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Abstract. In this paper we consider the convergence of the infinite dimensional version of the
Kleinman–Newton algorithm for solving the algebraic Riccati operator equation associated with the
linear quadratic regulator problem in a Hilbert space. We establish mesh independence for this
algorithm and apply the result to systems governed by delay equations. Numerical examples are
presented to illustrate the results.
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1. Introduction. The problem of constructing numerical schemes for optimiza-
tion-based design and control of infinite dimensional systems leads to technical and
practical issues that are not present if one is interested only in simulation. For exam-
ple, if one uses finite elements or the method of lines to simulate a system of partial
differential equations (PDEs), then the resulting finite dimensional approximate sys-
tem is often very large and can have millions of state variables. The corresponding
approximating Riccati equations are immense, and special numerical techniques are
required to solve such equations. Many of these large-scale Riccati solvers are based
on iterative algorithms (see [9], [10], and [30]) and take advantage of the mathematical
structure of the approximating system (symmetry, sparseness, etc.).

There are two basic issues that need to be addressed in developing practical
numerical approximations for control. First, it is essential that the approximation
scheme leads to finite dimensional approximating Riccati equations that converge
(under mesh refinement) to the solution of the infinite dimensional Riccati equation.
This is a well-studied problem (see [7], [14], [26], [33], and [43]). It is now well known
that to obtain norm convergence for the Riccati equation, the approximation scheme
must satisfy some form of convergence, dual convergence, and uniform preservation
of stabilizability and detectability under mesh refinement (see [7] and [33]). These
concepts will be made more precise in section 7.1. The important point here is that
many “standard” convergent approximation schemes do not satisfy all the conditions
necessary for norm convergence of the Riccati operators (see [16]). If this issue is
ignored when one develops an approximation scheme for control design and optimiza-
tion, then the resulting numerical algorithm can fail to produce accurate and useful
results (see the numerical examples in section 9). In this paper we show that these
properties are also key ingredients in establishing mesh independence of Newton-type
algorithms.
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2664 J. A. BURNS, E. W. SACHS, AND L. ZIETSMAN

The second important issue is concerned with the development of an effective
algorithm for the numerical solution of the (large-scale) finite dimensional Riccati
equations that arise once the problem has been discretized. During the past five
years considerable attention has been devoted to the problem of developing accurate
and fast numerical methods for control of large-scale systems. In 2004, the first
issue of the IEEE Control Systems Magazine (Volume 24, Issue 1) was devoted to
this topic. Much of the motivation for this emphasis comes from the fact that such
systems often arise as discretizations of control problems with PDEs as the governing
system. The observation that these large-scale finite dimensional Riccati equations
come from discretizations of PDE control systems makes it possible to exploit special
algorithms such as multigrid techniques (see [42] and [45]) and parallel iterative solvers
(see [30]). Considerable progress has been made at this level by Benner and Saak
(see [9] and [10]). Also, Grasedyck, Hackbusch, and Khoromskij (see [30] and the
references therein) have developed impressive computational algorithms for Riccati
and Lyapunov equations that arise in these cases. Many of these large-scale Riccati
solvers are based on iterative algorithms.

It is impossible to address all the potential problems in constructing approxima-
tion schemes for optimal control of infinite dimensional systems in a single paper, so we
limit our discussion to the well-studied linear quadratic optimal control problem and
show how specific approximation assumptions are needed to address convergence and
efficiency of an algorithm. In particular, we focus on convergence and mesh indepen-
dence of the Kleinman–Newton algorithm for solving the operator Riccati equation
defined by the linear quadratic regulator (LQR) problem. This problem is simple
enough to allow for a rather complete analysis of convergence and mesh independence
and yet complex enough to illustrate how both convergence and mesh independence
might fail for perfectly good “standard” (convergent) numerical approximations.

2. A short review of the mesh independence principle. There are two
basic aspects of the mesh independence principle (MIP) for Newton-type methods
(see [1] and [2]). Roughly speaking, the MIP may be broken down into convergence
under mesh refinement of the Newton iteration counts on a given mesh.

Let F : D(F) ⊆ E −→ E be a nonlinear operator on an infinite dimensional
Hilbert space E, and consider the equation

(2.1) F(x) = 0.

Let EN ⊆ E be a sequence of finite dimensional approximating spaces, and consider
the sequence of discretized equations

(2.2) FN (xN ) = 0,

where FN : D(FN ) ⊆ EN −→ EN . In this paper we are interested in the problem
of solving the Riccati operator equation associated with LQR feedback control of
systems governed by delay and PDEs. In this setting, (2.1) is an infinite dimensional
Riccati equation defined by a PDE control system, and (2.2) is an approximating
Riccati equation obtained by some type of finite element or finite difference scheme
applied to the PDE system. Here N is related to the size of the mesh used to define
the discretized equations on a grid. Assume that (2.1) and (2.2) have unique solutions
x∞ ∈ D(F) and xN

∞ ∈ D(FN ), respectively. We say that the approximation scheme
converges if

(2.3) lim
N→+∞

∥∥xN
∞ − PNx∞

∥∥
EN = 0,
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where PN : E −→ EN is the orthogonal projection of E onto EN .
Now assume that one applies a Newton-type algorithm to the infinite dimensional

problem (2.1) and that the same algorithm is also applied to the corresponding finite
dimensional approximate problem (2.2). For the moment assume both schemes pro-
duce quadratically convergent iterations xk and xN

k , k = 1, 2, . . . . For a given ε > 0,
x0 ∈ D(F) and xN

0 ∈ D(FN ) define the numbers M(ε, x0) and MN (ε, xN
0 ) by

M(ε, x0) � inf{k : ‖xk − x∞‖ < ε} and MN (ε, xN
0 ) � inf{k :

∥∥xN
k − xN

∞
∥∥
EN < ε},

respectively. Here, x0 and xN
0 are the starting values for the iterations. The (strong)

MIP (see Theorem 2.1 in [2]) takes the form

(2.4) M(ε, x0) = MN (ε, PNx0) + τ(N),

where τ(N) −→ 0 as N −→ +∞. Also, assume there are constants c and cN such
that

(2.5) ‖xk+1 − x∞‖ ≤ c ‖xk − x∞‖2

and

(2.6)
∥∥xN

k+1 − xN
∞
∥∥
EN ≤ cN

∥∥xN
k − xN

∞
∥∥2

EN ,

respectively. Let ĉ and ĉN be the minimal values of c and cN that satisfy (2.5) and
(2.6), where xN

0 = PNx0. As noted in [2], since PN : E −→ EN is the orthogonal
projection of E onto EN , in some cases one can show that another form of the strong
MIP is given by

(2.7) ĉN = ĉ + γ(N),

where γ(N) −→ 0 as N −→ +∞. The basic idea behind these strong versions of
mesh independence is that the number of iterations required to achieve a given error
tolerance is independent of the mesh size and asymptotically converges to the number
of infinite dimensional iterations (theoretically) required to attain the same tolerance.
A weaker form of the MIP would require only that, if one has the estimates (2.5) and
(2.6), then

(2.8) cN = c + δ(N),

where δ(N) −→ 0 as N −→ +∞. Although the constants c and cN are not the min-
imal values, it follows that the number of iterations required to solve the discretized
equations FN (xN ) = 0 is essentially independent of the mesh size.

3. Mesh independence for the infinite dimensional Riccati equation. In
this paper we focus on the case where the nonlinear function F = F(Π) is defined by
an infinite dimensional Riccati operator equation of the form

(3.1) F(Π) = A∗Π + ΠA− ΠBB∗Π + C∗C = 0,

where A generates a strongly continuous semigroup on a Hilbert space H. Here
F : D(F) ⊆ E −→ E, where E is the space of bounded linear operators on H.

Remark 3.1. It is important to note that in most applications the operator A is
unbounded, and even if the B and C operators are bounded, the nonlinear operator
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2666 J. A. BURNS, E. W. SACHS, AND L. ZIETSMAN

F will not be continuous on its domain. Therefore, F will not have a Lipschitz
continuous Fréchet derivative, and the analysis used in [1] and [2] is not directly
applicable. In particular, convergence proofs for the infinite dimensional Newton
algorithm that depend on the existence of the Fréchet derivative cannot be used in
this setting. As noted by Damm and Hinrichsen in [23], the existence of the Fréchet
derivative can be relaxed if one works in ordered Banach spaces. Indeed, they provide
a general convergence result under the blanket assumptions that E is ordered by a
closed, solid, regular convex cone and that F is continuous on its domain (see page 50
in [23]). Moreover, even when using the ordered space approach, we see that Fréchet
differentiability was needed to obtain quadratic convergence of the Newton method
(see page 56 in [23]). However, for the delay systems below (and other PDE control
systems) these assumptions do not hold.

In the finite dimensional case, the “natural” space of operators is the set E = Hn

of n × n Hermitian matrices with (Frobenius) trace norm. As noted in [23], if one
uses the cone C = Hn

+ = {Π ∈ Hn : Π ≥ 0}, then C satisfies the blanket assumptions
above. In an infinite dimensional setting, verifying these assumptions is nontrivial or
impossible, depending on the choice of E. One might be tempted to use the infinite
dimensional analogue and set E = H to be the set of all trace class operators on the
Hilbert space H. If the solution Π to (3.1) is not of trace class (see Example 1), then
this is not a reasonable choice for E. Even if the solution is of trace class, one might
still need to work in a larger space to develop practical approximation schemes for
numerical solutions. In this setting, if E = L(H,H) is the space of bounded linear
operators on H and one sets C = H+ = {Π ∈ H : Π ≥ 0} to be the cone of nonnegative
definite trace operators, then C is not solid. Hence, a direct application of the results
in [23] is not possible.

