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Few articles have been written on analyzing and visualizing three-way interactions
between drugs. Although it may be quite straightforward to extend a statistical method
from two-drugs to three-drugs, it is hard to visually illustrate which dose regions are
synergistic, additive, or antagonistic, due to a four-dimensional (4-D) problem of plot-
ting three-drug dose regions plus a response. This problem can be converted and solved
by showing some dose regions of our interest in a 3-D, three-drug dose regions. We
propose to apply a modified genetic algorithm (MGA) to construct the dose regions of
interest after fitting the response surface to the interaction index (II) by a semipara-
metric method, the model robust regression method (MRR). A case study with three
anti-cancer drugs in an in vitro experiment is employed to illustrate how to find the
dose regions of interest. For example, suppose researchers are interested in visualizing
where the synergistic areas with II ≤ 0.4 are in 3-D. After fitting a MRR model to the
calculated II, the MGA procedure is used to collect those feasible points that satisfy
the estimated values of II ≤ 0.4. All these feasible points are used to construct the
approximate dose regions of interest in a 3-D.

KEY WORDS: Genetic Algorithm (GA); Interaction Index (II); Model Robust Re-
gression (MRR); Synergism; Three-drug combination; Viability.



1 Introduction

Studies of interactions among drugs have become increasingly important and inter-
esting in many areas of biomedical research including oncology [1]. An effective and
accurate evaluation of drug interaction for in vitro and/or in vivo studies can help
to determine whether a combination therapy should be further investigated in clinical
trials.

Many different methods have been proposed in the literature on how to evaluate
drug interactions. A review by Berenbaum [2] included eight approaches, and another
review by Gerco et al [3] categorized 13 approaches for determining drug interactions.
A recent review by Lee [4] compared seven models in the anesthetic area. Zhao et al [5]
compared four methods: the three popular ones, the isobologram [6], the combination
index analysis [7], the universal response surface method [3, 8, 9], and the one developed
by Zhao’s lab, the curve shift analysis. They concluded that all the methods were useful
and provided complimentary information.

Although there is no uniform agreement on the terminology of drug interaction [4],
the Loewe additivity model is considered as the “gold standard” when defining drug
interactions [1, 2, 3, 4, 10, 11].

For a dose mixture of a three-drug combination at (x1, x2, x3), based on the Loewe
additivity model, Berenbaum (1977) defined the interaction index (II) at (x1, x2, x3)
as

II =
x1
X1

+
x2
X2

+
x3
X3

, (1)

where Xk represents the dose of the kth drug alone that yields the same response as
observed one at the combination (x1, x2, x3) and k = 1, 2, 3. Since the value for
each Xk is unknown, it typically is estimated from a dose-response curve fit to data
resulting from an experiment where each drug is tested alone. Consequently, II must
be estimated at each drug combination. This method will be illustrated in Section 4.3.
The three drugs are called additive at the combination if the interaction index II = 1,
or synergistic (antagonistic) if II < 1(> 1). An appropriate statistical model may then
be used for modeling a response surface of the calculated interaction indexes.

In a case of a two-drug combination, a three-dimensional (3-D) surface may provide
a complete description on dose effect [2, 3, 13, 14, 15] and may be estimated paramet-
rically, non-parametrically, or semi-parametrically [1, 14, 16]. As mentioned in Fang et
al [14], the interpretation of interactions can be easily and visually inspected on either
contours of the response surface of interaction indexes [17] or by using the 3-D surface
graphical method [15]. Then departures from the theoretical additive surface with the
actual estimated surface can be used to identify regions of synergy and/or antagonism.

Previous literature on evaluating drug interactions has focused on the two-drug
combination case. One reason may be that a two-drug analysis is easy to illustrate.
Another reason for this may be that three-or-more-drug combination is much more
complicated to describe and illustrate than the two-drug combination since there may
exist not only second order interactions but third order and higher interactions as well.
In addition, while it can be quite straightforward to extend a statistical model from
a two-drug to a three-drug combination, the graphical display of the response surface
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and the contour plot are much more difficult to obtain due to the 4-D nature of the
three-drug dose plus a response region.

It is not possible to obtain a 4-D response surface plot but we can obtain a 3-D
figure showing some desirable region(s) of interest. In this study, we use the three mod-
eling methods, the parametric (a common response surface method), nonparametric,
and semiparametric methods, to model the interaction index surface and the viability
surface, respectively. After finding the best method, based on a certain model com-
parison criteria, for fitting the interaction index surface, we apply a modified genetic
algorithm (MGA) [18] to construct dose region(s) of interest which can be visualized
in a 3-D plot.

