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(ABSTRACT) 

The purpose of this study is to develop a simple one-dimensional model to 

analyze axially loaded beam-plates containing cracks which extend through 

the thickness of the beam-plates. Although the material analyzed is isotropic, 

these cracks will be referred to as delaminations. Buckling, postbuckling, and 

growth of delaminations in these beam-plates will be analyzed. A finite 

element method in which all of the terms of the stiffness matrices are obtained 

by exact integration is employed to determine the linear buckling load and 

postbuckling solution. The energy release rate is then determined using the 

postbuckling solution. Curves are provided to show the effect of delamination 

length and location on buckling loads, energy release rates, and strengths of 

the beam-plates. The problem of buckling and postbuckling of beams with 

multiple delaminations is also considered. A method of calculating the energy 

release rate for beams with multiple delaminations using numerical 

differentiation is introduced. 
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Chapter 1. Introduction 

The use of composite materials has been greatly increasing because of their 

superior strength-to-weight and stiffness-to-weight ratios over conventional 

metals. These properties make composites very attractive especially for use 

in the aerospace industry. During the fabrication of these composites certain 

defects such as weakened fibers or cracked matrix materials can cause 

delaminations (debonding of adjacent layers) to occur. Studies conducted by 

Rhodes, Williams, and Starnes [1,2) showed that delaminations can also 

develop due to the low-velocity impact of foreign objects. These delaminations 

can greatly reduce the performance of a composite plate or shell; for example, 

the disbanded area may buckle under compressive loads and subsequently 

spread. The delamination can cause a decrease in the compressive load 

carrying capacity of the structure, thereby leading to loss of global plate 

stability. Figure 1 shows a typical buckling mode shape of a delaminated 
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Figure 1: Buckling of a typical delaminated beam-plate 

2 



beam-plate. A review of various problems of delamination growth in 

composites was given by Wilkins et al [3). 

Recently, a large number of investigators have studied the problem dealing 

with delamination buckling and growth in composite materials. Chai, Babcock, 

and Knauss [4] studied this phenomenon using a delaminating, 

one-dimensional beam-column wherein the local delamination, its growth, 

stability and arrest were governed by a fracture mechanics-based energy 

release rate. For the cases where region 3 in Figure 1 is much thinner than 

region 2, they presented a special model called the thin-film model. 

Simitses, Sallam, and Yin [5] also developed a one-dimensional model for 

predicting delamination buckling loads of simply-supported and clamped 

beams. The effects of delamination position, size, and thickness on the critical 

loads were studied in detail. In a subsequent paper Yin, Sallam, and Simitses 

[6] presented results of an elastic buckling and postbuckling analysis of an 

axially loaded beam-plate with an across-the-width delamination 

symmetrically located at an arbitrary depth. The analysis was done for 

clamped-clamped beams only. They studied the process of delamination 

growth on the basis of a Griffith-type fracture criterion. They used an 

expression for the energy release rate derived by Yin and Wang [7] obtained 

using a path independent J-intregral. It was shown that for certain geometries 

the buckling load can serve as a measure of the load carrying capacity of the 

delaminated configuration. In other cases, the buckling load was found to be 
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very small and delamination growth was found to be a strong possibility, 

depending upon the toughness of the material. 

This is in comparison to Chai et al. [4] who computed the energy release rate 

associated with delamination growth by numerical differentiation. In the study 

by Yin and Wang [7] mentioned previously curves were provided that 

determined the possibility and the stability characteristics of delamination 

growth and provide a basis for determining the ultimate axial load capacity. 

Kardomateas and Schmueser [8] expanded the work of Simitses et al. [5] to 

include the effects of transverse shear on buckling and postbuckling of 

beam-plates. They found that these shear effects enhance the possibility of 

crack growth because the extra energy from these transverse forces can be 

released when the load is applied. 

Recently, Yin [9] also studied cylindrical buckling of delaminated plates using 

a one-dimensional model with general laminate structure (as opposed to the 

isotropic beam-plate assumed in References 5 and 6) to do an elastic 

postbuckling analysis. The path-independent J-intregral was again used to 

find the energy release rate. The postbuckling analysis was done for cross-ply 

and angle-ply laminates. In another paper Yin [10] obtained the energy 

release rate for the uniform-expansion growth of a circular delamination in a 

compressively loaded laminate using the M-integral. Yin and Fei [11] 

examined circular plates being subjected to axisymmetric in-plane loads and 

analyzed the effect of concentric circular delaminations on the critical buckling 
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load. This was done only for simply-supported and clamped boundary 

conditions. They later presented results for elastic postbuckling of 

delaminated circular plates with clamped boundaries [12]. Certain results 

were found to be qualitatively similar to those of the axially loaded 

beam-plates with one-dimensional delaminations (Reference 7). In this study 

they also obtained an analytical expression for the energy release rate. Next, 

Yin [13] provided two approximate solutions for acceleration of crack growth 

for thin, buckled strip delaminations. In this study he used a global energy 

balance compatibility condition and found that crack growth speeds are 

comparable to flexural wave speeds. The strain energy release rates were 

again evaluated using the J-intregal. 

Bottega and Maewal [14] studied the axisymmetric delamination buckling and 

growth in a compressively loaded two layer circular plate. The influence of 

imperfections in the form of transverse loads was also examined. Finally, 

Whitney [15] employed a higher order plate theory to determine the mode II 

(explained later) strain energy release rate in an end notch flexure specimen. 

This theory was found to be more accurate than classical theory. 

All the above studies employed analytical methods; therefore, these studies 

are restricted to simple boundary conditions. Furthermore, it is extremely 

difficult to employ the analytical methods if the loading is dynamic (causing 

delaminated plies to repeatedly impact each other) or if the beam dimensions 

are such that certain regions develop plastic zones. For these complicating 
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nonlinear effects, it is convenient to employ a finite element method. In fact, 

the finite element method was employed by Whitcomb [16] to perform a 

parametric study of postbuckled through-width delaminations in laminated 

coupons. However, the analysis was performed for a two-dimensional model 

by employing a four-node, isoparametric quadrilateral element. The second 

dimension thus makes the analysis quite complicated. Horban and Palazotto 

[17] also used a finite element model to study buckling of cylindrical composite 

panels. They used the STAGSC-1 code for the finite element analysis. 

Experimental results were also presented in this paper. 

Seifert and Palazotto [18] presented experimental results for the buckling 

loads of eight-ply graphite epoxy cylindrical panels with midplane 

delaminations. The study included two different ply orientations, two different 

aspect ratios, two different delarnination sizes, and one set of boundary 

conditions: clamped along the top and bottom edges and simply-supported 

along the vertical sides. The experimental test results were compared to the 

linear bifurcation load and nonlinear collapse load of panels with square 

cut-outs using the STAGSC-1 finite element program. 

Williams, Stouffer, Ilic, and Jones [19] also used a one-dimensional model to 

study delaminations in laminate structures. They provided analytical, finite 

element, and experimental results which determined that delamination growth 

results from crack propagation that depends on the stress field at the crack tip 

produced by buckling of the delaminated section. Also, a study conducted by 
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Vizzini and Lagace [20] based on the strength of materials approach provided 

experimental and analytical results for the growth of delaminations in 

sandwich columns. They introduced the concept of the interply matrix layer 

acting as an elastic foundation. They related the growth point to a critical 

center deflection rather than to the applied load but did not perform a 

postbuckling analysis. 

The objective of this study is to develop a simple one-dimensional model to 

study buckling and postbuckling of isotropic beam-plates with delaminations. 

In this study a simple 6 degree-of-freedom beam-column element is used to 

analyze delamination buckling and instability-related delamination growth in 

a one-dimensional model. The buckling loads for different values of crack 

length, crack location, and crack depth are obtained for beam-plates with 

various boundary conditions by this analysis. The present results are found 

to be in excellent agreement with those of Simitses, Sallam, and Yin [5]. The 

postbuckling analysis is performed using two different methods: 1) the 

conventional large displacement incremental approach using the tangent 

stiffness matrix employed by Yang and Saigal [21], and 2) the displacement 

analysis formulations similar to those employed by Kapania and Yang [22]. 

For both these methods the energy release rate is computed using the 

expression gived by Yin and Wang [7]. For beams with more than one 

delamination this expression cannot be used, hence a numerical differentiation 

method is introduced to handle this problem. 
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Chapter 2. Finite Element Formulation 

2.1 OVERVIEW 

This chapter describes the geometry of the problem, what happens during 

bending, the key assumptions, the finite element model, and the equilibrium 

and compatibility conditions. 

2.2 GEOMETRY OF PROBLEM 

In this study the beam-plate is assumed to be homogeneous and to 

demonstrate linear elastic material behavior. The dimensions of the model are 

shown in Figure 2 which is a front view of the plate. The sides of the plate are 

free. The plate is subjected to a uniform axial compressive force along the 

x-axis (see Figure 3). The delamination, which runs through the width, is 

located h units from the top (or H units from the bottom) and has a length of 
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a units. The delamination divides the plate into four separate regions (Figure 

4). 

2.3 . FINITE ELEMENT MODELING 

The four separate regions are modeled by beam-column elements located 

along the neutral axes of each of these regions. A typical finite element 

modeling is shown in Figure S. There are two separate sections between 

nodes 2 and 3 which represent the regions above and below the delamination. 

These regions can move up and down independently. Figure 6 shows 

conceptually what happens to the model during bending, and demonstrates 

the key assumption in this study, namely that plane sections remain plane. 

The thick bars represent rigid connectors which do not deform during bending. 

In the next section this assumption is used to develop equilibrium and 

compatibility conditions. 

2.4 EQUILIBRIUM AND COMPATIBILITY CONDITIONS 

The forces and displacements before assemblage, shown in Figure Sa, are now 

related to those in Figure Sb in order to develop the equibrium and 

compatibility conditions. Pu , V;1, and MiJ represent axial forces, transverse 

forces, and bending moments, respectively, while uu, vJJ , and elJ are the 

corresponding displacements. The first subscript i denotes the local x-location 

in the region (i = 1 is the beginning of the region and i = 2 is the end of the 
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region), and the second subscript j denotes the region number. Summing the 

forces and then the moments about the middle surface of the beam-plate 

yields the equilibrium conditions. The equilibrium conditions at node 2 are: 

Similarly, at node 3: 

Now making use of the rigid connector idea (plane sections remain plane), all 

vertical displacements and all rotations are equal at the same value of x. Also, 

the u-displacements can be related to each other by the rotation angle and the 

vertical distance between the respective neutral axes. Making use of these 

ideas, the following compatibility conditions are obtained at node 2: 

(2.7a) 
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(2.7b) 

(2.7c) 

(2.8) 

(2.9) 

Similar conditions are obtained at node 3: 

(2.10a) 

(2.10b) 

(2.10c) 

(2.11) 

(2.12) 

These conditions are used to develop a transformation matrix to transform 

from the untransformed model in Figure Sa to the transformed model in Figure 

Sb. The linear stiffness, incrementa.I stiffness, and geometrical nonlinear 

stiffness finite element matrices are assembled using the first model and then 

transfcrmed to the second model using the transformation matrix. This 
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transformation matrix can easily be obtained for beam-plates with more than 

one delamination using the same principles. 
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Chapter 3. Buckling and Postbuclding Solution 

3.1 OVERVIEW 

In this chapter procedures are given to find the prebuckling state, the linear 

buckling load, and the postbuckling solution. The energy release rates are 

computed from the postbuckling solution. Two different methods are used for 

the postbuckling solution. The first method employs an incremental load 

procedure which allows for changing mode shape. The Newton-Raphson 

method is used to iterate and find the postbuckling solution. The second 

method is designed to reduce the high computer cost of the incremental 

procedure. This simple, economical method involves the assumption that the 

spatial variation of the mode shape does not change; consequently, the 

method is accurate for small displacements. The linear buckling results are 

presented in Chapter 4 after which the postbuckling and energy release rate 

results are given in Chapter 5. 
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3.2 PREBUCKLING SOLUTION AND LINEAR STABILITY ANALYSIS 

The prebuckling solution is one of pure compression, the transverse 

displacement being identically equal to zero. Therefore, if the load is less than 

the critical value, no shear forces and bending moments are developed in the 

beam that can increase the length of the delamination. Hence, a linear stability 

analysis is first performed to determine the critical buckling load. 

After assemblage and transformation, the governing equations for the linear 

buckling analysis are written as 

[K]{q} - Pcr[N]{q} = {O} (3.1) 

where [K) and [NJ are, respectively, the restrained stiffness and restrained 

incremental stiffness matrices; {q} is the vector of generalized nodal 

displacements; and Per is the critical value of the inplane compressive load. 

An eigenvalue analysis of the above equations yields the lowest critical 

stability load. 

3.3 DERIVATION OF NONLINEAR STIFFNESS MATRICES 

The next step is to perform a postbuckling analysis. In order to do so, it is 

necessary to obtain the [N1] and [N2] nonlinear stiffness matrices. The tangent 

stiffness matrix, [Kr], which is needed in the incremental postbuckling 

analysis, is also derived in this section. The first step in these derivations is 
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to write the finite element equations for the axial and tranverse displacements. 

The simple linear approximation for u, the axial displacement, is used in this 

study so that all of the stiffness matrices may be obtained using exact 

integration. The linear equation is 

x x 
U = (1 - -)U1 + -U2 L L 

(3.2) 

where the u/s are the axial displacements at node i , and the shape functions 

are, obviously 

x g1 = (1 - -) 
L 

(3.3) 

The cubic approximation is used for v, the transverse displacement, and here, 

the shape functions are numbered from three to six for clarity: 

(3.4) 

The v;'s and the 0/s are the transverse displacements and rotations, 

respectively, at node i. The shape functions in Equation (3.4) are 

f3 = 1 - 3(-~-/ + 2(~)3 
L L 

(3.5a) 

x2 x3 
f4 = x - 2(-. ) + -

L L2 
(3.5b) 

x 2 x 3 f5 = 3(-) - 2(-) 
L L 

(3.5c) 
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x2 x3 
f5=-(-)+-

L L2 
(3,Sd) 

The matrices [N1l and [N2] are both obtained explicitly in this study starting 

with the following strain energy expression for a beam: 

(3.6a) 

Expanding this equation 

(3.6b) 

The nonlinear stiffness matrices are obtained by taking first derivatives of U 

with respect to the displacements. q1 will represent the displacement vector 

which contains six elements. The first two elements of q1 are the axial 

displacements, u1 and u2, and the last four elements are the transverse 

displacements and rotations, v1 , 01 , v2 , and 02• Also the g/s and the f;'s are the 

shape functions given previously, and, for example, f;' denotes the first · 

derivative of f; with respect to x. Taking the derivative of the second term of 

Equation (3.6b) with respect to the v-displacements yields: 

(3.7a) 

or, rearranging, 
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(3.7b) 

where i and j go from 3 to 6. Now taking derivatives of the third term of 

Equation (3.6b) with respect to the v-displacements: 

(3.8a) 

or, 

au J. EArL av'"' I d - = L JO-'ig·q· X 
aqi j=1 ax 1 1 (3.8b) 

where i goes from 3 to 6 and j goes from 1 to 2. Finally, taking derivatives of 

the third term of Equation (3.6b) with respect to the u-displacements 

oU _ 1 EA rL( ov )2 'd - - - JO - g· x aqi 2 OX I 
(3.9a) 

or, 

au = ~ _1 EA f~ av g·'f.'q·dx 
0qj j= 3 2 OX I J J 

(3.9b) 

where i ranges from 1 to 2 and j from 3 to 6. 

Equation (3.7b) forms a 4 x 4 matrix multiplied by the v-displacement vector. 

This matrix is called the [N2] nonlinear stiffness matrix. Similarly, Equations 
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(3.8b) and (3.9b) also form matrices which are multiplied by the u- and 

v-displacements respectively. The matrix in Equation (3.8b) is a 4 x 2 matrix 

called [Nvu1], and the matrix in Equation (3.9b) is a 2 x 4 matrix called [Nuv1J. 

The sum of these two matrices forms the [N1] matrix. Note that [N1] is not 

symmetric. 

Normally, the nonlinear matrices are obtained using numerical integration; 

however, in this study the components of [N1] and [N2] are found exactly by 

integrating term by term. The [Nuv1] matrix is obtained from (see Equation 

3.9b) 

(3.1 O) 

where i goes from 1 to 2 and j goes from 3 to 6. The [Nvu1] matrix is obtained 

by multiplying the transpose of [Nuv1] by two. The g;' 's are 

1 
L 

I 1 g2 = -
L 

which do not depend on x. The first derivatives of the '1's are 
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(3.12a) 

(3.12b) 
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(3.12c) 

(,I - -2L + 3(L)2 6 - L L (3.12d) 

Now, the integrals for [N1] are calculated: 

~L I av 6 1 6 1 
of3 (-)dx = -v1 + -01 - -v2 + -02 Dx SL 10 SL 10 

(3.13a) 

L I av 1 2 1 1 
fof4 (-)dx = -V1 + -L01 - -V2 - -L02 
JI OX 10 . 1 S 10 30 (3.13b) 

(3.13c) 

~L I UV 1 1 0 1 2 0 o'B (-)dx = -V1 --L 1 - -V2 + -L 2 ox 10 30 10 1S 
(3.13d) 

The integrals needed for the [N2] matrix (see Equation (3.7b)) are: 

(3.14) 

where i and j both range from 3 to 6. Performing the integrations: 

(3.1Sa) 
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(3.15b) 

(3.15c) 

(3.15d) 

(3.15e) 

(3.151) 

Note that f5' = - f3 ' which avoids performing several of the integrations. It is 

noted that use of exact integral formulation considerably simplifies the 

analysis and is also more economical compared to using numerical 

integration. 

