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Efficient Algorithms for Data Analytics in Geophysical Imaging

Joseph Lee Kump

(ABSTRACT)

Modern sensing systems such as distributed acoustic sensing (DAS) can produce massive

quantities of geophysical data, often in remote locations. This presents significant challenges

with regards to data storage and performing efficient analysis. To address this, we have

designed and implemented efficient algorithms for two commonly utilized techniques in geo-

physical imaging: cross-correlations, and multichannel analysis of surface waves (MASW).

Our cross-correlation algorithms operate directly in the wavelet domain on compressed data

without requiring a reconstruction of the original signal, reducing memory costs and improv-

ing scalabiliy. Meanwhile, our MASW implementations make use of MPI parallelism and

GPUs, and present a novel problem for the GPU.
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Joseph Lee Kump

(GENERAL AUDIENCE ABSTRACT)

Modern sensor designs make it easier to collect large quantities of seismic vibration data.

While this data can provide valuable insight, it is difficult to effectively store and perform

analysis on such a high data volume. We propose a few new, general-purpose algorithms that

enable speedy use of two common methods in geophysical modeling and data analytics: cross-

correlation, which provides a measure of similarity between signals; and multichannel analysis

of surface waves, which is a seismic imaging technique. Our algorithms take advantage

of hardware and software typically available on modern computers, and the mathematical

properties of these two methods.
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Chapter 1

Introduction

Distributed Acoustic Sensing (DAS) is a geophysical method that applies optical interfer-

ometry to laser light travelling inside an optical fiber, which enables the measurement of the

fiber’s strain. This allows the optical fiber to operate as a seismic array which can sample

geophysical vibration data at meter-scale intervals. DAS can be deployed in many locations

where it is unfeasible to use more traditional sensors due to space, accessibility, or power

constraints, and can acquire data for a wide variety of applications in geophysics [10].

DAS arrays can possess a sensor density 10-1000 times greater than traditional systems, and

are capable of collecting data at high sample rates for extended periods of time. This often

generates large quantities of vibration data. For example, one DAS array used for test cases

in this thesis collected 500 samples per second continuously over several months, producing

over two terabytes of data every week. This data volume can be much larger than quantities

typical in experiments using other sensor systems. In addition, since DAS can be deployed

in remote locations, available storage and hardware to process these high volumes of data

may be limited. This leads to challenges regarding data management and monitoring for

quality, effective archiving of data, and performing efficient data analysis [4, 11].

This thesis proposes novel algorithms for two methods that are frequently used in analysis

of DAS data, as well as geophysical data collected by other means. The first regards wavelet

cross-correlations. Wavelet compression is a common method for reducing data volume while

storing an accurate approximation of the original data in geophysics and other fields, and

1



2 CHAPTER 1. INTRODUCTION

has been used in the storage of DAS data. It can also be employed as a form of noise

reduction. Meanwhile, cross-correlation analysis is a measure of similarity between two

series, which is frequently used for event detection and pattern recognition in data analytics.

Typical methods for computing cross-correlations of time-series data stored in the wavelet

domain require reconstructing the original data, or its approximation, which negates the

benefit of using wavelet compression to reduce data volume. Here, we propose an algorithm

for calculating the cross-correlation of two time-series data signals directly in the wavelet

domain, without needing to reconstruct the original signal. This approach eliminates the

storage requirements of reconstruction, and has the potential to scale better than existing

cross-correlation algorithms on larger problem sizes.

The second method is Multichannel Analysis of Surface Waves (MASW), a common seismic

exploration technique used to model the near-surface. In MASW, recording of vibrations

generated by a noise source are used to construct a dispersion curve of the ground roll.

Proposed models of the near surface are then used to calculate theoretical dispersion curves,

which are compared to the dispersion curve derived from the collected data. DAS arrays

can record vibration data corresponding to Rayleigh wave signals that make up ground

roll (the main type of coherent noise in land seismic surveys). Because of this, it is viable

to use MASW in conjunction with DAS to develop predictive models of the near surface.

While MASW is a well-established technique, existing open-source implementations are not

optimized for commonly available computing resources such as multi-core CPUs and GPUs.

Thus, there is value in developing algorithms that leverage these resources.

The algorithms and resulting implementations for these two methods are generalized to

work for data collected by other means, not just DAS. However, their optimizations can

make them advantageous for addressing some of the challenges presented by modern appli-

cations involving DAS data, such as high data volume and limitations in readily available
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computing resources and storage. In addition, the algorithm design and implementation for

both methods share some common themes, particularly taking advantage of specific sparse

matrix structures, such as bandedness, to improve performance.

1.1 Wavelet Cross-Correlation

Cross-correlation, also called a sliding inner product, is a measurement of similarity between

two series at a time lag. Given time series functions f and g and a time-lag τ , the cross-

correlation of f and g at τ is

(f ⋆ g)(τ) =
∞∑

i=−∞

f(i)g(i+ τ) or
∫ ∞

−∞
f(t)g(t+ τ)dt. (1.1)

There are two major use cases for cross-correlation on a multichannel sensor array. The first

is event detection: computing the cross-correlations of the array’s channels with a signal

from a known event, such as a small earthquake or the operation of a certain machine.

This can identify the time and location of those events within the sensor data. The other

major use case is comparing the channels of the array with each other – if two channels

have a consistently high cross-correlations at a specific time lag, then that suggests waves

propagate through the channels at that particular time interval. This method can help

identify underlying trends in the data (it is also useful to compute the cross-correlation of a

signal with itself to identify repeating trends, which is called autocorrelation).

Cross-correlation is conceptually simple and serves as an important method for analysis of

sensor data. However, for a signal with N entries, computing the cross-correlation at one

time lag requires an order of N operations, or O(N), the same as computing an inner product.

Computing cross-correlations at multiple channels and time lags (which is needed for event
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detection and trend identification) can cause the number of arithmetic operations to increase

quickly. Thus it is important to develop algorithms that can calculate cross-correlations

efficiently. Given the size of many large sensor arrays, it is important to use methods that

minimize the storage and computational costs of data analyses like cross-correlation.

The Fourier Transform

The Fourier transform is a generalization of the Fourier series that decomposes a signal into

its component frequencies; in other words, it converts a signal from representation in the

time domain to representation in the frequency domain. Fourier transforms, particularly

discrete Fourier transforms, are useful for visualizing and processing components of signal

data and are quick to compute through the use of fast Fourier transform (FFT) algorithms

[17]. They also have mathematical properties that can make computing cross-correlations

quicker, particularly the cross-correlation theorem: let F denote the Fourier transform, then

F{f ⋆ g} = F{f} · F{g}. (1.2)

FFTs combined with this theorem enable efficient algorithms for computing cross-correlations.

However, while this approach can improve the computational speed, it does not improve the

storage costs – the transformed data requires the same storage volume as the original data.

In addition, Fourier transforms do not preserve the exact times at which specific frequency

components occur and therefore may not be useful for other forms of analysis. Because of

these limitations, the Fourier transform generally cannot be used as a method for perma-

nently storing sensor data.

The Wavelet Transform and Compression

Wavelets are integrable functions that are nonzero only on a finite interval and can typically
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be visualized as an oscillation. Given a specific mother wavelet function, a basis can be

formed by the mother wavelet, its horizontal translations (referred to as shifts), and its

horizontal stretches (referred to as scales). If the shift factors used are in Z and the scale

factors used are in 2Z≥0 , then this collection of wavelets forms an orthogonal basis which can

be normalized. The wavelet transform represents a signal as a linear combination of wavelets

formed by one of these bases – usually shift and scale factors are selected to guarantee it is

an orthonormal basis, which makes it a discrete wavelet transform, or DWT [2].

Unlike the Fourier transform, the wavelet transform preserves both time and frequency in-

formation from the original signal. It does require a similar volume of storage as the untrans-

formed data, but this can be reduced by storing an approximation of the wavelet transform

instead, which is known as wavelet compression. One of the more common techniques used

for wavelet compression is thresholding, where all wavelets whose coefficients are smaller in

magnitude than a particular cutoff are zeroed out. Even if compression is not used, wavelet

transforms can allow for easy cross-correlation computations. Since it is a linear operator,

the cross-correlations of individual wavelet functions can be precomputed in advance. From

there the cross-correlation of the two signals can be calculated as a sum of these results,

dependent on the DWT coefficients.

Like in many other fields, Geoscientists have employed wavelets to store and compress geo-

physical data since the 1990s. However, their typical use in cross-correlations and other

data analysis applications involve reconstructing the original time-domain signal or an ap-

proximation using an inverse wavelet transform. Current wavelet transforms and inverse

transform algorithms are fast, but this approach requires storing a volume of time-domain

data equivalent in memory cost to the original signal. This requirement is not ideal for

use cases where data is being collected and stored in remote locations (such as glacier and

permafrost monitoring), or where the user is paying for data volume (such as cloud storage),
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both of which are increasingly common in modern edge computing paradigms in geophysical

data collection and other applications [7]. Developing algorithms for data analytics directly

in the wavelet domain, without reconstructing the original signal, could mitigate these stor-

age costs. In addition, wavelet-domain algorithms that take advantage of properties of

compressed wavelet-domain data may see improved speed performance and scaling.