The remainder of this paper is organized as follows. First, we briefly introduce
s semiparametric method, the model robust regression (MRR) technique; a nonpara-
metric method; and a more traditional parametric method. Second, we introduce the
modified genetic algorithm (MGA) and apply the MGA to construct dose region(s) of
interest based on the best model fit. Finally, a real example based on three anti-cancer
drugs is introduced to compare the three methods and illustrate how to find interesting
region(s) including those representing synergism and/or antagonism.

2 Semiparametric Approach: Model Robust Re-

gression

Semiparametric approaches combine a parametric method with a nonparametric method.
One semiparametric method, model robust regression (MRR), proposed by Mays, Birch
and Starnes [19], was originally developed for situations when there is partial knowledge
about the underlying model, a situation very common in real life. It has been shown
that MRR can improve estimates of mean response by combining both the parametric
and nonparametric estimates into one estimate, simultaneously reducing both bias and
variance of estimation [19, 20].

Suppose we want to estimate the true relationship between the k explanatory vari-
ables, x1i, x2i, ...xki, and the response variable, yi, i = 1, ..., n, where n is the sample size.
We assume that a random measurement error is independent, identically distributed,
with mean zero and constant variance.

To obtain a MRR fit [20], first, obtain a parametric fit to the raw data y, which
can be estimated by the ordinary least squares (OLS) method. Second, obtain a
nonparametric fit to the residuals r that result from fitting the parametric fit to the
raw data. Any reasonable nonparametric method can be used such as spline-based
methods or kernel-based methods. We used local linear regression (LLR), a kernel-
based method, for this application. Third, choose an appropriate mixing parameter λ,
where λ ∈ [0, 1] which is used to combine the parametric fit with the nonparametric
fit so that the MRR fit can achieve minimum of a prediction error criterion.

Thus, the MRR fit at x′0 = (x10, x20, ..., xk0) can be given by

ŷ
(MRR)
0 =

^
x
′
0(X

′X)
−1

X′y + λx̃′0(X̃
′Wr0X̃)

−1
X̃′Wr0r = h

(OLS)′

0 y + λh
(LLR)′

r0 r, (2)

where in its parametric portion,
^
x
′
0 = (1, x10, ..., xk0, x(k+1)0, ..., x(q−1)0) with q potential

regressors and the matrix X′ = [
^
x1, ...,

^
xn]′. In its nonparametric portion, the residual
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vector r = y − ŷ(OLS) = y − ^
x
′
0(X′X)−1X′y is considered as a new response, x̃′0 =

(1 x10 ... xk0) = (1,x′0), the matrix X̃′ = [x̃1, x̃2, ..., x̃n]′, the local weight matrix Wr0 =

diag(w
(KER)
r01 , · · · , w(KER)

r0n ), and w
(KER)
r0i = K(x0,xi)

n∑
i=1

K(x0,xi)
is a kernel weight associated with

the distance of x′i to x′0. We use the so-called Gaussian kernel function in this work,
K(x0,xi), given by

K(x0,xi) ∝ K

(∥∥∥∥x0 − xi

br

∥∥∥∥) or
k∏

j=1

K
(

x0j−xij

br

)
, (3)

where K
(

x0j−xij

br

)
= e

−
(

x0j−xij
br

)2
, j = 1, ..., k. The bandwidth parameter br, also called

the smoothing parameter, is utilized to determine the smoothness of the estimates. The
br is chosen first and the mixing parameter λ second to achieve a minimum of a type
of the prediction error sum of squares (an adjustment to the PRESS statistic, referred
to as PRESS** by Wan and Birch [20]). The details of the choice of the bandwidth
and the mixing parameter can be found in Wan and Birch [20].

In addition, equation (2) can be written in terms of “HAT” vectors: in the para-

metric portion h
(OLS)′

0 =
^
x
′
0(X

′X)−1X′, and in the nonparametric portion h
(LLR)′
r0 =

x̃′0(X̃
′Wr0X̃)

−1
X̃′Wr0.