The tangent stiffness matrix, which is used in the incremental postbuckling 

analysis, is now derived. This matrix is obtained from the expression 
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(3.16) 

where i and j range from 1 to 6; therefore, two derivatives of the strain energy 

must be taken. From the second term of the strain energy expression, taking 

the derivative with respect to the v-displacements twice (see Equation (3.7a) 

for first derivative) 

(3.17) 

which equals three times the [N2] matrix derived previously. In Equation (3.17) 

i and j range from 3 to 6. Now, taking the u-derivative and then the 

v-derivative of the third term in Equation (3.6b) 

(3.18) 

where i goes from 1 to 2 and j goes from 3 to 6 (see Equation (3.9a) for first 

derivative). This equation forms a matrix which is two times the [Nuv1] matrix 

derived previously. Next, from the same term, taking the v-derivative first, and 

then u 

(3.19) 
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which is equal to [Nvu1]. In the previous equation i goes from 3 to 6 and j goes 

from 1 to 2. Finally, taking two derivatives with respect to v of the same term 

a2u L o 
-- = EA Jo (_y_)f.'f.'dx 
oq;oqj ox ' 1 

(3.20) 

Here, when the i's and j's vary from 3 to 6 a matrix is formed which is called 

the [KcrJ matrix. Therefore, the equation for the tangent stiffness matrix may 

be written: 

(3.21) 

where [N1] is now symmetric because [Nuv1] is not multiplied by one half. The 

equation for the axial load is 

p = EA[ ou + J_( ov )2] 
ox 2 OX 

(3.22) 

Noting that [N], the incremental stiffness matrix, comes from the first term of 

Equation (3.22) and that [N2] comes from the second term, [Kr] may be 

rearranged and written as shown: 

(3.23) 

Chapter 3. Buckling and Postbuckling Solution 27 



3.4 LARGE DISPLACEMENT POSTBUCKLING ANALYSIS 

The next step in this analysis is to find the relationship between the axial load 

and the displacement vector in the postbuckling range by performing a large 

displacement analysis. A large number of investigations have been performed 

on geometrically nonlinear structures and postbuckling of these structures 

(see, for example, References 21 and 22 for a review). In these studies an 

incremental/iteration approach (either of total Lagrangian or of updated 

Lagrangian type) is generally used employing the so-called tangent stiffness 

matrix in conjunction with the Newton-Raphson method. This incremental 

approach, which allows for changing mode shape, is described in this section. 

The governing postbuckling equation is 

(3.24) 

The first step is to find the tangent stiffness matrix using a beginning axial load 

and vector of displacements. Then, using a small incremental load, calculate 

(3.25) 

{~q} is then added to the original displacement vector to form {q*}: 

. 
{q } = {q1} + {~q}, (3.26) 
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where {q·} is the current displacement vector. Now, define 

(3.27) 

where [Nd and [N2] are the nonlinear stiffness matrices derived in Section 3.3. 

lKtot1 is then found using {q·}, and {P.}, the internal load vector, is calculated 

as 

. . 
{P } = [Ktot1{q } (3.28) 

Then the residual load is found from 

(3.29) 

where {P2} is the sum of the first axial load and the incremental load. The next 

step is to find 

(3.30) 

Then, the new {q·} is calculated as 

{q~} = {q.} + {~q 1}. (3.31) 

The steps in Equations (3.27-31) are then repeated until the residual load is 

sufficiently small. The convergence criteria used is, from Reference 22: 
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N 2 
( L Pr) 
i= 1 I 

N 
( L P;2) 
i= 1 

1 
2 

s: .001 (3.32) 

where Pi is the total load vector, Pr; is the residual load, and N is the total 

number of degrees of freedom. When Equation (3.32) is satisfied {q~} becomes 

{q2}, and this vector, along with {P2} is the next point of the postbuckling 

solution. To proceed to the next point, the tangent stiffness matrix is 

recalculated using the current displacement vector, {q2}, and the whole 

process is repeated starting with Equation (3.25). Thus the postbuckling 

solution is found using the incremental method. 

3.5 CONSTANT MODE SHAPE POSTBUCKLING ANALYSIS 

A somewhat simpler and much more economical approach to .find the 

postbuckling solution is to assume the spatial distribution of the displacement 

to be the same as the linear buckling mode and to obtain the variation of the 

axial load with respect to the displacement vector by using the [N1] and [N2] 

nonlinear matrices as described subsequently. This constant mode shape 

assumption is consistent with Koiter's initial postbuckling analysis [23]. No 

iterations are involved in this procedure. It is noted that this approach is 

generally valid for small transverse displacements only. For large 

displacements in the postbuckling range, the incremental approach (though 
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very expensive) should be used since, for large displacements, the spatial 

variation of the displacement changes with applied axial load. 

To find the constant mode shape solution, the governing postbuckling equation 

of (3.24) is partitioned as follows: 

[ 
Kuu I ~ ]{ ~} + [ 
0 I Kvv Ov 

(3.33) 

Here, {Ou} is the axial displacement vector and {Ov} is the transverse 

displacement vector. Thus, 

(3.34a) 

(3.34b) 

Solving Equation (3.34a) for {Ou}, 

(3.35) 

Substituting {Ou} into Equation (3.34b) yields 
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(3.36) 

Normalizing, 

(3.37) 

Here, {Ov} is the normalized linear buckling mode with maximum transverse 

deflection equal to unity, and 8 is the amplitude of the buckling mode shape. 

Also, since [N1] is a linear function of 8 and [N2] is a quadratic function of 8, 

(3.38a) 

and 

(3.38b) 

The bar indicates that the respective matrix is computed using the buckling 

mode shape vector normalized with respect to unity. -Substituting into 

Equation (3.36) we obtain, 

(3.39) 
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{P} contains all zero's and a 1 where the load is being applied (at one end of 

the beam). Premultiplying Equation (3.39) by {QJT and dividing by o, one 

obtains 

b + Pe - co2 + do2 = 0 (3.40a) 

or, solving for P 

P = -b + c - d ~2 e e u (3.40b) 

where 

(3.41a) 

(3.41b) 

(3.41c) 

(3.41 d) 

The variation of P with o may now be found using Equation (3.40b) along with 

Equations (3.41a-d). Note that b, c, d, and e are constants and do not change 

as the loads and deflections increase; hence, they need be calculated only 

once for a given delaminated beam. 
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3.6 ENERGY RELEASE RATE 

The final step is to calculate the energy release rate, G which is found in order 

to determine whether there exists a sufficient amount of energy for crack 

growth to occur. The energy release rate is very important because if crack 

growth begins, the beam-plate usually fails catastrophically. First, the three 

different cracking modes are discussed: the opening mode, the sliding mode, 

and the tearing mode. Figure 7, obtained from Reference 24, illustrates these 

three different modes of cracking. The opening mode occurs when the region 

above the crack is pulled upwards and the region below the crack is pulled 

downwards. The sliding mode is caused by in-plane shearing stress where the 

top region is pushed forward and the bottom region is pulled in the opposite 

direction. Consequently, the two regions try to slide across each other in the 

plane of the crack. The final type of cracking is the tearing mode which 

happens when the top region is pushed to one side and the bottom is pushed 

to the other side (out-of-plane shearing) [24]. 

The opening mode is the mode that occurs in a compressively loaded 

delaminated beam-plate, and the following discussion pertains to this first 

mode. The critical energy release rate for mode I cracking, Ge, is calculated 

from 

n:cr~aw 
G =---c E 
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mode II 
sl1d1ng mode 

Figure 7: The three modes of cracking 
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where w is the width of the beam-plate (a unit width is used) and crc is the 

stress required to fracture a beam-plate with a delamination of length 2a units. 

When the energy release rate reaches this critical value, the delamination 

begins to grow [19]. Yin and Wang [7] derived an algebraic expression to 

determine the energy release rate for beams with one delamination: 

G=-- + 1 l (tP.)2 

24EI h(1 - h) 
(3.43) 

where tis the thickness of the beam-plate. In this expression 

h 
h -T· (3.44) 

• -[· - M1 J P = h P1 + 6(1 - h )-t- - P3, (3.45) 

(3.46) 

and the P/s and the M/s are the internal forces at the crack tip. Note that this 

expression cannot be used for beam-plates with more than one delamination. 

The problem of multiple delaminations is discussed in Chapter 6. The axial 

displacement vector {Ou} is found from 

(3.47) 
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In the incremental procedure this vector is already known. The required 

forces in Equation (3.43) can then be found by multiplying the appropriate 

element displacement vectors by the respective element stiffness matrices. 
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Chapter 4. Linear Buckling Results 

4.1 OVERVIEW 

The present developments were used to find critical loads for various types 

of delaminated, isotropic beam-plates. Linear buckling results are' provided 

for beams with various boundary conditions and with symmetric, 

nonsymmetric, and multiple delaminations. The effects of delamination depth, 

location, and size are also examined. The results are compared to the 

analytical results of Simitses, Sallam, and Yin [5]; however, the analytical 

results were only provided for the simple cases of pinned-pinned and 

clamped-clamped beams. Finally, the case of beams with two delaminations 

is examined in Section 4.5. 
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4.2 SYMMETRIC DELAMINATIONS WITH SIMPLE BOUNDARY CO~DITIONS 

The two cases that are discussed in this section are pinned-pinned beams and 

clamped-clamped beams both with symmetric delaminations. If the 

delamination is centered along the length of the beam and the boundary 

conditions are the same on both sides, the problem is symmetric and only one 

half of the beam need be modeled. In these two cases regions 1, 2, and 3 (see 

Figure 1) are modeled by one element each. This results in a simple 5 x 5 

eigenvalue problem for the case of the clamped-clamped beam and a 6 x 6 

eigenvalue problem for the pinned-pinned case. 

Figures 8 and 9 show the variation of the dimensionless critical load versus 

the dimensionless delamination length for four different delamination heights. 

The buckling loads, as they are throughout, are nondimensionalized by the 

buckling loads for beams with no delaminations, and the delamination lengths 

are nondimensionalized by the total beam lengths. For the purpose of 

comparison the results obtained by Simitses et al. [5] are also shown. 

The graphs show that the further the delamination is from the mid-height of the 

beams, the less stable the beams are in buckling. Beams with delaminations 

that are both thin (close to the top or bottom) and short are extremely sensitive 

to increasing delamination length as the buckling load drops off very quickly 

in this region. In general the dimensionless critical loads for the 

clamped-clamped beams decrease more quickly with increasing delamination 
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length than those for the pinned-pinned beams. After comparing the buckling 

load results with those of Simitses et al. [5], it is seen that they agree almost 

exactly even though the minimum number of finite elements is used for these 

cases. 

It is important to note that the buckling loads are calculated assuming the 

slopes at the crack tips are the same in the regions above and below the 

delamination. Therefore, even when ~ = 1.0 the beams still do not behave 

independently. For example, the dimensionless buckling load of the 

pinned-pinned beam with ~ = 0.5 was 0.61, whereas if the top and bottom 

portions behaved independently, a va~ue of 0.25 would be expected (one half 

of the beam-plate woud carry one half of the axial load and half the beam-plate 

has one eighth of the moment of inertia of whole beam). 

4.3 SYMMETRIC DELAMINATIONS WllH VARIOUS BOUNDARY CONDITIONS 

In this section beams with clamped-pinned and clamped-free boundary 

conditions and also beams with elastic boundary conditions are discussed. 

Since the boundary conditions are now nonsymmetric, the whole beam must 

be modeled. In this and the following section the results are obtained by 

modeling regions 1, 2, 3, and 4 (see Figure 1) by 1, 2, 2, and 1 or a total of 6 

elements respectively. Figures 10 and 11 show the variation of critical load 

versus delamination length for clamped-pinned and clamped-free beams 

respectively. The same general trends are observed; however, in Figure 10 
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the curve for 7 = 0.5 drops below the curve for 7 = 0.2, whereas the curves 

did not cross in the previous cases. In Figure 10 it is observed that the 

clamped-free beams are less affected by the delaminations than all previous 

cases. In fact, for ~ = 0.5 and ~ = 0.2 even with a delamination extending 

along 95 percent of the beam, the buckling load is still approximately 65 

percent of the buckling load for the same beam with no delaminations. 

Next, dimensionless critical load versus dimensionless delamination length 

plots are shown in Figures 12 through 15 for beams with elastic supports. The 

elastic supports considered here are two extensional springs resisting the 

vertical motion at each end of the beam and two rotational springs resisting 

the rotation of the beam at each end. A representative case of 7 = 0.3 is 

· · El chosen. The extensional spring constant is a which varies from .1 L3 to 

100 ~~ . The rotational spring constant is p, and it varies from .1 ~ to 

100 El 
L 

Each of Figures 12 through 15 show dimensionless critical load versus 

dimensionless delamination length for 7 = 0.3 for one value of a and four 

different values of p. The critical loads are normalized by the critical load of 

a perfect beam with no delamination and the same boundary conditions. In 

the figures a is multiplied by ~/ and p by ~;. Note that the critical load of 

an undelaminated beam changes when a and p change. Critical loads for 

beams without delaminations (used for nondimensionalization) having 

different a's and P's are provided in Table 1. 
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Table 1: Buckling Loads (Pcf Z~) for Elastically-supported Beams without Delaminations 

a 
.1 1 10 100 

/3 

.1 0.247 0.697 5.196 10.268 

1 1.757 2.205 6.682 13.496 

10 6.551 7.361 11.44 28.207 

100 9.530 9.901 13.59 38.055 

so 



It is observed from the figures that in general the buckling loads for the 

elastically-supported beams are less affected by the presence of delaminations 

than the beams with the fixed supports, especially when a and p are small. 

The reason is that for small values of a and p, the buckling loads for the beams 

with no delamination are small and global buckling occurs first before local 

buckling of the delaminated regions occurs. In fact, except for Figure 15 in 

which a = 100.EL., the critical loads are virtually unaffected for small values L3 
of p. As P increases, the buckling loads begin to drop off more and more 

especially for the larger delamination lengths. 

4.4 NONSYMMETRIC DELAMINATIONS 

The effect of off-center delaminations (with respect to length) was also studied. 

In this case region 1 is modeled by 1 element, regions 2 and 3 by 2 elements 

each, and region 4 by 3 elements (it is much longer in certain cases). Hence, 

a total of 8 elements is used to analyze a given beam. 

The variation of dimensionless critical load for various delamination locations 

and heights is shown in Table 2 for clamped-clamped beams and in Table 3 for 

pinned-pinned beams. The normalized delamination length in all cases is 

~ = 0.2 . Results obtained by Simitses et al. [5] are also presented in the 

table for comparison. The most important observation from these two tables 

is that the buckling loads do not vary significantly with respect to delamination 

location along the length of the beams. The buckling loads obtained in the 
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p 
Table 2: -per for Clamped-Clamped Beams with Nonsymmetric Delaminations, ~ = .2 

cp · L 

j_ = 00 L . -t- = 0.1 

h s T s t 

0.05 .0625 .0633 .0625 

0.10 .2497 .2530 .2497 

0.20 .9328 .9406 .9480 

0.30 .9557 .9618 .9142 

0.40 .9248 .9301 .8652 

0.50 .9051 .9100 .8405 

S: Simitses, Sallam, and Yin 
T: This study 

T 

.0633 

.2530 

.9530 

.9176 

.8680 

.8431 

j_ = 0 2 L . j_ = 03 L . j_ = 04 L . 

s T s T s T 

.0625 .0633 .0625 .0633 .0625 .0633 

.2496 .2529 .2496 .2528 .2494 .2528 

.9455 .9500 .9309 .9377 .9264 .9339 

.9195 .9219 .9613 .9684 .9924 .9972 

.8768 .8789 .9402 .9433 .9950 .9998 

.8555 .8574 .9277 .9307 .9955 .9999 
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p 
Table 3: P;~ for Pinned-Pinned Beams with Non symmetric Delaminations, ~ = .2 

+= 0.0 + = 0.1 

h s T s T 
0.05 .2499 .2532 .2699 

0.10 ·.9882 .9923 .9814 

0.20 .9890 .9899 .9919 

0.30 .9797 .9830 .9851 

0.40 .9690 .9696 .9772 

0.50 .9637 .9642 .9732 

S: Simitses, Sallam, and Yin 
T: This study 

T 

.2532 

.9864 

.9922 

.9854 

.9775 

.9736 

+ = 0.2 { = 0.3 ~ = 0.4 

s T s T s T 

.2699 .2532 .2499 .2532 .2499 .2532 

.9764 .9817 .9733 .9788 .9723 .9782 

.9954 .9956 .9983 .9985 .9994 .9999 

.9918 .9920 .9975 .9977 .9996 .9999 

.9875 .9877 .9962 .9964 .9997 .9999 

.9853 .9655 .9956 .9958 .9997 .9999 
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unsymmetric cases are very close to the buckling loads obtained in the 

symmetric case (T = 0.4). A comparison with results given by Simitses et al. 

[5] shows that the finite element results are in excellent agreement with the 

analytical results. 
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4.5 MULTIPLE DELAMINATIONS 

Beams with more than one delamination are now considered. The problem in 

this section involves beams with two delaminations of the same length, one 

located directly above the other. The geometry of this problem is shown in 

Figure 16: the dimensions Hand hare the same as before and m is the height 

of the center delaminated region, so the third dimension depends on the first 

two. The beams with two delaminations are compared to the same beams with 

only one delamination: the one that gives the thinnest delamination region (the 

most critical case). 

For beams with two delaminations it is found that the stability of the beam in 

compression depends greatly on the thinnest delaminated region, especially 

when one delaminated region is much thinner than the other two. In this case, 

the critical load versus delamination length curve is very similar to the curve 

for a beam having just the one thi.n delamination. For example, if a beam with 

two delaminations has dimensions of ~ = 0.2 and 7 = 0.4, then the 

delaminated regions have dimensionless thicknesses of 0.2, 0.4, and 0.4. The 

critical loads are then almost identical to those of a beam with one 

delamination at ~ = 0.2 . On the other hand, when the delaminated regions 

have approximately the same heights, the buckling loads drop below those of 

the corresponding beams having only the thinner delamination. 
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Graphs comparing the critical buckling load versus delamination length for 

beams with one and two delaminations are given in Figures 17-20, and they 

demonstrate all of the effects previously discussed. Four different curves for 

pinned-pinned beams are shown in Figure 17. The first case considered is a 

beam with two delaminations with ~ = 0.2 and 7 = 0.4 (therefore 

7 = 0.4) which is compared to a beam with one delamination at 4- = 0.2 . 

