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for Specific Emitter Identification

Lauren Joy Wong

ABSTRACT

Specific Emitter Identification (SEI) is the association of a received signal to an emitter, and

is made possible by the unique and unintentional characteristics an emitter imparts onto each

transmission, known as its radio frequency (RF) fingerprint. SEI systems are of vital importance to

the military for applications such as early warning systems, emitter tracking, and emitter location.

More recently, cognitive radio systems have started making use of SEI systems to enforce Dynamic

Spectrum Access (DSA) rules.



The use of pre-determined and expert defined signal features to characterize the RF fingerprint

of emitters of interest limits current state-of-the-art SEI systems in numerous ways. Recent work

in RF Machine Learning (RFML) and Convolutional Neural Networks (CNNs) has shown the

capability to perform signal processing tasks such as modulation classification, without the need

for pre-defined expert features. Given this success, the work presented in this thesis investigates the

ability to use CNNs, in place of a traditional expert-defined feature extraction process, to improve

upon traditional SEI systems, by developing and analyzing two distinct approaches for performing

SEI using CNNs. Neither approach assumes a priori knowledge of the emitters of interest. Further,

both approaches use only raw IQ data as input, and are designed to be easily tuned or modified

for new operating environments. Results show CNNs can be used to both estimate expert-defined

features and to learn emitter-specific features to effectively identify emitters.
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GENERAL AUDIENCE ABSTRACT

When a device sends a signal, it unintentionally modifies the signal due to small variations and

imperfections in the device’s hardware. These modifications, which are typically called the device’s

radio frequency (RF) fingerprint, are unique to each device, and, generally, are independent of the

data contained within the signal.

The goal of a Specific Emitter Identification (SEI) system is to use these RF fingerprints to

match received signals to the devices, or emitters, which sent the given signals. SEI systems are

often used for military applications, and, more recently, have been used to help make more efficient

use of the highly congested RF spectrum.

Traditional state-of-the-art SEI systems detect the RF fingerprint embedded in each received

signal by extracting one or more features from the signal. These features have been defined by

experts in the field, and are determined ahead of time, in order to best capture the RF fingerprints

of the emitters the system will likely encounter. However, this use of pre-determined expert features

in traditional SEI systems limits the system in a variety of ways.



The work presented in this thesis investigates the ability to use Machine Learning (ML) tech-

niques in place of the typically used expert-defined feature extraction processes, in order to im-

prove upon traditional SEI systems. More specifically, in this thesis, two distinct approaches for

performing SEI using Convolutional Neural Networks (CNNs) are developed and evaluated. These

approaches are designed to have no knowledge of the emitters they may encounter and to be easily

modified, unlike traditional SEI systems.
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Chapter 1

Introduction

1.1 Motivation

Specific Emitter Identification (SEI) is the act of matching a received signal to an emitter

using a database of radio frequency (RF) features belonging to known transmitters. SEI

algorithms were developed for and continue to be used in military settings for emitter tracking

[1]. However, emitter identification has also become a powerful tool for use in cognitive radio

applications, such as enforcing Dynamic Spectrum Access (DSA) rules [2–4].

Successful SEI systems must be able to reliably identify emitters, but must also be fast,

robust to changing environments, and easily and quickly adaptable. The speed of such

systems is especially critical in a military setting, where SEI may be used to provide early

warning [5]. Furthermore, in an environment in which the channel may be changing, the

emitters may be changing modulation schemes, bandwidth, and transmission frequency, and

new emitters may be encountered, it is important that the designed system be able to

1



2

operate under such conditions. However, should the system need to be tuned or modified

in order to accommodate a new environment, such changes should be simple and efficient to

implement [1].

State-of-the-art SEI systems rely on the accurate measurement of expert-defined signal

features, which are then clustered by emitter for identification [1]. In addition to accurate

measurement, it is also important that each emitter’s features are consistent between trans-

missions, but different amongst emitters. Ideally, the selected features are also robust to

effects such as noise, channel effects, and transmission bandwidth. However, this is often

not achieved [4]. Furthermore, the extraction of expert features often requires considerable

pre-processing of the raw signal data.

The development of current SEI systems starts with considerable visual examination

of signals collected from emitters of interest, in order to determine possible features. Then,

signal processing software is developed to extract the selected features. Finally, these features

are clustered to determine the success of the selected features in describing the emitters of

interest, determining whether the system is validated or the development process is restarted

[1]. This development process is not only time-consuming, but requires considerable expert

intervention to determine the specific signal features of interest. Furthermore, current SEI

systems are designed for specific operating environments and emitters-of-interest and must

be re-designed for new or changing environments and in order to identify new emitters.

With all of this in mind, it is clear that current SEI systems are most limited by the

use of pre-determined and expert-defined signal features, which not only slow the execution
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time of deployed SEI systems, but make for a prohibitively slow system development and

modification process. As such, this thesis reports on an investigation into the feasibility of

using Machine Learning (ML) techniques to overcome these weaknesses.

The field of ML uses concepts from computer science and statistics to develop algo-

rithms and methods to identify patterns in large amounts of data [6]. More specifically,

ML algorithms optimize a parameterized model, using a set of training data, to perform a

desired task. ML methods vary widely, with common methods including discriminant anal-

ysis, kernel-based algorithms, hidden Markov models, and artificial neural networks [7]. The

fields in which ML algorithms have been applied also vary widely, and include economics,

linguistics, biology, image processing, and engineering [7].

Research in ML for Signal Processing (SP) investigates novel techniques and advance-

ments in the application of ML to the processing of signals. However, work in ML for SP has

primarily been limited to “audio, speech, image, multispectral, industrial, biomedical, and

genomic signals” [8]. The scope of work using ML for RF signal processing, or Radio Fre-

quency Machine Learning (RFML), is far newer, with applications including modulation and

waveform classification [9–11], link adaptation [12], and cooperative spectrum sensing [13].

This thesis examines the application of ML for SEI with the primary goal of improving

upon traditional SEI approaches by:

• Reducing the pre-processing time typically needed to extract emitter-specific features

• Eliminating the use of pre-selected and expert-defined features
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In doing so, a less time-consuming system development process and more adaptive system

is achieved, and a greater understanding of ML abilities for the purpose of SEI is gathered.

1.2 Outline and Contributions

This thesis reports on an investigation into the feasibility of using ML techniques, in place

of the current expert-defined feature extraction process, to improve upon traditional SEI

systems. To this end, the work presented in the following chapters develops and evaluates

two distinct approaches to perform SEI, both using Convolutional Neural Networks (CNNs).

Chapters 2 and 3 provide the background necessary to motivate and develop the ap-

proaches presented in the following chapters. In Chapter 2, some of the traditional ap-

proaches to SEI are described, as well as their limitations, further motivating the investi-

gation of deep-learning based approaches such as those described in this thesis. Chapter 3

starts by introducing three of the most popular artificial neural network architectures used

in the literature, leading to a discussion of the selection of CNNs for SEI. Next, some of the

practical considerations that allowed for the successful use of CNNs in this work are discussed

including the software toolboxes used, parameter selection, network training, performance

evaluation, and the collection and generation of real and synthetic training data.

Chapter 4 develops the first approach to perform SEI in which CNNs are used to estimate

an expert feature, IQ imbalance. Chapter 4 starts by describing transmitter IQ imbalance

and developing a signal model to be used throughout the chapter. Some of the traditional
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approaches to estimating IQ imbalance are then discussed. Next, the CNN architecture

designed to estimate IQ imbalance is described. The approach is evaluated by investigating

the bias and sample variance of the designed CNN estimators as a function of signal-to-

noise ratio (SNR), network input size, and the true IQ imbalance parameters, showing the

capability to estimate gain and phase imbalances in both M -QAM and M -PSK signals.

Finally, the approach to perform SEI using the CNN IQ imbalance estimators is described

and evaluated, showing the ability to identify emitters by their gain imbalance only, even

as they change modulation schemes, with better accuracy than a comparable feature-based

approach.

While the SEI approach developed in Chapter 4 continues to rely on expert features,

Chapter 5 eliminates the use of expert features completely, and presents an approach to

perform SEI using CNN-learned features. The semi-supervised approach developed uses a

supervised CNN to extract emitter-specific features from the received signal in conjunction

with an unsupervised clustering step. This approach is evaluated in its ability to identify

emitters transmitting at a single bandwidth, as well as at multiple bandwidths, and in its

ability to identify emitters unseen in CNN training, showing the ability to use CNN-learned

features and the DBSCAN clustering algorithm to perform specific emitter identification,

even in the presence of emitters the CNN feature extractor did not see in training.

Finally, Chapter 6 provides overall conclusions, highlighting the benefits of the developed

approaches over traditional SEI approaches, and presents directions for future work.
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Chapter 2

Specific Emitter Identification

2.1 Traditional SEI Techniques

A typical SEI system is shown in Figure 2.1. The system includes an RF system, followed by

data collection, signal processing, feature extraction/estimation, clustering, identification,

and verification steps [1]. At a high level, the RF system and data collection steps pre-

process the analog data gathered from the RF receiver, bringing it to the digital domain,

before the signal processing stage. The steps taken at the signal processing stage are largely

dependent upon the features that will be extracted in the feature extraction and estimation

stage, but often include filtering and demodulation. Once processed, all versions of the data

(raw, demodulated, etc.) are passed to the feature extraction and estimation stage where

pre-determined features are measured. The resulting features are then used for clustering

and identification.

An emitter’s RF fingerprint or electromagnetic signature is most commonly caused by

7
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Figure 2.1: The components of a typical SEI system.

natural variations amongst RF components and architectures used by manufacturers and

by non-idealities in the emitter’s hardware [2, 14]. Further, RF fingerprints are generally

independent of the signal transmitted or the data contained within said signal. The success

of a traditional SEI systems is largely dependent upon selecting features which characterize

some portion of the RF fingerprints of a group of emitters [1]. The features often used

in traditional SEI systems are either taken from the transient portion or the steady-state

portions of the received signal.

Techniques analyzing the transient signal often use expert features found in the time-

domain, frequency-domain, or phase-space [15, 16]. Time-domain features are most com-

monly used to describe the transient portion of radar signals, but may also be used to

fingerprint radio transmitters [15–17]. A popular frequency-domain feature used for SEI is

the power spectral density (PSD), as it provides both the signal power and spectral shape of

the transmitted signal, and often displays emitter-specific features [14]. Meanwhile, phase-

space analysis often yields emitter specific features caused by the non-linear power amplifier

of the transmitter [18].

Techniques analyzing the steady-state signal are more diverse and include use of wavelet-
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based techniques [19], modulation-based techniques [20], preamble-based techniques [21],

and cyclostationary-based techniques [22]. A popular wavelet-based technique, the dynamic

wavelet fingerprint technique, applies a wavelet transform on the time-domain portion of

the steady-state signal [19]. Features extracted in the modulation-domain often examine

the error between the transmitted and ideal demodulated signal [20], while preamble-based

techniques examine features of the extracted preamble, such as its periodicity [21]. Finally,

cyclostationary-based techniques examine unique cyclic features within a signal [22].

With either transient or steady-state techniques, extracted features are used in con-

junction with a clustering or classification algorithm to identify specific emitters and for

verification [16]. Popular algorithms used in the literature include support vector machines

(SVMs) and k-Nearest Neighbors (kNNs) [16, 19, 20, 23, 24], supported by dimensionality

reduction techniques such as linear discriminant analysis (LDA) or principal component

analysis (PCA), if needed [17].