Two other methods can be used to fit a model to the response. Based on the
settings above for the MRR fit, the parametric method, based on the OLS fit at x′0 =
(x10, x20, ..., xk0) is

ŷ
(OLS)
0 =

^
x
′
0(X

′X)
−1

X′y = h
(OLS)′

0 y, (4)

exactly the same as the parametric proportion of the MRR fit. And for the nonpara-
metric method, the LLR fit is

ŷ
(LLR)
0 = x̃′0(X̃

′W0X̃)
−1

X̃′W0y = h
(LLR)′

0 y. (5)

Insteading of using the residuals r as a response variable as in the nonparametric
proportion of the MMR fit, the LLR fit uses the raw data y directly. The LLR local
weight matrix W0 is similar to Wr0 but with different weights due to using a different
bandwidth. The LLR model chooses a bandwidth, b, by minimizing PRESS** of the
raw data instead of the residual data.

In this study, the vector x′ is 1× 3, representing dose levels of three drugs. The re-
sponse variable y is the interaction index or viability which is defined below in equation
6.

3 Using a modified genetic algorithm to find syn-

ergistic regions of interest

After building a fitted model in Section 2, we would often like to visualize its entire
response surface. However, as previously mentioned, we cannot display a 4-D plot. In
this study, instead of showing the entire response surface, we can display those regions
that are of interest. For example, those regions displaying synergistic, additive, and
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antagonistic interaction behavior, where, for example, whose ÎI ≤ 0.4, 0.9 ≤ ÎI ≤ 1.1,
and ÎI ≥ 1.8, respectively. Here ÎI refers to the estimated interaction index that is
obtained by one of the three estimation methods described in Section 2 used to fit the
II data. This actually becomes an optimization problem, whose objective function is
either equation (2), (4) or (5). We use a modified genetic algorithm (MGA) by Wan
and Birch[18] to find the region(s) of interest.

A genetic algorithm (GA) and its MGA both are adaptive heuristic global opti-
mization algorithms. In GA terminology, a set of multiple concurrent search points
or a set of chromosomes (or individuals) is called a population. These chromosomes
are evaluated for their performance with respect to an objective function. Each iter-
ative step where a new population is obtained is called a generation. The three main
GA operations, utilized to generate a new population from the current population in
each iterative step, consist of selection, crossover, and mutation. Each GA operation
involves randomness. Therefore, if a GA is repeatedly many times, we can imagine
that solutions at each generation at each time are different from each other due to its
randomness and its heuristic search [18].

The idea of the MGA [18] is to incorporate the Nelder-Mead (NM) simplex algo-
rithm, a local directional search method, into a traditional genetic algorithm process.
During each GA iteration cycle, once the GA finds a point of interest, a simplex local
search is implemented with the point considered as a starting point for the simplex al-
gorithm. The local search is halted when the objective function fails to either increase
or decrease, depending on the optimization goal. During the MGA process, all the
points of interest are recorded as long as their ÎI values satisfy the requirements (for
example, ÎI ≤ 0.4, 0.9 ≤ ÎI ≤ 1.1, or ÎI ≥ 1.8). Such points are referred to“feasible
points.” The MGA combines the advantage of both the GA and NM methods. In the
MGA process, the GA component moves quickly throughout the combination mixture
space to locate points of interest and the NM simplex component examines the local
region around each point of interest in greater detail to collect as many feasible points
as possible in those region(s). A basic MGA procedure is provided in Appendix.

Wan and Birch [18] also provided a procedure of using the MGA to determine the
approximate feasible regions with the following three stages. Step 1 below is set to find
the feasible synergistic area. This step can be easily altered by adjusting the IIcutoff
if the feasible additive and/or the feasible antagonistic regions are desired.

1. Based on the priority from the experimenters, the II’s feasible solutions are
determined. That is, an appropriate cutoff value, IIcutoff , is chosen so that all
locations found by MGA which achieve corresponding II values less than or equal
to this cutoff are regarded as feasible points.

2. When MGA is repeated many times with different random seeds, feasible points
are collected. As the number of repetitions of MGA is increased, the approximate
feasible regions approach the true feasible regions.

