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Integrated Aircraft Fleeting, Routing, and Crew Pairing Models and
Algorithms for the Airline Industry

Shengzhi Shao

(ABSTRACT)

The air transportation market has been growing steadily for the past three decades since
the airline deregulation in 1978. With competition also becoming more intense, airline
companies have been trying to enhance their market shares and profit margins by composing
favorable flight schedules and by efficiently allocating their resources of aircraft and crews so
as to reduce operational costs. In practice, this is achieved based on demand forecasts and
resource availabilities through a structured airline scheduling process that is comprised of four
decision stages: schedule planning, fleet assignment, aircraft routing, and crew scheduling.
The outputs of this process are flight schedules along with associated assignments of aircraft
and crews that maximize the total expected profit.

Traditionally, airlines deal with these four operational scheduling stages in a sequential man-
ner. However, there exist obvious interdependencies among these stages so that restrictive
solutions from preceding stages are likely to limit the scope of decisions for succeeding stages,
thus leading to suboptimal results and even infeasibilities. To overcome this drawback, we
first study the aircraft routing problem, and develop some novel modeling foundations based
on which we construct and analyze an integrated model that incorporates fleet assignment,
aircraft routing, and crew pairing within a single framework.

Given a set of flights to be covered by a specific fleet type, the aircraft routing problem
(ARP) determines a flight sequence for each individual aircraft in this fleet, while incor-
porating specific considerations of minimum turn-time and maintenance checks, as well as
restrictions on the total accumulated flying time, the total number of takeoffs, and the total
number of days between two consecutive maintenance operations. This stage is significant
to airline companies as it directly assigns routes and maintenance breaks for each aircraft
in service. Most approaches for solving this problem adopt set partitioning formulations
that include exponentially many variables, thus requiring the design of specialized column
generation or branch-and-price algorithms. In this dissertation, however, we present a novel
compact polynomially sized representation for the ARP, which is then linearized and lifted
using the Reformulation-Linearization Technique (RLT). The resulting formulation remains
polynomial in size, and we show that it can be solved very efficiently by commercial software
without complicated algorithmic implementations. Our numerical experiments using real
data obtained from United Airlines demonstrate significant savings in computational effort;
for example, for a daily network involving 344 flights, our approach required only about 10
CPU seconds for deriving an optimal solution.

We next extend Model ARP to incorporate its preceding and succeeding decision stages, i.e.,
fleet assignment and crew pairing, within an integrated framework. We formulate a suitable
representation for the integrated fleeting, routing, and crew pairing problem (FRC), which



accommodates a set of fleet types in a compact manner similar to that used for constructing
the aforementioned aircraft routing model, and we generate eligible crew pairings on-the-fly
within a set partitioning framework. Furthermore, to better represent industrial practice,
we incorporate itinerary-based passenger demands for different fare-classes. The large size of
the resulting model obviates a direct solution using off-the-shelf software; hence, we design
a solution approach based on Benders decomposition and column generation using several
acceleration techniques along with a branch-and-price heuristic for effectively deriving a so-
lution to this model. In order to demonstrate the efficacy of the proposed model and solution
approach and to provide insights for the airline industry, we generated several test instances
using historical data obtained from United Airlines. Computational results reveal that the
massively-sized integrated model can be effectively solved in reasonable times ranging from
several minutes to about ten hours, depending on the size and structure of the instance.
Moreover, our benchmark results demonstrate an average of 2.73% improvement in total
profit (which translates to about 43 million dollars per year) over a partially integrated ap-
proach that combines the fleeting and routing decisions, but solves the crew pairing problem
sequentially. This improvement is observed to accrue due to the fact that the fully integrated
model effectively explores alternative fleet assignment decisions that better utilize available
resources and yield significantly lower crew costs.

Keywords : Airline operations research, integrated airline scheduling, compact formulation,
fleet assignment, aircraft routing, crew pairing, itinerary-based passenger-mix, Reformulation-
Linearization Technique (RLT), Benders decomposition, subgradient optimization, branch-
and-price, large-scale optimization.
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Chapter 1

Introduction

1.1. Industrial Environment

The airline industry has been expanding steadily for the past thirty years, benefiting from

demand spurred by a growing economy along with technological advances that have improved

the overall flying experience. Although the increasing trend in demand was temporarily

interrupted by the 9/11 event in 2001, the statistical data displayed in Fig. 1.1 reveals

that the annual gross output of the air transportation industry had doubled over the two

decades prior to the economic recession of 2008 (Bureau of Economic Analysis, 2011), while

the demand has steadily increased.

From another perspective, however, since the deregulation in 1978, airline companies have

been facing fiercer competition from their peers as well as from newly-emerging low-cost

carriers (i.e., budget airlines). Some airlines have lost their market shares due to direct

competition on busy origin-destination routes, which has also drastically reduced fare prices

to levels even lower than marginal costs. In addition, the operational costs have been rising.

As indicated in Fig. 1.2 (Bureau of Transportation Statistics, 2011), the average annual wage

for all the 58,000 pilots, copilots, and flight engineers has doubled since 1990, and has reached

$117,000 in 2010 (Bureau of Labor Statistics, 2011). Meanwhile, the fuel cost in recent years

has also increased significantly due to the spike in the international crude oil index. Moreover,

the most recent decrease in demand, as displayed in Fig. 1.3 (Bureau of Transportation

1
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Figure 1.1: Air Transportation Annual Gross Output (1988-2009).

Statistics, 2011), has also contributed toward reducing the profit margin of the entire industry

as a whole. Therefore, besides exploring merger and acquisition opportunities within the

industry, airline companies have been actively striving to reduce operational costs in order

to enhance profit margins.

Airline operations involve a diversity of aircraft of different types along with certified cockpit

and cabin crews. An aircraft fleet (or simply fleet, or aircraft type) is comprised of identical

aircraft having the same operational cost, cockpit configurations, and seating capacity; there-

fore, these aircraft can be assigned interchangeably and be maintained following the same

maintenance regulations. Moreover, an aircraft family refers to a set of fleets that share

the same cockpit configurations while having varying features such as the seating capacity.

Usually, a crew member is only certified to operate aircraft within a specific family. For

example, the Boeing 737 family contains aircraft types including 737-300, 737-500, 737-700,

and 737-900ER, which, despite the differences in size and range, can be operated by any

crew eligible to operate the 737 family.

2



0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

1990	
   1992	
   1994	
   1996	
   1998	
   2000	
   2002	
   2004	
   2006	
   2008	
   2010	
  

Bi
lli
on

s	
  

Annual	
  pilot	
  and	
  copilot	
  cost	
   Annual	
  fuel	
  cost	
  

Figure 1.2: Annual Fuel and Pilot Costs for Large Certified US Air Carriers (1990-2011).

Large airline companies in North America typically run a hub-and-spoke type flight network,

where a few major airports at large cities serve as hubs and other destinations as the spokes.

Hubs are connected by dense flights using wide-body aircraft such as the Boeing 777 and

the Airbus 330 in order to accommodate large travel demands between major cities, while

passengers from surrounding areas are first transported to some nearby hub via narrow-body

aircraft or regional jets before connecting to outbound flights toward their final destinations.

Each flight in the network must be served by an appropriate aircraft and a corresponding

crew in order to satisfy the travel demand to the extent possible. The associated incurred

fuel and crew costs account for two significant components of the total operational cost for

an airline, as demonstrated in Fig. 1.4. Hence, the incentive for reducing these operational

costs drives airline companies to actively seek effective aircraft and crew assignments through

the airline scheduling process.

3
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Figure 1.3: Annual Number of Enplaned Passengers in the Domestic Market (1990-2010).

1.2. Airline Scheduling Process and Research Motiva-

tion

As displayed in Fig. 1.5, the airline scheduling process, with the objective of maximizing the

total profit (or minimizing the total cost), is often decomposed into four separate stages (Yu,

1998). First, nine to twelve months prior to the actual departure, a flight schedule is designed

during the schedule planning stage based on strategic market competition forecasts. Next, in

the fleet assignment stage, each fleet type is assigned to flight legs corresponding to the given

flight schedule according to the aircraft’s capacity and operating cost in order to maximize

the total ticket revenue minus the cost. The output of this stage partitions the entire flight

network into sub-networks according to each fleet type. Subsequently, within each sub-

network, a maintenance-feasible flight rotation (or a sequence of flights) for each individual

aircraft of the corresponding type is determined in the aircraft routing stage based on a series

of maintenance requirements as mandated by the Federal Aviation Administration (FAA).

4
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Figure 1.4: Principal Components of Operational Costs for Major US Airlines (2011).

Finally, in the crew scheduling stage, which is conducted for each aircraft family, crews are

assigned to feasible pairings, where each pairing is comprised of flight duties (a sequence of

flights served over a day’s work) all interspersed with adequate rest periods. Such pairings

are generated subject to several complex FAA-mandated regulations and work-rules, and

optimized with respect to a nonlinear union-driven cost structure.

Although the foregoing operational phases are implemented sequentially in practice, their

interdependences would naturally lead a purely sequential decision-making approach to sub-

optimal solutions, because prefixed decisions that are made while ignoring downstream con-

siderations would tend to suboptimally restrict the ensuing decision stages. This might even

result in infeasibility at some subsequent stages in the process. From this perspective, it

is prudent to investigate models that integrate the different stages (or suitable combina-

tions thereof) within a single framework in order to obtain improved solutions, while being

cognizant of the fact that the problem complexity will also substantially increase as more

5



aspects and decisions are considered simultaneously.

We also note that this airline scheduling process is heavily influenced by customer demands,

which are random variables and are estimated by a heterogeneous process called revenue

management (Jacobs et al., 2008). Moreover, the capacity of the assigned aircraft affects

the total number of seats reserved for each fare-class, therefore potentially limiting the flight

profitability. Furthermore, in practice, a common approach of demand-driven dispatch (D3)

is performed close to the departure day, in which aircraft within the same fleet are swapped

according to realized booking records in order to accommodate additional travel demand

and hence achieve increased revenue levels (Shebalov, 2009). Observe that the possibility of

such swaps is highly dependent on the fleet assignment and routing decisions.

Figure 1.5: The Airline Scheduling Process

With the overall motivation of designing mechanisms for deriving improved solutions to

the airline scheduling process, we first investigate the aircraft routing problem, which serves

as the foundation of this dissertation. We propose a novel mixed-integer linear program

(MIP) that is polynomially-sized and can be conveniently and effectively solved using off-

the-shelf commercial MIP solvers such as CPLEX. Subsequently, we integrate this model

with its preceding decision-making stage of fleet assignment and its succeeding stage of crew

pairing in order to accommodate the inherent interactions among these three stages. This

integrated approach provides improved, implementable solutions, in comparison with the

myopic solutions that result from a sequential decision-making process, hence potentially

enhancing the profitability of airline companies.

6



1.3. Dissertation Structure

The structure of this dissertation is organized as follows. In Chapter 2, we survey the

existing literature on research pertaining to the airline scheduling process. In particular,

we focus on models related to the aircraft routing problem, along with partially integrated

formulations involving it, as well as on fully integrated models that include fleeting, rout-

ing, and crew pairing decisions within a single framework. Next, in Chapter 3, we develop

a compact formulation for the aircraft routing problem that accommodates several FAA-

mandated maintenance requirements, and we reformulate this model using suitable transfor-

mations along with the generation of classes of valid inequalities to enhance its solvability.

Chapter 4 then integrates the aforementioned aircraft routing model with fleet assignment

and crew pairing considerations, where we also include itinerary-based demands for better

modeling the demand structure. Suitable model tightening approaches are introduced to-

gether with state-of-the-art solution techniques in order to effectively deal with the resulting

large-scale formulation, and benchmark results using real data obtained from a major US

airline company (United Airlines) are presented to demonstrate the effectiveness of the pro-

posed approach. Finally, in Chapter 5, we summarize our research contributions along with

conclusions and recommendations for future research directions in this fertile domain.

7



Chapter 2

Literature Review

In this chapter, we survey the existing literature on the airline scheduling process along with

developed solution techniques, while focusing on the aircraft routing problem and related

integrated models.

2.1. Aircraft Routing Problem

The airline scheduling problem plays a crucial role in the airline industry since a major

portion of the profits generated in this industry can be attributed to effective and robust

planning. Usually, the scheduling process begins 12 months in advance of operations, and

the final schedule for each individual aircraft and crew are not fixed until a few weeks prior

to implementation. Moreover, due to the rapid growth of the airline industry as well as due

to the inherent complexity of the airline scheduling problem, even a moderate-size airline

scheduling model is unlikely to be tractable by standard, direct solution methodologies.

Therefore, the entire decision-making process is decomposed into four independent stages

that are frequently solved sequentially, i.e., schedule planning, fleet assignment, aircraft

routing, and crew scheduling (Yu, 1998). The outcomes of the process include a flight

timetable and an assignment of aircraft and crews that cover each of the specified flights,

while satisfying respective requirements. Section 2.2 presents a comprehensive review of the

airline scheduling problem as described in detail by Klabjan (2005).

8



2.1.1 Problem Definition

Given that each flight leg has been assigned a specific type of aircraft, the aircraft routing

problem (ARP) seeks to determine the flight sequence of each individual aircraft, or tail

number, over a certain study period, in order to serve a specified set of flight legs while

satisfying various maintenance requirements mandated by FAA. There are four types of

such required maintenance checks. The type A check involves a routine visual inspection of

major systems and is conducted every 65 flight hours, while the type B check is performed

every 300 to 600 flight hours, and includes a complete visual inspection and a thorough

lubrication of all moving parts. (We note that in the industry, these two routine checks are

sometimes referred to as the three-service check and the A-check, respectively; however, in

the following content, we will continue to refer to them as type A and B checks.) On the

other hand, type C and type D checks take weeks to perform and involve a set of more

rigorous procedures, the timings of which are usually planned at a higher level and are thus

not included in the consideration of daily operations (Feo and Bard, 1989).

The main objective of the ARP is to minimize the total cost of assigning tail numbers to

routes and performing maintenance checks. Tail number assignments incur a through-value

benefit plus a penalty for undesired connections. The through-value can be viewed as a

negative cost that accrues when connecting passengers do not need to change planes at

intermediate stations. Staying on the same aircraft is appealing to passengers and thus

generates extra revenues (Clarke et al., 1997). In addition, a penalty cost is incurred for

restricted flight connections, the duration of which is only slightly more than the minimum

turn-time of the particular aircraft, since tight connections can potentially cause delays and

disruptions in operations, and can lead to infeasibility in the subsequent decision stage of

crew pairing (Klabjan et al., 2002; Cohn and Barnhart, 2003; Mercier et al., 2005). Finally,

a maintenance cost is incurred for each maintenance activity, and might also depend on

whether the performed maintenance is either too much prior to, or too close to, the maximal

flying hours, because the former wastes resources and labor man-hours due to excessively

frequent maintenance operations, and the latter induces inflexibility and a lack of robustness

in routing. It is worth noting that the objective function used for the ARP varies according

to the emphasis of the model, and does not necessarily include all the costs listed above. In

fact, the ARP is often posed simply as a feasibility problem (e.g., see Gopalan and Talluri

9



(1998); Talluri (1998)), which is the principal approach adopted herein in order to focus on

the aspect of determining maintenance-feasible routes for aircraft (however, we also present

computational results in Section 3.4 for using a suitable objective function in concert with

our proposed model).

2.1.2 Existing ARP Models and Solution Techniques

The ARP is usually modeled within the framework of a time-space network in which each

station is represented by a time-line spanning the study period. A node in the time-space

network denotes an event of departure or arrival of a flight at a station at a specific time,

and a directed arc between two stations represents a flight leg. An assignment cost is

associated with each connection arc that represents a connection between a pair of flights

at the same station, and a maintenance cost is assigned to each overnight ground arc that

permits a maintenance activity. Typically, the ARP in the literature is formulated as a

multicommodity network flow problem or a set partitioning problem (Klabjan, 2005). The

multicommodity flow network has a polynomial space complexity, and is therefore more

tractable by commercial solvers. On the other hand, the set partitioning formulation yields

a tighter representation but involves an implicit enumeration of exponentially many routes

and thus requires more complex solution techniques such as branch-and-price (Barnhart

et al., 1998b). However, this latter model is more amenable to incorporating additional

features of related interest.

Feo and Bard (1989) first proposed a model that combines routing decisions with mainte-

nance base locations in both a finite and an infinite time horizon. Their model minimized

the sum of various maintenance costs for each aircraft plus the fixed cost of opening main-

tenance bases. In this model, aircraft were assigned to each OD pair, i.e., a sequence of

flight legs delineated by an initial and terminal flight within a day, without consideration of

intermediate connections. The authors proposed a heuristic method, whereby thousands of

eligible routes were randomly generated, and promising OD pairs were selected by solving

a set covering problem. Focusing on a hub-and-spoke system, Daskin and Panayotopoulos

(1989) specified a route as a sequence of flight legs that originates from and ends at the

same hub station, to which each tail number was directly assigned. In this model, not all the

flights were necessarily required to be covered since deleting some unattractive ones might

10



increase profits. Furthermore, Clarke et al. (1997) incorporated through-values within their

objective function. In order to maintain a balanced utilization of aircraft, their model re-

quired a continuous rotation that covers all the flight legs, i.e., an Eulerian tour for each

fleet type, which led to solving an asymmetric traveling salesman problem over the con-

nection network. The authors proposed node aggregation and arc aggregation during the

preprocessing phase, and employed Lagrangian relaxation to solve the model. Desaulniers

et al. (1997) accommodated variable departure time-windows within the ARP. Assuming

that maintenance can be performed at particular stations during the night, they respectively

formulated a node-arc and a node-path model with the objective of maximizing the total

anticipated profit for aircraft assignment in a daily schedule context. The two formulations

were proved to be equivalent, where the latter can be derived from the former by column

generation. Furthermore, Ioachim et al. (1999) extended the study period for fleet rout-

ing to a week while considering schedule synchronization. They formulated this problem as

a classical multiple traveling salesman model with time-windows, but did not incorporate

mandatory maintenance requirements. Yan (2002) addressed fleet routing decisions within

a layered passenger demand network, in which possible flight legs were selected for service

based on capacity, demand, and profit considerations. Elf et al. (2003) studied aircraft rota-

tion planning for European flight networks, and proposed a model for minimizing the total

delay risk while restricting the frequency of visits to critical airports that handle intensive

air traffic, and also while accommodating the possibility of delay accumulation along a flight

path. Sriram and Haghani (2003) developed a model that accounts for both type A and

type B maintenance checks. Similar to the model in Feo and Bard (1989), their model used

a series of OD pairs within a multi-day multicommodity network flow framework. Possible

aircraft re-assignments were also considered by ascribing penalties to each arc. Sarac et al.

(2006) addressed an operational maintenance routing problem within a day for only high-

time aircraft, i.e., aircraft that have accumulated flying hours up to a predefined threshold.

The objective of the model was to optimally utilize the legal flying time while satisfying

type A and type B maintenance checks. Another perspective was provided by Lan et al.

(2006). Instead of optimizing the through-values, which are hard to capture, the authors

focused on minimizing the total passenger disruptions by intelligently routing aircraft and

selecting flight departure times. Their robust aircraft maintenance routing model attempted

to absorb the propagated delay by the slack in connection times obtained using information
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from historical data, where the objective function minimizes the total expected propagated

delays on selected strings. Recently, Liang et al. (2011) addressed a multi-day ARP by

constructing a rotation-tour time-space network with wrap-around maintenance arcs. The

authors considered maintenance routing both as a feasibility problem and as an optimization

problem, the latter of which incorporated through-values and short connection penalties by

adding artificial arcs. Their model is of polynomial space complexity and can be handled

by commercial software. In a follow-on paper, Liang and Chaovalitwongse (2011) extended

their previous model to consider the weekly aircraft maintenance routing problem by du-

plicating the daily network multiple times and linking them with proper maintenance arcs.

The authors also incorporated fleet assignment decisions within this modeling framework by

replicating the same routing network for each type of aircraft, and proposed a variable fixing

heuristic to effectively solve the resulting large-scale model.

As alluded above, the ARP is also often formulated as a feasibility problem since the costs

associated with aircraft routing are comparatively negligible. Gopalan and Talluri (1998)

and Talluri (1998) solved the ARP from a combinatorial perspective. They represented a

daily aircraft path by its starting and ending stations in a multi-day maintenance routing

problem. The authors developed efficient heuristics to generate qualified routes, and proved

that no polynomial-time algorithm exists if the planning horizon extends longer than three

days.

2.1.3 Integrated Models Including the ARP

Despite the efforts applied toward solving the ARP as well as other stages of the scheduling

process, a sequential optimization process for the overall airline scheduling problem often

results in suboptimal solutions, because this methodology overlooks the underlying interre-

lations and interdependences among consecutive stages. Therefore, it has been of increasing

interest to integrate the ARP with other decision-making stages to achieve better solutions.

It is worthwhile noting that the size of such integrated models grows rapidly with the number

of aircraft types and flight legs, making it difficult to solve even moderately sized problems.

Hence, these models are often implemented using sophisticated, specialized algorithms based

on column generation and/or Benders decomposition techniques.
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Barnhart et al. (1998a) proposed a flight string model (FSM) that considers fleet assign-

ment and aircraft routing simultaneously. The authors defined a string as a sequence of

connected flights that begins and ends at maintenance stations, and an augmented string as

a string having an additional minimum time for maintenance attached to the end of the last

flight. This model attempted to directly assign each aircraft in a fleet to a string in order

to minimize the total cost minus through-values. The authors also addressed obtaining a

balanced utilization of aircraft within a fleet by introducing subtour elimination constraints

in a fleet-specific problem. The model was solved using a branch-and-price algorithm (Barn-

hart et al., 1998b). Alternatively, Haouari et al. (2009, 2011b), and Mansour et al. (2010)

investigated an aircraft fleeting and routing problem for TunisAir, with additional features

such as deadhead flights, i.e., flights that are scheduled to relocate the aircraft and crews.

Their model was simplified by assuming that maintenance is route-independent and that

passengers only travel a single leg. The authors formulated a network flow-based model as

well as a set partitioning type model, and proposed a heuristic procedure as well as an exact

approach to solve the problem to optimality.

From another perspective, since the ARP strongly influences feasibility in the subsequent

crew pairing (CP) decisions, there also exists a body of literature on integrating the ARP

with the CP. Cohn and Barnhart (2003) proposed an extended crew pairing model that

minimizes the total cost for pairings. They delayed the key aircraft decisions regarding

short connections, i.e., consecutive flights that allow a crew to connect only if the same

aircraft serves both the flights, and included them in the crew pairing model. They further

argued that only unique and maximal maintenance-feasible short connections need to be

considered, and thus modified their basic integrated model to generate such connections in

a preprocessing phase. Moreover, Cordeau et al. (2001), Mercier et al. (2005), Mercier and

Soumis (2007), and Mercier (2008) have conducted extensive research on designing different

solution approaches. Besides short connections, restricted connections (i.e., connections for

which a crew pairing has less than the ideal time for changing aircraft) were also introduced

so as to enhance the robustness of the integrated model. The authors incorporated column

generation within a Benders decomposition scheme, and developed a three-phase solution

procedure that progressively imposes integrality restrictions on sets of variables. They further

tested the effectiveness of a variety of models and solution methods, and compared these with

existing approaches in the literature. The results revealed that using the CP to formulate the
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master program and the ARP as the subproblem yielded the best overall performance. Most

recently, Weide et al. (2010) addressed robustness issues within an integrated aircraft routing

and crew scheduling approach. Their aircraft-to-follow-the-crews methodology iteratively

solved the crew pairing problem and improves robustness by maximizing the number of

restricted connections in the aircraft routing decisions. Their results demonstrated that

robustness can be achieved with relatively small cost tradeoffs.

In addition, we note that the stage of schedule design can also be beneficially combined with

that of fleet assignment, since the timing of flights and the flight frequencies between pairs

of stations bear direct relationships with possible connections and assigned aircraft capacity.

Accordingly, Lohatepanont and Barnhart (2004) integrated these two stages by incorporat-

ing optional flights within the schedule, with the focus on recapturing spilled demand among

the same or close origin-destination pairs. The authors proposed a variable-fixing heuris-

tic that employs row and column generation procedures in order to effectively solve this

problem. Furthermore, Sherali et al. (2010) included itinerary-based demands for different

fare-classes within their integrated airline schedule design and fleet assignment model, which

was further tightened by deriving several classes of valid inequalities for enhancing problem

solvability. The authors additionally adopted Benders decomposition for more effectively

solving the resulting model. In follow-on research, Sherali et al. (2011) further addressed in

their integrated model other important relevant decisions such as retiming flights, balancing

schedules, and recapturing demand.

2.1.4 Integrated Models for Fleeting, Routing, and Crew Pairing

Even though numerous papers have addressed enhanced airline fleeting models that accom-

modate aircraft routing or crew pairing considerations, only two papers deal with models

that effectively capture aircraft fleeting, aircraft routing, and crew pairing aspects. Since

these two papers are particularly relevant to our work, we describe them in relatively greater

detail below.

The first of these is by Sandhu and Klabjan (2007), which presented a model that integrates

the fleeting and crew pairing decisions, while representing aircraft maintenance considera-

tions in only an aggregate sense via certain aircraft-count requirements. The authors argued
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that since the aircraft maintenance routing process is relatively less complicated (and this

is true for hub-and-spoke networks), one can neglect detailed routing decisions within the

integrated model and simply include some suitable aggregated aircraft-count restrictions.

To this end, they designed a novel set of constraints to link the fleet assignment and the

crew pairing decision variables that would promote feasible aircraft routings. Yet, as demon-

strated by Papadakos (2009), feasible aircraft rotations are not always guaranteed for the

resulting solution. The model proposed by Sandhu and Klabjan is based on the traditional

time-space network where each node represents an activity or event at a station (arrival or

departure of a flight) and each arc represents a flight leg.

In their integrated model, a forced turn defines a connection opportunity that is shorter

than the minimum sit-time for crews. In such a case, the aircraft must follow the crews

and thus force a plane-turn. In addition, an essential ground arc refers to a connection arc

that is shorter than the minimum sit-time in the actual-time-space network (ATN), where

each essential arc corresponds to a ground arc in the ready-time-space network (RTN), i.e.,

the ATN in which an additional minimum aircraft turn-time is added to the actual arrival

time of each flight. The authors showed that incorporating these essential ground arcs are

sufficient to capture all the plane-count requirements. Specifically, for an essential ground

arc of a particular aircraft family, the total number of forced turns involved cannot exceed

the total sum for this aircraft family of the number of corresponding ground arcs in the

RTN, plus the sum of aircraft that take off during the particular related minimum sit-time

interval.

To effectively solve the formulated problem, the authors proposed two solution schemes based

respectively on using Lagrangian relaxation with column generation and using Benders de-

composition. In the former method, they adopted Lagrangian duals for pricing candidate

pairings within a constrained shortest path subproblem, where generated pairings were incor-

porated within the restricted master program, which was then resolved using a subgradient

optimization technique, and the process was reiterated until some termination criterion was

met. Having thus obtained the fleet assignment decisions, the problem was decomposed into

traditional crew pairing problems, one for each fleet type (or aircraft family), which were

then solved separately as usual. Alternatively, a Benders decomposition approach (Benders,

1962) was also developed for solving this problem, where the fleet assignment decisions were

maintained within the master program, and the crew pairing decisions were incorporated

15



within the subproblem while relaxing integrality restrictions. The proposed methods were

tested on four instances having sizes ranging from two fleet families and 205 legs to four fleet

families and 942 legs. The authors found that the Lagrangian relaxation approach was more

robust in terms of objective value improvements than the Benders decomposition method-

ology. However, while the computational times for the former method ranged from 15 to 34

CPU hours, the latter required 5 to 19 CPU hours on a cluster of 27 dual 900 MHz Itanium

2 processors running the Red Hat 7.3 operating system.

The second paper that fully integrates the aforementioned three operational stages is by

Papadakos (2009), who developed a model that minimizes the total cost of fleet assignment,

aircraft maintenance routing, and crew pairing, less the revenues from through-flights. Sim-

ilar to Sandhu and Klabjan’s model, the proposed formulation is also based on a time-space

network in which each node represents an activity and each arc represents a connection be-

tween consecutive activities. The resulting model adopts a path-based representation that

facilitates partitioning the network into separate components for each tail number and crew

group. The objective function captures the total cost of routing and pairing, which also

implicitly includes the cost for fleet assignment. Since this work is closely related to our

problem, we present its mathematical formulation below with some more detailed discus-

sions.

Parameters:

F : set of fleets, indexed by f .

L: set of flight legs, indexed by l.

P f : set of pairings of fleet type f , indexed by pf , where p is used as a generic fleet-independent

index notation.

Rf : set of routes of fleet type f , indexed by rf , where r is used as a generic fleet-independent

index notation.

Sf : set of leg pairs that can be short-connected for fleet f .

M f : set of maintenance activity nodes for fleet type f , indexed by mf , where m is used as

a generic fleet-independent index notation.

m+/m−: successor/predecessor nodes of m at the same station as for maintenance activity

16



node m.

M̂ f ⊆ M f : set of maintenance activity nodes m of fleet type f , for which the arc (m,m+)

crosses the scheduling horizon.

alp: binary indicator that equals 1 if flight leg l is in pairing p, and 0 otherwise.

elr: binary indicator that equals 1 if flight leg l is in route r, and 0 otherwise.

cfl: cost of assigning fleet f ∈ F to flight leg l ∈ L.

cp: cost of pairing p.

c+
p = cp+

∑
l∈L cflalp: cost of pairing p plus the cost associated with assigning the appropriate

flight legs to pairing p of fleet type f , ∀p ∈ P f , f ∈ F .

cr: cost of route r.

c+
r = cr +

∑
l∈L cflelr: cost of route r plus the cost associated with assigning the appropriate

flight legs to route r of fleet type f , ∀r ∈ Rf , f ∈ F .

e+
mr/e

−
mr: binary indicator that equals 1 if maintenance activity m is the initial/terminal

maintenance station for route r.

êr: integer indicator that equals the number of times that route r crosses the scheduling

horizon (excluding terminal maintenance).

nf : number of available aircraft for fleet type f .

sijf : binary indicator that equals 1 if the MR solution allows a short-connection between

flight legs i and j for fleet type f , and 0 otherwise.

sijp : binary indicator that equals 1 if flight legs i and j are short-connected in pairing p, and

0 otherwise.

sijr : binary indicator that equals 1 if flight legs i and j are short-connected in route r, and 0

otherwise.

Decision Variables:

qm: integer decision variable that counts the number of aircraft on the ground between

starting times of m and m+.
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vr: binary decision variable that equals 1 if route r is adopted, and 0 otherwise.

wp: binary decision variable that equals 1 if pairing p is adopted, and 0 otherwise.

xfl: binary decision variable that equals 1 if fleet type f is assigned to flight leg l, and 0

otherwise. Note that xfl =
∑
r∈Rf

elrvr,∀f ∈ F, l ∈ L.

The model is presented as follows:

Minimize
∑
f∈F

∑
r∈Rf

c+
r vr +

∑
f∈F

∑
p∈P f

cpwp (2.1)

subject to: ∑
f∈F

∑
r∈Rf

elrvr = 1, ∀l ∈ L, (2.2)

∑
p∈P f

alpwp −
∑
r∈Rf

elrvr = 0, ∀l ∈ L, f ∈ F, (2.3)

∑
p∈P f

sijp wp −
∑
r∈Rf

sijr vr ≤ 0, ∀(i, j) ∈ Sf , f ∈ F, (2.4)

qm − qm− +
∑
r∈Rf

(e+
mr − e−mr)vr = 0, ∀m ∈M f , f ∈ F, (2.5)

∑
m∈M̂f

qm +
∑
r∈Rf

êrvr ≤ nf , ∀f ∈ F, (2.6)

vr ∈ {0, 1}, ∀r ∈ Rf , f ∈ F, (2.7)

wp ∈ {0, 1}, ∀p ∈ P f , f ∈ F, (2.8)

qm ≥ 0, integer, ∀m ∈M f , f ∈ F. (2.9)

The objective function (2.1) minimizes the total cost for aircraft routing, crew pairing, as

well as, implicitly through the defined cost coefficients, for fleet assignment. Constraint

(2.2) requires that each flight leg is assigned to exactly one route. Constraint (2.3) enforces

that each flight leg is assigned to exactly one crew pairing for a particular fleet if and only

if the flight leg is assigned to that fleet. Constraint (2.4) ensures that a short-connection

for a pairing of fleet type f is possible only if the connection is assigned to the same tail

number for that fleet. Constraint (2.5) imposes flow conservation for each fleet type at every

associated maintenance station. Constraint (2.6) ensures that for each fleet type, the total
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number of aircraft in use does not exceed its fleet size. Constraints (2.7)-(2.9) represent

logical restrictions on the decision variables.

For solving the model effectively, the author focused on implementing Benders decomposition

while treating the crew pairing problem within the Benders subproblem, and while formu-

lating the Benders master program to incorporate the fleet assignment and maintenance

routing decisions, where both these decomposed problems were solved using a branch-and-

price strategy. In addition, Pareto-optimal or nondominated Benders cuts were generated

using the technique of Magnanti and Wong (1981) in order to accelerate the solution process

and to address degeneracy in the Benders subproblem. An alternative approach in which

the roles of crew pairing and aircraft routing are reversed within the Benders decomposition

framework was also explored, but was found to be not as effective as the former strategy.

Since the formulated model contains a large number of constraints as well as variables, the au-

thor proposed a Benders decomposition algorithm that accommodates aircraft maintenance

routing within the master program and crew scheduling within the subproblem. The crew

network in the subproblem is separable according to each fleet type, and the crew pairing

for each individual sub-network was solved using column generation, where the subproblem

involved finding a constrained shortest path in the crew-connection network. Additionally,

in order to speed up the crew pairing subproblem solution, the labels for the total flying

time and the flying time during the past 24 hours were not considered so as to reduce

the number of labels. Furthermore, a deepest-cut pricing rule was adopted to determine

the nonbasic variable to be inserted into the basis during the column generation process,

which was demonstrated to be three times faster on average than the traditional Dantzig’s

rule. The subproblem solution was used to generate Benders feasibility and optimality cuts,

which were iteratively incorporated within the master program until a specified termina-

tion criterion was met. In this process, due to the fact that a set partitioning structure is

highly degenerate, the author discriminated among alternative optimal dual solutions as per

the technique proposed in Magnanti and Wong (1981) in order to generate Pareto-optimal

(nondominated) cuts by solving the subproblem using a core point (a point located in the

relative interior of the convex hull of the underlying defining discrete set). Note that since the

core point is only approximated in the implementation, the generated cuts were not strictly

Pareto-optimal but were yet found to be sufficiently strong to accelerate the convergence

process. Likewise, the Benders master program that accommodates maintenance routing in
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addition to fleet assignment decisions was also solved using a column generation approach.

The column generation subproblem in this context served to find a constrained shortest

path in the aircraft-connection network, which was mostly the same as the crew-connection

network except that it had additional maintenance arcs. Since the entire problem is a mixed-

integer program (MIP), the proposed Benders decomposition approach was embedded within

a branch-and-bound algorithm in which the fleet assignment was determined first and then

branching was performed with respect to the resultant flight legs in the maintenance routing

subproblem for each fleet type. The proposed search process adopted a depth-first strategy

and terminated once a first integral solution was detected.

Papadakos tested his model on seven instances. In all cases, he considered six aircraft fleets

and a number of flight legs ranging from 214 to 705 (the number of aircraft was not indicated).

He reported that the CPU times ranged from 0.35 to 27.8 hours on a single computer having

a 2.4 GHz single-core AMD Athlon processor with 2 GB RAM, and running the 64-bit Linux

kernel version 2.6.11.

2.2. Description of Some Selected Relevant Works

In this section, we first present a comprehensive review of the airline scheduling process as

described by Klabjan (2005). Next, we discuss in detail some principal models related to the

aircraft routing problem, which is the focus of our work in Chapter 3. Finally, we describe in

detail integrated models that include the aircraft routing problem as one of its components,

similar to our contribution in Chapter 4.