While neural networks have been used for emitter identification applications in the liter-

ature, prior work could only be found in which they were used to perform the classification

stage and not the feature extraction stage. More specifically, the neural network is used in

place of the clustering stage in the typical SEI system, taking in pre-defined features as input

and producing an identification result [25,26].
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2.2 Limitations of Traditional SEI Techniques

The first key limitation of traditional SEI approaches is the extraction and use of pre-

determined and expert-defined features. The first step in designing a traditional SEI system

relies on an “expert” to define quality features of interest. These pre-determined features

are often only accurate over a valid range of parameters and require accurate and consistent

measurement or estimation in order to ensure quality SEI performance.

For example, when using features extracted from the transient signal, SEI performance

relies heavily on the accuracy and consistency of the transient detection and extraction

process, as this directly affects the quality of the features [24]. Additionally, time-domain

and frequency-domain features can vary according to the noise and channel conditions and

can therefore be impacted by channel impairments such as multipath [16].

Though using features extracted from the steady-state portion of the received signal

is generally more practical, expert features used to describe the steady-state signal often

have their own limitations. For example, wavelet-based techniques are heavily impacted by

the choice of wavelet function [19]. Preamble-based techniques fail in the case where the

received signal does not have a pre-defined preamble [24]. Further, techniques analyzing the

cyclostationary features of a signal are often inconsistent in the presence of frequency or

phase uncertainties and time-consuming to compute [22].

Additionally, by using pre-defined expert features, traditional SEI approaches only con-

sider specific aspects of the received signal. Therefore emitters that produce the same fea-
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tures are indistinguishable to the SEI system. As such, the selection of these features is

imperative and leads to a prohibitively long system development process, as discussed in

Chapter 1. Further, feature extraction often requires pre-processing of the received signal,

including synchronization, carrier tracking, demodulation, and SNR estimation, in addition

to the computational cost of extracting the expert features.

Finally, traditional SEI systems are also limited by their choice of clustering or classifi-

cation algorithm. Many clustering or classification algorithms used in the literature, such

as SVMs, kNNs, and neural network classifiers, require the user to input the number of

clusters or use an iterative process to determine the optimal number of clusters for the given

dataset [24, 25, 27]. Unless in a cooperative environment, the number of clusters (emitters)

will not be known in practice and is subject to change, severely limiting the ability to identify

anomalous emitters and behaviors.

2.3 Summary

This chapter has described the traditional feature-based approaches to SEI, and further

discussed the limitations of the traditional approaches. Namely, current approaches are

hindered by the methods used to extract or estimate features, the use of expert features

themselves, and the clustering and classification algorithms used.

As such, this thesis seeks to mitigate some of these limitations using Convolutional Neural

Networks (CNNs). To eliminate the need for pre-processing steps often needed to extract
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expert features, work in Chapter 4 examines the feasibility of using only the raw data as

input to CNNs to estimate an expert feature, IQ imbalance. Further, Chapter 5 investigates

eliminating expert features entirely, using CNNs as feature extractors.

While the choice of clustering algorithm used in Chapter 5 aims to alleviate some of

the concerns associated with the popular algorithms outlined above, investigation into the

appropriate choice or design of the clustering algorithm to be used with raw IQ data and/or

features extracted from raw IQ data remains as future work.



Chapter 3

Convolutional Neural Networks

Though feed-forward neural networks existed in the literature as early as the 1940s and

1950s [28,29], limitations caused by the back-propagation training algorithm kept early feed-

forward neural networks relatively shallow [30]. Consequently, the use of machine learning

techniques in the literature has traditionally referred to shallow architectures such as Gaus-

sian Mixture Models (GMMs), Hidden Markov Models (HMMs), SVMs, regression tech-

niques, and shallow feed-forward neural networks [31].

However, in breakthrough work published by Hochreiter in 1991, the flaws of the tradi-

tional back-propagation training algorithm were exposed, identifying the problem of vanish-

ing and exploding gradients [32]. This sparked the resurgence of neural network research, fo-

cused on methods of overcoming and working around vanishing and exploding gradients [30].

Additionally, recent advances in computing technology and software toolboxes have made

the use of deep feed-forward neural networks both computationally practical and accessible,

13



14

further encouraging the popularity of neural networks in pattern recognition competitions,

research, and the literature.

The CNN is one of the most popular deep feed-forward network architectures used today,

with applications ranging from medical analysis to signal processing and image classifica-

tion. This chapter first describes the three types of artificial neural network architectures

considered for this work. Then the use of raw IQ data as input and the selection of CNNs

for this work is motivated, and some of the infrastructure used and designed to facilitate

their use is described.

3.1 Neural Network Architectures

The basic feed-forward neural network, known as the Multi-Layer Perceptron (MLP), is

shown in Figure 3.1 [33]. MLPs are fully-connected such that every neuron in one layer is

connected to every neuron in the next layer. Using an algorithm called stochastic gradient

descent, MLPs are trained to appropriately weight each connection and bias each neuron so

that the input produces a desired output [33].

Traditionally, MLPs have been used to solve a wide variety of problems, including modula-

tion classification [34]. As universal approximators, MLPs can approximate any continuous

function with only a single hidden layer, and are capable of solving many complex prob-

lems [35]. However, as these problems increase in complexity, the MLP needed to solve a

given problem can become prohibitively large [36–38].
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Figure 3.1: An example MLP.

Newer architectures such as CNNs and Recurrent Neural Networks (RNNs) have been

shown to be more robust, scale better, and utilize computational resources better than

MLPs [33, 38]. An example CNN is shown in Figure 3.2. CNNs perform mathematical

convolutions over localized regions of the data as opposed to fully-connecting all nodes [39].

The result of convolving a filter over some input vector or matrix, shown in Figure 3.3, is

known as a feature map, as the filter has extracted some piece of information from the input.

Typically, the set of feature maps learned by the early layers of the CNN architecture are

then passed to a set of dense fully-connected layers, much like an MLP, that performs the

decision making on the features learned in the earlier layers.

In training, CNNs learn the set of filters that will convolve over the data, as well as the
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Figure 3.2: An example CNN.

weights and biases of the following dense layers. The benefits of learning a set of shared

filters is three-fold:

1. It allows the network to work with inputs of varying size [38].

2. It increases memory and computational efficiency, as these filters contain far fewer

weights and biases than a fully-connected MLP [38]. These increases in efficiency vary

according to network size. However, as an example, consider performing edge detection

on an n× n image:

• Using a convolutional operation, edge detection can be performed using a 2 × 1

filter (2 matrix entries), and (n− 1)× n× 3 floating point operations; O(n2).

• The equivalent matrix operation requires (n× n)× ((n− 1)× n) matrix entries,

and 2× (n× n)× ((n− 1)× n) floating point operations; O(n4).

Therefore, for simple edge detection, the convolutional operation is n3×(n−1)
2

times more

memory efficient and 2n2

3
times more computationally efficient.

3. It encourages the learning of relevant features within the data [33]. As such, pertinent



17

Figure 3.3: The CNN convolution operation.

features do not need to be determined a priori. This is the key discriminator of CNNs

amongst neural network architectures.

RNNs differ from MLPs and CNNs in that they allow for cyclic connections between

neurons, and therefore are not feed-forward networks [33,38]. This allows RNNs to effectively

model sequences and temporal behavior by allowing the network to retain a notion of state

or memory [40].

There are many different types of RNNs used in the literature, such as Recursive Neural

Networks, Bi-directional RNNs, Long Short-Term Memory Networks (LSTMs), and Gated
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Recurrent Units (GRUs) [38]. Training RNNs requires modification of the traditional Back-

propagation training algorithm to properly address the looping in recurrent networks. In

deep RNNs, this causes instabilities in the gradients that update the weights and biases

during training, which can make training RNNs extremely difficult [41].

3.2 The Selection and Use of CNNs in this Work

While neural networks have been used for wireless communications applications, most of

this prior work has used expert features as input [10, 11, 26, 42, 43]. As discussed in the

previous chapter, by using pre-defined features, only a few of a received signal’s attributes

are considered, leaving behind information in the raw data that may be useful in identifying

an emitter. In this work, the raw IQ data is used as input to the network, in order to

allow the network access to all content within the received signal [44, 45], and to eliminate

the need for pre-processing steps such as synchronization, carrier tracking, demodulation, or

SNR estimation typically needed in prior works.

Though MLPs have been used for wireless communications applications with expert

features as input, they lack the scalability needed to process raw IQ data efficiently. On the

other hand, CNNs are able to learn to model features of raw data, and to do so efficiently.

Though the use of raw IQ as input to CNNs is a relatively new concept, it has shown success in

prior works [9,46,47], indicating CNNs can learn directly from raw signal data. Additionally,

the recent success of CNNs in the field of wireless communications, using both expert features
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and raw IQ data, further shows CNNs are capable of modeling communications data to

perform tasks including emitter fingerprinting. Because CNNs have inherent feature learning

abilities and due to their successes in the wireless communications domain, they were selected

for this work.

RNNs would likely model raw IQ data well also, as the recurrent connections would allow

RNNs to model the sequential nature of raw IQ data streams. However, the wide variety

of architecture designs and training methods used in the literature combined with their

volatility in training makes it difficult to create robust decision engines. As a result, RNNs

were not considered in this work. Despite this, recent work has shown success using deep

LSTM networks for anomaly detection with raw bio-signal data as input and using a hybrid

CNN-LSTM model for time series classification with raw audio data as input, suggesting

RNNs may be an appropriate direction for future work [48,49].

3.2.1 Applications of CNNs in the Literature

CNNs are most commonly used in the image processing domain for tasks such as image

classification, object detection, and filtering [50–52]. Additionally, because images are easily

visualized, novel tools and techniques have been developed for visualizing the filters and

filter activations of the trained network [53] [54], allowing for an increasing understanding

of the features extracted by CNNs when trained on images.

However, CNNs have also shown great success when applied to time-series data such as

in the natural language processing (NLP) and audio realms [55, 56]. More recently, CNNs
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have been applied in the wireless communications domain, and have shown success perform-

ing modulation and waveform classification [9–11], emitter fingerprinting [26], interference

identification [42], and device localization [43].

Much of the prior work using CNNs for wireless communications applications frame the

problem as a classification problem, using the modulation type, emitter, interference type,

or device location as the output class. As previously mentioned, features are often used as

input to the network [10,11,26,42,43]. Further, because CNNs are so commonly used in the

image processing domain, some prior works have used different image representations of the

signal data as input to the network, such as the constellation diagram [10], the Choi-Williams

distribution [11], or visualizations of angle of arrival [43]. However, in [9], raw IQ data was

used as input to a CNN to successfully perform modulation classification, and in [42], the

Fast Fourier Transform (FFT) of the raw IQ, a lossless transform, was used as input to a

CNN to perform interference identification.

3.2.2 Network Design and Training

There are numerous open-source software libraries and toolboxes available that provide sup-

port for neural network design and training, including Caffe [57], Torch [58], TensorFlow [59],

Theano [60], and Keras [61]. In addition to allowing for development in high-level languages

such as Python, C++, and MATLAB, these libraries also support the optimal use of multi-

core CPU systems and GPUs.

All networks used in this work were designed and trained in Python using Keras, a neural
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networks applications programming interface (API) running on top of Tensorflow or Theano

[59–61]. Keras provides an additional level of abstraction, with common layer types, cost

functions, optimizers, activation functions, and regularizers provided as standalone modules

that can easily be connected, modified, and extended. This allowed for the rapid design

and testing of networks, due to the ease of architecture modification and the ability to

parameterize much of the network.

The increased level of abstraction provided by Keras also allowed for the automation of

the parameter tuning required when designing neural networks. Table 3.1 shows a portion

of the large number of parameters that need to be tuned and optimized to find the best

performing network for a problem. In order to efficiently determine the best network pa-

rameters for the architecture designed, a script was developed to select parameters using a

method akin to the Monte-Carlo method.

The network architectures developed for this thesis, that is the number of layers and

activation functions, were chosen by hand, influenced by networks used in the literature.