The top delaminated region is very thin compared to the other regions so 

buckling depends strongly on the buckling of this region. Therefore, as 

expected, the buckling loads are almost the same as those for the beam with 

one delamination at ~ = 0.2 . The next case in the same figure shows results 

similar to those of the first case; however, two of the delaminated regions of 

the beam with two delaminations are closer together (0.25 and 0.3). For this 

reason the buckling loads do not depend strictly on the failure of the thinnest 

region. Between ~ = 0.3 and ~ = 0.6, the beam with two delaminations is 

slightly less stable than the corresponding beam with one delamination at 

h T = 0.25. Still the second delamination has a very small affect on the 

buckling load. 

All the same curves as in Figure 17 are shown in Figure 18 for 

clamped-clamped boundary conditions. The results are similar: the first case 

of the beam with two delaminations having one delaminated region much 

thinner (0.2, 0.4, 0.4) is the same as the corresponding beam having just the 

thinner delamination. In the second case the buckling loads are similar except 
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Figure 18: Dimensionless critical load vs. dimensionless delamination length for clamped-
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Figure 19: Dimensionless critical load vs. dimensionless delamination length for pinned-
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Figure 20: Dimensionless critical load vs. dimensionless delamination length for clamped-
clamped beams with one and two delaminations and ~ = .5 
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for the region between ~ = 0.2 and ~ = 0.3 where the beam with two 

delaminations is slightly weaker. 

Figures 19 and 20 are provided to show what happens when all the 

delaminated regions have approximately equal heights. In these cases the 

second delamination has a significant effect. Dimensionless buckling loads 

are shown in Figure 20 for pinned-pinned beams with regions of 0.33, 0.33, and 

0.34 in the first case, and 0.30, 0.30, and 0.40 in the second case. These beams 

are compared with a beam with one delamination at 0.33 and a beam with one 

delamination at 0.30 . The beams with two delaminations are obviously much 

weaker with differences of as much as 35 percent near ~ = 0.55 . The curves 

a begin to come together as T approaches 1. 

Results for beams with the same dimensions but with clamped-clamped 

boundary conditions are provided in Figure 20. Here, the beams with two 
a -

delaminations are much weaker in all cases from T = 0.2 all the way to 

~ = 1.0, especially between ~ = 0.3 and ~ = 0.5. 

4.6 CONCLUSIONS ON LINEAR BUCKLING RESULTS 

In obtaining the results for the simple cases of the pinned-pinned and 

clamped-clamped beams, the linear approximation for the axial displacement 

and the cubic approximation for the transverse displacement were used, and 

the minimum number of elements was used. These approximations were 
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found to be sufficient as the results agreed almost exactly with the analytical 

results of Simitses et al. [5] (analytical results were done only for these simple 

cases). The finite element method can easily handle various boundary 

conditions as was shown in Section 4.3. 

For the nonsymmetric problem in Section 4.4, more elements were needed for 

cases when element length differences were large. The number of elements 

used to model the four different regions was chosen such that all the element 

lengths were approximately equal. However, it is obvious from Tables 1 and 

2 that the buckling loads are only slightly affected by the location with respect 

to length of the delarnination. In fact, unless a very high degree of accuracy 

is required, centering the delamination and performing a symmetric analysis 

(fewer elements required) provides a very accurate solution. 

The solution of problems with two delaminations (Section 4.5) can also be 

made simpler and more efficient in most cases. As discussed previously, the 

buckling load is hardly affected by the second delamination unless all the 

delamination heights are very close together (see Figures 17-20). If one 

delamination height is small (smallest height of approximately ~ = 0.25 or 

less), an accurate buckling load may be obtained by doing the problem as if 

only the thinner delamination existed. Hence, the problem is greatly simplified 

and requires fewer elements. Analagous results are obtained for beams 

having more than two delaminations. 
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Chapter 5. Postbuckling and Energy Release Rate 

Results 

5.1 OVERVIEW 

In this chapter the nonlinear postbuckling and energy release rate results are 

presented using the methods previously discussed. In Section 5.2 a 

convergence study is performed for the incremental solution and results for 

several cases are compared to the analytical results of Yin, Sallam, and 

Simitses [6]. In the next section the effects of the delamination are studied by 

comparing the response of beams with and without delaminations on load-end 

shortening and load-deflection plots. In Section 5.4 the more economical 

constant mode shape analysis is used to find energy release rates, and the 

results are compared to the results obtained using the incremental method. 

Next, results on energy release rates for beams with various boundary 

conditions are given in Section 5.5. In Section 5.6 the effects of nonsymmetric 
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delaminations on the energy release rate are considered. Finally, conclusions 

on the different types of methods are given in Section 5.7. 

5.2 INCREMENTAL METHOD 

In this section a convergence study is performed for the incremental method 

to determine the number of elements which is best for accuracy and efficiency. 

These results are compared to the analytical results of Yin et al [6]. Next, 

inremental results are obtained for some additional clamped-clamped cases 

and compared to the analytical results. The representative beams having 

delamination heights of ~ = 0.3 (thick delamination) and ~ = 0.1 (thin 

delamination) are chosen. The analytical results are given only for 

clamped-clamped beam-plates. 

A diagram showing the applied loads is given in Figure 21: the load applied 

to the region above the delamination is Or and the load applied to the region 

below the delamination is 0 8 . The purpose of these two loads is only to initiate 

bending, and it was found that as long as these loads are very small, changing 

their magnitudes slightly does not effect the solution. Therefore, for 

consistency, the values of the transverse loads applied in all cases in this 

chapter are 0 8 = - 0.0001Pcp and Or = 0.0001Pcp. 0 8 is negative and Or is 

positive because in all cases considered in this chapter, the bottom region 

deflects downwards and the top region deflects upwards in the postbuckling 

region. 
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The convergence study for the incremental method for ~ = 0.3 and ~ = 0.5 

is shown in Figure 22. Dimensionless axial load, P, is plotted versus 

dimensionless energy release rate, G, for the incremental solution with three 

different numbers of elements, and these curves are compared with the 

analytical solution of Yin et al [6]. The axial load is nondimensionalized by 

(5.1) 

which is again the critical load for the same beam with no delaminations. The 

dimensionless buckling load for the case of ~ = 0.3 and ~ = 0.5 found in 

Chapter 4 is 9.35. The equation for the dimensionless energy release rate 

which is used in all cases is 

G = _Q_(-~-l 
Ets 2 

(5.2) 

G is extremely small before the critical P is reached and G increases 

monotonically at the critical P. The P versus G curves start at the respective 

buckling loads in all plots of P versus G . All of the curves in Figure 22 are 

nearly coincident near the buckling load and begin to diverge for larger values 

of P. As more elements are added, the finite element solution begins to 

converge towards the analytical solution. It can be seen from Figure 22 that 
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Figure 22: Dimensionless axial load vs. dimensionless energy release rate using incre-

mental method for clamped-clamped beams with ~ = .3 and ~ = .5 
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the 16-element solution is very close to the analytical solution. Hereafter, this 

16-element solution is used for all cases of lf = 0.3. 

Next, a convergence test for ~ = 0.1 is performed and the results are shown 

in Figure 23. The dimensionless buckling load is 0.04 for the case of ~ = 0.1 

a and T = 0.5. As in Figure 22, all the solutions are nearly identical near the 

buckling load. The finite element solutions approach the analytical solution 

as the number of elements is increased from 6 to 10. However, the finite 

element solutions begin to diverge when the number of elements is increased 

beyond 10. Apparently, numerical difficulties exist for very thin delaminations. 

Since the 10-element solution is the most accurate compared to the analytical 

solution, it is used for all cases of ~ = 0.1 in the remainder of the thesis. 

Next, additional finite element energy release rate results for more cases of 

clamped-clamped delaminated beam-plates are compared to the analytical 

results. Note, this simple boundary condition case is the only one which can 

be compared since the analytical results were only provided for this case. 

Finite element results for other various boundary conditions are also given in 

this chapter. Dimensionless axial load versus dimensionless energy release 

rate is plotted in Figure 24 for clamped-clamped delaminated beams with 

lf = 0.3 with dimensionless delamination lengths of 0.4 and 0.6. The finite 

element solution agrees very well with the analytical results for loads near 

buckling. The finite element curves gradually rise above the analytical curves, 

but in each of the two cases the two different solutions remain close together. 
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the same plots are shown in Figure 25 for the thinner delamination of 

~ = 0.1 and for dimensionless crack lengths of ~ = 0.3 and 0.4. In the 

thinner delamination case, the axial load increases rapidly with energy release 

rate. The finite element curves nearly coincide with the analytical curves 

throughout the range of axial loads considered. Some load versus 

displacement diagrams will be given in the next section to show the effects of 

the delaminations. 

5.3 COMPARISON OF DELAMINATED BEAMS WITH AND WITHOUT 

DELAMINATIONS 

In this section the effect of a single delamination with length.~ = 0.5 on the 

postbuckling strength of the beam-plate is discussed. Two delamination 

thicknesses for the beam-plate are considered, ~ = 0.1 and ~ = 0.3. The 

strengths of the delaminated beam-plates are compared to the strengths of an 

undelaminated beam-plate which was modeled using five. elements. The 

results for the undelaminated beam were obtained using one transverse load 

with magnitude of 0.0002Pcp which was applied downwards at the midlength 

in order to initiate bending of the undelaminated beam. In the graphs the 

equation for the dimensionless axial displacement, u, is 

(5.3) 
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Also, the boundary conditions are clamped-clamped, and T stands for top 

(Region 3) and B stands for bottom (Region 2). 

The load"'deflection plot for an undelaminated beam-plate and a delaminated 

beam-plate with ~ = 0.3 and ~ = 0.5 is shown in Figure 26. In the figures 

perfect refers to a beam-plate with no delaminations. The undelaminated 

beam shows very little displacement until P is close to unity where the beam 

buckles and the displacement increases rapidly. Thus, P = 1 is the strength 

of the undelaminated beam-plate. On the other hand, the stability of the 

delaminated beam-plate is greatly reduced by the delamination as buckling 

occurs at much lower P. The dimensionless linear buckling load calculated in 

Chapter 4 for this case was 0.35 and this corresponds to local buckling of the 

thinner (top) region as seen in the figure. After P = 0.35 the postbuckling 

response of the thicker (bottom) region is much stiffer than the thin region. 

When the load reaches approximately P = 0.50 the bottom region begins to 
~ 

substantially soften such that excessive displacements occur at P = 0.71. 

Thus, P = 0.71 is the strength of the delaminated beam-plate with ~ = 0.3. 

Next the load-deflection plot is shown in Figure 27 for the case of the thin 

delamination where ~ = 0.1. In this case local buckling occurs in the top 

region at the very small load of P = 0.04 (the dimensionless linear buckling 

load). However, the region below the delamination with dimensionless 

thickness of 7 = 0.9 is sufficiently thick to be buckling resistant at P = 0.04. 
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This bottom region begins to buckle near P = 0.40 and the beam-plate does 

not exhibit excessive displacements until P = 0.89 (the postbuckling strength). 

The load-end shortening curves for the undelaminated beam, for a beam with 

a delamination at lf = 0.1, and for a beam with a delamination at ~ = 0.3 are 

shown in Figure 28. The slope of the curve for the undelaminated beam is 

linear up to about P = 1.0 where the beam begins to buckle. The slopes of the 

curves for the two delaminated beam-plates both remain approximately linear 

up to about P = 0.45. As was evident in the load-deflection diagrams, the 

beam-plate with ~ = 0.3 has a strength P = 0.71 whereas the beam-plate with 

~ = 0.1 delamination has a strength P = 0.89. The beam-plate with 

~ = 0.1 is stronger than the beam-plate with ~ = 0.3 because the region 

below the delamination is thicker and it can carry higher loads after the top 

region buckles. Thus, although the linear buckling load increases as ~ 

increases from 0.1 to 0.3, the postbuckling strength decreases, and the 

strength decreases nearly in proportion to ~ . 

5.4 CONSTANT MODE SHAPE METHOD 

As mentioned previously, the incremental method used in the previous two 

sections is expensive. In this section postbuckling and energy release rate 

results using the less expensive constant mode shape method are presented. 

First, a convergence study is performed and then additional cases are 

compared to the results obtained using the incremental solution. Again, this 
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method involves the assumption that the buckling mode shape remains 

constant; therefore, it is expected to provide accurate results only for small 

displacements in the postbuckling range. However, this method involves no 

iterations and hence is much more economical compared to the 

incremental/iterative approach. 

In Figures 29 and 3a nondimensional axial load versus nondimensional energy 

release rate is plotted for clamped-clamped beams with ~ = a.s and 

delaminated regions of ~· = a.3 (Figure 29) and ~ = a.1 (Figure 3a). The 

6-element and 10-element constant mode shape solutions are plotted along 

with the incremental solution (using 16 elements in Figure 29 and 10 elements 

in Figure 3a). In Figure 29, upon comparing the 6-element solution with the 

1 a-element solution, it is seen that the two curves are almost coincidental. In 

Figure 3a, the 1 a-element solution gives slightly higher values for the energy 

release rate than the 6-elememt solution, but the curves are very close 

together. Hence, the 6-element solution is used in all cases for the constant 

mode shape solution. As expected, the constant mode shape solution agrees 

well with the incremental solution for values of P near buckling and not as well 

for the higher axial loads. The incremental solution.must be used in the higher 

load region to obtain accurate energy release rates. 

Next, P versus f is plotted using the constant mode shape assumption for the 

two representative cases of thick and thin delaminations. 8 is the amplitude of 

the mode shape; therefore it is also equal to the transverse displacement at 
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the midlength of Region 3 since this is the largest displacement in the buckling 

mode. In the constant mode shape procedure all displacements increase 

proportionally to 8. The two curves for the thick and thin delaminations are 

shown in Figure 31. Both curves start out level at the respective buckling 

loads and then increase rapidly with P. The curve for .lf = 0.1 has a larger 

slope because the delaminated region is thin, so the axial displacement in this 

region increases very quickly with increasing axial load. Additional results 

obtained using this method as well as the incremental procedure for 

beam-plates with various boundary conditions are given in the next section. 

5.5 VARIOUS BOUNDARY CONDITIONS 

In this section the energy release rates for beam-plates with different types of 

boundary conditions are calculated. Energy release rate results are provided 

for pinned-pinned beams using both the incremental method and the constant 

mode shape method (analytical results were only provided for 

clamped-clamped beams). Next, beams with pinned-clamped boundary 

conditions are studied, and this section concludes with energy release rate 

results for beam-plates with elastic end conditions. 

A graph of P versus G for pinned-pinned beams with a delamination height 

of ~ = 0.1 is shown in Figure 32. Incremental and constant mode shape 

curves are shown for two different cases of ~ = 0.40 and ~ = 0.60. For the 
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pinned-pinned cases, P is nondimensionalized by the critical load of a 

pinned-pinned beam with no delaminations: 

(5.4) 

The energy release rate is nondimensionalized as before. Again, the solutions 

for the two different methods agree only in the small displacement range. The 

two incremental solutions begin to flatten at about P = 0.7, whereas the 

constant mode shape solutions continue to rise rapidly. 

The next plot, Figure 33, is for pinned-clamped beams with the the same 

delamination height of 7 = 0.1, and here, nondimensionalization for Pis. 

- PL 2 
p = 20.19£/ (5.5) 

In this case the constant mode shape solutions agree well with the incremental 

solutions for both dimensionless crack lengths of ~ = 0.4 and ~ = 0.6 up to 

a load of approximately P = 0.65. The incremental energy release rates are 

lower for ~ = 0.6 than for ~ = 0.4 for all values of incremental loads. 

The next type of boundary conditions to be covered in this section is elastic 

end conditions. Again, the axial load is nondimensionalized by the buckling 

load of a perfect beam with the same end conditions (see Table 1). Results are 

given in Figure 34 for an elastically-supported beam with spring constants of 

a = 100 ~~ and p = 10 ~ and the dimensionless delamination height is 
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~ = 0.3 . Both solutions are given for P versus G for two different 

delamination lengths. The differences between the constant mode shape 

solutions and the incremental solutions are very small until P = 0.6. The 

energy release rates obtained from the incremental solution are greater than 

those obtained from the constant mode shape solution for axial loads far into 

the postbuckling range. 

5.6 NONSYMMETRIC DELAMINATIONS 

Beams with delaminations which are not centered with respect to the length 

of the beam will now be considered. In order to study the effect of off-center 

delaminations on the energy release rate, P versus G is plotted for 

clamped-clamped beams with ~ = 0.5 for two different delamination locations 

(see Figure 2 for geometry). Figure 35 is for a delamination height of 

-'f- = 0.3, and Figure 36 for -'f- = 0.1. In all cases curves are given for the 

constant mode shape solution and the incremental/iterative solution. The 

three different dimensionless delamination locations are T = 0.15, 0.20, and 

0.25. Since th~ dimensionless crack length is 0.50, T = 0.25 represents a 

symmetric delamination. 

In Figure 35 the constant mode shape solutions indicate that delamination 

location has no effect since these solutions are the same for all three 

delamination locations. The three incremental solutions are the same near 

buckling, but there are small differences at the higher axial loads: the energy 
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release rates become slightly lower as the delamination is moved from the 

center of the beam. Also, the global buckling loads become slightly lower. 