2.2.1 Airline Scheduling Problem

In the book Column Generation compiled by GERAD, Klabjan (2005) presented a com-

prehensive review on large-scale models adopted for the airline scheduling problem. Three

common solution techniques: branch-and-price, Lagrangian relaxation, and Benders decom-

position were described in detail. Furthermore, the author discussed different stages of the

airline planning problem with basic models, references, and recent advances in these areas.
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Following the main topic of the book, the solution approaches that are often adopted in

airline scheduling problems include a delayed column generation procedure, where attractive

columns are generated within the context of a branch-and-price algorithm. During the col-

umn generation process, a restricted master problem is solved first, and then the subproblem

is evaluated to identify a column that has a negative reduced cost. If none exists, the solu-

tion is declared to be optimal to the continuous relaxation; otherwise, the newly generated

column is appended to the master program and the procedure is reiterated. It is worth not-

ing that solving the subproblem is usually expensive; comparatively, obtaining a constrained

shortest path using reduced costs is computationally efficient in practice (Desrosiers et al.

(1995) and Desaulniers et al. (1997)).

Branch-and-price, an offshoot of the branch-and-bound algorithm, combines the branching

strategy and the delayed column generation method at each node. To maintain a more

balanced tree, it is proposed to branch on whether or not a node s immediately follows

another node r, i.e., either only the arc (r, s) or all arcs from r except (r, s) are removed

from the network. Also, due to the intensive effort required for solving the LP relaxation,

it is proposed to adopt this approach only for the first several nodes in a depth-first search

until a feasible integer solution is obtained. A detailed discussion of the branch-and-price

concept is given in Barnhart et al. (1998b).

Second, Lagrangian relaxation is also a commonly adopted technique where so-called com-

plicating constraints are dualized, i.e., accommodated within the objective function. The

remaining specially structured constraints simplify the resulting problem, and in practice, a

subgradient-based algorithm often serves as an effective solver for the underlying Lagrangian

dual problem.

Third, Benders decomposition (Benders, 1962) can be applied to mixed-integer programs that

have a dual angular structure, which yields block-diagonal constraints after fixing certain

integer variables. An optimal dual solution to the resulting LP, when it exists, yields a

Benders cut, also referred to as an optimality cut, which is then appended to the relaxed

master program for the next iteration. Likewise, whenever the resulting LP is infeasible, a

feasibility cut is generated based on an unbounded (extreme) direction for the dual problem.

From the viewpoint of the airline decision-making timeline, the service plan development,

which usually starts 12 months before operations, is the first phase on which all other sub-
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sequent decisions are based. From nine months prior to the day of operations to a few

weeks prior, the flight scheduling, fleet assignment, aircraft routing (also called maintenance

routing), and crew scheduling operational decisions are made, usually sequentially, all of

which comprise the core for airline scheduling. Additionally, during the last few weeks,

some minor changes are made based on, for example, crew bidline and plane swapping op-

erations. Furthermore, the actual scheduling that takes place on any particular day enacts

minor adjustments and disruption management. The latter step includes three aspects: air-

craft recovery, crew recovery, and passenger reaccommodation. We will mainly focus on the

aforementioned passenger-side planning problems.

The fleet assignment problem (Abara, 1989; Hane et al., 1995) is based on a flight time-space

network in which a node (u, i) represents an activity of leg i at station u. The activities

i are arranged in increasing order of their times ti. Flight arcs ((u, i), (v, j)), ground arcs

((u, i), (u, j)), and wrap-around arcs are all directed arcs that appropriately link the different

activities.

Inputs:

• A list of flights given by origin/destination pairs and departure/arrival times.

• A set of aircraft fleets, each with its fleet size and the specified seating capacity.

Output:

• Assignment of fleets to flights that yields an optimal estimated revenue.

Parameters:

A: set of all flight arcs.

V : set of nodes.

K: set of fleet types.

M : set of flights in the air at a certain time et.

W : set of ground arcs at a certain time et.

I(v)/O(v): set of flight arcs to/from node v.
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i(v)/o(v): ground arc to/from node v.

bk: number of aircraft in fleet k.

cik: cost of assigning fleet k to flight leg i.

Decision Variables:

xik: binary variable that equals 1 if flight leg i is assigned to fleet k, and 0 otherwise.

ygk: nonnegative integer variable that represents the flow on ground arc g for fleet type k.

The fleet assignment model (FAM) is then given as follows:

FAM: Minimize
∑
i∈A

∑
k∈K

cikxik (2.10)

subject to: ∑
k∈K

xik = 1, ∀i ∈ A, (2.11)∑
i∈O(v)

xik −
∑
i∈I(v)

xik + yo(v)k − yi(v)k = 0, ∀v ∈ V, k ∈ K, (2.12)

∑
g∈W

ygk +
∑
i∈M

xik ≤ bk, ∀k ∈ K, (2.13)

x binary, (2.14)

y ≥ 0, integer. (2.15)

The objective function (2.10) is to minimize the total assignment costs. Constraint (2.11)

ensures that each leg is assigned to exactly one fleet. Constraint (2.12) maintains the flow

conservation of each type of aircraft. Constraint (2.13) assures that the number of aircraft

in use for each type does not exceed the corresponding fleet size. Constraints (2.14) and 2.15

represent logical restrictions on the decision variables.

The fleet assignment model often serves as a foundational basis for other expanded integrated

airline models. Clarke et al. (1996), and Rushmeier and Kontogiorgis (1997) incorporated

constraints of aircraft maintenance and crew requirements within the FAM, and Barnhart
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et al. (1998a) introduced explicit aircraft routes within the basic model. Also, the model can

be extended to accommodate flight departure time decisions, as discussed by Rexing et al.

(2000), Desaulniers et al. (1997), and Bélanger et al. (2006).

The FAM model needs an augmentation to capture the revenues from multi-leg itineraries

since the decision of a fleet assignment to a flight leg can potentially impact the revenues on

the remaining flight legs in an itinerary whenever there are spilled passengers. Therefore, an

alternative passenger-mix model (Kniker, 1998) is constructed under the assumptions of a

single fare for each itinerary and no recaptured passengers. This model, abbreviated PMIX,

optimizes the number of booked passengers for each itinerary.

Additional Parameters:

A: set of flight legs.

P : set of itineraries.

fp: fare for itinerary p ∈ P .

C̃k: seat capacity of fleet type k.

Ci: available seat inventory of leg i.

Dp: unconstrained demand for itinerary p ∈ P .

Additional Decision Variables:

wp: nonnegative integer variable that counts the number of booked passengers for itinerary

p ∈ P .

PMIX: Maximize
∑
p∈P

fpwp (2.16)

subject to: ∑
p: i∈p

wp ≤ Ci, ∀i ∈ A, (2.17)

wp ≤ Dp, ∀p ∈ P, (2.18)

w ≥ 0, integer. (2.19)
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The objective function (2.16) maximizes the total revenue. Constraint (2.17) requires that

the total number of passengers booked on any flight leg should not exceed the seating capacity

of the assigned fleet type. Constraint (2.18) imposes the specified limits on the number of

booked passengers, and Constraint (2.19) requires the w-variable to be integer-valued.

Furthermore, the origin-destination fleet assignment model (OD-FAM) combines the FAM

and the PMIX together, where the only change is to replace Constraint (2.17) by∑
p: i∈p

wp ≤
∑
k∈K

C̃kxik, ∀i ∈ A. (2.20)

The OD-FAM is not as easy to solve as the FAM. The branch-and-price algorithm, proposed

by Barnhart et al. (2002) and Kniker (1998) required several CPU hours to find the first

integer solution, not to mention to solve the problem entirely. However, the model became

more tractable after several enhancements were applied. The FAM can also incorporate

schedule design decisions, or aircraft routes and schedule design together.

Aircraft routing is the next stage that follows fleet assignment. The solution to this problem

assigns a sequence of flights to each individual aircraft (tail number), while accommodating

maintenance checks (principally, the ones called type A and type B checks as discussed

previously). Also, airlines attempt to achieve a balanced utilization rate of aircraft, which

is sometimes incorporated within the model.

Aircraft routing can be further partitioned into two stages. Several weeks prior, generic

aircraft routes that satisfy only the A-checks are generated in the aircraft rotation problem.

Furthermore, the actual tail numbers are assigned to each flight by solving the aircraft

assignment problem, in which the B-checks are accommodated.

Most of the ARP models are formulated using the presented network-flow framework; how-

ever, it is worth noting that Gopalan and Talluri (1998), and Talluri (1998) have proposed

a combinatorial framework in which the aircraft rotation problem is modeled as finding an

Eulerian tour. Furthermore, we note that the aircraft routing problem that needs to be

solved on the same day of operations has also been studied by several researchers. Usually,

the planned schedule needs real-time adjustments due to unexpected events. Short aircraft

recoveries can be modeled as a minimum-cost network optimization model using a multi-
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commodity network-flow framework, while constraints for maintenance regulations must be

added in long disruption scenarios. In both cases it is very difficult to solve the problem to

optimality due to the complexity of the underlying models and the urgency of time. There-

fore, heuristics are often employed to determine quick but suboptimal solutions. Detailed

descriptions of ARP models will be presented in Section 2.2.2.

The crew scheduling problem involves a pair of problems: the crew pairing problem (CP)

and the crew rostering problem. In this context, a duty is a sequence of flights for a crew

on a particular day, and a duty pairing (or simply a pairing) is a sequence of daily duties

that originates from and terminates at the same base during a given time period (usually a

month). The pairing process requires finding a minimum-cost crew assignment that satisfies

a variety of regulations, such as the minimum sit-time, the maximum elapsed time, the

maximum flying time on duty, the 8-in-24 rule, the maximum time away from base, and

other more complex duty time regulations. Also note that the cost function for a pairing,

which is nonlinear, depends on the maximum of the following three elements: the elapsed

time for the pairing, the total cost of duties within the pairing, and the guaranteed pay per

duty multiplied by the number of duties. The complexity of regulations and the nonlinearity

of the cost function makes the problem extremely difficult to solve. Alternatively, if the

crew is offered a fixed salary by the airline company, then the objective simply becomes to

minimize the total number of crew members.

Additional Parameters:

P : set of all pairings.

Scb: set of all pairings that start and end at crew base cb.

lcb/ucb: the lower/upper bound on the number of crews at cb.

cp: cost of pairing p ∈ P .

Additional Decision Variables:

xp: binary decision variable that equals 1 if pairing p is selected, and 0 otherwise.
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CP: Minimize
∑
p∈P

cpxp (2.21)

subject to: ∑
p: i∈p

xp = 1, ∀i, (2.22)

lcb ≤
∑
p∈Scb

xp ≤ ucb, ∀cb, (2.23)

xp ∈ {0, 1}, ∀p ∈ P. (2.24)

The objective function (2.21) minimizes the total cost of pairings. Constraint (2.22) ensures

that each flight leg is assigned to exactly one pairing. Constraint (2.23) is optional, and

restricts the number of crews utilized at each crew base, and Constraint (2.24) represents

logical binary restrictions on the decision variables.

Due to the intractability of the above model, the crew pairing optimization is usually divided

into three steps: the daily problem, the weekly exceptions problem (or the weekly problem),

and the dated problem where a daily schedule is assumed to be recurrent everyday. Similar to

the above mentioned models, the problem also employs the flight network structure; however,

not every path is feasible since it must satisfy the mandated regulatory requirements.

In the branch-and-price solution technique employed to solve this problem, branching with

respect to follow-on flights is the most commonly adopted strategy. Another branching rule

is called time-line branching (Klabjan et al., 2002), which branches on the flights whose

connection times are shorter or greater than a given time period. After the crew pairing

problem is solved, the specific identified duties are assigned to each individual crew member

by solving the crew rostering problem, as described below. However, it is worth noting that

in some airline companies, a bidline process or a preferential bidding is carried out instead,

which allows crew members to bid for their favorite duties.

Additional Parameters:

K: set of all crew members.

S: set of rosters.
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ni: number of crew members that are required by flight i.

cks : cost of assigning crew member k to roster s.

Additional Decision Variables:

xks : binary variable that equals 1 if roster s is selected for crew member k, and 0 otherwise.

Rostering: Minimize
∑
k∈K

∑
s∈S

cksx
k
s (2.25)

subject to: ∑
k∈K

∑
s∈S: i∈s

cksx
k
s ≥ ni, ∀i, (2.26)∑

s∈S

xks = 1, ∀k, (2.27)

xks ∈ {0, 1}, ∀k, s. (2.28)

The objective function (2.25) minimizes the total cost for assigning crew members to rosters.

Constraint (2.26) ensures that each flight has at least the required number of crew members.

Constraint (2.27) assures that each crew member is only assigned to exactly one roster.

Finally, Constraint (2.28) imposes binary restrictions on the decision variables.

2.2.2 Models for Aircraft Routing Decisions

The aircraft routing problem (ARP) has been extensively studied both as an individual

problem and as a component that is integrated with other decision stages. In this subsection,

we focus on some principal models that solely address aircraft routing decisions. In the next

subsection, we shall discuss integrated models that include the ARP.

Feo and Bard (1989)

Feo and Bard (1989) proposed a model that combines flight scheduling and maintenance

station location. The authors formulated a minimum-cost, multicommodity network flow
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model, and solved it using a two-phase heuristic. In this paper, the objective is to establish

a maintenance base planning framework in which the fixed plus variable costs for performing

type A checks are minimized for given schedule maintenance requirements.

In the network construction, each node represents a city in a day of the horizon. Also, a

sequence of flight legs serviced by a single aircraft in a day is identified by its origin and

destination, i.e., an OD pair, which is represented by an edge. Note that the interim stops

are unimportant. Such a graph, which contains a total of nd · nc nodes and nd · np edges, is

large but sparse, where nd, nc, and np are defined below.

The network can be of infinite or finite time horizon. It can be argued that this graph

is Eulerian and therefore removing any cycle does not affect the Eulerian property. Each

aircraft (tail number) represents a separate commodity and the flights are provided as input.

Also, the model assumes that the flow is cyclic and repeats itself every nd days. Furthermore,

the authors split each city-day node into two nodes connected by two arcs, one of which is

a maintenance arc having a capacity of pj aircraft and the other is a non-maintenance arc

having infinite capacity. The model also assumes that the maximal interval between two

sequential maintenances is four days.

The notation for this proposed model is described as follows.

Network Parameters:

nd: length of the planning time horizon.

nc: number of cities in the OD schedule.

np: number of aircraft in the fleet.

E: set of edges in the network defined by the OD schedule ,where |E| = nd · np.

i: index for aircraft, where i = 1, . . . , np.

j, k: indices for cities, where j, k = 1, . . . , nc.

d: index for days, where d = 1, . . . , nd.

j(d): city j at the end of day d; node designation.

pj: capacity of maintenance base in city j.
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fj: fixed cost of setting up a maintenance base in city j.

gj: unit cost of performing maintenance in city j.

Decision Variables:

xij(d)k(d+1): binary decision variable that equals 1 if aircraft i is in city j at the end of day d

and in city k at the end of day d+ 1, and 0 otherwise.

wij(d): binary decision variable that equals 1 if aircraft i gets maintenance in city j at the

end of day d, and 0 otherwise.

δj: binary decision variable that equals 1 if city j is designated as a maintenance base, and

0 otherwise.

yid: integer variable indicating the number of days remaining before aircraft i gets mainte-

nance, where this number is recorded at the end of day d prior to maintenance.

This problem is formulated as follows:

Minimize
nc∑
j=1

(
fjδj +

np∑
i=1

nd∑
d=1

gj(d)wij(d)

)
(2.29)

subject to: ∑
j(d−1)

xij(d−1)k(d) =
∑
j(d+1)

xik(d)j(d+1), ∀i, k (d) , (2.30)

np∑
i=1

xij(d)k(d+1) = 1, ∀d, (j (d) , k (d+ 1)) ∈ E, (2.31)

np∑
i=1

wij(d) ≤ pjδj, ∀d, j (d) , (2.32)

wij(d) ≤
∑
k(d−1)

xik(d−1)j(d), ∀i, j (d) , (2.33)

yi,d+1 − yid ≤ 4
(∑
j(d)

wij(d)

)
− 1, ∀i, d, (2.34)

xij(d)k(d+1) ∈ {0, 1}, ∀i, j, k, d, (2.35)

wij(d) ∈ {0, 1}, ∀i, j, d, (2.36)

δj ∈ {0, 1}, ∀j, (2.37)

yid ∈ {0, 1, 2, 3}, ∀i, d. (2.38)
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The first term in the objective function (2.29) represents the fixed cost of operating the

facilities and the second term sums up the variable costs for unit maintenances. Constraint

(2.30) ensures the conservation of flow for each aircraft. Constraint (2.31) requires that each

OD pair is covered by exactly one aircraft in a day. Constraint (2.32) restricts the number

of aircraft that can receive maintenance at a city in a day. Constraint (2.33) is another

set of conservation inequalities, which asserts that only aircraft arriving at a city in a day

can possibly get maintenance there. Constraint (2.34) guarantees that all the aircraft get

proper maintenance within four consecutive days. Constraints (2.35)-(2.38) record logical

restrictions, where yid is restricted to take on nonnegative integral values no greater than

three because this pertains to the evening before the maintenance.

The above formulation is a large-scale mixed-integer program that is difficult to solve directly.

Instead, the authors proposed to decompose the model by aircraft type. Although this

significantly reduces the complexity of the approach, the model still remains intractable at

that time.

A more realistic approach adopted by the planning group at American Airlines is presented

below. They did not use the model developed above but start by generating feasible tail

number assignments (routes). As inputs, their model requires initial location and mainte-

nance conditions as well as a set of feasible routes. It is virtually impossible to enumerate

the complete route set; rather, AA randomly generates several thousand possible routes a

priori.

Additional Parameters:

n: number of paths generated.

m: number of OD legs to be covered where m = np · nc · nd.

cj: cost associated with path j.

aij: binary indicator that equals 1 if OD leg i is covered by path j, and 0 otherwise.

Decision Variables:

xj: binary variable that equals 1 if path j is chosen; 0 otherwise.
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The currently used model is formulated as the following set partitioning problem:

Minimize
n∑
j=1

cjxj (2.39)

subject to:
n∑
j=1

aijxj = 1, ∀i = 1, . . . ,m, (2.40)

xj ∈ {0, 1}, ∀j = 1, . . . , n. (2.41)

Here, each path corresponds to a particular aircraft. If a generated path is valid, it is ascribed

a fixed cost c̄; else, if invalid, it is given a high cost C̄, where C̄ � c̄. Then, with all valid

paths, the optimal solution value is necessarily npc̄. However, deadheads may be required

if the optimal solution value is greater. Usually, such set partitioning problems are solved

using cutting planes with implicit enumeration; however, the authors suggested a heuristic

instead. We refer the reader to their paper for details. Modern-day branch-and-cut software

(such as CPLEX) might be able to better handle such model formulations.

Daskin and Panayotopoulos (1989)

In the paper by Daskin and Panayotopoulos (1989), the authors proposed an assignment-

based formulation for assigning aircraft to routes in a hub-and-spoke network. The routes

defined in this problem were simplified to an out-and-back structure, i.e., “each route orig-

inates at a single hub, visits a number of other cities (usually only one) and returns to the

hub”. The timetable of flights was treated as being exogenous and defined by the depar-

ture/arrival time and ground service time. However, it is worth mentioning that, in their

model, the time periods were generated with each departure that follows an arrival. Also,

the expected profit for a route served by an aircraft was specified. Note that not all the

routes were necessarily covered in the solution since deleting some may increase the profit

(see the example provided in their paper).

Parameters:

I: set of routes, indexed by i ∈ I.
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J : set of aircraft, indexed by j ∈ J .

K: set of time periods, indexed by k ∈ K.

Di: departure time of route i from the hub.

Ai
′: effective arrival time of route i at the hub.

Pij: profit due to assigning route i to aircraft j.

Njk: set of routes that could possibly utilize aircraft j during the period k.

Decision Variables:

Xij: binary variable that takes the value 1 if route i is assigned to aircraft j, and 0 otherwise.

This aircraft routing problem (ARP) is formulated as follows:

ARP: Maximize
∑
i∈I

∑
j∈J

PijXij (2.42)

subject to: ∑
j∈J

Xij ≤ 1, ∀i, (2.43)

∑
i∈Njk

Xij ≤ 1, ∀j, k, (2.44)

Xij ∈ {0, 1}, ∀i, j. (2.45)

Specifically, the objective 2.42 is to maximize the total revenue by assigning aircraft to routes

according to the published timetable. Constraint (2.43) requires that each route is assigned

to at most one aircraft. Constraint (2.44) ensures that during each time period k any aircraft

is assigned to at most one route. Constraint (2.45) imposes logical restrictions on the decision

variables. To ensure the smallest number of time period constraints, the paper suggested to

initiate a new time period only when there is a departure after an arrival. The maximum

number of time periods generated in this fashion is |I|, while the total number of Constraints

(2.43) and (2.44) is |I| (|J |+ 1).
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This formulation has a special set packing structure that can be readily transformed into

a network structure by using variables xijk. The authors proposed a Lagrangian-relaxation

based heuristic for the problem, but with today’s technology and by exploiting the network

structure, problems of the scale considered can be solved easily.

Clarke, Johnson, Nemhauser, and Zhu (1997)

Clarke et al. (1997) discussed the aircraft routing problem (ARP) that determines the routes

of each aircraft in a given fleet. Given the fleet assignment decision, the authors formulated

the problem for each fleet type as an acyclic traveling salesman problem (ATSP) with the

objective to maximize through-values less operational costs. Certain maintenance constraints

were also included.

A broken rotation refers to the situation where aircraft in the same fleet cover separate

subsets of its assigned flights. Such a rotation is said to have a continuity break if the

continuous cycle of all the flight legs assigned to a particular fleet is broken. As per airline

rules, these breaks are forbidden in the model, which leads to the acyclic traveling salesman

problem. Moreover, there may also exist some locked rotations where separate rotations for

a single fleet do not have any common station. The authors assumed that such cases do

not arise since otherwise the fleet would be reassigned to avoid the lock. Furthermore, the

service index is defined as the longest break between two consecutive services. A rotation

is called feasible only if it is free of continuity breaks, and the service index lies below the

specified service period.

The model due to Clarke et al. (1997) is based on a time-space network, where each arc

connection is associated with a revenue. Usually, a through-value is assigned to those arcs

whose connection time is no longer than 90 minutes. Furthermore, after node aggregation,

the network flow might admit some formerly impossible connections where a later arrival

connects to an earlier departure at a station; however, such a connection is prohibited by

assigning it a negative infinity revenue.

In the directed graph N(V,A), an Euler tour visits all the arcs exactly once. Moreover, the

Euler tour corresponds to a Hamiltonian cycle in the line digraph of N , denoted by D, whose

nodes are the arcs in N and where arc (i, j) is constructed if i and j are respectively the
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inbound and outbound flights for the same station in N . Also, through-values are assigned

to the arcs in D.

A service violation path contains segments whose service index exceeds the given threshold.

The set of all minimum service violation paths are denoted by P k for maintenance type

k ∈ K. In the model, there are two types of maintenance checks that are considered:

avionic check and routine check; but in most of the related literature, we only see one type

called the A-check.

Network Parameters:

A: set of directed arcs, indexed by i, j ∈ A.

h(i)/t(i): head/tail node of arc i ∈ A.

S ⊆ A: subset of A.

vij: through-value of flight j following flight i; it equals 0 if i or j is a ground arc.

C = {i, j ∈ A s.t. h(i) = t(j), i 6= j}.

P ′ ⊆ P k: subset of arcs in P excluding the last arc.

f(i): the follower of i ∈ P ′.

Decision Variables:

xij: binary variable that equals 1 if there is a connection from i to j, and 0 otherwise.

Problem ARP is formulated as follows:

ARP: Maximize
∑

(i,j)∈C

vijxij (2.46)

subject to: ∑
j: t(j)=h(i),

j 6=i

xij = 1, ∀i ∈ A, (2.47)

∑
i: h(i)=t(j),

i 6=j

xij = 1, ∀j ∈ A, (2.48)

∑
i∈S, j∈A\S:
h(i)=t(j)

xij ≥ 1, ∀S ⊆ A with 2 ≤ |S| ≤ |A| − 2, (2.49)
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∑
i∈P ′, j∈A\f(i):

h(i)=t(j)

xij ≥ 1, ∀P ∈ P k, k ∈ K, (2.50)

xij = {0, 1}, ∀i, j ∈ A. (2.51)

The objective function (2.46) is to maximize the total revenue of all connections. Constraints

(2.47) and (2.48) ensure that every arc in N is traversed exactly once. Constraint (2.49) is

the continuity break constraint, which is also known as the subtour elimination constraint.

Constraint (2.50) eliminates service violation paths and ensures that proposed paths are

maintenance-feasible, and Constraint (2.51) enforces binary logical restrictions.

During a preprocessing step, arc aggregation and node aggregation were performed to simplify

the model. Specifically, whenever a node has an in-degree of one, its in-arc and out-arc are

aggregated into a super arc, and the intermediate node is deleted. The through-value on such

a super arc is defined by its last inbound and first outbound flights. This procedure ensures

that every remaining node has a degree of two or more. Moreover, since the through-value

is based on flight connections, the ground arcs at a station can be eliminated, along with

corresponding departure/arrival nodes consolidated. This procedure generates a super-node

for each station. As stated above, infeasible connections at a super-node are prohibited by

assigning through-values of negative infinity.

The authors proposed a Lagrangian relaxation based heuristic to solve the developed model.

They also adopted conventional subgradient optimization to solve the Lagrangian dual formu-

lation. Due to the exponential number of constraints, only the identified violated constraints

were dualized.

Desaulniers, Desrosiers, Dumas, Solomon, and Soumis (1997)

The daily aircraft routing and scheduling problem (DARSP) addressed one of the most

important decisions for airline companies since it involved a high proportion of airline oper-

ational costs. Given a set of aircraft fleets, a one-day flight schedule with departure time-

windows and durations, and fleet- and flight-dependent costs, the objective was to maximize

profits while satisfying coverage, flow balance, and maintenance constraints. Note that, al-

though the flight departure time has a narrow window, it was assumed that departures are
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time-independent. Desaulniers et al. (1997) proposed a set partitioning type formulation

and a multicommodity network flow formulation for DARSP and developed sophisticated

mathematical programming algorithms to determine optimal solutions.

Parameters:

N : set of operational flight legs.

K: set of aircraft types.

nk: number of available aircraft of type k ∈ K.

Ωk: set of feasible schedules for aircraft of type k ∈ K, indexed by p. Let p = 0 denoted the

empty schedule for an aircraft.

ckp: anticipated profit if schedule p ∈ Ωk is assigned to an aircraft of type k ∈ K.

akip: binary constant that equals 1 if the schedule covers flight leg i ∈ N , 0 otherwise.

S: set of stations.

Sk ⊆ S: subset of stations having facilities to maintain aircraft of type k ∈ K.

oksp/d
k
sp: binary constants that equal 1 if schedule p ∈ Ωk starts/ends at station s ∈ Sk, and

0 otherwise.

Decision variables:

θkp : binary decision variable that equals 1 if schedule p is assigned to an aircraft of type k,

where p ∈ Ωk \ {0}, k ∈ K, and 0 otherwise.

θk0 : nonnegative integer decision variable that equals the number of unused aircraft of type

k ∈ K.

Set Partitioning Model:

Maximize
∑
k∈K

∑
p∈Ωk

ckpθ
k
p (2.52)

subject to: ∑
k∈K

∑
p∈Ωk

akipθ
k
p = 1, ∀i ∈ N, (2.53)
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∑
p∈Ωk

(
dksp − oksp

)
θkp = 0, ∀k ∈ K, s ∈ Sk, (2.54)

∑
p∈Ωk

θkp = nk, ∀k ∈ K, (2.55)

θkp ≥ 0, integer, ∀k ∈ K, p ∈ Ωk. (2.56)

The objective function (2.52) maximizes the total anticipated profit by summing the profits

pertaining to the selected routes. Constraint (2.53) requires that each flight leg is covered

exactly once. Constraint (2.54) represents the flow conservation of each fleet at each sta-

tion. Constraint (2.55) puts a cap on the number of useable aircraft of each type. Finally,

Constraint (2.56) requires the variables to be nonnegative integers.

A column generation technique was used to solve this formulation, which decomposes the

problem into a restricted master problem and a subproblem. Here, the master program

considers a relatively small subset of feasible aircraft routes that satisfy Constraints (2.53)-

(2.56) in the LP relaxation sense, and generates corresponding dual solutions for solving the

subproblem. The subproblem is a longest path problem with time-windows, and its network

structure is given by Gk = (V k, Ak), where V k is the set of nodes that is comprised of five

types: source o(k); sink d(k); initial station Sk1 ; final station Sk2 ; and flight Nk ⊆ N ; and

where the arc set Ak includes seven types: empty denoted by ODk = (o(k), d(k)); source

denoted by OSk1 = (o(k), s), s ∈ Sk1 ; sink denoted by S2D
k = (s, d(k)), s ∈ Sk2 ; schedule start

denoted by S1N
k = (s, j), s ∈ Sk1 , j ∈ Nk; schedule end denoted by NSk2 = (i, s), i ∈ Nk, s ∈

Sk2 ; turn denoted by NNk = (i, j), i, j ∈ Nk; and short turn denoted by NQNk. Let aki /b
k
j

be the earliest/latest time at which leg i/j can begin, lki the duration of leg i, tkij the normal

connection time between leg i and j, and skij shorter connection time with skij < tkij. Hence,

for a normal turn arc, aki + lki + tkij ≤ bkj holds; while for a short turn arc, aki + lki + skij ≤ bkj

holds and a penalty cost is incurred.

The schedule generated by the subproblem must be feasible and have a positive marginal

revenue. Define the revenue on arc (o(k), d(k)) as −eko , k ∈ K; the profit of flight leg j on

every pertaining leaving arc as rki − eki , where rki and eki respectively denote the expected

revenue and cost; the short turn penalty cost as qkij; and a large fixed operational cost on

every source arc as M . Then the marginal (reduced) profit on a schedule p ∈ Ωk can be

38



represented as

c̄kp = ckp −
∑
i∈Nk

αia
k
ip −

∑
s∈Sk

σks
(
dksp − oksp

)
− βk,

where αi, σ
k
s , and βk,∀i ∈ N, k ∈ K, s ∈ Sk, are dual variables that correspond to Constraints

(2.53)-(2.55).

Note that the definition of a flight leg can be extended to include a through-flight, which

represents a series of consecutive legs that are assigned to the same aircraft. In addition,

the authors also presented a time-constrained multicommodity network flow formulation, as

introduced below.

Additional parameters:

dkij: the duration of activities on arc (i, j) ∈ Ak, depending on the aircraft type k ∈ K.

Decision Variables:

Xk
ij: integer flow variable indicating the number of type k aircraft using arc (i, j), where

k ∈ K, (i, j) ∈ Ak.

T ki : a time variable for aircraft type k ∈ K at node i such that, if i ∈ Nk, then this denotes

the departure time of leg i within the time interval [aki , b
k
i ]; otherwise, it is fixed at 0.

Multicommodity Network Flow Model:

Maximize
∑
k∈K

∑
(i,j)∈Ak

ckijX
k
ij (2.57)

subject to: ∑
k∈K

∑
j:(i,j)∈Ak

Xk
ij = 1, ∀i ∈ N, (2.58)

∑
i:(i,s)∈NSk2

Xk
is −

∑
j:(s,j)∈S1Nk

Xk
sj = 0, ∀k ∈ K, s ∈ Sk, (2.59)

∑
s∈Sk1

Xk
o(k),s +Xk

O(k),d(k) = nk, ∀k ∈ K, (2.60)

∑
i:(i,j)∈Ak

Xk
ij −

∑
j:(j,i)∈Ak

Xk
ji = 0, ∀k ∈ K, j ∈ V k \ {o(k), d(k)}, (2.61)

∑
s∈Sk2

Xk
s,d(k) +Xk

o(k),d(k) = nk, ∀k ∈ K, (2.62)
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aki ≤ T ki ≤ bki , ∀k ∈ K, i ∈ V k, (2.63)

Xk
ij(T

k
i + dkij − T kj ) ≤ 0, ∀k ∈ K, (i, j) ∈ Ak, (2.64)

Xk
ij ≥ 0, integer, ∀k ∈ K, (i, j) ∈ Ak. (2.65)

The objective function (2.57) maximizes the total profit derived from the network. Constraint

(2.58) requires that each flight leg is covered exactly once. Constraint (2.59) ensures the

flow conservation for each fleet at each station. Constraints (2.60) and (2.62) assure that

the number of scheduled aircraft of each fleet type do not exceed the maximum number

available. Constraint (2.61) represents the node conservation for the network. Note that

Constraints (2.60) and (2.61) together make Constraint (2.62) redundant. Constraints (2.63)

and (2.64) define the time-window requirement and establish the relationship between the

flight assignment and its departure time. The last constraint (2.65) requires the flow variables

to be nonnegative integers.

The integer node-arc and node-path formulations presented are equivalent, and the node-

path formulation can be derived from the node-arc formulation by performing Dantzig-Wolfe

decomposition. This permits the development of branching strategies that are compatible

with the column generation technique.

Sriram and Haghani (2003)

Sriram and Haghani (2003) described a model for the aircraft maintenance routing problem,

in which they included aircraft re-assignments when possible. Due to the complexity of their

model, the authors proposed a random search-based approach and presented benchmark

results for their algorithm using several test scenarios.

In this paper, a weekly domestic cyclic schedule served by various types of fleet was studied,

in which both type A checks and type B checks were taken into account. Since all the

maintenance checks are done during night times, a daily flight plan, or a trip for each

aircraft was thus represented by its origin and destination stations (OD pair) respectively

at the beginning and end of a day. Given the fleet assignment, the model determines the

flight and maintenance plans for each individual aircraft under mandatory maintenance

40



requirements, with an objective function that minimizes the maintenance costs plus the

aircraft re-assignment penalties. The formulation takes the form of a minimum-cost multi-

commodity network flow problem on a directed Eulerian graph, which is implied from the

fact that the in-degree equals the out-degree for every node.

Parameters:

r: subscript that identifies different trips that share the same OD pair, i.e., trips that have

the common origin and destination of a day but stop at different intermediate stations.

np: number of aircraft in the fleet, indexed by i = 1, . . . , np.

nc: number of stations in the network, indexed by j, k = 1, . . . , nc.

nd: number of days in the planning horizon, indexed by d = 1, . . . , nd, where nd + 1 ≡
1, nd + 2 ≡ 2, and nd + 3 ≡ 3.

jd: station j on day d in the network.

jd−1kdr: arc that connects station j on day d− 1 to station k on day d through route r.

G(kd): set of stations (on different routes r) that are connected to station kd.

F (kd): set of stations (on different routes r) that station kd is connected to.

L: set of all arcs in the graph of the OD schedule.

N : set of all stations in the graph of the OD schedule.

gij: cost of type A maintenance for aircraft i at station j.

hij: proportional cost (see explanations below) of type B checks for aircraft i at station j.

pj: number of aircraft that can be simultaneously maintained at station j.

cijd−1kdr: cost of assigning aircraft i to the arc jd−1kdr. This can be interpreted as a re-

assignment penalty depending on a previous assignment being altered.

Decision Variables:

wijd : binary variable that equals 1 if aircraft i receives type A check at station j on day d,

and 0 otherwise.
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zijd : binary variable that equals 1 if aircraft i receives type B check at station j on day d,

and 0 otherwise.

xijd−1kdr: binary variable that equals 1 if aircraft i is assigned to arc jd−1kdr, and 0 otherwise.