Then, given a designed network architecture, the developed script randomly selected network

parameters, built and trained networks with the given parameters, and evaluated the perfor-

mance of the networks. The parameters producing the network with the best performance

was then selected, as shown in Figure 3.4. Network performance was evaluated according

to the purpose of the network being designed. For example, networks being designed to

perform a classification task will use classification accuracy as the evaluation metric, while

networks being designed for an estimation task may use the root mean squared error or the
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Category Parameter Description

Convolutional Layers # of filters
The number of filters per convolutional layer in the

network, an integer value.

filter size
The filter size, per layer. Can be 1-dimensional,

2-dimensional, or 3-dimensional.

Dense Layers # of nodes
The number of nodes or neurons in each dense

fully-connected layer.

All Layers activation function
The activation function used in each layer (ex. ReLU,

sigmoid, tanh, linear).

pooling

Whether or not pooling is used after each layer, and

if so, the size of the pool and pooling method

(ex. Max Pooling of size = 2).

dropout
Whether dropout is used after each layer, and if so,

by how much (ex. dropout = 0.5).

Network Parameters # of Convolutional layers
The number of convolutional layers in the network,

an integer value.

# of Dense layers
The number of dense layers in the network,

an integer value.

batch size
The number of training samples the network is given

at a time, an integer value.

loss function

The loss function, also known as the objective function,

used to compile the network which modifies the back-

propagation algorithm (ex. mean squared error,

categorical crossentropy).

optimizer

The optimizer used to compile the network which

modifies the back-propagation algorithm

(ex. Stochastic Gradient Descent, RMSprop, Adadelta).

Table 3.1: The tunable parameters of a CNN.
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Figure 3.4: The CNN parameter selection process.

normalized mean squared error. Due to the variety of approaches investigated in this work,

numerous metrics were used to evaluate the different networks developed. Each metric used

will be described in detail in the following chapters.

While CNNs have the potential for unsupervised and semi-supervised learning appli-

cations, where inferences are drawn from unlabeled or partially labeled datasets, because

the CNNs used in this work perform estimation and identification tasks, supervised learn-

ing approaches provided simpler and more appropriate solutions than unsupervised learn-

ing approaches. As such, the approaches developed in this work used supervised learning

methods, meaning each set of training and testing samples is labeled with their true offset

values [47,62].
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In order to prevent the networks from overfitting, or learning the training data too well,

as this would keep the networks from performing well on unseen data, a validation split

on the training data was used to monitor the accuracy of the networks as they trained.

When the performance of the network on the validation split stopped improving, training

was stopped and the network evaluated appropriately on a separate validation set, a method

called early stopping [33].

3.2.3 Training Data

When training neural network models, the quantity and quality of training data is of the

utmost importance. What constitutes “enough” training data varies widely between neural

network types and applications [63]. However, in general, more training data improves

network performance, at the cost of either having to gather more real-world data or to

generate more simulated data [33,38].

In the case that gathering or simulating additional data is not feasible, learning may be

improved by either improving the learning algorithm itself, using methods such as regular-

ization, tuning network parameters, altering the network architecture, or by improving the

quality of the training data [38]. When training a neural network, the quality of training

data refers to the similarity of the training data to the test data or to data the network may

see once deployed, as the network cannot be expected to perform well on something it has

never seen before in training. Though online learning algorithms may allow the network to

continue learning once deployed, they can be difficult to assess and are subject to forgetting
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previously learned information, a phenomenon known as catastrophic forgetting [7, 64].

Many prior works utilizing CNNs for wireless communications applications have used real

data in training [26, 42, 43]. However, tools such as GNU Radio have allowed for the gen-

eration of simulated data containing real-world effects such as channel effects and hardware

impairments [65]. As such, GNU Radio has become popular for generating simulated data,

but MATLAB is also used [9, 11].

This work uses both simulated and real RF data in training. In addition to channel

effects, RF fingerprints are captured in the real data. Real RF training data is essential

to performing tasks such as emitter identification, as the features which make an emitter

unique are not always entirely known and therefore cannot be easily simulated. However,

the process by which real RF data is collected can be tedious and time-consuming.

In comparison, simulated data is far easier to generate. However, channel effects, trans-

mitter impairments, and the effects of an imperfect signal detection stage needed to be

considered during dataset generation, in order to simulate the effects inherent in the real

data [46]. By training on data generated at a variety of SNRs, frequency offsets, and sampling

rates, the network is encouraged to generalize over different noise levels as well as different

center frequencies and bandwidths that may be caused by an imperfect signal detection

stage. However, it should be understood that overall performance does decrease when the

network needs to generalize over these parameters, as was also shown in [46]. All simulated

data used in this work was generated using the open-source gr-signal exciter module in GNU

Radio [66].
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3.3 Summary

This chapter has provided background on the types of artificial neural network architectures

considered for this work, and discussed some of the practical considerations when training

neural networks. Further, this chapter has addressed the key design choices that are foun-

dational to this work: the use of raw IQ as input to the network and the selection of the

CNN architecture.

More specifically, using raw IQ as the input to the network allows the network access

to all the content within the signal and eliminates pre-processing steps typically needed to

extract expert features. CNNs are designed to learn features most important to their task,

have shown success in the field of wireless communications, and have been used with raw IQ

data in the recent literature. As such, this work seeks to further understand the abilities of

CNNs as feature learners, when applied to the raw data, for the purpose of SEI.



Chapter 4

Emitter Identification Using CNN IQ

Imbalance Estimators

As discussed in Chapter 3, prior work using CNNs for wireless communications applications

often uses expert features as input. While these expert features can be extracted using tra-

ditional methods, these methods often make a variety of assumptions and/or require various

operating conditions that may not always be satisfied, as will be discussed in Section 4.2. In

this chapter, an approach using CNNs to extract an expert feature, transmitter IQ imbalance,

is developed and analyzed. Further, using the developed CNN IQ imbalance estimators, an

approach is presented to identify emitters across numerous modulation schemes.

To this end, in Section 4.1, transmitter IQ imbalance is discussed and an appropriate

signal model is developed, for use in the generation of the simulated data used for training

and testing of the approach. Section 4.3.1 then describes the models designed for the esti-

mation of IQ imbalance. Using the simulated data described in Section 4.3.2, the impact

27
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of network input size, SNR, and imbalance value on the performance of the estimators is

thoroughly evaluated in Section 4.3.3, for both QAM and PSK modulation schemes. Section

4.4 presents the SEI approach using the developed CNN IQ imbalance estimators and eval-

uates the performance of the developed approach, showing that the accuracy of developed

approach exceeds that of a traditional feature-based approach using less data and making

fewer assumptions. Finally, Section 4.5 summarizes the work presented in this chapter and

describes future work that may improve the approach.

4.1 Transmitter IQ Imbalance

4.1.1 Causes and Implications

Transmitter-induced frequency-independent IQ imbalance is caused by non-idealities in the

local oscillators and mixers of the transmitter which cause the in-phase and quadrature

components of the modulator to be non-orthogonal. The result is the real and imaginary

components of the complex signal interfering with each other. In addition to potentially

degrading the performance of the transmitter, IQ imbalance can also be used as an identifying

feature when performing SEI techniques.

IQ imbalance in the constellation diagram, shown with exaggerated imbalance values

and after demodulation for clarity, is shown for 16QAM in Figure 4.1. The result of a phase

imbalance on a signal, shown in the lower left constellation, is a rotation of the real component

of the symbols in the IQ plane. The result of a gain imbalance on a signal, shown in the
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Figure 4.1: The result of transmitter IQ imbalance applied to the in-phase component of a

16QAM signal in the constellation diagram, SNR = 20dB. Top Left: no imbalances. Top

Right: phase imbalance = 30◦, gain imbalance = 0. Bottom Left: phase imbalance = 0,

linear gain imbalance = 0.9. Bottom Right: phase imbalance = 30◦, linear gain imbalance

= 0.9.
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upper right constellation, is a stretching or contracting of the real component of symbols

along the in-phase axis. However, in many systems, it may be impractical to obtain the

symbols, such as in a blind system where synchronization cannot be assumed. Given this,

the proposed approach uses raw IQ as input, eliminating the need for demodulation, used in

many traditional methods [67].

IQ imbalance in the time domain is shown for 16QAM in Figure 4.2. The result of a gain

imbalance on a signal in the time domain is an increase or decrease in the amplitude of the

real component of the signal. The result of a phase imbalance on a signal in the time domain

is a shifting of the phasor of the real component of the signal. To the human eye, a phase

imbalance is much harder to see than a gain imbalance, though both become hard to detect

at low SNR. However, as will be shown in Section 4.3.3, using the learned features, CNNs

are able to identify small differences between sets of samples to estimate these imbalances,

given enough samples and reasonable SNR values.

4.1.2 Signal Model

This work assumes only frequency-independent IQ imbalance. Though most modern commu-

nications systems are affected by frequency-dependent IQ imbalance, frequency-independence

is often assumed in the existing literature, for simplicity [68]. Frequency-independent IQ im-

balance is also a valid approximation for imbalanced narrowband systems and imbalance due

to the analog components of emitters [68,69]. Without loss of generality, all imbalances are

modeled on the in-phase component of the modulated signal before transmission through an
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Figure 4.2: The result of transmitter IQ imbalance applied to the in-phase component of

a 16QAM signal in the time domain, SNR = 20dB. Top Left: no imbalances. Top Right:

phase imbalance = 30◦, gain imbalance = 0. Bottom Left: phase imbalance = 0, linear gain

imbalance = 0.9. Bottom Right: phase imbalance = 30◦, linear gain imbalance = 0.9.
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AWGN channel [70], as follows:

Consider the baseband signal

x(t) = xi(t) + jxq(t), (4.1)

where xi(t) and xq(t) are real-valued time-varying baseband signals. An IQ modulator with

imbalance, as shown in Figure 4.3, modulates this baseband signal to its bandpass equivalent

through

x(t) = (1 + α) cos(2πf0t+ θ)xi(t)− j sin(2πf0t)xq(t), (4.2)

where f0 is the carrier frequency, the transmitter’s gain imbalance is represented by α, and

the transmitter’s phase imbalance is represented by θ, such that for an ideal transmitter,

with no IQ imbalance, α = 0 and θ = 0. Transmission through an AWGN channel gives the

received signal

y(t) = R
{ ∞∑

k=−∞

(1 + α) cos(2πf0t+ θ)xki(t)− j sin(2πf0t)xkq(t)

}
+ n(t) (4.3)

where n(t) is a zero mean white Gaussian noise process [44,71].

Though gain and phase imbalance values for real systems are not easily found, prior works

in IQ imbalance estimation and compensation use test values ranging from 0.02 to 0.82 for

absolute gain imbalance and from 2◦ to 11.42◦ for phase imbalance, with most works using

test values on the orders of 0.05 and 5◦ for gain and phase imbalance respectively [67,70–76].
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Figure 4.3: IQ modulation with IQ imbalance on the in-phase component.

4.2 Traditional IQ Imbalance Estimation Approaches

Many methods for estimating or compensating for IQ imbalance exist in the literature [67,

68, 72–78]. For example, in [67], a clustering method was developed to match the received

symbols to their ideal positions in the I/Q plane, a non-linear regression technique was used

to estimate the gain and phase imbalance values using a training sequence in [77], and the

methods developed in [73] and [76] use second-order statistics to estimate the terms used to

compensate for IQ imbalance at the transmitter and receiver.