3. Plot these feasible points in a 3-D dose region. Then, based on these plots,
calculate the feasible dose regions for each drug.
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4 Example: Three Anti-cancer Drugs in In Vitro

Experiment

In our case study, three anti-cancer drugs were considered CEP-3891 (denoted by CEP),
a cell-cycle checkpoint kinase (Chk1) inhibitor, PD-184352 (PD), a MEK1/2 inhibitor,
and HA14-1 (HA), a B-cell lymphoma-2 (Bcl-2) inhibitor. The goal of the experiment
was to determine whether there are synergism effects of the three drugs against human
Multiple Myeloma cells. The doses of these three drugs were denoted by x

CEP
, x

PD
,

and x
HA

, respectively. The primary outcome measurement was 7-Aminoactinomycin
D (7-AAD) staining, used to measure percentage of killed cancer cells. To adjust the
effect of negative control (saline), viability for percentage of survival cells, the response
variable of interest, was calculated as follows:

viability = 100×(100−percentage of killed cells)/(100−percentage of killed cells at control).
(6)

4.1 Study design

Due to the need to reduce developmental time and costs, especially important in can-
cer drug development [11], for in vitro studies, we used the Tan and Fang’s method
[11, 14, 21, 22] to determine doses of mixtures of three drugs and sample sizes to de-
tect departures from additivity. The Tan and Fang’s method is designed for the case
of non-constant potency of one drug to another and for the presence of nonparallel
single dose-response slopes between drugs, a situation very common in practice. The
main idea of their experimental design method is to select dose combinations that are
uniformly scattered in the experimental domain that maximizes the power of an F-test
through a semiparametric model whose nonparametric portion is expected to capture
any departures from additivity.

Based on preliminary single drug dose-response data collected initially, the dose
mixtures were obtained by the Tan and Fang’s method. There were 30 mixtures (m =
30) of the three-drug combinations with eight replicates. The dose ranges of the three
drugs in the mixtures are x

PD
∈ [1.73, 14.78]µM , x

HA
∈ [1.48, 14.77]µM , and x

CEP
∈

[0.18, 1.77]µM . The experimental domain in this case was a rectangular cuboid where
the lengths of the three dose ranges would be the dimensions of the cuboid. All the
dose mixtures obtained in this case were uniformly scattered in the cuboid including
the surfaces of the cuboid.

The experimental data was collected and provided by Dr. Steven Grant’s lab, at
Virginia Commonwealth University.

4.2 Results on single drug dose response curves

Figure 1 shows the observed single drug dose-response data (red cycles) and three fitted
blue lines representing their linear relationships for the three drugs respectively. The
response variable is viability. The fitted models can be found in the titles of each sub-
figure. The degree-of-freedom-adjusted coefficient of determination (denoted by R2

adj

[24]), a measure of goodness-of-fit of the linear models, was 97.17%, 97.45%, 91.53% for
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PD, HA and CEP, respectively. All the three single drug dose-response linear models
can explain over 90% variability of the observed data, indicating that all the estimated
models fit the data quite well.

[Insert Figure 1 about here.]

Both potency of HA relative to PD and potency of CEP relative to PD are not
constant due to their different slopes and intercepts. Definition of potency can be
found in Tan et al [11].

4.3 Results on response surfaces of interaction index and vi-
ability in mixtures of three-drug combinations

We can calculate the interaction index at mth mixture combination (x(m)
PD
, x(m)

HA
, x(m)

CEP
)

using (1), once we know the single drug dose-response curves given by the estimated
linear models as mentioned in Section 4.2. More specifically, a value of II at the mth

mixture and the jth replicate can be given by

IImj =
x(m)

PD

(ymj − α̂PD)/β̂PD

+
x(m)

HA

(ymj − α̂HA)/β̂HA

+
x(m)

CEP

(ymj − α̂CEP )/β̂CEP

, (7)

where ymj is the viability at the mth combination (x(m)
PD
, x(m)

HA
, x(m)

CEP
) and the jth repli-

cation, m = 1, ..., 30, j = 1, ..., 8. The α̂s and β̂s are the estimated intercepts and
slopes, respectively, in the fitted linear models, shown in Figure 1. In the case study,
II is considered as a random variable, depending on values of the combination dosages,
(x

PD
, x

HA
, and x

CEP
), all of which are random explanatory variables. We use ÎI to

represent the estimate of mean response at each dose combination from a fitted model
to the II values.

The maximum of the observed viability is 101.62% at (x
PD

= 0.0, x
HA

= 0.0, x
CEP

=
0.6) and its minimum is 5.45% at (x

PD
= 13.88, x

HA
= 12.94, x

CEP
= 1.61). The maxi-

mum of the calculated II per definition (7) is 1.81 at (x
PD

= 13.88, x
HA

= 12.94, x
CEP

=
1.61) and its minimum is 0.54 at (x

PD
= 3.98, x

HA
= 1.94, x

CEP
= 0.56). Obviously,

there exist synergistic, antagonistic, and additive areas of the three drugs in the dose
range of the 30 mixtures.