In Figure 36, where ~ = 0.1, the three constant mode shape curves are again 

almost identical. On the other hand, the incremental solutions for the two 

nonsymmetrically delaminated beam-plates are drastically different from the 

incremental solution for the symmetric delamination. After P reaches 0.7 the 

energy release rates are much lower in the nonsymmetric cases. These 

energy release rates drop off because as the delamination is moved further 

and further to one side of the beam-plate, the undelaminated region on the 

opposite side becomes longer and longer and buckling occurs in this region 

for the unsymmetric cases with ~ = 0. 1. The stress field at the crack tip then 

changes and hence the energy release rate changes. Note that crack growth 

would occur in the unsymmetric cases before it would occur in the symmetric 

cases because the energy release rates are higher for the same axial load; 

therefore, the critical energy release rate would be reached sooner than in the 

symmetric delamination case. These effects of nonsymmetric delaminations 

cannot be predicted by the constant mode shape method since the mode 

shape (except for changing in amplitude) remains constant after buckling. 

5.7 CONCUSIONS 

For the constant mode shape procedure the simple 6-element model is 

recommended since adding more elements did not change the energy release 

Chapter 5. Postbuckling and Energy Release Rate Results 90 



lo... 

1. 0 

0.8 

0.6 

0.4 

0.2 

0.0 
1E-4 lE-3 lE-2 

G 

LEGEND e e $ CMS, I /L=. 15 
6 6 6 CMS, 1/L=.20 
e e e CMS, 1/L=.25 

lE-1 lE-0 

a a a INC, l/L=. 15 
e e • INC, l/L=.20 
G G G I NC, I /L=. 25 

Figure 36: Dimensionless axial load vs. dimensionless energy release rate using incre-
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rates calculated by this method. For the incremental solution the 16-element 

solution is recommended for the thicker delamination, ~ = 0.3, and the 

10-element solution is recommended for the thinner delamination, ~ = 0.1. 

There were some convergence problems for the thin delamination cases; 

however, the 10-element element solution provided results which compared 

very well to the analytical results of Yin et al [6] for several different values of 

delamination length. 

The load versus dispacement diagrams given in Section 5.3 show that the 

strengths of beam-plates are significantly affected by the presence of a 

delamination. Local buckling occurs in the delaminated beam-plates at small 

loads especially for thin delaminations. It was found that the postbuckling 

strength of the delaminated beam-plate relative to the strength of the 

h undelaminated beam-plate decreased almost in proprtion to t . Besides 

failure by excessive displacements during postbuckling, delaminated 

beam-plates can fail if the critical energy release rate is reached and crack 

growth occurs. 

Each of the two different solution procedures has its own advantages for 

finding the postbuckling solution and then the energy release rate. The 

incremental procedure allows for changing mode shape and it provides 

accurate results for P versus G at all values of axial load. The results agree 

very well with the previous analytical solutions which were done only for 

simple cases. Also, the incremental procedure can predict differences in 
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energy release rates caused by moving the delamination away from the center 

(nonsymmetric delaminations) as was shown in Section 5.5. However, using 

the incremental load method along with the Newton-Raphson technique is 

iterative and requires a great deal of operations and computer time; hence, the 

constant mode shape method was formulated. This procedure is a much more 

economical technique which takes a small fraction of the computer time of the 

incremental procedure. It provides a good first approximation for the energy 

release rates and is also accurate at loads just beyond the buckling load. It 

is not as effective at the higher loads because of the inherent assumption that 

the buckling mode shape remains constant, and the mode shape does in fact 

change in this region. Another significant disadvantage of the constant mode 

shape method is that it cannot be used to predict global buckling loads of 

delaminated beam-plates. In the final chapter the incremental procedure is 

used in conjunction with a numerical differention technique in order to obtain 

resu.lts for beams with multiple delaminations. 
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Chapter 6. Multiple Delaminations 

6.1 OVERVIEW 

In this chapter a numerical differentiation technique is provided for finding the 

energy release rates of beams with more than one delamination. It is assumed 

that all the delaminations grow the same amount and that the total energy 

release rate is being calculated. The algebraic expression used before is 

invalid for this problem. Consequently, a numerical differentiation method is 

employed which is described in Section 6.2. First, results obtained using the 

numerical method are tested with incremental results for beam-plates with one 

delamination in Section 6.3. The numerical differentiation method is then 

employed to find energy release rates for beam-plates with two delaminations. 

The final section contains conclusions on the numerical differentiation method. 
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6.2 NUMERICAL DIFFERENTIATION 

In this section a simple numerical differentiation technique is provided to find 

energy release rates for beams with multiple delaminations. The numerical 

formula for the energy release rate is 

G = !iU (6.1) 
!ia 

where U is the strain energy and a is the delamination length. The 

contributions of the transverse forces to the strain energy are negligible 

compared to the contribution of the axial load; hence, the strain energy is 

easily calculated from 

(6.2) 

where u1 is the end deflection at the point where the load is applied. In other 

words U equals the area under the load-end shortening diagram. 

Therefore, the steps used to obtain the energy release rate from numerical 

differentiation are as follows: 

1. Obtain the postbuckling solution curve P versus u for two different crack 

lengths. 

2. Compute the strain energies by finding the areas under the curves up to 

certain values of u using Simpson's Rule. 
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3. Subtract the areas under one curve from the areas under the second curve 

to get !J.U and divide by the difference in crack length (!J.a). 

Hence G is found using Equation 6.1. 

6.3 RESULTS USING NUMERICAL DIFFERRENTIATION 

Before numerical differentiation is employed to find results for multiple 

delaminations, the technique is tested using a beam-plate with one 

delamination. The effect of using different !J.a's is also considered in this test 

case. For a beam-plate with one delamination energy release rate results may 

be obtained using numerical differentiation and then compared to the 

incremental results (where the expression given by Yin and Wang [7] may also 

be used to calculate the energy release rate). The incremental solution must 

be used to find the load versus displacement diagram because assuming a 

constant mode shape will not provide accurate results for the axial 

displacement. 

The test case to be compared is a clamped-clamped beam with 7 = 0.3 and 

~ = 0.5. The incremental solution P versus IT for six different dimensionless 

crack lengths is shown in Figure 37. Using these curves the energy release 

rate is obtained for three different !J.a's using central differences. It is 

observed from the figure that in the postbuckling range (local buckling occurs 

at approximately P = 0.35), the larger the crack length, the larger the axial 
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deformation for the same load because of the loss of stiffness associated with 

longer cracks. 

11U is now calculated by integrating up certain values of u and finding the 

difference in the areas under the two curves. Then G may be calculated by 

dividing 11U by .1a. The energy release rates are compared in Figure 38 with 

the incremental solution for ~ = 0.5 and ~ = 0.3. The three curves obtained 

using numerical differentiation are all almost identical to each other and are 

also very close to the incremental solution. The middle value of ~a = 0.02 

is chosen for use in all of the following cases of beam-plates with two 

delaminations. 

The numerical differentiation technique has provided results which match the 

incremental solution very closely and do not depend on .1a near the chosen 

value of 0.02. Now the method is extended to beam-plates with two 

delaminations. The geometry for the beams with two delaminations is the 

same as in Chapter 4 (see Figure 16). The loading is the same as for the 

beam-plates with one delamination: Or = 0.0001Pcp is applied to the top 

delaminated region, and Q8 = - 0.0001Pcp is applied to the bottom 

delaminated region (no transverse load is applied to the center delaminated 

region). For each of the examples, the postbuckling solution using the 

incremental method is shown on the end shortening plot, followed by the load 

versus energy release rate curve calculated using the numerical differentiation 

formula. 
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The dimensionless load-end shortening curve is plotted in Figure 39 for a 

clamped-clamped beam with ~ = 0.1 and 7 = 0.6 (hence 7 = 0.3). The 

four different curves are for four different values of dimensionless 

delamination length. For beams with two delaminations the end displacement 

increases much more rapidly in the postbuckling range compared to the 

beams with one delamination because the beam-plate is significantly 

weakened in postbuckling by the second delamination. 

The energy release rates are calculated using central differences for ~ = 0.4 

using ~ = 0.39 and 0.41 and for ~ = 0.5 using ~ = 0.49 and 0.51. The 

results are shown in Figure 40: the two curves start out close together, 

separate, then converge again as the axial load is increased. The energy 

release rates are greater for the longer crack length than for the shorter crack 

length at a given load. 

The next case to be examined is a pinned-pinned beam with two delaminations 

at the same height locations of 4- = 0.1 and 7 = 0.6 (Figures 41 and 42). The 

displacements are much smaller than they were in the clamped-clamped case 

(compare Figures 39 and 41 ). This is because P reaches 1 at a load four times 

smaller than in the clamped-clamped case (the axial load is 

nondimensionalized by the critical load of an undelaminated beam which is 

four times smaller for a pinned-pinned beam). In Figure 41 the P versus u 
solutions for four different delamination lengths are shown. The results of the 

numer!cal differentiation for these cases are plotted in Figure 42. The energy 
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release rate curves for this case start out lower and rise more rapidly 

compared to the curves for the previous case of clamped-clamped 

beam-plates. 

Next, a clamped-clamped beam-plate with delamination heights of ~ = 0.2 

and 7 = 0.5 is considered. The postbuckling solution for axial load versus 

axial displacement at the point of the applied load is pl?tted in Figure 43. All 

four curves are approximately linear up to about P = 0.32 after which they 

become highly nonlinear. The energy release rates for this case, shown in 

Figure 44, increase very rapidly with increasing axial load; hence, the 

possibility of delamination growth is high even at small axial loads. 

The final case which is studied is a clamped-clamped beam-plate with 

delamination heights of ~ = 0.1, 7 = 0.5, and 7 = 0.4. Here, the load 

versus displacement curves remain approximately linear and then become 

slightly nonlinear just before failure due to excessive displacement in 

postbuckling. Although it is not evident in Figure 45, numerical solutions for 

small load increments beyond the last points on the curves could not be found. 

This implies very large displacements or failure of the beam. The global 

buckling load is reached very suddenly possibly because the thickest 

delaminated region is in the center in this case: this thick region stabilizes the 

beam-plate and When this region buckles the postbuckling strength is 

immediately lost. The results for the energy release rates are shown in Figure 
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46. Again, the longer crack exhibits greater energy release rates than the 

shorter crack at a given load. 

6.4 CONCLUSIONS 

The numerical differentiation technique is an excellent method for finding 

energy release rates in delaminated beam-plates. The postbuckling solution 

of the applied load versus the end displacement is all that is needed to find the 

energy release rate. The same results were obtained using three different 

~a's in the range of 0.01 to 0.03 for the test case, and these results agreed well 

with the incremental solutions; therefore, any ~a in this range may be chosen. 

In this chapter finite element numerical differentiation results were provided 

for beam-plates with one and two delaminations. The numerical differentiation 

method may also be extended to handle beams with three or more 

delaminations. 
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Chapter 7. Final Remarks and Recommendations 

7.1 FINAL REMARKS 

For the linear bifurcatio.n buckling analysis, an extremely simple, efficient, and 

versatile finite element model to determine the critical buckling load of a 

delaminated beam-plate has beem demonstrated. This method can easily 

handle symmetric, unsymmetric, and multiple delaminations and also various 

boundary conditions. 

For the postbuckling analysis, two methods of solution were used: the 

incremental method and the constant mode shape method. The constant 

mode shape method is very inexpensive compared to the incremental method 

and is recommended for use in the small displacement range of the 

postbuckling solution. For greater accuracy in the larger displacement range, 

and for finding global buckling loads, the incremental/iterative finite element 
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procedure (although expensive) provides a very accurate postbuckling 

solution. 

The energy release rates for beams with one delamination were calculated 

using the algebraic expression provided by Yin and Wang [7]. However, for 

beams with more than one delamination, this expression cannot be used; 

hence, the numerical differentiation method was introduced. This method is 

also simple and versatile and can handle beams with any number of 

delaminations. 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

This study was done for isotropic materials with geometric nonlinearities only, 

neglecting shear effects. This work may be extended to include laminated 

composite materials, shear effects, material nonlinearities, and dynamic 

loadings. The laminated composites may be analyzed by employing the 20 

degree-of-freedom beam element of Kapania and Raciti [26) which is also 

capable of including shear effects. Material nonlinearities may also be 

significant for certain loadings, and, finally, transient loads which can change 

the crack geometry may also be considered. 

It would be informative to investigate the failure load of the beam-plate as a 

function of ~ and ~ . Assuming a linear elastic material, two modes of failure 

are likely: either a failure by excessive displacement in postbuckling, or a 
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failure due to crack propagation because the critical strain energy release rate 

is exceeded. 

Also, the energy release rate for beams with two delaminations was calculated 

assuming the growth of both cracks were equal. However, the stresses at 

different crack tips are unlikely to be the same in most cases, causing only one 

of the delaminations to grow. The numerical differentiation technique in 

Chapter 6 may be extended to handle this problem. 
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Appendix 1: Constant Mode Shape Program 

This appendix will contai.n the constant mode shape finite element program. 

Input and output files are given for the example of a delaminated · 

clamped-clamped beam-plate with ~ = 0.5 and ~ = 0.1. Six elements are 

used. First the linear buckling load and the axial load versus energy release 

rate curve is found using the constant mode shape program. The input file, the 

constant mode shape program, and the output are shown below. 
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INPUT FOR CONSTANT MODE SHAPE PROGRAM 

0.1 
1,2, 1 
50.,100.,50. 
0.,0.,0. 
5 
2 
3 
28 
29 
30 

- HEIGHT OF DELAMINATION 
- NUMBER OF ELEMENTS OF DIFFERENT REGIONS 

- LENGTH OF DIFFERENT REGIONS 
- ALPHA, BET A, GAMMA 
- NUMBER OF BOUNDARY CONDITIONS 
- RESTRAINED DEGREE OF FREEDOM 
- RESTRAINED DEGREE OF FREEDOM 
- RESTRAINED DEGREE OF FREEDOM 
- RESTRAINED DEGREE OF FREEDOM 
- RESTRAINED DEGREE OF FREEDOM 
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C**************"'****************************·*******"'******************* 
C THIS IS A FINITE ELEMENT PROGRAM FOR THE NONLINEAR 
C ANALYSIS OF DELAMINATED BEAM-PLATES. 
C THIS PROGRAM CALCULATES THE BUCKLING LOAD AND THE ENERGY 
C RELEASE RATES ASSUMING THE BUCKLING MODE SHAPE REMAINS 
C CONSTANT. 
C IT HANDLES BEAMS WITH VARIOUS BOUNDARY CONDITIONS 
C INCLUDING BEAMS WITH ELASTIC SUPPORTS, BEAMS ON ELASTIC 
C FOUNDATIONS, AND BEAMS WITH NONSYMMETRIC DELAMINATIONS. 
C BY: DAVID R. WOLFE 
C**********·************************************************************ 

c 

IMPLICIT REAL*8 (A-H,0-Z) 
REAL*8 LL(4),IN(4) 
REAL*8 H(4),K(6,6),G(6,6),KU(50,50),GU(50,50),T(50,50), 

1TT(50,50),K1T(50,50),G1T(50,50),KT(50,50),GT(50,50),KR1(1500), 
2GR1(1500),KR(50,50),GR(50,50),FREQ(50),RMODE(50,50),WKAREA(50), 
3A( 4),B( 4),RM(50), RM 1 ( 50),N N1 (6,6),NN2(6,6),NU1 (50,50),NU2(50,50), 
4NUR1(.50,50),NUR2(50,50),NU1T(50,50),NU2T(50,50),N1T(50,50), 
5N2T(50,50),KTOT(50,50),F(50),MS,KUU1(500),KUU(25,25),UU(30), 
6KWW1(1000),NWW(1000),KWW(50,50),NWW2(50,50),NUW(750),NUW1(25,50), 
7QU(25),QW(50),KINV(25,25),NWU1 (50,25),QW1(50,1),A 1(50, 1),B8(25), 
8AA(1, 1),B2(25, 1),B3(25, 1),B4(50, 1),BB(1, 1),CL(50, 1),CC(1, 1), 
9F0(50, 1),D1(25, 1),D2(50, 1),DD(1, 1),QWT(1,50),QL(25),QB(50), 
1K11 (6,6),K33(37,37),N111(6,6),N211 (6,6),N133(41,41),N233(37,37), 
2C(6,6) 
DIMENSION NBC(10),IL(4),MUBC(5),MWBC(5) 

C HB- HEIGHT OF DELAMINATION 
C N1 - NUMBER OF ELEMENTS OF REGION BEFORE DELAMINATION 
C N2 - NUMBER OF ELEMENTS OF REGION IN DE LAMINATION REGION 
C N3 - NUMBER OF ELEMENTS OF REGION AFTER DELAMINATION 
C RL 1 - LENGTH OF REGION BEFORE DELAMINATION 
C RL2 - LENGTH OF DELAMINATION REGION 
C RL3 - LENGTH OF REGION AFTER DELAMINATION 
C NNBC - TOTAL NUMBER OF ZERO DEGREES OF FREEDOM 
C NBC - VECTOR OF ZERO DEGREES OF FREEDOM 
C RL - TOTAL LENGTH 
C ALPHA - EXTENTIONAL SPRING CONSTANT 
C BET A - BENDING SPRING CONST ANT 
C GAMMA - ELASTIC FOUNDATION SPRING CONSTANT 
C TH - THICKNESS 
C NUDOF - DEGREES OF FREEDOM 
C PCP - CRITICAL LOAD OF PERFECT BEAM (DEFINE BELOW ON LINE 81) 
c 

READ(51, *)HB 
READ(51 ,*)N1 ,N2,N3 
READ(51, *)RL 1,RL2,RL3 
READ(51, *)ALPHA,BETA,GAMMA 
READ(51, *)NNBC 
DO 10I=1,NNBC 

READ(51,*)NBC(I) 
IF(NBC(l).GT.17) NBC(I) =NBC(l)-12 

10 CONTINUE 
NUDOF = 3*(N1+2*N2+N3)+12 
NA=(N1 +N2)*3+6 
NA1 =NA+1 
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NA6=NA+6 
TH =10. 
RL=200. 
E=30.D6 
IA=NUDOF-1 
IB=NUDOF 
LL(1) = RL 1/FLOAT(N1) 
LL(2) = RL2/FLOAT(N2) 
LL(3) = LL(2) 
LL(4) = RL3/FLOAT(N3) 
H(1) =TH 
H(2) = (1.-HB)*TH 
H(3) = HB*TH 
H(4) =TH 
DO 20 1=1,4 

IN(I) = H(l)**3/12. 
A(I) = H(l)*E/LL(I) 
B(I) = E*IN(l)/LL(l)**3 

20 CONTINUE 
GAM=GAMMA*E*IN(1)/RL**4 . 

c 
C*****MAKE SURE PCP IS CORRECT 
c 

PCP= DARCOS(-1.D0)**2*E*IN(1)/RL **2 + GAM*RL**2/3.14159**2 
c 
C*****FORM UNRESTRAINED MATRICES 
c 

DO 50 I= 1,NUDOF 
DO 50 J=1,NUDOF 

KU(l,J) =O. 
GU(l,J) =O. 