In the case when the nonlinear equation (3.1) is a Riccati equation defining an
LQR controller, it is possible to extend the finite dimensional proof of Mehrmann in
[40] to a rather general class of infinite dimensional problems. We take this approach
and present a complete convergence proof for the infinite dimensional Kleinman–
Newton algorithm in the space E = L(H,H). Although this proof is similar in spirit
to the results in [40], there are some technical details that require attention. Moreover,
this approach provides explicit bounds and estimates that we later use to establish
mesh independence. This is another reason we do not use the approach in [23] based
on ordered spaces. The following example illustrates that even if A, B, and C are
bounded, the solution to the operator Riccati equation (3.1) does not have to be
of trace class. Later we shall use this example to illustrate the importance of the
compactness assumptions.

Example 1. Let H = R × L2, and define the operators A, B, and C on H by

A =

[
−1 0
0 −I

]
, B =

[
1 0

]T
, and C =

[ √
3 0

0
√

2I

]
,

respectively. Here I is the identity on L2. By direct computation it follows that

Π =

[
1 0
0 I

]

is the solution to the Riccati equation (3.1). Since the identity operator is not compact,
Π is not of trace class. On the other hand, for this simple example, F is continuously
Fréchet differentiable, and convergence of the infinite dimensional Kleinman–Newton
algorithm follows directly from [1] and [2].
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It is well known that under very mild conditions on the LQR problem, and assum-
ing that the discretization scheme preserves the basic control system properties, both
(2.1) and (2.2) have unique solutions in the set of nonnegative self-adjoint bounded
linear operators. The issues to be resolved are as follows:

(i) What conditions must be placed on the discretization scheme to guarantee
that the solutions to the approximating equations (2.2) converge in norm to
the solution of the infinite dimensional problem (2.1)? In some sense this is a
classic numerical analysis problem. However, for the Riccati equation (3.1),
the conditions for norm convergence are nontrivial and the best results are
stated in terms of control system properties.

(ii) Does the infinite dimensional Kleinman–Newton algorithm converge quadrat-
ically when applied to the infinite dimensional operator Riccati equation? As
noted above, there are several approaches to this question. For applications to
delay and PDE systems, our approach offers explicit bounds which are help-
ful in establishing mesh independence, and this approach does not require
continuity of F .

(iii) Finally, what conditions must be placed on the discretization scheme to guar-
antee that the Kleinman–Newton algorithm satisfies MIP estimates of the
form (2.4), (2.7), or (2.8)?

In this paper we focus on these issues. First, we give a brief review of what is known
about convergence of discretization schemes for the infinite dimensional LQR control
problem.

4. A summary of approximation results for LQR control. Most of the
numerical schemes for approximating systems governed by PDEs developed during
the past 50 years focused on methods that provided convergent and efficient simula-
tions. However, the LQR problem is an optimal control problem on an infinite time
interval, and it is possible to clearly identify two additional requirements that need to
be placed on an approximation scheme to ensure convergence of the control design.
Moreover, we shall show that these requirements also play a role in determining mesh
independence of the Kleinman–Newton algorithm. In particular, dual convergence
and preservation of exponential stability (POES) play central roles in both conver-
gence and mesh independence. The POES condition was first introduced by Banks
and Kunisch in [7] as a technical assumption needed to establish strong convergence of
the Riccati operators for parabolic PDE control problems. This condition is equiva-
lent to the uniform stabilizability defined in Assumption 7.3 below. In some cases one
can relax the POES assumption and still obtain strong (and even norm) convergence
of the Riccati operators. For example, the spline scheme developed for delay systems
by Kappel and Salamon in [36] produced convergent Riccati operators even though
POES was not satisfied (see [35] and [37]). Kappel and Salamon replaced the POES
assumption with a uniform output and input-output stability condition and proved
strong convergence of the Riccati operators. Ito [33], [34] used the version given in
Assumption 7.3 to establish norm convergence. We will say more about this when we
discuss the numerical results below.

In 1969 Sasai and Shimemura [47] was among the first researchers to recognize the
importance of dual convergence for infinite dimensional LQR problems (also see [46]
and [48]). Gibson (see [27], [28], [29]) established a general framework for developing
approximation schemes for LQR problems and applied his results to control systems
governed by delay and hyperbolic PDEs. If one is interested only in weak convergence
of the functional gains, then dual convergence may not be essential (see [24] and
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[25]). However, as observed in [8] and [13], weak convergence may not be sufficient for
practical design, and, as shown in [16], not all standard schemes yield dual convergent
algorithms. In particular, the finite element scheme developed in [5] is not dual
convergent and does not produce strongly convergent functional gains.

At this point, there is no general method that can address the issue of dual
convergence. However, for delay systems, two approaches have emerged. The first
method is based on constructing numerical schemes that are dual convergent. The
excellent survey by Kappel [35] focuses on this approach. A second approach is based
on constructing separate numerical schemes for the forward problem and the dual
problem. This is the approach carried out for delay equations by Germani, Manes,
and Pepe in the paper [26]. It is important to note that extending any of these
methods to other types of PDE-based systems is not a trivial exercise.

The key point here is that in order to develop numerical schemes for control of infi-
nite dimensional systems, one must first ensure that certain control system properties
are preserved under the approximation. Once this issue is resolved, it is important
to consider the problem of numerically solving the finite dimensional problem. In
particular, it is possible to construct several numerical schemes that preserve the
required control system properties (stabilizability, detectability, etc.), but the result-
ing finite dimensional control problems may differ dramatically in conditioning and
computational complexity.

In this paper we focus on an iterative method for solving the Riccati equations
associated with LQR problems. We show that the infinite dimensional Kleinman–
Newton iterations converge to the Riccati operator for the infinite dimensional prob-
lem, and we investigate mesh independence. Although the basic ideas used in the
proof are similar to those found in papers on the finite dimensional problem, there
are certain estimates that provide insight into general connections between preserva-
tion of control system properties, convergence, and mesh independence. These results
provide a framework that can be employed to analyze specific finite dimensional ap-
proximations. We close with an application of these results to delay systems and a
discussion of the averaging schemes found in [3] and [16] and the spline/finite element
schemes given in [4], [5], and [8].

As noted above, the MIP does not make sense unless one has norm convergence
of the discretized Riccati operators. It is known (see [16]) that the spline/finite ele-
ment scheme for delay systems given in [5] does not produce norm convergent Riccati
operators. This problem can also be seen in the much simpler Example 2 given in
section 7.1 below.

5. Problem setting and basics. We consider the following LQR problem in
an abstract Hilbert space setting. Let U , H, and Y be Hilbert spaces over the reals.
If Z and W are any two Hilbert spaces, then we denote by L(Z,W ) the linear space
of linear bounded operators from Z into W . In the special case where W = Z, we set
L(Z) = L(Z,Z). The system equation is given in state space form by

(5.1) ż(t) = Az(t) + Bu(t), t ≥ 0, z(0) = z0 ∈ H,

where A generates a strongly continuous semigroup on H and B ∈ L(U,H).
The assumption that B ∈ L(U,H) implies we are considering only bounded input

operators. Let C ∈ L(H,Y ), and define the quadratic cost function J(u) by

(5.2) J(u) =

∫ ∞

0

(‖Cz(s)‖2 + ‖u(s)‖2) ds,
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where z(s) is the solution to (5.1) for a given control u ∈ L2(0,∞;U). The LQR con-
trol problem is to minimize the quadratic cost J(u) over all controls u ∈ L2(0,∞;U).

It is well known (see [11], [12]) that under certain assumptions, the optimal control
is given by state feedback uopt = −Kz(t), where

(5.3) K = B∗X,

and X ∈ L(H) is a solution of an abstract algebraic Riccati operator equation of the
form

(5.4) A∗X + XA−XBB∗X + C∗C = 0.

In order to formulate an abstract Newton method for solving this nonlinear op-
erator equation in L(H), we first have to specify the appropriate mappings. Let
Σ(H) = {Π ∈ L(H) : Π self-adjoint} be the space of self-adjoint bounded linear op-
erators on H, and let Σ+(H) = {Π ∈ Σ(H) : (Πx, x) ≥ 0 for all x ∈ H} denote the
subspace of nonnegative operators in Σ(H).

Since A is an unbounded operator in (5.4), we define a map A which can be
formally written as A(Π) = A∗Π + ΠA and can be defined rigorously as in [12, page
151]. In particular, for a given Π ∈ Σ(H), set

φΠ(x, y) = (Πx,Ay) + (Ax,Πy), x, y ∈ D(A),
and define

D(A) = {Π ∈ Σ(H) : φΠ can be extended to a continuous sesquilinear operator on H ×H}.

This unique extension of φΠ as a continuous sesquilinear form on H ×H will also
be denoted by φΠ. For each Π ∈ D(A), one can define a linear operator, denoted by
A(Π) ∈ Σ(H), by the identity

(5.5) (A(Π)x, y) = φΠ(x, y) = (Πx,Ay) + (Ax,Πy), x, y ∈ D(A), Π ∈ D(A).

Therefore, we have defined a linear operator A : D(A) ⊂ Σ(H) → Σ(H), and in [12,
page 152], it is shown that for Π ∈ D(A) and x ∈ D(A) one has Πx ∈ D(A∗) and

(5.6) A(Π)x = A∗Πx + ΠAx.