To discover where the synergistic, antagonistic, and additive areas are, modeling
the response surfaces of the random variables II and viability respectively is the next
step. As mentioned in Section 2, we apply the MRR/OLS/LLR approaches to model
the II and the viability, respectively.

Table 1 shows the results of model comparisons of the OLS, LLR, and MRR methods
in II and viability with respect to the four criteria: 1)DFerror, the degrees of freedom of
error, is given by DFerror = n−tr(H) [23], where H is the ”hat” matrix appropriate for
each method, MRR, LLR, and OLS. See Wen and Birch [20] for complete definitions;
2) s2, estimate of error variance, computed as sum of squares for error divided by
DFerror; 3) R2

adj; 4) PRESS**, a type of prediction error sum of squares, as mentioned
in Section 2. Criteria 1-3 focus on describing how well a model is fit by the observed
data, while Criteria 4 focuses on describing the prediction capability associated with
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the fitted model. Criteria 2-4 are standard criteria for comparing models [24]. We hope
to find a model with the largest DFerror and R2

adj and the smallest s2 and PRESS**.

[Insert Table 1 about here.]

In Table 1, all adjusted coefficients of determination, R2
adj, are over 95% indicating

that all methods fit very well. The MRR method fits the best in describing II and
the LLR method best fits viability in terms of s2, R2

adj, and PRESS**. The MRR fits
actually are quite competitive to the LLR fits in both the response surfaces for II and
viability. Therefore, we use the MRR fits to obtain the dose regions of interest, which
will be mentioned in Section 4.4.

The parametric OLS model may be the easiest way to interpret the interactions
between the drugs in the three methods. The OLS fits, also the parametric proportions
of the MRR fits, are chosen by the highest R2

adj as follows.

ÎI
(OLS)

= 1.46− 0.39x
PD

+ 0.11x
HA
− 1.13x

CEP
+ 0.0014x

PD
x

HA
+ 0.29x

PD
x

CEP

−0.016x
HA
x

CEP
+ 0.0013x

PD
x

HA
x

CEP
+ 0.048x2

PD
− 0.0043x2

HA
+ 0.44x2

CEP
− 0.0017x3

PD

+0.00017x3
HA
− 0.11x3

CEP
− 0.00020x2

PD
x

HA
− 0.034x2

PD
x

CEP
+ 0.0013x3

PD
x

CEP
,

(8)
and

ˆviability
(OLS)

= 127.46− 14.67x
PD
− 8.60x

HA
− 57.73x

CEP
+ 0.93x

PD
x

HA
− 4.62x

PD
x

CEP

+5.20x
HA
x

CEP
− 0.13x

PD
x

HA
x

CEP
+ 1.04x2

PD
+ 0.31x2

HA
+ 16.14x2

CEP
− 0.029x3

PD
− 0.017x3

HA

−0.045x2
PD
x

HA
+ 0.30x2

PD
x

CEP
+ 0.095x2

HA
x

CEP
+ 1.41x2

CEP
x

PD
− 2.35x2

CEP
x

HA
.

(9)
Both OLS models are hierarchical lower-order polynomial with interactions between

the three drugs. Only one term is not significant with p-value = 0.31 (the interaction

term x
PD
x

HA
in ÎI

(OLS)
) and all the other terms in both models above are significant

with p-values < 0.05.
Both OLS models have three regular two-way interactions, a three-way interac-

tion, second-order polynomials, third-order polynomials, and interactions between one
drug and second-order polynomial of another drug. The two regressors x3

PD
x

CEP
and

x3
PD
x

CEP
in the II OLS model are not in the viability OLS model, while x2

HA
x

CEP
,

x2
CEP

x
PD

, and x2
CEP

x
HA

in the viability model are not in the II model. There exist
a total of 14 items in both models, although a few of signs of coefficients in the two
models were opposite.

The signs of the estimated coefficients in the viability model (9) indicate that the
viability response surface is not a monotonic function of the three drugs. Therefore,
unlike II, smaller values of viability may not represent the synergism and larger values
of viability may not represent the antagonism, both depending on mixture dosages.
Only values of II can tell whether its corresponding mixtures are synergistic, additive,
or antagonistic, per the definition in equation (1).