This model is presented as follows:

Minimize

np∑
i=1

nc∑
j=1

nd∑
d=1

(gijwijd + hijzijd) +

np∑
i=1

∑
ijd−1kdr∈L

cijd−1kdrxijd−1kdr (2.66)

subject to: ∑
jd−1r∈G(kd)

xijd−1kdr −
∑

jd+1r∈F (kd)

xikdjd+1r = 0, ∀i, kd, d = 1, . . . , nd, (2.67)

np∑
i=1

xikdjd+1r = 1, ∀kdjd+1r ∈ L, d = 1, . . . , nd, (2.68)

np∑
i=1

wijd ≤ pj, ∀jd, d = 1, . . . , nd, (2.69)

wijd −
∑

kd−1r∈G(jd)

xikd−1jdr ≤ 0, ∀i, jd, d = 1, . . . , nd, (2.70)

nc∑
j=1

m+3∑
d=m

wijd ≥ 2, ∀i, m = 1, . . . , nd, (2.71)

∑
jd∈N

zijd = 1, ∀i, (2.72)

zijd −
∑

kd−1r∈G(jd)

xikd−1jdr ≤ 0, ∀i, jd, d = 1, . . . , nd, (2.73)

∑
k2r∈G(j3)

xik2j3r = 1, ∀i, j3, (2.74)

xijdkd+1r, wijd , zijd ∈ {0, 1}. (2.75)

The idea behind this model formulation is to essentially represent a node-arc network flow

that (i) maintains flow balance at each node; (ii) has a capacity for each flight and mainte-

nance arc; (iii) imposes maintenance feasibility at each station, and (iv) keeps track of the

number of days between two successive maintenance operations. In addition, the subscript
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r denotes different routes that share the same OD pair. In Constraint (2.67), the summa-

tion terms represent flows on all the arcs to and from a node, respectively. Moreover, the

problem requires that each and every aircraft is on service everyday, which therefore makes

Constraint (2.74) an equality.

The objective function (2.66) minimizes the total cost of type A checks, type B checks, plus

the penalties for assigning inappropriate aircraft to OD trips. Constraint (2.67) ensures the

flow balance at each node of the network. Constraint (2.68) enforces that each OD trip is

served by exactly one aircraft. Constraint (2.69) restricts the number of aircraft that can be

serviced simultaneously at a maintenance station. Constraint (2.70) requires that an aircraft

undergoes a type A check at a station only if it overnights there. Constraint (2.71) forces that

each aircraft must undergo type A checks every four days. Constraint (2.72) assures that each

aircraft passes a type B check once every study cycle; however, as asserted by the authors,

this “does not necessarily mean that the aircraft has to undergo a type B maintenance check

every seven days”, i.e., only an opportunity to do so is provided. Also, due to the same

reason, only a proportion of the cost of type B checks (based on an assumed expected ratio

of actual to potential maintenance services) is included in the objective function. Constraint

(2.73), similar to Constraint (2.70), guarantees that an aircraft cannot possibly undergo the

type B check at a particular station unless the day’s OD pair ends there. Constraint (2.74)

states that, at any given timeline (e.g., Day-3 in above formulation), any aircraft can only

be assigned to exactly one OD pair. Constraint (2.75) imposes logical restrictions on the

decision variables.

The above formulation can be simplified by separating it by fleet type, and by deleting

the rarely binding Constraint (2.69). However, the remaining problem is still too large to

handle within a reasonable computational time. Therefore, the authors proposed a solution

approach that performs random search and depth-first search together. The approach assigns

a random starting node to an aircraft, generates a cycle greedily for the aircraft from that

node, eliminates all the served OD pairs if the cycle is valid, and restarts the process for

the next aircraft from another randomly chosen node. This step was iterated for a number

of times, and the minimum-cost assignment is recorded along the way. Benchmark results

revealed a gap of at most 5% between the heuristic and optimal solutions. Rather than

keeping track of the days, the authors also formulated the problem based on the real flight

hours of an aircraft, which is similar to the above-presented formulation.
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Sarac, Batta, and Rump (2006)

Sarac et al. (2006) addressed a short-term aircraft maintenance routing problem for daily op-

erational decision-making. A tailored branch-and-price algorithm was designed to efficiently

solve the problem, as supported by computational results.

Instead of taking several days as the study time horizon, the authors focused on opera-

tional maintenance routing decisions within a day in order to better respond to dynamic

environmental effects such as inclement weather, unexpected equipment failures, and emer-

gency maintenance requests. The model took into account different types of maintenances,

i.e., maintenances for resident and non-resident components, which require distinct mainte-

nance frequencies and man-hours. Maintenance requests for a single aircraft were batched

together, where the legal remaining flying time was computed as the minimum of that of

its components. The model only incorporated the high-time aircraft that have accumulated

flying hours up to a predefined threshold. These aircraft need to be routed to maintenance

stations for receiving necessary checks.

The objective of the daily aircraft maintenance routing problem is to minimize the total daily

maintenance costs of a fleet while satisfying mandatory FAA requirements on regular checks

and other operational constraints. Specifically, this model minimized the total cushion time,

defined as the unutilized but legal remaining flying hours of an aircraft before it is maintained,

and therefore, maximized the utilization of the total legal flying time (called green time) of a

fleet of high-time aircraft. Note that non-high-time aircraft can be potentially incorporated

within the model, but servicing these aircraft earlier than necessary is not considered worth

the time and cost.

A connection network was adopted as the underlying structure of the model, in which a

node represents a flight leg, and an arc represents a possible connection at a station, while

accommodating a sufficient turn-time. Dummy source and sink nodes were also connected to

appropriate starting and ending flight legs, with respective flight durations of zero and that

of the inbound flight. With this directed graph, a set partitioning formulation was proposed

as described below.

Parameters:

K: set of aircraft, indexed by k ∈ K.
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o/t: dummy source/sink node.

A: set of connection arcs.

N : set of flight legs, indexed by i ∈ N .

Rk: set of feasible routes, indexed by j ∈ Rk, that are generated for aircraft k.

M : set of maintenance types, indexed by m ∈M .

Sm: set of overnighting stations, indexed by s ∈ Sm, where maintenance m can be performed.

ti: duration of flight i.

ckj : cost of selecting route j for aircraft k.

τk: legal remaining flying hours of aircraft k.

akm: maintenance man-hours needed to perform maintenance m for aircraft k.

bkm: binary indicator that equals 1 if aircraft k needs maintenance type m, and 0 otherwise.

dkjs: binary indicator that equals 1 if route j served by aircraft k ends at overnight station

s, and 0 otherwise.

λjs: binary indicator that equals 1 if flight leg i arrives at overnight station m, and 0

otherwise.

γkji: binary indicator that equals 1 if route j served by aircraft k contains flight leg i, and 0

otherwise.

Lms: available man-hours for maintenance type m at overnight station s.

Zms: number of available opportunities for maintenance m at overnight station s.

Decision Variables:

ykj : binary variable that equals 1 if route j of aircraft k is selected, and 0 otherwise.

This model is formulated as follows:

Minimize
∑
k∈K

∑
j∈Rk

ckjy
k
j (2.76)

subject to:
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∑
j∈Rk

ykj = 1, ∀k ∈ K, (2.77)

∑
k∈K

∑
j∈Rk

γkjiy
k
j = 1, ∀i ∈ N, (2.78)

∑
k∈K

∑
j∈Rk

akmd
k
jsy

k
j ≤ Lms, ∀s ∈ Sm, m ∈M, (2.79)

∑
k∈K

∑
j∈Rk

bkmd
k
jsy

k
j ≤ Zms, ∀s ∈ Sm, m ∈M, (2.80)

ykj ∈ {0, 1}, ∀j ∈ Rk, k ∈ K. (2.81)

The objective function (2.76) minimizes the total cost or the unutilized legal flying hours for

a fleet. Constraint (2.77) ensures that each aircraft is assigned to exactly one route, while

Constraint (2.78) enforces that each flight leg is covered by exactly one aircraft. Constraint

(2.79) requires that the total man-hours needed for a maintenance type at a particular station

should not exceed the available number of man-hours. Constraint (2.80) imposes an upper

bound on the maintenance opportunities for each aircraft type at each station. Constraint

(2.81) represents logical restrictions on the decision variables.

The set partitioning formulation was solved by a branch-and-price procedure. During the

preprocessing, primary attention was focused on the nodes having zero or one in- and out-

degrees. Nodes with zero in-degree must be starting flights, and a zero out-degree implies

an ending flight at an overnighting station. Moreover, a node with an in-degree of one can

be combined with its preceding node since the single connection arc must be covered by

the same aircraft. Similarly, a node with an out-degree of one can be aggregated with its

succeeding node.

An initial feasible solution was derived by a heuristic that uses the first-in-first-out (FIFO)

strategy to generate connections for each aircraft. Once a valid route was obtained for an

aircraft, all of its flight legs were eliminated from the graph. However, this scheme does

not always guarantee a feasible solution. Another approach was proposed where each flight

coverage constraint was relaxed and built into the objective function with a penalty. The

associated artificial variables were eliminated later along the process of solving the restricted

master program (RMP). Interested readers are referred to Savelsbergh and Sol (1998) for

details of this approach.
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Problem RMP was solved using a column generation approach that prices the reduced costs

for the |K| aircraft individually. If none of the prices is negative, then optimality is achieved.

The structure of the pricing problem is that of a constrained shortest path (CSP) problem

with a restriction on the legal remaining flying hours. Problem CSP was solved by a gen-

eralized permanent labeling algorithm as proposed by Desrochers and Soumis (1989), where

this problem is known to be NP-hard (Handler and Zang, 1980).

Branching on follow-ons can possibly fail in this problem; therefore, the authors proposed

two other branching strategies. The first one, called aircraft-specific follow-on, ordered the

aircraft according to the remaining legal flying hours, and calculated the value of
∑

j∈R(n,f)
k

ykj

for a pair of flight legs (n, f). New nodes were generated for forcing each aircraft to cover the

connection, or none of the aircraft covers the connection, or the two flights are flown non-

consecutively. The second strategy, namely, the aircraft-specific ending flight leg method,

focused on which aircraft can fly the ending flight. The ending flight that is shared by most

aircraft was selected to branch on, and new nodes were generated for each scenario where

the particular flight is covered by a possible aircraft.

Alternative strategies for route generation and selection were also discussed. Essentially,

routes can be generated independently for each aircraft, or dependently. The former dis-

cipline motivates the generation of many promising columns, but there may exist identical

routes for different aircraft, which results in low efficiency. The latter discipline requires

that disjoint routes are sequentially generated for a pre-sorted list of aircraft. Although this

strategy avoids redundant routes, it needs several runs to cover all the flight legs and to

provide sufficient good-quality candidates.

Finally, numerical studies on a series of test scenarios were provided, which revealed that the

dependent route generation strategy with a premature termination of the pricing subprob-

lems performs most effectively for all problem sizes, independent of the branching strategy

implemented.

Lan, Clarke, and Barnhart (2006)

Lan et al. (2006) built robustness into their models that minimize passenger disruptions

by optimally routing aircraft and intelligently selecting departure times. Specifically, their

47



work addressed a robust aircraft maintenance routing problem and a flight schedule retiming

model. We will focus on the former, which is a deterministic mixed-integer program with

the objective of minimizing expected total propagated delays as explained below.

Delays and cancellations of flights disrupt planned aircraft routing and crew scheduling, and

also cause customer inconveniences, all of which lead to significant losses for both the airline

company and passengers. In reality, however, most conventional aircraft routing models only

focus on minimizing the planned cost, but do not account for the realized cost, which addi-

tionally includes the costs of disruptions. Moreover, the conventional methodology dealing

with schedule disruptions is to re-optimize the schedule in real-time whenever necessary.

However, it is suggested that cost reduction can be more effective if possible delays and

cancellations are considered in the planning stage by using historical data.

As pointed out by Klabjan et al. (2002) and Cordeau et al. (2001), through-revenues are

difficult to evaluate and are financially less important; therefore, the maintenance routing

problem can be reduced to a feasibility problem that requires type A checks only. Moreover,

rather than maximizing the total revenue of routing, it is natural for the robust aircraft

maintenance routing model (RAMR) to concentrate on minimizing the total expected delays

under restrictions of maintenance routing.

Flight delays are classified as two types: propagated delays due to prior flights of the assigned

aircraft and nonpropagated delays caused by other reasons, the latter of which are therefore

independent of routing decisions. Let TADi denote the total arrival delay for flight i, which

is given by the sum of propagated delays and delays caused by other independent reasons.

Let slackij be the difference between the planned turn-time and the minimum turn-time

between flights i and j, then the propagated delay when both flights are served by the same

aircraft is defined as

PDij = max{TADi − slackij, 0}.

Since the independent delay can hardly be controlled, the model focused on absorbing the

propagated delay by the slack time to the extent possible.

The historical data for delays and cancellations were extracted from the Airline Service

Quality Performance (ASQP) database. The authors found that a log-normal distribution

best fits the data; therefore, once the parameters are determined, the expected delay can be

calculated offline.
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Since the fleet assignment is determined a priori, the problem can be solved independently

for each fleet type. As presented below, the proposed formulation is based on the string

model of aircraft routing developed by Barnhart et al. (1998a).

Parameters:

S: set of feasible strings.

F : set of daily flight legs.

F+/F−: set of flight legs that originate/terminate at a maintenance station.

G: set of ground arcs and overnight arcs.

S+
i /S−i : set of strings beginning/ending with flight leg i.

pdsij: delay propagated from flight leg i to j, given that flight legs i and j are in string s.

ais: binary indicator that equals 1 if flight leg i is in string s, and 0 otherwise.

y+
i,d/y

−
i,d: integer indicator that equals the number of aircraft on the ground after/before flight

leg i departs.

y+
i,a/y

−
i,a: integer indicator that equals the number of aircraft on the ground after/before flight

leg i arrives.

rs: number of times that string s crosses the count-time.

pg: number of times that ground arc g crosses the count-time.

N : number of aircraft available for the fleet type.

Decision Variables:

xs: binary decision variable that equals 1 if string s is selected, and 0 otherwise.

yg: integer decision variable that counts the number of aircraft on the ground at maintenance

station g.

RAMR: Minimize E

(∑
s∈S

( ∑
(i,j)∈s

pdsij
)
xs

)
(2.82)
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subject to: ∑
s∈S

aisxs = 1, ∀i ∈ F, (2.83)∑
s∈S+

i

xs − y−i,d + y+
i,d = 0, ∀i ∈ F+, (2.84)

∑
s∈S−i

xs + y−i,a − y+
i,a = 0, ∀i ∈ F−, (2.85)

∑
s∈S

rsxs +
∑
g∈G

pgyg ≤ N, (2.86)

yg ≥ 0, integer, ∀g ∈ G, (2.87)

xs ∈ {0, 1}, ∀s ∈ S. (2.88)

The objective function (2.82) minimizes the total expected propagated delays of the selected

strings. The stochasticity of the objective is eliminated by noting that

E

[∑
s∈S

( ∑
(i,j)∈s

pdsij
)
xs

]
=
∑
s∈S

(
xs · E

[ ∑
(i,j)∈s

pdsij
])

=
∑
s∈S

(
xs ·

∑
(i,j)∈s

E
[
pdsij

])
Constraint (2.83) requires that each flight leg is covered by exactly one string. Constraints

(2.84) and (2.85) ensure the flow balance at each node by equating the numbers of aircraft

departing from and arriving at a station. Constraint (2.86) counts the number of aircraft

in the system at a given count-time and requires this not to exceed the specified fleet size.

Constraints (2.87) and (2.88) represent logical restrictions on the decision variables.

The formulated model was solved using a branch-and-price approach, i.e., a branch-and-

bound process with column generation being used to solve the LP relaxation at each node.

It is worth mentioning that the pricing subproblem cannot be modeled as a constrained

shortest-path problem in this case because the delay of a connection depends on the string

that it belongs to, and hence a reduced cost cannot be assigned to a connection arc. There-

fore, a heuristic was employed in which a candidate string was generated before its reduced

cost was calculated. Moreover, the branching strategy used emphasized follow-on flights.

Specifically, branching was performed based on whether or not a flight leg follows the current
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one in a string, whence the problem can be resolved within the framework of the connection

digraph with corresponding arcs eliminated.

Liang, Chaovalitwongse, Huang, and Johnson (2011)

Liang et al. (2011) presented an interesting new model for aircraft maintenance routing

(AMR) using the time-space network, which they demonstrated offers a more effective for-

mulation than the flight string model (Barnhart et al., 1998a).

AMR, which is the same as Problem ARP referred to above, is a strategic-level decision-

making problem that determines the flight assignment for each aircraft while satisfying main-

tenance restrictions set by FAA and the airline. The model incorporates a daily flight sched-

ule with maintenance checks performed at least every |D| days at some designated stations

by constructing a time-space network. The time-space network is defined by a timeline on

one axis and station locations on the other axis. Hence, each station has an associated

timeline. On this domain, the nodes represent departure or arrival events. The arcs are

partitioned into ground arcs, flight arcs, and overnight arcs to respectively represent aircraft

staying at one station, flights between stations, and overnight halts or maintenance checks.

Node aggregation and island isolation were applied to simplify the graph as in Hane et al.

(1995).

Network Parameters:

D = {1, . . . , |D|}: set of possible days between two consecutive maintenance operations,

indexed by d ∈ D that represents the day in the rotation-tour network.

N : set of nodes (events) in the network, indexed by n ∈ N .

F : set of daily flights, indexed by f ∈ F .

M : set of maintenance stations, indexed by m ∈M .

K: size of the scheduled fleet.

Qm: maximum number of maintenances allowed per day at station m, where m ∈M .

α+
fdn/α−fdn: binary indicator that equals 1 if flight f on day d starts/ends at node n, and 0

otherwise.
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β+
mdn/β−mdn: binary indicator that equals 1 if maintenance arc at station m starts/ends on

day d, and 0 otherwise.

l+n /l−n : ground arc before/after node n.

Cf : set of profitable connections.

Cs: set of short connections.

F a/F d: set of arrival/departure flights.

H: set of additional arcs (including penalty arcs, touching arcs, and connection arcs) within

a day, indexed by h ∈ H.

ch: cost for arc h; specifically, ch ≥ 0 for penalty arcs, and ch = 0 for touching and through-

value arcs (due to incomplete cost/profit information).

cmd: maintenance cost at station m ∈M on day d ∈ D.

γ+
hdn/γ−hdn: binary indicator that equals 1 if arc h at day d starts/ends at node n, and 0

otherwise.

Decision Variables:

xfd: binary decision variable that equals 1 if flight f is flown on day d in the rotation-tour

network, and 0 otherwise.

yhd: binary decision variable that equals 1 if arc h at day d is included in the maintenance

solution, and 0 otherwise.

zmd: integer decision variable that equals the number of aircraft in maintenance at station

m at the end of day d.

wl: integer variable that denotes the number of aircraft on the ground arc l.

The rotation-tour network model (RTNM) proposed by Liang et al. is based on a |D|-day

time-space network G(N,E), where |D| is the maximum number of days allowed between

the two consecutive maintenances. Ground arcs and flight arcs are the same as in the

traditional time-space network, while the maintenance arcs start at the end of each day at a

station and end at the beginning of the same station’s timeline (time-reversed arcs). Unlike
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the traditional one-day time-space network, the RTNM has a |D|-day duration with time-

reversed arcs existing only at maintenance stations. Note that all the maintenance arcs end

at the beginning of the maintenance station’s timeline, which guarantees at most a |D|-day

long flight sequence after a maintenance service.

While RTNM seeks to find a feasible rotation tour for AMR, the rotation-tour network

optimization model (RTNOM) proposed by the authors is an extended formulation that

incorporates the profit/cost of flight connections. Through-value arcs are introduced in this

model to account for the profit (negative cost) for every profitable connection, while touching

arcs are zero-cost arcs that include other non-profitable but feasible transitions. This model

can be further extended to handle multiple profitable connections. In this fashion, |Cf |
additional through-value arcs as well as |F a|+|F d| touching arcs (in and out) are constructed.

Also, for modeling short connections, penalty arcs were created with suitable penalty costs.

In particular, for every arrival flight at a station, a set of departure flights that form short

connections was identified and were linked with corresponding penalty arcs. Note that the

penalty also depends on the short time of connections. Formally, |Cs| additional penalty

arcs for short connections and |F a| + |F d| additional zero-cost arcs were incorporated.This

yields the following model:

RTNOM:

Minimize
∑
h∈H

∑
d∈D

chyhd+
∑
m∈M

∑
d∈D

cmdzmd (2.89)

subject to: ∑
d∈D

xfd = 1, ∀f ∈ F, (2.90)∑
f∈F

∑
d∈D

α+
fdnxfd +

∑
m∈M

∑
d∈D

β+
mdnzmd +

∑
h∈H

∑
d∈D

γ+
hdnyhd + wl+n =

∑
f∈F

∑
d∈D

α−fdnxfd +
∑
m∈M

∑
d∈D

β−mdnzmd +
∑
h∈H

∑
d∈D

γ−hdnyhd + wl−n , ∀n ∈ N,

(2.91)∑
d∈D

zmd ≤ Qm, ∀m ∈M, (2.92)∑
m∈M

∑
d∈D

d · zmd ≤ K, (2.93)

53



xfd ∈ {0, 1}, ∀i ∈ F, d ∈ D, (2.94)

yhd ∈ {0, 1}, ∀h ∈ H, d ∈ D, (2.95)

zmd ∈ {0, 1, . . . , Qm}, ∀m ∈M,d ∈ D, (2.96)

w+
n , w

−
n ≥ 0, ∀n ∈ N. (2.97)

Constraint (2.90) requires that each flight is covered once in the rotation-tour network solu-

tion. Constraint (2.91) assures that at each node, the number of inbound aircraft equals the

number of outbound ones. Constraint (2.92) ensures that the number of aircraft maintained

at each station does not exceed its capacity. Constraint (2.93) restricts the total number

of aircraft in service to be no more than its fleet size. Finally, Constraints (2.94)-(2.97)

represent logical restrictions on the decision variables.

The total number of variables in RTNOM is |D|(|F |+ |M |+ |H|) + |N |, the total number of

constraints is |F | + |N | + |M | + 1, and the total number of nonzero entries in the problem

matrix is |D|(3|F | + 2|H| + 4|M |) + 2|N |. Because O(|N |) = |F | and O(|H|) = |F |2, the

space complexity of RTNOM is O(|D||F |2), which is a great saving compared with the space

complexity of O(2|F |) in FSM. However, the number of constraints in RTNOM is larger than

that in FSM, but this can be reduced drastically by preprocessing. In fact, FSM can be

viewed as a Dantzig-Wolfe decomposition of RTNOM.

Gopalan and Talluri (1998)

Gopalan and Talluri (1998) addressed the aircraft maintenance routing (MR) problem using

a different perspective from other researchers. Since the optimal solution derived for the

previous decision-making stage of fleet assignment does not guarantee feasible routes for each

tail number, the authors focused on generating valid maintenance routings for each single

aircraft. Therefore, instead of formulating a traditional mixed-integer program, they solved

a three-day maintenance routing problem within the framework of graph theory. However,

since the relevant costs are not associated with the arcs, the resulting feasible solutions are

not necessarily optimal.

In this paper by Gopalan and Talluri (1998), the authors considered type A checks that
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consume three to ten hours and take place every few days, and type C checks that are per-

formed over a longer time period. They proposed a polynomial-time algorithm for solving

the three-day routing problem within an infinite-horizon and a finite-horizon model. How-

ever, as pointed out in the follow-on research by Talluri (1998), the four-day routing problem

was proven to be NP-hard.

The authors also assumed that the same flight schedule is repeated daily. To represent the

movement of each tail number, the concept of a line of flying (LOF) was introduced to

demonstrate the start and end station of a particular aircraft in a day. However, LOFs were

treated as invariant along the time axis only in the infinite-horizon case; in the finite-horizon

case where type C checks are involved, LOFs pertaining to each tail number can be different

from one another.

Additionally, it was assumed that only some of the stations (where this set is denoted by

M) can perform type A checks with no capacity limits per night. Therefore, as required by

FAA regulations, every tail number must visit a maintenance station at most every k days,

which is referred to as a k-day maintenance routing. The scenario with k = 3 was discussed

in this paper and a polynomial-time algorithm was proposed. Moreover, it was assumed that

only one of the maintenance stations is equipped to perform type C checks, with a capacity

limit of one aircraft per night. This assumption is reasonable since the type C check requires

more rigorous standards than the type A check. The enforced constraint required that the

entire fleet visits the particular maintenance station every n days, where n is the size of the

fleet. However, there exist situations in which some tail number can never reach the type C

check station. This is called a locked rotation, which can be possibly unlocked by swapping

aircraft at some common station during a given day.

A directed graph G = (V,E) was constructed, where V represents the overnighting stations

and E represents the LOFs for aircraft, with n ≡ |E|. The set of nodes V were further

partitioned into two subsets: the stations M that are equipped with type A check facilities,

and the stations N ≡ V \M that are not. Then, as can be proved, the three-day maintenance

routing sought an Euler tour in G with at most two nodes from N appearing in succession.

Such a tour is named a three-day maintenance Euler tour (3-MET). Note that an Euler tour

guarantees visiting each node once every n days, and hence it automatically satisfies the

requirement of type C checks.
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Define mo
jM as the number of arcs going out of node j to maintenance stations, and let

mi
jN be the number of arcs coming into node j from non-maintenance stations. A necessary

condition for a 3-MET states that

mo
jM ≥ mi

jN , ∀j ∈ N.

To find a valid 3-MET in G, a graph G′ was constructed by splitting each node j ∈ N and its

appended arcs into two nodes j′ and j′′, where j′′ only has inflows from maintenance stations

and outflows to non-maintenance stations, and node j′ has the opposite types of arc flows.

In addition, mo
jM −mi

jN artificial arcs were added from node j′′ to node j′ in G′. Then G′

has the property that any Euler tour visits no more than two nodes of N in succession, and

it can be proved that there exists a 3-MET in G if and only if an Euler tour exists in G′.

The algorithm used to find an Euler tour in a graph is a classical polynomial-time routine

as given by Fleury (1883), and the transformation from G to G′ can also be achieved in

polynomial time; therefore, a polynomial-time algorithm for 3-MET results. Note, however,

that the k-day MET existence problem is NP-complete.

In the finite-horizon model, the routes for each aircraft can vary from day to day; however,

the n aircraft must visit the type C check maintenance station overnight once within the

n-day study period. Note that the LOFs for each day were given as input. A layered directed

graph G = (V,E) was adopted that has n arcs between every pair of successive days in the

n-day horizon. The objective is to decompose G into n edge-disjoint paths such that these

paths represent valid maintenance routes for each tail number.

The proposed algorithm based on the split graph G′ operated over two phases. In Phase I,

a unit inflow was appended to each of the type C check stations on day k, where the latter

set of nodes is denoted by bk. Also, a super-terminus node T was added to G′ with n inflow

arcs to T from terminating LOFs on the last day. Assigning a unit capacity to each arc, a

network flow problem was solved to determine the flows from all the nodes in bk to T . After

removing all the arcs with integral flows, the procedure moved to the next phase.

Similar to the method adopted in Phase I, a super-source node S was added to the remaining

graph with n outflow arcs to the first-day nodes. Also, each node in bk was ascribed a unit

demand. A network flow problem was then solved again, which yielded a feasible path

from S to each node of bk. By combining the solutions from Phase I and Phase II at the
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maintenance stations, routes were formed for each individual aircraft. Since the two phases

were performed on the split graph G′, the 3-MET was automatically enforced. It is worth

mentioning that the existence of an edge decomposition is equivalent to the existence of a

Phase I solution.

In conclusion, the entire maintenance routing solver involved three procedures: the unlocker,

the M-N improver, and the router. The first two can be viewed as preprocessors, and the last

one has been presented above. We will therefore briefly present the preprocessing procedures

next.

The unlocker attempted to untie each LOF subtour by swapping aircraft at possible connec-

tions during a day in order to create new LOFs. If this method failed, the fleet types for some

flight legs, or even for overnighting aircraft, must be changed in order to unlock the LOF-

graph. Note that determining the existence of an unlocker solution is actually NP-complete,

and the proposed methods are only heuristic that might overlook inherent opportunities.

Following this, the M-N improver swapped pairs of edges to ensure that every node j ∈ N
satisfies the condition that the number of outflow arcs to nodes M is greater than or equal

to the number of inflow arcs from nodes N . Particularly, for a node j with mo
jM < mi

jN , the

procedure selected an inward edge e from another node j1 along with another swap candidate

edge e′ that originates from a node of M . A swap was performed if e′ terminates at a node

of M , or at a node of N that satisfies mo
kM −mi

kN ≥ 1. It is important to note that such

swaps are not permitted unless they do not create locked rotations. Also, note that such

swaps will not hurt through-flights because through-flights are combined together and are

represented by a single flight arc.

2.2.3 Integrated Models with Aircraft Routing

Apart from the aforementioned models that treat aircraft routing as an individual problem,

there also exist a number of aircraft routing models that respectively involve the upstream

decision stage of fleet assignment and the downstream decision stage of crew pairing, both of

which are described in the sequel. Moreover, we also present sophisticated solution schemes

accompanying these large-scale models in this subsection.
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Barnhart, Boland, Clarke, Johnson, Nemhauser, and Shenoi (1998a)

The aircraft routing decision stage has obvious interrelationships with fleet assignment; there-

fore, Barnhart et al. (1998a) introduced the flight string model (FSM) in order to stress the

synergy of integrating these two stages. In this model, a string is defined as a sequence of

connected flights that begins and ends at maintenance stations, and that is flow-balanced

and maintenance-feasible, i.e., maintenance requirements satisfiable. Furthermore, they de-

fined an augmented string as a string that additionally has the minimum time necessary to

perform maintenance attached to the end of the last flight in the string. Because such a

model contains millions of strings for a moderate-size flight schedule, the authors proposed

a branch-and-price approach to solve it.

The input for the fleet assignment model is comprised of a schedule of flight legs, a set

of aircraft (fleets) and the associated fleet-specific operational cost, as well as maintenance

requirements and the minimum turn-time for different fleets. The output is the assignment of

available aircraft to the different flight legs. Opportunity costs due to over booking are also

sometimes included in the objective function; moreover, a negative cost of through-flights

(Clarke et al., 1997) is additionally incorporated as passengers are willing to pay extra for

continuing with the same aircraft at the station for connection. On the other hand, given

a flight schedule for a single fleet, the aircraft routing model seeks the minimum-cost set of

aircraft routing plans under the constraints of flight coverage, fleet count, and maintenance

requirements.

As mentioned above, the FSM integrated the optimization of fleet assignment and aircraft

routing. Its objective is to select a set of augmented strings so as to minimize the total cost,

while satisfying the relevant constraints. Each flight segment is assigned to only one fleet,

and each flight can be assigned to exactly one rotation (routes that begin and end at the

same station). A count-time was selected in order to count the aircraft on the ground and

in the air. Note that all the events were sorted and numbered in increasing order of time.

Network Parameters:

S: set of augmented strings, indexed by s ∈ S.

K: set of fleets, indexed by k ∈ K.
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F : set of flights, indexed by i ∈ F .

T : periodic time horizon over which the set of flight repeats.

eki,a/e
k
i,d: event number for fleet k corresponding to the arrival/departure of flight i at some

maintenance station.

e+,k
i,a /e+,k

i,d : next event number for fleet k at that station after the arrival/departure of flight

i.

e−,ki,a /e−,ki,d : preceding event number for fleet k at that station before the arrival/departure of

flight i.(
yk

(e−,ki,a ,e
k
i,a)

and yk
(eki,a,e

+,k
i,a )

)
/
(
yk

(e−,ki,d ,e
k
i,d)

and yk
(eki,d,e

+,k
i,d )

)
: ground arc variables that denote the

number of aircraft of fleet k on the ground at that station between the predecessor event

of flight i and the arrival/departure of i, and between the arrival/departure of i and its

successor event, respectively.

Gk: set of ground arc variables for fleet k.

S−i /S+
i : set of augmented strings ending/beginning with flight i.

ais: binary indicator that equals 1 if flight i ∈ F is in augmented string s, 0 otherwise.

cks : cost of flying augmented string s with fleet k.

rks : number of times augmented string s that is assigned to fleet k crosses the count-time.

pkj : number of times ground arc j ∈ Gk for fleet k crosses the count-time.

Nk: number of aircraft in fleet k.

Note that rks can be any nonnegative integer since a string may be longer than T time units,

but pkj can only take on the values of 0 or 1 because ground arcs are at most T time units

long, by definition.

Decision Variables:

xks : augmented string variable that equals 1 if s ∈ S is flown by fleet k, and 0 otherwise.

ykj : ground arc variable that represent the number of aircraft of fleet k on the ground arc j.
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FSM: Minimize
∑
k∈K

∑
s∈S

cksx
k
s (2.98)

subject to: ∑
k∈K

∑
s∈S

aisx
k
s = 1, ∀i ∈ F, (2.99)∑

s∈S+
i

xks − yk(e−,ki,d ,e
k
i,d)

+ yk
(eki,d,e

+,k
i,d )

= 0, ∀i ∈ F, k ∈ K, (2.100)

−
∑
s∈S−i

xks − yk(e−,ki,a ,e
k
i,a)

+ yk
(eki,a,e

+,k
i,a )

= 0, ∀i ∈ F, k ∈ K, (2.101)

∑
s∈S

rksx
k
s +

∑
j∈Gk

pkjy
k
j ≤ Nk, ∀k ∈ K, (2.102)

ykj ≥ 0, integer, ∀j ∈ Gk, k ∈ K, (2.103)

xks ∈ {0, 1}, ∀s ∈ S, k ∈ K. (2.104)

The objective function is to minimize the total cost of selected strings. Constraint (2.99)

requires that each flight is covered by exactly one string. Constraints (2.100) and (2.101)

ensure the balance of flow, i.e., they equate the number of aircraft of fleet k arriving at

and departing from a station. Constraint (2.102) asserts that the total number of aircraft

in use should be no greater than the available fleet size. The last two constraints (2.103)

and (2.104) represent logical restrictions. Although the model contains a large number of

variables, practical-sized problems were demonstrated to be solvable to optimality using a

branch-and-price technique.

In order to maintain even wear-and-tear in the long term, airlines require that every aircraft

in a fleet flies all the flights assigned to its fleet, especially in short-haul operations. Since

the hub-and-spoke structure accommodates a more flexible short-haul flying pattern, and

it also increases the number of possible rotation permutations, the authors argued that the

sequential approach of fleeting and routing does not have a significant detrimental effect.

Therefore, Barnhart et al. (1998a) focused only on the routing subproblem and assumed

that the fleeting has been determined a priori. Also, the schedule was assumed to repeat

daily.
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To assign the same sequence of flights to every single aircraft in the fleet, the proposed model

incorporated the following connectivity constraints :

• Each aircraft starts by serving a flight at a different point in the sequence, where the

sequence is a cycle, that includes every flight leg assigned to the fleet.

• The fleet’s daily flight assignment is partitioned within the fleet, and the partitions are

ordered so that they can be flown in turn.

• After the number of days same as the fleet size, each aircraft has flown all the assigned

flights exactly once.

The authors proposed subtour elimination constraints as in the asymmetric traveling sales-

man problem (ATSP) to enforce connectivity.

Additional Parameters:

M : set of maintenance arcs.

M+
i /M−

i : set of maintenance connection arcs leaving/coming into flight i.

C: set of connection arcs for a specific fleet.

CM : set of maintenance connection arcs.

F̂ ⊆ F : subset of F such that 2 ≤ |F̂ | ≤
⌊
|F |
2

⌋
.

δ+(F̂ ) = {(i, j) ∈ C : i ∈ F̂ , j ∈ F \ F̂}.

ηs
F̂

: binary indicator that equals 1 if string s leaves the set F̂ , and 0 otherwise.

Additional variables:

zj: binary variable that equals 1 if the maintenance connection arc j ∈ CM is used, and 0

otherwise.