The previous notation allows us to precisely define a solution of the abstract Riccati
operator equation.

Definition 5.1. The bounded linear operator X is called a strict solution of the
Riccati equation (5.4) if X ∈ D(A) and

(5.7) A(X) −XBB∗X + C∗C = 0.

The bounded linear operator X is called a weak solution of the Riccati equation (5.4)
if X ∈ D(A) and

(5.8) (Xx,Ay) + (Ax,Xy) − (B∗Xx,B∗Xy) + (Cx,Cy) = 0, x, y ∈ D(A).

It is shown on page 262 in [12] that for X ∈ Σ+(H) a strict solution is equivalent
to a weak solution of (5.4). Although we might use the notation of the operator
equation, in this paper we deal with weak solutions. The existence and uniqueness of
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solutions to the Riccati operator equation are not necessarily guaranteed. We follow
the definitions and notation in [12].

Definition 5.2. (i) The system (A,B) is called stabilizable if there exists a
bounded linear operator K : H → U such that (A − BK) generates an exponentially
stable C0-semigroup on H.

(ii) The pair (A,C) is called detectable if there exists a bounded linear operator
F : Y → X such that (A + FC) generates an exponentially stable C0-semigroup on
H.

Since B and C are bounded, the following theorem follows from [11, Part III,
Prop. 2.3, Prop. 3.2, and Cor. 4.2].

Theorem 5.3. If (A,B) is stabilizable, then there exists a minimal solution
Xmin ∈ Σ+(H) of the Riccati equation (5.8). If, in addition, (A,C) is detectable,
then A − BB∗Xmin generates an exponentially stable semigroup and Xmin is the
unique solution of the Riccati equation (5.8) in Σ+(H).

In the Newton iteration, we will see that the Newton steps are defined by the
solutions of a generalized Lyapunov equation. Therefore, we recall a few facts about
Lyapunov equations in Hilbert spaces. The following result is found on pages 19–28
in [11].

Theorem 5.4. Let S(·) denote a strongly continuous semigroup on a Hilbert space
H with an infinitesimal generator A. Then the following statements are equivalent.

(i) The semigroup S(·) is exponentially stable; i.e., there exist ω > 0 and M ≥ 1
such that

(5.9) ‖S(t)x‖ ≤ Me−ωt‖x‖ for all x ∈ H, t ≥ 0.

(ii) There exists a positive P ∈ Σ+(H) such that

(5.10) (Px,Ay) + (Ax,Py) + (x, y) = 0, x, y ∈ D(A).

When applying Newton’s method, we obtain Lyapunov equations that are more
general where the identity term (x, y) is replaced by a more general term (x,Qy) with
possible nonnegativity or positivity properties. However, from the representation
formula for solutions of Lyapunov equations, one can establish the following result
(see [22, page 252]).

Theorem 5.5. Let S(·) denote a strongly continuous semigroup on a Hilbert space
H with an infinitesimal generator A. If S(·) is exponentially stable and Q ∈ Σ(H),
then there exists a unique solution X ∈ Σ(H) of

(5.11) (Xx,Ay) + (Ax,Xy) + (x,Qy) = 0, x, y ∈ D(A).

Moreover, X has the representation

(5.12) X =

∫ ∞

0

S∗(t)QS(t)dt,

and if Q ∈ Σ+(H), then X ∈ Σ+(H).

6. The Kleinman–Newton method in Hilbert space. In this section we
define the Kleinman–Newton algorithm and establish convergence. Throughout this
section we make the following assumption.

Assumption 6.1. Let A be the infinitesimal generator of a semigroup on H,
B ∈ L(U,H), and C ∈ L(H,Y ). We assume that
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(i) the system (A,B) is stabilizable and the pair (A,C) is detectable, and
(ii) an operator X0 ∈ Σ+(H) is given such that A − BB∗X0 generates an expo-

nentially stable semigroup on H.
We solve the abstract algebraic equation (5.7) by Newton’s method. We seek a

bounded linear operator X ∈ D(A), which provides a solution to the Riccati equation
F(X) = 0 where the nonlinear mapping F : D(A) ⊂ Σ(H) → Σ(H) is defined by

(6.1) F(X) = A(X) −XBB∗X + C∗C.

In particular, we look for weak solutions to the equation F(X) = 0 as defined by
(5.8).

Formally applying Newton’s method to F(X) = 0 leads to the iteration

A(Xk+1 −Xk) −XkBB∗(Xk+1 −Xk) − (Xk+1 −Xk)BB∗Xk

+A(Xk) −XkBB∗Xk + C∗C = 0,(6.2)

or equivalently,

(6.3) A(Xk+1) −XkBB∗Xk+1 −Xk+1BB∗Xk + XkBB∗Xk + C∗C = 0.

After rearranging some terms, it follows that the weak formulation of this scheme has
the form

(Xk+1x, (A−BB∗Xk)y) + ((A−BB∗Xk)x,Xk+1y)

= −(B∗Xkx,B
∗Xky) − (Cx,Cy), x, y,∈ D(A).(6.4)

In what follows we will establish the following convergence theorems for Newton’s
method. We split up the statements into three parts according to the tools being used
in the proof. We follow the structure of the proof for the finite dimensional case given
in [40] (see pages 91–94).

Theorem 6.2. If Assumption 6.1 holds, then
(i) the Newton iteration (6.4) is well defined and has a unique solution Xk ∈

Σ+(H), k = 1, 2, . . . , and
(ii) the closed-loop operators A − BB∗Xk, k = 1, 2, . . . , generate exponentially

stable semigroups Sk(t).
Proof. Let us assume, by induction, that Xk ∈ Σ+(H) is such that A − BB∗Xk

generates an exponentially stable semigroup Sk(t). In particular, there exist Mk ≥ 1
and ωk > 0 such that

(6.5) ‖Sk(t)‖ ≤ Mke
−ωkt.

Theorem 5.5 applied to equation (6.4) yields the existence of the next iterate, Xk+1 ∈
Σ+(H). By adding and subtracting terms involving Xk+1 and reordering, (6.4) can
now be rewritten as

(Xk+1x, (A−BB∗Xk+1)y) + ((A−BB∗Xk+1)x,Xk+1y)

= −(B∗Xk+1x,B
∗Xk+1y) − (Cx,Cy)(6.6)

−(B∗(Xk+1 −Xk)x,B
∗(Xk+1 −Xk)y), x, y ∈ D(A).

From (6.6) the operator Xk+1 can be viewed as a solution Xk+1 ∈ Σ+(H) of a
Lyapunov equation of the form (5.11) with the infinitesimal generator A−BB∗Xk+1

of a semigroup denoted by Sk+1(t). Since Xk+1 exists, we define

V (t, z) := (Xk+1Sk+1(t)z, Sk+1(t)z), z ∈ D(A−BB∗Xk+1).
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It follows from (6.6) that dV
dt (t, z) = −Φ(t), where

Φ(t) = ‖B∗Xk+1Sk+1(t)z‖2 + ‖CSk+1(t)z‖2 + ‖B∗(Xk+1 −Xk)Sk+1(t)z‖2.

Since Xk+1 ∈ Σ+(H), an integration of the previous equation yields∫ t

0

Φ(s) ds = V (0, z) − V (t, z) ≤ V (0, z)

for all t > 0 and z ∈ D(A − BB∗Xk+1). The domain D(A − BB∗Xk+1) is dense in
H, which implies that for all z ∈ H there is a constant cz such that

(6.7)

∫ ∞

0

‖B∗(Xk+1 −Xk)Sk+1(t)z‖2dt ≤
∫ ∞

0

Φ(t) dt ≤ cz.

Set Ak = A − BB∗Xk so that Ak+1 = A − BB∗Xk+1 = Ak + BB∗(Xk − Xk+1).
Observe that zk+1(t) = Sk+1(t)z is the solution of

żk+1(t) = Ak+1zk+1(t) = Akzk+1(t) + BB∗(Xk −Xk+1)zk+1(t), zk+1(0) = z,

and is given by

zk+1(t) = Sk(t)z +

∫ t

0

Sk(t− s)BB∗(Xk −Xk+1)zk+1(s)ds.

Using the assumption that Sk(t) is exponentially stable so that (6.5) holds, we
have

‖zk+1(t)‖ ≤ ‖Sk(t)z‖ +

∫ t

0

‖Sk(t− s)‖‖BB∗(Xk −Xk+1)zk+1(s)‖ds

≤ Mke
−ωkt‖z‖ + Mk‖B‖

∫ t

0

e−ωk(t−s)‖B∗(Xk −Xk+1)‖‖zk+1(s)‖ds.

Gronwall’s inequality, together with (6.7), yields∫ ∞

0

‖Sk+1(t)z‖2dt =

∫ ∞

0

‖zk+1(t)‖2dt ≤ cz, z ∈ D(A−BB∗Xk+1).

By density this holds for all z ∈ H, and by Theorem 5.1.2 in [22] we obtain that
Sk+1 is an exponentially stable semigroup. This concludes the induction step and the
proof.