However, many of these approaches rely on various assumptions. For example, the ap-

proaches developed in [72, 77] assume the use of a training sequence or test signal for cali-

bration. Additionally, many of these approaches require the use of successive iterations [73],

demodulation [67], adjacent power measurements [74], or the use of statistical measures

such as cross-correlation or expectation [73, 76]. The approach developed in this chapter
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makes no such assumptions and uses only raw IQ as input to the CNN, eliminating the need

for typically assumed pre-processing steps such as synchronization, carrier tracking, feature

extraction, or SNR estimation.

Additionally, an abundance of IQ imbalance estimation or compensation techniques have

been developed specifically for systems utilizing an OFDM modulation scheme, and are not

applicable to modulation schemes that do not utilize multiple carriers [68]. Likewise, some

IQ imbalance compensation approaches require modification of the transmitter hardware,

such as the addition of diodes for IQ imbalance measurements to be used in a feedback

loop [75, 78]. The approach developed in this chapter is modulation agnostic and requires

no hardware modifications.

Furthermore, the majority of current work in the area of estimating IQ imbalance focuses

on IQ imbalance compensation [67,68,72–78]. While IQ imbalance compensation is certainly

an important application of this work, this assumes cooperation between the transmitter

and receiver. This work considers a non-cooperative scenario. In such a scenario, little to no

assumptions can be made about what is being received, eliminating the ability to use many

existing estimators. For example, training sequences or test signals can not be used because

such sequences or signals will not be known a priori.
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4.3 CNN IQ Imbalance Estimators

4.3.1 Model Design, Training, and Evaluation

The network architecture designed for the approach is shown in Figure 4.4, and is loosely

based off of the network architecture used in [9]. To investigate the trade-offs between

input size and performance, models were trained and evaluated using input sizes of 512,

1024, and 2048 raw IQ samples. Following the input layer, the network is composed of two

two-dimensional convolutional layers and four dense fully-connected layers. Intuitively, the

convolutional layers in this architecture are designed to identify and extract the relevant

features, and the fully connected layers that follow are intended to perform the estimation

[79].

All layers, excluding the output layer, utilize a Rectified Linear Unit (ReLU) activation

function, shown in Figure 4.5. The ReLU function is a popular activation function in the

literature, as it has been shown to be robust to saturation (when output is near zero or one)

which usually causes learning to slow. However, because the function has a range of [0,∞)

it cannot be used at the output layer, as it cannot produce negative estimates. Therefore,

the final layer of the network uses the linear activation function, shown in Figure 4.6, to

allow the network to estimate negative gain and phase imbalance values. The stochastic

gradient descent algorithm modified with a RMSProp optimizer and a mean squared error

loss function was used to train the networks [80].

The work in this chapter uses simulated data in training and testing which allowed for
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Figure 4.4: The CNN architecture designed for estimation of transmitter IQ imbalance.

control over the range of IQ imbalance values in the training set, and thus the range of IQ

imbalance values the designed networks learn to estimate. Most prior works use test values

on the orders of 0.05 and 5◦ for absolute gain and phase imbalance [67,70–76]. However, test

values in the literature ranged from 0.02 to 0.82 for absolute gain imbalance and from 2◦

to 11.42◦ for phase imbalance [67, 70–76]. Therefore, the training, validation, and test sets

for this work were simulated with gain imbalances of [-0.9, 0.9], uniformly distributed, and

phase imbalances between [−10◦, 10◦], uniformly distributed, in order to train over a range

of imbalance values incorporating anything the networks might see in a real system.

Due to the complexity of estimating IQ imbalance, this approach estimates gain imbalance

and phase imbalance separately using two different neural networks. Though both networks

share the same underlying architecture, shown in Figure 4.4, using two networks allows

each network to be optimized for the specific problem of gain imbalance estimation or phase

imbalance estimation. The resulting networks therefore have different sized convolutional and
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Figure 4.5: The ReLU activation function.

Figure 4.6: The linear activation function.
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dense layers, as well as different weights and biases, as they have been trained separately using

the scripts described in Section 3.2.2. However, it should be noted that these two networks

are not dependent upon each other, and therefore can be trained and run in parallel.

Similarly, separate networks were trained to estimate IQ imbalance for the simulated

QAM and PSK signals. However, results in Section 4.3.3 will show that the performance of

these networks is comparable, indicating the designed network architecture is not modulation

specific. Additionally, though the networks have been trained per modulation type, they are

generalizing over modulation order (i.e. the networks trained to estimate IQ imbalance for

QAM can estimate gain and phase imbalances for QAM signals of orders 8, 16, 32, and 64).

Each network used 2,020,000 sets of labeled samples in training: 2,000,000 sets of samples

were used for training, 10,000 for validation, and 10,000 for testing. The normalized mean

squared error (NMSE) was used as the performance metric to determine the best network

design and to evaluate performance, and is defined as

NMSE =
1

N

∑
i

(Pi −Mi)
2

P M
, (4.4)

where P is the vector of estimated imbalance values, M is the vector of measured imbalance

values, P is the mean of vector P , M is the mean of vector M , and N is the length of vectors

P and M [81].

To further evaluate the performance of the estimators, evaluation sets were constructed

with 180,000 sets of samples for the gain estimator and 200,000 sets of samples for the phase

estimator. For each evaluation set, 1,000 sets of samples were generated at evenly spaced
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intervals of ∆α = ±0.01 for gain imbalance and evenly spaced intervals of ∆θ = ±0.1◦ for

phase imbalance within the training range. These evaluation sets were used to determine

the bias of the estimators and to generate the histograms shown in Section 4.4.1.1.

4.3.2 Dataset Generation

All data used in the following simulations was generated using the open-source gr-signal exciter

module in GNU Radio [66]. QAM signals of orders 8, 16, 32, and 64 and PSK signals of or-

ders 2, 4, 8, and 16 were simulated with linear gain imbalances between [-0.9, 0.9], uniformly

distributed, and phase imbalances between [−10◦, 10◦], uniformly distributed. Additionally,

frequency imbalances between [-0.1, 0.1] times the sample rate, uniformly distributed, were

simulated and the simulated signal was sampled between [1.2, 4] times Nyquist, uniformly

distributed, in order to simulate the effects of an imperfect signal detection stage. The

sampled signal was passed through a root-raised cosine filter with a roll-off factor of 0.35

and normalized so that the average symbol power is 1dB. Finally, white Gaussian noise was

added such that all signals had SNRs between [0dB, 25dB], uniformly distributed.

4.3.3 Simulation Results and Discussion

Initial results can be seen in Figures 4.7 and 4.8. The extremely strong linear correlations

in Figure 4.7 shows each network’s ability to estimate gain imbalance, for all imbalances

in the training range, using 1024 input samples. The phase imbalance estimators similarly

show linear correlations in Figure 4.8, though with correlation coefficient values 0.1-0.15
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(a) QAM (b) PSK

Figure 4.7: The true linear gain imbalance value versus the linear gain imbalance value

estimated by the 1024-input CNN gain imbalance estimators with input signals at 10dB

SNR.

(a) QAM (b) PSK

Figure 4.8: The true phase imbalance value versus the phase imbalance value estimated by

the 1024-input CNN phase imbalance estimators with input signals at 10dB SNR.
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lower than the gain imbalance estimators. This indicates phase imbalance is more difficult

to estimate than gain imbalance, using the designed network architecture with 1024 input

samples, as a strong linear correlation indicates a clear relationship between the estimated

and true imbalance value.

Bias of the Estimators

To examine the bias of the estimators, the cumulative average of the estimator outputs was

taken for 1,000 sets of samples, each with the same imbalance value. The estimator can be

called unbiased if the cumulative moving average converges to the true imbalance value, and

is biased otherwise [82].

Figures 4.9 and 4.10 show the bias and sample variance of the gain imbalance estimators

and phase imbalance estimators respectively, as a function of the true imbalance value. The

gain imbalance estimators produce estimates with low bias for all values within the training

range (−0.9, 0.9), with slightly higher bias values at the positive imbalance values. Ad-

ditionally, the sample variance is also very low across all values within the training range.

However, both the bias and the sample variance of the gain imbalance estimators are neg-

ligible in comparison to the bias and variance of the phase imbalance estimators, further

indicating phase imbalance is far more difficult to estimate at 10dB SNR using this network

architecture.

The phase imbalance estimators produce estimates with lowest bias when the true imbal-

ance value is near zero. The bias then increases as the true imbalance value gets farther from
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(a) QAM (b) PSK

Figure 4.9: The bias and sample variance versus the true linear gain imbalance value for the

1024-input CNN gain imbalance estimator and signals simulated at 10dB SNR.

(a) QAM (b) PSK

Figure 4.10: The bias and sample variance versus the true phase imbalance value for the

1024-input CNN phase imbalance estimator and input signals simulated at 10dB SNR.
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zero in either direction. The sample variance shows an inverse trend, with maximum sample

variance near zero and minimum sample variance at −10◦ and 10◦. This indicates that small

phase imbalance values are more difficult for the designed CNN to estimate. These trends

further emphasize the inaccuracy of the phase imbalance estimators across all values.

Impact of SNR and Network Input Size on Performance

The effect of SNR on the performance of the estimators can be seen in Figures 4.11 and

4.12. For both imbalance estimators trained for both modulation types, it is shown that

as the SNR increases, the imbalance estimation error (the difference between the true and

estimated imbalances) decreases. However, the mean imbalance error stays almost constant

near zero for all SNR values with the standard deviation of the imbalance error decreasing

as SNR increases, with diminishing returns after 10dB.

The effect of the network input size and the SNR of the input signal on the performance

of the gain and phase imbalance estimators was further investigated using the average bias

and the sample variance of the output. These results are shown in Figures 4.13, 4.14, 4.15,

and 4.16. Figures 4.13 and 4.14 show that as the SNR increases, the bias of the estimators

decreases. Additionally, Figure 4.15 shows that for the gain imbalance estimators, as the SNR

of the input signal increases, the sample variance also decreases, with dramatic improvement

between 0−10dB and diminishing returns after 15dB. Shown in Figure 4.16, the PSK phase

imbalance estimators and the 1024- and 2048-input QAM phase imbalance estimators behave

similarly. However, the sample variance of the 512-input QAM phase imbalance estimator
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(a) QAM (b) PSK

Figure 4.11: The Linear Gain Imbalance Estimation Errors for signals simulated with SNRs

between 0dB and 25dB. True linear gain imbalances vary uniformly between [-0.9, 0.9].

(a) QAM (b) PSK

Figure 4.12: The Phase Imbalance Estimation Errors for signals simulated with SNRs be-

tween 0dB and 25dB. True phase imbalances are uniformly distributed between [-10◦, 10◦].
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(a) QAM (b) PSK

Figure 4.13: The average bias versus SNR for CNN gain imbalance estimators with input

sizes of 512 samples, 1024 samples, and 2048 samples.

(a) QAM (b) PSK

Figure 4.14: The average bias versus SNR for CNN phase imbalance estimators with input

sizes of 512 samples, 1024 samples, and 2048 samples.



46

(a) QAM (b) PSK

Figure 4.15: The sample variance of the histograms for the 512-input, 1024-input, and 2048-

input CNN gain imbalance estimators as a function of SNR.

(a) QAM (b) PSK

Figure 4.16: The sample variance of the histograms for the 512-input, 1024-input, and 2048-

input CNN phase imbalance estimators as a function of SNR.
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histogram remains constant for all SNRs. This, in addition to the high average bias of the

512-input QAM phase imbalance estimator, suggests that 512-input samples does not give

the network enough information to learn phase imbalance for the QAM modulation type.

Therefore the network produces very similar outputs for all inputs at all SNRs.

Figures 4.15 and 4.16 also show, as the number of input samples increases, the sample

variance decreases, excluding the 512-input QAM phase imbalance estimator. This behavior

is expected, as with more input samples, the network observes the signal for longer, and

therefore has more information about the signal to use in its estimation.