The proposed equal utilization routing (EUR) model can thus be formulated as follows:

EUR: Minimize
∑
s∈S

csxs (2.105)
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subject to: ∑
k∈K

∑
s∈S

aisxs = 1, ∀i ∈ F, (2.106)∑
s∈S+

i

xs =
∑
j∈M+

i

zj, ∀i ∈ F, (2.107)

∑
s∈S−i

xs =
∑
j∈M−i

zj, ∀i ∈ F, (2.108)

∑
s∈S

rsxs +
∑
j∈M

pjzj ≤ N, (2.109)

∑
s∈S

ηs
F̂
xs +

∑
j∈CM∩δ+(F̂ )

zj ≥ 1, ∀F̂ ⊆ F, 2 ≤ |F̂ | ≤
⌊
|F |
2

⌋
, (2.110)

zj ∈ {0, 1}, ∀j ∈ CM , (2.111)

xs ∈ {0, 1}, ∀s ∈ S. (2.112)

In this model, the superscript k was eliminated since the formulation only considered a

single fleet type. The objective function (2.105) and Constraints (2.106)-(2.109), (2.111),

and (2.112) are similar to those in the previous model, while Constraint (2.110) requires

that the rotation is a cycle through the entire set of flights by enforcing that at least one

string or at least one maintenance connection arc leaves each subset of flights. Note that this

enforcement is not identical to the subtour elimination constraints in the traditional ATSP.

Also, the connectivity constraints in this formulation were not determined a priori due to

their scale; instead, they were added to the model on-the-fly whenever they were violated by

solutions from the LP relaxations solved.

Haouari, Sherali, Mansour, and Aissaoui (2011b)

Haouari et al. (2011b) proposed a model for the aircraft fleeting and routing problem (AFRP)

that combines fleet assignment with aircraft routing. Given a flight schedule in a study period

(usually a week) and a fleet of different aircraft families, the problem is to determine a set

of aircraft routes having a minimum total cost while meeting maintenance requirements.

Specifically, the model minimized the total cost by constructing a feasible route (a sequence
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of flight legs) for each aircraft so as to cover each scheduled flight by a single aircraft, while

satisfying the turn-time restrictions at each station along with the planned maintenance

immobilizations.

Parameters:

F : set of available aircraft.

Ff ⊆ F : subset of aircraft belonging to aircraft type f (f = 1, 2, . . . , φ).

qic: number of seats for class c (c = 1, 2, . . . , C) in aircraft type i, i ∈ Ff .

τi: turn-time for the aircraft type i, i ∈ Ff .

L: set of legs in the schedule.

Li: set of flight legs that can be flown by aircraft i.

cij: flight cost when aircraft i is assigned to flight j.

sijk: deadhead flight cost when flight k’s origin station differs from its preceding flight j’s

destination station, given that flights j and k are consecutively served by aircraft i.

Gi = (Ni, Ai): time-space network, where Ni contains nodes that represent the flights j ∈ Li
as well as a source node o(i) and a sink node d(i), and where Ai is the set of arcs that

represent aircraft transitions, including arcs from source nodes and to sink nodes. Finally,

define N∗i = Ni \ {o(i), d(i)}.

Decision Variables:

yij: binary variable that takes the value 1 if aircraft i is assigned to flight j, and 0 otherwise.

xijk: binary variable that takes the value 1 if aircraft i is assigned to serve flight k immediately

after flight j, and 0 otherwise.

This problem is formulated as follows:

AFRP1: Minimize
∑
i∈F

∑
j∈N∗i

cijyij +
∑
i∈F

∑
(j,k)∈Ai

sijkxijk (2.113)

subject to: ∑
k: (j,k)∈Ai

xijk = yij, ∀i ∈ F, j ∈ Ni\ {d (i)} , (2.114)
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∑
k: (k,j)∈Ai

xikj = yij, ∀i ∈ F, j ∈ Ni\ {o (i)} , (2.115)

∑
i∈F : j∈N∗i

yij = 1, ∀j ∈ L, (2.116)

xijk ∈ {0, 1}, ∀i ∈ F, (j, k) ∈ Ai, (2.117)

yij ∈ {0, 1}, ∀i ∈ F, j ∈ Ni, with yio(i) = yid(i),∀i ∈ F.
(2.118)

The objective function (2.113) minimizes the total cost incurred by fleet assignment. Con-

straints (2.114)-(2.115) require that each flight leg has exactly one predecessor and one

successor, respectively. Constraint (2.116) assures that each flight is assigned to exactly one

aircraft while satisfying planned maintenance immobilizations and compatibility constraints.

The last two constraints (2.117) and (2.118) represent logical restrictions on the decision vari-

ables. This formulation has an assignment network structure for a fixed y feasible to (2.116)

and (2.118); hence, Constraint (2.117) is relaxed to simply xijk ≥ 0,∀i ∈ F, (j, k) ∈ Ai.

Next, the authors also introduced a set partitioning based formulation, which is presented

below.

Additional Parameters:

Ωi: set of feasible routes including the dummy “ground route”
(
o(i), d(i)

)
in the network

Gi,∀i ∈ F .

aijr: binary parameter that equals 1 if route r ∈ Ωi covers flight j ∈ Li, and 0 otherwise.

θijk = cij + sijk: cost of arc (j, k) in graph Gi.

cir =
∑

(j,k)∈rθijk: cost of assigning route r ∈ Ωi to aircraft i ∈ F , including the assignment

cost and the deadhead cost as appropriate.

Decision Variables:

zir: binary variable that takes the value 1 if route r is assigned to aircraft i, and 0 otherwise.

64



AFRP2: Minimize
∑
i∈F

∑
r∈Ωi

cirzir (2.119)

subject to: ∑
i∈F

∑
r∈Ωi

aijrzir = 1, ∀j ∈ L, (2.120)∑
r∈Ωi

zir = 1, ∀i ∈ F, (2.121)

zir ∈ {0, 1}, ∀i ∈ F, r ∈ Ωi. (2.122)

Constraint (2.120) requires that each flight is covered exactly once by an aircraft that respects

planned maintenance immobilizations and compatibility restrictions. Constraint (2.121) en-

sures that each aircraft is assigned to exactly one route. Constraint (2.122) states that the

decision variables are binary-valued.

Models AFRP1 and AFRP2 can be extended to a profit-maximizing problem while consider-

ing itinerary- or path-based demands for each fare-class, by defining new integer variables νpc

to denote the number of passengers for each fare-class c (c = 1, 2, . . . , C) that are accepted

on each path p ∈ P .

Cohn and Barnhart (2003)

As mentioned before, when the set of short connections is determined during the stage of mak-

ing aircraft maintenance routing decisions, it constrains the possible crew assignment since

a crew group cannot change aircraft for two successive short-connected flights. Therefore, in

order to account the impact on the subsequent crew pairing decisions, Cohn and Barnhart

(2003) developed an extended crew pairing (ECP) modeling approach by delaying mainte-

nance routing decisions and incorporating them partially into the crew pairing stage. In this

paper, the authors focused on solution procedures that guarantee a maintenance-feasible

crew pairing solution while considering a small number of maintenance routing decisions,

where the methods achieved a flexible tradeoff between solution time and quality.
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Cohn and Barnhart first introduced a basic integrated model (BIM) that combines the

partition-based crew pairing model with the string-based maintenance routing model. How-

ever, two major drawbacks of this lightly hybrid model, namely, its large size and its weak

LP relaxation, inhibited its use in real-scale problems.

Parameters:

F : set of flights.

R: set of feasible route strings.

RT : set of route strings that span the count-time.

P : set of feasible pairings.

C: set of short connections.

N : set of activities in the time-space network.

NT : set of nodes whose corresponding ground arcs span the count-time.

cp: cost of pairing p.

δfp: binary indicator that equals 1 if pairing p contains flight f , and 0 otherwise.

αfr: binary indicator that equals 1 if route string r contains flight f , and 0 otherwise.

ϑcr: binary indicator that equals 1 if route string r contains short connection c, and 0

otherwise.

ηcp: binary indicator variable that equals 1 if pairing p contains short connection c, and 0

otherwise.

K: size for a particular fleet.

Decision Variables:

dr: binary decision variable that equals 1 if route string r is included in the solution, and 0

otherwise.

g+
n /g−n : integer variable that equal the number of aircraft on the ground immediately follow-

ing/preceding node n at a station.
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yp: binary decision variable that equals 1 if pairing p is included in the solution, and 0

otherwise.

BIM: Minimize
∑
p∈P

cpyp (2.123)

subject to: ∑
p∈P

δfpyp = 1, ∀f ∈ F, (2.124)

∑
r∈R

αfrdr = 1, ∀f ∈ F, (2.125)∑
r: ends at n

dr + g−n −
∑

r: starts at n

dr − g+
n = 0, ∀n ∈ N, (2.126)∑

r∈RT
dr +

∑
n∈NT

g+
n ≤ K, (2.127)

∑
r∈R

ϑcrdr −
∑
p∈P

ηcpyp ≥ 0, ∀c ∈ C, (2.128)

dr ∈ {0, 1}, ∀r ∈ R, (2.129)

g+
n , g

−
n ≥ 0, integer, ∀n ∈ N, (2.130)

yp ∈ {0, 1}, ∀p ∈ P. (2.131)

The objective function (2.123) minimizes the total cost for crew pairing. Constraints (2.124)

and (2.125) require that each flight is covered by exactly one crew and one route string, re-

spectively. Constraint (2.126) ensures the flow balance at each activity node, and Constraint

(2.127) restricts the total number of aircraft used to its fleet size. Constraint (2.128) assures

that a crew is not assigned to any short connection unless the same aircraft is assigned to

it. This constraint plays a key role since it links maintenance routing decisions with crew

pairings. Constraints (2.129)-(2.131) represent logical restrictions on the decision variables.

Since this aforementioned formulation has a large size and is weak in the LP sense, the authors

proposed an extended crew pairing (ECP) model based on the traditional CP formulation.
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The ECP model contains a convexity constraint that represents maintenance routing deci-

sions, and that serves to select a single maintenance routing solution. The formulation of

the ECP is presented below.

Additional parameters:

S: set of feasible maintenance routing decisions.

βcs: binary indicator that equals 1 if maintenance routing s covers short connection c, and

0 otherwise.

Decision Variables:

xs: binary decision variable that equals 1 if maintenance routing solution s is selected, and

0 otherwise.

ECP: Minimize
∑
p∈P

cpyp (2.132)

subject to: ∑
p∈P

δfpyp = 1, ∀f ∈ F, (2.133)

∑
s∈S

βcsxs −
∑
p∈P

ηcpyp ≥ 0, ∀c ∈ C, (2.134)

∑
s∈S

xs = 1, (2.135)

xs ∈ {0, 1}, ∀s ∈ S, (2.136)

yp ∈ {0, 1}, ∀p ∈ P. (2.137)

The objective function (2.132) minimizes the total cost for pairings, as in the previous for-

mulation. Constraint (2.133) requires that each flight is covered by exactly one crew pairing,

and Constraint (2.134) ensures that a crew pairing is not assigned to a short connection un-

less it is covered in a selected maintenance routing solution. Constraint (2.135) guarantees

that exactly one maintenance routing solution is selected. Constraints (2.136) and (2.137)

place logical restrictions on the decision variables.
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The authors further pointed out that only unique and maximal (UM) maintenance-feasible

short connections need to be considered in the model. As is often the case, distinct feasi-

ble maintenance routes could involve the same set of short connections, which leads to an

identical column representation in the ECP. Therefore, only one of these columns, referred

to as unique, was actually incorporated. Moreover, a set of maintenance routing solutions

is called maximal if it contains maintenance-feasible routes for which no additional short

connections can be added while maintaining routing feasibility. The two techniques helped

drastically reduce the number of candidate maintenance routing solutions, e.g., four out of

25,000 distinct solutions, as reported in their paper.

In order to identify the UM set, the authors proposed solving a series of maintenance rout-

ing problems with a different objective function and a side-constraint. Specifically, over

the region defined by Constraints (2.125)-(2.127), (2.129)-(2.130), and using an additional

constraint ∑
c∈C\C1

∑
r∈R

ϑcrdr ≥ 1,

the model minimizes
∑

r∈R−crdr, where cr is defined as the number of short connections

in route string r, and the set C1 represents the set of short connections generated by the

initial execution of the solution process. In this manner, a set of n UM maintenance-feasible

routing solutions was generated by eliminating short connections from the previous set and

repeating the run n times. To reduce the computational effort for subsequent runs, the

solution obtained for any iteration was used to provide a warm-start solution for the next

iteration.

The authors also proved that the ECP formulation has no more binary variables than the

regular CP by showing that the residual maintenance model yields a polyhedron with integral

vertices once the crew pairing variables are fixed. In addition, it was shown that the LP

relaxation of the ECP is tighter than that of the BIM, which assures faster convergence.

Cordeau, Stojković, Soumis, and Desrosiers (2001)

Cordeau et al. (2001) integrated aircraft routing decisions within a crew pairing model and

employed Benders decomposition to solve it. The authors assumed that the fleet assignment

is given a priori, and the problem is to simultaneously determine a minimum-cost route
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for each aircraft along with crew pairings to serve the entire set of flight legs. The model

only took into account the routine maintenance checks (A-checks), and ignores longer-period

checks.

Parameters:

L: set of flight legs.

F : set of available aircraft.

K: set of available crews.

G = (N,A): time-space network, where N is the set of nodes (representing flights), and A

is the set of arcs (representing connections between flights).

of/df : origin/destination node of the aircraft of type f .

Of ⊆ {(of , j)|j ∈ N}: set of arcs that link the origin node of of aircraft f to nodes (flights)

that can be covered by this aircraft at the beginning of the horizon.

Df ⊆ {(i, df )|i ∈ N}: set of arcs that link nodes (flights) that can be covered by aircraft f

at the end of the horizon to the destination node df .

Gf = (N f , Af ): time-space network for aircraft f , where N f = N ∪ {of , df}, and Af =

A ∪Of ∪Df .

Note that ok/dk, Ok/Dk, and network Gk = (Nk, Ak) are defined in a similar way for each

crew pairing k ∈ K.

C ⊆ A: set of arcs that represent short connections in the network G.

Ωf : set of feasible paths between node of and df in Gf for every aircraft f ∈ F .

Ωk: set of feasible paths between node ok and dk in Gk for every crew pairing k ∈ K.

aiω: binary indicator that equals 1 if node i ∈ N f belongs to path ω ∈ Ωf , and 0 otherwise.

bijω : binary indicator that equals 1 if arc (i, j) ∈ Af belongs to path ω ∈ Ωf , and 0 otherwise.

cω: cost of sending a unit of flow between of and df along path ω ∈ Ωf .

Note that aiω, bijω , and cω are defined similarly for every crew pairing path ω ∈ Ωk.
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Decision Variables:

θω: binary decision variable that equals 1 if flow path ω for an aircraft is included in the

solution, and 0 otherwise.

ζω: binary decision variable that equals 1 if flow path ω for a crew pairing is included in the

solution, and 0 otherwise.

The model formulation is then presented as follows:

Minimize
∑
f∈F

∑
ω∈Ωf

cωθω +
∑
k∈K

∑
ω∈Ωk

cωζω (2.138)

subject to: ∑
f∈F

∑
ω∈Ωf

aiωθω = 1, ∀i ∈ N, (2.139)

∑
k∈K

∑
ω∈Ωk

aiωζω = 1, ∀i ∈ N, (2.140)

∑
k∈K

∑
ω∈Ωk

bijω ζω −
∑
f∈F

∑
ω∈Ωf

bijω θω ≤ 0, ∀(i, j) ∈ C, (2.141)

∑
ω∈Ωf

θω = 1, ∀f ∈ F, (2.142)

∑
ω∈Ωk

ζω = 1, ∀k ∈ K, (2.143)

θω ∈ {0, 1}, ∀ω ∈ Ωf , f ∈ F, (2.144)

ζω ∈ {0, 1}, ∀ω ∈ Ωk, k ∈ K. (2.145)

The objective function (2.138) minimizes the total cost for aircraft routing and crew schedul-

ing decisions. Constraints (2.139) and (2.140) state that each flight leg is covered by exactly

one aircraft and one crew pairing, respectively. Constraint (2.141) requires that a crew can-

not possibly serve a short connection (i, j) ∈ C unless some aircraft covers both flight i

and flight j. Constraints (2.142) and (2.143) ensure that only one path is selected for each

aircraft and each crew pairing, respectively. Constraints (2.144) and (2.145) represent logical

restrictions on the decision variables.

Apart from the associated cost for aircraft and crews assignments, there exists another cost
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for repositioning them, i.e., the deadhead cost. The model can be modified to accommodate

deadhead flights by splitting each node into two nodes linked by a regular flight arc and a

deadhead arc.

It was observed that the computational time roughly grows quadratically with the number of

constraints. Therefore, Benders decomposition was used to accelerate the solution process by

decomposing the original model into a Benders master program and a series of subproblems.

Each of these problems was solved by column generation, which was embedded in a branch-

and-bound framework. A depth-first (diving) search was employed to find heuristic solutions

through a process that sequentially rounds up a fractional decision variable whose value

exceeds a particular threshold. Although possible, the authors did not report the need for

backtracking whenever encountering infeasibility.

Following the presented ideas, a three-phase approach was developed to solve the overall

problem. In Phase I, the LP relaxation of the proposed model was solved to optimality

using Benders decomposition. Having the cuts thus generated, Phase II then reintroduced

the integrality constraints for the aircraft routing variables and generated additional cuts

while solving the master program and subproblems. Note that the solution process could

stop at a suboptimal solution because of the heuristic branching performed on the aircraft

path variables. In Phase III, integrality constraints on the crew path variables were added

to the subproblems, and heuristic branching was likewise applied to the crew path variables.

In the computational results, the authors reported solutions of very good quality obtained

from this approach.

Mercier, Cordeau, and Soumis (2005)

Mercier et al. (2005) investigated an integrated model of aircraft routing and crew schedul-

ing by further extending the model proposed by Cordeau et al. (2001) while incorporating

additional features. They derived a tighter model representation and introduced several

improvements in the solution approaches. The authors also benchmarked their results with

respect to those of Cohn and Barnhart (2003), exhibiting improved performance.

The authors assumed that the fleet assignment is given a priori, and that crews can only

serve on a particular fleet type; therefore, the integrated problem considers a particular fleet
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type. The objective function accounts for through-values of routing decisions and crew costs

of pairings; moreover, it incorporates a penalty for restricted connections, where the latter

event occurs when there is only a limited time to change aircraft for the next duty. This

concept differs from that of short connections in that a restricted connection actually satisfies

the minimum sit-time requirement, but is shorter than a preset ideal sit-time. Restricted

connections are important to consider since they can potentially impair the robustness of

the entire schedule for small unexpected perturbations.

The integrated model was formulated using a time-space network for both aircraft and crews.

Besides flight arcs, connection arcs were added to the aircraft routing network in order to

represent possible flight connections. At each station, within a 24-hour horizon, a connec-

tion arc links an arrival flight to any succeeding departure flight that satisfies the minimum

plane turn-time restriction. In addition, the model also accommodated day-time mainte-

nance requirements by discretizing a day into equal-length subperiods (e.g., two hours) and

designating the starting period for each aircraft path. On the other hand, the crew network

was modeled to contain arcs that represent regular flights, connections, and deadhead flights

used to transport crews and aircraft. In contrast with aircraft routes, the crew pairings are

acyclic. The proposed generalized integrated model is presented below.

Parameters:

GF = (NF , AF ): time-space aircraft network, where NF is the node set and AF is the arc

set.

GK = (NK , AK): time-space network of crews, where NK is the node set and AK is the arc

set.

T : set of possible starting times for paths.

B: set of crew bases.

M : set of maintenance stations.

R: set of pairs of flight legs for which the connection between them is restricted.

S: set of pairs of flight legs for which the connection between them is short.

sFmt: source node that is linked to beginning flights from station m during time period t.
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qFmt: sink node that is linked to ending flights at station m during time period t.

sKb : source node that represents the beginning of a pairing from station b.

qKb : sink node that represents the end of a pairing at base b.

GF
mt = (NF

mt, A
F
mt): aircraft network for starting station m, where NF

mt = NF ∪ {sFmt} ∪
{qFmt,∀m ∈M, t ∈ T}.

GK
b = (NK

b , A
K
b ): crew network for starting base b, where NK

b = NK ∪ {sKb , qKb }.

Ωmt: set of feasible paths from source node sFmt to a sink node in GF
mt.

Ωb: set of feasible paths from source node sKb to sink node qKb ∈ GK
b .

aiω: binary indicator that equals 1 if node i belongs to path ω, and 0 otherwise.

blω: binary indicator that equals 1 if flight leg l belongs to path ω, and 0 otherwise.

cω: cost of sending a unit of flow along path ω.

fω: number of aircraft required to cover path ω.

uω: number of duties in path ω.

pij: penalty cost associated with restricted connection (li, lj) ∈ R.

p: length of the subperiod.

h: time required to perform a regular maintenance check (taken as a multiple of p).

nijω : binary indicator that equals 1 if flight leg i and j are performed in sequence in path ω,

and 0 otherwise.

sω: number of short connections used by path ω.

ζF : number of available aircraft for this fleet type.

ζS: number of short connections allowed.

ζD: total number of duties allowed in all crew pairings.

Decision Variables:

χω: binary variable that equals 1 if there is flow on crew path ω, and 0 otherwise.
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θω: binary variable that equals 1 if there is flow on aircraft path ω, and 0 otherwise.

Rij: binary variable that equals 1 if restricted connection (li, lj) ∈ R is used by a crew but

not by an aircraft, and 0 otherwise.

The generalized model for integrated aircraft routing and crew scheduling (GIM) can be

stated as follows:

GIM: Minimize
∑
b∈B

∑
ω∈Ωb

cωχω +
∑
m∈M

∑
t∈T

∑
ω∈Ωmt

cωθω +
∑

(li,lj)∈R

pijRij (2.146)

subject to: ∑
m∈M

∑
t∈T

∑
ω∈Ωmt

blωθω = 1, ∀l ∈ L, (2.147)∑
b∈B

∑
ω∈Ωb

blωχω = 1, ∀l ∈ L, (2.148)

∑
m∈M

∑
t∈T

∑
ω∈Ωmt

fωθω ≤ ζF , (2.149)∑
m∈M

∑
t∈T

∑
ω∈Ωmt

sωθω ≤ ζS, (2.150)∑
b∈B

∑
ω∈Ωb

uωχω ≤ ζD, (2.151)

∑
ω∈Ωmt

aq
F
mt
ω θω −

∑
ω∈Ωmt

a
sF
m,t+1+hp
ω θω = 0, ∀m ∈M, t ∈ T, (2.152)∑

b∈B

∑
ω∈Ωb

nijωχω −
∑
m∈M

∑
t∈T

∑
ω∈Ωmt

nijω θω ≤ 0, ∀(li, lj) ∈ S, (2.153)

∑
b∈B

∑
ω∈Ωb

nijωχω −
∑
m∈M

∑
t∈T

∑
ω∈Ωmt

nijω θω −Rij ≤ 0, ∀(li, lj) ∈ R,

(2.154)

Rij ∈ {0, 1}, ∀ (li, lj) ∈ R, (2.155)

θω ∈ {0, 1}, ∀m ∈M, t ∈ T, ω ∈ Ωmt, (2.156)

χω ∈ {0, 1}, ∀b ∈ B,ω ∈ Ωb. (2.157)

The objective function (2.146) minimizes the total cost of crew scheduling, aircraft routing,

and penalties for restricted connections. Constraints (2.147) and (2.148) ensure that each
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flight leg is covered by exactly one aircraft and one crew pairing. Constraint (2.149) limits

the total number of aircraft in service. Constraint (2.150) enforces that the total number

of short connections cannot exceed a preset threshold for the purpose of a robust schedule.

Constraint (2.151) restricts the total number of duties in the pairing schedule. Constraint

(2.152) links the ending station of an aircraft path back to its starting station in order to

maintain cyclic routes. Constraint (2.153) requires that short connections cannot be served

by the same crew unless the aircraft also does not change. Constraint (2.154) imposes a

penalty via the objective function for each restricted connection where crews change the

assigned aircraft. Constraints (2.155)-(2.157) represent logical restrictions on the decision

variables.

The model was solved by applying Benders decomposition. Instead of taking the aircraft

routing problem (ARP) as the master program as in the natural order of operations, the

authors proposed to use the crew pairing problem (CP) to formulate the Benders master

program and the ARP as the subproblem. The subproblem mainly contains feasibility infor-

mation and relegates the optimization decisions to the master program. It is worth noting

that the ARP need not be solved to optimality since the subproblem does not account for

much cost anyway.

As in Cordeau et al. (2001), a three-phase heuristic algorithm was applied to solve the

problem. Phase I relaxed all the integrality constraints and solved the LP relaxation to

optimality using Benders decomposition and column generation. Phase II recaptured the

integrality constraints for the master problem, generated additional cuts, and reiterated. In

Phase III, the integrality restrictions on the variables of the subproblem were reintroduced,

and the resulting problem was solved once with fixed master program decisions.

Besides, a new heuristic branching strategy was also proposed to enhance algorithmic effi-

ciency. In this procedure, within a depth-only search scheme, binary variables that exceed a

given threshold λ1 were all set to one. On the other hand, the binary variables whose frac-

tional values lie between a smaller threshold λ2 and λ1 were sequentially set to one within

the model. If neither case applied, then a branching on arcs or follow-ons was performed

in a shortest-path network. This strategy accelerated the search to a near-optimal solu-

tion. Furthermore, to speed up the process, strong cuts were generated whenever the primal

problem attained degenerate solutions. Specifically, using the ARP as the subproblem, a
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dominant (Pareto-optimal) cut was identified by taking values close to one as the core point

and subsequently solving an auxiliary program.

Mercier and Soumis (2007)

In follow-on research, Mercier and Soumis (2007) improved their model that combines the

aircraft routing problem and the crew scheduling problem in a single formulation. The crew

cost is one of the major expenditures in an airline company and crew restrictions involve strict

limits on the total number of landings, total work time, and total flight time. It has been

variously shown that integrating aircraft routing with crew pairing can yield significantly

better results than that obtained by solving the problems sequentially. In this paper, the

authors further considered variable departure times for each leg, i.e., they permitted the

departure times to slightly deviate from those in the original schedule. As demonstrated by

their results, carefully chosen departure times can beneficially impact both aircraft routings

and crew pairings.

The fleet assignment was assumed to be known a priori, and so the integrated problem

decomposed into one for each fleet type. Given a set of daily flights for a specific aircraft type,

the formulated model determines a minimum-cost set of aircraft routes and crew pairings

with a modified schedule so as to cover each of the flights by exactly one aircraft and one

crew.

Parameters:

L: set of flight legs.

Ui: set of possible departure times for flight leg i.

S: set of pairs of flight legs between which the connection time is short for at least one

schedule combination.

Sij: set of pairs of departure times p ∈ Ui and q ∈ Uj for which the connection time between

flight legs i and j is short.

ΩF : set of feasible aircraft paths.

ΩK : set of feasible crew paths.

77



biω: binary indicator that equals 1 if flight leg i belongs to path ω, and 0 otherwise.

biuω : binary indicator that equals 1 if flight leg i with schedule u belongs to path ω, and 0

otherwise.

cω: cost of sending a unit of flow along path ω.

diuω : binary indicator that equals 1 if deadhead i with schedule u belongs to path ω, and 0

otherwise.

eω: number of duties in crew path ω.

fω: number of aircraft required to cover aircraft path ω.

nijω : binary indicator that equals 1 if flight legs i and j are served in sequence in path ω.

nijpqω : binary indicator that equals 1 if flight leg i with schedule p and flight leg j with

schedule q are served in sequence in path ω.

ζF : number of available aircraft.

ζD: total number of duties allowed in all crew pairings.

Decision Variables:

χω: binary variable representing the flow on crew path ω.

θω: binary variable representing the flow on aircraft path ω.

This model is formulated as follows:

Minimize
∑
ω∈ΩK

cωχω +
∑
ω∈ΩF

cωθω (2.158)

subject to: ∑
ω∈ΩF

biωθω = 1, ∀i ∈ L, (2.159)

∑
ω∈ΩF

fωθω ≤ ζF , (2.160)

∑
ω∈ΩK

biωχω = 1, ∀i ∈ L, (2.161)

∑
ω∈ΩK

eωχω ≤ ζD, (2.162)
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∑
ω∈ΩK

diuω χω −
∑
ω∈ΩK

biuω χω ≤ 0, ∀u ∈ Ui, i ∈ L, (2.163)

∑
ω∈ΩK

biuω χω −
∑
ω∈ΩF

biuω θω = 0, ∀u ∈ Ui, i ∈ L, (2.164)

∑
ω∈ΩK

nijpqω χω −
∑
ω∈ΩF

nijpqω θω ≤ 0, ∀(p, q) ∈ Sij, (i, j) ∈ S, (2.165)

θω ∈ {0, 1}, ω ∈ ΩF , (2.166)

χω ∈ {0, 1}, ω ∈ ΩK . (2.167)

The objective function (2.158) is to minimize the total cost of crew pairing and aircraft

routing. Note that since a large part of crew costs are already fixed by the predefined fleet

assignment, the model only considers through-values (negative costs) and those costs that

can be reduced by improved planning. Constraints (2.159) and (2.161) ensure that each

flight leg is assigned to an aircraft and a crew, respectively. Constraints (2.160) and (2.162)

place limits on the number of available aircraft and the total number of duties, respectively.

Constraint (2.163) enforces the same schedule to be selected for the working crew and for the

traveling crew (deadhead). Constraints (2.164) and (2.165) relate aircraft routing variables to

crew variables, i.e., (2.164) requires that the aircraft and the crew choose the same schedule

for every flight leg, and (2.165) assures that a crew does not change aircraft if the connection

time is short. Finally, Constraints (2.166) and (2.167) are logical restrictions on the decision

variables.

A simpler formulation was also proposed for the problem in which the number of constraints

in (2.165) was reduced by considering an aggregated constraint as follows:∑
ω∈ΩK

nijωχω −
∑
ω∈ΩF

nijω θω ≤ 0, ∀(i, j) ∈ S. (2.168)

However, when using the aggregated restrictions (2.168) to replace (2.165), a larger integral-

ity gap, or a greater number of fractional variables, was found to occur in the solution to the

LP relaxation. Also, possible violations to the disaggregated constraints in (2.165) might

exist within the resulting solution.

The number of variables in this path-based formulation grew exponentially with the number

of nodes in the network. Furthermore, for each connection, several constraints were generated
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due to a set of possible departing/arriving times. This significantly adds to the model’s

complexity.

To summarize, the existing models in the literature address a variety of features of the

airline scheduling process. The models for aircraft routing often require approaches based

on decomposition techniques, e.g., column generation and Benders decomposition, in order to

implicitly address restrictions for aircraft routing via sophisticated model implementations.

In contrast, we present in the next chapter a compact model that explicitly incorporates

the routing constraints within a node-arc formulation of polynomial size, which admits a

relatively easy solution using off-the-shelf commercial solvers. A reformulation along with the

derivation of valid inequalities is also performed to accelerate the solution process. We next

propose in Chapter 4 an integrated model for fleeting, routing, and crew pairing decisions

by imbedding the above aircraft routing model within this more general framework. The

formulated integrated model is solved using tailored decomposition approaches along with

several sophisticated acceleration techniques, which help deal effectively with the large-scale

representation of the problem.
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Chapter 3

A Lifted Compact Formulation for the

Daily Aircraft Maintenance Routing

Problem

3.1. Introduction

The principal airline operational problems include schedule planning, fleet assignment, air-

craft routing, and crew scheduling. In this process, of particular interest in this present

chapter, aircraft routing decisions are made after each flight leg has been assigned to an air-

craft type. Specifically, the aircraft routing problem (ARP) determines the flying sequence,

including periodic maintenance checks, for each individual aircraft in a given fleet. Although

in the previous stage of fleet assignment, each flight leg is matched with a particular type of

aircraft while optimizing profits, this does not take into consideration operational require-

ments for each individual aircraft. Consequently, the resulting solution therefore does not

necessarily guarantee the existence of aircraft rotations that satisfy requirements such as the

minimum turn-time at stations and fleet-specific maintenance check regulations, along with

other restrictions on the total accumulated flying time, the total number of takeoffs, and

the total number of days between two consecutive maintenance checks for a given aircraft.

From this point of view, the ARP is significant to an airline company in that it generates

operational feasible routes for aircraft while addressing the foregoing restrictions, perhaps
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iteratively by tweaking the previously fixed operational decisions as necessary.

This chapter focuses on deriving an aircraft maintenance routing scheme based on a set

of daily repeated flight schedules; yet our model can be easily extended to multi-day pe-

riodic flight schedules. Specifically, we propose a new model that explicitly incorporates

the routing and maintenance requirements within a node-arc formulation, which turns out

to be polynomial in size. The initial representation contains some nonlinear features that

are subsequently linearized by applying the Reformulation-Linearization Technique (RLT)

of Sherali and Adams (1990, 1994). The RLT lifts the original model to an equivalent, tight,

higher dimensional linear zero-one mixed-integer program while retaining its polynomial size

aspect, which enables any suitable commercial solver (e.g., CPLEX) to obtain solutions quite

readily without specialized algorithmic implementations.

The remainder of this chapter is organized as follows. In Section 3.2, we propose the new

model formulation, first in its original form and then after being lifted by the RLT. A

variety of realistic test instances (obtained from United Airlines) are solved in Section 3.4

to benchmark the performance of the proposed model. Finally, we present a summary and

conclusions in Section 3.5.

3.2. Proposed Model Formulation

Instead of formulating the daily aircraft routing problem as a set partitioning problem and

solving it using a branch-and-price approach, we model the problem using a novel polynomial-

sized formulation that can be solved using a commercial solver (or, by a tailored branch-and-

bound algorithm). In this section, we present a description of this proposed formulation.

Specifically, given a set of flight legs flown daily by a fleet of identical aircraft, and a set of

stations where maintenance can be performed, the problem is to find a set of aircraft routes

(or, rotations) such that:

• Each route is a sequence of flight legs to be flown consecutively by the same aircraft.

The last flight leg should be compatible with the first flight leg, which thus yields a

flight rotation.
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• Each flight leg is covered by exactly one route.

• Each aircraft should visit maintenance stations (and spend at least the time duration

required to perform a maintenance check) before: (i) accumulating a specified maxi-

mum flying time; (ii) accumulating a specified maximum number of takeoffs, and (iii)

accumulating a specified maximum number of days.

• The total number of required aircraft should not exceed its specified fleet size.

The proposed model accounts for a flight schedule that repeats cyclically, a typical length

of which can be a day or a week. In this dissertation, it is assumed that all the flights are

designated within the time horizon from 0 to 1440 minutes (length of a day) recorded in the

Coordinated Universal Time (UTC), and thus the pattern of flight arrivals and departures

repeats cyclically on a daily basis. This proposed model also accounts for wrap-around flights,

i.e., those flights that depart on a given day, cross the end of the time horizon, and arrive

on the next day. Note that since the time definition in this model takes a more general

form than those adopted in the fleet assignment model and/or other stages of the airline

scheduling process, it actually relaxes the assumption that all the flights must be completed

during the same day, thus permitting such wrap-around flights. However, if there exists a

point in time over the 1440 minute block when no flights are in the air, then by defining t = 0

at such a “regeneration” point, we can redefine the data so that all flights are completed

during the same day.

Furthermore, note that in this problem, we only consider the more frequently occurring

mandated maintenance checks, i.e., the type A check, for each aircraft. Other aircraft

maintenances are spaced over longer durations and, being more time-intensive, are therefore

usually planned at a higher decision level whereby aircraft are appropriately periodically

pulled out of and reinserted into service.

Notation:

Let L denote the set of flight legs assigned to the aircraft type under consideration. For

each flight leg j ∈ L, we define the following notation (with all time durations expressed in

minutes):

DTj ∈ [0, 1440]: departure time of flight leg j.
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ATj ∈ [0, 1440]: arrival time of flight leg j.

DSj: departure station of flight leg j.

ASj: arrival station of flight leg j.

tj: flying time of flight leg j (we assume that tj ≤ 1440 for practical reasons).

Also, we define:

τ : turn-time for the given aircraft type.