Theorem 6.3. If Assumption 6.1 holds, then
(i) the sequence Xk converges in Σ+(H) and limk→∞ Xk = X∞ ∈ Σ+(H). More-

over, X∞ is a weak solution to F(X∞) = 0;
(ii) the closed-loop operator A−BB∗X∞ generates an exponentially stable semi-

group S∞(t) satisfying

(6.8) ‖S∞(t)‖ ≤ Me−ωt

for constants M ≥ 1 and ω > 0;
(iii) the Newton iterates satisfy 0 ≤ X∞ ≤ · · · ≤ Xk+1 ≤ Xk ≤ · · · ≤ X1.
Proof. If we increase the index in (6.4) by one, we obtain

(Xk+2x, (A−BB∗Xk+1y)) + ((A−BB∗Xk+1)x,Xk+2y)

= −(B∗Xk+1x,B
∗Xk+1y) − (Cx,Cy), x, y ∈ D(A).
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Subtracting this from (6.6) yields

(6.9)

((Xk+1 −Xk+2)x, (A−BB∗Xk+1y)) + ((A−BB∗Xk+1)x, (Xk+1 −Xk+2)y)

= −(B∗(Xk+1 −Xk)x, (B
∗(Xk+1 −Xk)y), x, y ∈ D(A).

We can infer from Theorem 5.5 that Xk+1 −Xk+2 ≥ 0, k = 0, 1, 2, . . . .
Therefore Xk ∈ Σ+(H) is a sequence of operators which is decreasing and bounded

from below by 0. By [39, page 282], there exists an X∞ ∈ Σ+(H) with

lim
k→+∞

Xkx = X∞x for all x ∈ H.

Passing to the limit in (6.4), we deduce that X∞ satisfies the Riccati equation (5.8)
in its weak form, and hence F(X∞) = 0. Theorem 5.3 implies that the solution X∞
is unique, and by Assumption 6.1, A − BB∗X∞ generates an exponentially stable
semigroup.

Theorem 6.4. If Assumption 6.1 holds, then for all k = 0, 1, 2, . . . ,

‖Xk+1 −X∞‖ ≤ c‖Xk −X∞‖2,

where

c =

∫ ∞

0

‖S∗
∞(t)‖‖BB∗‖‖S∞(t)‖ dt ≤ M2

2ω
‖BB∗‖

and the constants M ≥ 1 and ω > 0 are given by (6.8).
Proof. By (6.3), the limit operator X∞ satisfies the equation

(6.10) A(X∞) −X∞BB∗X∞ + C∗C = 0.

To shorten notation in the rest of the proof, all the equations are to be understood in
the weak sense. Equation (6.10) can be rewritten as

(6.11)

(A−BB∗Xk+1)
∗X∞ + X∞(A−BB∗Xk+1)

= −X∞BB∗X∞ − C∗C + (X∞ −Xk+1)BB∗X∞ + X∞BB∗(X∞ −Xk+1).

If we subtract (6.6) from (6.11), we obtain

(6.12)

(A−BB∗Xk+1)
∗(X∞ −Xk+1) + (X∞ −Xk+1)(A−BB∗Xk+1)

= X∞BB∗X∞ −Xk+1BB∗X∞ −X∞BB∗Xk+1 + Xk+1BB∗Xk+1

+ (Xk+1 −Xk)BB∗(Xk+1 −Xk)

= (X∞ −Xk+1)BB∗(X∞ −Xk+1) + (Xk+1 −Xk)BB∗(Xk+1 −Xk).

This implies that

(6.13)

(A−BB∗X∞)∗(X∞ −Xk+1) + (X∞ −Xk+1)(A−BB∗X∞)

= −(X∞ −Xk+1)BB∗(X∞ −Xk+1) + (Xk+1 −Xk)BB∗(Xk+1 −Xk).
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Note that Δ = X∞ −Xk+1 is the solution to the Lyapunov equation

(A∞)∗Δ + Δ(A∞) = −Q̂,

where

Q̂ = (X∞ −Xk+1)BB∗(X∞ −Xk+1) − (Xk+1 −Xk)BB∗(Xk+1 −Xk)

and A∞ = A−BB∗X∞ generates the exponentially stable semigroup S∞(t). It follows
from (5.12) in Theorem 5.5 above that the representation formula in Corollary 4.2 of
[28] can be used to derive the following:

(6.14)

0 ≤ Xk+1 −X∞ =

∫ ∞

0

S∗
∞(t) {−(X∞ −Xk+1)BB∗(X∞ −Xk+1)

+ (Xk+1 −Xk)BB∗(Xk+1 −Xk)}S∞(t) dt

≤
∫ ∞

0

S∗
∞(t)((Xk+1 −Xk)BB∗(Xk+1 −Xk))S∞(t) dt.

Taking norms and using the fact that, for self-adjoint operators, ‖S‖ = sup‖x‖≤1(x, Sx),
we obtain
(6.15)

‖Xk+1 −X∞‖ ≤ ‖Xk+1 −Xk‖2

∫ ∞

0

‖S∗
∞(t)‖‖BB∗‖‖S∞(t)‖ dt = c‖Xk+1 −Xk‖2,

where

(6.16)

c =

∫ ∞

0

‖S∗
∞(t)‖‖BB∗‖‖S∞(t)‖ dt = ‖BB∗‖

∫ ∞

0

‖S∗
∞(t)‖‖S∞(t)‖ dt ≤ M2

2ω
‖BB∗‖

follows from (6.8). Since all the operators are self-adjoint, we have

0 ≤ Xk −Xk+1 ≤ Xk −X∞ ⇒ ‖Xk −Xk+1‖ ≤ ‖Xk −X∞‖,

which implies the quadratic rate of convergence

‖Xk+1 −X∞‖ ≤ c‖Xk −X∞‖2.

7. Approximation and mesh independence results. In this section we focus
on the problem of developing numerical schemes that yield convergent and mesh-
independent approximations of the infinite dimensional Riccati equation

F(X) = A(X) −XBB∗X + C∗C = 0,

where BB∗, CC∗ ∈ L(H) and A : D(A) ⊂ Σ(H) → Σ(H) is defined as in section 5
by A(Π)x = A∗Πx+ ΠAx. Although it is possible to work in a very abstract setting,
we use the approximation setup found in Ito’s paper [33]. The resulting framework
is general enough to handle a large class of problems and helps us keep the technical
discussion to a minimum.

We consider a sequence of approximating problems defined by (HN , AN , BN , CN ),
where HN ⊂ H is a sequence of finite dimensional subspaces of H, and AN ∈
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L(HN , HN ), BN ∈ L(U,HN ), and CN ∈ L(HN , Y ) are bounded linear operators. Let
PN : H → HN denote the orthogonal projection of H onto HN satisfying

∥∥PN
∥∥ ≤ 1,

and as N → ∞ we have ‖PNx−x‖ → 0 for all x ∈ H. Note that if TN is any bounded
linear operator on HN , i.e., TN ∈ L(HN , HN ), then TNPN belongs to L(H,HN ) and
the operator norms satisfy∥∥TN

∥∥
L(HN ,HN )

=
∥∥TNPN

∥∥
L(H,HN )

.

Therefore, we can use the notation
∥∥TN

∥∥ =
∥∥TNPN

∥∥ without referring to the specific
spaces.

Define the finite dimensional approximations for A,

AN : Σ(HN ) → Σ(HN ), N = 1, 2, . . . ,

by

AN (ΠN ) = [AN ]∗ΠN + ΠNAN .

The resulting approximating Riccati equation becomes

(7.1) FN (XN ) = AN (XN ) −XNBN (BN )∗XN + (CN )∗CN = 0.

In this section we distinguish between two types of sequences. Let Xk ∈ L(H)
denote the iterates of the Newton method for the infinite dimensional Riccati equation
F(X) = 0. Likewise, XN

k ∈ L(HN ) denotes the iterates of the Newton method for
the discretized Riccati equation FN (XN ) = 0.

We first review the conditions on the approximating scheme (HN , AN , BN , CN )
which are sufficient to guarantee that the approximating Riccati equation (7.1) admits
a unique nonnegative solution XN

∞, and XN
∞PN converges to the unique nonnegative

solution X∞ of the operator Riccati equation (6.1). These results can be found in
Ito’s paper [33]. We then focus on the issue of mesh independence for the Kleinman–
Newton algorithm and present convergence rates.

7.1. Convergence of approximating Riccati operators. In order to discuss
convergence of the finite dimensional approximating Riccati operators, we need to
assume that the numerical scheme preserves the basic stabilizability and detectability
conditions needed to guarantee that the LQR problem is well-posed. It is important to
note that even standard numerical schemes may not preserve these important control
system properties. However, for the delay systems considered below it is known
that all of the schemes discussed in Kappel’s survey [35] satisfy these conditions (see
[15], [18], [19], and [28]). Moreover, as we see below, although these conditions are
sufficient for the finite dimensional Newton iterates to converge, they do not guarantee
that the limit of the Newton iterates XN

∞ converges to X∞ as N → +∞. We shall
need additional properties on the approximating sequence (HN , AN , BN , CN ). We
break these assumptions into three distinct hypotheses concerning the convergence
of the operators, convergence of the adjoint operators, and preservation of uniform
stabilizability/detectability under the approximation.

Assumption 7.1 (convergence). Assume that there is an Ns such that for all
N > Ns the following conditions hold:

(C-i) For each x ∈ H, SN (t)PNx −→ S(t)x and the convergence is uniform in t
on bounded subintervals of [0,+∞).

(C-ii) For each u ∈ U , BNu −→ Bu, and for each x ∈ H, CNPNx −→ Cx.
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Assumption 7.2 (dual convergence). Assume that there is an Ns such that for
all N > Ns the following conditions hold:
(C*-i) For each x ∈ H, [SN (t)]∗PNx −→ S∗(t)x and the convergence is uniform in

t on bounded subintervals of [0,+∞).
(C*-ii) For each x ∈ H, [BN ]∗PNx −→ B∗x, and for each y ∈ Y , [CN ]∗y −→ C∗y.