50 CONTINUE 
CALL MATR(1,K,G,C,A,B,LL,HB) 
DO 55 1=1,6 
DO 55 J=1,6 

K 11 (l;J) = K(l,J) 
55 CONTINUE 

N=O 
DO 70 M=1,N1 

DO 60I=1,6 
DO 60 J=1,6 

KU(I + N,J + N) = KU(I + N,J + N) + K(l,J) + GAM*C(l,J) 
GU(I + N,J + N) = GU(I + N,J + N) + G(l,J) 

60 CONTINUE 
N=N+3 

70 CONTINUE 
CALL MATR(2,K,G,C,A,B,LL,HB) 
DO 100IC=1,2 

N=N+3 
DO 90 M=1,N2 

DO 80 1=1,6 
DO 80 J =1,6 

KU(I + N,J + N) = KU(I + N,J + N) + K(l,J) +GAM*C(l,J) 
GU(I + N,J + N) = GU(I + N,J + N) + G(l,J) 

80 CONTINUE 
N=N+3 

Appendix 1: Constant Mode Shape Program 121 



90 CONTINUE 
CALL MATR(3,K,G,C,A,B,LL,HB) 
DO 951=1,6 
DO 95 J=1,6 

K33(1 + NA,J +NA)= K(l,J) 
95 CONTINUE 

100 CONTINUE 
CALL MATR(4,K,G,C,A,B,LL,HB) 
N=N+3 
DO 120 M=1,N3 

D01101=1,6 
D0110J=1,6 

KU(I + N,J + N) = KU(I + N,J + N) + K(l,J) + GAM*C(l,J) 
GU(I + N,J + N) = GU(I + N,J + N) + G(l,J) 

110 CONTINUE 
N=N+3 

120 CONTINUE 
c 
c····*ADD EXTRA TERMS FROM ELASTIC SUPPORTS TO STIFFNESS MATRIX 
c 

c 

KU(2,2) = KU(2,2) +ALPHA *E*IN(1)/RL ••3 
KU(3,3) = KU(3,3) +BETA *E*IN(1)/RL 
KU(IA,IA) = KU(IA,IA) +ALPHA *E*IN(1)/RL **3 
KU(IB,IB) = KU(IB,IB) + BETA*E*IN(1)/RL 

C*****FORM TRANSFORMATION MATRIX 
c 

NM12 = NUDOF-12 
DO 130 1=1,NUDOF 
DO 130 J=1,NM12 

T(l,J) =O. 
130 CONTINUE 

IEND1 =3*N1 +3 
DO 140 I= 1,IEND1 

T(l,1)=1. 
140 CONTINUE 

IEND2 = 3*(N1+2*N2) + 9 
183=IEND2+1 
DO 150I=183,NUDOF 

T(l,l-12)=1. 
150 CONTINUE 

II= N2*3-1 
182=IEND1+1 
ID=IB2+11 
DO 160I=182,ID 

T(l,1-3) = 1. 
160 CONTINUE 

T(IB2,IB2-1) = H(3)/2. 
INE = N2*3-6 
DO 170 J=1,3 

T(ID + J,INE + J +ID)= 1. 
170 CONTINUE 

T(ID + 1,ID + 3 + INE) = H(3)/2. 
13=10+3 
INF=3*N2+6 
DO 180 J=1,3 
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T(l3 + J,13+J-INF)=1. 
180 CONTINUE 

T(l3+1,13-INF + 3) =-H(2)/2. 
17=1D+7 
ID=l7+11 
DO 190 J=l7,ID 

T(J,J-9)=1. 
190 CONTINUE 

T(IB3-3,IB3-10) =-H(2)/2. 
DO 2001=1,NUDOF 
DO 200 J=1,NM12 

TT(J,I) =T(l,J) 
200 CONTINUE 

c 
C*"*~*FORM TRANSFORMED STIFFNESS MATRICES 
c 

c 

CALL VMULFF(TT,KU,NM12,NUDOF,NUDOF,50,50,K1T,50,IER) 
CALL VMULFF(TT,GU,NM12,NUDOF,NUDOF,50,50,G1T,50,IER) 
CALL VMULFF(K1T,T,NM12,NUDOF,NM12,50,50,KT,50,IER) 
CALL VMULFF(G1T,T,NM12,NUDOF,NM12,50,50,GT,50,IER) 

C*****FORM RESTRAINED MATRICES 
c 

M=1 
DO 27.0I=1,NM12 
DO 270 J=1,NM12 

DO 280 L=1,NNBC 
IF (l.EQ.NBC(L).OR.J.EQ.NBC(L))GO TO 270 

280 CONTINUE 
KR1(M) = KT(l,J) 
GR1(M) =GT(l,J) 
M=M+1 

270 CONTINUE 
NR=NM12-NNBC 
M=1 
D02901=1,NR 
D0290J=1,NR 

KR(l,J) = KR1(M) 
GR(l,J) = GR1(M) 

M=M+1 
290 CONTINUE 

c 
C*****FIND NON-DIMENSIONALIZED CRITICAL LOAD 
c 

c 

CALL EIGENR(50,NR,GR,KR,FREQ,RMODE) 
PCR = 1./FREQ(NR)/PCP 
WRITE(52,*)'THE NON-D CRITICAL BUCKLING LOAD IS', PCR 

C**"** ADD ZERO DOF'S TO MODAL VECTOR 
c 

12=1 
DO 301 11=1,NM12 

DO 302 13=1,NNBC 
IF (11.EQ.NBC(l3)) THEN 

RM(l1) =O 
GO TO 301 
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ENDIF 
302 CONTINUE 

RM(l1) = RMODE(l2,NR) 
12=12+1 

301 CONTINUE 
c 
C*****NORMALIZE MODAL VECTOR 
c 

C1 =O. 
DO 3071=1,NM12 

307 IF (DA8S(RM(l)).GT.DA8S(C1)) C1 = RM(I) 
DO 308 1=1,NM12 
RM(I) = RM(l)/C1 

308 CONTINUE 
c 
C*****EXPAND MODAL VECTOR 
c 

IL(1) = 182 
IL(2) = 182 + N2*3 
IL(3) = IL(2) + 3 
IL(4) = IL(3) + N2*3 
12=1 
DO 3111=1,NM12 

0031211=1,4 
IF (12.EQ.IL(l1)) 12=12+3 

312 CONTINUE 
RM1(12) = RM(I) 
12=12+1 

311 CONTINUE 
RM1(182) = RM1(182-3) + H(3)/2.*RM1(182-1) 
RM1(182+1) = RM1(182-2) 
RM1(182 + 2) = RM1(182-1) 
RM1 (183-3) = RM1(183)-H(2)/2.*RM1(183 +2) 
RM1(183-2) = RM1(183+1) 
RM1 (183-1) = RM1(183 + 2) 
NOD= IL(2) 
RM1 (NOD)= RM1(183) + H(3)/2.*RM1(183 + 2) 
RM1(NDD + 1) = RM1(183+1) 
RM1(NDD + 2) = RM1(183 +2) 

c 

RM1(NDD + 3) = RM1(182-3)-H(2)/2.*RM1(182-1) 
RM1(NDD +4) = RM1(182-2) 
RM1(NDD +5) = RM1(182-1) 

C*****FORM UNRESTRAINED NONLINEAR MATRICES 
c 

DO 450I=1,NUDOF 
DO 450 J=1,NUDOF 

NU1(1,J) =O. 
NU2(1,J) =O. 

450 CONTINUE 
N=O 
DO 470 M=1,N1 

X1=RM1(N+2) 
Y1 =RM1(N+3) 
X2 = RM1(N + 5) 
Y2 = RM1(N + 6) 
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CALL MM(X1 ,Y1 ,X2,Y2,LL(1),A(1),NN1 ,NN2) 
D04751=1,6 
DO 475 J=1,6 

N111 (l,J) = NN1 (l,J) 
N211 (l,J) = NN2(1,J) 

475 CONTINUE 
DO 460 1=1,6 
DO 460 J =1,6 

NU1(1 + N,J + N) = NU1(1 + N,J + N) + NN1(1,J) 
NU2(1 + N,J + N) = NU2(1 + N,J + N) + NN2(1,J) 

460 CONTINUE 
N=N+3 

470 CONTINUE 
DO 500 IC=1,2 

N=N+3 
DO 490 M=1,N2 

X1 =RM1(N+2) 
Y1 =RM1(N +3) 
X2 = RM1(N + 5) 
Y2=RM1(N+6) 
CALL MM(X1 ,Y1 ,X2,Y2,LL(2),A(2),NN1 ,NN2) 
IF(IC.EQ.2.AND.M.EQ.1)THEN 

DO 495I=1,6 
DO 495J=1,6 

N133(1 + NA,J +NA)= NN1{1,J) 
N233(1 + NA,J +NA)= NN2(1,J) 

495 CONTINUE 
ENDIF 
DO 480 1=1,6 
DO 480 J=1,6 

NU1(1 + N,J + N) = NU1(1 + N,J + N) +NN1{1,J) 
NU2(1 + N,J + N) = NU2(1 + N,J + N) + NN2(1,J) 

480 CONTINUE 
N=N+3 

490 CONTINUE 
A(2) =A(3) 

500 CONTINUE 
N=N+3 
DO 520 M=1,N3 

X1=RM1(N+2) 
Y1 =RM1(N+3) 
X2=RM1(N+5) 
Y2 = RM1(N + 6) 
CALL MM(X1 ,Y1 ,X2,Y2,LL(4),A(4),NN1 ,NN2) 

D05101=1,6 
DO 510 J=1,6 

NU1(1 + N,J + N) = NU1(1 + N,J + N) + NN1(1,J) 
NU2(1 + N,J + N) = NU2(1 + N,J + N) + NN2(1,J) 

510 CONTINUE 
N=N+3 

520 CONTINUE 
c 
C*****FORM TRANSFORMED NONLINEAR STIFFNESS MATRICES 
c 

CALL VMULFF(TT,NU1,NM12,NUDOF,NUDOF,50,50,NU1T,50,IER) 
CALL VMULFF(TT,NU2,NM12,NUDOF,NUDOF,50,50,NU2T,50,IER) 
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c 
CALL VMULFF(NU1T,T,NM12,NUDOF,NM12,50,50,N1T,50,IER) 
CALL VMULFF(NU2T,T,NM12,NUDOF,NM12,50,50,N2T,50,IER) 

C**U*FORM RESTRAINED NONLINEAR MATRICES 
c 

M=1 
DO 570 1=1,NM12 
DO 570 J=1,NM12 

DO 580 L2=1,NNBC 
IF (l.EQ.NBC(L2).0R.J.EQ.NBC(L2)) GO TO 570 

580 CONTINUE 
KR1(M) = N1T(l,J) 
GR1(M) = N2T(l,J) 
M=M+1 

570 CONTINUE 
M=1 
NRE = NM12-NNBC 
DO 590 1=1,NRE 
DO 590 J=1,NRE 

NUR1{1,J) = KR1(M) 
NUR2(1,J) = GR1(M) 

M=M+1 
590 CONTINUE 

c 
C*****SEPARATE BOUNDARY CONDITIONS 
c 

MWR=O 
MUR=O 
DO 663I=1,NNBC 

IF ((NBC(I) + 2)/3*3.EQ.NBC(I) + 2) GO TO 662 
MWR=MWR+1 
MWBC(MWR) = NBC(l)*2/3 
GO TO 663 

662 MUR=MUR+1 
MUBC(MUR) = (NBC(I) + 2)/3 

663 CONTINUE 
c 
C*****FORM KUU 
c 

ND3=NM12/3 
N2U = ND3-MUR 
N2W = 2*ND3-MWR 
M=1 
DO 605 1=1,NM12 
DO 605 J=1,NM12 

IF((I + 2)/3*3.NE.I + 2.0R.(J + 2)/3*3.NE.J + 2) GO TO 605 
DO 60711=1,NNBC 

IF{l.EQ.NBC(l1).0R.J.EQ.NBC(l1))GO TO 605 
607 CONTINUE 

KUU1{M) = KT{l,J) 
M=M+1 

605 CONTINUE 
M=1 
DO 6101=1,N2U 
D0610J=1,N2U 

KUU(l,J) = KUU1(M) 
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M=M+1 
610 CONTINUE 

c 
C*****FORM INVERSE OF KUU ( = KINV) 
c 

CALL LINV1F(KUU,N2U,25,KINV,O,WKAREA,IER) 
c 
C*****FORM KWW AND NWW2 
c 

N2D3 = NM12/3*2 
M=1 
DO 615 1=1,NM12 
DO 615J=1,NM12 

IF((I +2)/3*3.EQ.I + 2.0R.(J + 2)/3*3.EQ.J +2) GO TO 615 
DO 61711 =1,NNBC 

IF(l.EQ.NBC(l1).0R.J.EQ.NBC(l1))GO TO 615 
617 CONTINUE 

KWW1(M)=KT(l,J) 
NWW(M) = N2T(l,J) 
M=M+1 

615 CONTINUE 
M=1 
D06201=1,N2W 
DO 620 J=1,N2W 

KWW(l,J) = KWW1(M) 
NWW2(1,J) = NWW(M) 
M=M+1 

620 CONTINUE 
c 
C** ... FORM NUW1 
c 

M=1 
DO 625 1=1,NM12 
DO 625J=1,NM12 

IF((l+2)/3*3.EQ.1+2.0R.(J+2)/3*3.NE.J+2) GO TO 625 
DO 62711 =1,NNBC 

IF(l.EQ.NBC(l1).0R.J.EQ.NBC(l1))GO TO 625 
627 CONTINUE 

NUW(M) = N1T(l,J) 
M=M+1 

625 CONTINUE 
M=1 
DO 630I=1,N2W 
DO 630 J = 1,N2U 

NWU1(1,J) = NUW(M) 
M=M+1 

630 CONTINUE 
c 
C*****FORM QW 
c 

M1=1 
DO 635 1=1,NM12 

DO 637 11 =1,NNBC 
IF(l.EQ.NBC(l1))GO TO 635 

637 CONTINUE 
IF((I + 2)/3*3.EQ.I + 2)GO TO 635 
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QW(M1)::::::: RM(I) 
QW1(M1,1) =RM(I) 
QWT(1,M1) = RM(I) 
M1=M1+1 

635 CONTINUE 
c 
C*****FIND NUW1 
c 

DO 6451=1,N2W 
DO 645J=1,N2U 

NUW1(J,I) = .5*NWU1(1,J) 
645 CONTINUE 

c 
C*****MULTIPLY MATRICES TO FIND CONSTANTS 
c 

c 

CALL VMULFF(KWW,QW1,N2W,N2W,1,50,50,A1,50,IER) 
CALL VMULFF(QWT,A1, 1,N2W,1, 1,50,AA, 1,IER) 
AAA=AA(1,1) 
CALL VMULFF(NUW1 ,QW1,N2U,N2W,1,25,50,82,25,IER) 
CALL VMULFF(KINV,82,N2U,N2U, 1,25,25,83,25,IER) 
CALL VMU LFF(NWU1,83,N2W,N2U,1,50,25,84,50,IER) 
CALL VMULFF(QWT,84, 1,N2W, 1, 1,50,88, 1,IER) 
888=88(1,1) 
CALL VMU LFF(NWW2,QW1,N2W,N2W,1,50,50,CL,50,IER) 
CALL VMULFF(QWT,CL,1,N2W,1,1,50,CC,1;1ER) 
CCC =CC(1, 1) 
DO 650I=1,N2U 

FO(l, 1) =0.0 
650 CONTINUE 

F0(1,1) = 1. 
CALL VMULFF(KINV,FO,N2U,N2U, 1,25,25,D1 ,25,IER) 
CALL VMU LFF(NWU1 ,D1,N2W,N2U,1,50,25,D2,50,IJ:R) 
CALL VMULFF(QWT,D2,1,N2W,1,1,50,DD,1,IER) 
DDD=DD(1,1) 
DEL=0.0000 
DO 701 122=1,31 

PP =-AAA/DDD + (888-CCC)/DDD*DEL **2 

C*****FIND QU 
c 

DO 660I=1,N2U 
QU(I) = PP*D1(1,1)-83(1,1)*DEL**2 

660 CONTINUE 
c 
C*****FORM DISPLACEMENT VECTOR 
c 

12=1 
DO 665 11 =1,ND3 

DO 667 13=1,MUR 
IF (11.EQ.MU8C(l3)) THEN 

QL(l1) =O 
GO TO 665 

ENDIF 
667 CONTINUE 

QL(l1) =QU(l2) 
12=12+1 
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665 CONTINUE 
12=1 
DO 670 11=1,N2D3 
IF (MWR.EQ.O) GO TO 673 

DO 672 13=1,MWR 
IF (11.EO.MW8C(l3)) THEN 

08(11) =O 
GO TO 670 

ENDIF 
672 CONTINUE 
673 08(11) = OW(l2) 