From the results shown above, it can be concluded that though increasing the number

of input samples to the network may not increase the accuracy of the estimate, the network

does become more sure of the estimate it produces. However, it should be noted that though

using more inputs generally improves some aspects of performance, it also slows the network

and increases training time, as it has to process more information. Additionally, increasing

the input size to the network also requires more training data, as n sets of 1024 samples

requires twice the memory as n sets of 512 samples.

4.4 Transmitter Gain Imbalance Estimation for SEI

This section presents an approach for performing SEI using a modulation classifier and

the CNN gain imbalance estimators developed previously. The approach uses the CNN

gain imbalance estimators, in order to limit the scope of the problem and because the gain
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imbalance estimators far outperformed the phase imbalance estimators. Because an emitter’s

IQ imbalance parameters will not change as it changes modulation schemes, the proposed

approach has the ability to track emitters, even as they change modulation scheme.

The performance of the developed approach is analyzed in terms of the probability of

incorrect identification, considering the impact of SNR, gain imbalance value, and modu-

lation scheme. Finally, the developed approach is compared to a traditional feature-based

approach.

4.4.1 Approach

Three main steps are required to perform emitter identification using the proposed approach,

shown in Figure 4.17: modulation classification, gain imbalance estimation, and decision

making. The result is a decision tree-like structure in which the output of each step informs

the next action, as described below.

The first step is modulation classification because the pre-trained CNN gain imbalance

estimators are modulation-specific. It is important to note that while any modulation clas-

sifier may be used, a key advantage of the developed approach over traditional approaches

is the use of only the raw IQ as input. In order to retain this advantage, the modulation

classifier should only use raw IQ as input as well. Such modulation classifiers exist in the

literature. For example, [46] uses a CNN architecture to perform modulation classification

using only raw IQ as input.
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Figure 4.17: The designed emitter identification approach using CNN IQ imbalance estima-

tors.

The output of the modulation classifier determines which modulation-specific CNN gain

imbalance estimator the input signal is fed to, and the gain imbalance of the emitter can

be appropriately estimated. The point estimate produced by the CNN gain imbalance esti-

mator in the previous step is then used to determine the identity of the transmitter using

modulation-specific decision makers built using Gaussian probability density functions (pdf s)

and Bayes optimal decision boundaries, to be discussed below.

The next sections will describe the components of the modulation specific decision makers.

Using the evaluation sets described in Section 4.3.1, histograms of the estimator outputs

can be produced. In Section 4.4.1.1, the fit of a Gaussian pdf to these histograms will be

discussed. The derivation of the Bayesian decision boundaries between these pdf s for differing

known imbalance values is shown in Section 4.4.1.2. Finally, the use of the Gaussian pdf s

and Bayesian decision boundaries for determining emitter identity is described in Section

4.4.1.3 and for determining the probability of mis-identification in Section 4.4.1.4.
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(a) QAM (b) PSK

Figure 4.18: The fitted Gaussian curve for the 1024-input CNN gain imbalance estimator

output histogram with input signals at 10dB SNR and true linear gain imbalance = 0.30.

4.4.1.1 Gaussian Curve Fit to CNN Output Histograms

Using the evaluation sets described in Section 4.3.1, histograms can be produced for the CNN

estimator outputs at evenly spaced intervals of 0.01 within the training interval, [-0.9, 0.9].

Because a Gaussian trend was observed, the pdf was fitted to the gain imbalance estimator

output histograms, as shown in Figure 4.18, using SciPy’s statistics package [83].

The goodness of fit was tested using the Chi-Squared Goodness of Fit (GoF) test, as

follows [84]: Letting the null hypothesis (H0) be that the data is consistent with a Gaussian

distribution, and the alternate hypothesis (H1) be that the data is not consistent with a

Gaussian distribution, the χ2 test produces a p-value representing the probability of incor-

rectly rejecting the null hypothesis. The null hypothesis is rejected if the p-value is less than

the chosen significance level. In the literature, 0.05 is a commonly chosen significance level
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QAM PSK

0dB 0.519 0.717

5dB 0.644 0.565

10dB 0.707 0.710

15dB 0.659 0.600

20dB 0.591 0.558

25dB 0.618 0.525

Table 4.1: The p-values produced by the χ2 GoF test, averaged over all gain imbalance

values.

and is used here [84, 85].

As shown in Table 4.1, the χ2 test produced average p-values greater than 0.05 for both

the QAM and PSK gain imbalance estimators for SNRs varying from 0 to 25dB, over all

imbalance values, using 1024 input samples, so the null hypothesis, and thus the Gaussian

fit for the CNN outputs, was accepted.

4.4.1.2 Bayesian Decision Boundaries

Given two imbalance values, i and j, the Bayesian decision boundary between the fitted

pdf s, p(x|i) and p(x|j), is calculated as follows. The following calculations assume that each

imbalance value is equally likely to occur in any given emitter, but are not specific to the

Gaussian pdf and can therefore be used for any curve fit.
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Figure 4.19: The Bayesian decision boundary given two equally likely Gaussian pdf s.

Letting x be the received signal data,

Decide i if P (i|x) > P (j|x); otherwise decide j.

Using Bayes Rule, this decision rule can be expressed in terms of the fitted pdf s (p(x|i), p(x|j))

and the probability of the emitter having a given imbalance value (P (i), P (j)):

Decide i if p(x|i)P (i) > p(x|j)P (j); otherwise decide j.

Finally, assuming each imbalance value is equally likely to occur (i.e. P (i) = P (j)), the final

decision rule is

Decide i if p(x|i) > p(x|j); otherwise decide j,

making the decision boundary the intersection point(s) of the two fitted pdf s p(x|i) and

p(x|j) for imbalance values i and j, i.e. where p(x|i) = p(x|j), shown in Figure 4.19 [86].
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4.4.1.3 Decision Making

Given a decision boundary calculated between the two pdf s, p(x|i) and p(x|j), for imbalance

values i and j and a received signal, a decision can be made about emitter identity. After

modulation classification, the received signal can be fed to the appropriate gain imbalance

estimator, producing a point estimate of the gain imbalance of the emitter which sent the

signal.

Without loss of generality, let the mean of p(x|i) be less than the mean of p(x|j). If the

point estimate falls on the left side of the decision boundary, it is decided the transmitted

signal came from an emitter with imbalance value i. Otherwise, it is decided the transmitted

signal came from an emitter with imbalance value j.

For illustrative purposes, consider the example decision scenario shown in Figure 4.20.

Because the point estimate falls on the right side of the decision boundary, it is decided the

transmitted signal came from Emitter 2. However, this assumes the gain imbalance values

of each emitter in the system is known, the first of two ways the proposed approach may be

used.

In this case, the pdf s of the known imbalance values can be selected and the decision

boundaries between these pdf s calculated. Decisions on point estimates are then made

as described above. While this method has use cases for Dynamic Spectrum Access and

cooperative scenarios [87], the ability to perform SEI in non-cooperative and blind scenarios

is a primary motivator of this work. In the case that the emitters in the system are unknown,
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Figure 4.20: An example decision scenario identifying an emitter by its estimated gain

imbalance using the calculated Bayesian decision boundary.

the approach may still be used. However, because the pdf s of the known imbalance values

cannot be selected, it is only possible to “bin” the emitters into intervals of possible imbalance

values. To do this, pdf s are selected at evenly spaced values, and the decision boundaries

calculated, indicating the endpoints of each bin. Then, as in the first case, decisions on point

estimates are made as described above. For simplicity, the results shown in Section 4.4.3

will consider only this second case.

4.4.1.4 The Probability of Mis-Identifying Emitters

Given two fitted pdf s, p(x|i) and p(x|j), and the decision boundary, d, between the pdf s, it

is also possible to determine the probability of misidentifying an emitter:

Consider the scenario in Figure 4.21, where a point estimate, xi, is produced from a set
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Figure 4.21: The region representing the probability of mis-identifying the point estimate.

of samples received from an emitter belonging to imbalance bin i. Again, without loss of

generality, let the mean of p(x|i) be less than the mean of p(x|j). A correct classification

occurs when the estimate from the CNN, xi, is less than the decision boundary d. Therefore,

an incorrect classification occurs when xi > d. Because the area under a pdf is 1, the

probability of this occurring is ∫ ∞
d

p(x|i)dx,

and is represented by the shaded blue region in Figure 4.21.

4.4.2 Model Design, Training, and Evaluation

The model developed previously contained two two-dimensional convolutional layers followed

by four dense fully-connected layers. The final layer used a linear activation function, while

all other layers used the ReLU activation function. This approach uses the same model,
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Figure 4.22: The CNN architecture designed for estimation of transmitter gain imbalance to

perform SEI.

modified with one max-pooling layer, with size = 2, inserted between the convolutional

layers and the dense layers, as shown in Figure 4.22.

When determining which networks performed best, the NMSE was no longer a helpful

evaluation metric, as a network with a low average NMSE could produce histograms with

larger variance than networks with a higher average NMSE. Therefore, to evaluate the per-

formance of trained networks, the evaluation sets previously described in Section 4.3.1 were

used. For a given trained network, pdf s were fitted for each of the gain imbalance values, and

the minimum gain imbalance separation needed to obtain a probability of mis-identification

of less than 5% was calculated. This value was used to determine which networks were

performing better than others.
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4.4.3 Simulation Results and Discussion

Impact of SNR on SEI Ability

Using the evaluation sets constructed for QAM and PSK, the minimum gain imbalance

separations needed to obtain average probabilities of mis-identification of less than 20%,

10%, and 5% across all imbalance values were calculated, as described in Section 4.4.1.4.

The impact of SNR on the ability to identify emitters at these levels of accuracy is shown in

Figure 4.23. At 0dB, the estimators cannot be used to perform emitter identification to even

a 80% probability of correct identification. However, as the SNR increases, the minimum

gain imbalance separation needed to obtain < 5%, < 10%, and < 20% probabilities of mis-

identification decreases with diminishing returns at around 20dB. Therefore, the lower the

probability of mis-identification needed in a system, the higher the gain imbalance separation

needed.

Impact of imbalance Value on SEI Ability

In Section 4.3.3 and Figure 4.9, it was shown that the sample variance of the gain imbalance

estimators is slightly lower when the true imbalance value is at the limits of the training

range (near −0.9 and 0.9). As a result, the variance of the fitted pdf s is lower when the

true imbalance value is near the limits of the training range, in comparison to when the true

imbalance value is near zero. Therefore, the probability of mis-identification is lower when

the true imbalance value is near the limits of the training range.
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(a) QAM (b) PSK

Figure 4.23: The SNR versus minimum gain imbalance separation needed to obtain < 5%,

< 10%, and < 20% probability of mis-identification using the CNN gain imbalance estimator.

Impact of Modulation Scheme on SEI Ability

The ability to perform gain imbalance estimation on QAM and PSK signals using the de-

signed CNN architecture was shown in Section 4.3.3. Though the use of CNN estimators for

gain imbalance estimation on other signal types was not investigated, the comparable results

of the CNN gain imbalance estimators trained for QAM and PSK showed that the designed

network architecture described in Section 4.3.1 was not modulation specific. Investigation

into the performance of the estimators on further modulation schemes is left for future work.

Figure 4.24 shows the importance of having separate decision boundaries for each mod-

ulation class. Though the true imbalance value of the input signal to the estimators is

the same, the output histograms produced by the modulation specific CNN gain imbalance

estimators are not. This yields different decision boundaries for each modulation class.
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Figure 4.24: The histogram outputs for the PSK and QAM estimators both with true gain

imbalance values = -0.58.