NA: number of available aircraft of the given type.

na: number of wrap-around flights in the schedule.

tmax: maximum flying time between two consecutive maintenance checks (note that tj ≤
tmax,∀j ∈ L).

tomax: maximum number of takeoffs between two consecutive maintenance checks (tomax ≥
1).

dmax: maximum number of days between two consecutive maintenance checks (dmax ≥ 1).

M : time duration of a maintenance check (τ < M < 1440).

S: set of maintenance stations (|S| ≥ 1).

For a given flight schedule, we define its associated digraph G = (V,A) in which each node

j ∈ V represents a flight leg. We denote the origin/destination node of any arc a ∈ A

defined in the sequel by a−/a+. Also, we denote the set of arcs that are incident to/outgoing

from node j ∈ V by δ−j /δ
+
j , respectively. Moreover, each arc a ∈ A represents a feasible

connection, that is, an arc a ∈ A if and only if an aircraft can consecutively serve flights a−

and a+. More precisely, the set of arcs A is given by the union of six arc subsets A1, A2, A3,

A4, A5, and A6 that are defined as follows:

• An arc a ∈ A1 if and only if a maintenance check could be planned between the

arrival of flight leg a− ≡ j and the departure of flight leg a+ ≡ l, and both flight legs

are required to be served consecutively on the same day. Hence, (j, l) ∈ A1 ⇔ (i)
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ASj ≡ DSl; (ii) ASj ∈ S; and (iii) ATj +M ≤ DTl.

• An arc a ∈ A2 if and only if a maintenance check could be planned between the arrival of

flight leg a− ≡ j and the departure of flight leg a+ ≡ l, and the same aircraft is required

to serve flight leg l the day after serving flight leg j, even if ATj + τ ≤ DTl. Hence,

(j, l) ∈ A2 ⇔ (i) ASj ≡ DSl; (ii) ASj ∈ S; and (iii) DTl < ATj +M ≤ DTl + 1440.

• An arc a ∈ A3 if and only if a maintenance check could not be planned between the

arrival of flight leg a− ≡ j and the departure of flight leg a+ ≡ l, and both flight legs

are required to be served consecutively on the same day. Hence, (j, l) ∈ A3 ⇔ (i)

ASj ≡ DSl; (ii) ASj /∈ S or DTl < ATj +M ; and (iii) ATj + τ ≤ DTl.

• An arc a ∈ A4 if and only if a maintenance check could not be planned between the

arrival of flight leg a− ≡ j and the departure of flight leg a+ ≡ l, and the same aircraft

serves flight leg l the day after serving flight leg j. Hence, (j, l) ∈ A4 ⇔ (i) ASj ≡ DSl;

(ii) ASj /∈ S or ATj +M > DTl + 1440; and (iii) DTl < ATj + τ ≤ DTl + 1440.

• An arc a ∈ A5 if and only if a maintenance check could be planned between the arrival

of leg a− ≡ j and the departure of flight leg a+ ≡ l, and the same aircraft is required

to serve flight leg l two days after serving flight leg j. This type of arc (see Figure 3.1)

represents the situation in which the aircraft does not have enough time to undergo

maintenance after serving flight j and then to serve flight l the next day. Hence, (j, l) ∈
A5 ⇔ (i) ASj ≡ DSl; (ii) ASj ∈ S; and (iii) DTl + 1440 < ATj +M ≤ DTl + 2880.

• An arc a ∈ A6 if and only if a maintenance check could not be planned between the

arrival of flight leg a− ≡ j and the departure of flight leg a+ ≡ l, and the same aircraft

is required to serve flight leg l two days after serving flight leg j (see Figure 3.2). Hence,

(j, l) ∈ A6 ⇔ (i) ASj ≡ DSl; (ii) ASj /∈ S; and (iii) DTl+1440 < ATj+τ ≤ DTl+2880.

Note that although the duration of this type of connection is more than 1440 minutes,

the time spent by the aircraft between its arrival plus the turn-time and its departure

is less than a day, i.e., (DTl + 2880)− ATj − τ < 1440 by the first inequality in (iii).

Remark 3.1: It needs to be pointed out that the last two types of arcs, i.e., A5 and A6,

account for special types of connections that seldom occur. Consider, for instance, a case

where the arrival time for the only incoming flight to an airport is close to the end of a day
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Figure 3.1: An Example for Arc Type A5

Figure 3.2: An Example for Arc Type A6

and the departure of the only outgoing flight occurs so early in the day that the duration

between the arrival and the next departure is less than the minimum turn-time (see the case

of A6 in Figure 3.2). Consequently, the aircraft has to wait another day on the ground. We

therefore introduce these two types of arcs for the sake of the theoretical completeness of the

model; however, typically in practice, for a regional set of flights, there exists a sufficiently

long duration (exceeding M) beyond midnight or in the early morning hours when no activity

occurs, so that the cyclical horizon [0, 1440] can be defined such that arcs of types A5 and

A6 do not occur. 2

Remark 3.2: It is worth noting that parallel arcs exist in G. Indeed, assume that we have

two flight legs j and l satisfying: (i) ASj ≡ DSl; (ii) ASj ∈ S; (iii) DTl < ATj + M ≤
DTl + 1440; and (iv) ATj + τ ≤ DTl. Then, from (i), (ii), and (iii), we have (j, l) ∈ A2.

Moreover, because of (i), (iii), and (iv), we have (j, l) ∈ A3. The former case refers to the

situation where the aircraft consecutively serves flight legs j and l on two consecutive days

and is offered the opportunity to undergo a maintenance check between these two flight legs.

The latter case corresponds to the situation where an aircraft consecutively serves flight legs

j and l on the same day without being serviced in between. 2

A cycle (j1, j2, . . . , jp, j1) in G corresponds to an aircraft rotation that consecutively covers

flight legs j1, j2, . . . , jp and back to j1 in a cyclic fashion. If a cycle includes ξ1 arcs belonging

to A2∪A4 and ξ2 arcs belonging to A5∪A6, and also covers ξ3 wrap-around flights, then the
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corresponding rotation spans ξ = ξ1 + 2ξ2 + ξ3 consecutive days, and since each flight leg is

scheduled every day, ξ aircraft should be assigned to this rotation with each aircraft serving

this same sequence over ξ days, but staggered so that the union of the flights served by each

of these ξ aircraft each day equals (j1, . . . , jp) while their intersection is empty. Also, if a

rotation includes an arc a ∈ A1 ∪A2 ∪A5, then an aircraft assigned to this rotation has the

opportunity to (but may not necessarily) undergo a maintenance check between flight legs

a− and a+.

Consider, for example, a two-flight case between two stations A and B: Flight 1 traverses

from A to B and spans the duration [5, 180], and Flight 2 traverses from B to A and spans

the duration [1200, 1439], where Station A is a maintenance station. We further assume that

the minimum turn-time is 30 minutes, while the maintenance time is 360 minutes. Note that

in this simple case, the connection between Flight 1 and Flight 2 (at Station B) is of type

A3, but there does not exist enough time for Flight 2 to immediately connect to the next

departure of Flight 1 at Station A. Hence, an aircraft serving Flight 2 on the first day would

arrive at Station A toward the end of the first day (at t = 1439), and would then wait on

the ground for a whole day (and possibly undergo maintenance) in order to connect to the

next departing Flight 1 on the third day. Therefore, the connection between Flight 2 and

Flight 1 (at Station A) is of arc type A5. Consequently, the cycle including Flights 1 and 2

involves two aircraft (ξ1 = 0, ξ2 = 1, and ξ3 = 0), each of which serves both the Flights 1

and 2 on alternate days. In this same example, note that if we were to change the duration

of Flight 2 to [1200, 1], then the connection between Flight 2 and Flight 1 (at Station A)

becomes of type A2, but now we have ξ1 = 1, ξ2 = 0, and ξ3 = 1, and so we again need two

aircraft to serve this daily schedule in the same fashion as before.

The problem posed is to find a node partition such that each node is covered by exactly one

maintenance-feasible rotation.

Decision Variables:

xa: binary variable that equals 1 if arc a ∈ A is selected, and 0 otherwise.

uj: total accumulated flying hours for an aircraft since its last maintenance check after

serving flight leg j ∈ L.

vj: total number of takeoffs for an aircraft since its last maintenance check after serving
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flight leg j ∈ L.

dj: total number of days for an aircraft since the last maintenance check after serving flight

leg j ∈ L.

The problem can then be formulated as follows, where for convenience, we denote the set of

maintenance permitting arcs as AM ≡ A1 ∪A2 ∪A5, and the set of non-maintenance arcs as

ANM ≡ A3 ∪ A4 ∪ A6:

ARP: Find x, u, v, d (3.1)

subject to: ∑
a∈δ−j

xa = 1, ∀j ∈ L, (3.2)

∑
a∈δ+j

xa = 1, ∀j ∈ L, (3.3)

ujxa = tjxa, ∀j ∈ L, a ∈ δ−j ∩ AM , (3.4)

ujxa = (ua− + tj)xa, ∀j ∈ L, a ∈ δ−j ∩ ANM , (3.5)

vjxa = xa, ∀j ∈ L, a ∈ δ−j ∩ AM , (3.6)

vjxa = (va− + 1)xa, ∀j ∈ L, a ∈ δ−j ∩ ANM , (3.7)

djxa = xa, ∀j ∈ L, a ∈ δ−j ∩ AM , (3.8)

djxa = da−xa, ∀j ∈ L, a ∈ δ−j ∩ A3, (3.9)

djxa = (da− + 1)xa, ∀j ∈ L, a ∈ δ−j ∩ A4, (3.10)

djxa = (da− + 2)xa, ∀j ∈ L, a ∈ δ−j ∩ A6, (3.11)∑
a∈A2∪A4

xa + 2
∑

a∈A5∪A6

xa ≤ NA− na, (3.12)

tj ≤ uj ≤ tmax, ∀j ∈ L, (3.13)

1 ≤ vj ≤ tomax, ∀j ∈ L, (3.14)

1 ≤ dj ≤ dmax, ∀j ∈ L, (3.15)

x binary. (3.16)
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Constraints (3.2)-(3.3) require that each flight leg has exactly one predecessor and one suc-

cessor, respectively. Hence, together with (3.16), these restrictions induce the solution to be

comprised of cycles or cyclic rotations. The nonlinear constraints (3.4)-(3.5) together with

(3.13) enforce that the total flying time restriction is satisfied. Note that the nature of these

constraints precludes a cyclic rotation with no maintenance visit. Similarly, Constraints

(3.6)-(3.7) and (3.14) assure the restriction on the maximal number of takeoffs, and Con-

straints (3.8)-(3.11) and (3.15) guarantee the restriction on the maximum number of days

between maintenance checks. Observe that, given binary values of x feasible to Constraints

(3.2) and (3.3), Constraints (3.6)-(3.11) automatically induce the v- and d-variables to be

integer-valued; hence, these variables are logically declared in (3.13) and (3.14) to be simply

continuous-valued. (Likewise, if tj are integer-valued, then so are the u-variable values in a

feasible solution.) Constraint (3.12) requires that the total number of aircraft in service as

accounted for each cyclic rotation above (where the sum of the ξ3-values equals na) should

not exceed the available size of fleet. Note that this is similar to an aircraft count constraint

that is used in fleet assignment models (e.g., see Sherali et al. (2006)), where the accounting

in this case is done at the count timeline t = 1440, and where the left-hand side in (3.12)

counts the number of aircraft on the ground and na equals the number in the air at that

time. Finally, Constraint (3.16) imposes logical restrictions on the binary decision variables.

Remark 3.3: Whereas the same daily schedule is considered here, the exact same model

(with obvious changes) can be used for the same weekly schedule case (or for any other

periodic repetition of flight schedules). 2

Remark 3.4: Assume that the maximum daily number of aircraft that can visit a mainte-

nance station s ∈ S cannot exceed νs. Then, it is possible to accommodate this additional

restriction by adding the upper-bounding constraint∑
a∈As

xa ≤ νs, ∀s ∈ S, (3.17)

where As ≡ {a ∈ AM : ASa− ≡ s},∀s ∈ S. It is noteworthy that, in practice, since a visit

to a maintenance station does not necessarily translate into a maintenance check, the upper

bound νs used in (3.17) can be taken as a suitable overestimate of the actual maintenance

station capacity (say, by multiplying this capacity by a factor that is based on historical

data of visits versus performed maintenance operations). In so doing, Constraint (3.17)

limits the number of times opportunities are posed for each station (where each opportunity
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triggers a resetting of the time-clock in the model formulation). Such a constraint would thus

avoid using a station having a low capacity from being overused with assumed-to-be-realized

opportunities. 2

3.2.1 Reformulation and Linearization

To enhance the solvability of Problem ARP, we next propose to apply the Reformulation-

Linearization Technique (RLT) of Sherali and Adams (1990, 1994) to derive a tight, equiv-

alent linear model representation of Problem ARP. To begin with, consider Constraints

(3.4)-(3.5). We can linearize these constraints by using the substitution:

ωjl = ujxjl, ∀(j, l) ∈ A, (3.18)

ρjl = ulxjl, ∀(j, l) ∈ A. (3.19)

Thus, (3.4) and (3.5) get transformed to the following:

ρjl = tlxjl, ∀(j, l) ∈ AM , (3.20)

ρjl = ωjl + tlxjl, ∀(j, l) ∈ ANM . (3.21)

Also, multiplying (3.13) by each xlj and xjl, in δ−j and δ+
j , respectively, and linearizing, we

obtain (upon rearranging indices for the first case):

tlxjl ≤ ρjl ≤ tmaxxjl,∀(j, l) ∈ A, (3.22)

and

tjxjl ≤ ωjl ≤ tmaxxjl,∀(j, l) ∈ A. (3.23)

Furthermore, multiplying each of (3.2) and (3.3) by its corresponding uj and linearizing, we

get ∑
l:(l,j)∈A

ρlj = uj, ∀j ∈ L, (3.24)

∑
l:(j,l)∈A

ωjl = uj, ∀j ∈ L. (3.25)
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Proposition 3.1. For binary feasible x, Constraints (3.20)-(3.25) imply (3.4), (3.5), (3.13),

(3.18), and (3.19), and so can replace these restrictions in Model ARP.

Proof. The proof follows from Sherali et al. (1998) by noting that (3.20)-(3.25) are generated

by taking suitable products of the restrictions in the specially structured set S = {x :

(3.2), (3.3), x ≥ 0}, which implies the bounds 0 ≤ xa ≤ 1,∀a ∈ A, with the bounding

restrictions (3.13) on the u-variables, and then linearizing the resulting constraints by using

the substitution (3.18)-(3.19). 2

We can further reduce the size of the reformulated problem (specifically addressing Con-

straints (3.20)-(3.25) for now) while retaining the strength of the underlying linear program-

ming (LP) relaxation as established by the following result, where, with obvious notation,

we use the vectors x, ω, u, and ρ to represent the corresponding subscripted variables (and

similarly for other variables in the sequel):

Proposition 3.2. Constraints (3.20)-(3.25) can be replaced by the following restrictions

(3.26)-(3.28), which, together with (3.2), are equivalent to these constraints even in the

continuous (LP relaxation) sense:∑
l:(j,l)∈A

ωjl = tj +
∑

l:(l,j)∈ANM

ωlj, ∀j ∈ L, (3.26)

tjxjl ≤ ωjl ≤ (tmax − tl)xjl, ∀(j, l) ∈ ANM , (3.27)

tjxjl ≤ ωjl ≤ tmaxxjl, ∀(j, l) ∈ AM . (3.28)

Proof. We can derive a set of constraints equivalent to (3.20)-(3.25) along with (3.2) (even

in the continuous sense) as follows. First, we use the identities (3.20) and (3.21) to eliminate

the ρ-variables from these restrictions. Accordingly, by substituting (3.20) and (3.21) into

(3.24) and noting that
∑

l:(l,j)∈A xlj = 1 by (3.2), we obtain

uj = tj +
∑

l:(l,j)∈ANM

ωlj, ∀j ∈ L.

We next eliminate the u-variables by combining the foregoing equation with (3.25), which

yields (3.26). Next, observe that by substituting (3.20) into (3.22) we obtain a redundant

relationship since tl ≤ Tmax. Furthermore, by substituting (3.21) into (3.22), and com-

bining this with (3.23) for (j, l) ∈ ANM to eliminate implied bounding inequalities on the
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ω-variables, we obtain (3.27), where we retain the inequalities in (3.23) for (j, l) ∈ AM , as

indicated in (3.28). Hence, along with (3.2), (x, ω) is feasible to (3.26)-(3.28) if and only if

there exists a (u, ρ) such that (x, ω, u, ρ) is feasible to (3.20)-(3.25). 2

Note that after solving the resulting model upon applying Proposition 3.2, the values of the

u-variables that are present in the original Model ARP can be recovered, if so desired, by

using the identities (3.25).

Similarly, for linearizing (3.6)-(3.11) in a likewise fashion, define

ηjl = vjxjl, ∀(j, l) ∈ A, (3.29)

θjl = vlxjl, ∀(j, l) ∈ A; (3.30)

and

λjl = djxjl, ∀(j, l) ∈ A, (3.31)

µjl = dlxjl, ∀(j, l) ∈ A. (3.32)

Then, Constraints (3.6)-(3.7), and (3.8)-(3.11) can be rewritten as follows:

θjl = xjl, ∀(j, l) ∈ AM , (3.33)

θjl = ηjl + xjl, ∀(j, l) ∈ ANM , (3.34)

µjl = xjl, ∀(j, l) ∈ AM , (3.35)

µjl = λjl, ∀(j, l) ∈ A3, (3.36)

µjl = λjl + xjl, ∀(j, l) ∈ A4, (3.37)

µjl = λjl + 2xjl, ∀(j, l) ∈ A6, (3.38)

where as above, from (3.14)-(3.15), we obtain

xjl ≤ ηjl ≤ tomaxxjl, ∀(j, l) ∈ A, (3.39)

xjl ≤ θjl ≤ tomaxxjl, ∀(j, l) ∈ A, (3.40)

xjl ≤ λjl ≤ dmaxxjl, ∀(j, l) ∈ A, (3.41)

xjl ≤ µjl ≤ dmaxxjl, ∀(j, l) ∈ A, (3.42)
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and from Constraints (3.2) and (3.3), we obtain∑
l:(l,j)∈A

θlj = vj, ∀j ∈ L, (3.43)

∑
l:(j,l)∈A

ηjl = vj, ∀j ∈ L, (3.44)

∑
l:(l,j)∈A

µlj = dj, ∀j ∈ L, (3.45)

∑
l:(j,l)∈A

λjl = dj, ∀j ∈ L. (3.46)

Following an argument similar to Proposition 3.2, we can eliminate the θ-, µ-, v-, and d-

variables from (3.33)-(3.46), and effectively project these constraints onto the space of the

(x, η, λ)-variables to obtain an equivalent set of relationships as follows:

∑
l:(j,l)∈A

ηjl = 1 +
∑

l:(l,j)∈ANM

ηlj, ∀j ∈ L, (3.47)

xjl ≤ ηjl ≤ (tomax − 1)xjl, ∀(j, l) ∈ ANM , (3.48)

xjl ≤ ηjl ≤ tomaxxjl, ∀(j, l) ∈ AM , (3.49)∑
l:(j,l)∈A

λjl =
∑

l:(l,j)∈AM∪A4

xlj + 2
∑

l:(l,j)∈A6

xlj +
∑

l:(l,j)∈ANM

λlj, ∀j ∈ L, (3.50)

xjl ≤ λjl ≤ (dmax − 1)xjl, ∀(j, l) ∈ A4, (3.51)

xjl ≤ λjl ≤ (dmax − 2)xjl, ∀(j, l) ∈ A6, (3.52)

xjl ≤ λjl ≤ dmaxxjl, ∀(j, l) ∈ AM ∪ A3. (3.53)

Accordingly, Problem ARP can be equivalently stated as the 0-1 mixed-integer program

specified below, where for the sake of convenience, we define the following parameters:

bta =

{
tmax − ta+ , ∀a ∈ ANM ,
tmax, ∀a ∈ AM ,

btoa =

{
tomax − 1, ∀a ∈ ANM ,
tomax, ∀a ∈ AM ,
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bda =


dmax − 1, ∀a ∈ A4,

dmax − 2, ∀a ∈ A6,

dmax, ∀a ∈ AM ∪ A3.

ARP-RLT: Find x, ω, η, λ (3.54)

subject to: ∑
a∈δ−j

xa = 1, ∀j ∈ L, (3.55)

∑
a∈δ+j

xa = 1, ∀j ∈ L, (3.56)

∑
a∈δ+j

ωa = tj +
∑

a∈δ−j ∩ANM

ωa, ∀j ∈ L, (3.57)

ta−xa ≤ ωa ≤ btaxa, ∀a ∈ A, (3.58)∑
a∈δ+j

ηa = 1 +
∑

a∈δ−j ∩ANM

ηa, ∀j ∈ L, (3.59)

xa ≤ ηa ≤ btoa xa, ∀a ∈ A, (3.60)∑
a∈δ+j

λa = 1 +
∑

a∈δ−j ∩A6

xa −
∑

a∈δ−j ∩A3

xa +
∑

a∈δ−j ∩ANM

λa, ∀j ∈ L, (3.61)

xa ≤ λa ≤ bdaxa, ∀a ∈ A, (3.62)

∑
j∈L

1−
∑

a∈δ−j ∩(A1∪A3)

xa +
∑

a∈δ−j ∩(A5∪A6)

xa

 ≤ NA− na, (3.63)

x binary, (3.64)

where we have used (3.55) to equivalently rewrite (3.50) and (3.12) as (3.61) and (3.63) above,

respectively, in terms of more sparse constraints having unit coefficients for expediency in

implementation. Also note that, as mentioned before (also see Proposition 3.1), only the

x-variables are explicitly restricted to be integer-valued (binary), and all other variables are

declared to be continuous, where similar to Model ARP, for given integer data, the resultant

u-, v-, and d-variables will automatically take on integer values for any feasible solution to

Problem ARP-RLT upon using the respective identities (3.25), (3.44), and (3.46).
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3.3. Further Model Enhancements

In order to further tighten Model ARP-RLT, we first introduce a valid inequality in Section

3.3.1, and then propose two alternative techniques in Sections 3.3.2 and 3.3.3 for respec-

tively augmenting the model either with certain partial convex hull representations or with

a suitable set of valid inequalities implied thereby.

3.3.1 A Valid Inequality

Proposition 3.3. Suppose that we lay out all the flights in the schedule as intervals on

[0, 1440] where the arrival time is extended by τ to account for the turn-time, and where the

extended flight interval is wrapped-around if its end-point exceeds 1440. Let γ1 denote the

maximum number of such overlapping extended flight intervals at any point in time. Then

the following inequality is valid:∑
a∈A2∪A4

xa + 2
∑

a∈A5∪A6

xa + na ≥ max {γ1, γ2}, (3.65)

where γ2 =
⌈

(M−τ)µ̂+
∑
j∈L (tj+τ)

1440

⌉
, and µ̂ = max

{⌈∑
j∈L tj

tmax

⌉
,
⌈
|L|
tomax

⌉}
.

Proof: Note that if N̂ represents the actual number of aircraft that are needed to serve

the given flight schedule, then it must be true that N̂ ≥ γ1. Furthermore, denote by µ the

(unknown) number of daily maintenance checks performed on average. Since the maximum

flying time between two consecutive maintenance checks is tmax, we have that µ ≥ d
∑
j∈L tj

tmax
e.

Also, since the maximum number of takeoffs between two consecutive maintenance checks is

tomax, this implies that µ ≥ d |L|
tomax
e. Hence, a valid lower bound on µ is given by µ̂ as stated

in the proposition, and so a lower bound on the total average daily maintenance time is Mµ̂.

Moreover,
∑

j∈L(tj + τ) represents the total aircraft-minutes of flying plus turn-times on

a daily basis. Noting that the maintenance duration could account for the turn-time itself

(M > τ), we have that the total aircraft-minutes of activities accounted for on average over a

day is at least (M − τ)µ̂+
∑

j∈L(tj + τ), whence N̂ ≥ max {γ1, γ2}. Noting from Constraint

(3.12) that the left-hand side of Constraint (3.65) represents the total number of aircraft

that are required to serve the particular routing scheme for any given feasible solution, this

value must be at least as large as N̂ , which establishes the validity of (3.65). 2
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Observe that the value of γ1 for use in (3.65) can be easily computed by counting the number

of overlapping flights at the tail of each extended flight interval, for example, and selecting

the maximum such value. Moreover, our computational experience reported in Section 3.4

shows that γ1 yields, in general, a much tighter lower bound than γ2, and always determined

the right-hand side (RHS) in (3.65) for our test cases. In addition, we point out that the

lower bound can be further tightened by solving the LP relaxation of the model with the

objective function of minimizing the number of aircraft needed to serve the given flight

schedule, and then including the rounded-up resulting value within the maximand on the

RHS of (3.65). We comment here that although this yields a tighter inequality, we found

that the additional preprocessing effort does not justify its use.

Henceforth, we will assume that Constraint (3.65) is incorporated within Model ARP-RLT

as well as within its various augmentations discussed next.

3.3.2 Partial Convex Hull Representations (Model ARP-RLT+)

To begin with, we first identify a special unimodular substructure that is inherent within

Problem ARP-RLT, which will motivate the derivation of a further lifted model formulation

based on constructing certain partial convex hull representations:

Proposition 3.4. Define the set X ≡ {(x, ω, η, λ) : (3.55), (3.56), (3.58), (3.60), (3.62), and x ≥
0}. Then x is binary-valued at each extreme point of X.

Proof: It is sufficient to show that for any arbitrary objective function to minimize cT1 x +

cT2 ω + cT3 η + cT4 λ, subject to (x, ω, η, λ) ∈ X, there exists an optimal solution such that x

is binary-valued. This follows since an optimal solution to the latter linear program can

be obtained by first setting each component of ω, η, and λ at its respective lower or upper

bounding function in (3.58), (3.60), and (3.62), according to whether the corresponding coef-

ficient in the vectors c2, c3, and c4 is nonnegative or negative, respectively. This equivalently

reduces the given LP to the form of minimizing a resulting objective function c̃Tx subject

to (3.55), (3.56), and x ≥ 0, which is a linear assignment problem and therefore has an

optimum at which x is binary-valued. 2

Proposition 3.4 asserts that any partial convexification process or derivation of additional
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valid inequalities for Model ARP-RLT must necessarily involve constraints from the set

{(3.57), (3.59), (3.61), and (3.63)}. Accordingly, suppose that we solve the LP relaxation

of ARP-RLT at the root node and obtain an optimal solution (x̄, ω̄, η̄, λ̄). Naturally, if

x̄ is binary-valued, then this solution solves ARP-RLT. Otherwise, suppose that the set

J ≡ {j ∈ L : (x̄a, a ∈ δ−j ∪ δ+
j ) is not binary-valued} is nonempty. Given some selected

algorithmic parameter Q ∈ [1, |L|], we next select up to Q indices j ∈ J in nonincreasing

order of the total fractionality
∑

a∈δ−j ∪δ
+
j

min{x̄a, 1− x̄a} so long as the latter is positive, with

ties broken in favor of higher values of the number of fractional values in {x̄a, a ∈ δ−j ∪ δ+
j }.

Denote the set of indices thus selected as JQ ⊆ J . For each j ∈ JQ, consider the following

corresponding subset of constraints from (3.55)-(3.62) and (3.64), rewritten for the sake of

convenience:

∑
a∈δ−j

xa = 1, (3.66)

∑
a∈δ+j

xa = 1, (3.67)

∑
a∈δ+j

ωa = tj +
∑

a∈δ−j ∩ANM

ωa, (3.68)

∑
a∈δ+j

ηa = 1 +
∑

a∈δ−j ∩ANM

ηa, (3.69)

∑
a∈δ+j

λa = 1 +
∑

a∈δ−j ∩A6

xa −
∑

a∈δ−j ∩A3

xa +
∑

a∈δ−j ∩ANM

λa, (3.70)

ta−xa ≤ ωa ≤ btaxa, ∀a ∈ δ−j ∪ δ+
j , (3.71)

xa ≤ ηa ≤ btoa xa, ∀a ∈ δ−j ∪ δ+
j , (3.72)

xa ≤ λa ≤ bdaxa, ∀a ∈ δ−j ∪ δ+
j , (3.73)

xa binary, ∀a ∈ δ−j ∪ δ+
j . (3.74)

We will now apply the special-structured RLT approach of Sherali et al. (1998) (based on

the special generalized upper bounding constraints (3.66) and (3.67)) in order to construct

a lifting of (3.66)-(3.74) through a partial convexification process. Toward this end, first of
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all, note from (3.66) and (3.67), and the definitions of the variables ω, η, and λ as given

respectively by (3.18), (3.29), and (3.31) that we have the following identities (where for the

sake of clarity, we define RS(j) ≡ {l : (l, j) ∈ A}, and FS(j) ≡ {l : (j, l) ∈ A} as the reverse

and forward stars of j respectively):

xljxkj = ωljxkj = ηljxkj = λljxkj = 0, ∀l, k ∈ RS(j), l 6= k; (3.75)

xjlxjk = ωjlxjk = ηjlxjk = λjlxjk = 0, ∀l, k ∈ FS(j), l 6= k; (3.76)

ωaxa = ωa, ηaxa = ηa, and λaxa = λa, ∀a ∈ δ−j ∪ δ+
j . (3.77)

Accordingly, we construct the following set of RLT product constraints (P1)-(P5):

P1: Multiply (3.66) by each xjk, ωjk, ηjk, and λjk, ∀k ∈ FS(j).

P2: Multiply (3.67) by each xlj, ωlj, ηlj, and λlj, ∀l ∈ RS(j).

P3: Multiply each of (3.68)-(3.70) by each xlj,∀l ∈ RS(j), and each xjk, ∀k ∈ FS(j).

P4: Multiply each of (3.71)-(3.73) corresponding to a ∈ δ−j by each xa,∀a ∈ δ+
j , and

corresponding to a ∈ δ+
j by each xa,∀a ∈ δ−j .

P5: Impose the nonnegativity restrictions xljxjk ≥ 0, ∀l ∈ RS(j), k ∈ FS(j).

We then linearize (P1)-(P5) by making the following substitutions:

yljk ≡ xljxjk, ∀l ∈ RS(j), k ∈ FS(j),

zω1
ljk ≡ ωljxjk and zω2

ljk ≡ ωjkxlj, ∀l ∈ RS(j), k ∈ FS(j),

zη1
ljk ≡ ηljxjk and zη2

ljk ≡ ηjkxlj, ∀l ∈ RS(j), k ∈ FS(j),

zλ1
ljk ≡ λljxjk and zλ2

ljk ≡ λjkxlj, ∀l ∈ RS(j), k ∈ FS(j).

(3.78)

For each j ∈ JQ, let Xj denote the set of RLT constraints thus obtained via applying the

substitution (3.78) along with the identities (3.75)-(3.77) to (P1)-(P5). We then add Xj

to the formulation ARP-RLT and drop the consequently implied constraints (3.71)-(3.73)
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for each j ∈ JQ. Let ARP-RLT+ denote the resultant lifted model; as shown by Sherali

et al. (1998), the lifting process for constructing ARP-RLT+ incorporates the intersection

of the convex hulls of (3.66)-(3.74) constructed with respect to enforcing binary restrictions

on the variables in (3.66) and (3.67) separately for each j ∈ JQ. Thus we call this a partial

convexification process. To facilitate implementation, we provide below an explicit statement

of the set Xj, for any j ∈ JQ:

∑
l∈RS(j)

yljk = xjk, ∀k ∈ FS(j), (3.79)

∑
l∈RS(j)

zω2
ljk = ωjk, ∀k ∈ FS(j), (3.80)

∑
l∈RS(j)

zη2
ljk = ηjk, ∀k ∈ FS(j), (3.81)

∑
l∈RS(j)

zλ2
ljk = λjk, ∀k ∈ FS(j), (3.82)

∑
k∈FS(j)

yljk = xlj, ∀l ∈ RS(j), (3.83)

∑
k∈FS(j)

zω1
ljk = ωlj, ∀l ∈ RS(j), (3.84)

∑
k∈FS(j)

zη1
ljk = ηlj, ∀l ∈ RS(j), (3.85)

∑
k∈FS(j)

zλ1
ljk = λlj, ∀l ∈ RS(j), (3.86)

∑
k∈FS(j)

zω2
ljk = tjxlj + {ωlj if (l, j) ∈ ANM ; 0 otherwise}, ∀l ∈ RS(j), (3.87)

ωjk = tjxjk +
∑

l:(l,j)∈ANM

zω1
ljk, ∀k ∈ FS(j), (3.88)

∑
k∈FS(j)

zη2
ljk = xlj + {ηlj if (l, j) ∈ ANM ; 0 otherwise}, ∀l ∈ RS(j), (3.89)

ηjk = xjk +
∑

l:(l,j)∈ANM

zη1
ljk, ∀k ∈ FS(j), (3.90)

∑
k∈FS(j)

zλ2
ljk = xlj + {λlj if (l, j) ∈ ANM ; 0 otherwise}

+ {xlj if (l, j) ∈ A6;−xlj if (l, j) ∈ A3; 0 otherwise}, ∀l ∈ RS(j), (3.91)
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λjk = xjk +
∑

l:(l,j)∈A6

yljk −
∑

l:(l,j)∈A3

yljk +
∑

l:(l,j)∈ANM

zλ1
ljk, ∀k ∈ FS(j), (3.92)

tlyljk ≤ zω1
ljk ≤ btljyljk, ∀l ∈ RS(j), k ∈ FS(j), (3.93)

tjyljk ≤ zω2
ljk ≤ btjkyljk, ∀l ∈ RS(j), k ∈ FS(j), (3.94)

yljk ≤ zη1
ljk ≤ btoljyljk, ∀l ∈ RS(j), k ∈ FS(j), (3.95)

yljk ≤ zη2
ljk ≤ btojkyljk, ∀l ∈ RS(j), k ∈ FS(j), (3.96)

yljk ≤ zλ1
ljk ≤ bdljyljk, ∀l ∈ RS(j), k ∈ FS(j), (3.97)

yljk ≤ zλ2
ljk ≤ bdjkyljk, ∀l ∈ RS(j), k ∈ FS(j), (3.98)

yljk ≥ 0, ∀l ∈ RS(j), k ∈ FS(j). (3.99)

Based on some preliminary experimental investigations, we adopted the following root node

strategy that incorporates the foregoing RLT constraints:

Step 1 : Solve the LP relaxation of Model ARP-RLT at the root node.

Step 2 : For a selected parameter 1 ≤ Q ≤ |L|, identify the index set JQ, and generate

the lifted RLT constraints Xj,∀j ∈ JQ, and add them to the model in order to construct

ARP-RLT+.

Step 3 : Solve the resulting lifted Model ARP-RLT+ as a mixed-integer program using an

MIP solver (we used CPLEX for this purpose).

Note that optionally, we could repeat Steps 1 and 2 after updating the model representation,

but we found that performing this model augmentation just once gave promising results.

Moreover, in order to curtail the size of the resulting formulation, we restricted Q = 1 in our

computational experiments.

3.3.3 Alternative Technique for Using Xj (Model ARP-RLT∗)

For any j ∈ JQ, consider the setXj given by Constraints (3.79)-(3.99), which can be rewritten

compactly as follows for the sake of analytical convenience:
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Aζ2j = Bζ1j, (3.100)

Dζ2j ≤ 0, (3.101)

where ζ1j represents the vector of the (x, ω, η, λ)-variables defining the original set of con-

straints (3.66)-(3.74) from ARP-RLT, and where ζ2j represents the new set of (y, zω1, zω2,

zη1, zη2, zλ1, zλ2)-variables defined in (3.78). Furthermore, let ζ̄1j be the value of ζ1j obtained

by solving the LP relaxation of ARP-RLT, where the components (x̄a,∀a ∈ δ−j ∪ δ+
j ) within

ζ̄1j are not all binary-valued (since j ∈ JQ). We would like to generate a valid inequality

implied by (3.100)-(3.101) that deletes ζ̄1j, if possible.