Since cross-correlation is widely used in data analytics, it provides a good example of a

method that may benefit from a wavelet-domain implementation. Eventually, a collection

of multiple wavelet-domain algorithms may be developed for several common methods used

in analysis of geophysical data, but an effective cross-correlation algorithm provides a useful

starting point. In addition, concepts that enable efficient computation of cross-correlations

on DWT coefficients may also be extended to other orthogonal or near-orthogonal bases

used to represent data.

1.2 MASW

Multichannel Analysis of Surface Waves (MASW) is a seismic exploration technique used

to infer a layered 1D model of the subsurface. It was developed by the Kansas Geological

Survey in 1999, as an enhancement to an earlier wave-propagation method called Spectral

Analysis of Surface Waves (SASW).

In SASW, two receivers record the surface wave energy that travels along the ground, called

the ground roll, that is generated by an impulsive source such as a hammer strike. The

ground roll consists primarily of Rayleigh waves and has a special property known as dis-

persion: each of its frequency components has a different propagation velocity, and thus

a different wavelength as well. Therefore one can use the recorded ground roll in spectral

analysis to generate a dispersion curve, which plots the relationships between the frequencies
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Figure 1.1: Simplified example of dispersion with multiple proposed near-surface models.
Model 2 (which has a different density in the second layer) produces a theoretical dispersion
curve Ct closer to the experimentally derived dispersion Ce, so it is likely a better model.

and velocities of each component of the ground roll (or alternatively the wavelengths and

velocities). Using only two receivers causes the SASW method to collect a large quantity of

unnecessary noise in this process, which is difficult to reduce. MASW mitigates this problem

by using an array of multiple receivers (such as a DAS array), making it easier to isolate

the useful ground roll and construct its dispersion curve. This part of the method is called

MASW dispersion, and only needs to be done once for any particular ground site and set of

collected seismic data [13, 14].

Once a dispersion curve of the near-surface ground roll is acquired, we can then propose

and assess the potential accuracy of 1D models of the near surface using MASW inversion,

also known as backcalculation. Given a proposed near-surface model consisting of multiple

layers, each with its own thickness, density, compressional wave velocity, and shear wave

velocity, we can develop a theoretical dispersion curve of the ground roll. This can then

be compared to the experimental dispersion curve produced from spectral analysis of the

collected data to assess the overall accuracy of the proposed model. The closer the theoretical

and experimental dispersion curves are in value, the more likely the model is reasonably

accurate - a simplified example of this is shown in Figure 1.1. We often need to perform



8 CHAPTER 1. INTRODUCTION

MASW inversion on a large number of proposed near-surface models to acquire a satisfactory

result, so unlike MASW dispersion, it is typically run many times for a given problem.

Different methods are available to develop theoretical dispersion curves. MASWaves, a

commonly used MATLAB MASW implementation, uses a technique called the stiffness

matrix method. This method requires the formation of many small, symmetric heptadiagonal

matrices. Depending on the proposed model, this is typically between 104 and 105 matrices

of size n× n, where 20 ≤ n ≤ 100. We then need to asses the singularity of these matrices,

possibly by using determinants or singular values.

Since MASW does not require invasive drilling or sample collection, it is a commonly used

method for near-surface imaging in geotechnical engineering. There are many existing open-

source implementations, freely available for use. However, there are currently no open-

source implementations that optimize MASW inversion for multiple compute cores or GPUs,

specifically the computation of the theoretical dispersion curve, which can be run hundreds

of times or more for various near-surface models proposed for a single problem. Multiple

CPU cores and GPUs are both fairly common features for engineering workstations, so it is

advantageous to design parallelized MASW algorithms to take advantage of these computing

resources.

In addition to there being a practical need for GPU implementations, MASW inversion

using the stiffness matrix method provides a use case for a potentially novel problem on

the GPU. There are many existing libraries, such as cuBLAS, that provide various CUDA

functions for operations on large matrices, which are relevant to a range of problems in

scientific computing. However, there are few existing CUDA library functions for performing

operations on a large array of smaller matrices concurrently, and none that take advantage

of performance-improving matrix properties such as bandedness (at least to our knowledge).

Since the stiffness matrix method requires assessment of the singularity of a large number of
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small, heptadiagonal matrices, it provides context for a novel type of problem to implement

on GPUs.

1.3 Thesis Overview and Contributions

This thesis consists of algorithm descriptions for both of these problems: wavelet-domain

cross-correlations using both dense and sparse DWT coefficients, and MASW inversion op-

timized for multiple CPUs and GPUs. The wavelet-domain cross-correlation algorithms are

covered in chapter 2, while the parallelized MASW inversion is covered in chapter 3. Sections

for chapter 2 are:

1. A brief overview;

2. Theoretical properties used in the algorithm design;

3. Algorithm description;

4. Analytically derived error bounds;

5. Test cases and examples.

Sections for chapter 3 are:

1. A brief overview;

2. Serial MASW algorithm description;

3. Parallelized algorithm description (using MPI);

4. GPU algorithm description (using CUDA);
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5. Test cases and performance evaluation.

Chapters 2 and 3 can be read out of order, though the sections within each should be read in

order. A final overall conclusion is in chapter 4. The author made all design choices for the

described algorithms, and wrote the software implementations. This thesis contains multiple

original contributions:

• Novel properties of cross-correlations for wavelet and scaling functions, that can be

used for their efficient computation and storage (section 2.2);

• An algorithm for computing the accurate temporal cross-correlation of two time-series

signals stored in the wavelet domain (section 2.3), plus software implementation;

• Theoretical error bounds for cross-correlations on wavelet-compressed (via threshold-

ing) signals compared to the original signal cross-correlation (section 2.4);

• An MASW implementation that runs on multiple compute cores using MPI (section

3.3);

• An MASW implementation for use with GPUs (section 3.4), which is optimized for

computing determinants of heptadiagonal matrices;

All software implementations are shown to have efficient performance results with certain

advantages over current standard methods.



Chapter 2

Cross-Correlations in the Wavelet

Domain

2.1 Overview of Problem

Wavelet compression is already used as a means to store data at a reduced volume. However,

current cross-correlation implementations perform an inverse wavelet transform on this data,

then compute the cross-correlations on these reconstructed signals, using either traditional

sliding inner products or FFTs with the cross-correlation theorem. These approaches are

reasonably fast, but do not take full advantage of the sparsity in the wavelet-compressed

data, and require extensive memory.

There are existing methods that compute useful components of the cross-correlation on

wavelet domain data. For example, search techniques have been developed for detecting

stochastic gravitational waves using the sign correlation test on data stored in the wavelet

domain [8]. There has also been exploration of using other analytics methods, such as

convolutional neural networks, on wavelet-domain data, though these have been used for

image processing and not geophysical applications [3]. However, an algorithm for accurately

computing the temporal cross-correlation in the wavelet domain has not yet been designed.

As an alternative to take advantage of certain aspects of wavelet compression, we propose an

11
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algorithm and implementation for computing cross-correlations in the wavelet domain - since

the discrete wavelet transform (DWT) stores a signal as a linear combination of wavelet and

scaling functions, we can precompute the cross-correlations of these individual functions with

each other, then calculate the overall cross-correlation as a linear combination of these stored

values with the wavelet coefficients, analogous to a weighted inner product or a Rayleigh

quotient, though not necessarily an instance of these.

2.2 Properties Used For Algorithm

Suppose we have two sets of time-series data “signals” (such as from two sensors in a

DAS array), denoted dr and ds, represented by their coefficients in a level J wavelet ba-

sis {d(r)j [n]}j,n ∪ {a(r)J [n]}n generated by a DWT [2]. We can store these coefficients as

vectors x⃗(r) and x⃗(s). Given the set of cross-correlations which run through all permutations

of these scale and shift factors, we can form a correlation matrix W (τ) consisting of these

cross-correlations at time lag τ , stored in the same order as in x⃗(r) and x⃗(s). From there, we

can compute the cross-correlations of the two signals at τ by using a vector-matrix-vector

multiplication, structured as

(dr ⋆ ds)(τ) = x⃗(r)TW (τ)x⃗(s). (2.1)

To store W (τ) and compute x⃗(r)TW (τ)x⃗(s) efficiently, we will use four properties. First, for

the ease of implementation, we will break W (τ) into (J + 1)2 blocks, themselves correlation

matrices, based on their scaling factors. Note that ψ is the wavelet function corresponding

to J detail levels, and ϕ is the scaling function corresponding to one approximation level:
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W (τ) =



[(ψ1,n ⋆ ψ1,m)(τ)]n,m [(ψ1,n ⋆ ψ2,m)(τ)]n,m . . . [(ψ1,n ⋆ ϕm)(τ)]n,m

[(ψ2,n ⋆ ψ1,m)(τ)]n,m [(ψ2,n ⋆ ψ2,m)(τ)]n,m . . . [(ψ2,n ⋆ ϕm)(τ)]n,m
... ... . . . ...