Assumption 7.3 (uniformly stabilizable and detectable). Assume that there is
an Ns such that for all N > Ns the following conditions hold:

(US) The family of pairs (AN , BN ) is uniformly stabilizable; i.e., there exist a
sequence of operators KN ∈ L(HN , U) and positive constants M1 ≥ 1, ω1 > 0

such that sup
∥∥KN

∥∥ < +∞ and the semigroups e(AN−BNKN )t generated by
closed-loop operators AN −BNKN satisfy∥∥∥e(AN−BNKN )tPN

∥∥∥ ≤ M1e
−ω1t, t ≥ 0.

(UD) The family of pairs (AN , CN ) is uniformly detectable; i.e., there exist a se-
quence of operators GN ∈ L(Y,HN ) and positive constants M2 ≥ 1, ω2 > 0

such that sup
∥∥GN

∥∥ < +∞ and the semigroups e(AN−GNCN )t generated by
closed-loop operators AN −GNCN satisfy∥∥∥e(AN−GNCN )tPN

∥∥∥ ≤ M2e
−ω2t, t ≥ 0.

The following results may be found in [33, Theorems 2.1 and 2.2].
Theorem 7.4. If Assumptions 7.1, 7.2, and 7.3 hold, then for all N > Ns the

Riccati equation (7.1) admits a unique nonnegative solution XN
∞, sup

∥∥XN
∞
∥∥ < +∞,

and there exist positive constants M3 ≥ 1, ω3 > 0 (independent of N) such that the
closed-loop semigroups SN

∞(t) generated by operators (AN −BN [BN ]∗XN
∞) satisfy

(7.2)
∥∥SN

∞(t)
∥∥ =

∥∥SN
∞(t)PN

∥∥ ≤ M3e
−ω3t, t ≥ 0.

Theorem 7.5. If (A,B) is stabilizable, (A,C) is detectable, and Assumptions 7.1,
7.2, and 7.3 hold, then the unique nonnegative solutions XN

∞ to the Riccati equation
(7.1) converge strongly to X∞. Moreover, the closed-loop semigroups SN

∞(t) converge
strongly to the closed-loop semigroup S∞(t) and

(7.3) ‖S∞(t)‖ ≤ M3e
−ω3t, t ≥ 0.

Note that the previous results yield only strong convergence of the solutions of
the Riccati equations. However, if B is bounded with finite dimensional range, then
strong convergence of XN

∞ to X∞ implies norm convergence of the feedback gain
operators. In particular, if rank(B) < +∞, then

(7.4) lim
N→+∞

∥∥KN −K
∥∥ = 0,

where KN = [BN ]∗XN
∞ (see Theorems 6.2 and 6.8 in [28]). Moreover, under certain

compactness assumptions on B and C, one can establish norm convergence of the
Riccati operators. There are a number of results along this line (see [24], [28], [33], [34],
[43], and [44]) and some make use of the smoothing property of the semigroup (e.g.,
analytic, differentiable). The following theorem is not the most general result, but it
is directly applicable to delay and parabolic PDE control systems. Also, this result
can be used to obtain rates of convergence for the approximating Riccati operators.
The proof follows directly from Ito’s paper [33, pp. 158–160].
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Theorem 7.6. Suppose Assumptions 7.1, 7.2, and 7.3 hold, B and C are compact,
and X∞x ∈ D(A∗) for all x ∈ H. If BN = PNB and CN = CPN , then (A,B) is

stabilizable, (A,C) is detectable, and there exists a constant β̂ > 0 such that

(7.5)
∥∥XN

∞ − PNX∞PN
∥∥ ≤ ΔN ,

where ΔN is given by

ΔN � β̂{
∥∥(A∗ − [AN ]∗PN )X∞

∥∥ + ‖B‖
∥∥(B∗ − [BN ]∗PN )X∞

∥∥}.(7.6)

If, in addition, limN→+∞
∥∥(A∗ − [AN ]∗PN )X∞

∥∥ = 0, then

lim
N→+∞

∥∥XN
∞ − PNX∞PN

∥∥ = 0.

Remark. The assumptions of convergence, dual convergence, and uniform preser-
vation of stability and detectability in Ito’s result are sufficient, but it is not yet clear
if they are necessary for operator norm convergence (see [13], [16], and [26]). How-
ever, most approximations that yield operator norm convergence satisfy these or even
stronger assumptions (see [14]). We note that, especially for nonnormal problems,
it may not be easy to check these conditions for a specific approximation scheme.
For example, it is not known which numerical algorithms used in computational fluid
dynamics are dual convergent when applied to nonnormal control systems typical in
this area (see [15] and [20]).

At first glance the compactness assumptions on the B and C operators seem
rather strong. This assumption certainly excludes some idealized boundary control
problems. On the other hand, if one includes actuator or sensor dynamics at the
boundary (a reasonable assumption in many boundary control problems), then the
resulting B and C operators are often compact in practical problems. Moreover, the
simple example below provides some insight into the importance of this assumption
and perhaps a way out of this technical difficulty.

Example 2. Consider Example 1 above and let HN = R × R
N , and define PN :

H → HN to be the natural projection onto HN . If AN = PNA, BN = PNB, and
CN = CPN , then all the conditions in the previous theorem are satisfied except that
C is not compact. The solution to the finite dimensional Riccati equation

FN (X) � [AN ]∗XN + XN [AN ] −XN [BN ][BN ]∗XN + QN = 0

is XN =
[

1 0
0 IN

]
, where IN is the identity on R

N . Clearly, XN does not converge to
X in the uniform operator norm since I is not compact. It is interesting to note that
the feedback gain operators

(7.7) KN = [BN ]∗XN =
[

1 0
]

= K

converge uniformly. This situation occurs in many problems and can be exploited to
address mesh independence issues. We shall discuss this issue in a future paper. We
turn now to the issue of mesh independence.

7.2. Mesh independence of the Kleinman–Newton algorithm. We turn
now to the application of the Kleinman–Newton algorithm to the finite dimensional
Riccati equation

(7.8) FN (XN ) = AN (XN ) −XNBN (BN )∗XN + (CN )∗CN = 0.
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We solve the abstract algebraic equation (7.8) by Newton’s method. In particular, we
seek a bounded linear operator XN ∈ D(AN ), which provides a solution to the Riccati
equation FN (XN ) = 0, where the nonlinear mapping FN : D(AN ) ⊂ Σ(HN ) →
Σ(HN ) is as defined by (7.1) above. Just as for the infinite dimensional case, applying
Newton’s method to FN (XN ) = 0 leads to the iteration

(7.9)

AN (XN
k+1 −XN

k ) −XN
k BN [BN ]∗(XN

k+1 −XN
k ) − (XN

k+1 −XN
k )BN [BN ]∗XN

k

+ AN (XN
k ) −XN

k BN [BN ]∗XN
k + [CN ]∗CN = 0,

or equivalently,
(7.10)
AN (XN

k+1)−XN
k BN [BN ]∗XN

k+1−XN
k+1B

N [BN ]∗XN
k +XN

k BN [BN ]∗XN
k +[CN ]∗CN = 0.

We assume that the approximation scheme preserves the basic Assumption 6.1
for all N sufficiently large. This ensures that the Newton iterations in the finite
dimensional spaces converge monotonically as in Theorem 6.3. In particular, we shall
use the following hypothesis.

Assumption 7.7. Let SN (t) be the semigroup generated by AN on HN , BN ∈
L(U,HN ), and CN ∈ L(HN , Y ). Assume that there is an Ns such that for all N > Ns

the following conditions hold:
(N-i) The system (AN , BN ) is stabilizable and the pair (AN , CN ) is detectable.
(N-ii) An operator XN

0 ∈ Σ+(HN ) is given such that AN −BN (BN )∗XN
0 generates

an exponentially stable semigroup on HN .
The following results are the finite dimensional versions of Theorems 6.3 and 6.4

above. The proofs are almost identical.
Theorem 7.8. If Assumption 7.7 holds, then for all N > Ns,
(i) the sequence XN

k converges in Σ+(HN ) and limk→+∞ XN
k = XN

∞ ∈
Σ+(HN ). Moreover, XN

∞ is a solution to FN (XN
∞) = 0;

(ii) the closed-loop operator AN −BN [BN ]∗XN
∞ generates an exponentially stable

semigroup SN
∞(t) satisfying

(7.11)
∥∥SN

∞(t)
∥∥ ≤ MNe−ωN t

for constants MN ≥ 1 and ωN > 0;
(iii) the Newton iterates satisfy 0 ≤ XN

∞ ≤ · · · ≤ XN
k+1 ≤ XN

k ≤ · · · ≤ XN
1 .

Theorem 7.9. If Assumption 7.7 holds, then for all N > Ns and k = 0, 1, 2, . . . ,

‖XN
k+1 −XN

∞‖ ≤ cN‖XN
k −XN

∞‖2,

where

cN =

∫ ∞

0

‖[SN
∞(t)]∗‖‖BN [BN ]∗‖‖SN

∞(t)‖ dt

= ‖BN [BN ]∗‖
∫ ∞

0

‖[SN
∞(t)]∗‖‖SN

∞(t)‖ dt ≤ (M2
N/2ωN )‖BN [BN ]∗‖(7.12)

and the constants MN ≥ 1 and ωN > 0 are as given by (7.11) above.
The constant cN in Theorem 7.9 is not necessarily the minimal value ĉN . However,

it is possible that there exists an α, independent of N , such that the finite dimensional
iterates XN

k satisfy

(7.13) ‖XN
k+1 −XN

∞‖ ≤ α‖XN
k −XN

∞‖2.
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Clearly, the bound

cN ≤ (M2
N/2ωN )‖BN [BN ]∗‖

is not tight. As we shall see below, there are convergent approximation schemes
satisfying Assumption 7.1 and a fixed α satisfying (7.13) with

cN ≤ α < lim
N→+∞

(M2
N/2ωN )‖BN [BN ]∗‖ = +∞.