Toward this end, denote by π1 and π2 the respective dual multipliers associated with Con-

straints (3.100)-(3.101), where π2 ≥ 0. Then by duality, or by projecting (3.100)-(3.101)

onto the space of the ζ1j-variables (or simply by the process of surrogating (3.100)-(3.101)

using the multipliers π1 and π2), we have that

(π1)TBζ1j ≥ 0 (3.102)

is a valid inequality, for all (π1, π2) ∈ Π ≡ {(π1, π2) : (π1)TA+ (π2)TD = 0, π2 ≥ 0}.

Hence, in order to generate a valid inequality of type (3.102) in the space of the original

variables ζ1j defining ARP-RLT that deletes ζ̄1j (if possible), we construct the LP:

Minimize {(π1)TBζ̄1j : (π1, π2) ∈ Π, (π1)TBζ̄1j ≥ −1}, (3.103)

where we have added the constraint (π1)TBζ̄1j ≥ −1 by way of normalization so that the

problem in (3.103) is assured to have an optimum (since it is feasible and bounded from

below). The dual to (3.103) is given as follow, where the new variable ζ0 is the dual variable

associated with the normalization constraint in (3.103):

LPj : Maximize − ζ0 (3.104)

subject to: Aζ2j + (Bζ̄1j)ζ0 = Bζ̄1j, (3.105)

Dζ2j ≤ 0, (3.106)

ζ0 ≥ 0.
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Let νj be the optimal objective function value for LPj and let (π1∗, π2∗) denote the optimal

dual solution, where π1 and π2 are the respective dual variables associated with Constraints

(3.105) and (3.106). If νj = 0, then there exists a ζ̄2j such that (ζ̄1j, ζ̄2j) is feasible to (3.100)

and (3.101) and so no inequality of the type (3.102) exists that deletes ζ̄1j. Thus, we skip

the consideration of the index j ∈ JQ. On the other hand, if νj < 0, then the valid inequality

(π1∗)TBζ1j ≥ 0 (3.107)

of type (3.102) deletes the current solution ζ̄1j, since by strong duality we have that

(π1∗)TBζ̄1j = νj < 0.

We therefore add (3.107) to Problem ARP-RLT. Repeating this with each j ∈ JQ yields a

set of valid inequalities of type (3.107) to further tighten the representation of ARP-RLT.

From an empirical perspective, we generated a round of up to 10 cuts of this type using the

flights in the selected set JQ with Q = 10. Again, although we can update the LP relaxation

and generate another round of such cuts, we did not find this strategy to be computationally

advantageous.

In the following section, we present computational results to compare the performance of

ARP-RLT, ARP-RLT+, and the model obtained by adding the foregoing set of valid in-

equalities of type (3.107) to ARP-RLT (we denote this latter lifted model by ARP-RLT∗).

3.4. Computational Results

In this section, we present computational results based on a set of typical test instances that

were derived using real flight data obtained from a major US airline company. While com-

mercial mixed-integer program solvers can be directly applied to Model ARP-RLT, we also

explore the model augmentation proposed strategies in Sections 3.3.2 and 3.3.3 for further

tightening the formulation at the root node based on the initial LP relaxation solution, which

yields Models ARP-RLT+ and ARP-RLT∗, respectively. Our numerical results demonstrate

the efficacy of such strategies. All runs have been made on a 64-bit Windows 7 platform
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having two Intel Xeon quad-core 2.13GHz CPUs and 4.0 GB memory, where the models have

been implemented in ILOG OPL 6.3 and C++ and solved using CPLEX 12.1 with default

settings (including the use of the dual simplex method with steepest edge pricing as the LP

solver).

3.4.1 Test Cases

The inputs for Problem ARP include a flight schedule with the flight numbers, departure and

arrival times, origin and destination nodes, and the flight duration, given a specific fleet type

such as Boeing 777, Airbus 320, etc. Moreover, the data sets also specify the aircraft count

(number of available aircraft), the minimum turn-time, and the duration of a maintenance

check of the predefined aircraft type, as well as a list of maintenance stations that are

capable of performing type-A checks. Additionally, we consider the imposed requirements

on the total accumulated flying hours, the total number of takeoffs, and the total number

of days between consecutive maintenance checks, which are usually taken as stricter limits

by airlines than the mandated FAA regulations. It is worth noting that, in practice, airline

companies specify a limit on the total number of takeoffs only for overseas flights; hence, for

an inland flight schedule (pertaining to North America), constraints related to takeoffs are

removed (or a sufficiently large value is assigned to this parameter so as to make the related

constraints inactive).

Five practical instances, named ARP1, ARP2, ARP3, ARP4, and ARP5, were developed to

test the performance of the proposed Model ARP-RLT. The first two cases are derived from

transcontinental hub-to-hub flights, which are mainly served by wide-body aircraft such as

Boeing 777 that require maintenance checks at most every six takeoffs. The flights in Case 3

connect spoke airports to several major hubs by regional jets such as the CRJ series, whose

maintenance operations are usually performed only at the hub stations. Each travel duration

in this case is comparatively short, and the schedule involves a small sized fleet that provides

frequent services between spokes and hubs. Cases 4 and 5 concern flights connecting major

cities in the US by mid-sized narrow-body aircraft such as the Airbus 320 series. Since the

corresponding flight network covers relatively high demand regions by either direct services

or through connections, the related operations require a large-sized fleet as well as several

maintenance stations distributed across the network. The salient details of the test instances
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are presented in Table 3.1. Note that all of these practical test cases involve arcs of types

A1-A4 only, and so (the typically rare) arc types A5 and A6 are omitted from the analysis

below.

Table 3.1: Description of the Test Instances

ARP1 ARP2 ARP3 ARP4 ARP5

Number of Flights 28 72 96 166 344

Aircraft Count 21 46 18 52 138

Number of Maintenance

Stations 11 11 2 16 16

Minimum Turn-time (min) 70 70 34 38 40

A-check Duration (min) 360 360 480 420 420

Maximal Flying Time be-

tween A-checks (min) 3900 3900 4500 2700 2700

Maximal Number of Days

between A-checks 4 4 4 4 4

Maximal Number of Take-

offs between A-checks 6 6 – – –

3.4.2 Results and Analysis

Table 3.2 presents the computational results obtained for the foregoing five test instances,

and demonstrates the high efficiency of the proposed formulation ARP-RLT and the other

two RLT-enhanced strategies, namely, ARP-RLT+ and ARP-RLT∗. Recall that the model

classifies all the eligible connections into four different arc types according to whether or

not a maintenance opportunity is offered between two consecutive flight legs, and whether

the previous flight connects to a same-day or a next-day flight leg. As the number of flights

grows, the number of possible connections increases quadratically, which directly affects the

number of variables as well as constraints in the model. We also summarize the number

of connections of each of the four arc types in Table 3.2. The first four moderately sized
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instances were solved within 2 CPU seconds; and the largest test case involving a daily

schedule with 344 flights was solved in about 10 CPU seconds by all the three strategies

based on Model ARP-RLT. The solutions take advantage of almost all the available aircraft

in the fleet, as this potentially allows the greatest flexibility in routing. We note here that

deriving a tighter LP-based bound for the RHS of Constraint (3.65) did not improve the

performance, and so we use the RHS specified in (3.65) in the sequel.

Since the enhanced models ARP-RLT+ and ARP-RLT∗ are useful only for relatively large-

sized data sets, we focus on comparing the performance of these augmented formulations

for Instances ARP3, ARP4, and ARP5. Model ARP-RLT+ yielded the best performance

with respect to the computational effort for these test instances, except for Instance ARP4

where Model ARP-RLT∗ was the most efficient. However, it is relevant to note here that

we adopted a simple implementation process for ARP-RLT∗ whereby, after generating the

proposed round of cuts at the root node, we resolve the problem from scratch as opposed

to updating the current LP relaxation solution. A more refined implementation would po-

tentially make this strategy relatively more efficient, particularly for larger test instances.

For the sake of interest, we also report the number of fractional x-values at the root node in

the solution obtained for the LP relaxation corresponding to each of the constructed model

representations. It is also worth mentioning that after applying built-in root-node heuristics,

an optimal solution was obtained at this initial node itself without further branch-and-cut

exploration for all these (feasibility) test cases.

Moreover, we can use Model ARP-RLT (or its augmented versions) to determine the min-

imum number of aircraft required for a given flight schedule by treating NA as a variable

and minimizing it subject to the constraints of Model ARP-RLT. It turns out that, for each

of the five instances, the objective value to the underlying LP relaxation yielded the same

integer value as that from solving the MIP, even without performing the valid rounding-up

operation. The results for this experiment are presented in Table 3.3. For the sake of in-

terest, Table 3.3 also displays the RHS of (3.65) as given by the two preprocessing methods

proposed in Proposition 3.3, both of which provide lower bounds on the optimal value of

the foregoing MIP. It is evident that γ1 yields a much tighter lower bound than γ2 for these

instances.

The results from this proposed model cannot be directly compared with those in the existing
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Table 3.2: Summary of Results for ARP-RLT, ARP-RLT+, and ARP-RLT∗

ARP1 ARP2 ARP3 ARP4 ARP5

# of xa-variables 158 859 1465 2545 12426

# of A1 Arcs 7 181 149 445 2484

# of A2 Arcs 74 495 277 1343 6788

# of A3 Arcs 71 145 574 569 2453

# of A4 Arcs 6 38 465 188 701

Results for Model ARP-RLT

# of Aircraft Utilized 20 46 18 52 134

CPU Time (sec) 0.03 0.56 1.62 1.42 9.34

# of Fractional x-values

in the LP Relaxation 38 100 123 365 945

Opt. Sol. Obtained at root root root root root

Results for Model ARP-RLT+

# of Aircraft Utilized – – 18 52 136

CPU Time (sec) – – 0.12 1.26 8.46

# of Fractional x-values

in the LP Relaxation – – 117 284 964

Opt. Sol. Obtained at – – root root root

Results for Model ARP-RLT∗

# of Aircraft Utilized – – 18 51 133

CPU Time (sec) – – 0.17 0.89 10.33

# of Fractional x-values

in the LP Relaxation – – 125 365 962

Opt. Sol. Obtained at – – root root root
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Table 3.3: Results for Minimizing the Total Number of Utilized Aircraft

ARP1 ARP2 ARP3 ARP4 ARP5

Obj. Value of MIP 12 41 18 49 87

Obj. Value of LP 12 41 18 49 87

γ1 12 25 18 36 82

γ2 11 23 11 28 56

literature since our model explicitly incorporates several operational constraints such as the

total flying time, the total number of takeoffs, and the total number of days between two

successive maintenance checks, which are not all addressed by any other model. Yet, the

results reveal that, even with these additional restrictions, the computational performance

for the test instances is still comparable to that reported in the literature. Furthermore, by

the structure of Problem ARP, it can be seen that these additional constraints relate the

labels on a node to those on its predecessors, similar to the labeling process in the constrained

shortest path algorithm that is usually implemented in solving the subproblem of string-based

formulations. However, instead of searching for paths with regard to reduced costs/prices,

we directly compose feasible paths. Moreover, our compact model permits a direct solution

via commercial software, as opposed to string-based models, which require a sophisticated

column generation and branch-and-price approach. Specialized implementations and MIP

strategies could further enhance the solution efficiency of our model.

It is also worth noting that the model essentially generates cyclic rotations, each of which

entails as many aircraft as the number of arcs involved from A2 ∪ A4 plus the number

of included wrap-around flights, without actually assigning tail-numbers to such rotations,

which is beneficial since it circumvents burdening the model with symmetry-related issues.

However, in practice, higher-level maintenance decisions could attempt to balance wear-and-

tear on each tail-number by appropriately pulling specific aircraft out of, and inserting them

back into, different rotations.
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3.4.3 Results on Solving the ARP as an Optimization Problem

In addition, the proposed compact formulation of the ARP could be converted to an optimization-

type problem by adopting an objective function that incorporates through-values, short con-

nection penalties, and maintenance costs, the definitions of which were introduced in Chapter

2. A connection is favorable for passengers only if it is convenient, i.e., it does not overnight

nor involve long layovers; therefore, through-values are defined subject to connection dura-

tions, and are typically assigned only to the arcs in the sets A3 and (partly) A4. Note that

due to the nature of a through-value, the origin station of the previous flight should not

be the same as the destination of the successive flight. Following a similar logic, the short

connection penalty is only declared for each connection in the sets A3 and A4, which also

depends on the time between an arrival and a subsequent departure. These penalties are of

interest from the perspective of building robust flight schedules, since it is often desirable to

have the slack time between the landing of an aircraft and its next departure long enough

so as to absorb any potential delays and therefore mitigate the so-called snowball effect.

Based on the connection time, different penalty values can be assigned to connections within

A3 ∪ A4; or we can alternatively simply minimize the total number of such critical or short

connections (e.g., those having a slack time shorter than 2τ). In addition, maintenance costs

are assigned to connections that involve maintenance check opportunities, i.e., connections

in the sets A1, A2, and A5. Accordingly, we define ca, pa, and ma as the through-value, the

short connection penalty, and the maintenance cost, respectively, for each of the appropriate

connections, and formulate the objective function as follows:

Maximize
∑

a∈A3∪A4

caxa −
∑

a∈A3∪A4

paxa −
∑

a∈A1∪A2∪A5

maxa. (3.108)

Since total maintenance costs for a given fleet type are roughly constant, we solved our

test-bed of Problems ARP1-ARP5 to optimize (3.108) using the first term with randomly

generated coefficients within practical ranges. The performances of Model ARP-RLT based

on all the five instances using an optimality tolerance of 0.5% are displayed in Table 3.4,

where the actual optimality gap achieved at termination is also presented in the table for each

test instance. In addition, we found that, compared with the feasibility model’s solution,

the solution produced by the optimization model often tends to consolidate all the flights to

form a single rotation, which is desirable in that it ensures equal wear-and-tear on all the

utilized aircraft. For the sake of interest, we also exhibit in the final row of Table 3.4 the
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corresponding effort necessary for solving the directly linearized ARP model in the expanded

(x, u, v, d, ω, ρ, η, θ, λ, µ)-space (denoted as ARP0-RLT), without the model reduction process

prompted by Proposition 3.2. More specifically, this expanded space formulation is given as

follows:

ARP0-RLT: Find x, u, v, d, ω, ρ, η, θ, λ, µ (3.109)

subject to:

(3.2), (3.3), (3.12), (3.16), (3.20)-(3.25), and (3.32)-(3.46).

The results in Table 3.4 demonstrate a significant improvement in performance for Models

ARP-RLT, ARP-RLT+, and ARP-RLT∗ over Model ARP0-RLT, which reveals, in particular,

the relative effectiveness of the LP-equivalent formulation ARP-RLT derived via Proposition

3.2 over the higher dimensional representation ARP0-RLT. Moreover, the two RLT-enhanced

formulations also outperformed Model ARP-RLT for the large data sets. Furthermore, for the

sake of interest, we also report the number of fractional x-values in the LP relaxation solutions

for each of the formulated models ARP-RLT, ARP-RLT+, and ARP-RLT∗. Moreover, we

provide in parentheses the residual number of unresolved fractional variables at the root

node after CPLEX has performed its built-in additional preprocessing steps including the

derivation of heuristic solutions.

Overall, Models ARP-RLT+ and ARP-RLT∗, enhanced by the partial convexification pro-

cess, outperformed Model ARP-RLT in solving both feasibility and optimization problems.

Indeed, the partial convex hull representations constructed by Model ARP-RLT+ as well as

ARP-RLT∗ tighten the underlying LP relaxation, facilitate the root node processing, and

hence promote a more efficient solution process for relatively challenging problems. In gen-

eral, Model ARP-RLT∗ has fewer constraints than ARP-RLT+; but in our test runs, Model

ARP-RLT+ always solved the problems quite effectively at the root node itself. However, as

indicated above, a more refined implementation of ARP-RLT∗ might make it relatively more

advantageous for larger test cases. This is open to further investigation in future research.
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Table 3.4: Computational Results Using the Objective Function (3.108)

ARP1 ARP2 ARP3 ARP4 ARP5

Results for Model ARP0-RLT

# of Aircraft Utilized 14 44 18 52 107

Opt. Gap 0.28% opt opt 0.38% 0.12%

CPU Time (sec) 1.03 1.03 1.00 6.29 10.67

# of Fractional x-values

in the LP Relaxation 14(0) 42(0) 18(0) 60(18) 199(0)

# of Nodes Enumerated root root root 57 root

Results for Model ARP-RLT

# of Aircraft Utilized 14 44 18 52 105

Opt. Gap opt opt opt 0.42% 0.08%

CPU Time (sec) 0.25 0.55 0.86 4.60 8.91

# of Fractional x-values

in the LP Relaxation 10(0) 34(0) 29(0) 78(0) 136(0)

# of Nodes Enumerated root root root root root

Results for Model ARP-RLT+

# of Aircraft Utilized – – 18 52 106

Opt. Gap – – opt 0.35% opt

CPU Time (sec) – – 0.11 2.12 3.46

# of Fractional x-values

in the LP Relaxation – – 22(0) 76(0) 169(0)

# of Nodes Enumerated – – root root root

Results for Model ARP-RLT∗

# of Aircraft Utilized – – 18 52 109

Opt. Gap – – opt 0.49% 0.11%

CPU Time (sec) – – 0.09 3.45 6.90

# of Fractional x-values

in the LP Relaxation – – 18(0) 83(39) 170(0)

# of Nodes Enumerated – – root 426 root
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3.5. Summary and Conclusions

In this chapter, we have presented a new formulation for the daily aircraft maintenance

routing problem. Distinct from path-based formulations that comprise exponentially many

variables, we have designed a novel node-arc flow formulation, which is of polynomial size,

and thus yields a more compact representation. The model inherits certain direct, simple

nonlinear relationships, which were reformulated, linearized, and lifted using the RLT ap-

proach to produce an improved linear zero-one mixed-integer programming formulation that

can be directly solved using available commercial software. This model can be used by airline

companies to generate feasible routes for a daily repetitive schedule of a given fleet, as well

as optimized rotations based on specified through-values, short connection penalties, and

maintenance costs.

In parallel to solving Model ARP-RLT directly, we have also developed two root-node strate-

gies for further enhancing the proposed model representation based on a partial convex-

ification process. Computational results reveal that the resulting enhanced formulations

ARP-RLT+ and ARP-RLT∗, which either explicitly construct certain partial convex hull

representations or derive suitable valid inequalities implied by this augmented structure,

respectively, can be solved efficiently both as feasibility and optimization problems using

default settings of a commercial MIP solver, and provide a computational advantage over

the basic lifted model.

The proposed ARP model can be readily modified to accommodate several specific features

of interest to the airline industry. For example, an alternative requirement on aircraft rout-

ing is to make decisions for a specific period (e.g., a week) given the start station and the u-,

v-, and d-labels for each aircraft. To account for this requirement, we could generate paths

(instead of rotations) through the prescribed period while keeping track of these labels in a

similar fashion. Moreover, to better fit industrial practice, we could also incorporate other

types of relatively frequent checks as necessary within the model by introducing multiple-

service or parallel single-service connection arcs with respective counters to account for the

corresponding durations between two consecutive maintenances. In addition, to assess the

robustness of the generated solutions, we can examine the realized values of the u-, v-, and

d-labels relative to their respective specified maximal values. Note that the solutions could

be made more robust by providing tighter maximal permissible values of these parameters.
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We can also include additional aggregate constraints to ensure that at least a certain per-

centage of aircraft undergo maintenance operations on a daily basis by requiring the sum

of maintenance arcs included over all generated cycles to be at least a certain percentage

of NA. Finally, to model possible retiming of flights, we can create copies of flight nodes

corresponding to the alternative retimed schedules along with appropriate flight connections,

and include a set of constraints that requires the coverage of exactly one copy of each flight

(see Sherali et al. (2011) for modeling this feature within the context of fleet assignment

problems).

We now proceed to embed the developed ARP model within a more extensive integrated

model of the type discussed in Section 2.1, which further considers the related airline oper-

ational problems of fleet assignment and crew pairing.
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Chapter 4

An Integrated Model for Aircraft

Fleeting, Routing, and Crew Pairing

4.1. Introduction

The airline scheduling problem deals with maximizing the total profits or minimizing the

total operational costs associated with a flight schedule while satisfying customer demands

under a series of restrictions concerning aircraft maintenance and labor work-rules. Specifi-

cally, the airline scheduling problem can be decomposed into four stages: schedule planning

(designing flight schedules), fleet assignment (assigning aircraft fleets to flight legs), aircraft

routing (generating maintenance-feasible rotations for aircraft of each type), and crew pair-

ing (generating suitable flight sequences for crews to serve), where the output of one stage

is fed into the succeeding stage in a sequential implementation.

After the flight schedule is determined, fleets of different types of aircraft are assigned to

different flight legs to maximize the fare-based revenue minus the burned fuel cost and the

cost for spilled (or lost) demand depending on the assigned fleet’s capacity. Here, an aircraft

type refers to a certain model of aircraft. All aircraft of the same type are identical; that

is, they have the same cockpit configuration, crew rating, and capacity. Furthermore, an

aircraft family is a set of aircraft types having the same cockpit configuration and crew

rating, but different seating capacities. The outcome of the fleet assignment stage partitions
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the flight network into sub-networks corresponding to aircraft types or families, so that the

following two stages of aircraft routing and crew pairing are solved for each specific type or

family of aircraft, respectively.

The aircraft routing problem, which is solved next, finds cyclic maintenance feasible routes

for the aircraft in the fleet while satisfying mandatory maintenance checks, with the objective

of optimizing a selective combination of through-values (additional revenue accruing from the

same aircraft serving consecutive flight legs), short connection penalties (additional cost due

to insufficient intermediate rest or sit-time for crews), and/or maintenance costs. We note

that, in many cases, the aircraft routing problem is treated as a pure feasibility problem. In

addition, a maintenance feasible aircraft route (or rotation) is comprised of a sequence of

flight legs that are served by a single aircraft and that satisfy the following restrictions:

• the departure station of each flight leg must match with the arrival station of the

preceding flight leg;

• the rotation must include at least one visit to a maintenance station, where the time

elapsed between the arrival time of the flight leg to this station and the subsequent de-

parture time of the next flight must exceed the time required to perform the mandated

maintenance check;

• the total flying time between maintenance checks should not exceed a specified limit;

• the total number of takeoffs between maintenance checks should not exceed a specified

maximum value;

• the number of days elapsed between maintenance checks must not exceed a given

number of calendar days.

The crew pairing stage requires building a minimum-cost set of pairings such that each leg

is covered at least once (note that a leg may be multi-covered since pairings may include

deadheads, i.e., flight legs for relocating crews). Since cockpit crews are qualified to serve only

one aircraft family, the crew pairing problem is solved separately for each aircraft family. In

this context, a duty period refers to a single workday of a crew that is comprised of serving

a sequence of flight legs with short rest periods, or sits, separating them, including briefing
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and debriefing periods at the beginning and end of the period. Crews are assigned to a

sequence of flight legs subject to several work-rule requirements established by the Federal

Aviation Administration (FAA) and union contracts (see Klabjan (2005)). For instance, a

non-exhaustive list of rules includes the following restrictions, where typical numerical values

are specified for the sake of illustration:

• There should be no more than four flight legs in a duty;

• The minimum sit-time should be at least 45 minutes. However, if both flight legs are

covered by the same aircraft, then the sit-time could be reduced to the predefined

minimum short connection duration, which is typically 30 minutes (note that this

requirement relates aircraft routing decisions to crew scheduling decisions);

• The maximum sit-time should not exceed four hours;

• The total flying time within a duty period must not exceed eight hours;

• The total duration of a duty period must not exceed 12, 13, or 14 hours, depending on

the duty start-time;

• The duration of a rest period (or layover) following a duty period should be greater

than or equal to the maximum of: 10 hours, duty period duration, and twice the total

flying time within the particular duty period;

• The number of duty periods in a pairing must be at least one and at most four;

• The total flying time in a pairing should not exceed 30 hours;

• The sum of the durations of the duty periods that constitute a pairing should not

exceed 56 hours.

• The total time away from base (TAFB) should not exceed 96 hours.

The cost of a duty period, expressed in hours, is the maximum of three quantities: a certain

fraction of the duty period duration, the total flying time, and a specified minimum number

of hours. Similarly, the cost of a pairing, expressed in hours, is the maximum of three

quantities: a certain fraction of the pairing duration, the sum of the costs of the duty
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periods comprising the pairing, and the specified minimum number of hours per duty period

times the number of duty periods in the pairing.

Although the foregoing operational phases are implemented sequentially in practice, their

interdependence would naturally lead a purely sequential decision-making approach to sub-

optimal solutions, because prefixed decisions that are made while ignoring downstream con-

siderations would tend to sub-optimally restrict the ensuing decision stages. This might

even result in infeasibility at some subsequent stages in the process. From this perspective,

it is prudent to investigate models that integrate the different stages (or suitable combina-

tions thereof) within a single framework in order to obtain improved solutions, while being

cognizant of the fact that the problem complexity will also substantially increase as more

aspects and decisions are considered simultaneously.

In this chapter, we propose novel modeling and algorithmic approaches for solving the inte-

grated airline scheduling model that simultaneously considers the operational stages of fleet

assignment, aircraft routing, and crew pairing. This integration is crucial for airlines not only

because of the high fleeting and crew costs, but also because these three processes are closely

interacting components of the planning process. Therefore, we formulate an integrated model

to maximize the total profit by assigning each aircraft (or tail number) to each flight leg, and

to determine compatible sets of maintenance-feasible aircraft routings, along with work-rule

feasible sets of crew pairings to serve corresponding sequences of flight legs, where we are

given as inputs the flight schedule, the regulations on aircraft maintenance requirements,

and the agreements on crew work-rules. The proposed model also accommodates a more

realistic specification of itinerary-based demands, and is tested using real data from a major

US carrier (United Airlines). For effectively solving this integrated problem, the model is

decomposed using a Benders approach into a master program involving aircraft fleeting and

routing decisions, and two subproblems that respectively address itinerary-based passenger-

mix and crew pairing decisions. Moreover, for solving the crew pairing subproblem, we adopt

a specialized perturbed Lagrangian dual approach, as recommended by Subramanian and

Sherali (2008), which is designed to avoid a frequently observed stalling phenomenon, and

we embed this within a branch-and-price heuristic. In addition, several acceleration tech-

niques are implemented along with a specialized deflected subgradient optimization scheme

to better tackle the master program as well as the subproblems.
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Specifically, this chapter makes the following contributions:

1. We propose a novel formulation for the integrated airline scheduling model that incor-

porates aircraft fleeting, routing, and crew pairing operations within a single frame-

work, in which the fleeting and routing decisions are modeled using a polynomially-

sized node-arc flow network representation, and the crew pairing decisions are modeled

using the traditional set partitioning approach. In addition, we incorporate within the

model several realistic operational considerations, such as itinerary-based demands and

various mandated aircraft maintenance requirements and crew work-rules.

2. We design an effective solution strategy for the developed large-scale model using a

Benders decomposition approach that incorporates nondominated Benders cuts along

with several acceleration techniques in order to enhance solvability. Moreover, for

the crew pairing subproblem, we adopt a perturbed Lagrangian dual approach along

with a specialized deflected subgradient optimization scheme for stabilizing the column

generation process, and we embed this within a branch-and-price framework.

3. We provide extensive computational results using realistic data obtained from a large-

sized US-based airline company in order to demonstrate the efficacy of our modeling

approach and solution methodology, and we exhibit the benefits of adopting an inte-

grated approach as opposed to a sequential decision process. The results reveal that

this yields an average of 2.73% improvement in profits, which roughly translates to 43

million dollars per year.

The remainder of this chapter is organized as follows. In Section 4.2, we present our proposed

integrated formulation. Following this, we develop several model enhancement techniques

in Section 4.3, and design a suitable solution strategy. Computational results using realistic

simulated data are presented and discussed in Section 4.4, and we close the chapter in Section

4.5 with some concluding remarks and future research directions.
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4.2. Model Formulation

Prior to presenting our integrated model, we introduce the following notation based on a

flight connection network involving a set of daily flights:

Notation

Let L denote the set of daily flight legs under consideration. For each flight leg j ∈ L, we

define the following notation (with all time durations expressed in minutes):

DTj ∈ [0, 1440]: departure time of flight leg j.

ATj ∈ [0, 1440]: arrival time of flight leg j.

DSj: departure station of flight leg j.

ASj: arrival station of flight leg j.

tj: flying time of flight leg j (we assume that tj ≤ 1440 for practical reasons).

na: number of wrap-around flights in the schedule (i.e., flights that depart on a given day,

cross the end of the time horizon, and arrive on the next day).

Lw ≡ {j ∈ L : j is a wrap-around flight}.

Let K denote the set of all aircraft types. For each aircraft of type k ∈ K, we define:

τ k: turn-time for aircraft of type k,∀k ∈ K.

NAk: number of available aircraft of type k, ∀k ∈ K.

tkmax: maximum flying time between two consecutive maintenance checks for aircraft of type

k (note that tj ≤ tkmax, ∀j ∈ L, k ∈ K).

tokmax: maximum number of takeoffs between two consecutive maintenance checks for aircraft

of type k (tokmax ≥ 1,∀k ∈ K).

dkmax: maximum number of days between two consecutive maintenance checks for aircraft of

type k (dkmax ≥ 1,∀k ∈ K).

Mk: time duration of a maintenance check for aircraft of type k,∀k ∈ K (τ k < Mk < 1440).
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Sk: set of maintenance stations for aircraft of type k,∀k ∈ K (|Sk| ≥ 1).

For a given flight schedule, we define an associated digraph G = (V,A) in which each node

j ∈ V represents a flight leg. Furthermore, for each aircraft of type k ∈ K, we define a

corresponding arc set Ak, where A ≡ ∪k∈KAk, and where each arc a ∈ Ak represents a

feasible connection, i.e., an arc a ∈ Ak if and only if an aircraft of type k can consecutively

serve the flights pertaining to the from-node and the to-node of this arc, respectively denoted

as a− and a+. Also, for notational convenience, we denote the set of arcs that are incident

to, and that are outgoing from, node j ∈ V by δ−j and δ+
j , respectively. More specifically,

following the development in Haouari et al. (2011a), the set of arcs Ak, for each k ∈ K,

is given by the union of six arc subsets Ak1, Ak2, Ak3, Ak4, Ak5, and Ak6 that are defined as

follows, where for the sake of ease in reading, we omit the superscript k for related sets and

parameters below:

• An arc a ∈ A1 if and only if a maintenance check could be planned between the

arrival of flight leg a− ≡ j and the departure of flight leg a+ ≡ l, and both flight legs

are required to be served consecutively on the same day. Hence, (j, l) ∈ A1 ⇔ (i)

ASj ≡ DSl; (ii) ASj ∈ S; and (iii) ATj +M ≤ DTl.

• An arc a ∈ A2 if and only if a maintenance check could be planned between the arrival of

flight leg a− ≡ j and the departure of flight leg a+ ≡ l, and the same aircraft is required

to serve flight leg l the day after serving flight leg j, even if ATj + τ ≤ DTl. Hence,

(j, l) ∈ A2 ⇔ (i) ASj ≡ DSl; (ii) ASj ∈ S; and (iii) DTl < ATj +M ≤ DTl + 1440.

• An arc a ∈ A3 if and only if a maintenance check could not be planned between the

arrival of flight leg a− ≡ j and the departure of flight leg a+ ≡ l, and both flight legs

are required to be served consecutively on the same day. Hence, (j, l) ∈ A3 ⇔ (i)

ASj ≡ DSl; (ii) ASj /∈ S or DTl < ATj +M ; and (iii) ATj + τ ≤ DTl.

• An arc a ∈ A4 if and only if a maintenance check could not be planned between the

arrival of flight leg a− ≡ j and the departure of flight leg a+ ≡ l, and the same aircraft

serves flight leg l the day after serving flight leg j. Hence, (j, l) ∈ A4 ⇔ (i) ASj ≡ DSl;

(ii) ASj /∈ S or ATj +M > DTl + 1440; and (iii) DTl < ATj + τ ≤ DTl + 1440.

• An arc a ∈ A5 if and only if a maintenance check could be planned between the arrival

of leg a− ≡ j and the departure of flight leg a+ ≡ l, and the same aircraft is required
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to serve flight leg l two days after serving flight leg j. This type of arc represents

the situation in which the aircraft does not have enough time to undergo maintenance

after serving flight j and then to serve flight l the next day. Hence, (j, l) ∈ A5 ⇔ (i)

ASj ≡ DSl; (ii) ASj ∈ S; and (iii) DTl + 1440 < ATj +M ≤ DTl + 2880.

• An arc a ∈ A6 if and only if a maintenance check could not be planned between the

arrival of flight leg a− ≡ j and the departure of flight leg a+ ≡ l, and the same aircraft

is required to serve flight leg l two days after serving flight leg j. Hence, (j, l) ∈ A6 ⇔
(i) ASj ≡ DSl; (ii) ASj /∈ S; and (iii) DTl + 1440 < ATj + τ ≤ DTl + 2880.

A cycle {j1, j2, . . . , jp, j1} in G corresponds to an aircraft rotation that consecutively covers

flight legs j1, j2, . . . , jp and back to j1 in a cyclic fashion. If a cycle includes ξ1 arcs belonging

to A2∪A4 and ξ2 arcs belonging to A5∪A6, and also covers ξ3 wrap-around flights, then the

corresponding rotation spans ξ = ξ1 + 2ξ2 + ξ3 consecutive days, and since each flight leg is

scheduled every day, ξ aircraft should be assigned to this rotation with each aircraft serving

this same sequence over ξ days, but staggered so that the union of the flights served by each

of these ξ aircraft each day equals (j1, . . . , jp) while their intersection is empty. Also, if a

rotation includes an arc a ∈ A1 ∪A2 ∪A5, then an aircraft assigned to this rotation has the

opportunity to (but may not necessarily) undergo a maintenance check between flight legs

a− and a+.

Furthermore, in order to incorporate itinerary-based flight demands, we define the following

notation:

Π: set of all itineraries.

Πj ⊂ Π: the subset of itineraries that include flight j,∀j ∈ L.

H: set of all fare-classes.

γkh: capacity of aircraft of type k ∈ K to accommodate passengers for fare-class h ∈ H.

µph: mean demand for fare-class h ∈ H within itinerary p ∈ Π.

fph: estimated revenue for fare-class h ∈ H within itinerary p ∈ Π.

ra: estimated through-value for connection a ∈ A.
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In addition, we adopt the same fleet assignment cost definition as used in Mansour et al.

(2010), which incorporates the fixed operating charges as well as the opportunity cost due

to spilled passengers. Accordingly, we denote the cost associated with assigning an aircraft

of type k to flight leg j as cjk, which can be expressed as

cjk = c̄jk +
∑
h∈H

ojh
( ∑
p∈Πj

µph − γkh
)+
, (4.1)

where c̄jk denotes the fixed cost of assigning fleet type k to flight j, and ojh represents the

opportunity cost per spilled passenger on flight j that is incurred where the expected demand

for fare-class h exceeds the capacity of the assigned aircraft, and where (·)+ ≡ max{0, ·}.

Decision Variables:

xa: binary variable that equals 1 if arc a ∈ A is selected, and 0 otherwise.

yjk: binary variable that equals 1 if flight leg j ∈ L is assigned to an aircraft of type k, and

0 otherwise.

ukj : total accumulated flying hours for aircraft of type k ∈ K since its last maintenance check

after serving flight leg j ∈ L.

vkj : total number of takeoffs for aircraft of type k ∈ K since its last maintenance check after

serving flight leg j ∈ L.

dkj : total number of elapsed days for aircraft of type k ∈ K since the last maintenance check

after serving flight leg j ∈ L.

πph: number of passengers accepted for itinerary p ∈ Π within fare-class h ∈ H.

