Algorithm III is capable of locating multiple s-a—f's to some

· extent. All the results obtained from combinational trees

A can be applied to definite tree directly. Even though, the

detailed algorithm is omitted, upper bounds of the test length

for definite trees with depth d under single or multiple s-a—f's

. assumption are develcped in table form.

In Chapter 4, faults which can be detected by Detection

Algorithm A and B are restricted to the R faults. Special detection

conditions for R faults are studied first, then N(m )—patterns

are designed for detecting single R fault in a cell and a

combinational tree respectively. Also, those results can be applied

directly to the defenite tree.

5.2 Suggestions for Future Study

1. Extension of the Fault Location Algorithm III to locate multiple

s-a—f's not restricted to the pseudo—single s-a-f in Modular Trees.

2. To find the whole fault set which can be detected by the Fault

Detection Algorithm B. -



1

REFERENCES

1. B. A. Prasad and F. G. Gray, "Fault Diagnosis in Uniform Modular
Realizations of Sequential Machines," Digest of Papers 1973
International Symposium on Fault Tolerant Computing, Palo
Alto, California, June, 1973.

2. B. A. Prasad and F. G. Gray, Research Initiation: A Theoretical
Investigation of Diagnosable Logic Systems, Final Report,
National Science Foundation, Washington, D. C., October, 1973
(Grant 6J-32718)

3. B. A. Prasad, Multiple Fault Detection in Interactive Logic
Structures, Virginia Polytechnic Institute and State
University, Doctoral Dissertation, April 1974.

4 4. S. W. Golomb, Shift-Register Seguences, Ho1den—Day, San Francisco,
1967.

5. S. S. Yau & C. K. Tang, "Universal Logic Modules and Their
Applications," IEEE Transactions on Computers, Vol. C-19,
pp. 141-149, February 1970.

6. T. F. Arnold, Universal Structures with uniform Interconnection
Patterns for Synchronous Seguential Circuits, Columbia
University, Doctoral Dissertation, 1969.

7. T. F. Arnold, C. J. Tan, and M. M. Newborn, "lteratively Realized
Sequential Circuits," IEEE Transactions on Computers,
Vol. C-19, pp. 54-66, January 1970.

8. A. D. Freidman, "Feedback on Synchronous Sequential Switching
Circuits," IEEE Transactions on Electronic Computers,
Vol. EC-15, pp. 354-367, June 1966.

9. F. G. Gray and R. A. Thompson, "Reconfiguration for Repair in a
Class of Universal Logic Modu1es," IEEE Transactions on
Computers, Vol. C-23, pp. 1185-1194, November 1974.

10. W. W. Peterson and E. J. Weldon, Jr., Error—Correcting Codes,
MIT Press, Cambridge, Mass., 1972.

11. G. Cioffi and E. Fiorillo, "Diagnosis and Utilization of Faulty
Universal Tree Circuits," AFIPS Conference Proceedings 1969
Spring Joint Computer Conference, pp. 139-147.

12. S. Ramo & A. R. Smith III, "Fault Detection in Uniform Modular
Realizations of Sequential Machines," Digest 1972

67

1



I
68 I

I
I
I

International Symposium on Fault Tolerant Computing, Newton,
Massachusells, June 1972, pp. ll4-119

13. S. Ramo, Technical Report: Fault Tolerant Uniform Modular Decom-
positions of Seguential Machines, National Science Founda-
tion, May 1972, (Grant GK—5406).

14. K. C. Y. Mei, "Bridging and Stuck-at Faults," Digest 1973 Inter-
national Symposium on Fault Tolerant Computing, Palo Alto,
California, June 1972, pp. 91-94.

15. L. C. Shih, F. G. Gray and R. A. Thompson, "Fault Location in
Modular Trees," Proceedings of the Annual Southeastern
Symposium on System Theory, April, 1976, pp. 238-243.





u
l

— FAULT DETECTION AND LOCATION IN MODULAR TREEW
by

l

Lionel C. C. Shih

(ABSTRACT)

The problem of fault detection and location in modular tree

structures are considered in this thesis. The fault set is restricted

to stuck—at faults in the discussion of the fault location problem.

Short circuit faults and broken and short circuit faults are considered

u in the discussion of the fault detection problem.

In either the fault detection or location case, detection condi-

tions for each fault in a cell are derived. Tests for locating or de-

tecting fault are designed based on providing those detection condi-

tions to each cell in a tree. For fault detection, the more detection

conditions provided by a test, the better the test is. The detection

V conditions provided by the detection test must be partitioned into

. single element blocks to locate faults. In this thesis, two algorithms
in

for fault detection and three for fault location in a combinational

modular tree with n input variables are presented in detail. All the

above results are directly modified for fault detection and location

in modular trees which realize arbitrary definite machines. Since a

pair of these tree structures can be connected to realize arbitrary

sequential machines, the results derived here are useful in diagnosing

sequential machines.