Therefore, the rate of convergence dictated by the constant α in (7.13) provides some
level of mesh independence for the finite dimensional problems. However, it is impor-
tant to note that the previous estimates do not imply that the approximating Riccati
operators XN

∞ converge in norm to X∞. Hence, even the existence of a constant α
for which (7.13) holds does not provide true mesh independence.

Although the previous theorem is well known, the explicit value of the constant
cN in (7.12) provides some insight into those approximation properties that might
be important in establishing an MIP. There are several factors that influence this
constant, but clearly the choice of the approximation scheme (HN , AN , BN , CN ) plays
a fundamental role in determining cN and its value as the mesh is refined. We shall
illustrate this dependency with the numerical examples below. However, using Ito’s
theorem, Theorem 7.4 above, we have the following mesh independence result.

Theorem 7.10. If Assumptions 7.1, 7.2, and 7.3 hold and B is compact, then
there exist αN and α such that

‖XN
k+1 −XN

∞‖ ≤ αN‖XN
k −XN

∞‖2,(7.14)

‖Xk+1 −X∞‖ ≤ α‖Xk −X∞‖2,(7.15)

and αN = α + δ(N), where δ(N) −→ 0 as N −→ +∞.
Proof. First note that Assumption 7.3 implies that Assumption 7.7 holds so that

the Kleinman–Newton iterates XN
k exist and Theorem 7.9 is valid. From Assumption

7.1 we have convergence BNu −→ Bu for u ∈ U , and Assumption 7.2 yields the
dual convergence [BN ]∗PNx −→ B∗x for x ∈ H. Since B is compact, it follows
from Theorem 3.2 in [21] that

∥∥BN −B
∥∥ −→ 0, and

∥∥[BN ]∗PN −B∗∥∥ −→ 0 so that∥∥BN [BN ]∗PN −BB∗∥∥ −→ 0. Let

(7.16) β(N) =
∥∥BN [BN ]∗PN

∥∥− ‖BB∗‖ .

Theorem 7.4 yields the existence of positive constants M3 ≥ 1, ω3 > 0 (independent
of N) such that the closed-loop semigroups SN

∞(t) generated by the operators (AN −
BN [BN ]∗XN

∞) satisfy

‖[SN
∞(t)]∗‖ =

∥∥SN
∞(t)

∥∥ ≤ M3e
−ω3t, t ≥ 0,

and

‖S∗
∞(t)‖ = ‖S∞(t)‖ ≤ M3e

−ω3t, t ≥ 0.

Hence, the estimate for cN in (7.12) is bounded by

cN =

∫ ∞

0

‖[SN
∞(t)]∗‖‖BN [BN ]∗‖‖SN

∞(t)‖ dt ≤ M2
3

2ω3
‖BN [BN ]∗PN‖.
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Let

αN =
M2

3

2ω3
‖BN [BN ]∗PN‖ ≥ cN and α =

M2
3

2ω3
‖BB∗‖ ≥ c,

where c is given by (6.16). It follows that αN and α satisfy (7.14) and (7.15), respec-
tively. Moreover,

αN =
M2

3

2ω3
‖BN [BN ]∗PN‖ =

M2
3

2ω3
{‖BB∗‖ + β(N)} = α +

M2
3

2ω3
β(N) = α + δ(N),

where

δ(N) =
M2

3

2ω3
β(N) −→ 0 as N −→ +∞,

and this completes the proof.
All that one can imply from Theorem 7.10 is that the finite dimensional iterates

XN
k satisfy

‖XN
k+1 −XN

∞‖ ≤ (α + δ(N))‖XN
k −XN

∞‖2.

If, in addition, one has norm convergence limN→+∞
∥∥PNX∞PN −XN

∞
∥∥ = 0, then

the inequality

‖XN
k+1 − PNX∞PN‖ = ‖XN

k+1 −XN
∞ + XN

∞ − PNX∞PN‖
≤ ‖XN

k+1 −XN
∞‖ + ‖XN

∞ − PNX∞PN‖
≤ (α + δ(N))‖XN

k −XN
∞‖2 + ‖XN

∞ − PNX∞PN‖

provides a useful overall convergence rate of

(7.17) ‖XN
k+1 − PNX∞PN‖ ≤ (α + δ(N))‖XN

k −XN
∞‖2 + ‖XN

∞ − PNX∞PN‖

in terms of the Newton iterates and the finite dimensional approximations. Applying
Theorems 7.5 and 7.6 above yields the following mesh independence result.

Theorem 7.11. Suppose Assumptions 7.1, 7.2, and 7.3 hold, B and C are com-
pact, and X∞x ∈ D(A∗) for all x ∈ H. If BN = PNB and CN = CPN , then there

exist δ(N) −→ 0 as N −→ +∞ and β̂ such that

(7.18) ‖XN
k+1 − PNX∞PN‖ ≤ (α + δ(N))‖XN

k −XN
∞‖2 + ΔN ,

where α is as given by (7.15) in Theorem 7.10 and ΔN = β̂{
∥∥(A∗ − [AN ]∗PN )X∞

∥∥+

‖B‖
∥∥(B∗ − [BN ]∗PN )X∞

∥∥}. If, in addition, for some p > 0 we have

ΔN = O(1/Np),

then the MIP holds with a rate of O(1/Np).
Observe that the rate determined by

ΔN = β̂{
∥∥(A∗ − [AN ]∗PN )X∞

∥∥ + ‖B‖
∥∥(B∗ − [BN ]∗PN )X∞

∥∥}
depends on the order of the approximating scheme (HN , AN , BN , CN ). In particular,
the rate of convergence for the adjoint approximations [AN ]∗ plays a key role. For

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MESH INDEPENDENCE FOR KLEINMAN–NEWTON METHOD 2681

the delay systems discussed below, it follows that B∗ = [BN ]∗ for all N > 1 so that
the rate is essentially determined by how well one can approximate A∗, i.e., if one can
obtain an estimate of the form∥∥(A∗ − [AN ]∗PN )X∞

∥∥ = O(1/Np).

We shall apply this estimate to the delay systems considered in the next section. In
general, the convergence results depend on the regularity of the semigroups and the
type of approximations. Obtaining these rates depends on each individual problem.
Ito considered both delay systems and parabolic PDE control systems. He established
convergence rates for the standard finite element scheme applied to the parabolic PDE
problem. He also gave convergence rates for the two schemes we will discuss below
involving delay systems (see [33] and [34]). In both cases he made heavy use of the
regularity of the semigroups generated by A.

8. Control of delay systems. In this section we consider the LQR problem
for delay differential equations. In particular, the system is defined by

(8.1) ẋ(t) = A0x(t) + A1x(t− r) + B0u(t), t > 0,

with initial data

(8.2) x(0) = η, x(s) = ϕ(s), −r < s < 0,

where η ∈ R
n and ϕ(·) ∈ L2(−r, 0; Rn). Here, A0 and A1 are n × n constant real

matrices and B0 is an n×m matrix.
Let C0 = [C0]

T ≥ 0 be a symmetric real-valued matrix and define the cost function

(8.3) J(u) =

∫ +∞

0

{(C0x(s))TC0x(s) + ‖u(s)‖2}ds.

The corresponding LQR problem is to minimize the quadratic cost (8.3) over all
controls u ∈ L2(0,+∞; Rm).

In order to present this problem in an infinite dimensional setting we use the
Hilbert space H = R

n × L2(−r, 0; Rn). Define the operator A with domain

D(A) = {(η, φ(·)) ∈ H : φ(·) ∈ H1(−r, 0; Rn) and φ(0) = η}

by

A

[
η

φ(·)

]
=

[
A0η + A1ϕ(−r)

φ′(·)

]
.

Also, let B : R
m → H be defined by

Bu =

[
B0u
0

]
,

and let C : H → R
m be given by

Cz = C

[
η

φ(·)

]
= C0η.
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It is well known (see [3]) that A generates a C0-semigroup S(t) : H → H, t ≥ 0,
such that

(8.4) S(t)(η, φ(·)) = (x(t), xt(·)) ∈ H

for all (η, φ(·)) ∈ H, where x(t) is the solution to (8.1)–(8.2) and xt(s) = x(t + s) for
all −r < s < 0. Moreover, the delay system is equivalent to the infinite dimensional
system in H defined by

(8.5) ż(t) = Az(t) + Bu(t), t > 0,

with initial data

(8.6) z(0) =

[
η

φ(·)

]
,

and the LQR cost function has the form

J(u) =

∫ +∞

0

{‖Cz(s)‖2
+ ‖u(s)‖2}ds.

Finally, the Hilbert adjoint A∗ is defined on the domain

D(A∗) = {(ξ, ψ(·)) ∈ H : ψ(·) ∈ H1(−r, 0; Rn), ψ(−r) = AT
1 ξ}

by

A∗
[

ξ
ψ(·)

]
=

[
AT

0 ξ + ψ(0)
−ψ′(·)

]
.

Observe that the linear operator A is not normal; this can cause problems when
approximating the LQR control problem (see [8], [13], [16], [15], and [35]).