Based on the above notation, we first formulate an integrated fleet assignment and air-

craft routing (FAAR) problem as follows, where for convenience, we denote the set of

maintenance-permitting arcs as AkM ≡ Ak1 ∪Ak2 ∪Ak5, and the set of non-maintenance arcs as

AkNM ≡ Ak3 ∪ Ak4 ∪ Ak6, for each k ∈ K:

FAAR: Maximize
∑
p∈Π

∑
h∈H

fphπph +
∑
a∈A

raxa −
∑
j∈L

∑
k∈K

cjkyjk (4.2)

subject to:
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∑
k∈K

yjk = 1, ∀j ∈ L, (4.3)∑
a∈δ−j ∩Ak

xa = yjk, ∀j ∈ L, k ∈ K, (4.4)

∑
a∈δ+j ∩Ak

xa = yjk, ∀j ∈ L, k ∈ K, (4.5)

ukjxa = tjxa, ∀a ∈ δ−j ∩ AkM , j ∈ L, k ∈ K, (4.6)

ukjxa = (uka− + tj)xa, ∀a ∈ δ−j ∩ AkNM , j ∈ L, k ∈ K, (4.7)

vkj xa = xa, ∀a ∈ δ−j ∩ AkM , j ∈ L, k ∈ K, (4.8)

vkj xa = (vka− + 1)xa, ∀a ∈ δ−j ∩ AkNM , j ∈ L, k ∈ K, (4.9)

dkjxa = xa, ∀a ∈ δ−j ∩ AkM , j ∈ L, k ∈ K, (4.10)

dkjxa = dka−xa, ∀a ∈ δ−j ∩ Ak3, j ∈ L, k ∈ K, (4.11)

dkjxa = (dka− + 1)xa, ∀a ∈ δ−j ∩ Ak4, j ∈ L, k ∈ K, (4.12)

dkjxa = (dka− + 2)xa, ∀a ∈ δ−j ∩ Ak6, j ∈ L, k ∈ K, (4.13)∑
a∈Ak2∪Ak4

xa + 2
∑

a∈Ak5∪Ak6

xa +
∑
j∈Lw

yjk ≤ NAk, ∀k ∈ K, (4.14)

tj ≤ ukj ≤ tkmax, ∀j ∈ L, k ∈ K, (4.15)

1 ≤ vkj ≤ tokmax, ∀j ∈ L, k ∈ K, (4.16)

1 ≤ dkj ≤ dkmax, ∀j ∈ L, k ∈ K, (4.17)∑
p∈Πj

πph ≤
∑
k∈K

γkhyjk, ∀j ∈ L, h ∈ H, (4.18)

0 ≤ πph ≤ µph, integer, ∀p ∈ Π, h ∈ H, (4.19)

(x, y) binary. (4.20)

The objective function (4.2) maximizes the overall profit given by the total revenue, including

through-values, minus the fleet assignment costs. Constraint (4.3) requires each flight leg to

be covered by exactly one fleet type. Constraints (4.4) and (4.5) ensure that each flight has

exactly one predecessor and one successor, respectively, both of which are assigned to the

same aircraft type. Hence, together with x being binary-valued, these restrictions induce

the solution to be comprised of cycles or cyclic rotations, where each rotation covers a set
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of flights using a particular type of aircraft. Note that since each rotation describes a cyclic

use of a particular aircraft of some type, the traditional conservation of flow constraints

at stations that are written for typical fleet assignment models using a time-space network

representation are automatically satisfied (see Sherali et al. (2006), for example). For each

aircraft type, the nonlinear constraints (4.6)-(4.7) together with (4.15) enforce the total flying

time restrictions. Note that the nature of these cyclic constraints precludes a rotation having

no maintenance visit. Similarly, Constraints (4.8)-(4.9) and (4.16) assure the restrictions on

the maximal number of takeoffs, and Constraints (4.10)-(4.13) and (4.17) likewise guarantee

the restrictions on the maximum number of days between maintenance checks. Observe that,

given binary values of (x, y) feasible to Constraints (4.3)-(4.5), we have that Constraints

(4.8)-(4.13) automatically induce the v- and d-variables to be integer-valued; hence, these

variables are logically declared in Constraints (4.16) and (4.17) to be simply continuous-

valued. (In this same vein, if tj are integer-valued, then so are the u-variable values in any

feasible solution.) Constraint (4.14) requires that the total number of aircraft in service, as

accounted for within each cyclic rotation as discussed above, should not exceed the available

size of the fleet (where the sum of the ξ3-values over all k ∈ K equals
∑

k∈K
∑

j∈Lw yjk =

|Lw| = na by (4.3)). Note that this is similar to an aircraft count constraint that is used

in fleet assignment models (e.g., see Sherali et al. (2006)), where the accounting in this case

is done at the count time-line t = 1440, and where the first two terms in the left-hand

side (LHS) of (4.14) count the number of aircraft of type k on the ground, and where the

third term equals the number of aircraft of type k in the air at that time. Constraint (4.18)

enforces that the total number of passengers traveling on a flight within a specific fare-class

is no more than the capacity available for that fare-class on the assigned aircraft. Constraint

(4.19) requires that the number of passengers accepted on any particular itinerary for each

fare-class does not exceed the corresponding expected demand. Finally, Constraint (4.20)

imposes logical restrictions on the binary decision variables.

Following Sherali et al. (2010), we can replace (4.18) by the tighter inequality:∑
p∈Πj

πph ≤
∑
k∈K

γ̃jkhyjk, ∀j ∈ L, h ∈ H, (4.21)

where γ̃jkh ≡ min{γkh,
∑

p∈Πj
µph},∀j ∈ L, k ∈ K,h ∈ H.
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Moreover, we can replace (4.19) by

0 ≤ πph ≤ µ̃ph ≡ min{µph,maxk∈Kγkh},∀p ∈ Π, h ∈ H. (4.22)

Remark 4.1: The y-variables can be eliminated from the formulation by substituting them

in terms of the x-variables using Constraint (4.4) or (4.5). Practically, in order to induce

sparsity in the resulting model, we can substitute yjk with either of the expressions on the

LHS of (4.4) and (4.5), whichever yields an overall sparser constraint (4.3), for each j ∈ L.

Arbitrarily selecting (4.4) in this context, Constraints (4.3)-(4.5), (4.14), and (4.21) can be

replaced by the following:∑
a∈δ−j

xa = 1, ∀j ∈ L, (4.23)

∑
a∈δ−j ∩Ak

xa =
∑

a∈δ+j ∩Ak

xa, ∀j ∈ L, k ∈ K, (4.24)

∑
a∈Ak2∪Ak4

xa + 2
∑

a∈Ak5∪Ak6

xa +
∑
j∈Lw

∑
a∈δ−j ∩Ak

xa ≤ NAk, ∀k ∈ K, (4.25)

∑
p∈Πj

πph ≤
∑
k∈K

∑
a∈δ−j ∩Ak

γ̃jkhxa, ∀j ∈ L, h ∈ H, (4.26)

and the objective function can be rewritten as follows:

Maximize
∑
p∈Π

∑
h∈H

fphπph −
∑
j∈L

∑
k∈K

∑
a∈δ−j ∩Ak

(cjk − ra)xa. 2 (4.27)

4.2.1 Reformulation and Linearization

To enhance the solvability of the integrated model, we next propose to apply the special-

structured Reformulation-Linearization Technique (RLT) of Sherali et al. (1998) to derive

a tight, equivalent linear model representation of this problem. Toward this end, first con-

sider Constraints (4.6) and (4.7). Following Haouari et al. (2011a), we can linearize these

constraints by using the substitutions:

ωkjl = ukjxjl, ∀(j, l) ∈ Ak, k ∈ K, (4.28)

ρkjl = ukl xjl, ∀(j, l) ∈ Ak, k ∈ K. (4.29)
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Accordingly, Constraints (4.6) and (4.7) become

ρkjl = tlxjl, ∀(j, l) ∈ AkM , k ∈ K, (4.30)

ρkjl = ωkjl + tlxjl, ∀(j, l) ∈ AkNM , k ∈ K. (4.31)

Now, in order to assure the product relationships (4.28) and (4.29) based on the RLT process,

consider the following set that is implied by (4.23), (4.24), and (4.20):

SSkj = {x :
∑

a∈δ−j ∩Ak

xa =
∑

a∈δ+j ∩Ak

xa,
∑

a∈δ−j ∩Ak

xa ≤ 1, xa ≥ 0, ∀a ∈ (δ−j ∪δ+
j )∩Ak},∀j ∈ L, k ∈ K.

Since SSkj implies that {0 ≤ xa ≤ 1,∀a ∈ (δ−j ∪ δ+
j ) ∩ Ak},∀j ∈ L, k ∈ K, it suffices to

take inter-products of the constraints defining SSkj with (4.15) for each j ∈ L, k ∈ K for the

purpose of enforcing (4.28) and (4.29) while deriving a tight linear programming (LP) rep-

resentation. Hence, for each j ∈ L, k ∈ K, multiplying Constraint (4.15) by xlj, ∀(l, j) ∈ Ak,
and by xjl,∀(j, l) ∈ Ak, we respectively obtain the following inequalities upon linearization

(where we have interchanged the indices l and j for the first case):

tlxjl ≤ ρkjl ≤ tkmaxxjl, ∀(j, l) ∈ Ak, k ∈ K, (4.32)

tjxjl ≤ ωkjl ≤ tkmaxxjl, ∀(j, l) ∈ Ak, k ∈ K. (4.33)

Next, multiplying the first constraint in SSkj by simply ukj (noting that this is an equality

restriction), we derive the following constraint upon linearization using (4.28) and (4.29):∑
l:(l,j)∈Ak

ρklj =
∑

l:(j,l)∈Ak
ωkjl,∀j ∈ L, k ∈ K. (4.34)

Finally, multiplying the second constraint in SSkj with the two bound-factors in (4.15) lifts

the latter (noting (4.32)) to the following restrictions upon linearization using (4.28) and

(4.29):

tj +
∑

l:(l,j)∈Ak
(ρklj − tjxlj) ≤ ukj ≤ tkmax −

∑
l:(l,j)∈Ak

(tkmaxxlj − ρklj),∀j ∈ L, k ∈ K. (4.35)

Thus, by Sherali et al. (1998), we can derive an equivalent lifted model by replacing (4.6),

(4.7), and (4.15) in Problem with (4.30)-(4.35). However, observe that the variable ukj
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appears only in (4.35) within the resulting model, and so this constraint can be eliminated

and the u-variables can be determined posteriori using (4.35) so long as

tj +
∑

l:(l,j)∈Ak
(ρklj − tjxlj) ≤ tkmax −

∑
l:(l,j)∈Ak

(tkmaxxlj − ρklj),∀j ∈ L, k ∈ K, i.e.,

tj(1−
∑

l:(l,j)∈Ak
xlj) ≤ tkmax(1−

∑
l:(l,j)∈Ak

xlj),∀j ∈ L, k ∈ K,

which automatically holds since tj ≤ tkmax and
∑

l:(l,j)∈Ak xlj ≤ 1 by (4.23). Thus, we can

drop (4.35) and replace (4.6), (4.7), and (4.15) with (4.30)-(4.34).

By using (4.30) and (4.31) to further eliminate the ρ-variables from (4.30)-(4.34), we can

readily establish the following proposition (which is similar to Proposition 2 in Haouari et al.

(2011a)):

Proposition 4.1. Constraints (4.30)-(4.34) can be replaced by the restrictions (4.36)-(4.37)

given below, which, together with (4.23) and (4.24), yield an equivalent set of constraints,

even in the sense of the continuous LP relaxation:∑
l:(j,l)∈Ak

ωkjl = tj
∑

l:(l,j)∈Ak
xlj +

∑
l:(l,j)∈AkNM

ωklj, ∀j ∈ L, k ∈ K, (4.36)

tjxjl ≤ ωkjl ≤ bt
k

jlxjl, ∀(j, l) ∈ Ak, k ∈ K, (4.37)

where bt
k

jl =

{
tkmax − tl, ∀(j, l) ∈ AkNM ,
tkmax, ∀(j, l) ∈ AkM .

2

The nonlinear constraints (4.8)-(4.13) can be lifted and linearized following an identical

derivation by defining the new set of RLT variables:

ηkjl = vkj xjl, ∀(j, l) ∈ Ak, k ∈ K, (4.38)

λkjl = dkjxjl, ∀(j, l) ∈ Ak, k ∈ K, (4.39)

and by introducing the following parameters for each k ∈ K, similar to the parameters

bt
k

a , a ∈ A, defined in Proposition 1 (written using the notation a ∈ Ak in lieu of (j, l) ∈ Ak):

bto
k

a =

{
tokmax − 1, ∀a ∈ AkNM ,
tokmax, ∀a ∈ AkM ,
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bd
k

a =


dkmax − 1, ∀a ∈ Ak4,
dkmax − 2, ∀a ∈ Ak6,
dkmax, ∀a ∈ AkM ∪ Ak3.

This yields the following equivalent reformulation of Problem FAAR:

FAAR-RLT: Maximize
∑
p∈Π

∑
h∈H

fphπph −
∑
j∈L

∑
k∈K

∑
a∈δ−j ∩Ak

(cjk − ra)xa (4.40)

subject to:∑
a∈δ−j

xa = 1, ∀j ∈ L, (4.41)

∑
a∈δ−j ∩Ak

xa =
∑

a∈δ+j ∩Ak

xa, ∀j ∈ L, k ∈ K, (4.42)

∑
a∈δ+j ∩Ak

ωka = tj
∑

a∈δ−j ∩Ak

xa +
∑

a∈δ−j ∩AkNM

ωka , ∀j ∈ L, k ∈ K, (4.43)

ta−xa ≤ ωka ≤ bt
k

a xa, ∀a ∈ Ak, k ∈ K, (4.44)∑
a∈δ+j ∩Ak

ηka =
∑

a∈δ−j ∩Ak

xa +
∑

a∈δ−j ∩AkNM

ηka , ∀j ∈ L, k ∈ K, (4.45)

xa ≤ ηka ≤ bto
k

a xa, ∀a ∈ Ak, k ∈ K, (4.46)∑
a∈δ+j ∩Ak

λka =
∑

a∈δ−j ∩Ak

xa +
∑

a∈δ−j ∩Ak6

xa −
∑

a∈δ−j ∩Ak3

xa +
∑

a∈δ−j ∩AkNM

λka, ∀j ∈ L, k ∈ K, (4.47)

xa ≤ λka ≤ bd
k

a xa, ∀a ∈ Ak, k ∈ K, (4.48)∑
a∈Ak2∪Ak4

xa + 2
∑

a∈Ak5∪Ak6

xa +
∑
j∈Lw

∑
a∈δ−j ∩Ak

xa ≤ NAk, ∀k ∈ K, (4.49)

∑
p∈Πj

πph ≤
∑
k∈K

∑
a∈δ−j ∩Ak

γ̃jkhxa, ∀j ∈ L, h ∈ H, (4.50)

0 ≤ πph ≤ µ̃ph, integer, ∀p ∈ Π, h ∈ H, (4.51)

x binary, (4.52)

where we have used (4.23)-(4.27) to rewrite the objective function and Constraints (4.3)-

(4.5), (4.14), and (4.21), and where we have rewritten (4.36) and (4.37) of Proposition 1

in more compact form as (4.43) and (4.44) , respectively, with (4.45)-(4.48) being a similar

representation derived for (4.8)-(4.13) and (4.16)-(4.17).
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A Lower Bound on the Number of Required Aircraft

In this section, we briefly introduce a valid inequality on the total number of aircraft. Given

the flight schedule, suppose that we extend the duration of all flights by the minimum turn-

time among all fleet types (denoted by τmin), and lay out these resulting flight durations

on a daily time-line. Then the number of aircraft required must be equal to or exceed the

maximum number of overlapping flight intervals at any point in time. Denoting this value

by Γ, it follows that∑
k∈K

( ∑
a∈Ak2∪Ak4

xa + 2
∑

a∈Ak5∪Ak6

xa +
∑
j∈Lw

∑
a∈δ−j ∩Ak

xa
)
≥ Γ. (4.53)

4.2.2 Further Integration with Crew Pairing

We next propose a further integrated airline operational model by extending Model FAAR-

RLT to include crew pairing decisions. As mentioned before, crew pairings account for a

significant proportion of airline operational costs, and are intimately intertwined with fleet

assignment and aircraft routing decisions. Because it is generally difficult to handle these

decisions directly by using path-based restrictions along with the accompanying nonlinear

crew cost components in a polynomially-sized, but large-scale, modeling framework, we

implicitly generate sets of feasible crew pairings and adopt the traditional set partitioning

formulation to incorporate crew pairing aspects within Model FAAR-RLT. Toward this end,

consider the following additional notation:

F : set of aircraft families, indexed by f .

Kf : set of types of aircraft that belong to family f . (Note that K = ∪f∈FKf .)

P f : set of admissible crew pairings that can serve flights covered by aircraft of family f .

Sf : set of short connections, indexed by σ, which can be served by aircraft of family f .

Afσ: set of arcs a ∈ ∪k∈KfAk between the associated pair of flights that correspond to the

short connection σ ∈ Sf .
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efjp: binary indicator that equals 1 if flight leg j is covered by pairing p ∈ P f of aircraft

family f , and 0 otherwise.

sfσp: binary indicator that equals 1 if short connection σ ∈ Sf is covered by pairing p ∈ P f

of aircraft family f , and 0 otherwise.

wfp : cost associated with pairing p ∈ P f of aircraft family f .

Furthermore, we introduce the following additional binary decision variables pertaining to

pairings:

zfp : binary variable that equals 1 if pairing p ∈ P f of aircraft family f is selected, and 0

otherwise.

The resulting integrated fleet assignment, aircraft routing, and crew pairing model (FRC)

can then be formulated as follows:

FRC: Maximize
∑
p∈Π

∑
h∈H

fphπph −
∑
j∈L

∑
k∈K

∑
a∈δ−j ∩Ak

(cjk − ra)xa −
∑
f∈F

∑
p∈P f

wfpz
f
p (4.54)

subject to: (4.41)− (4.52) along with:∑
p∈P f

efjpz
f
p =

∑
k∈Kf

∑
a∈δ−j ∩Ak

xa, ∀j ∈ L, f ∈ F, (4.55)

∑
p∈P f

sfσpz
f
p ≤

∑
a∈Afσ

xa, ∀σ ∈ Sf , f ∈ F, (4.56)

z binary. (4.57)

The objective function (4.54) incorporates an additional crew pairing cost term within (4.40).

Constraint (4.55) requires that each flight is served by a crew that is eligible for the specific

aircraft family assigned to this flight, where the right-hand side (RHS) of (4.55) equals∑
k∈Kf yjk. Constraint (4.56) imposes restrictions on permissible short connections, i.e., a

crew pairing pertaining to aircraft family f ∈ F can cover a short connection σ ∈ Sf only if

the two consecutive flights associated with the short connection σ are served by an aircraft

from the same family f . Finally, Constraint (4.57) represents the logical binary restrictions

on the crew pairing decision variables.
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4.3. Solution Methodology

US airline companies usually maintain a daily schedule of hundreds of domestic flights with

a variety of large sized fleets. For example, Delta Airlines (excluding Delta Connection)

operated more than 2000 flights with 700 aircraft of different types on a daily basis in 2011.

Moreover, a typical airline that uses a hub-and-spoke flight network can hold thousands of

itineraries in its profile, and millions of feasible aircraft rotations as well as crew pairings.

For such large-sized airlines, our modeling framework can focus on a relatively smaller fleet

of wide-body aircraft, along with major associated airports and a related manageable set

of principal itineraries in order to assure tractability. On the other hand, there also ex-

ist several small sized airlines that maintain a moderate fleet of aircraft and operate only

a few flights in their network, for which a full-scale model is practically implementable.

Even so, the integrated model yet inherits a huge number of variables and constraints that

preclude a direct solution using off-the-shelf software. It is therefore imperative to design

a specialized decomposition-based solution methodology, which motivates us to propose a

sequential-fixing approach that uses Benders decomposition for solving the integrated Model

FRC. In particular, the constraints (4.50)-(4.51) pertaining to itinerary-based demands, and

the crew pairing restrictions (4.55)-(4.57), are handled in separate subproblems within the

Benders decomposition framework, where the generated cuts therefrom are appended to the

aircraft fleeting and routing master program that is comprised of Constraints (4.41)-(4.49)

and (4.52)-(4.53).

To begin with, we first solve Model FAAR-RLT in isolation and then subsequently solve the

crew pairing problem with the fixed fleeting and aircraft routing decisions. The net solution

obtained from these two sequential stages serves as a benchmark for the upcoming integrated

model solution, where the optimal crew pairings at hand are also used to initialize the col-

umn generation procedure in the corresponding crew pairing subproblem of the integrated

model. In the next phase, we turn our attention to Model FRC and decompose it using a

Benders partitioning approach, which leads to an itinerary-based passenger-mix subproblem

and a crew pairing subproblem, where the Benders relaxed master program addresses aircraft

fleeting and routing decisions. In this process, we generate maximal nondominated Benders

cuts as proposed by Sherali and Lunday (2011), and we adopt a set of initial cuts for acceler-

ating the solution procedure as recommended by McDaniel and Devine (1977). For the crew
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pairing subproblem, we employ a perturbed Lagrangian dual strategy along with a deflected

subgradient optimization technique as proposed by Subramanian and Sherali (2008) in order

to effectively generate useful columns that avoid stalling of the underlying column generation

procedure, and we embed this in a branch-and-price heuristic (see Barnhart et al. (1998b)

and Mercier et al. (2005)) while adopting the branch-on-the-follow-on strategy (Ryan and

Foster, 1981) for selecting branching variables. The detailed steps of this overall procedure

are described next in turn below.

4.3.1 Itinerary-based Passenger-Mix Subproblem

In order to facilitate the application of Benders methodology, we initially relax the integral-

ity restrictions on the π-variables. Accordingly, for each fare-class h ∈ H, this yields the

following itinerary-based passenger-mix subproblem (IPMh):

IPMh : Maximize
∑
p∈Π

fphπph (4.58)

subject to: ∑
p∈Πj

πph ≤
∑
k∈K

∑
a∈δ−j ∩Ak

γ̃jkhx̄a, ∀j ∈ L, (4.59)

0 ≤ πph ≤ µ̃ph, ∀p ∈ Π, (4.60)

where x̄ is the solution inherited from the relaxed Benders master program.

For each h ∈ H, let χ1
jh,∀j ∈ L, and χ2

ph,∀p ∈ Π, denote the dual variables associated with

(4.59) and the upper-bounding constraints in (4.60), respectively, and let Xh denote the set of

extreme points of the dual feasible region corresponding to Problem IPMh. Because Problem

IPMh has complete recourse, i.e., it is feasible and bounded for any given (nonnegative)

solution x̄, the optimal value function φh for Problem IPMh can therefore be characterized

by the following set of Benders optimality cuts:

φh ≤
∑
j∈L

∑
k∈K

∑
a∈δ−j ∩Ak

χ1
jhγ̃jkhxa +

∑
p∈Π

χ2
phµ̃ph, ∀(χ1

jh, χ
2
ph) ∈ Xh, h ∈ H. (4.61)
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4.3.2 Crew Pairing Subproblem

The crew pairing subproblem, which is solved separately for each aircraft family f ∈ F ,

deals with generating sequences of flights for crews to serve while satisfying a series of FAA-

mandated work-rule restrictions. The objective is to find a set of feasible pairings that

partitions the given aircraft family’s flight network at a minimum cost. Specifically, for each

f ∈ F , we examine the following continuous relaxation of the crew pairing problem:

CPf : Minimize
∑
p∈P f

wfpz
f
p + β

∑
j∈L

qfj (4.62)

subject to: ∑
p∈P f

efjpz
f
p + qfj =

∑
k∈Kf

∑
a∈δ−j ∩Ak

x̄a, ∀j ∈ L, (4.63)

∑
p∈P f

sfσpz
f
p + qfσ =

∑
a∈Afσ

x̄a, ∀σ ∈ Sf , (4.64)

(z, q) ≥ 0, (4.65)

where qfj ,∀j ∈ L, are artificial variables appended to Constraint (4.55) along with a penalty

term in the objective function using a sufficiently large penalty parameter β that substantially

exceeds crew pairing costs, and where qfσ ,∀σ ∈ Sf , are slack variables for Constraint (4.56).

These artificial variables ensure that Problem CPf has an optimal solution for any fixed x̄

obtained from the master program, and thus enables us to characterize the corresponding

optimal value function in the master program via only Benders optimality cuts. Note that

the RHS values in (4.63)-(4.64) are 0 or 1 whenever x̄ is binary-valued, which accordingly

determine the set of flights that need to be covered by the crews trained to serve on aircraft

of family f , including permissible short connections between designated consecutive pairs

of flights. Also, note that in the sequel when we consider the continuous relaxation of the

Benders master program, we might inherit fractional RHS values in Constraints (4.63)-(4.64).

In this case, we shall consider all the flights corresponding to positive RHS values in (4.63)-

(4.64) within the network for solving the crew pairing subproblem. Observe that this would

yet yield valid Benders cuts.

Due to the nonlinear structure of the cost function and the complexity of the pairing restric-

tions, Problem CPf is usually solved using column generation where the pricing subproblem

is solved using a multi-label shortest path or constrained shortest path algorithm as first

132



proposed by Desrochers and Soumis (1989). In this procedure, for a given aircraft family,

feasible pairings are generated over a time-space network based on the dual variable values

obtained from the restricted master program for Problem CPf . A pairing always starts and

ends at the same crew base station, covering a sequence of admissible flights over multiple

days. A series of labels are maintained at the nodes of the corresponding path generated

within the network to keep track of constraints pertaining to the accumulated time away

from the base, the number of duty periods in the pairing, as well as the flying time, the

elapsed time, and the number of flight legs that have been served in any duty. The algo-

rithm thus seeks feasible crew pairing columns having negative reduced costs to iteratively

augment the master program.

Theoretically, the multi-label shortest path problem is NP-hard, and could potentially enu-

merate all pairings for the network before termination; however, if at any node, the label

values updated along one potential pairing are all better (smaller) than those for another

pairing, then we say that the former pairing dominates the latter one, where the dominated

pairing can be eliminated from the solution pool. This feature greatly helps reduce the so-

lution effort. In addition, we note a recent attempt by AhmadBeygi et al. (2009) to model

the crew pairing problem using a polynomially-sized (compact) integer programming (IP)

formulation that can be directly solved using off-the-shelf software. A similar formulation

styled in the fashion of the aircraft routing model proposed by Haouari et al. (2011a) is

possible for this problem, which could be beneficially lifted using an RLT-based partial con-

vexification process (see Sherali et al. (1998)). Such compact formulations could instead be

used to solve the subproblem for generating crew pairings. We leave the investigation of this

strategy for future research.

The solution to the LP relaxation of the crew pairing problem for each f ∈ F provides a

Benders optimality cut for the master program. In particular, for each f ∈ F , let ψ1
jf ,∀j ∈

L, and ψ2
σf ,∀σ ∈ Sf , denote the dual variables associated with Constraints (4.63) and

(4.64), respectively, and let Ψf denote the set of extreme points of the dual feasible region

corresponding to Problem CPf . Again, because Problem CPf has complete recourse, the

optimal value function ξf for Problem CPf can be characterized within the master program

via the following set of Benders optimality cuts:

ξf ≥
∑
j∈L

∑
k∈Kf

∑
a∈δ−j ∩Ak

ψ1
jfxa +

∑
σ∈Sf

∑
a∈Afσ

ψ2
σfxa,∀(ψ1

jf , ψ
2
σf ) ∈ Ψf , f ∈ F. (4.66)
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Algorithm for the Crew Pairing Subproblem

For each aircraft family, we adopt a corresponding daily flight network to solve the LP

relaxation of the crew pairing subproblem via a column generation approach. As described

in Section 4.3.2, the restricted master program for this subproblem is initialized with only

artificial columns, where each column covers a single flight leg (or short connection), and

is associated with a large penalty (or no cost for short connections). Based on the optimal

solutions obtained for the LP relaxation, the associated dual variable values are used to

generate candidate pairings via a constrained shortest path (CSP) algorithm. This process

is terminated when either the optimality gap is reduced to within a specified threshold

or a predefined number of iterations has been performed. Below, we present details of a

customized CSP scheme that we implemented for solving the crew pairing problem.

Constrained Shortest Path Algorithm

For each crew base of a specific family of aircraft, a dummy source station and a dummy sink

station are added to the associated flight network. Correspondingly, a dummy flight denoting

the start of a pairing from the source to its associated station is designated at the beginning

of the day, and likewise, a dummy flight is designated to link the station back to its sink

at the end of the daily timeline. Furthermore, crew connection opportunities between the

flights (including dummies) are generated in terms of the arc types A1, . . . , A6 as described in

the aircraft routing problem, where connections from/to the dummy flights are categorized

as a new type. Also, the appropriate reduced costs computed based on the solution to the

master program are assigned to each flight and each short connection. The objective is

to find paths having negative reduced costs from the source nodes to their corresponding

sinks while satisfying several restrictions with respect to the current connections, duties,

and pairings. If no such path is found, then the current crew pairing subproblem solution is

declared optimal.

As delineated in Section 4.1, the duty cost, measured in hours, is expressed as the maximum

of three quantities: the guaranteed minimum working hours, the total flying hours, and a

certain fraction of the duty period duration. Moreover, the pairing cost is determined by the
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maximum value of a predefined guaranteed pay, the total of all duty costs, and a specified

percentage of the total time away from base (TAFB). In addition, the crew pairing rules

adopted in this study specify a set of regulations that can be categorized into the following

three types:

1. Connection-dependent rules

• minimum and maximum sit time between flights.

2. Duty-dependent rules

• maximum flying time between two consecutive rests;

• maximum elapsed time between two consecutive rests;

• maximum number of flights between two consecutive rests.

3. Pairing-dependent rules

• maximum time away from base;

• maximum number of duties in the pairing.

Due to the nonlinear cost structure and the work-rule regulations that depend on the specific

path from the source to each intermediate node within the network, multiple labels are used

to track the concerned performance indices. Whenever an outbound flight connection (arc)

is selected from a current node, the labels are correspondingly updated using the information

of the particular type of connection as well as the current pairing.

More specifically, we maintain the following principal labels:

1. Current date corresponding to the pairing (date).

2. Duty-related labels

• accumulated flying hours within the current duty (flytime);

• accumulated elapsed hours within the current duty (elaptime);

• number of flights served within the current duty (nbflights);

• cost of the current duty (dutycost).
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3. Pairing-related labels

• number of duties served in the pairing (nbduties);

• accumulated elapsed hours for the pairing (tafb);

• accumulated dual solution-based cost for the pairing (dual);

• cost of the pairing (pairingcost).

Hence, the duty cost and the pairing cost are respectively evaluated as follows:

dutycost = max{fixedpay, flytime, elaptime · frac}, and

pairingcost = max{fixedpay · nbduties,
nbduties∑
i=1

dutycosti, tafb · frac},

where fixedpay denotes the minimum daily wage for crew members, and frac stands for

a preset percentage value. Furthermore, the reduced pairing cost (reducedpairingcost) is

obtained by subtracting the dual cost from the pairing cost, i.e.,

reducedpairingcost = pairingcost− dual.

The constrained shortest path algorithm is analogous to the regular label-correcting algo-

rithm, except that there exist multiple labels that need tracking. For each crew base, the

search starts from the initial dummy flight, which is introduced into a scan-eligible (SE)

node list. At every iteration, a node is extracted (selected and deleted) from the SE list in

a first-in-first-out (FIFO) manner, and outgoing arcs incident at this node are subsequently

scanned. If the connection is feasible with regard to the above-mentioned work-rules, the

incident to-node is appended to the end of the SE list (unless if it already exists within SE),

and the labels on this node are created/updated. After the SE list is depleted, we examine

all the recorded pairings on the dummy end-flight, and return those having negative reduced

costs to the master program, where they are appended along with their true pairing costs.

In this process, for each flight and the connections emanating from it within the network,

any succeeding flight must fall into exactly one of the following four categories:

1. start-flight of a pairing;
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2. end-flight of a pairing;

3. a flight that starts a new duty;

4. another flight within the current duty.

The labels of a pairing are therefore updated according to the category pertaining to the

next flight. To provide a further detailed description, denote conntime as the sit-time of the

connection, nextflighttime as the duration of the next flight, and conndual and nodedual as

the dual-based cost values on the connection (if it is short) and the next flight, respectively.

Consequently, when starting a new pairing, the date-label is initialized with 1, while the

other labels are initialized as follows:

{flytime, elaptime, nbflights, nbduties, tafb, dual} ≡

{nextflighttime, nextflighttime, 1, 1, nextflighttime, conndual + nodedual}.

The duty cost is also updated using the corresponding labels. In contrast, when an end-flight

is reached, the pairing is completed with the same labels as for the previous flight.

Moreover, when a connection only violates duty-dependent restrictions, a new duty must be

initialized with the following duty-related labels:

{flytime, elaptime, nbflights} ≡ {nextflighttime, nextflighttime, 1},

and the pairing-related labels are updated as follows:

{nbduties, tafb, dual} ≡

{nbduties+ 1, tafb+ conntime+ nextflighttime, dual + conndual + nodedual}.

Note that the cost for the completed duty is evaluated before updating the above labels, and

is then used in the calculation of the pairing cost.

When the connection is feasible with respect to all rules, another flight leg is added to the

current duty, and the labels are updated as follows:

{flytime, elaptime, nbflights, nbduties, tafb, dual} ≡

{flytime+ nextflighttime, elaptime+ conntime+ nextflighttime, nbflights+ 1,
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nbduties, tafb+ conntime+ nextflighttime, dual + conndual + nodedual},

and the duty cost is updated accordingly (the pairing cost remains unchanged). Finally, we

note that the label date is updated whenever an A1- or A2-type connection is selected.

In addition, we also keep track of the flights served within each pairing for the purpose

of comparing and eliminating redundant pairings. Since we are considering a daily self-

repeated network, there can exist more than one sequence for serving a given set of flights

from beginning to end. Moreover, a column in the master program essentially represents

a set of flights regardless of the sequence. Therefore, in order to maintain a set of unique

columns, only the pairing having the lowest associated cost is considered among all possible

sequence permutations, i.e., if two pairings involve the same set of flights but in different

orders, only the one having the smaller reduced cost is retained.

Due to the existence of multiple labels, a node is likely to record more than one pairing

among its associated labels, where only nondominated pairings are maintained (we say that

a pairing dominates another if it has a lower reduced cost and more flexibility in terms of

incorporating successive flights). Specifically, for each flight pertaining to the same day, the

pairing having labels with a higher reduced cost as well as higher values of TAFB and the

number of duties would in the end yield no better results, and thus can be eliminated (i.e.,

it is dominated). Hence, all existing pairings recorded for this particular flight are examined

so that only nondominated ones remain active. In addition, we note that since we consider

a flight schedule that repeats daily, we seek a set of pairings that covers this daily flight

schedule, where posteriori, as many crews will cyclically adopt the same generated pairing

as there are days/duties in the pairing. Hence, we enforce that a flight can be involved in a

pairing at most once.

Solving the Crew Pairing Subproblem as an IP

In order to eventually obtain an integral solution to the crew pairing subproblem, we adopt a

branch-and-price heuristic, where a depth-first search (DFS) tree is employed in a recursive

fashion. At each node of the DFS tree, the associated LP relaxation is solved using the

algorithm presented in Section 4.3.2. The branch is pruned if the resulting solution obtained

is integral. Moreover, if the associated objective value of such a solution is smaller than that
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of the incumbent solution, we update the current upper bound using this objective value

and reset the current solution as the new incumbent.

On the other hand, if the solution obtained for the LP relaxation is not integral and the

objective value is greater than the current upper bound, then the branch is fathomed. Oth-

erwise, if the non-integral solution yields an objective value that is smaller than the current

upper bound, we apply the branching-on-the-follow-on rule (Ryan and Foster, 1981) to cre-

ate two subnodes in the DFS tree for further exploration. More specifically, as shown in

Barnhart et al. (1998b), fractional pairing solutions must at least result in a connection that

is only partially covered. Hence, we branch on a particular fractional connection, enforcing

it on the left branch (i.e., eliminating all other connections from the previous flight and

those to the following flight), and forbidding it on the right branch (i.e., deleting it from the

network). Furthermore, within the depth-first scheme, the left branch is usually explored

prior to the right branch, with the hope that this sequential fixing strategy (yet with the

backtracking mechanism in place) can quickly lead to a desirable solution.