In the estimated OLS model of II in (8), values of II could be > 1(= 1, < 1),
depending on the combination values of dose mixture (x

PD
, x

HA
, x

CEP
). That is, in the

dose region with 0 ≤ x
PD
≤ 14.78, 0 ≤ x

HA
≤ 14.77, and 0 ≤ x

CEP
≤ 1.77, there exist

some synergistic, antagonistic, and additive areas of the three drugs.
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To discover the synergism (antagonism) of two drugs (say, PD and HA), we can set
the dose level of the third drug to zero, i.e., x

CEP
= 0 in (8). Then the OLS model

becomes

ÎI
(OLS)

(PD,HA) = 1.46− 0.39x
PD

+ 0.11x
HA

+ 0.0014x
PD
x

HA
+ 0.048x2

PD

−0.0043x2
HA
− 0.0017x3

PD
+ 0.00017x3

HA
− 0.00020x2

PD
x

HA
.

Obviously, an estimated ÎI value of the model with x
CEP

= 0 could be > 1(= 1, < 1),
therefore, there exist some synergistic, additive, and antagonistic areas of the drugs
PD and HA in the region of 0 ≤ x

PD
≤ 14.78 and 0 ≤ x

HA
≤ 14.77. Of course, these

areas for drugs PD and HA would likely change with values x
CEP

different from zero
as the presence of a significant 3-way interaction indicates that any 2-drug interaction
is dependent on the third one.

The next section will show by using MGA how to visualize the synergistic and
antagonistic areas of interest of the three drugs.

4.4 Results on regions of interest

The range of the calculated values of II based on observed data is [0.54, 1.81]. Suppose
researchers are interested in the synergistic areas with II ≤ 0.4, the additive areas with
0.9 ≤ II ≤ 1.1, and the antagonistic areas with II ≥ 1.8. Using the MRR fit to II, the
MGA is used to find the synergistic, additive, and antagonistic areas by those feasible
points satisfying the objective functions as follows, respectively:

ÎI
(MRR)

≤ 0.4, (10)

0.9 ≤ ÎI
(MRR)

≤ 1.1, (11)

ÎI
(MRR)

≥ 1.8. (12)

Using the procedure in Section 3, we are able to find all feasible points, which
satisfy our requirements in (10 - 12). Using recommendations from Wen and Birch
(2011), we set each MGA with 300 iterations and we run a MGA about 50-200 times
with different random seeds. Once the feasible points are found, we plot them in a 3-D
dose region.

Figure 2 shows the two separate synergistic areas of the three-drug dose regions
with II ≤ 0.4 in the two different angles: the left figure is for the regions of PD vs HA
vs CEP and the right one is for CEP vs PD vs HA. The colors of dots are changed
from red at the front of the cuboid to black at the back. The two separate regions are
one with the dose ranges of 0.0 ≤ x

PD
≤ 0.79, 0.0 ≤ x

HA
≤ 1.47, 1.56 ≤ x

CEP
≤ 1.77

and the other with 4.47 ≤ x
PD
≤ 6.77, 0.0 ≤ x

HA
≤ 0.22, 0.22 ≤ x

CEP
≤ 0.81. The

smallest II value found by MGA is 0.29 at mixture (0.0, 0.0004, 1.77).

[Insert Figure 2 about here.]

Figure 3 shows the additive three-drug dose areas with 0.9 ≤ II ≤ 1.1 in two
different angles, which are the same as in Figure 2. From the mixture at about (0.0,
14.77, 1.77), as both HA’s and CEP’s dose levels decrease and PD’s gradually increases,
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the additive area become more wider. Comparing the two right-side figures in Figures
2 and 3, the region under the additive surface is likely to be synergistic, while the
region above the surface is likely to be antagonistic.

[Insert Figure 3 about here.]

Figure 4 shows four antagonistic areas with II ≥ 1.8 in two different angles. The
biggest area is a triangular based pyramid, whose apex is at (0.0, 14.77, 0.0). As levels
of PD and CEP increase and level of HA decreases simultaneously, the base of the
pyramid becomes wider. This pyramid reaches out an “arm” toward CEP. That is,
as level of CEP increases with fixed levels of x

PD
= 0.0, and x

HA
= 14.77, it is also

antagonistic. There are two small antagonistic areas like two “rain drops” from the
pyramid: one is with both x

PD
and x

CEP
around 0.0 and x

HA
in about [2.5, 4.0]; and

the other is with x
CEP

around 0.0, x
HA

around 14.77, and x
PD

in about [10.0, 13.5].
The fourth antagonistic area is another pyramid whose apex is at about (14.78, 14.77,
1.77), the largest dose combination. The largest II value found is 3.0 at (14.78, 14.77
1.73). All these areas are above the additive surface shown in the right graph of Figure
3.