[(ϕn ⋆ ψ1,m)(τ)]n,m [(ϕn ⋆ ψ2,m)(τ)]n,m . . . [(ϕn ⋆ ϕm)(τ)]n,m


(2.2)

Let x⃗j denote the entries of x⃗ for coefficients of ψj, and W
(τ)
j,k = [(ψj,n ⋆ ψk,m)(τ)]n,m for

j = 1, . . . J + 1 (where ϕ is treated as the level J + 1 function). Correlation block matrices

along the main diagonal are square, since the number of coefficients for each signal at a

particular scaling factor is the same. Matrices below the diagonal will have more columns

than rows, since lower scaling factors will have more coefficients than higher scaling factors,

while matrices above the diagonal will have transposed dimensions. The scaling function ϕ

has the same number of coefficients as the wavelet function at level J , ψJ , so the inequality

is not strict for block matrix dimensions off of the main diagonal.

Assuming our coefficient vectors x⃗ are stored in the same order (coefficients for ψ1, . . . , ψJ ,

then ϕ), then we can perform our cross-correlation as a series of vector-matrix-vector prod-

ucts:

(dr ⋆ ds)(τ) = x⃗(r)TW (τ)x⃗(s) =
J+1∑
j=1

J+1∑
k=1

x⃗
(r)T
j W

(τ)
j,k x⃗

(s)
k . (2.3)

Implementing the wavelet-domain cross-correlation this way is advantageous, since each

correlation matrix W
(τ)
j,k consists of cross-correlations between functions with fixed scaling

factors. The size of W (τ)
j,k is dependent on the number of shift factors for each set of functions,

which is in turn dependent on the length of the signals. However, we can use properties of

W
(τ)
j,k to show it has a specific sparse structure, and its total number of unique entries is only



14 CHAPTER 2. CROSS-CORRELATIONS IN THE WAVELET DOMAIN

Detail 1 by Detail 1

Approximation 
by 

Approximation

Detail 2 by 
Detail 2

Detail 2 by 
Approximation

Approximation 
by Detail 2

Detail 1 by 
Approximation

Detail 1 by 
Detail 2

Approximation by Detail 1

Detail 2 by Detail 1

Approximation 
Scaling 

Functions

Detail 2 
Wavelets

Detail 1 
Wavelets

Portions for 
first signal:

Portions for 
second signal:

Approximation 
Scaling Functions

Detail 2 
Wavelets

Detail 1 
Wavelets

Relative Sizes of Blocks for a 2-Level Correlation Matrix

Figure 2.1: Relative sizes of blocks in a correlation matrix. Same-level submatrices are
square, while different level matrices are rectangular with their size ratio proportional to the
differences in scaling factors. “Detail 1 by Detail 1” corresponds to W (τ)

1,1 .

dependent on the scaling factors j, k. This sparsity reduces both the volume of data required

to store the entries of the individual correlation matrices, and the number of floating-point

operations required to compute the cross-correlation with this method. First, we will prove

a preliminary claim.

Claim 1: Time-Shift Transform The cross-correlation of two wavelet or scaling functions

after being time shifted is equal to a time-shifted version of their original cross-correlation.

Let θ(g), θ(h) denote two arbitrary wavelet or scaling functions in our given wavelet family

(they may be different, hence the different superscripts). Then

(θ
(g)
j,n′ ⋆ θ

(h)
k,m′)(τ) = (θ

(g)
j,n(t) ⋆ θ

(h)
k,m)(τ + 2k(m−m′)− 2j(n− n′)). (2.4)
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The calculation to show this is done by adding and subtracting multiples of n and m to n′

and m′, and performing the change of variables s = t+ 2j(n− n′):

(
θ
(g)
j,n′ ⋆ θ

(h)
k,m′

)
(τ)

=

∫ ∞

−∞
θ
(g)
j,n′(t)θ

(h)
k,m′(t+ τ)dt

=

∫ ∞

−∞
2−j/2θ(g)

(
t− 2jn′

2j

)
2−k/2θ(h)

(
t+ τ − 2km′

2k

)
dt

=

∫ ∞

−∞
2−j/2θ(g)

(
(t+ 2jn− 2jn′)− 2jn

2j

)
2−k/2θ(h)

(
t+ τ − 2km′

2k

)
dt

=

∫ ∞

−∞
2−j/2θ(g)

(
s− 2jn

2j

)
2−k/2θ(h)

(
s+ τ − 2km′ − 2j(n− n′)

2k

)
ds

=

∫ ∞

−∞
2−

j
2 θ(g)

(
s− 2jn

2j

)
2−

k
2 θ(h)

(
s+ τ + 2k(m−m′)− 2j(n− n′)− 2km

2k

)
ds

=
(
θ
(g)
j,n ⋆ θ

(h)
k,m

)
(τ + 2k(m−m′)− 2j(n− n′)).

Now that we have proven this claim, we define, prove, and apply the Toeplitz-like, Banded-

like, Symmetric, and Cyclic properties to reduce the memory footprint of the W (τ) represen-

tation.

Property 1: Toeplitz-Like Suppose we are computing the cross-correlations of two wavelet

or scaling functions, θ(g)j,n+l, θ
(h)
j,m+l, with the same scaling factor, j. We can then use Claim 1

to show

(θ
(g)
j,n+ℓ ⋆ θ

(h)
j,m+ℓ)(τ) = (θ

(g)
j,n ⋆ θ

(h)
j,m)(τ + 2j(−ℓ)− 2j(−ℓ)) = (θ

(g)
j,n ⋆ θ

(h)
j,m)(τ). (2.5)

Let wn,m be the row n, column m entry within a given block submatrix, W (τ)
j,j , storing the

cross-correlations of same-scale wavelet functions. Equation (2.5) implies that wn+ℓ,m+ℓ =
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wn,m, thus giving us the Toeplitz property. A graph visualizing this property in effect is

available in Figure 2.2. If our matrix stores the cross-correlations of functions with different

scales, then it will not be Toeplitz, however, we can see a similar Toeplitz-like relationship:

(θ
(g)
j,n+ℓ ⋆ θ

(h)

k,m+2j−kℓ
)(τ) = (θ

(g)
j,n ⋆ θ

(h)
k,m)(τ + 2j(−ℓ)− 2k(−(2j−k)ℓ))

= (θ
(g)
j,n ⋆ θ

(h)
k,m)(τ − 2jℓ+ 2k+j−kℓ)

= (θ
(g)
j,n ⋆ θ

(h)
k,m)(τ). (2.6)

Thus for entries in the correlation matrix Wj,k, we get wn+ℓ,m+2j−kℓ = wn,m. This is generally

not Toeplitz unless j = k, but still provides a useful repeating pattern for reducing the

number of entries of the cross-correlation matrix that must be stored. In particular, if j > k,

then we know row n+ ℓ equals row n shifted 2j−kℓ to the right. If j < k, then we instead get

a repeating pattern for the columns of Wj,k. Although this is true, it is easier to use other

properties to help represent these block matrices in a row-major format instead to keep the

implementation consistent.

Property 2: Banded-Like A wavelet or scaling function θ(g)j,n is supported on only a finite

interval, assuming we are using compact wavelets. Suppose the width of the support is length

α. We know at 0 time-lag that

(θ
(g)
j,n ⋆ θ

(h)
k,m)(0) = (θ

(g)
j,0 ⋆ θ

(h)

k,m−2j−kn
)(0)

=

∫ ∞

−∞
θ(g)

(
t

2j

)
θ(h)

(
t− 2k(m− 2j−kn)

2k

)
dt. (2.7)
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Figure 2.2: Comparison of wavelets with shift factors 0 and 1 to wavelets with shift factors
5 and 6. Since the relative difference in shift factor is the same and the functions themselves
are the same except for their shift factors, the resulting cross-correlations of shift factors 0
with 1 and 5 with 6 are identical.