As discussed in Section 4.3.3 and shown in Figure 4.15, the CNN gain imbalance estimator

trained for PSK showed a lower average sample variance than the CNN gain imbalance

estimator trained for QAM. This resulted in fitted pdf s with lower variance for PSK than

QAM. Therefore, in general, lower minimum gain imbalances are needed to identify emitters

with the same accuracy as the QAM estimators, as shown in Figure 4.23, and more emitters

can be identified uniquely.

Practical Considerations

As expected, for both QAM and PSK, the lower the probability of mis-identification needed

in a system, the higher the gain imbalance separation needed to achieve the needed level of

accuracy. Therefore, in systems with a higher tolerance for mis-identification, more emitters
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can be uniquely identified, and in systems that require a low probability of mis-identification,

fewer emitters can be uniquely identified.

However, even in systems with a 20% tolerance for mis-identification receiving signals

exceeding 20dB SNR, emitters need to have a linear gain imbalance separation of at least

0.15. While few publications indicate measured gain imbalance values for real systems, most

prior works in IQ imbalance estimation and compensation use test values on the order of

0.05 [67,70–76], indicating the gain imbalance values necessary to obtain even 80% accuracy

are not practical in real systems. Narrowing the range of gain imbalance values included in

the training set would likely help combat this problem.

The training set was simulated with gain imbalances between [−0.9, 0.9], uniformly dis-

tributed, in order to incorporate any possible gain imbalance value the CNN estimator might

encounter in a real system. However, training over such a large range has likely hindered

the estimator’s accuracy, as the network has had to learn to generalize over such a large

range [46]. Given that 0.9 is likely much larger than anything one might find in a real sys-

tem, the training range could be narrowed to yield better results in estimator accuracy and

therefore SEI ability.

Comparison to a Traditional Feature-Based Approach

In [88], Zhuo et al. develop an SEI approach using IQ imbalance estimates and SVMs. The

IQ imbalance estimation algorithm proposed uses statistical methods to determine gain and

phase imbalance using the received symbols, and has assumed perfect synchronization said
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Emitter 1 Emitter 2 Emitter 3 Emitter 4 Emitter 5

α 0.1 0.13 0.15 0.17 0.19

θ 3◦ 3.3◦ 3.6◦ 3.9◦ 4.2◦

Table 4.2: The simulated IQ imbalance parameters used to produce the results in [88].

symbols. The approach also requires SNR estimation. They then plot gain versus phase

imbalance in two dimensions and use SVMs to assign the received signal to an emitter.

In order to provide an accurate comparison of the approach proposed in [88], five QPSK

emitters were simulated with gain and phase imbalance values given in Table 4.2, for SNRs

between [5dB, 35dB] at intervals of 5dB, and perfect synchronization has been assumed,

as in [88]. Additionally, the developed CNN gain imbalance estimator was retrained to

accommodate these assumptions. More specifically, the CNN gain imbalance estimator was

retrained using training, validation, and test sets with SNRs between [0dB, 35dB], gain

imbalance values (α) between [0.0, 0.3], phase imbalance values (θ) between [0◦, 5◦], and no

frequency and sample rate imbalances, in order to match the assumptions in [88].

The results in Figure 4.25 show the accuracy of the approach developed in this chapter

to that proposed in [88], given one capture of 1024 raw IQ samples and given ten captures of

1024 raw IQ samples. When the approach developed in this chapter uses only one capture

of 1024 raw IQ samples, the developed approach shows lower accuracies than the approach

presented in [88] by as much as 15%. However, it is important to note the developed approach

uses only estimates of gain imbalance, while the approach presented in [88] uses estimates of
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Figure 4.25: The accuracy of the developed SEI approach using CNN gain imbalance estima-

tors compared to the accuracy of the approach proposed in [88], given one and ten captures

of 1024 raw IQ samples.

both gain and phase imbalance, providing more information about the emitter-of-interest.

Phase imbalance estimates could also be incorporated into the approach developed in this

chapter, and would likely increase performance. Furthermore, the approach presented in [88]

is dependent upon an estimate of SNR and assumes perfect synchronization, whereas the

approach developed in this chapter needs no external measurements or estimates and can

compensate for an imperfect receiver.

Additionally, the accuracy of the approach proposed in [88] is calculated given 1330

symbols, whereas the accuracy of the approach developed in this chapter is given for one

capture of 1024 raw IQ samples. Given multiple captures of raw IQ samples, the outputs

can be aggregated, and the accuracy of the approach developed in this chapter improves, as
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Figure 4.26: The accuracy of the developed SEI approach using the large training range

described in Section 4.3.2 compared to the accuracy using the narrowed training range used

to match the assumptions made in [88].

shown in Figure 4.25. Therefore, given as few as ten captures of 1024 raw IQ samples, the

accuracy of the approach developed in this chapter exceeds the performance of the approach

proposed in [88], using less data and making far fewer assumptions.

It should also be noted that limiting the range of IQ imbalance parameters and assuming

perfect synchronization has improved the performance of the developed approach, as shown in

Figure 4.26. This confirms that training over smaller parameter ranges, more closely aligned

with those one might find in a real system, improves the performance of the approach, and

is consistent with the results and discussion in [46].
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4.5 Summary and Future Work

In this chapter, the capability of CNNs to estimate gain and phase imbalances between the

in-phase and quadrature components of a signal was shown, assuming transmission through

an AWGN channel. Performance analysis of the developed CNN IQ imbalance estimators,

using QAM and PSK as test signals, showed the model to be modulation agnostic, and

showed the model’s ability to estimate both gain and phase imbalances, with performance

increasing as SNR and network input size increases. However, phase imbalance proved to be

far more difficult to estimate than gain imbalance with the designed network architecture,

showing much higher bias and sample variance values. Therefore, an SEI approach using

parallel modulation-specific gain imbalance estimators was designed and evaluated.

For both QAM and PSK modulation schemes, the proposed SEI approach showed in-

creases in performance as SNR increases, in the form of smaller gain imbalance separations

needed to achieve lower probabilities of mis-identification. Because the gain imbalance es-

timators trained for PSK slightly outperformed those trained for QAM, the proposed SEI

approach performed better when the incoming signal was of a PSK modulation scheme.

Though the approach was shown to need impractical gain imbalance separation values, even

in high SNR scenarios, when the range of IQ imbalance parameters included in the training

set is large, performance improved significantly when this range was narrowed. Further, the

accuracy of the approach was shown to exceed that of a traditional feature-based approach,

given as few as ten captures of 1024 raw IQ samples.
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Therefore, the SEI approach developed in this chapter has improved upon traditional

SEI approaches in the following ways:

• Pre-processing steps typically needed in traditional SEI systems, such as synchroniza-

tion, carrier tracking, feature extraction, or SNR estimation, are no longer needed

because raw IQ is used as input to the network.

• Gain imbalances can be estimated in low SNR scenarios where traditional feature

extraction techniques, and therefore traditional SEI systems, may fail.

• The developed CNNs can easily be trained or retrained, to extend the model, using

synthetic training data. Extending a traditional SEI system in such a way would first

require data collection from emitters of interest and modification of the needed signal

processing and feature extraction algorithms, before the system could be extended.

• The developed approach has outperformed a traditional feature-based approach, which

also utilizes IQ imbalance to identify emitters, while using less data and making fewer

assumptions.

To improve the proposed SEI approach, the range of gain imbalance values included in

the training set can be narrowed, so that the network has to generalize less. This was shown

when comparing the developed approach to the approach in [88]. The addition of more

hardware impairments to the model, in order to further discriminate emitters, would also

likely increase performance and is left for future work. Additionally, this work could be
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extended to further modulation schemes and to receiver IQ imbalance. Finally, the ability

to estimate IQ imbalance and perform SEI in the presence of different channel models may

be explored.



Chapter 5

Clustering Learned CNN Features

In Chapter 4, CNNs were utilized to estimate transmitter IQ imbalance, and further, the

estimated gain offset values were used to identify emitters across modulation schemes. In

this chapter, CNNs are used to learn the features relevant to emitter identity themselves,

utilizing their inherent feature learning abilities, as opposed to requiring the network to learn

a specific feature.

More specifically, in this chapter a semi-supervised emitter identification approach is

developed which utilizes a supervised CNN feature extraction step and an unsupervised

clustering step, described further in Section 5.1. As in Chapter 4, the developed approach

uses only raw IQ data as input. However, the dataset used for this work is comprised entirely

of real data captures as opposed to synthetic data, like in Chapter 4, and is described in

Section 5.1.1.

Because identifying emitters across bandwidth changes is a known challenge in the SEI

67
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field [4], each emitter is first assumed to be transmitting at a single bandwidth. Under this

assumption, it is shown that emitter identification can be performed using the developed

approach, even in the presence of emitters the CNN feature extractor didn’t see in training.

This assumption is then relaxed, and the performance of the proposed approach is further

evaluated.
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5.1 Approach

The developed approach, shown in Figure 5.1, utilizes CNNs to extract emitter-specific

features by training the network to perform emitter identification on raw IQ data. Once

trained, the CNN feature extractor simply serves as the pre-processor to a clustering step.

To allow for the identification of emitters not seen in CNN training, the Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) algorithm is then used to cluster

the extracted features by emitter [89]. Finally, t-distributed Stochastic Neighbor Embedding

(t-SNE) is used to reduce the dimensionality of the features, for visualization only [90]. An

example output of the developed approach is shown in Figure 5.2.
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Figure 5.1: The developed CNN-learned feature clustering SEI approach.

Figure 5.2: Clustering of features learned by the CNN trained on 10 emitters transmitting at

a single bandwidth with 10 emitters in the system. 8 clusters (emitters) found by DBSCAN

with an AMI of 0.85. Visualization of features embedded in 2 dimensions using t-SNE. Each

color represents an emitter found by DBSCAN.
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5.1.1 Dataset

The dataset used for this work contains wired transmissions from 53 Ettus USRP B210’s

and N210’s. The dataset contains captures from each USRP transmitting at 11 different

bandwidths, nine evenly distributed from [0.25MHz, 1.25MHz] and at 1.67MHz and 2.5MHz,

using a QPSK modulation scheme. Each transmission contains the same sequence of bits, as

the dataset was composed for emitter fingerprinting work, and traditional techniques often

make this assumption [4].

5.1.2 Feature Extraction

In [47], it was shown that the learned features extracted from a CNN could be used in

conjunction with a clustering algorithm to successfully perform modulation classification

using a method called supervised bootstrapping. The method first required training a CNN

in a supervised manner to perform modulation classification. After the network has been

trained, the features relevant to the modulation scheme of an incoming signal were then

obtained by feeding the raw IQ samples of the signal through the trained network. More

specifically, the output of the first dense fully-connected layer, not the Softmax output, is

then used for clustering.

This work used the supervised bootstrapping method to find features relevant to emitter

identity. Therefore, instead of training a CNN to perform modulation classification like

in [47], a CNN was trained to perform emitter identification. Once trained, incoming signals
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Figure 5.3: Feature extraction from a pre-trained CNN.

were fed to the trained network to obtain emitter-specific features. As described above and

shown in Figure 5.3, the features used for clustering were not the Softmax outputs used

during supervised training, but the output of the first dense fully-connected layer. These

features are then fed to the DBSCAN clustering algorithm.

5.1.3 Clustering

After relevant features are extracted from the received signals, the features must be matched

to features extracted from other received signals in order to identify emitters. Using an

unsupervised clustering approach to group features, both the number of emitters in the

system and which emitter each signal is being transmitted from can be identified while

remaining blind to the environment.
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The developed approach makes no assumptions about the number of emitters in a system

or any knowledge about said emitters, once the CNN feature extractor has been deployed.

As such, it is critical that the chosen clustering algorithm be able to determine the optimal

number of clusters to fit the data. For this reason, the DBSCAN algorithm was chosen over

those popularly used in the literature, such as SVMs and K-means [27, 91], and because it

has shown success clustering high-dimensional and noisy data [89,92,93].