[Insert Figure 4 about here.]

5 Conclusion and Discussion

Studies of interactions among drugs have become increasingly important and inter-
esting, though little research exists that describes interactions for three or more drug
combinations. Through a case study of three anti-cancer drugs, we propose to apply
the MGA procedure to construct combination regions of interest after fitting a MRR
model of interaction index (II). This method can be easily extended to a case of four
or more drug combinations for finding combination regions of interest, by using condi-
tional plots, that is, 3-D plots conditioned on a specific value or range of values of the
other drugs.

In this study, the Loewe additivity model is used as the “gold standard” to define
interactions of three-drug combinations: synergistic (II < 1), additive (II = 1), and
antagonistic (II > 1). Since II is considered as a random variable with a certain
variability, its range [0.9, 1.1] was recommended as “nearly additive” by the computer
software Calcusyn [25].

A semiparametric method, MRR, was used to model the response surface of esti-
mated values of II. The main idea of MRR is to account for deficiencies in a possibly
misspecified parametric model utilizing any systematic structure contained in the resid-
uals resulting from parametric fit. In this study, our parametric model, a lower-order
polynomial model with interactions, is fit to the II values via the OLS method. The re-
sulting residuals are then smoothed with an appropriate nonparametric method (LLR
is used in this paper). The resulting smoothed fit to the residuals is then combined
with the parametric fit via a mixing parameter, λ, chosen to minimize an adjusted pre-
diction oriented criteria. MRR was designated for those situations when there is partial
knowledge about the underlying model. In the case study, the three methods OLS,
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LLR, and MRR for fitting the II response surface are compared. All three methods
fit the calculated II values very well with their adjusted coefficients of determination
all over 95%. In terms of prediction error sum of squares and the estimate of error
variance, MRR fits are the best in describing II and very competitive to LLR in de-
scribing viability. The estimated II values ranged from 0.54 to 1.81 indicating that in
the combination regions, some areas are synergistic, some are additive, and others are
antagonistic. In other words, combinations of the three drugs (PD, HA and CEP) are
not always synergistic.

After fitting the response surface to the calculated II response values, we apply
the MGA procedure to construct combination dose regions of interest such as the
synergistic areas with II ≤ 0.4, the additive areas with 0.9 ≤ II ≤ 1.1, and the
antagonistic areas with II ≥ 1.8. The MGA procedure, introduced by Wan and Birch
(2011), is actually a improved Hybrid Genetic Algorithm (HGA). Its main idea is
that with benefits from the stochastic property of a GA, we let GA quickly locate the
feasible regions and then utilize the Nelder-Mead simplex method, a local optimization
method, to collect the feasible points. This process should be repeated many times
with different random seeds so that the collected feasible points can approximately
generate the regions of interest. In addition, MGA or HGA are global optimization
tools, which can deal with any high-dimensional nonlinear model. Wan and Birch [18]
mentioned that MGA could be a good choice for finding all feasible regions, even for
very high dimensional, complicated problems.

During the process of collecting feasible points of interest, we found that sometimes
too many feasible points were collected resulting in a very nice looking smooth shape
but one so large as to be too hard to display in a timely manner. For such cases,
we remove all redundancy points (i.e., duplicates) and even randomly remove some
feasible points. This remedy does little to alter the shape of the region but greatly
enhances the ability to display the plot.

Whether a combination dose region is synergistic or not completely depends on a
value of II. Therefore the accuracy of the II values is very important. Following its
definition, the value of II depends on the doses of single drugs alone that yield the same
response as observed at a particular combination of drugs. Therefore, improving the
accuracy of the single drug dose response curves may improve the quality of II. In the
future work, we plan to use the MRR method to fit the single drug dose response curve.
The results may be a better description of the data though it will likely complicate the
computation required to compute II.