8.1. Approximations of the delay system. We consider two different nu-
merical schemes for approximating the LQR control problem for the delay system.
Since the B and C operators act only on the finite dimensional part of the state, the
main issue is how to approximate A. We focus on a finite volume method known as
the “AVE” scheme in [4] and a conforming finite element scheme first described by
Banks and Kappel in [5], and hence we do not give the details here. The key differ-
ence between these two schemes is how they approximate the initial condition φ in
(8.1). The “AVE” scheme uses an averaging technique and characteristic functions,
while the Banks–Kappel scheme uses a continuous finite element technique. Although
both schemes are convergent, only the “AVE” scheme is dual convergent, and hence
produces convergent approximations of the operator

A(Π) = A∗Π + AΠ, Π ∈ D(A).

The papers by Rosen (see [43], [44], and [45]) provide considerable insight in this
problem.

The AVE/finite volume scheme. For each N > 1, create a partition on
[−r, 0] by defining τNj = −jr/N, where j = 0, . . . , N . On [−r, 0], define χN

j (·) to be

the characteristic function on [τNj , τNj−1) for j = 2, . . . , N , and define χN
1 (·) to be the
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characteristic function on [τN1 , τN0 ]. Define the finite dimensional subspace HN
AV E of

H by

(8.7) HN
AV E ≡

⎧⎨
⎩(η, φN (·)) ∈ H : φN (s) =

N∑
j=1

vNj χN
j (s), vNj ∈ R

n

⎫⎬
⎭ .

The projection PN of H into HN
AV E is defined by

PN (η, φ(·)) =

⎛
⎝φN

0 ,

N∑
j=1

φN
j χN

j (·)

⎞
⎠ ,

where

φN
0 ≡ η and for j = 1, . . . , N, φN

j ≡ N

r

∫ τN
j−1

τN
j

φ(s)ds.

To approximate the operator A, we first define LN : HN
AV E → R

n and DN :
HN

AV E → L2(−r, 0; Rn) by

LN

⎛
⎝η,

N∑
j=1

vNj χN
j (·)

⎞
⎠ = A0η + A1v

N
N

and

DN

⎛
⎝η,

N∑
j=1

vNj χN
j (·)

⎞
⎠ =

N

r

N∑
j=1

{
vNj−1 − vNj

}
χN
j (·),

respectively, where vN0 = η. The AVE approximation AN
AV E : HN

AV E → HN
AV E ⊆ H

is given by

(8.8) AN
AV E(η, ψ) ≡ (LN (η, ψ), DN (η, ψ)).

In order to complete the approximation scheme, we define

(8.9) BN
AV E = PNB and CN

AV E = CPN ,

and this yields the AVE approximation scheme (HN
AV E , A

N
AV E , B

N
AV E , C

N
AV E).

Observe that

BN
AV Eu = PN

[
B0u
0

]
=

[
B0u
0

]
= Bu

and

CN
AV E

[
η

φ(·)

]
= CPN

[
η

φ(·)

]
= C

[
η

φN (·)

]
= C0η = C

[
η

φ(·)

]
.

Hence, the operators B and C are compact and satisfy the conditions in Theorem 7.6.
Norm convergence of the input and output operators is trivial for this approximation.
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Since
∥∥BN [BN ]∗PN

∥∥ = ‖BB∗‖ for all N ≥ 1, it follows that β(N) defined in
(7.16) satisfies

β(N) =
∥∥BN [BN ]∗PN

∥∥− ‖BB∗‖ = 0,

and hence δ(N) =
M2

3

2ω3
β(N) = 0 for all N ≥ 1. Moreover, the AVE scheme satisfies

all the assumptions in Theorem 7.6 above, and the following convergence and mesh
independence result holds (see pages 164–166 in [33]).

Theorem 8.1. The AVE approximation scheme (HN
AV E , A

N
AV E , B

N
AV E , C

N
AV E)

satisfies all the assumptions in Theorem 7.6. There exist constants M̂ and α inde-
pendent of N such that

∥∥XN
∞ − PNX∞PN

∥∥ ≤ M̂√
N

,

and the finite dimensional Kleinman–Newton iterates satisfy

‖XN
k+1 − PNX∞PN‖ ≤ α‖XN

k −XN
∞‖2 +

M̂√
N

.

Note that the overall convergence rate for the AVE scheme is O(1/
√
N). In order

to improve this rate, several “high order” spline-based schemes were proposed. The
first of these schemes was developed by Banks and Kappel in [5]. Because this spline
scheme failed to produce strongly convergent Riccati operators, several modifications
were developed to overcome this issue. A nice summary of these schemes and their
properties can be found in Kappel’s survey paper [35]. We briefly describe the scheme
below.

The Banks–Kappel (BK) spline scheme. We now describe the “BK” finite
element spline-based scheme first proposed by Banks and Kappel in [5]. For each
N > 1, create a partition on [−r, 0] by defining τNj = −jr/N, where j = 0, . . . , N .

For ease of notation we set τNN+1 = −r and τN−1 = 0. On [−r, 0], define the standard
linear B-splines by

BN
j (s) =

⎧⎪⎪⎨
⎪⎪⎩

N
r (s− τNj+1), s ∈ [τNj+1, τ

N
j ],

N
r (τNj−1 − s), s ∈ [τNj , τNj−1],

0 otherwise.

Define the finite dimensional subspace HN
BK of H by

(8.10) HN
BK ≡

⎧⎨
⎩(φN (0), φN (·)) ∈ H : φN (s) =

N∑
j=0

vNj BN
j (s), vNj ∈ R

n

⎫⎬
⎭ .

Let PN denote the orthogonal projection of H into HN
BK and note that since

HN
BK ⊆ D(A) ⊆ H, the range of PN is contained in the domain of A. Therefore, we

define the spline approximation AN
BK : HN

BK → HN
BK ⊆ H by

(8.11) AN
BK = PNA = PNAPN .

In order to complete the approximation scheme, we define

(8.12) BN
BK = PNB and CBK = CPN ,
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and this yields the BK spline approximation scheme (HN
BK , AN

BK , BN
BK , CN

BK).

Note. The BK spline scheme satisfies Assumption 7.1 and hence yields a con-
vergent numerical scheme in the sense that, for a given initial condition and input
function, the approximations of the forward problem converge on finite time inter-
vals. However, unlike the AVE scheme above, the BK spline scheme fails to satisfy
the dual convergence assumption, Assumption 7.2 (see [16]), and the uniformly sta-
bilizable and detectable assumption, Assumption 7.3 (see [17] and [18]). The BK
spline scheme does satisfy the basic assumption, Assumption 7.7, so that the finite
dimensional Kleinman–Newton algorithm converges quadratically with constant cN

possibly depending on N . However, the approximating Riccati operators do not con-
verge strongly so, in particular, norm convergence fails.

In the next section we present numerical results based on these two schemes.
The numerical results will confirm (as Theorem 8.1 implies) that the AVE scheme is
mesh independent and the approximating Riccati operators converge. However, the
numerical results below also show that the BK spline scheme is not mesh independent,
although there is a bound on cN .

9. Numerical results. In this section we illustrate the importance of Assump-
tions 7.1, 7.2, and 7.3 in obtaining strong convergence (norm convergence) of feedback
gain operators as well as strong mesh independence of the Kleinman–Newton itera-
tions.

For this discussion we use the two schemes discussed in section 8.1. The AVE
scheme satisfies all the assumptions of Theorems 7.6 and 7.10. Therefore, both forms
of strong mesh independence, (2.4) and (2.7), are satisfied and the approximate Riccati
operators converge in norm to X∞. This is not the case for the BK scheme since it
fails to satisfy Assumptions 7.2 and 7.3. In the numerical approximations below, X∞
is taken as the (converged) fine grid solution of the Riccati equation using the AVE
scheme.

In this section we use the following notation: Let ĉNAV E and ĉNBK , respectively,
denote the values ĉN if the AVE and BK schemes are used for the approximations.
Also, let M̂N

AV E(ε, xN
0 ) and M̂N

BK(ε, xN
0 ) denote the values M̂N (ε, xN

0 ) for the AVE
and BK schemes.

Mesh independence implies that a finite dimensional process behaves asymptot-
ically the same as the underlying infinite dimensional process. Thus, in order to
compare the behavior of the approximation schemes, it is necessary that the starting
operators in the approximation spaces are the projections of the starting operator
in the infinite dimensional space onto the respective approximation spaces. To ac-
complish this, XN

0,AV E and XN
0,BK are expressed in terms of multiples of the identity

operator in the respective approximation spaces. For the other obvious choice, the
zero operator, the convergence was too fast to make observations about quadratic con-
vergence or mesh independence. Since the mass matrices, MASSAV E and MASSBK ,
are the projections of IR×L2(0,1) onto the approximation spaces HN

AV E and HN
BK ,

respectively, the starting matrices will be multiples of the appropriate mass matrices.

All computations in this section have been performed on a PowerPC G5, 2.7GHz,
using MATLAB version 7.0.0. All Lyapunov equations are solved by implementing the
MATLAB Lyapunov solver which uses the SLICOT routines SB03MD and SG03AD.

Numerical Example 1. The results presented here are typical for all the runs
on a one-dimensional delay equation,

ẋ(t) = x(t) + x(t− 1) + u(t),
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with cost function

J(u(·)) =

∫ +∞

0

{104[x(t)]2 + [u(t)]2}dt.