5.1.4 Visualization

Because the DBSCAN algorithm is able to cluster in any dimension, dimensionality reduction

techniques are not integral to the approach. However, dimensionality reduction allowed

for the visualization of the clustered features in a two-dimensional space, helping to tune

the algorithm and validate the approach. It is important to understand that the CNN

learned features have been clustered in the original high-dimensional space, not in the two-

dimensional space. So, while clusters may not be co-located in the two-dimensional space,

they may be in the high-dimensional space.

t-SNE was chosen for dimensionality reduction because of its ability to effectively map

the high-dimensional CNN features onto a two-dimensional map [90]. Additionally, when

compared to other popular dimensionality reduction techniques such as Sammon mapping,

Isomap, and Locally Linear Embedding (LLE), t-SNE was shown to be more effective at

preserving the structure of the high-dimensional space, when applied to real datasets [90].
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Figure 5.4: The CNN model designed to perform emitter identification and used for feature

extraction in the clustering approach.

5.2 Model Design, Training, and Evaluation

The CNN feature extraction architecture designed for the approach is shown in Figure 5.4,

and is modeled after the network used in [9]. However, the number of filters, filter sizes, and

layer sizes in the developed network were altered to improve accuracy using the developed

script described in Section 3.2.2.

The network designed uses 1024 raw IQ samples as input. Following the input layer are

two 2D convolutional layers, a dense fully-connected layer, and an output layer. With the

exception of the output layer, all layers use a ReLU activation function. The output layer

uses a Softmax activation. Additionally, dropout is applied at a rate of 0.5 between the last

convolutional layer and the dense layer to help control over-fitting [33].
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To evaluate the robustness of the approach, 12 networks were trained: The first 6 networks

were trained to perform emitter identification using training data such that all signals have

the same bandwidth. These networks were trained to identify 2 emitters, 5 emitters, 10

emitters, 15 emitters, 20 emitters, and 25 emitters. Six corresponding networks were trained

on all eleven bandwidths in the dataset. The sizes of the filters and layers in each of these

networks differs, as each network’s parameters have been selected by the developed training

scripts separately.

The parameters for each network are shown in Tables 5.1 and 5.2. While there is no

noticeable trend between network size and the number of emitters the network saw in train-

ing, the number of filters in the convolutional layers and the sizes of those filters generally

increases as the network learns to generalize over bandwidth. More specifically, the convo-

lutional layers generally increase in size from Table 5.1 to Table 5.2.

Because the dataset used provided a limited amount of data, each network was trained

using approximately 390 sets of samples per emitter where 75% was randomly selected for

training and the remaining 25% was used for testing. To further minimize the effects of

overfitting, an early-stopping scheme was used to stop training when the output of the loss

function stopped improving. The classification accuracy achieved on the test set was used

to evaluate each network, and will be referred to as the testing accuracy from this point on,

for clarity.
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Number

of

Emitters

2D Conv 1: 2D Conv 2:
Dense

Fully-

Connected

Number of

Filters
Filter Size

Number of

Filters
Filter Size

2 emitters 65 4 19 12 231

5 emitters 82 4 57 4 352

10 emitters 91 5 9 15 298

15 emitters 11 4 45 18 76

20 emitters 28 13 28 14 321

25 emitters 82 11 81 11 395

Table 5.1: The network parameters for each CNN feature extractor, assuming all transmis-

sions are at a single bandwidth.

Number

of

Emitters

2D Conv 1: 2D Conv 2:
Dense

Fully-

Connected

Number of

Filters
Filter Size

Number of

Filters
Filter Size

2 emitters 75 15 79 15 336

5 emitters 68 11 68 7 45

10 emitters 78 9 33 16 227

15 emitters 49 17 48 16 231

20 emitters 78 11 91 16 87

25 emitters 52 14 53 13 106

Table 5.2: The network parameters for each CNN feature extractor trained across all 11

bandwidths in the training dataset.
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5.3 Evaluating the Approach

The effectiveness of the approach was evaluated based on the testing accuracy of the CNN

feature extractor, the accuracy of the output, the number of emitters the approach can

identify, and the ability to identify emitters outside of the training set of the CNN feature

extractor.

The testing accuracy of the CNN being used for feature extraction is calculated using the

Softmax output of the trained network and the testing portion of the labeled training data

as described in Section 5.2. If the CNN being used for feature extraction cannot effectively

differentiate between emitters, the features being extracted from the network will not be

representative of emitter identity.

The output of the DBSCAN algorithm is a set of predicted labels such that each element

within a cluster has the same label. The number of emitters the approach is able to identify

can be measured as the number of clusters the DBSCAN algorithm identifies, given the

nature of the approach. However, calculating the accuracy of the predicted labels is not

straight-forward. Because the DBSCAN algorithm is unsupervised, the predicted labels

may not match the ground truth, and further, the number of clusters found may not match

the number of classes making comparison to the ground truth an unreliable measure of

accuracy. Instead, the adjusted mutual information score (AMI) was used to measure the

similarity between the true and predicted labels while ignoring permutations [94]. The AMI

has a range of [0, 1], where random label assignments produce a value of 0 and perfect label
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assignments produce a value of 1. The AMI is also normalized against chance, to account

for the mutual information of two random sets not being constant [94].

The AMI of two sets U, V is calculated as follows [94]:

AMI =
MI − E[MI]

max {H(U), H(V )} − E[MI]
, (5.1)

where MI is the mutual information between U and V calculated as

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj|
N

log

(
N |Ui ∩ Vj|
|Ui||Vj|

)
, (5.2)

E[MI] is the expected value of the mutual information between U and V calculated as

E[MI(U, V )] =

|U |∑
i=1

|V |∑
j=1

min ai,bj∑
nij=(ai+bj−N)+

nij

N
log

(
N · nij

ai · bj

)
(5.3)

× ai!bj!(N − ai)!(N − bj)!
N !nij!(ai − nij)!(bj − nij)!(N − ai − bj + nij)!

,

H(U) is the entropy of U calculated as

H(U) = −
|U |∑
i=1

|Ui|
N

log
|Ui|
N

, (5.4)

and H(V ) is the entropy of V calculated as

H(V ) = −
|V |∑
j=1

|Vj|
N

log
|Vj|
N

. (5.5)

Because a priori knowledge of the emitters in the system after the CNN feature extractor

has been deployed is not being assumed, it is important that the approach be able to identify

emitters the CNN never saw in training. This was measured using the number of emitters

the approach is able to identify and the AMI, as a function of the number of emitters in the

system.
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In the following sections, when the number of emitters in the system is stated as less

than or equal to the number of emitters the CNN feature extractor saw in training, the CNN

trained on those emitters. However, when the number of emitters in the system exceeds the

number of emitters the CNN feature extractor saw in training, the algorithm is being asked

to identify

# of emitters in the system −# emitters in the CNN training set

unseen emitters.

The ability to identify emitters outside of the CNN feature extractor’s training set in-

dicates the features extracted by the CNN are general enough to describe emitters outside

of the training set. The approach can be said to have successfully found emitters outside

of its training set, if the number of clusters found exceeds the number of emitters the CNN

feature extractor saw in training, the AMI remains high, and there are emitters present that

the CNN feature extractor has never seen.

5.4 Results and Discussion

5.4.1 Transmissions at a Single Bandwidth

As previously mentioned, tracking emitters as they change bandwidth is a known challenge

in the SEI field [4]. Therefore, to limit the scope of the problem, it was first assumed that all

transmissions were at the same bandwidth, in addition to containing the same bits and using
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Number of

Emitters

Testing

Accuracy

2 emitters 1.0

5 emitters 0.998

10 emitters 0.995

15 emitters 0.939

20 emitters 0.870

25 emitters 0.787

(a) 0.25 MHz

Number of

Emitters

Testing

Accuracy

2 emitters 1.0

5 emitters 1.0

10 emitters 0.991

15 emitters 0.960

20 emitters 0.893

25 emitters 0.804

(b) 1.67 MHz

Table 5.3: The testing accuracies of each CNN feature extractor, assuming all transmissions

are at a single bandwidth.

the same modulation scheme, as described in Section 5.1.1. The following results reflect this

assumption.

The testing accuracy of the CNN feature extractors, assuming all received signals are

at a single bandwidth are shown in Table 5.3 for signals transmitted at both 0.25MHz and

1.67MHz, for completeness. For signals transmitted at 0.25MHz, the networks classifying up

to 15 emitters all had Softmax testing accuracies of over 90%, while the network classifying

20 emitters has a testing accuracy of 87% and the network classifying 25 emitters has a

testing accuracy of 78.7%. This drop in performance is likely due to the small amount of

training data available. However, given the probability of a random guess being correct is

0.5, 0.2, 0.1, 0.067, 0.05, and 0.04 respectively, this is sufficient evidence that the network

has learned features relevant to the emitter’s identity.
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For signals transmitted at 1.67MHz, the trained networks showed very similar Softmax

testing accuracies, with very slight performance improvements, most likely due to a higher

total signal energy caused by transmission at a higher bandwidth and oversampling effects.

However, as the performance improvements are marginal, it can be concluded network per-

formance is not heavily dependent upon transmission bandwidth, and it can be concluded

that the networks are learning features related to emitter identity, other than transmission

bandwidth. As such, all further results are shown using transmissions at 0.25MHz.

Figures 5.5 and 5.6 show the results of the developed emitter identification scheme using

each of the 6 CNN feature extractors. Figure 5.5 shows the percentage of emitters found

by the DBSCAN clustering algorithm as a function of the true number of emitters in the

system, and Figure 5.6 shows the AMI of the true and predicted labels as a function of the

number of emitters in the system. Together, Figures 5.5 and 5.6 show that as the number

of emitters in the system increases, both the percentage of emitters found by the DBSCAN

algorithm and the AMI of the true and predicted labels decreases, regardless of how many

emitters the CNN feature extractor saw in training. These results show that the approach

can identify a limited number of emitters outside of the training set. However, each CNN

feature extractor can only describe a finite number of emitters. More specifically, while the

ability to identify emitters unseen in training indicates that the CNN extracted features

describe emitter identity in general to some degree, the learned features are largely specific

to the emitters the CNN was trained to identify.

Figures 5.5 and 5.6 further show both the percentage of emitters found by the DBSCAN
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Figure 5.5: The percentage of emitters found by the DBSCAN algorithm, as a function of

emitters in the system, for each CNN feature extractor trained assuming transmissions at a

single bandwidth.

Figure 5.6: The AMI of the true labels and labels predicted using the CNN extracted features,

as a function of the number of emitters in the system, for each CNN feature extractor trained

assuming transmissions at a single bandwidth.
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algorithm and the AMI increase as the number of emitters in the CNN feature extractor train-

ing set increases, until this value exceeds 15 emitters. After this point, both the percentage

of emitters found and the AMI begin to decrease. From this trend, it can be concluded

that the designed CNN feature extractor can only effectively differentiate between up to 15

emitters. However, it is likely that the limited amount of training data has hindered the

ability to effectively identify more emitters, as more training data would reduce the effects

of overfitting [33,38].

As previously described in Section 5.3, Figures 5.5 and 5.6 also examine the ability of

the approach to identify emitters outside of the training set of the CNN feature extractor.

These results are consolidated into Figure 5.7, where the approach has successfully found

emitters outside of the training range if the ratio of emitters found by DBSCAN to the

number of emitters in the training set exceeds one (i.e. if the solid blue line is above the

dashed blue line) while the AMI remains sufficiently high. What is considered “high” is

largely application and system specific. For illustrative purposes, an AMI of greater 0.8 will

be considered sufficient.