12=12+1 
670 CONTINUE 

M=1 
M1=1 
DO 675 1=1,NM12 

IF((I + 2)/3*3.EQ.I + 2)GO TO 677 
RM(I) = 08(M)*DEL 
M=M+1 
GO TO 675 

677 RM(I) =QL(M1) 
M1=M1+1 

675 CONTINUE 
c 
C**0 *EXPAND MODAL VECTOR 
c 

12=1 
DO 6801=1,NM12 

D068211=1,4 
IF (12.EO.IL(l1)) 12=12 + 3 

682 CONTINUE 
RM1(12) = RM(I) 
12=12+ 1 

680 CONTINUE 
RM1(182) = RM1(182-3) + H(3)/2.*RM1(182-1) 
RM1(182+1) = RM1(182-2) 
RM1(182 + 2) = RM1(182-1) 
RM1 (183-3) = RM1(183)-H(2)/2.*RM1(183 + 2) 
RM1(183-2) = RM1(183+1) 
RM1(183-1) = RM1(183 +2) 
NDD=IL(2) 
RM1(NDD) = RM1 (183) + H(3)/2.*RM1(183 + 2) 
RM1(NDD + 1) = RM1(183+1) 

c 

RM1(NDD + 2) = RM1(183 +2) 
RM1(NDD + 3) = RM1(182-3)-H(2)/2.*RM1 (182-1) 
RM1(NDD +4) = RM1(182-2) 
RM1(NDD + 5) = RM1(182-1) 

C*****FIND INTERNAL FORCES 
c 

DO 702 J=1,6 
DO 702 K1 =1,6 

KTOT(J,K 1) = K11(J,K 1) +DEL *N111(J,K1) +DEL **2*N211(J,K1) 
702 CONTINUE 

DO 703 J=1,6 
F(J) =O. 
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704 
703 

DO 704 K1 =1,6 
F(J) = F(J) + KTOT(J,K1)*RM1(K1) 

CONTINUE 
CONTINUE 

DO 712 J=NA1,NA6 
DO 712 K1 =NA1,NA6 

712 
KTOT(J,K 1) = K33(J,K1) +DEL *N133(J,K1) +DEL **2*N233(J,K1) 

CONTINUE 
DO 713 J = NA1,NA6 

F(J)=O. 
DO 714 K1 =NA1,NA6 

714 
713 

c 

F(J) = F(J) + KTOT(J,K1)*RM1(K1) 
CONTINUE 

CONTINUE 

C*******FIND ENERGY-RELEASE RATE 
c 

c 

HHB=1.-HB 
PS= HB*(-F(4) + 6.*HHB*F(3)/TH)-F(NA + 1) 
MS =-F(NA + 3)-F(6)*HB**3 
AB= (TH*PS)**2/(HB*HHB) 
BC= 12. •MS**2/HB**3 
CD= 12. *(TH*PS/2.-MS)**2/HHB**3 
RRG = 1./(24. *E*IN(1))"(AB +BC+ CD) 
PB= F(1)/PCP 
GB= (RL/2.)**4*RRG/(E*TH**5) 
WRITE(3,19)GB,PB 

19 FORMAT(3X,E15.8,5X,E15.8) 
IF (PB.GT.1.) GO TO 800 
DEL=DEL+.20 

701 CONTINUE 
800 STOP 

END 
SUBROUTINE EIGENR(NDIM,N,A,B,LAMBDA,X) EIGR 

C*****THIS SUBROUTINE CALCULATES EIGENVALUES AND EIGENVECTORS 
c 

REAL*8 A(NDIM,NDIM),B(NDIM,NDIM),X(NDIM,NDIM),LAMBDA(NDIM) 
REAL*8 E(256),S,T,TOL,EPS,DSQRT 
D041=1,N 
DO 4 J =l,N 
S = B(l,J) 

IF(l.EQ.1) GO TO 2 
11=1-1 
DO 1 K=1,11 

1 S =S-B(l,K)*B(J,K) 
2 IF(J.NE.I) GO TO 3 

IF(S.LE.O.DO) PRINT 13 
T = DSQRT(DABS(S)) 
B(l,1) =T 
GO TO 4 

3 B(J,I) =SIT 
4 CONTINUE 

D061=1,N 
DO 6 J=l,N 
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S=A(l,J) 
IF(l.EQ.1) GO TO 6 
11 =1-1 
DO 5 K=1,11 

5 S =S-8(1,K)*A(J,K) 
6 A(J,I) =S/8(1,1) 

DO 10 J=1,N 
DO 10 l=J,N 

S =A(l,J) 
IF(l.EQ.J) GO TO 8 
11 =1-1 
DO 7 K=J,11 

7 S = S-A(K,J)*B(l,K) 
8 IF(J.EQ.1) GO TO 10 

J1=J-1 
DO 9 K=1,J1 

9 S = S-A(J,K)*B(l,K) 
10 A(l,J) = S/B(l,I) 

TOL = 2.44D-63 
CALL TRED2(NDIM,N,TOL,A,LAMBDA,E,X) 
EPS = 2.22D-16 
CALL TQL2(NDIM,N,EPS,LAMBDA,E,X,IERR) 
IF(IERR.NE.O) PRINT 14 
D012J=1,N 
DO 12 IBACK=1,N 
I= N + 1-IBACK 

S =X(l,J) 
IF(l.EQ.N) GO TO 12 
11 =1+1 
D011K=l1,N 

11 S = S-B(K,l)*X(K,J) 
12 X(l,J) = S/8(1,1) 

RETURN 
13 FORMAT(' ***BIS NOT POSITIVE DEFINITE***') 
14 FORMAT(' ***TQL2 DID NOT CONVERGE"**') 

END 
SUBROUTINE TRED2 (NM,N,TOL,A,D,E,Z) 

C:*********************************************************************** 

IMPLICIT REAL *8 (A-H,0-Z) 
REAL*8 A(NM,N),D(N),E(N),Z(NM,N) 
DO 100 I = 1, N 

DO 100 J = 1, I 
Z(l,J) = A(l,J) 

100 CONTINUE 
IF (N .EQ. 1) GO TO 320 
DO 300 II = 2, N 

l=N+2-ll 
L = 1- 2 
F = Z(l,1-1) 
G = O.ODO 
IF (L .LT. 1) GO TO 140 
DO 120 K = 1, L 

120 G = G + Z(l,K) * Z(l,K) 
IF(DABS(F).LT.DABS(1.D-8)) F=O. 

140 H = G + F * F 
IF (G .GT. TOL) GO TO 160 
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E(I) = F 
H = O.ODO 
GO TO 280 

160 L = L + 1 
G = -DSIGN(DSQRT(H),F) 
E(I) = G 
H = H-F*G 
Z(l,1-1) = F - G 
F = O.ODO 
DO 240 J = 1, L 

Z(J,1) = Z(l,J) I H 
G = O.ODO 
DO 180 K = 1, J 

180 G = G + Z(J,K) * Z(l,K) 
JP1 = J + 1 
IF (L .LT. JP1) GO TO 220 
DO 200 K = J P1, l 

200 G = G + Z(K,J) * Z(l,K) 
220 E(J) = G I H 

F = F + G * Z(J,1) 
240 CONTINUE 

HH = FI (H + H) 
DO 260 J = 1, l 

F .= Z(l,J) 
G = E(J) - HH * F 
E(J) = G 
DO 260 K = 1, J 

Z(J,K) = Z(J,K) - F * E(K) - G * Z(l,K) 
260 CONTINUE 
280 D(I) = H 
300 CONTINUE 
320 D(1) = a.ODO 

E(1) = O.ODO 
DO 500 I = 1, N 

l = I - 1 
IF (D(I) .EQ. O.ODO) GO TO 380 
DO 360 J = 1, L 

G = O.ODO 
DO 340 K = 1, L 

340 G = G + Z(l;K) * Z(K,J) 
DO 360 K = 1, l 

Z(K,J) = Z(K,J) - G * Z(K,I) 
360 CONTINUE 
380 D(I) = Z(l,I) 

Z(l,I) = 1.0DO 
IF (l .LT. 1) GO TO 500 
DO 400 J = 1, L 

Z(l,J) = O.ODO 
Z(J,I) = O.ODO 

400 CONTINUE 
500 CONTINUE 

RETURN 
END 
SUBROUTINE TQL2 (NM,N,MACHEP,D,E,Z,ERROR) 

<:*********************************************************************** 

IMPLICIT REAL*8 (A-H,0-Z) 
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REAL*8 MACHEP,D(N),E(N),Z(NM,N) 
INTEGER ERROR 
ERROR= 0 
IF (N .EQ. 1) GO TO 1001 
DO 100 I = 2, N 

100 E(l-1) = E(I) 
F = O.ODO 
B = O.ODO 
E(N) = O.ODO 
DO 240 L = 1, N 

J = 0 
H = MACHEP * (DABS(D(L)) + DABS(E(L))) 
IF(B.LT.H)B = H 
DO 110 M = L, N 

IF (DABS(E(M)) .LE. B) GO TO 120 
110 CONTINUE 
120 IF (M .EQ. L) GO TO 220 
130 IF (J .EQ. 30) GO TO 1000 

J = J + 1 
P = (D(L + 1) - D(L)) I (2.0DO * E(L)) 
R = DSQRT(P * P + 1.0DO) 
H = D(L) - E(L) I (P + DSIGN(R,P)) 
DO 140 I = L, N 

140 D(I) = D.(I) - H 
F = F + H 
P = D(M) 
c = 1.0DO 
S = O.ODO 
MML = M - L 
DO 200 II = 1, MM L 

I= M -11 
G = C * E(I) 
H = C * P 
IF (DABS(P) .LT. DABS(E(I))) GO TO 150 
C = E(I) IP 

IF(DABS(C).L T.DABS(1.0D-9)) C = 0. 
R = DSQRT(C * C + 1.0DO) 
E(l+1)=S*P*R 
S =CIR 
C = 1.0DO IR 
GO TO 160 

150 C = PI E(I) 
R = DSQRT(C * C + 1.0DO) 
E(l+1) = S * E(I) * R 
S = 1.0DO IR 
C =Cl R 

160 P = C * D(I) - S * G 
D(I + 1) = H + S * {C * G + S * D(I)) 
DO 180 K = 1, N 

H = Z(K,1+1) 
Z(K,1+1) = S * Z(K,I) + C * H 
Z(K,I) = C * Z(K,I) - S * H 

180 CONTINUE 
200 CONTINUE 

E(L) = S * P 
D(L) = C * P 
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IF (DABS(E{L)) .GT. B) GO TO 130 
220 D(L) = D{L) + F 
240 CONTINUE 

NM1 = N - 1 
DO 300 I = 1, NM1 

K =I 
P = D(I) 
IP1 = I + 1 
DO 260 J = I P1, N 

IF {D{J) .GE. P) GO TO 260 
K = J 
p = D(J) 

260 CONTINUE 
IF {K .EQ. I) GO TO 300 
D{K) = D(I) 
D{I) = P 
DO 280 J = 1, N 

P = Z(J,I) 
Z(J,I) = Z{J,K) 
Z{J,K) = P 

280 CONTINUE 
300 CONTINUE 

GO TO 1001 
1000 ERROR = L 
1001 RETURN 

END 
SUBROUTINE MM{V1,T1,V2,T2,L,A,N1,N2) 

c 
C*****THIS SUBROUTINE CALCULATES COMPONENTS OF NONLINEAR MATRICES 
c 

REAL *8 M1 {6,6),M2{6,6), L,V1 ,T1 ,V2,T2,A,N1 {6,6),N2(6,6) 
DO 20 M=1,6 
DO 20 J=1,6 

M1{M,J) =O. 
M2(M,J)=O. 

20 CONTINUE 
M1(2,4) =.6./5./L *V1 + .1*T1-6./5./L*V2 + .1 *T2 
M1(2,1) =-M1(2,4) 
M1(3,4) = .1 *V1 + 2./15.*L *T1-.1 *V2-1./30.*L *T2 
M1(3,1) =-M1(3,4) 
M1{5,4) = M1(2, 1) 
M1(5, 1) =-M1(5,4) 
M1(6,4) = .1 *V1-1./30.*L *T1-.1*V2+2./15.*L *T2 
M1(6, 1) =-M1(6,4) 
M2(2,2) = (72./L **3*V1**2+18./L **2*V1 *T1 + 3./L *T1 **2 

1-144./L **3*V1 *V2-18./L **2*V2*T1+18./L ··2·v1 *T2 
2 + 72./L **3*V2**2-18./L **2*V2*T2 + 3./L *T2**2)/35. 
M2{3,3) = {3.*{-V1 *T1 + V2*T1 + V1*T2-L *T1*T2-V2*T2)+18./L*V1**2 

1+12:·L *T1 **2-36./L *V1·v2+18./L ·v2··2+1.*L*T2**2)/210. 
M2{5,5) = M2{2,2) 
M2(6,6) = {1.*(V1 *T1-V2*T1-V1*T2-T1*T2*L + V2*T2) + 6./L *V1 **2 

1+1./3. *L *T1 **2-12./L *V1*V2+6./L *V2**2 + 4. *L *T2**2)/70. 
M2{3,2) = {18./L **2*{V1 **2+V2**2)+12./L *{V1 *T1-V2*T1) + 

11./2. *{T2**2~ T1 **2)-32./L **2*V1*V2+1. *T1 *T2)/70. 
M2(5,2) =-M2{2,2) 
M2(5,3) =-M2{3,2) 
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c 

M2(6,2) = (18./L **2*(V1 **2-2*V1 *V2+V2**2)+1./2.*(T1 **2 + 
12*T1*T2-T2**2)+12./L *(V1 *T2-V2*T2))/70. 
M2(6,3) = ( 1. *(V1 *T1-T1 *V2 + V1 *T2-V2*T2)-1./2.*L *(T1 **2 

1 + T2**2) + 2./3. *L *T1 *T2)/70. 
M2(6,5) = -M2(6,2) 
DO 30M=1,6 
DO 30 J=1,6 

M2(M,J) = M2(J,M) 
30 CONTINUE 

DO 40 M=1,6 
DO 40 J=1,6 

N1(M,J) =(M1(M,J) + .5*M1(J,M))*A 
N2(M,J) = .5*M2(M,J)' A*L 

40 CONTINUE 
RETURN 
END 
SUBROUTINE MATR(l,K,G,C,A,B,LL,HB) 

C*****THIS SUBROUTINE CALCULATES COMPONENTS OF BASIC AND INCREMENTAL 
C-****STIFFNESS MA TRICES 
c 

REAL *8 K(6,6), G(6,6),A(4),B(4),C(6,6) 
REAL*8 LL(4),HB 

D027M=1,6 
DO 27 J =1,6 

K(M,J) =O .. 
G(M,J) =O. 
C(M,J) =O. 

27 CONTINUE 
K(1,1)=A(I) 
K(2.2) = 12.*B(I) 
K(3,3) =4.*B(l)*LL(l)**2 
K(4,4) =A(I) 
K(5,5) = 12.*B(I) 
K(6,6) = K(3,3) 
K(4,1) =-A(I) 
K(3,2) = 6.*B(l)"LL(I) 
K(5,2) =-12.*B(I) 
K(6,2) = K(3,2) 
K(5,3) =-K(3,2) 
K(6,3) = .5*K(3,3) 
K(6,5) = K(5,3) 
G(2,2) = 12./LL(I) 
G(3,3) =4./3.*LL(I) 
G(5,5) = G(2,2) 
G(6,6) = G(3,3) 
G(3,2) = 1. 
G( 5, 2) = -G(2,2) 
G(6,2)=1. 
G(5,3) =-1. 
G(6,3) =-LL(l)/3. 
G(6,5) =-1. 
C(2,2) = 156. 
C(3,3) =4.*LL(l)**2 
C(5,5) = 156. 
C(6,6) = C(3,3) 
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C(3,2) = 22. *LL(I) 
C(5,2) =54. 
C(6,2) =-13.*LL(I) 
C(5,3) = 13.*LL(I) 
C(6,3) =-3.*LL(l)**2 
C(6,5) = -22. *LL(I) 
D040J=1,6 
DO 40 M=1,6 

K(J,M) = K{M,J) 
G(J,M) = G(M,J) 
C(J,M) =C(M,J) 

40 CONTINUE 
DO 42 M=1,6 
DO 42 J =1,6 

G(J.M) = G(J,M)/10. 
C(J,M) = C(J,M)*LL(l)/420. 

42 CONTINUE 
IF(l.EQ.2)THEN 

DO 47 M=1,6 
DO 47 J =1,6 

G(M,J) =(1-HB)"G(M,J) 
47 CONTINUE 

ENDIF 
IF(l.EQ.3)THEN 

DO 49 M=1,6 
DO 49 J =1,6 

G(M,J) = HB*G(M,J) 
C(M,J)=O. 