If |m− 2j−kn| ≥ α, then θ(g)j,n and θ(h)k,m have no measurable overlap in support, which gives us

|m− 2j−kn| ≥ α =⇒ (θ
(g)
j,n ⋆ θ

(h)
k,m)(0) = 0. (2.8)

Since the scaling factors j and k of the wavelets in this cross-correlation are fixed for a given

block matrix W
(0)
j,k , and the shift factors n and m determine the row and column index of

W
(0)
j,k corresponding to this cross-correlation, our block matrix is nonzero at [W

(0)
j,k ]n,m only

when |m− 2j−kn| < α. This holds when τ ̸= 0 as well:

(θ
(g)
j,n ⋆ θ

(h)
k,m)(τ) = (θ

(g)
j,0 ⋆ θ

(h)

k,m−2j−kn
)(τ)

=

∫ ∞

−∞
θ(g)

(
t

2j

)
θ(h)

(
t− 2k(m− 2j−kn) + τ

2k

)
dt (2.9)
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For this given value of τ , if |m− 2j−kn+ τ
2k
| ≥ α, then θ(g)j,0 and θ(h)j,n2−n1

have no measurable

overlap in support, so (θ
(g)
j,n ⋆ θ

(h)
k,m)(τ) = 0. Thus we can still restrict the number of possible

finite terms in each row of W (τ)
j,k based on this inequality. However, the nonzero entries of

W
(τ)
j,k may be different from W

(0)
j,k .

0 1 2 3 4 5 6 7 8 9
Shift Factor

0.2

0.0

0.2

0.4

Positioning Between Wavelets: Bandedness

Figure 2.3: Plot of the overlap in support between wavelets with nearby shift factors. Once
the relative difference in shift factor becomes too large, such as shift 0 (blue) and 5 (brown),
then the overlap in support and resulting cross-correlation is always 0.

If j = k, then this gives us bandedness since the matrix is Toeplitz. If not, then this

property still restricts the number of nonzero entries per row to a value dependant on the

scaling factors only, based on how the column index relates to the row index as shown in

Figure 2.3. Moreover, we know which column indices can be nonzero based on the row index.

Since the Toeplitz-like property ensures the matrix rows have repeating entries for j ≥ k,

and the Banded-like property ensures there are only finitely many nonzero entries per row,

we can represent our block matrix W
(τ)
j,k using only a small number of entries, representing

the nonzero entries in one row. In practice, we also need to store the cross-correlations of the

first few and last few wavelets in the signal as well, since these wavelets are only partially

supported on the signal’s time interval and thus their cross-correlations have different values.

But the number of edge wavelets is small (typically < 10) and not dependent on the signal
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length. So we can represent W (τ)
j,k using one row of interior wavelet function cross-correlations,

and two small matrices of the beginning- and end-of-signal wavelet cross-correlations, with

no dependency on the length of the signals being evaluated.

Property 3: Symmetry Suppose we are computing the cross-correlations for two arbitrary

wavelet or scaling functions θ(g), θ(h) at time lag 0. We then know

(θ
(g)
j,n ⋆ θ

(h)
k,m)(0) =

∫ ∞

−∞
θ(g)

(
t− 2jn

2j

)
θ(h)

(
t− 2km

2k

)
dt

=

∫ ∞

−∞
θ(h)

(
t− 2km

2k

)
θ(g)

(
t− 2jn

2j

)
dt

= (θ
(h)
k,m ⋆ θ

(g)
j,n)(0). (2.10)

In the case where g = h and j = k, this gives us symmetry for W (0)
j,k , reducing the number of

unique entries further. If g ̸= h or j ̸= k, then we do not have matrix symmetry. Symmetry

is usually not possible in these cases anyway, since W (τ)
j,k is generally not square for j ̸= k.

However, this property still lets us know that the (n,m) entry of W (0)
j,k equals the (m,n)

entry of W (0)
k,j . Therefore, we can substitute x⃗(r)Tk W

(0)
k,j x⃗

(s)
j for x⃗(s)Tj W

(0)
j,k x⃗

(r)
k in equation (2.3),

and only need to store the block matrices W (0)
j,k for j ≥ k. This allows us to easily use a

row-major storage format for all of our zero-time-lag correlation matrices.

At nonzero time-lags, we have quasi-symmetry: (θ
(g)
j,n ⋆ θ

(h)
k,m)(τ) = (θ

(h)
k,m ⋆ θ

(g)
j,n)(−τ). This

does not reduce the matrix entries needed for W (τ)
j,j , but it does allow us to only store block

matrices W (τ)
j,k where j ≥ k, provided we store them for both τ and −τ .

Property 4: Cyclic This property reduces the number of time lags we need to store. First,

let L be an operator on vectors in Cn, that shifts each of the entries of the given vector up by

one and sets the first entry equal to 0 (for example, L([1, 2, 3]T ) = [0, 1, 2]T ). Similarly, let
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R denote the operator that shifts the vector entries down by one, and sets the last entry to

0. These are similar to the left and right shift operators in functional analysis. Now suppose

we need to store entries for a correlation block matrix W
(τ)
j,k at time lag τ . Clearly we can

write τ as 2kd + t, where d ∈ Z, and 2kd is the largest multiple of 2k such that 2kd ≤ τ .

Then we know t ∈ [0, 2k). By Claim 1, we can show

(θ
(g)
j,n ⋆ θ

(h)
k,m)(τ) = (θ

(g)
j,n ⋆ θ

(h)
k,m)(2

kd+ t)

= (θ
(g)
j,n ⋆ θ

(h)
k,m)(t+ 2k(m− (m− d))− 2j(n− n))

= (θ
(g)
j,n ⋆ θ

(h)
k,m−d)(t). (2.11)

Thus, we can compute the cross-correlations of signal coefficients x⃗(r)j and x⃗
(s)
k at time lag

τ by shifting the entries of x⃗(s)k forward by d (applying Ld) or backwards by −d if d < 0

(applying R−d), and then computing the cross-correlation at time lag t instead. This means

we do not need to use correlation block matrices W (τ)
j,k for every possible time-lag τ . We can

apply one of our shift operators to x⃗(s)h first, then use a block matrix W (t)
j,k where t ∈ [0, 2k)

instead. For example, considering Equation (2.11), where τ = 2kd+ t, we would get

x⃗
(r)T
j W

(τ)
j,k x⃗

(s)
k = x⃗

(r)T
j W

(t)
j,k

[
Ld(x⃗

(s)
k )
]

or x⃗(r)Tj W
(t)
j,k

[
R−d(x⃗

(s)
k )
]
. (2.12)

We use L if d ≥ 0, and R if d < 0. Moreover, our data signals are represented as discrete

time series, with points sampled at small time intervals relative to the signal length. Because

of this, we typically only compute cross-correlations at integer time lags in our time-series

representation. Thus we only need to store correlation block matrices W (τ)
j,k for time lag

indices τ = 0, 1, . . . , 2k − 1.
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Combining the four properties together, we only need to form correlation block matrices

W
(τ)
j,k for j, k = 1, . . . J + 1 with j ≥ k. Moreover, we only need time lags for each of these

block matrices W (τ)
j,k in the range τ = 0, . . . , 2k−1. For each individual block matrix, we only

need to store a small portion of the total entries: a short list of the unique nonzero entries

on one row, and two small submatrices of cross-correlations for the first few and last few

wavelet cross-correlations. These three data structures are a fixed size for any given block

matrix W (τ)
j,k , and their specific dimensions are described in Section 2.3.

These rules allow us to use a special sparse structure to represent the cross-correlation

matrix, reducing storage requirements and the number of operations needed for the cross-

correlation computation. Since this implementation of W (τ) is not dependent on the number

of shift factors, it also works for two signals of arbitrary lengths. In particular, we expect the

explicit representation of W (τ)
j,k to be roughly of dimension N

2j
× N

2k
where N is the dimension

of our coefficient vectors x⃗(r), x⃗(s) (which roughly equals the length of our signals dr, ds). Our

representation of W (τ)
j,k is a fixed size regardless of N .

2.3 Algorithm Description

Given two signals dr, ds whose level J discrete wavelet transform coefficients are stored in

vectors x⃗(r), x⃗(s), we have shown in Equation (2.3) that

(dr ⋆ ds)(τ) =
J+1∑
j=1

J+1∑
k=1

x⃗
(r)T
j W

(τ)
j,k x⃗

(s)
k .

We also know from the quasi-symmetry property that x⃗(r)Tk W
(τ)
k,j x⃗

(s)
j = x⃗

(s)T
j W

(−τ)
j,k x⃗

(r)
k , so we

can also see
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(dr ⋆ ds)(τ) =
J+1∑
j=1

[
x⃗
(r)T
j W

(τ)
j,j x⃗

(s)
j +

j−1∑
k=1

(
x⃗
(r)T
j W

(τ)
j,k x⃗

(s)
k + x⃗

(s)T
j W

(−τ)
j,k x⃗

(r)
k

)]
. (2.13)

This allows us to break the wavelet-domain cross-correlation into a sum of vector-matrix-

vector multiplications, with matrices that possess the qualities described in section 2.4. In

particular, each correlation matrix W (τ)
j,k can be written in a row-major format, with repeating

shifted rows on its interior, and two small submatrices at the top left and bottom right. We

also know we only need to store W (τ)
j,k for time-lags τ ∈ {0, 1, . . . , 2k−1}, and can use left and

right shift operators on x⃗
(r)
j and x⃗

(s)
k to calculate the cross-correlation accurately at other

time-lags.