A number of alternative strategies can be adopted for selecting the branching connection. For

example, a common strategy is to choose the connection having the greatest fractionality

(i.e., arg max{min{xa, 1 − xa} : a ∈ A}, where xa represents the fractional value of the

connection). Another strategy is to select a connection having the greatest fractional value

(i.e., arg max{xa : xa 6= 1, a ∈ A}), hoping that a good CP solution can be obtained quickly

by first enforcing this connection. We use the latter strategy herein.

The unexplored nodes in the DFS tree are maintained in a last-in-first-out (LIFO) manner

until all nodes are pruned. Also, the algorithm terminates whenever the percentage optimal-

ity gap between the upper and lower bounds falls within a predefined threshold. We note

that another aggressive criterion that is sometimes implemented (e.g., in Papadakos (2009))

terminates the search once an integral solution is obtained.

4.3.3 Accelerating the Solution of the Crew Pairing Problem

The column generation approach used for the crew pairing problem often stalls when yet

remote from optimality, resulting in dual variable values that help little in generating im-

proving pairings via the subproblem. To avoid such a phenomenon, which is identified as
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dual noise by Subramanian and Sherali (2008), we follow the authors’ approach by solving a

perturbed Lagrangian dual of the restricted crew pairing master program using a deflected

subgradient optimization technique. This process has been shown to derive judicious low-

norm dual solutions that generate beneficial columns. For the sake of convenience, we restate

the restricted master program for Problem CPf for any aircraft family f ∈ F in a generic

form as follows:

CP : Minimize {ωT z + βeTLq : Bz + q = R, (z, q) ≥ 0}, (4.67)

where eL is a vector of |L|-ones and |Sf |-zeroes (for f ∈ F ). Following Subramanian and

Sherali (2008), we perturb this problem by accommodating a term mα in the constraints

along with an associated quadratic penalty term m
2
αTα in the objective function to obtain

the following problem:

QCP : Minimize ωT z + βeTLq +
m

2
αTα (4.68)

subject to:

Bz + q +mα = R, (4.69)

(z, q) ≥ 0, α unrestricted, (4.70)

where m is a small perturbation parameter (typically, m = 10−7), and α is a perturbation

vector. By Dorn’s duality (Dorn, 1960), the dual to Problem QCP inherits a term −m
2
‖ψ‖2 in

the objective function (also, see (4.73) below), where as before, ψ denotes the dual variables

associated with the equality constraints in QCP, thus encouraging the generation of low-norm

dual solutions. This provides a dual stabilization effect for the column generation procedure

as discussed in De Merle et al. (1999). Accordingly, consider the following Lagrangian dual

for Problem QCP:

LD : max
ψ unrestricted

θ(ψ), (4.71)

where θ(ψ) is given by the optimal value to the following Lagrangian subproblem, where Z

represents implied interval bounds of [0, 1] on the (z, q)-variables, imposed to ensure a finite

value for θ(·):

LS : θ(ψ) = min
(z,q)∈Z,

α unrestricted

{ωT z + βeTLq +
m

2
αTα + ψT (R−Bz − q −mα)}. (4.72)

Note that the necessary and sufficient first-order optimality condition with respect to α in

(4.72) yields α = ψ, whence the Lagrangian subproblem reduces to the following, where
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the fixed term −m
2
‖ψ‖2 induces low-norm dual solutions among alternative optimal dual

solutions as noted above:

LS : θ(ψ) = ψTR− m

2
‖ψ‖2 + min

(z,q)∈Z
{(ω −BTψ)T z + (βeL − ψ)T q}. (4.73)

Note that θ(ψ) is trivially evaluated via (4.73). Hence, given any dual solution ψt at iteration

t, if (zt, qt) evaluates θ(ψt) via (4.73), then a subgradient gt of θ(·) at ψ = ψt is given by

gt = R−mψt −Bzt − qt. (4.74)

We adopt the deflected subgradient method (DSG) proposed by Subramanian and Sherali

(2008) to solve Problem LD. In each iteration, the search direction is determined by a

subgradient of the nondifferentiable function θ(·) that is appropriately deflected using the

information from the previous iteration in order to approach an implicit target value of the

objective function in the Euclidean norm sense. A step size is prescribed along the search

direction based on certain target value-related and step size parameters, where the latter is

periodically halved whenever the incumbent objective value fails to improve by a threshold

level over a specified number of iterations. The procedure is terminated whenever either the

l∞ norm of the generated direction is sufficiently small or if the imposed maximum iteration

limit is reached. The resulting dual solution is then used to generate additional columns as

necessary. Once the column generation process terminates, the final dual solution ψ is used

to generate the Benders cut (4.66) as necessary. The DSG algorithm is summarized below.

Algorithm DSG:

Initialization. At iteration t = 1, set the incumbent dual solution ψ̄ ≡ 0, and compute θ̄ ≡
θ(ψ̄). Furthermore, set the target-related parameter εT = 1, and initialize ψ1 = ψ̄, θ1 = θ̄,

and use the search direction d1 = g1 as given by (4.74). Also, set θ̂ ≡ θ̄, κmin = 10, and let

κ = κmin + 1.

Main Iterative Step. Update the dual solution as follows:

ψt+1 =

{
ψ̂ + 2ζ ‖ψ̂‖‖dt‖dt, if ‖ψ̂‖ ≥ εT‖dt‖,
ψ̂ + 2ζεTdt, otherwise,

where ζ denotes a suitable step-length parameter with 0 < ζmin ≤ ζ ≤ 1 (we use ζmin = 10−4),
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and where

ψ̂ =

{
ψt, if ‖ψt‖ < ‖ψ̄‖,
ψ̄, otherwise.

Compute θt+1 ≡ θ(ψt+1) and gt+1 via (4.73) and (4.74), respectively. If θt+1 > θ̄, then update

the incumbent solution ψ̄ ← ψt+1 and θ̄ ← θt+1. Increment t← t+ 1.

Parameter Update. If t = κ, do:

(a). If θ̄ − θ̂ < εθ (we use εθ = 0.1), then set ζ ← max{ζ/2, ζmin}; else, retain ζ.

(b). Reset θ̂ = θ̄ and increment κ = t+ κmin.

New Direction. Compute the next deflected subgradient-based direction as dt+1 = ζgt+1 +

(1− ζ)dt.

Termination Check. If maxi=1,...,|L|+|Sf | |dti| < εd (we use εd = 0.05), or a specified maxi-

mum number of iterations (tmax) is reached (we use tmax = 2000), terminate this procedure

and exit with the incumbent dual solution ψ̄ with objective value θ̄. Else, repeat the Main

Iterative Step.

4.3.4 Accelerating the Benders Decomposition Procedure

The Benders relaxed master program (RMP) is comprised of the aircraft fleeting and routing

decisions and constraints, along with Benders cuts obtained from the passenger-mix and the

crew pairing subproblems, and is given as follows:

RMP: Maximize
∑
h∈H

φh −
∑
j∈L

∑
k∈K

∑
a∈δ−j ∩Ak

(cjk − ra)xa −
∑
f∈F

ξf (4.75)

subject to:

(4.41)− (4.49), (4.52), along with:

φh ≤
∑
j∈L

∑
k∈K

∑
a∈δ−j ∩Ak

χ1
jhγ̃jkhxa +

∑
p∈Π

χ2
phµ̃ph, ∀(χ1

jh, χ
2
ph) ∈ Xr

h, h ∈ H, (4.76)
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ξf ≥
∑
j∈L

∑
k∈Kf

∑
a∈δ−j ∩Ak

ψ1
jfxa +

∑
σ∈Sf

∑
a∈Afσ

ψ2
σfxa, ∀(ψ1

jf , ψ
2
σf ) ∈ Ψr

f , f ∈ F, (4.77)

where Xr
h ⊆ conv(Xh),∀h ∈ H, and Ψr

f ⊆ conv(Ψf ),∀f ∈ F , are appropriate restricted sets

of dual solutions that correspond to the Benders optimality cuts generated thus far, and

where conv(·) denotes the convex hull operation.

We employ the implementation scheme advocated by McDaniel and Devine (1977) to ac-

celerate the solution procedure by initially relaxing the integrality restrictions within the

master program and thus solving the continuous relaxation of Problem FRC via the Ben-

ders decomposition method. If the lower and upper bounds obtained respectively from the

relaxed master program and the Benders subproblem are sufficiently close, or some specified

limit of iterations is reached, then we re-enforce the integrality restrictions on the x-variables

as noted below, and continue the solution of the resulting mixed-integer program using the

implementation of Benders procedure as recommended by Geoffrion and Graves (1974). In

this process, rather than solve each current relaxed master program to optimality as a mixed-

integer program (MIP), we essentially solve just the full master program itself (denoted by

MP) as an MIP, which is equivalent to solving the original problem FRC. This is accom-

plished by solving Problem MP using a branch-and-cut (B&C) approach, where Benders

cuts are progressively generated as-and-when needed. Specifically, in this B&C algorithm,

upper bounds are computed by solving the LP relaxation of the current RMP. Now, suppose

that an integer-feasible solution is detected to RMP whose objective value is greater than the

current lower bound (incumbent) value plus a prescribed threshold εRMP ≥ 0. In this case,

we pause and solve the Benders passenger-mix and crew pairing subproblems to evaluate

the true objective function value of this solution in Problem MP (and therefore in Problem

FRC) in order to update the incumbent solution to MP and generate new Benders cuts as

necessary, and we then continue the B&C algorithm. When the B&C algorithm discovers

that no such integer-feasible solution exists, we terminate the overall algorithm with the

indication that the incumbent solution is εRMP -optimal to the original problem.

Furthermore, in order to accelerate the convergence of the Benders decomposition method,

Magnanti and Wong (1981) presented a seminal work for generating nondominated or Pareto-

optimal Benders cuts using a core point that is selected within the relative interior of the

convex hull of the primal feasible region defining the master program. Such nondominated

cuts are particularly useful when the primal subproblem is highly degenerate, which induces a

143



variety of possible Benders cuts at any iteration based on alternative optimal dual solutions.

Magnanti and Wong proposed to solve a secondary subproblem to appropriately select among

the alternative optimal solutions to generate Pareto-optimal cuts. Because Problem CP

is known to be highly degenerate, Papadakos (2009) adopted this technique to generate

nondominated cuts using a heuristic for finding core points. However, as demonstrated by

Mercier and Soumis (2007) and by Sherali and Lunday (2011), although the Magnanti-Wong

method reduces the total number of generated cuts, it may not lead to a net advantage

in computational effort because it requires solving an additional linear program at each

iteration. As an alternative mechanism, Sherali and Lunday proposed a perturbation scheme

for the subproblem that automatically generates maximal-nondominated Benders cuts via a

single subproblem optimization step, which is also convenient for implementation. Following

this strategy for Problem IPMh,∀h ∈ H, we perturb the RHS of Constraints (4.59) and

(4.60) as specified below:∑
p∈Πj

πph ≤
∑
k∈K

∑
a∈δ−j ∩Ak

γ̃jkh(x̄a + εx̂a), ∀j ∈ L, (4.78)

0 ≤ πph ≤ (1 + ε)µ̃ph, ∀p ∈ Π, (4.79)

where x̂ is a predefined positive weight vector (we use x̂a = 1,∀a ∈ A), and where ε is a

perturbation coefficient (we use ε = 10−6). Note that the dual solution generated for the

perturbed subproblem is also feasible to the original dual subproblem and so the resulting

Benders cut remains valid. However, the dual objective function of the perturbed subproblem

inherits a corresponding perturbation term that guides the selection of a dual solution among

(near-) alternative optimal solutions in order to derive maximal nondominated Benders cuts.

Likewise, for Problem CPf , ∀f ∈ F , we rewrite Constraints (4.63) and (4.64) with appropri-

ate perturbations as:∑
p∈P f

efjpz
f
p + qfj =

∑
k∈Kf

∑
a∈δ−j ∩Ak

(x̄a + εx̂a), ∀j ∈ L, (4.80)

∑
p∈P f

sfσpz
f
p + qfσ =

∑
a∈Afσ

(x̄a + εx̂a), ∀σ ∈ Sf , (4.81)

and we proceed with the solution approach as described above, where the resulting dual

solutions are used to derive the Benders cuts (4.76) and (4.77) in the same form as before

(i.e., without the perturbation terms).
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In addition, we adopted a tabu-type strategy to help alleviate an observed stalling phe-

nomenon for the relaxed master program by suppressing repetitive Benders subproblems.

Due to the inherent symmetry in the model, distinct x̄-solutions could lead to identical

Benders subproblems by providing the same RHS values. Specifically, since Constraints

(4.58)-(4.60) in Model IPM are essentially determined by the fleet assignment decisions

ȳjk ≡
∑

a∈δ−j ∩Ak
x̄a, different x̄-values could result in the same fleet assignment, thus creat-

ing the same subproblem. Therefore, we keep track of the distinct fleeting decisions using a

tabu list, and call the subproblem only when the x̄-values indicate a new fleet assignment

pattern. Likewise, Subproblem CP (given by (4.62)-(4.65)) is invoked only when any flights

are assigned to a different aircraft family, or if the involved short connections are changed.

The overall solution procedure is summarized below in two phases.

Algorithm A:

Phase I: Sequential Optimization:

(a) Solve Problem FAAR-RLT as an MIP to obtain fleet assignment and passenger-mix

decisions (x̃, π̃).

(b) Sequentially, solve the crew pairing problem given by the Constraints (4.54)-(4.57)

of Problem FRC with (x, π) fixed at (x̃, π̃). In this process as described in Sections

4.3.2 and 4.3.2, begin by solving the continuous relaxation of Problem CPf ,∀f ∈ F ,

via column generation, and then apply a suitable branch-and-price-based heuristic

(denoted by BPH) to obtain an integer-feasible solution z̃. Let ν̃ be the objective

value of Problem FRC corresponding to the solution (x̃, π̃, z̃), and let P̃ f be the set of

pairings thus generated for each f ∈ F .

Phase II: Integrated Optimization:

(a) Begin by solving the continuous relaxation of Problem FRC via Benders decomposition

to generate an initial set of Benders cuts as per McDaniel and Devine (1977). In

this process, use the Phase I solution (x̃, π̃) to generate initial Benders cuts from

the passenger-mix and crew pairing subproblems, and adopt the pairings in P̃ f (as

appropriate, depending on the fleet assignment solution passed to the subproblem) to

initialize the set of columns within the subproblem CPf ,∀f ∈ F .
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(b) Let ˆFRC denote Problem FRC with only the x-variables restricted to be integer-valued.

Using the initial set of Benders cuts generated at Step II(a), solve Problem ˆFRC via

Benders decomposition while applying the approach of Geoffrion and Graves (1974) as

described in Section 4.3.4, where the master program is solved just once as an overall

integer program, with additional maximal nondominated Benders cuts (as per Sherali

and Lunday (2011)) being iteratively generated in the spirit of a branch-and-cut al-

gorithm. Moreover, in this process, when using column generation to solve the crew

pairing problem, apply Algorithm DSG of Subramanian and Sherali (2008) to help gen-

erate judicious columns. Let x∗ be the resulting fleet assignment and routing solution

thus obtained. Solve the passenger-mix subproblems IPMh,∀h ∈ H, while enforcing in-

tegrality on the π-variables to derive a corresponding passenger-mix solution π∗. Next,

solve the crew pairing problem using BPH as in Step I(b) with (x, π) fixed at (x∗, π∗).

Let z∗ denote the resulting crew pairing decisions. Prescribe the (principal) solution

(x∗, π∗, z∗) for Problem FRC, with corresponding objective value ν∗. Also, compute
(ν∗−ν̃)

ν̃
· 100% as the percentage improvement in profits for the integrated solution over

the sequential solution.

Note: In our implementation, the LP relaxations in the branch-and-cut algorithm in

Step I(a), as well as the LP relaxations of the master programs in Steps I(b), II(a),

and II(b) were solved using the Barrier-option of CPLEX.

4.4. Computational Results

In this section, we present numerical results using a series of test instances based on historical

data obtained from United Airlines, a US legacy airline carrier. For each of the test scenarios,

the two-phase procedure (Algorithm A) was adopted as described in the previous section,

i.e., we solved each of the test scenarios using the sequential approach and the proposed

integrated FRC model, where in the former, the partially integrated Model FAAR-RLT is

solved separately from the conventional crew pairing model. This solution framework was

implemented using C++ along with the off-the-shelf MIP solver CPLEX 12.4 with default

settings (except as noted). All tests were performed on a workstation having dual quad-core

Intel Xeon 2.4G CPUs with 24GB RAM and running a 64-bit Linux system (Fedora 16).
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4.4.1 Data Description

The instances used for our experiments were derived from the North American flight schedule

of United Airlines based on its most frequently served airports. Since the network has dense

flights between such hub and major stations that attract many travelers, there exist large

numbers of connection opportunities for aircraft as well as crew members. Additionally,

we note that arcs of types A5 and A6 (arrivals that connect to third-day departures) were

omitted when generating connections, since they are unfavorable from the perspective of an

efficient schedule and therefore rarely occur in practice.

To cover the flight network, we principally considered mid- and large-sized jets, namely, the

Airbus 320 series (including fleets of Airbus 319 and 320), the Boeing 757 series (including

fleets of Boeing 757-200 and 757-300), and a fleet of the Boeing 777-200 series used for

domestic service. Based on the hourly fuel consumption rate for each fleet type, the flight

operational cost was estimated using the flight duration, which was further incremented by

a fixed percentage (5%) to account for any unplanned detours.

Fleets that are customized for domestic flights usually have three cabin classes, i.e., the

business class, the economy-plus class that provides extra leg-room, and the regular economy

class. For the sake of simplicity, we assumed that travel demands for each O-D pair are

categorized, and therefore priced, according to these actual cabin classes, although in practice

there exists a variety of fare-classes for each cabin. Moreover, for each fleet type, the number

of seats in each class was taken as fixed and independent (i.e., not nested). Whenever the

demand for a particular flight-cabin on any flight leg exceeds the corresponding capacity on

the assigned aircraft, we assume that a certain proportion (20%) of the spilled passengers

are lost; this was accordingly used to account for the opportunity cost factor within (4.1).

Moreover, each fleet type has its own maintenance requirements between two consecutive

A-checks, which govern the specified maximum flying hours (tmax), the maximum number of

days (dmax), and the maximum number of take-offs (tomax). Our data sets and implementa-

tion focused on monitoring and enforcing the maximum flying days requirement, where the

restriction on the consecutive flying minutes was additionally automatically guaranteed by

assuming that 1440 · dmax ≤ tmax.

As noted before, crew members are classified according to the aircraft family that they are
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eligible to serve. Crew costs are measured in hours, and are determined by a minimum

guaranteed pay (assumed to be based on four hours a day), the actual flying time, and a

proportion of the total time away from base (assumed to be 80%). Furthermore, in order to

simplify crew costs in a compatible manner with other expenditures, we used a fixed rate to

estimate the total hourly salary of pilots and flight attendants serving a pairing. Also, we

designated eight particular stations as crew bases, so that crew pairings must start and end

at one of these stations.

Seven instances, as presented in Table 4.1, were generated for testing the proposed solution

methodology. These instances consider progressively increasing sized networks that include

major airports in the continental US, where in particular, Instance 3 focuses on flights be-

tween five key hubs. Here, we only consider the major airports in the US that involve several

daily flights because (i) they deal with a significant portion of the daily travel demand, and

(ii) for other smaller spoke airports, the flights are usually less frequent and are well sched-

uled, and can thus be preprocessed appropriately. The number of connections displayed in

Table 4.1 reflects the number of binary variables for each designated fleet type. Moreover,

since we assume that only the Airbus 320 family has a minimum turn-time that is shorter

than the specified sit-time (45 min), short connections are considered only in the connection

networks for the Airbus 320 series aircraft types. Although a typical full-scale daily do-

mestic network has many more flight legs than our largest sized data instance, our purpose

here is to mainly focus on suitable dense sub-networks that represent principal connection

opportunities. Hence, these instances are both significant and challenging.

4.4.2 Results for the Sequential Approach

We first present computational results for Phase I of Algorithm A, which involves solving the

fleet assignment and aircraft routing problem (FAAR) and then sequentially solving the crew

pairing problem (CP) separately for each aircraft family based on the aircraft assignments

obtained from the solution to Model FAAR-RLT. Table 4.2 reports the results obtained for

Model FAAR-RLT, and Table 4.3 provides the results for the subsequent solution of Model

CP.

From the numerical perspective, the results demonstrate the efficacy of the partially inte-

148



Table 4.1: Description of Test Instances

Flights Sta.
Total Connections Short

Connections

# of Aircraft Total

Itineraries
A320 B757 B777 A320 B757 B777

Test 1 128 17 4734 4655 4313 33 17 17 1 1642

Test 2 154 10 8687 8457 8133 49 32 19 2 1315

Test 3 205 5 10609 10445 10094 67 42 26 2 2319

Test 4 246 19 18688 18282 17552 102 49 31 2 3516

Test 5 354 25 23781 23369 22209 192 71 44 3 6124

Test 6 440 24 38622 37861 36127 231 88 55 4 7976

Test 7 522 23 44435 43629 41645 274 104 64 5 9075

grated Model FAAR-RLT, where all data instances were solved effectively within reasonable

computational times. The solution time required for the largest data instance was less than

five hours, while the other instances were solved within several minutes.

We also compared the lower bound on the minimum number of required aircraft for each

family, as computed in Section 4.2.1, with the actual number given by the solution. Appar-

ently, more aircraft than necessary were needed in order to run the network efficiently and to

maintain a cost-effective schedule. Furthermore, among the three aircraft families, because

the Airbus 320 has the lowest hourly operating cost, it was utilized to the fullest extent for

all test instances. Correspondingly, this family covered a large proportion of flights in the

network, ranging from about 50% to more than 75% of the total number of flights. On the

other hand, for the given test data, the Boeing 757 aircraft were used to a lesser extent, and

the Boeing 777 aircraft were seldom deployed.

Given the aircraft assignments to the flight legs as determined by the solution to Model

FAAR-RLT, the flight network gets correspondingly partitioned into sub-networks according

to aircraft families. For each family, the crew pairing model was then solved using the branch-

and-price heuristic BPH. Moreover, in order to curtail the solution effort, the solution to

CP was terminated upon finding the first integer-feasible solution. This strategy was well

justified in our computational experience since the resultant gap between the final objective

value and that from the LP relaxation turned out to be sufficiently small (usually less than
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Table 4.2: Fleet Assignment and Aircraft Routing Results

FAAR-RLT Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Comp. Time (min.) 1.80 4.89 3.37 22.26 36.90 83.64 260.42

Benders Cuts 2 1 1 2 2 1 2

LB on Required Aircraft

(as per Section 4.2.1) 30 33 56 57 88 95 117

Aircraft Used

A320 17 32 42 49 71 88 104

B757 17 6 24 31 44 55 64

B777 1 0 0 2 3 4 5

Flights Covered by

A320 68 140 165 150 216 278 349

B757 58 14 41 90 128 150 161

B777 2 0 0 6 10 12 12

0.5%).

The results presented in Table 4.3 show that the branch-and-price heuristic solved the test

instances within a few minutes to several hours depending on the structure of the problem,

which influences the number of feasible crew pairings generated at the root node by the

constrained shortest path algorithm, as displayed in the table. This is evident for Instance

3 that concerns a network involving key hubs, for which there exist abundant connection

opportunities at each involved station, leading to even more pairing opportunities for crew

members. Furthermore, the results show that only a few short connection opportunities are

adopted.

In order to assess the quality of the crew pairing results, the CP cost (converted to hours) was

also benchmarked against the total flight duration for the given instance. Unsurprisingly,

the network involving only the key hubs has a smaller cost-to-flight duration ratio since (i)

at each station, there exist many connection opportunities that involve short sit-times, and

(ii) these key hubs are mostly crew bases, which helps save on overnight costs. On the other

hand, for a typical hub-and-spoke network, the actual CP cost per flight hour is relatively

higher, but could be reduced by recruiting crews from an extended list of stations.

150



Table 4.3: Crew Pairing Results

CP Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Comp. Time (min.) 0.11 5.79 140.30 8.97 12.91 192.00 985.17

Pairings Generated

A320 728 3547 5697 3011 4355 6102 8516

B757 553 52 434 818 937 2233 1694

B777 3 0 0 12 28 36 33

# of Short Connections 6 13 11 3 13 9 20

Total Flight Time (hr.) 216.6 309.46 659.6 578.82 1006.1 1030.82 1749.8

CP Cost (work-hr.) 658.5 583.2 801.88 1155.5 2010.7 2151.49 2557.2

Ratio of CP Cost to Total

Flight Time 3.04 1.88 1.22 2.00 2.00 2.09 1.46

4.4.3 Results for the Integrated Fleeting, Routing, and Crew Pair-

ing Approach

We next present numerical results for Phase II of the proposed Algorithm A, which in-

volves solving the integrated Model FRC. Because this solution process repeatedly solves

the passenger-mix and crew pairing subproblems as opposed to the sequential approach of

Phase I, it consumes a relatively greater computational effort, ranging from less than an hour

to more than 10 hours. Yet, a significant improvement is achieved in profits over that from

the partial integration in Phase I, and it can be reckoned that the improvement over the con-

ventional sequential approach (which further separates the solution of the fleet assignment

and the aircraft routing problems) would only be greater.

Table 4.4 presents the results obtained, where we further provide insights into the relative

nature of solutions derived and their net profit potential in comparison against the results

obtained from Phase I. As it turns out, Phase II achieves additional profit by way of de-

creased crew pairing costs, which results from the manner in which the integrated approach

effectively adjusts the flight subnetwork for each aircraft family in order to help generate

better crew pairings. In particular, the larger-sized jets, i.e., the Boeing 757s and 777s,

were assigned to more flights legs so as to facilitate improved crew pairing decisions and
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thus lower the overall associated costs. Although the aircraft operational costs were subse-

quently higher, the look-ahead mechanism afforded by the integrated approach compensated

for this increase by lowering crew costs, thus resulting in an overall cost reduction. The ad-

ditional resulting profits (2.73% on average, which translates to about 43 million dollars per

year) demonstrate the effectiveness of the proposed integrated approach, which beneficially

overcomes the shortsightedness of the sequential approach.

Table 4.4: Results for the Integrated Approach

FRC Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Comp. Time for FRC (min.) 47.30 102.26 648.15 73.57 234.29 149.57 316.89

Benders Cuts 18 9 23 2 10 2 2

Aircraft Used

A320 17 32 42 48 71 88 104

B757 17 9 25 31 44 55 64

B777 1 0 1 2 3 4 5

Flights Covered by

A320 69 138 149 139 213 256 319

B757 57 16 54 101 131 176 191

B777 2 0 2 6 10 8 12

Comp. Time for CP (min.) 0.23 3.98 9.04 4.40 9.61 76.91 1208.30

CP Cost (work-hr.) 591.7 582.2 778.45 1097.4 1882.6 2066.09 2470.5

# of Short Connections 6 10 8 5 12 19 15

CP Cost Reduction w.r.t.

Phase I 10.14% 0.17% 2.92% 5.03% 6.37% 3.97% 3.39%

Obj. Value Improvement

w.r.t. Phase I 7.25% 2.45% 0.38% 2.43% 3.33% 0.68% 2.57%

4.5. Summary and Conclusions

In this chapter, we have presented an integrated model along with associated solution

methodologies for the airline scheduling process. The proposed model incorporates itinerary-

based fleet assignment, aircraft routing, and crew pairing within a single framework. We
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developed a layered flight connection network, where the flights were duplicated for each

fleet type, and connections for a particular fleet type were constructed based on the asso-

ciated maintenance stations and required work-times as well as the minimum turn-time at

any station. The model therefore extends the node-arc formulation for the aircraft rout-

ing problem proposed in Haouari et al. (2011a) to incorporate fleet assignment decisions,

while retaining a compact, polynomial-sized linear MIP. Furthermore, we included within

this model additional features of itinerary-based demands along with crew pairing decisions,

where the latter therefore simultaneously generate minimum-cost rotations for crew groups

according to their eligible aircraft families.

The complex structure of the problem and the large-scale of the model formulation inhibit a

direct solution using off-the-shelf software packages even for small-sized data sets. Hence, in

order to effectively tackle this integrated Model FRC, we adopted a Benders decomposition

solution framework where the fleeting and routing decisions were treated within the mas-

ter program, and the passenger-mix and crew pairing decisions were handled via separate

subproblems. In particular, due to the nonlinear cost structure and various work-rules in

the crew pairing subproblem, we further embedded a column generation algorithm within a

Lagrangian relaxation scheme, where a deflected subgradient algorithm (Subramanian and

Sherali, 2008) was applied to solve the restricted master program, and where eligible pairings

were derived using a constrained shortest path algorithm. Moreover, we generated maximal

nondominated Benders cuts as per Sherali and Lunday (2011) via the passenger-mix and

crew pairing subproblems, and we adopted several other acceleration strategies such as the

Benders scheme proposed by McDaniel and Devine (1977) and Geoffrion and Graves (1974)

in order to generate an initial set of cuts and to effectively manipulate the master program,

repsectively.

To demonstrate the benefits of this integrated modeling approach, we proposed a two-phase

solution framework, where in Phase I we solved Model FAAR-RLT that represents a partially

integrated itinerary-based fleet assignment and aircraft routing problem, followed by a se-

quential solution of a crew pairing problem for each sub-network based on the resulting fleet

assignment decisions. In Phase II of this framework, we solved the fully integrated Model

FRC as described above, using a set of initial cuts as generated during Phase I. Several test

instances were derived using historical data obtained from United Airlines, a legacy US car-

rier. The computational results obtained demonstrated the value of adopting an integrated
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viewpoint in Phase II as opposed to the (partially) sequential approach of Phase I. On av-

erage over our set of seven test instances, this achieved an improved profit of about 2.73%

(or an estimated 43 million dollars per year), which accrued mainly from a judicious, albeit

more expressive, utilization of the available fleet in a manner that significantly decreased the

crew pairing costs, thus reducing the overall costs.
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Chapter 5

Summary, Conclusions, and

Recommendations for Future

Research

This dissertation has studied the airline scheduling decision-making process that involves

fleet assignment with itinerary-based demands, aircraft routing, and crew pairing, using

mathematical optimization models and solution techniques. We began by developing a novel

compact node-arc formulation for the daily aircraft maintenance routing problem, based

on which we designed an integrated model that further incorporates fleet assignment and

crew pairing decisions. These models, along with proposed specialized decomposition-based

solution procedure, were tested using real-life data sets obtained from United Airlines for

the purpose of demonstrating their efficacy and for providing insights to the airline industry.

The model for the aircraft routing problem (ARP) considers a daily repeated flight network

for a specific aircraft fleet type, where individual aircraft in this fleet are assigned to each

flight leg under a series of mandatory maintenance regulations. The objective function of

the ARP maximizes the through-value, which is defined as the extra profit gained from

providing convenient connection opportunities. In addition, the ARP is sometimes treated

as a feasibility problem that finds a set of suitable rotations for aircraft. To address the

ARP, we proposed a polynomial-sized formulation that involves three main maintenance

indices, i.e., the flying time, the number of days, and the number of take-offs between
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two consecutive maintenance checks. This novel node-arc formulation, which has nonlinear

constraints, was linearized using the Reformulation-Linearization Technique (RLT), and was

further enhanced via suitable valid inequalities. In addition, we proposed two root-node

strategies, i.e., a partial convexification process and another set of valid inequalities derived

from it, in order to improve the representation of the model and thus enhance its solvability.

The resulting lifted model was solved using a commercial solver (CPLEX). Five test instances

were generated using historical data obtained from United Airlines. The computational

results demonstrated the utility of our enhanced formulation, where the largest instance

with 344 daily flight legs was optimized in about 10 CPU seconds.

Next, we extended this modeling concept by incorporating the other decision-making stages

of fleet assignment and crew pairing from the airline scheduling process. Because of the inter-

dependencies between these various stages within traditional sequential solution approaches,

when the results from the upstream fleet assignment stage are passed to the downstream

stages of aircraft routing and crew pairing as given inputs, this limits the scope of the latter

and leads to sub-optimal, or even possibly infeasible, solutions. In addition, the aircraft rout-

ing problem is also intertwined with the crew pairing model due to the rules involving short

connections for crews. Consequently, a single integrated framework that incorporates all the

three concerned stages is beneficial for capturing the interdependencies and thus obtaining

improved solutions.

With this motivation, we developed an integrated framework for the airline scheduling prob-

lem, where we first extended the proposed aircraft routing model to incorporate fleet as-

signment decisions by introducing a layered flight network for each fleet type. Moreover,

we considered within this model the relatively more practical features of itinerary-based de-

mands and fare-class-based seat capacities in various cabin-classes for each type of aircraft.

As a next major step, we incorporated within the model crew pairing decisions, which gener-

ates for each aircraft family a set of feasible crew rotations that satisfy a series of mandated

FAA-imposed work-rules. This integrated fleeting, routing, and crew pairing (FRC) model

seeks to maximize the total profit, which is defined by the revenues from airfares and conve-

nient through-flight combinations minus the operational costs of aircraft and crews as well

as the opportunity cost due to spilled customer demands.

We designed a two-phase algorithm for solving Problem FRC, where in Phase I, a partially

156



integrated Model FAAR-RLT that involves the fleet assignment and aircraft routing deci-

sions was solved, and the resulting fleet assignment decisions were then passed to the crew

pairing problem. In Phase II, we next solved the fully integrated Model FRC using a Ben-

ders decomposition-based approach, where the fleeting and routing decisions were handled

within the Benders master program, and the passenger-mix and crew pairing decisions were

treated within separable subproblems. Furthermore, the crew pairing subproblem was solved

using column generation, where the restricted master program was solved using a deflected

subgradient algorithm as proposed by Subramanian and Sherali (2008). In addition, sev-

eral acceleration strategies were applied to facilitate the solution process, such as using the

strategy of McDaniel and Devine (1977) to generate an initial set of Benders cuts, that of

Geoffrion and Graves (1974) to solve the Benders master program as a single mixed-integer

program, and the technique for generating maximal nondominated Benders cuts by appro-

priately perturbing the right-hand sides of subproblems as per Sherali and Lunday (2011).

In order to demonstrate the efficacy of the proposed integrated model and the solution frame-

work, several test instances were derived from real-life data provided by a leading US legacy

carrier,United Airlines. The computational results revealed the effectiveness of the partially

integrated approach in Phase I whereby near-optimal solutions to instances involving up to

500 daily flights were readily obtained within five wall-clock hours. Furthermore, the fully

integrated Model FRC solved in Phase II achieved an average improvement in total profit

of 2.73% over the Phase I solution within reasonable times, which translates to about 43

million dollars per year. This improvement resulted from a better utilization of the available

fleets, whereby relatively larger-sized jets were deployed more judiciously to facilitate crew

pairing decisions, thus yielding correspondingly lower crew costs that compensated for the

slightly increased aircraft operational costs, leading to an overall net increase in profit.

The flexibility of the proposed model permits incorporating other aircraft routing restrictions

without adding much expense in terms of the model size. The crew pairing rules can also be

readily modified in order to accommodate different realistic requirements. Moreover, other

airline operational decision-making stages can be further integrated within the framework,

such as the demand-driven dispatch strategy (Shebalov, 2009) that examines provisional

plane swaps according to updated demand information. Furthermore, the proposed frame-

work can be used to study other higher-level decisions, as for example, the potential benefits

of incorporating certain optional flight legs, and can be tied in with revenue management
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strategies in order to better deal with seat inventory control, as well as to provide insights

into pricing and overbooking decisions. Finally, another possible direction for future research

is to enhance the model’s solvability from the computational perspective by using parallel

computing techniques, particularly since the Benders subproblems are solved independently

from each other.
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