49 CONTINUE 
ENDIF 
RETURN 
END 
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OUTPUT FOR CONST ANT MODE SHAPE PROGRAM 

THE NON-D CRITICAL BUCKLING LOAD IS .40484892E-01 

GBAR 
0.6297 4656E-35 
0.67312072E-05 
0.28197854E-04 
0.68353731 E-04 
0.13398031 E-03 
0.234881 ??E-03 
0.38416105E-03 
0.59857690E-03 
0.89898201 E-03 
0.13108421 E-02 
0.18648361 E-02 
0.25975373E-02 
0.35521754E-02 
0.47794801 E-02 
0.63386050E-02 
0.82981327E-02 
0.10737162E-01 
0.137 46473E-01 
0.17 429780E-01 
0.21905054E-01 
0.27305939E-01 
0.33783243E-01 
0.41506504E-01 
0.50665654E-01 
0.61472742E-01 
0. 7 4163759E-01 

PBAR 
0.40484892E-01 
0.42030161 E-01 
0.46665968E-01 
0. 54392312E-01 
0. 65209193E-01 
0. 79116612E-01 
0.96114569E-01 
0.11620306E + 00 
0.13938210E + 00 
0.16565166E + 00 
o.19so11??E +oo 
0. 227 46242E + 00 
0.26300360E + 00 
0.30163532E + 00 
0.34335758E + 00 
o.38817037E +oo 
0.43607370E + 00 
0.48706757E + 00 
o.54115198E +oo 
o.59832693E +oo 
o.65859241E +oo 
0. 72194843E + 00 
0. 78839499E + 00 
o.85793208E +oo 
0.93055972E + 00 
0.10062779E + 01 
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Appendix 2: Incremental Program 

Now the axial load versus energy release rate for the same problem of a 

clamped-clamped beam with ~ = .1 and ~ = .5 is calculated using the 

incremental program with 10 elements. The input, incremental program, and 

output are given below. The curves for the incremental and constant mode 

shape solutions are plotted for this case in Figure 30. 
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9,15 
0.1 
2,3,2 
50.,100.,50. 
0.,0.,0. 
5 
2 
3 
40 
41 
42 

INPUT FOR INCREMENTAL PROGRAM 

- RESTRAINED DEGREES OF FREEDON OF TRANXVERSE LOADS 
- HEIGHT OF DELAMINATION 
- NUMBER OF ELEMENTS OF DIFFERENT REGIONS 

- LENGTH OF DIFFERENT REGIONS 
- ALPHA, BETA, GAMMA 
- NUMBER OF BOUNDARY CONDITIONS 
- ZERO DEGREE OF FREEDOM 
- ZERO DEGREE OF FREEDOM 
- ZERO DEGREE OF FREEDOM 
- ZERO DEGREE OF FREEDOM 
- ZERO DEGREE OF FREEDOM 
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IMPLICIT REAL*8 (A-H,0-Z) 
REAL*8 LL(4),IN(4) 
REAL*8 H(4),K(6,6),G(6,6),KU(60,60),GU(60,60),T(60,60), 

1TT(60,60), K 1T(60,60),G1 T(60,60) ,KT(60,60), GT(60,60), KR1 (2500), 
2GR1(2500),KR(60,60),GR(60,60),FREQ(60),RMODE(60,60),WKAREA(60), 
3A( 4) ,B( 4), RM(60) ,RM 1 (60), KST(60,60), D P(60) ,DD(60), 
4KTOT(60,60) ,F(60) ,MS, RMA(60) ,KTI NV(60,60), P(60), 
6 PT(60), PD(60), RM 1(60), DS(60) ,DD 1 (60),C(6,6) 
DIMENSION NBC(10),IL(4) 

C:********************************************************************** 

C THIS IS A FINITE ELEMENT PROGRAM FOR THE NONLINEAR 
C ANALYSIS OF DE LAMINATED BEAM-PLATES. 
C IT IS AN INCREMENTAL PROGRAM WHICH TAKES INTO ACCOUNT 
C CHANGING MODE SHAPE. 
C IT CALCULATES AXIAL LOAD VERSUS ENERGY RELEASE RATE 
C FOR BEAMS WITH VARIOUS BOUNDARY CONDITIONS INCLUDING 
C BEAMS WITH ELASTIC SUPPORTS, BEAMS ON ELASTIC 
C FOUNDATIONS, AND BEAMS WITH NONSYMMETRIC DELAMINATIONS. 
C BY: DAVID R. WOLFE 
c:······························~······································· 
c 
C*****DEFINE CRITICAL LOAD OF PERFECT BEAM BELOW ON LINE BELOW 
C L 1,L2 RESTRAINED DEGREES OF FREEDOM OF TRANSVERSE LOADS 
C HB - HEIGHT OF DELAMINATION 
C N1 - NUMBER OF ELEMENTS OF REGION BEFORE DELAMINATION 
C N2 - NUMBER OF ELEMENTS OF REGION IN DELAMINATION REGION 
C N3 - NUMBER OF ELEMENTS OF REGION AFTER DELAMINATION 
C RL 1 - LENGTH OF REGION BEFORE DE LAMINATION 
C RL2 - LENGTH OF DELAMINATION REGION 
C RL3 - LENGTH OF REGION AFTER DELAMINATION 
C NNBC - TOTAL NUMBER OF ZERO DEGREES OF FREEDOM 
C NBC - VECTOR OF ZERO DEGREES OF FREEDOM 
C RL - TOTAL LENGTH 
C ALPHA - EXTENTIONAL SPRING CONSTANT 
C BETA - BENDING SPRING CONSTANT 
C GAMMA - ELASTIC FOUNDATION SPRING CONSTANT 
C TH - THICKNESS 
C NUDOF - DEGREES OF FREEDOM 
C PCP - CRITICAL LOAD OF PERFECT BEAM (DEFINE BELOW ON LINE 81) 
c 

READ(51,*) L 1,L2 
READ(51,*) HB 
READ(51,*) N1,N2,N3 
READ(51,*) RL 1,RL2,RL3 
READ(51,*) ALPHA,BETA,GAMMA 
READ(51,*) NNBC 
DO 10I=1,NNBC 

READ(51,*) NBC(I) 
IF(NBC(l).GT.17) NBC(I) = NBC(l)-12 

10 CONTINUE 
NUDOF =3*(N1 +2*N2+N3)+12 
NA=(N1 +N2)*3+6 
NA1 =NA+1 
NA6=NA+6 
TH= 10. 
RL=200. 
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E=30.D6 
IA=NUDOF-1 
IB=NUDOF 
LL(1) = RL 1/FLOAT(N1) 
LL(2) = RL2/FLOAT(N2) 
LL(3) = LL(2) 
LL(4) = RL3/FLOAT(N3) 
H(1) =TH 
H(2) =(1.-HB)*TH 
H(3) = HB*TH 
H(4) =TH 
DO 20 1=1,4 

IN(I) = H(l)**3/12. 
A(I) = H(l)*E/LL(I) 

. 8(1) =E*IN(l)/LL(l)**3 
20 CONTINUE 

c 
C*****MAKE SURE PCP IS CORRECT 
c 

GAM =GAMMA *E*IN(1)/RL **4 
C PCP= 20.19*E*IN(1)/RL **2 

PCP =4.0*3.14159**2*E*IN(1)/RL **2 
C*****FORM UNRESTRAINED MATRICES 

DO 50 1=1,NUDOF 
DO 50 J=1,NUDOF 

KU(l,J) =O. 
GU(l,J) =O. 

50 CONTINUE 
CALL MATR(1,K,G,C,A,B,LL,HB) 

C WRITE(6,57)((G(l,J),J = 1,6),I:::::: 1,6) 
C 57 FORMAT(8E9.2) 

N=O 
DO 70 M=1,N1 

DO 60 1=1,6 
DO 60 J =1,6 

KU(I + N,J + N) = KU(I + N,J + N) + K(l,J) + GAM*C(l,J) 
GU(I + N,J + N) = GU(I + N,J + N) + G(l,J) 

60 CONTINUE 
N=N+3 

70 CONTINUE 
CALL MATR(2,K,G,C,A,8,LL,HB) 
DO 100IC=1,2 

N=N+3 
DO 90 M=1,N2 

DO 80 1=1,6 
DO 80 J=1,6 

KU(I + N,J + N) = KU(I + N,J + N) + K(l,J) + GAM*C(_l,J) 
GU(I + N,J + N) = GU(I + N,J + N) + G(l,J) 

80 CONTINUE 
N=N+3 

90 CONTINUE 
CALL MATR(3,K,G,C,A,8,LL,HB) 

100 CONTINUE 
CALL MATR(4,K,G,C,A,8,LL,HB). 
N=N+3 . 
DO 120 M=1,N3 
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D01101=1,6 
DO 110 J=1,6 

KU(I + N,J + N) = KU{I + N,J + N) + K(l,J) + GAM*C{l,J) 
GU{I + N,J + N) = GU{I + N,J + N) + G{l,J) 

110 CONTINUE 
N=N+3 

120 CONTINUE 
c 
C*****ADD EXTRA TERMS FROM ELASTIC SUPPORTS TO STIFFNESS MATRIX 
c 

KU{2,2) = KU(2,2) +ALPHA *E*IN{1)/RL **3 
KU{3,3) = KU{3,3) +BETA *E*IN{1)/RL 
KU(IA,IA) = KU{IA,IA) +ALPHA *E*IN(1)/RL **3 
KU(IB,IB) = KU(IB,IB) +BET A *E*IN(1)/RL 

C*****FORM TRANSFORMATION MA TRIX 
NM12 = NUDOF-12 
DO 130 1=1,NUDOF 
DO 130J=1,NM12 

T(l,J) =O. 
130 CONTINUE 

IEND1 =3*N1 +3 
DO 140 1=1,IEND1 

T(l,1)=1. 
140 CONTINUE 

IEND2 = 3*(N1+2*N2) + 9 
IB3=IEND2+1 
DO 150 l=IB3,NUDOF 

T(l,1-12) =1. 
150 CONTINUE 

II= N2*3-1 
IB2=IEND1+1 
ID=IB2+11 
DO 160 I= IB2,ID 

T(l,1-3)=1. 
160 CONTINUE 

T(IB2,IB2-1) = H{3)/2. 
INE = N2*3-6 
DO 170 J=1,3 

T(ID + J,INE +J +ID)= 1. 
170 CONTINUE 

T(ID + 1,ID + 3 + INE) = H(3)/2. 
13=1D+3 
INF=3*N2+6 
DO 180 J=1,3 

T(l3 + J,13+J-INF)=1. 
180 CONTINUE 

T(l3+1,13-INF + 3) =-H(2)/2. 
17=1D+7 
ID=l7+11 
DO 190 J=l7,ID 

T(J,J-9)=1. 
190 CONTINUE 

T(IB3-3,IB3-10) =-H(2)/2. 
DO 200 1=1,NUDOF 
DO 200 J=1,NM12 

TT(J,I) =T(l,J) 
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200 CONTINUE 
C*****FORM TRANSFORMED STIFFNESS MATRICES 

CALL VMULFF(TT,KU,NM12,NUDOF,NUDOF,60,60,K1T,60,IER) 
CALL VMULFF(TT,GU,NM12,NUDOF,NUDOF,60,60,G1T,60,IER) 
CALL VMULFF(K1T,T,NM12,NUDOF,NM12,60,60,KT,60,IER) 
CALL VMULFF(G1T,T,NM12,NUDOF,NM12,60,60,GT,60,IER) 

C*****FORM RESTRAINED MATRICES 
M=1 
DO 270 1=1,NM12 
DO 270 J=1,NM12 

DO 280 L=1,NNBC 
IF (l.EQ.NBC(L).OR.J.EQ.NBC(L))GO TO 270 

280 CONTINUE 
KR1(M) = KT(l,J) 
GR1(M) = GT(l,J) 
M=M+1 

270 CONTINUE 
NR=NM12-NNBC 
M=1 
DO 2901=1,NR 
D0290J=1,NR 

KR(l,J) = KR1 (M) 
GR(l,J) = GR1(M) 

M=M+1 
290 CONTINUE 

NNN=1 
C*****FORM DELTA P VECTOR AND TOT AL P VECTOR 

DO 702J=1,NUDOF 
PT(J) =O. 
DP(J) =O. 

702 CONTINUE 
DP(1) = .01*PCP 
PT(L 1) =-.0001*PCP 
PT( L2) = .0001 *PCP 
DP(L 1) = PT(L 1) 
DP(L2) = PT(L2) 
DO 293 1=1,NR 

DS(I) =0.0 
293 CONTINUE 
288ITER=1 

PL=PT(1) 
CALL FIXMOD(DS,IB2,N2,IB3,RMl,NM12,NNBC,NBC,H,NUDOF) 

C*****FORM TANGENT STIFFNESS MATRIX 
CALL KTIN(KR,GR,PL,RMl,LL,A,NUDOF,NM12,T,TT,NBC,NNBC,KTINV, 

1KST,2,N1,N2,N3,KU,KTOT,G,HB,K,B,C) 
C*****ADD DELTA PTO TOTAL P 

PT(1) = DP(1) + PT(1) 
C*****FIND DELTA DELTA VECTOR 
C PRINT,'DEL TA DELTA' 

DO 703 J=1,NR 
DD(J) =O. 
DO 704K1=1,NR 

DD(J) = DD(J) + KTINV(J,K1)*DP(K1) 
704 CONTINUE 

C PRINT,J,DD(J) 
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703 CONTINUE 
C*****FIND DELTA STAR 

DO 730I=1,NR 
DS(I) = DD{I) + DS{I) 

730 CONTINUE 
777 CALL FIXMOD(DS,IB2,N2,IB3,RM1,NM12,NNBC,NBC,H,NUDOF) 

C*****FIND K,N1,N2(DS) THEN INTERNAL FORCES P STAR 
C PRINT,'INTERNAL FORCES PST AR' 

CALL KTIN(KR,GR,PL,RM1,LL,A,NUDOF,NM12,T,TT,NBC,NNBC,KTINV, 
1KST,1,N1,N2,N3,KU,KTOT,G,HB,K,B,C) 

DO 718 J = 1,NR 
P(J) =O. 
DO 719 K1 =1,NR 

P(J) = P(J) + KST(J,K1)*DS{K1) 
719 CONTINUE 
718 CONTINUE 

C******FIND RESIDUAL LOAD 
DO 740 1=1,NR 

PD{I) = PT(l)-P(I) 
740 CONTINUE 

C*****FIND DELTA DELTA ONE VECTOR 
C WRITE(52,*) 'DELTA DELTA ONE' 

DO 753J=1,NR 
DD1(J) =O. 
DO 754 K1 =1,NR 

DD1(J) = DD1(J) + KTINV(J,K1)*PD(K1) , 
754 CONTINUE 
753 CONTINUE 

C*****FIND DELTA STAR 
DO 7601=1,NR 

DS(I) = DS{I) + DD1(1) 
760 CONTINUE 

ITER = ITER + 1 
IF{ITER.GT.30)GO TO 780 
CH=O. 
DO 756 I= 1,NR 

CH= CH+ PD{l)**2 
756 CONTINUE 

CH1 = DSQRT(CH/PT(1)"*2) 
WRITE(52,*) 'DELTA STAR' 
IF(CH1.GT..001) GO TO 777 
DO 762 1=1,NR 

DS(I) = DS{I) + DD1 (I) 
762 CONTINUE 

CALL FIXMOD(DS,IB2,N2,IB3,RM1,NM12,NNBC,NBC,H,NUDOF) 
CALL KTIN(KR,GR,PL,RM1,LL,A,NUDOF,NM12,T,TT,NBC,NNBC,KTINV, 

1KST,3,N1,N2,N3,KU,KTOT,G,HB,K,B,C) 
DO 713 J=1,6 

F(J) =O. 
DO 714 K1 =1,6 

F{J) = F(J) + KTOT{J,K1)*RM1{K1) 
714 CONTINUE 
713 CONTINUE 

DO 723 J = NA 1, NAB 
F(J) =O. 
DO 724 K1 =NA1,NA6 
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F(J) = F(J) + KTOT(J,K1)*RM1 (K1) 
724 CONTINUE 
723 CONTINUE 

c•••••••FIND ENERGY-RELEASE RATE 
HHB=1.-HB 
PS= HB*(F(1)-6.*HHB*F(3)/TH)-F(NA + 1) 
MS =-F(NA +3) + F(3)*HB**3 
AB= (TH*PS)**2/(HB*HHB) 
BC= 12. *MS**2/HB**3 
CD= 12. *(TH*PS/2.-MS)**2/HHB**3 
RRG = 1./(24.'E*IN(1))*(AB +BC+ CD) 
PB= PT(1)/PCP 
GB= (RL/2.)**4*RRG/(E*TH**5) 
RQ = RM1 (20)/TH 
WRITE(4,33)GB,PB 
DL=DS(1)*2. 
VV1=DS(L1)/10. 
VV2 = OS(L2)/10. 

33 FORMAT(3X,E15.8,5X,E15.8) 
NNN=NNN+1 

c••••• ADJUST LOAD STEP MANUALLY HERE: YOU NEED SMALL LOAD STEP 
C*****NEAR GLOBAL BUCKLING LOAD 

IF(NNN.EQ.3)0P(1) = PCP·.03 
IF(NNN.EQ.23)DP(1) = PCP*.005 

C IF(NNN.EQ.39)DP(1) = PCP*.001 

c 

IF(PB.LT.1.0)GO TO 288 
780 WRITE (52,*)'DID NOT CONVERGE THIS STEP' 
800 STOP 

END 
SUBROUTINE MM(V1 ,T1 ,V2,T2,L,A,N1 ,N2,llF) 

C*****THIS SUBROUTINE CALCULATES COMPONENTS OF NONLINEAR MATRICES 
c 

REAL *8 M1(6,6),M2(6,6),L,V1 ,T1 ,V2,T2,A,N1(6,6),N2(6,6) 
DO 20 M=1,6 
DO 20 J=1,6 

M1(M,J) =O. 
M2(M,J) =O. 