2.3.1 Computing a Single Time-Lag

Naively computing x⃗
(r)T
j W

(τ)
j,k x⃗

(s)
k as a dense multiplication is inefficient, since most of the

entries in W (τ)
j,k are 0. However, we can use the special properties of W (τ)

j,k to compute it much

more efficiently. In the case where j = k, we know W
(τ)
j,j is banded and mostly Toeplitz, so

most of its entries can be represented with a small number of scalars equivalent to each of its

nonzero diagonals. Create a short vector consisting of the entries of each of these diagonals,

and denote it Mj,j. The only entries of W (τ)
j,j different from those in Mj,j are associated with

the first and last few wavelets of each signal: these wavelets are not fully represented in the

time series of the signal, so their cross-correlations are different. We can represent these

using small submatrices denoted Bj,j and Ej,j. A diagram of these components of Wj,j is

visible in Figure 2.4.

Let su(j) denote the number of nonzero values of the numeric representation of our given

wavelet function at level j (i.e. its support), and let sh(j) denote the size of a single shift

of the numeric representation of our given wavelet at level j. In general, we expect both
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For zero timelags, this is 
symmetric. For nonzero 
timelags, it is not symmetric
but we still only have a few 
unique diagonal entries to 
store.

Layout of Wj,j at Time-lag 0

Bj,j

Ej,j

Mj,j

Figure 2.4: Layout of a same-level weight matrix Wj,j. Interior entries (Mj,j, colored green)
repeat along each diagonal, so we only need to store one row. Entries for Bj,j and Ej,j are
unique. If the time-lag is not zero, then Mj,j is no longer symmetric, but is still banded and
Toeplitz.

su(j) and sh(j) to increase as j increases, since wavelets with a larger scaling factor have a

larger interval of support. We know su(j) is finite for a numeric representation of a wavelet

function, since wavelets are defined to only be nonzero on a finite interval. Then we can

define σj = su(j)
sh(j)

for a level j wavelet (a plot describing this variable is available in Figure

2.5). Then we can see Mj,j ∈ R2σj - a diagram with an example of this is available in Figure

2.6. We can also see Bj,j, Ej,j ∈ Rσj×σj because at most only σj wavelets will not be fully

supported at the beginning or end of the signal. An example for this is available in Figure

2.7.

All nonzero entries of W (τ)
j,j outside of the first and last submatrices of size σj × σj are

confined to a small (2σj) number of diagonals, and repeat because of the Toeplitz property.

Thus we can compute the portion of the total cross-correlation derived from this component

by calculating the cross-correlations of the coefficient vectors directly, (x⃗(r)j ⋆ x⃗
(s)
j )(t) for a
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Figure 2.5: Plot of two Daubechies wavelets 1 shift apart, and their supports. The support
of this wavelet is length 6, while its shift size is 2. Thus σj for this wavelet function is 3.
Shifting this wavelet by 1 moves it two indices in the time domain.

range of time-lags t (distinct from the time-lag of the signal cross-correlation, τ), and then

multiplying these inner products by entries of Mj,j. Since Mj,j consists of at most 2σj entries

(the maximum number of nonzero diagonals in W (τ)
j,j ), we need to compute (x⃗

(r)
j ⋆ x⃗

(s)
j )(t) for

at most 2σj different values of t.

The only entries in W
(τ)
j,j different from those in Mj,j occur at the beginning and end sub-

matrices, Bj,j and Ej,j. These are due to boundary wavelet functions, of which at most σj

can exist, so we only calculate their cross-correlations based on a subinterval of the wavelet

function. To include these in the cross-correlation, we simply calculate x⃗(r)j [: σj]
TBj,jx⃗

(s)
j [: σj]

and x⃗
(r)
j [−σj :]TEj,jx⃗

(s)
j [−σj :], following Python indexing notation to refer to the first σj or

last σj entries of vectors. σj is usually very small (≤ 5), so these multiplications are not

computationally intensive. In addition, σj has no dependence on the length of our signals

dr and ds.
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Signal 1 wavelet, Shift factor N
Shift factor N - 2
Shift factor N - 1
Shift factor N
Shift factor N + 1
Shift factor N + 2
Shift factor N - 3 if time-lag not 0

Total Count of Overlapping Wavelets in Mj,j

Figure 2.6: Diagram of wavelets from Figure 2.5 that overlap with a particular shift factor N .
Since σj = 3, we know there are at most six other wavelets of this level that have overlapping
support. If the time-lag is 0, then there are only five overlapping wavelets.

Since this representation of W (τ)
j,j includes all of its nonzero entries, it calculates x⃗(r)Tj W

(τ)
j,j x⃗

(s)
j

accurately compared to a standard signal domain cross-correlation computation. Moreover,

it sharply reduces the total number of required floating-point operations compared to a naive

dense W (τ)
j,j computation.

For the case where j > k, we no longer have true Toeplitz and banded properties, but we

still have similar qualities: we know each row of W (τ)
j,k has a small number of nonzero entries

only located at certain indices, and these nonzero entries repeat in a cyclic, Toeplitz-like

pattern similar to diagonals in a square matrix: W (τ)
j,k [n,m] = W

(τ)
j,k [n + ℓ,m + 2j−kℓ]. Thus

we can still store all unique cross-correlations of most of the wavelets with just one small

vector Mj,k, consisting of these nonzero entries that repeat in the Toeplitz-like pattern. A

diagram illustrating this is available in Figure 2.8.

The number of nonzero entries for Mj,k is a function of the number of shifts for level

k that overlap with the support of level j. Since the shift size of level j is 2(j−k) ×

(shift size of level k), this gives us

dim(Mj,k) =
su(j)
sh(j)

2(j−k)

+ σk = 2(j−k)σj + σk. (2.14)

A plot visualizing equation (2.14) is available in Figure 2.9. For Bj,k and Ej,k, we can use
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Figure 2.7: Plot of wavelet functions of the same scale at the beginning of a time series signal.
Notice that the support of these functions does not fully overlap with the signal beginning
at time point 0 until Wavelet 3 (σj = 3). Since these wavelets are only partially represented,
their cross-correlation values are unique from those in Mj,j. Therefore a submatrix of size
σj × σj is necessary to represent the cross-correlations of the first σj shifts for each signal at
level j.

rectangular submatrices of size σj ×σk to obtain all cross-correlations involving wavelets not

fully represented on the signal. This is similar to the same-level case. Computations for

Bj,k and Ej,k are also virtually the same as in the j = k case. For computing the interior

component with Mj,k, we now calculate inner products of x⃗(r)j with slices of x⃗(s)k taking every

2j−k-th entry. This is because the entries of W (τ)
j,k represented by Mj,k are no longer on

proper diagonals, but still have a staggered repeating pattern along each row. Once we get

these inner products, we then multiply them by the entries of Mj,k and add them to our

overall cross-correlation result. Algorithm 1 outlines the process for computing the product

x⃗
(r)T
j W

(τ)
j,k x⃗

(s)
k for j ≥ k (a generalization of both cases described). As we calculate these

level-specific cross-correlations, we can sum their values as in Equation (2.13) to get the

final, overall cross-correlation of our signals dr and ds.



2.3. ALGORITHM DESCRIPTION 27

For j > k. Describe how we still get a pseudo-banded and pseudo-Toeplitz structure. Mention how, again,
The interior is just a few repeating entries, while B and E are unique entries but small.

Layout of Wj,k at Time-lag 0, where j = k+1

Bj,k

Ej,k

Mj,k

Figure 2.8: Layout of a mixed-level block matrix Wj,k. Interior entries (Mj,k, colored green)
repeat, so we only need to store one row. Entries for Bj,k and Ej,k are unique. Note that
we no longer have a true Toeplitz or banded property in Mj,k, but we still have row entries
repeat at an offset.

2.3.2 Computing Across Multiple Time-lags

In most use cases, it is important to compute cross-correlations across a range of time-lags,

rather than computing them for just one time-lag individually. The naive approach is to

perform the entire cross-correlation computation for each required time-lag τ separately.

While this method yields a correct answer, it leaves much room for improved performance.

Assuming we wish to calculate (dr ⋆ds)(τ) for a continuous range of time-lags τ , we can take

advantage of some redundancies in Algorithm 1 to significantly improve the runtime.

Consider a particular set of correlation block matrices W (τ)
j,k for τ ∈ {i}2k−1

i=0 . We can store

the entries of M (0)
j,k , . . . ,M

(2k−1)
j,k together into a matrix M (:)

j,k, again, using Python notation to

describe this. We can then calculate the inner products of x⃗(r)j and x⃗
(s)
k that are multiplied

by Mj,k, i.e. the entries of the array v⃗ in Algorithm 1, once, then calculate the block matrix

vector product
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Figure 2.9: Plot of wavelet functions at two different scaling factors, showing how the smaller
scale wavelet slides along the larger wavelet at each shift. In this particular case, the larger
wavelet has a support of length 16 while the smaller one has a shift factor size of 2, so we have
10 shift factors that overlap with the larger wavelet here. This is consistent with Equation
(2.14).