A possible limitation of the study is that the viability values of a single drug dose
response of CEP are all > 70% in Figure 1, which may be unrealistic. Another possible
limitation is determining the boundaries of ÎI for classifying the dose combinations
for additivity, synergistic, and antagonistic regions, especially for additivity region.
In our case study, the boundaries of the additivity region were chosen based on the
recommendation of the software Calcusym [25] and they may not be appropriate for
other case studies. There likely exist more formal quantitative methods for determining
these boundaries. One possible method is for each dose combination selected by the
MGA, x0, compute not only the estimated interaction index there, ÎI0, but its 95%
confidence interval. If this interval contains one, supporting the hypothesis that II0 =
1, then x0 is considered as a feasible point in the additivity region. If the upper
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confidence limit is substantially below (above) one, then x0 is considered as a feasible
in the synergistic (antagonistic) region. Other reasonable methods exist as well.

R code and C++ code are available upon request from the authors.
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APPENDIX: Modified Genetic Algorithm Used to Find Feasible Points

A basic MGA procedure has the following steps (Wan and Birch, 2011).

1. Define an objective/fitness function, and its variables. Set GA operations (such
as population size, parent/offspring ratio, selection method, number of crossovers
and mutation rate).

2. Randomly generate the initial population. That is, obtain x1,...,xn, where n is
the number of chromosomes in a population, also called the population size.

3. Evaluate each chromosome in the initial population by the objective function.
That is, compute II(x1), ..., II(xn), where II(xi) is the objective function eval-
uated at the ith chromosome xi.

4. Generate an offspring population, by GA operations (such as selection/mating,
crossover, and mutation). That is, generate a new set of n settings of the three
drugs, using the operations of selection, crossover, and mutation of x1,...,xn to
obtain x∗1,...,x

∗
n.

5. Evaluate each individual in the offspring population by the objective function.

6. Decide which individuals to include in the next population. This step is re-
ferred to as “replacement” in that individuals from the current parent population
are “replaced” by a new population, whose individuals come from the offspring
and/or parent population.

D. Is the best chromosome in the offspring population also the best over the current
parent population and does the best offspring have a II value satisfying the
requirement, say II ≤ 0.4?

D-1. If no, directly go to Step 6.

D-2. If yes, then define and implement a NM local direction search with that
chromosome as a starting point. The local search will be ended when the
objective function fails to progress. Find the chromosome with the best
II value and replace the best chromosome with the best II value in the
offspring population with this point. Then go to Step 6.

7. If a stopping criterion is satisfied, then the procedure is halted. Otherwise, go to
Step 4.

In this study there are three (k = 3) variables, i.e., there are k = 3 genes in each
chromosome. We also make the following assumptions. The (parent) population size
n is 2k and the offspring population size is also 2k. The type of selection we utilize is
random pairing. The blending crossover is utilized and the number of crossover points
is one. Random uniform mutation is utilized and the mutation rate is set around or
equal to 1/k. The type of replacement over both parent and offspring populations is
tournament. Details about the settings can be found in Haupt and Haupt (2004).
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Table 1: Results on model comparisons of the OLS, LLR, and MRR methods in II
and viability. Best values in bold.

b λ̂ DFerror s2 R2
adj PRESS**

OLS — — 222.000 0.00190 0.9786 0.5019

ÎI LLR 1.000 — 209.045 0.00176 0.9801 0.4821
MRR 1.000 0.73 212.541 0.00175 0.9802 0.4753
OLS — — 284.000 27.1399 0.9617 8764.24

ˆviability LLR 1.000 — 257.975 9.8163 0.9862 3535.98
MRR 0.785 0.95 258.883 9.9995 0.9859 3569.50
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Figure 1: Plots of the single drug dose-response curves: Left: PD; Middle: HA; Right:

CEP, respectively.
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Figure 2: Plot of three-drug dose regions of synergistic areas with II ≤ 0.4: Left: PD

vs HA vs CEP; Right: CEP vs PD vs HA, respectively. The colors of dots are changed

from red at the front of the cuboid to black at the back.

 

Figure 3: Plots of three-drug dose regions of additive areas with 0.9 ≤ II ≤ 1.1: Left:

PD vs HA vs CEP; Right: CEP vs PD vs HA, respectively. The colors of dots are

changed from red at the front of the cuboid to black at the back.
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Figure 4: Plots of three-drug dose regions of antagonistic areas with II ≥ 1.8: Left:

PD vs HA vs CEP; Right: CEP vs PD vs HA, respectively. The colors of dots are

changed from red at the front of the cuboid to black at the back.
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