20 CONTINUE 
M1(2,4)=6./5./L *V1 + .1 *T1-6./5./L *V2 + .1 *T2 
M1(2,1)=-M1(2,4) 
M 1 (3,4) = .1 *V1 + 2./15.*L *T1-.1 *V2-1./30.*L *T2 
M1(3,1) =-M1(3,4) 
M1(5,4)=M1(2,1) 
M1(5,1)=-M1(5,4) 
M 1 (6,4) = .1 *V1-1./30.*L *T1-'.1*V2+2./15.*L *T2 
M1(6,1)=-M1(6,4) 
M2(2,2) = (72./L **3*V1**2+18./L **2*V1*T1+3./L *T1 **2 

1-144./L **3*V1 *V2-18./L **2*V2*T1 + 18./L **2*V1 *T2 
2 + 72./L **3*V2**2-18./L **2*V2*T2 + 3./L *T2**2)/35. 
M2(3,3) = (3. *(-V1 *T1 + V2*T1 + V1 *T2-L *T1*T2-V2*T2)+18./L *V1 **2 

1 + 12.*L *T1 **2-36./L ·v1·v2+18./L ·v2··2+1.*L *T2**2)/210. 
M2(5,5) = M2(2,2) 
M2(6,6) = (1. *(V1 *T1-V2*T1-V1 *T2-T1 *T2*L + V2*T2) + 6./L *V1 **2 

1 + 1./3.*L *T1 **2-12./L *V1*V2+6./L *V2**2 + 4.*L *T2**2)/70. 
M2(3,2) = (18./L **2*(V1 **2+V2**2)+12./L *(V1 *T1-V2*T1) + 
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c 

11./2. *(T2**2-T1 **2)-32./L **2*V1*V2+1. *T1 *T2)/70. 
M2(5,2) =-M2(2,2) 
M2(5,3) =-M2(3,2) 
M2(6,2) = (18./L **2*(V1 **2-2*V1 *V2+V2**2)+1./2.*(T1 **2 + 

12*T1*T2-T2**2)+12./L *(V1 *T2-V2*T2))/70. 
M2(6,3) = (1. *(V1 *T1-T1 *V2 + V1 *T2-V2*T2)-1./2.*L *(T1 "*2 

1 + T2**2) + 2./3. *L*T1 *T2)/70. 
M2(6,5) =-M2(6,2) 
DO 30 M=1,6 
DO 30 J=1,6 

M2(M,J) = M2(J,M) 
30 CONTINUE 

IF(llF.EQ.2)THEN 
DO 40 M=1,6 
DO 40 J=1,6 

N1(M,J) = (M1(M,J) + M1(J,M))* A 
N2(M,J) = M2(M,J)* A *L 

40 CONTINUE 
ELSE 

DO 50 M=1,6 
DO 50 J=1,6 

N1(M,J) =(M1(M,J) + .5*M1(J,M))*A 
N2(M,J) = .5*M2(M,J)* A *L 

50 CONTINUE 
ENDIF 
RETURN 
END 
SUBROUTINE MATR(l,K,G,C,A,B,LL,HB) 

C*****THIS SUBROUTINE CALCULATES COMPONENTS OF BASIC AND INCREMENTAL 
C*****STIFFNESS MATRICES 
c 

REAL *8 K(6,6),G(6,6),A(4),B(4},C(6,6) 
REAL*8 LL(4),HB 

DO 27 M=1,6 
DO 27 J =1,6 

K(M,J) =O. 
G(M,J)=O. 
C(M,J)=O. 

27 CONTINUE 
K(1,1)=A(I) 
K(2,2) = 12.*B(I) 
K(3,3) = 4. *8(1) *LL(l)**2 
K(4,4) =A(I) 
K(5,5) = 12.*B(I) 
K(6,6) = K(3,3) 
K(4,1)=-A(I) 
K(3,2) = 6. *B(l}*LL(I) 
K(5,2) =-12.*B(I) 
K(6,2) = K(3,2) 
K(5,3) =-K(3,2) 
K(6,3) = .5*K(3,3) 
K(6,5) = K(5,3) 
G(2,2) = 12./LL(I) 
G(3,3) = 4./3.*LL(I) 
G(5,5) = G(2,2) 

Appendix 2: Incremental Program 146 



G(6,6) = G(3,3) 
G(3,2) =1. 
G(5,2) =-G(2,2) 
G(6,2) =1. 
G(5,3) =-1. 
G(6,3) =-LL(l)/3. 
G(6,5)=-1. 
C(2,2) = 156. 
C(3,3) = 4.*LL(l)**2 
C(5,5) = 156. 
C(6,6) = C(3,3) 
C(3,2) = 22. *LL(I) 
C(5,2) =54. 
C(6,2) =-13. *LL(l) 
C(5,3) = 13. *LL(I) 
C(6,3) =-3.*LL(1)**2 
C(6,5) =-22. *LL(I) 
DO 40 J=1,6 
DO 40 M=1,6 

K(J,M) = K(M,J) 
G(J,M) = G(M,J) 
C(J,M) = C(M,J) 

40 CONTINUE 
DO 42 M=1,6 
DO 42 J=1,6 

G(J,M) = G(J,M)/10. 
C(J,M) =C(J,M)*LL(l)/420. 

42 CONTINUE 
IF(l.EQ.2)THEN 

DO 47 M=1,6 
D047J=1,6 

G(M,J) = (1-HB)*G(M,J) 
47 CONTINUE 

ENDIF 
IF(l.EQ.3)THEN 

DO 49 M=1,6 
DO 49 J=1,6 

G(M,J) = HB*G(M,J) 
C(M,J)=O. 

49 CONTINUE 
ENDIF 
RETURN 
END 
SUBROUTINE FIXMOD(RMA,IB2,N2,IB3,RM1,NM12,NNBC,NBC,H,NUDOF) 

c 
C***.**THIS SUBROUTINE FORMS THE UNRESTRAINED, UNTRANSFORMED 
C*****DISPLACEMENT VECTOR FROM THE RESTRAINED, TRANSFORMED 
C*****DISPLACEMENT VECTOR 
c 

IMPLICIT REAL *8 (A-H,0-Z) 
REAL *8 RMA(60),RM1(60),RM(60),H(4) 
DIMENSION IL(4),NBC(10) 

C***** ADD ZERO DOF'S TO MODAL VECTOR 
12=1 
DO 301 11=1,NM12 

DO 302 14=1,NNBC 
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IF (11.EQ.NBC(l4)) THEN 
RM(l1) =O 
GO TO 301 

ENDIF 
302 CONTINUE 

RM(l1) = RMA(l2) 
12=12+1 

301 CONTINUE 
C*****EXPAND MODAL VECTOR 

IL(1) =IB2 
IL(2) = IB2 + N2*3 
IL(3) = IL(2) + 3 
IL(4) = IL(3) + N2*3 
12=1 
DO 3111=1,NM12 

DO 312 11=1,4 
IF (12.EQ.IL(l1)) 12=12+3 

312 CONTINUE 
RM1(12) = RM(I) 
12=12+1 

311 CONTINUE 

c 

RM1(1B2) = RM1(1B2-3) + H(3)/2.*RM1(1B2-1) 
RM1(1B2+1) = RM1(1B2-2) 
RM1(1B2 +2) =RM1(1B2-1) 
RM1(1B3-3) = RM1(1B3)-H(2)/2.*RM1(1B3 + 2) 
RM1(1B3-2) = RM1(1B3+1) 
RM1(1B3-1) = RM1(1B3 + 2) 
NOD= IL(2) 
RM1(NDD) = RM1(1B3) + H(3)/2. *RM1(1B3 + 2) 
RM1(NDD + 1) = RM1(1B3+1) 
RM1(NDD + 2) = RM1(1B3 + 2) 
RM1(NDD+ 3) = RM1(1B2-3)-H(2)/2.*RM1(1B2-1) 
RM1(NDD +4) = RM1(1B2-2) 
RM1(NDD + 5) = RM1(1B2-1) 
RETURN 
END 

SUBROUTINE KTIN(KR,GR,PL,RM1,LL,A,NUDOF,NM12,T,TT,NBC,NNBC, 
1KTINV,KST,llF,N1,N2,N3,KU,KTOT,G,HB,K,B,C) 

C*****THIS SUBROUTINE ASSEMBLES, TRANSFORMS, AND RESTRAINS THE 
C*****NONLINEAR STIFFNESS MATRICES AND FORMS THE TANGENT STIFFNESS 
C**"**MATRIX UU IS THE K SIGMA MATRIX 
c 

IMPLICIT REAL*8 (A-H,0-Z) 
REAL*8 KR(60,60),GR(60,60),NU1(60,60),NU2(60,60),LL(4),A(4) 
REAL *8 N N 1 (6,6), NN2(6,6) ,T(60,60) ,TT(60,60), G(6,6) 
REAL *8 Nu 1 T(60,60) I NU2T(60,60)' N 1 T(60,60)' N2T(60,60),KR1 (2500) 
REAL*8 GR1 (2500),KT AN(60,60),WKAREA(60) 
REAL*8 KTINV(60,60),NUR1(60,60),NUR2(60,60),RM1(60),KST(60,60) 
REAL*8 KTOT(60,60),KU(60,60),K(6,6),B(4),C(6,6) 
REAL *8 uu 1 (60,60)' UUR1{60,60),UU 1T(60,60)Iu1T(60,60),UR1 (2500) 
DIMENSION NBC(10) 
NF=60 
NZ=O 

C*****FORM UNRESTRAINED NONLINEAR MATRICES 
DO 450 1=1,NUDOF 
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DO 450J=1,NUDOF 
UU1(1,J) =O. 
NU1(1,J) =O. 
NU2(1,J) =O. 

450 CONTINUE 
N=O 
DO 470 M=1,N1 

U1=RM1(N+1) 
X1=RM1(N+2) 
Y1 =RM1(N+3) 
U2=RM1(N+4) 
X2 = RM1(N + 5) 
Y2=RM1(N+6) 
CALL MM(X1 ,Y1 ,X2,Y2,LL(1),A(1),NN1 ,NN2,llF) 
CALL MATR(1,K,G,C,A,B,LL,HB) 
DO 460 1=1,6 
DO 460 J=1,6 

NU1(1 + N,J + N) = NU1(1 + N,J + N) + NN1(1,J) 
NU2(1 + N,J + N) = NU2(1 + N,J + N) + NN2(1,J) 
UU1(1 + N,J + N) = UU1(1 + N,J + N) + A(1)*(U2-U1)*G(l,J) 

460 CONTINUE 
N=N+3 

470 CONTINUE 
DO 500 IC= 2,3 

N=N+3 
DO 490 M=1,N2 

U1 =RM1(N+1) 
X1=RM1(N+2) 
Y1=RM1(N1:'3) 
U2=RM1(N+4) 
X2=RM1(N+5) 
Y2=RM1(N+6) 
CALL MATR(IC,K,G,C,A,B,LL,HB) 
CALL MM(X1 ,Y1 ,X2,Y2,LL(2),A(IC),NN1 ,NN2,llF) 
DO 480 1=1,6 
DO 480 J=1,6 

NU1(1 + N,J + N) = NU1(1 + N,J + N) + NN1(1,J) 
NU2(1 + N,J + N) = NU2(1 + N,J + N) + NN2(1,J) 
UU1(1 + N,J + N) = UU1(1 + N,J + N) + A(IC)*(U2-U1)*G(l,J) 

480 CONTINUE 
N=N+3 

490 CONTINUE 
500 CONTINUE 

N=N+3 
DO 520M=1,N3 

U1=RM1(N+1) 
X1=RM1(N+2) 
Y1=RM1(N+3) 
U2=RM1(N+4) 
X2=RM1(N+5) 
Y2 = RM1(N + 6) 
CALL MATR(4,K,G,C,A,B,LL,HB) 
CALL MM(X1,Y1,X2,Y2,LL(4),A(4),NN1,NN2,llF) 

DO 510 1=1,6 
D0510J=1,6 

NU1(1 + N,J + N) = NU1(1 + N,J + N) + NN1(1,J) 
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NU2(1 + N,J + N) = NU2(1 + N,J + N) + NN2(1,J) 
UU1(1 + N,J + N) = UU1(1 + N,J + N) + A(4)*(U2-U1)*G(l,J) 

510 CONTINUE 
N=N+3 

520 CONTINUE 
DO 530 1=1,NUDOF 
DO 530J=1,NUDOF 

KTOT(l,J) = NU1(1,J) + NU2(1,J) + KU(l,J) 
530 CONTINUE 

IF(llF.EQ.3)GO TO 700 
C*****FORM TRANSFORMED NONLINEAR STllFNESS MATRICES 

CALL VMULFF(TT,UU1,NM12,NUDOF,NUDOF,NF,NF,UU1T,NF,IER) 
CALL VMULFF{TT,NU1,NM12,NUDOF,NUDOF,NF,NF,NU1T,NF,IER) 
CALL VMULFF(TT,NU2,NM12,NUDOF,NUDOF,NF,NF,NU2T,NF,IER) 
CALL VMULFF(UU1T,T,NM12,NUDOF,NM12,NF,NF,U1T,NF,IER) 
CALL VMULFF(NU1T,T,NM12,NUDOF,NM12,NF,NF,N1T,NF,IER) 
CALL VMULFF(NU2T,T,NM12,NUDOF,NM12,NF,NF,N2T,NF,IER) 

C*****FORM RESTRAINED NONLINEAR MATRICES 
M=1 
DO 570 I= 1,NM12 
DO 570 J=1,NM12 

DO 580 L2=1,NNBC 
IF (l.EQ.NBC(L2).0R.J.EQ.NBC(L2)) GO TO 570 

580 CONTINUE 
KR1(M) = N1T(l,J) 
GR1(M) = N2T(l,J) 
UR1(M) = U1T(l,J) 
M=M+1 

570 CONTINUE 
M=1 
NRE = NM12-NNBC 
DO 590 1=1,NRE 
DO 590 J=1,NRE 

NUR1(1,J) = KR1(M) 
NUR2(1,J) = GR1(M) 
UUR1{1,J) = UR1(M) 

M=M+1 
590 CONTINUE 

IF(llF.EQ.2)THEN 
DO 600I=1,NRE 
DO 600J=1,NRE 

KTAN(l,J) = NUR1(1,J) + 1.5.NUR2(1,J) + KR(l,J) + UUR1(1,J) 
600 CONTINUE 

ENDIF 
IF(llF.EQ.1)THEN 

D06051=1,NRE 
D0605J=1,NRE 

KST(l,J) = NUR1(1,J) + NUR2(1,J) + KR(l,J) 
605 CONTINUE 

ENDIF 
IF (llF.EQ.2) THEN 

CALL LINV1F(KTAN,NRE,NF,KTINV,NZ,WKAREA,IER) 
ENDIF 

700 RETURN 
END 
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OUTPUT FOR INCREMENT AL PROGRAM 

GBAR 
0.10424280E-03 
0.14033886E-03 
0.33919796E-03 
0.67225987E-03 
0.11268290E-02 
0.17061085E-02 
0.24042586E-02 
0.32443434E-02 
0.41872530E-02 
0.52397028E-02 
0.63969370E-02 
0. 76526362E-02 
0.89993934E-02 
0.10577678E-01 
0.12156659E-01 
0.13795306E-01 
0.15483546E-01 
0.17214533E-01 
0.18978662E-01 
0.20765500E-01 
0.22232170E-01 
0.23845665E-01 
0.24119363E-01 
0.24361650E-01 
0.24689559E-01 
0.24939315E-01 
0.25256515E-01 
0.25516829E-01 
0.258267 48E-01 
0.26094186E-01 
0. 26400379E-01 
0.26672830E-01 
0.26978080E-01 
0.27254672E-01 
0.27561335E-01 
0.27842211E-01 
0.28152569E-01 
0.28438780E-01 
0.28755349E-01 
0.29048869E-01 
0.29104507E-01 
0.29237166E-01 
0.29421645E-01 
0.29647610E-01 
0. 29907018E-01 
0.30194924E-01 
0.30508557E~01 
0.30846846E-01 
0.31210091 E-01 

PBAR 
0.10000002E-01 
0.20000003E-01 
0.50000004E-01 
0.80000006E-01 
0.11000001E+OO 
0.14000001E+OO 
0.17000001E+00 
0.20000001E+00 
0.23000001E + 00 
o.26000001E +oo 
0.29000001E+00 
0.32000002E + 00 
0.35000002E + 00 
0.38000002E + 00 
0.41000002E + 00 
0.44000002E + 00 
0.47000002E + 00 
0. 50000002E + 00 
0.53000002E + 00 
o.56000002E +oo 
o.59ooooo3E +oo 
o.62000003E +oo 
o.625oooo3E +oo 
o.63ooooo3E +oo 
o.63500002E +oo 
o.64000002E +oo 
o.64500002E +oo 
0.65000002E + 00 
o.65500002E +oo 
o.66000002E +oo 
0.66500002E + 00 
0.67000002E + 00 
0.67500002E + 00 
o.68000001E +oo 
0.68500001E+00 
o.69000001E +oo 
o.69500001E +oo 
o.70000001E +oo 
o.7o500001E +oo 
0. 71000001E + 00 
o.71500001E +oo 
0. 72000001E+00 
o.72500001E +oo 
0. 73000000E + 00 
0. 73500000E + 00 
o.74ooooooE +oo 
0. 7 4500000E + 00 
o.75ooooooE +oo 
0. 75500000E + 00 
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0.31599769E-01 
0.32018436E-01 
0.32469700E-01 
0.32958269E-01 
0.33490054E-01 
0.34072337E-01 
0.34714009E-01 
0.35425883E-01 
0.36221121 E-01 
0.37115774E-01 
0.38129510E-01 
0.39286567E-01 
0.40617023E-01 
0.42045322E-01 
0.43697771 E-01 
0.45696856E-01 
0.48115579E-01 
0.51053927E-01 
0.54582788E-01 
0.5890021 OE-01 
0.64389966E-01 
0. 71478356E-01 
0.80808542E-01 
0.93884525E-01 
o.11394016E +oo 
OJ 5180795E + 00 

0. 76000000E + 00 
0. 76500000E + 00 
0. 77000000E + 00 
0. 77 499999E + 00 
0. 77999999E + 00 
0. 78499999E + 00 
o.7B999999E +oo 
0. 79499999E + 00 
0. 79999999E + 00 
o.ao499999E +oo 
o.aoggggggE +oo 
o.a1499999E +oo 
o.a1999999E +oo 
0.82499998E + 00 
o.a29999gaE +oo 
0.83499998E + 00 
o.B399999BE +oo 
o.B449999BE +oo 
0.84999998E + 00 
0.85499998E + 00 
o.8599999BE +oo 
0.86499998E + 00 
0. 86999997E + 00 
0.87 499997E + 00 

0.87999997E + 00 
0.88499997E + 00 
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