M
(:)
j,kv⃗ =


M

(0)
j,k

...

M
(2k−1)
j,k

 v⃗. (2.15)

This approach avoids redundantly computing the entries of v⃗, and allows us to take advan-

tage of existing vectorized array operation libraries. If we are calculating cross-correlations

for time-lags τ = 0, 1, . . . , T , then we only need to compute v⃗ for T
2k

different shifts of x⃗(r)j

and x⃗
(s)
k , and replace T · dim(v⃗) total dot products with T

2k
· dim(v⃗) matrix-vector multipli-

cations (since v⃗ is a vector, its dimension is a scalar). We can employ a similar technique

to improve the computational efficiency when calculating the beginning and end compo-

nents: store B(0)
j,k , . . . B

(2k−1)
j,k together as a three-dimensional tensor B(:)

j,k, and replace T total

vector-matrix-vector operations x⃗(r)j [: σj]
TBj,kx⃗

(s)
k [: σk] with T

2k
vector-tensor-vector opera-
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Algorithm 1 Wavelet Cross-correlation: Single Block, j ≥ k

x⃗
(r)
j , x⃗

(s)
k = wavelet coefficients for levels j, k of the DWT for signals r, s.

τ = time-lag
d = floor

(
τ
2k

)
su(ℓ) = number of nonzero values in level ℓ wavelet function
sh(ℓ) = size of a single shift factor for a level ℓ wavelet function
σj = su(j)/sh(j)
σk = su(k)/sh(k)
α = 2(j−k)σj + σk
Wj,k = correlation matrix mixing levels j and k at time-lag τ − 2kd
Bj,k, Ej,k = beginning and end submatrices of Wj,k, each size σj × σk
Mj,k = interior values of Wj,k, size α
v⃗ = 0 ∈ Rα

for i in {1, . . . , α} do
v⃗[i] = x⃗

(r)
j · x⃗(s)k [d+ 2j−k + i :: 2j−k]

end for
Xcorr = v⃗ ·Mj,k + x⃗

(r)
j [: σj]

TBj,kx⃗
(s)
k [d : d+ σk]

Xcorr = Xcorr + x⃗
(r)
j [−2k−jd− σj : −2k−jd]TEj,kx⃗

(s)
k [−σk :]

return Xcorr

tions, using the same process for Ej,k.

Common use cases for cross-correlation in geophysical time series data require computation

for a large range of time-lags, often on the order of 102 or 103. Even when reusing values of

v⃗ in a matrix-vector multiplication as in (2.15), we still need to compute v⃗ for a large range

of shift factors. Let v⃗(d) denote v⃗ computed for d = floor
(

τ
2j

)
, as described in Algorithm

1. Then, given time-lags τ ∈ [0, T ], with d′ = ceil
(
T
2j

)
, and the block matrix operation

x⃗
(r)T
j W

(τ)
j,j x⃗

(s)
j , we need to compute
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V = [v⃗(0), v⃗(1), . . . , v⃗ceil( T

2j
)]

=



(x⃗
(r)
j ⋆ x⃗

(s)
j )(σj) (x⃗

(r)
j ⋆ x⃗

(s)
j )(σj + 1) . . . (x⃗

(r)
j ⋆ x⃗

(s)
j )(d′ + σj)

(x⃗
(r)
j ⋆ x⃗

(s)
j )(σj − 1) (x⃗

(r)
j ⋆ x⃗

(s)
j )(σj) . . . (x⃗

(r)
j ⋆ x⃗

(s)
j )(d′ + σj − 1)

... . . . ...

(x⃗
(r)
j ⋆ x⃗

(s)
j )(−σj) (x⃗

(r)
j ⋆ x⃗

(s)
j )(−σj + 1) . . . (x⃗

(r)
j ⋆ x⃗

(s)
j )(d′ − σj)


.

(2.16)

This formulation helps reveal a useful property: due to the time-lags t for (x⃗
(r)
j ⋆ x⃗

(s)
j )(t)

required to compute the individual entries of v⃗ used in computing (dr ⋆ ds)(τ), v⃗(d)[i] ≈

v⃗(d+1)[i + 1]. Therefore, we only need to calculate the sliding inner products of x⃗(r)j and

x⃗
(s)
j at time-lags corresponding to the first row and first column of V , and can then use

these entries to help compute the rest of V . We do not have an exact equality because the

relative start and endpoints of each subdiagonal shift by 1, so we do need to apply additional

operations on each subsequent row of V . However, by reusing the already calculated values

from other time lags, this approach still sharply reduces the number of FLOPs needed to

compute V , especially when combined with fast Fourier transform algorithms to compute

the first row. We can apply similar redundancy rules to V in the j > k case as well.

These modifications for computing x⃗(r)Tj W
(τ)
j,k x⃗

(s)
k across a range of time-lags τ ∈ [0, T ] sig-

nificantly reduce the overall runtime of the wavelet-domain cross-correlation method. An

overview of this workflow is available in Algorithm 2. Once we calculate the component of

the cross-correlation corresponding to levels j × k for our desired range of time-lags, we can

then add them together, as shown in Equation (2.13).
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Algorithm 2 Wavelet Cross-correlation: Across Multiple Time-lags

x⃗
(r)
j , x⃗

(s)
k = wavelet coefficients for levels j, k of the DWT for signals r, s.

T = max time-lag
d′ = ceil

(
T
2k

)
su(ℓ) = number of nonzero values in level ℓ wavelet function
sh(ℓ) = size of a single shift factor for a level ℓ wavelet function
σj = su(j)/sh(j)
σk = su(k)/sh(k)
α = 2(j−k)σj + σk
W

(:)
j,k = correlation tensor mixing levels j and k at time-lags τ = 0, 1, . . . , 2k − 1

B
(:)
j,k, E

(:)
j,k = beginning and end subtensors of W (:)

j,k, each size σj × σk × 2k

M
(:)
j,k = interior values of W (:)

j,k, size α× 2k

V = 0 ∈ Rα×d′

for i in {1, . . . , α} do
for d in {0, . . . , d′} do

V [i, d] = x⃗
(r)
j · x⃗(s)k [d+ 2j−k + i :: 2j−k]

end for
end for
Xk = [x⃗

(s)
k [: d], x⃗

(s)
k [1 : 1 + d], . . . , x⃗

(s)
k [σk : σk + d]]

Xj = [x⃗
(r)
j [−σj :], x⃗(r)j [−1− σj : −1], . . . , x⃗

(r)
j [−2k−jd− σj : −2k−jd]]

Xcorrs =M
(:)
j,kV + x⃗

(r)
j [: σj]

TB
(:)
j,kXk +XjE

(:)
j,kx⃗

(s)
k [−σk :]

return Xcorrs
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2.3.3 Use of DWT Sparsity and Overall Efficiency

A major advantage of the wavelet-domain cross-correlation algorithm is the ability to utilize

sparsity in compressed DWT coefficients. Since this algorithm does not require an inverse

wavelet transform, it is possible to compute cross-correlations while using relatively small

volumes of data. In addition, the computations for forming V are sliding inner products

of the coefficient vectors x⃗(r) and x⃗(s), which can be easily implemented as sparse opera-

tions. Software implementations of this wavelet-domain cross-correlation algorithm have

been written for both dense and sparse formats of wavelet coefficients for time-series data.

To evaluate the overall efficiency using asymptotic cost, consider the block matrix multi-

plication x⃗
(r)T
j W

(τ)
j,k x⃗

(s)
k . Let N = min{dim(x⃗(r)), dim(x⃗(s))} ≈ min{dim(dr), dim(ds)}. From

Algorithm 1 we know this consists of three main computations: the formation of v⃗ which is

multiplied with Mj,k, and the vector-matrix-vector products using Bj,k, Ej,k. Bj,k and Ej,k

are both small (dimensions σj × σk, where σj, σk ≈ 5) matrices that are not dependent on

N , so their components on the cross-correlation have a negligible impact on the computa-

tional cost as N increases. The formation of v⃗ requires the computation of 2(j−k)σj + σk

inner products of x⃗(r)j with x⃗
(s)
k or a slice of x⃗(s)k . We know min{dim(x⃗

(r)
j ), dim(x⃗

(s)
j )} ≈ N

2j
.