For clarity, examine the results from the CNN feature extractor trained with 15 emitters:

When there are between 0 and 15 emitters in the system, DBSCAN finds all emitters with

an AMI of 0.89 or higher, shown in Figure 5.7. When between 15 and 30 emitters exist

in the system, DBSCAN is still able to find at least 80% of the emitters with an AMI of

0.80 or higher. This means the approach finds 24 emitters in a 30 emitter system when only

trained to identify 15. This shows the developed approach has the ability to identify emitters
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Figure 5.7: The ratio of emitters found to emitters trained and the AMI, as a function of

the number of emitters in the system, for each CNN feature extractor trained assuming

transmissions at a single bandwidth.

outside of the training set of the CNN feature extractor, given the assumption that all signals

have common bandwidth. However, for each CNN feature extractor, the AMI decreases as

the number of emitters in the system increases. This decrease in the AMI indicates the

clusters found by the DBSCAN algorithm are no longer matching the true emitter identities.

Therefore, as the number of emitters in the system continues to increase, the accuracy of

the approach decreases.

More generally, the results in Figure 5.7 show the CNN feature extractors that have been

trained on 5 and 15 emitters all show some ability to identify emitters outside their training

ranges. However, while the ratio of emitters found to emitters trained generally increases as

the number of emitters in the system increases, the AMI generally decreases. As described

above, this limits the ability to identify emitters outside of the training set, as the drop in

AMI indicates a drop in the accuracy of the assigned labels. Further, this trend indicates
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the algorithm is likely over-clustering.

5.4.2 Transmissions Across Multiple Bandwidths

Given the success of the developed approach under the assumption that all received signals

are at a single bandwidth, the feasibility of performing emitter identification across band-

widths using the developed approach was investigated. As such, the remaining results no

longer assume all transmissions are at the same bandwidth. However, all transmissions still

contain the same bits and use the same modulation scheme, as described in Section 5.1.1.

The testing accuracy for the CNN emitter identifier and feature extractors across all 11

bandwidths in the dataset are shown in Table 5.4. In comparison to those shown in Tables

5.3a and 5.3b, these testing accuracies are much higher, especially in the case of the CNN

feature extractors trained on 20 and 25 emitters. This behavior is slightly unexpected given

that the network has to generalize over bandwidth in this case, usually leading to a decrease

in performance [46]. However, despite having more variation in the training data, training

over all 11 bandwidths in the dataset also increased the amount of available training data

by a factor of 11.

Further, Table 5.4 shows all CNN feature extractors trained across the 11 bandwidths

provided in the dataset have achieved testing accuracies of well over 90%. As such, there

is sufficient evidence that these networks have learned features relevant to emitter identity,

just as there was when it was assumed all signals had the same bandwidth.
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Number of

Emitters

Testing

Accuracy

2 emitters 1.0

5 emitters 0.9998

10 emitters 0.997

15 emitters 0.963

20 emitters 0.934

25 emitters 0.933

Table 5.4: The testing accuracies of each CNN feature extractor trained across all 11 band-

widths in the dataset.

However, when clustering is attempted using the DBSCAN algorithm, very interesting

behavior emerges, shown in Figure 5.8. While the features are clustering by emitter, shown

by the ability to detect two clusters using DBSCAN, they are also clustering according to

another attribute. This additional attribute was shown to be bandwidth, as shown in Figure

5.9. The clustering of bandwidth in addition to emitter leads to the presence of 11 times

as many clusters as there are emitters in the system. This makes clustering more than 2

emitters infeasible with the current approach, as shown in Figure 5.10.

In an effort to overcome this effect, each signal was resampled to the same effective

bandwidth, to more closely resemble the operating conditions in Section 5.4.1, where it was

assumed that all signals are at the same bandwidth. The testing accuracies of the CNN

feature extractors, with all received signals resampled to the same effective bandwidth, are

shown in Table 5.5. As expected, these accuracies are much higher than those shown in
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Figure 5.8: Clustering of the features learned by the CNN trained on 2 emitters across 11

bandwidths with 2 emitters in the system. 2 clusters (emitters) found by DBSCAN with

an AMI of 1.0. Visualization of features embedded in 2 dimensions using t-SNE. Each color

represents an emitter found by DBSCAN.

Figure 5.9: Clustering of the features learned by the CNN trained on 2 emitters across 11

bandwidths with 2 emitters in the system and each bandwidth labeled a different color.
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Figure 5.10: Attempted clustering of the features learned by the CNN trained on 5 emit-

ters across 11 bandwidths with 5 emitters in the system. No clusters (emitters) found by

DBSCAN. Visualization of features embedded in 2 dimensions using t-SNE.

Tables 5.3a and 5.3b, when all signals received were at the same bandwidth, as resampling

provided 11 times the training data. More interestingly, the accuracies shown in Table

5.5 are slightly lower than those shown in Table 5.4, when the CNN was trained across all

bandwidths. This indicates that the CNNs may be learning different emitter-specific features

from signals at each bandwidth, aiding in it’s decision making.

When clustering was attempted using the DBSCAN, the features continue to cluster by

both emitter and bandwidth, despite resampling to the same effective bandwidth, as shown

in Figures 5.11 and 5.12. This further indicates that CNNs may be learning different emitter-

specific features from signals at different bandwidths, even if those signals came from the

same emitter. Future work includes investigating this effect further, as it implies that the
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Number of

Emitters

Testing

Accuracy

2 1.0

5 0.9986

10 0.9726

15 0.9546

20 0.9273

25 0.9030

Table 5.5: The testing accuracies of each CNN feature extractor when all received signals

are resampled to the same effective bandwidth.

emitters may be impacting transmissions differently at each bandwidth.

5.5 Summary and Future Work

In this chapter, a semi-supervised approach was developed for performing specific emitter

identification using CNNs to extract emitter-specific features from raw IQ data and the

DBSCAN algorithm.

When it was assumed that all incoming signals have the same bandwidth, it was shown

that emitter identification can be performed using the developed approach, even in the

presence of emitters unseen in CNN training. Additionally, performance analysis showed

performance increases as the number of emitters the CNN feature extractors are trained

on increases. Though, only to a point, after which performance degrades, indicating the
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Figure 5.11: Clustering of the features learned by the CNN trained on 2 emitters with signals

resampled to the same effective bandwidth and 2 emitters in the system. Visualization of

features embedded in 2 dimensions using t-SNE. Each color represents an emitter.

Figure 5.12: Clustering of the features learned by the CNN trained on 2 emitters with signals

resampled to the same effective bandwidth, 2 emitters in the system, and each bandwidth

labeled a different color.
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designed CNN feature extractor is only capable of effectively describing a limited number of

emitters, likely due to the small dataset size.

When it was no longer assumed all incoming signals have the same bandwidth, it was

shown that the CNN extracted features clustered according to bandwidth as well as emitter

identity, and therefore no more than two emitters could be identified. Additionally, the

CNN extracted features clustered according to bandwidth as well as emitter identity when

all received signals were resampled to the same effective bandwidth, indicating that the CNNs

are likely learning different emitter-specific features from signals at different bandwidths, and

that the emitters are impacting transmissions differently at each bandwidth.

As previously mentioned, future work includes examining the CNN-learned features at

different bandwidths, in an effort to understand how an emitter’s fingerprint changes as it

changes transmission bandwidth. Future work also includes determining how to best modify

the approach, to allow for the tracking of emitters as they change transmission bandwidth.

Possible approaches include altering the feature extraction step by modifying the CNN ar-

chitecture, using bi-clustering algorithms, or training a parallel architecture to identify or

estimate the bandwidth of the incoming signal to be used during the clustering step of the

approach. Additionally, alternative clustering algorithms should also be investigated because

the output of the DBSCAN algorithm is extremely sensitive to the parameter which defines

the maximum distance between two points in a cluster.

It is likely that the developed approach would also see performance increases given a larger

training dataset. Therefore, additional data will be collected to allow for larger training
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datasets, as well as to include more modulation schemes and wireless captures for further

testing of the developed approach. With more training data, the scalability of the approach

could also be examined, that is, whether increases in the number of inputs to the network

or modifications to the network architecture would allow the CNN feature extractor to

differentiate between more emitters.

Finally, the developed SEI approach has improved upon traditional SEI systems in the

following ways:

• As in Chapter 4, the need for typically needed pre-processing steps has been eliminated

by the use of raw IQ as input.

• The need for expert-defined features has been eliminated by allowing the CNN to learn

emitter-specific features.

• The developed system is quickly and easily modified, requiring only appropriate train-

ing data.

• The developed approach is able to identify new or anomalous emitters, when traditional

SEI approaches may have failed, because the DBSCAN clustering algorithm is able to

identify the optimal number of clusters within the data.



Chapter 6

Conclusions

This work has reported on the development and evaluation of two methods by which to

perform SEI using CNNs. In doing so, the work in this thesis has both examined the use

of machine learning techniques to improve current SEI systems and the ability of CNNs to

learn from raw IQ data for estimation and emitter identification tasks. Further, this work

has studied the abilities of CNNs as feature learners, by examining the feasibility of using

the features learned by a pre-trained CNN to differentiate between unseen emitters.

The first developed SEI approach utilizes the CNN IQ imbalance estimators described in

Section 4.3. Performance analysis of the developed CNN IQ imbalance estimators showed

that phase offset is far more difficult to estimate than phase offset. Additionally, it was

shown that providing the network with more input samples (i.e. observing the signal for a

longer period of time) does not necessarily increase the accuracy of the estimate the network

produces, for the given architecture. However, the network does become more confident in

92
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its estimate.

The first developed SEI approach, described in Section 4.4.1, uses parallel and modulation-

specific gain offset estimators to identify emitters by their estimated gain offset. Due to the

design, the performance of the first approach is directly affected by the sample variance of

the CNN gain offset estimators. As a result, it was shown that the approach required gain

offset values much higher than typically seen in a real RF system, when a large range of

IQ imbalance values was used in training. However, the approach was shown to improve by

narrowing the training range, outperforming a traditional feature-based approach which also

uses IQ imbalance to identify emitters, while using less data and making fewer assumptions.

The second developed SEI approach is presented in Chapter 5 and improves upon the first

proposed approach by allowing the CNN to learn the emitter-specific features, rather than

constraining the network to learning a single expert-defined feature. The learned features are

then clustered using the DBSCAN clustering algorithm. Performance analysis showed the

ability to identify emitters both inside and outside of the training set, when all transmissions

were assumed to be at the same bandwidth.

In light of the discussion in Chapters 1 and 2, the primary limitation of traditional SEI

systems is the use of expert-defined features. Not only does the extraction of expert-defined

features often require pre-processing of the raw data, slowing execution time of the system

and stripping the raw data of potentially useful information, but the performance of the

SEI system is heavily impacted by the accurate and consistent measurement of the features.

Further, because only a few features are considered, the feature selection process is crucial
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and leads to a restrictively long development process. The two approaches presented in this

thesis have alleviated the effects described above in the following ways:

• Both approaches developed in this work use raw IQ data as input, eliminating the need

for pre-processing steps typically needed when extracting expert-defined features and

allowing the CNNs access to all of the information contained within the raw data.

• Both systems designed show the potential to be tuned or modified for a new operating

environment by retraining the CNN(s), given the availability of appropriate training

data, mitigating the lengthy system development process.

• The second approach uses CNNs to learn emitter-specific features, thereby eliminating

the use of expert-features completely.

Finally, several areas have been highlighted as areas with potential for future work. First,

both developed SEI approaches may be improved and/or extended, as discussed in Sections

4.5 and 5.5. Second, while this thesis explored the use of CNNs exclusively, RNNs have

shown recent success when applied to raw data streams, and should be considered for future

work, as they may aid in modeling temporal signal characteristics of emitters. Lastly, the

appropriate choice or design of clustering algorithms for use with RF data will be investigated

further.
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