The starting operator, X0, equals 100 times the identity in H = R × L2(0, 1); thus
X0 = 100IR×L2(0,1). The finite dimensional approximations for X0 using the AVE
and BK schemes result in XN

0,AV E = 100MASSAV E and XN
0,BK = 100MASSBK ,

respectively. The tolerance is set to be ‖XN
k −XN

∞‖ < 10−8 = ε.
Since the AVE scheme satisfies the criteria for both forms of strong mesh inde-

pendence, (2.4) and (2.7), we expect mesh-independent behavior of the quantities in
Table 9.1. Indeed, we notice that ĉNAV E → 10−2 and M̂N

AV E → 3, confirming the
theoretical results.

For the BK scheme this observation cannot be made from the numerical results.
This is in line with the fact that the BK scheme fails to satisfy Assumptions 7.2
and 7.3. Note that mesh independence would imply that ĉNBK → ĉ ≈ 10−2 and

M̂N
BK → M(10−8, 100I) ≈ 3 based on the results from the AVE scheme. The results

for the BK scheme show that ĉ1024BK ≈ 1.6 × 102 � ĉ and M̂N
BK ≥ 5 > M(10−8, 100I).

A further comparison of the two approximation schemes includes the actual CPU-
time per Newton iteration that was used by the MATLAB process. This was computed
using the MATLAB function cputime as well as tic and toc. The resulting times
were identical. Both schemes use roughly the same amount of CPU-time per iteration.
For example, for N = 256, the size of the problem is 257. The AVE scheme uses on
average 10.9s of CPU-time per iteration, and the BK scheme uses 10.6s. Consequently,
the number of iterations that the two schemes use is a direct measure of the total
computational time. In general, the BK scheme needs more iterations than the AVE
scheme to obtain a specific accuracy, and in some cases significantly more.

Numerical Example 2. We present typical results for the two-dimensional
delay equation,

ẋ(t) =

[
0 1

−1.6 0

]
x(t) +

[
0 0

−1 −1

]
x(t− 1) +

[
1
0

]
u(t),

with cost function

J(u(·) =

∫ +∞

0

{([
10 0
0 0

]
x(t)

)2

+ [u(t)]2

}
dt.

The starting operator, X0, equals twice the identity in H = R
2 × L2(0, 1; R2);

thus X0 = 2IR2×L2(0,1;R2). For the AVE and BK schemes, the starting matrices are
XN

0,AV E = 2MASSAV E and XN
0,BK = 2MASSBK , respectively. As before, ε is taken

to be 10−8, ‖XN
k −XN

∞‖ < 10−8.
The results presented in Table 9.2 are similar to the results observed in Example

1. The AVE scheme yields strong mesh independence, and the Riccati operators
converge strongly, while this is not true for the BK scheme. In particular, the optimal
feedback law defined by (5.3) has the form

Kz(t) = k0z(t) +

∫ 0

−1

k1(s)z(t + s)ds +

∫ 0

−1

k2(s)z(t + s)ds,

where ki(s), i = 1, 2, are called the functional gains. Figures 9.1 and 9.2 illustrate
that the AVE scheme (the solid line) yields strong convergence of the gains, while the
BK scheme (the dashed line) does not.
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Table 9.1

N ĉNAV E M̂N
AV E ĉNBK M̂N

BK

8 1.01497 × 10−2 3 3.98797 × 106 14
16 6.12638 × 10−3 3 3.31429 × 106 12
32 6.18756 × 10−3 3 1.81757 × 106 10
64 6.57817 × 10−3 3 5.04459 × 105 8
128 7.11713 × 10−3 3 3.04030 × 104 7
256 7.78503 × 10−3 3 7.82120 × 104 7
512 8.55008 × 10−3 3 6.02653 × 103 6
1024 9.32057 × 10−3 3 1.59829 × 102 5

Table 9.2

N ĉNAV E M̂N
AV E ĉNBK M̂N

BK

8 4.77751 × 10−2 8 1.28997 × 106 16
16 4.94581 × 10−2 8 8.69896 × 105 14
32 4.98913 × 10−2 8 4.56992 × 104 12
64 5.04197 × 10−2 9 3.59473 × 103 11
128 5.07046 × 10−2 9 9.31569 × 103 11
256 5.08547 × 10−2 9 4.18416 × 101 10
512 5.09322 × 10−2 9 2.38082 × 101 10

As in Numerical Example 1, the two schemes use roughly the same CPU-time per
Newton iteration. For N = 256, the problem size is 514, and the average CPU-time
per iteration is 102s for the AVE scheme and 105s for the BK scheme.

We note that Figures 9.1 and 9.2 verify the theoretical results in this paper as well
as those established in the earlier paper by Burns, Ito, and Propst [16]. In particular,
in [16] it was proved that the BK scheme does not produce approximating Riccati
operators that converge in norm. Hence the oscillations seen in these figures, which
are indicative of weak convergence, are the best one can expect. However, the AVE
scheme is norm convergent and this is also illustrated in Figures 9.1 and 9.2.

We close this section with an example that illustrates the need for infinite dimen-
sional feedback. As noted earlier, the convergence theory in Damm and Hinrichsen
[23] is easily applied to a wide variety of finite dimensional (matrix) Riccati equa-
tions. However, applying this method to infinite dimensional Riccati equations is not
straightforward. A special feedback problem for a delay system was used to illustrate
their results. They considered the problem of stabilizing a delay system with finite
dimensional feedback only, which leads to a finite dimensional Riccati type (matrix)
equation. In particular, the control system considered in [23] is given by the delay
differential equation

ẋ(t) = A0x(t) + A1x(t− r) + Bu(t).

The problem (see problem 5 on page 58 in [23]) is to find a finite dimensional feedback
law of the form

u(t) = −Kx(t)

so that the closed-loop system

ẋ(t) = [A0 −BK]x(t) + A1x(t− r)
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Fig. 9.1. Numerical Example 2: Functional gain k1.
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Fig. 9.2. Numerical Example 2: Functional gain k2.

is stable for all delays r > 0. This leads to a matrix Riccati equation for the matrix
K.

If one considers the retarded delay equation,

(9.1) ẋ(t) = αx(t) + βx(t− r) + γ

∫ 0

−r

x(t + s)ds,

then one will know (see Corollary 2.8 in [32]) that (9.1) is stable independent of delay
if and only if

α < 0, γ < 0, 0 < −γ ≤ α2 − β2

2
.

If γ > 0, then (9.1) is not stable for all r > 0. If one starts with the control system

(9.2) ẋ(t) = x(t) + 2x(t− r) +

∫ 0

−r

x(t + s)ds + u(t)

and uses only current state feedback

u(t) = −kx(t),
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then the closed-loop system has the form

(9.3) ẋ(t) = [1 − k]x(t) + 2x(t− r) +

∫ 0

−r

x(t + s)ds,

and this system is never stable independent of delay since γ = +1. On the other
hand, the complete state (infinite dimensional) feedback law,

u(t) = −k0x(t) + (k1 − 1)

∫ 0

−r

x(t + s)ds,

leads to the closed loop system

(9.4) ẋ(t) = [1 − k0]x(t) + 2x(t− r) + k1

∫ 0

−r

x(t + s)ds,

which is stable independent of delay if and only if

1 < k0, k1 < 0, 0 < −k1 ≤ [1 − k0]
2 − 4

2
.

If we set k0 = 4 and k1 = 5/4 < 5/2, then (9.4) is stable independent of delay. In
particular, the control system (9.2) is stable independent of delay, and the MIP holds
if we apply the AVE scheme to this problem. Numerical results on mesh independence
and convergence for this problem are almost identical to the previous two numerical
examples and will not be presented here.

10. Conclusions. The theoretical results above provide precise conditions on
approximation schemes needed to guarantee an MIP. The numerical results are in-
teresting for two reasons. First, they provide numerical support for the mesh inde-
pendence of the AVE scheme. Also, since the BK scheme does not generate norm
convergent Riccati solutions, it is certainly not a mesh-independent scheme. How-
ever, the numerical results alone might be used to incorrectly justify some type of
mesh independence.

There are many PDE control problems in which the linearization is not normal.
For example, in channel flow control, when one linearizes about a nonzero equilibrium,
the resulting A operator is highly nonnormal. Thus dual convergence is extremely
important. Moreover, we have tested the theoretical results above on self-adjoint
parabolic PDE control systems such as the ones considered by Banks and Kunisch
[7]. Since dual convergence is not an issue and in [7] POES is established for this class
of problems, our results imply mesh independence for standard finite element schemes.
We have also applied the theory to some non-self-adjoint PDE problems. These PDE
results, along with numerical examples, will appear in a forthcoming paper.

We have established a mesh independence result for the infinite dimensional ver-
sion of the Kleinman–Newton algorithm for solving the algebraic Riccati operator
equation associated with the LQR problem in a Hilbert space. We applied the results
to systems governed by delay equations and presented numerical examples to illus-
trate the ideas. The results provide insight into the type of approximation schemes
that lead to mesh independence. In particular, we showed that it is sufficient that
the approximation be convergent, dual convergent, and uniformly stabilizable and
detectable. As noted by Kappel in [35], it is possible to obtain (at least strong) con-
vergence of the approximating Riccati operators without POES. This leaves open the

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2690 J. A. BURNS, E. W. SACHS, AND L. ZIETSMAN

question of whether or not it is possible to achieve mesh independence without pre-
serving stabilizability and detectability uniformly under approximation. However, it
is important to note again that mesh independence alone does not imply convergence.
We are currently looking into this issue and other issues concerning the numerical
conditioning of the finite dimensional approximating Riccati equations.

Acknowledgments. The authors wish to thank the referees for their feedback
and many helpful suggestions.
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