Therefore, the asymptotic cost of computing x⃗(r)Tj W
(τ)
j,k x⃗

(s)
k (particularly v⃗) is roughly

Number of inner products × dim of vector × 2 = (2(j−k)σj + σk) ·
N

2j
· 2

= 2(2−kσj + 2−jσk)N. (2.17)

Let βj,k = 2(2−kσj + 2−jσk), i.e. the coefficient in Equation (2.17). For the approximation

level J+1, this coefficient is instead 4(2−kσJ+1+2−J−1σk), since it has the same dimensions as
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the last detail level. By applying this into Equation (2.13), we can get the overall asymptotic

cost for computing the cross-correlation at one time-lag:

O
(
x⃗(r)W (τ)x⃗(s)

)
≈

J+1∑
j=1

[
βj,jN +

j−1∑
k=1

(βj,kN + βj,kN)

]

=

(
J+1∑
j=1

[
βj,j + 2

j−1∑
k=1

βj,k

])
N. (2.18)

Thus the asymptotic cost is O(N) for a fixed DWT. However, the coefficient of our cost for

a single time-lag is significantly higher than in a direct cross-correlation computation (where

is it roughly 2, equivalent to an inner product). In addition, using a DWT with more levels

may increase this coefficient, since it introduces more components βj,k to the summation.

There are a few mitigating factors that can reduce this asymptotic cost. If we’re computing

values of multiple time-lags concurrently, then we can compute the matrix V as previously

described and shown in Algorithm 2, reducing the number of inner product computations

required and thus reducing the coefficient associated with computing each block matrix

product x⃗(r)Tj W
(τ)
j,k x⃗

(s)
k across a range of τ . Importantly, taking advantage of sparsity in our

computations of v⃗ or V (if we are using a sparse wavelet representation) can significantly

reduce the number of required arithmetic operations even further.

There can be a trade-off when determining the number of levels to use in a DWT for wavelet

compression. More levels in the DWT introduces more components βj,k to the coefficient

of our asymptotic cost, potentially increasing it. However, higher level scaling and wavelet

functions can often represent data more accurately after thresholding than lower level func-

tions, which allows us to use higher compression factors and thus gain more benefit from

sparsity in the computation of v⃗ or V . Some of the examples in Section 2.5 highlight this.
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The ideal number of levels to use for accurate compression and optimal performance in

computing cross-correlations is likely dependent on both the choice of wavelet family and

qualities of the data itself.

2.4 Theoretical Error Analysis

2.4.1 Pointwise Error Bound for a Single Time-lag

It is useful to develop theoretical error bounds on the utilization of wavelet compression

techniques, such as thresholding, when computing cross-correlations. For calculating effective

error bounds, it is helpful to use the theory we have developed in previous sections. For any

two real time-series signals dr and ds and a DWT with a given wavelet family and level J ,

we know

(dr ⋆ ds)(τ) = x⃗(r)TW (τ)x⃗(s), (2.19)

where W (τ) is the correlation matrix for the given discrete wavelet transform (thus W (τ) has

all the properties established in section 2.2), and x⃗(r), x⃗(s) are vectors storing the wavelet

coefficients of dr and ds for this particular DWT. Let ˆ⃗x(r) be the sparse coefficient vector for

d̂r, the compressed version of the signal, and let ˜⃗x(r) = x⃗(r) − ˆ⃗x(r). Suppose we are using a

compression-based thresholding approach: let c > 1 be the compression factor, so ˆ⃗x stores

the largest 1
c

entries in magnitude, while ˜⃗x stores the remaining 1 − 1
c
= c−1

c
entries. We

then know
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∣∣∣(dr ⋆ ds)(τ)− (d̂r ⋆ d̂s)(τ)
∣∣∣ =

∣∣∣x⃗(r)TW (τ)x⃗(s) − ˆ⃗x(r)TW (τ) ˆ⃗x(s)
∣∣∣

=
∣∣∣(˜⃗x(r)T + ˆ⃗x(r)T )W (τ)(˜⃗x(s) + ˆ⃗x(s))− ˆ⃗x(r)TW (τ) ˆ⃗x(s)

∣∣∣
=

∣∣∣˜⃗x(r)TW (τ) ˜⃗x(s) + ˜⃗x(r)TW (τ) ˆ⃗x(s) + ˆ⃗x(r)TW (τ) ˜⃗x(s)
∣∣∣

≤
∣∣∣˜⃗x(r)TW (τ) ˜⃗x(s)

∣∣∣+ ∣∣∣˜⃗x(r)TW (τ) ˆ⃗x(s)
∣∣∣+ ∣∣∣ˆ⃗x(r)TW (τ) ˜⃗x(s)

∣∣∣
≤ ∥˜⃗x(r)∥2∥W (τ) ˜⃗x(s)∥2 + ∥˜⃗x(r)∥2∥W (τ) ˆ⃗x(s)∥2 + ∥ˆ⃗x(r)∥2∥W (τ) ˜⃗x(s)∥2

≤ ∥W (τ)∥2
(
∥˜⃗x(r)∥2∥˜⃗x(s)∥2 + ∥˜⃗x(r)∥2∥ˆ⃗x(s)∥2 + ∥ˆ⃗x(r)∥2∥˜⃗x(s)∥2

)
.

(2.20)

From here, we wish to bound the coefficient vector norms inside the parentheses. Let N

be the length of x⃗(r), x⃗(s), Br = max{|x(r)i |}Ni=1, and T r = max{|x̃(r)i |}Ni=1 (with Bs and T s

defined similarly). Then we know:

∥ˆ⃗x(r)∥2 =

 N∑
i=1

|x(r)
i |>T r

∣∣∣x(r)i

∣∣∣2


1/2

≤
[
N
1

c
(Br)2

]1/2
=

√
N√
c
Br (2.21)

∥˜⃗x(r)∥2 =

 N∑
i=1

|x(r)
i |≤T r

∣∣∣x(r)i

∣∣∣2


1/2

≤
[
N
c− 1

c
(T r)2

]1/2
=

√
N

√
c− 1√
c

T r (2.22)

Substituting inequalities (2.21) and (2.22) into (2.20), we then get
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∣∣∣(dr ⋆ ds)(τ)− (d̂r ⋆ d̂s)(τ)
∣∣∣

≤ ∥W (τ)∥2
(
N
c− 1

c
T rT s +N

√
c− 1

c
T rBs +N

√
c− 1

c
BrT s

)
= ∥W (τ)∥2

N
√
c− 1

c

(√
c− 1T rT s + T rBs +BrT s

)
. (2.23)

This error bound scales linearly with the dimensions of the time series signals dr and ds, which

≈ N . It also avoids dependency on knowing the specific indices of thresholded values in x⃗(r)

and x⃗(s). However, our correlation matrix varies in dimensions based on the dimensions of

the time series signals, since these determine the number of shift factors per level. Therefore,

it is important to prove that ∥W (τ)∥2 is uniformally bounded above, regardless of the shift

factor count N . Let J be the level, or total number of scale factors, in this DWT (we denote

the approximation level as J +1). Then we know, using the triangle inequality, the property∥∥∥∥∥∥∥
A 0

0 B


∥∥∥∥∥∥∥
2

= max (∥A∥2, ∥B∥2), and our property W (τ)
j,k = W

(−τ)
k,j , that

∥W (τ)∥2 =

∥∥∥∥∥∥∥∥∥∥


W

(τ)
1,1 W

(τ)
1,J

... . . .

W
(τ)
J,1 W

(τ)
J+1,J+1


∥∥∥∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥∥∥∥


W

(τ)
1,1 0

. . .

0 W
(τ)
J+1,J+1


∥∥∥∥∥∥∥∥∥∥
2

+
J+1∑
j=1

J+1∑
k=1
k ̸=j

∥W (τ)
j,k ∥2

= max
j

(
∥W (τ)

j,j ∥2
)
+

J+1∑
j=1

j−1∑
k=1

(
∥W (τ)

j,k ∥2 + ∥W (−τ)
j,k ∥2

)
. (2.24)
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From here we can bound each of these norms separately. First consider a single same-level

correlation block matrix W (τ)
j,j . We can write this in the form

∥W (τ)
j,j ∥2 =

∥∥∥∥∥∥∥∥∥∥


B

(τ)
j,j 0

M
(τ)
j,j

0 E
(τ)
j,j


∥∥∥∥∥∥∥∥∥∥
2

≤
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0

M
(τ)
j,j

0
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2

+
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B

(τ)
j,j 0

0

0 E
(τ)
j,j
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2

= ∥M (τ)
j,j ∥2 + max

(
∥B(τ)

j,j ∥2, ∥E
(τ)
j,j ∥2

)
. (2.25)

Since M (τ)
j,j is a banded, Toeplitz matrix with 2σj nonzero diagonals, we can bound its 2-norm

by
∑σj

i=−σj

∣∣∣∣[M (τ)
j,j

]
σj ,σj+i

∣∣∣∣. Note that σj is small, typically ≤ 5 for most wavelet functions and

levels, and each of the entries of M (τ)
j,j are ≤ 1 in magnitude. Meanwhile, B(τ)

j,j and E
(τ)
j,j are

each small matrices of size σj × σj, so their 2-norms can be easily precomputed in advance.

We expect these matrices to have reasonably small norms as well, since each of their entries

are ≤ 1 in magnitude (because our wavelet and scaling functions are normalized, so by the

Cauchy-Schwarz inequality (θ(g) ⋆ θ(h))(τ) ≤ 1). Combining these two components, we get a

reasonable bound:

max
j

(
∥W (τ)

j,j ∥2
)
= max

j

 σj∑
i=−σj

∣∣∣∣[M (τ)
j,j

]
σj ,σj+i

∣∣∣∣+ max
(
∥B(τ)

j,j ∥2, ∥E
(τ)
j,j ∥2

) , (2.26)

where the indexing outside of the square brackets refers to the entry indexing for these

matrices. Note that this bound has no dependence on the dimensions of the original time
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series dr and ds. It is only dependent on the choice of wavelet function and the number

of levels. Thus the bound can be determined prior to data collection, based on the choice

of DWT parameters. Now consider the mixed-level correlation block matrices W (τ)
j,k , with

j > k. We can bound their 2-norms in a similar way to the same-level case:

∥W (τ)
j,k ∥2 ≤ ∥M (τ)

j,k ∥2 +

∥∥∥∥∥∥∥
B(τ)

j,k 0

0 E
(τ)
j,k


∥∥∥∥∥∥∥
2

= ∥M (τ)
j,k ∥2 + max

(
∥B(τ)

j,k ∥2, ∥E
(τ)
j,k ∥2

)
. (2.27)

Computing ∥B(τ)
j,k ∥2, ∥E

(τ)
j,k ∥2 is straightforward. Bounding ∥M (τ)

j,k ∥2, however, is somewhat

more complicated than bounding ∥M (τ)
j,j ∥2, since we no longer have the banded or Toeplitz

properties. However, we do know only a small, constant number of entries in each row can be

nonzero (equivalent to 2j−kσj + σk), and these row entries repeat in a Toeplitz-like pattern.

Let M̃ (τ)
j,k be the matrix M (τ)

j,k padded with additional rows so that it is Toeplitz. In particular,

after every row of M (τ)
j,k we insert 2j−k−1 additional rows of the same nonzero entries, where

the i′-th row is shifted right i′ times (i′ ∈ {1, . . . 2j−k − 1}). Denote this [M
(τ)
j,k ]ii′ ,: for the

i-th row of M (τ)
j,k . Let m,n denote the number of rows and columns of M (τ)

j,k . Then we have

M̃
(τ)
j,k =



[M
(τ)
j,k ]1,:

[M
(τ)
j,k ]1i′ ,:

[M
(τ)
j,k ]2,:
...

[M
(τ)
j,k ]mi′ ,:


. (2.28)

We can show for any x⃗ ∈ Cn that
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2
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2; (2.29)

note that [M
(τ)
j,k ]i,: is a vector, so |[M (τ)

j,k ]i,: · x⃗|2 is a scalar. Therefore we know ∥M (τ)
j,k ∥2 ≤

∥M̃ (τ)
j,k ∥2, and that ∥M̃ (τ)

j,k ∥2 is Toeplitz and banded, thus we can get a bound for ∥M (τ)
j,k ∥2

based on its limited nonzero entries:

∥M (τ)
j,k ∥2 ≤ ∥M̃ (τ)

j,k ∥2 =
2j−kσj+σk∑

i=1

∣∣∣[M (τ)
j,k

]
i

∣∣∣ . (2.30)

Combining these together, we now have:
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. (2.31)

If we know in advance that we will compute cross-correlations on signals of a certain length,

then we know how many shift factors will be present at each level and can precompute the

norm of W (τ) as an explicitly formed matrix, to develop a more rigorous bound on the error of

thresholding. However, Equation (2.31) gives us a uniform bound for W (τ) independent of the

DWT shift factors, confirming the error of our compressed cross-correlation scales linearly

with the length of our signals dr, ds. It can also be useful for creating more generalized

cross-correlation error bounds.

Also note that for any correlation block matrix W (τ)
j,k , we only store and use the matrix entries

for τ = 0, 1, . . . , 2k − 1. For larger time-lags, we make use of the cyclic property regarding

correlation matrix time-lags, shown in section 2.2, by applying a left or right shift operator,

as shown in Equation (2.12). Since left and right shift operators do not increase operator

norms, we know this bound on ∥W (τ)∥2 can be developed for any time-lag τ . In addition,

we can also determine max{W (i)
j,k}

2k−1
i=0 for each block matrix W

(τ)
j,k to develop a bound for

∥W (τ)∥2 independent of τ .
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2.4.2 Bound on the Cross-Correlation 1-Norm

It is also useful to develop an error bound for cross-correlations across a continuous range of

time-lags, as opposed to one time-lag individually. Consider the 1-norm of cross-correlations

over a range of time-lags [τ1, τ2]:

∥(dr ⋆ ds)∥1 =
∫ τ2

τ1

|(dr ⋆ ds)(t)| dt. (2.32)

We can make use of our correlation matrix implementation, along with the Cauchy-Schwarz

inequality and matrix norms, to see

∫ τ2

τ1

|(dr ⋆ ds)(t)| dt =

∫ τ2

τ1

∣∣x⃗(r)TW (t)x⃗(s)
∣∣ dt

≤
∫ τ2

τ1

∥x⃗(r)∥2∥W (t)∥2∥x⃗(s)∥2dt

= ∥x⃗(r)∥2∥x⃗(s)∥2
∫ τ2

τ1

∥W (t)∥2dt. (2.33)

2.4.3 Applying Error Bounds for Coefficient Vectors

We have developed a basic bound on the error of wavelet compressed cross-correlations via

thresholding using the correlation matrix structure we developed in section 2.2, which scales

linearly with the length of the signals being used. It is useful to use these bounds on some

examples of real data to develop intuition for their accuracy. To test our proposed bounds

for ∥ˆ⃗x∥2 and ∥˜⃗x∥2, we have computed the 2-norms of time series vibration data from a

multichannel sensor array, and their bounds using inequalities (2.21) and (2.22).

A plot of the norms of ∥ˆ⃗x∥2 at compression factor 10 and their computed bounds via in-
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Figure 2.10: Comparison of values of ∥ˆ⃗x∥2 and their bounds using (2.21).

equality (2.21) is shown in Figure 2.10. While correct, it is obvious the bounds for these

norms are not particularly tight, especially at certain channels in the sensor array. A side

by side comparison of the norms and bounds as shown here makes it difficult to asses the

relative differences between the actual norms and upper bounds, however.
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Figure 2.11: Ratios of ∥ˆ⃗x∥2 and ∥˜⃗x∥2 compared to their computed upper bounds at com-
pression factors C.

To better visualize the comparison of the vector norms of the thresholded signal ˆ⃗x and the

removed portion ˜⃗x, we have plotted the ratios of our bounds for these norms via (2.21),

(2.22), and the actual norm values, shown in Figure 2.11. In general, we see that the bounds

become tighter for larger compression factors in both cases. However, there is substantial

variation in the ratios even within the same compression factor, suggesting that differences
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in the variability and level of noise at individual sensors likely affects the overall accuracy.

In addition, the bounds for ˜⃗x are significantly less tight than the bounds for ˆ⃗x. This is likely

because ˜⃗x consists of the majority of the DWT coefficients which possess a large amount of

variance in their magnitudes, ranging from 0 to our thresholding value T , while ˆ⃗x consists of

relatively few coefficients (especially at higher compression factors) that tend to be larger in

magnitude. If thresholding values for multiple compression factors are stored for each time

series signal as metadata, it may be possible to develop tighter bounds on ˜⃗x, since we then

no longer have to uniformally bound its entries with a constant maximum value T .

2.5 Test Cases

2.5.1 Basic Sine Curve

As a simple test to evaluate the correctness and usefulness of this wavelet-domain cross-

correlation algorithm, we’ll consider the autocorrelation of a basic sine curve. Consider the

functions

f(t) =


10 sin(2t), x ∈ [0, 1000];

0, otherwise;
g(t) =


10 sin(2t), x ∈ [0, 500];

0, otherwise.

Note that f can be thought of as a time series signal defined over a compact interval, with g

as a window of f . The cross-correlation (f ⋆g)(τ) resembles a cosine function for τ ∈ [0, 400]

(this can be proven analytically). The plot in Figure 2.12 supports this, and displays the

relative errors of the cross-correlation of our wavelet-domain algorithm using the Daubechies

3 DWT at levels 1, 2, and 3. We can see that our new cross-correlation method computes the

expected results with reasonable accuracy, and that the largest relative errors occur where
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the cross-correlation is very close to 0.
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Figure 2.12: Plot of autocorrelations from a sine curve, computed from the original signal
and from wavelet coefficients using our wavelet-domain cross-correlation algorithm. Note
that the relative errors of the new method are small, and most significant where the original
cross-correlation is close to 0.

The main advantage to the wavelet-domain cross-correlation algorithm is the ability to op-

erate on a subset of the DWT coefficients, without the need to reconstruct the data with

an inverse wavelet transform. We expect some loss of accuracy when doing this, however.

Consider a form of compression where only the approximation coefficients, corresponding

to the scaling function in the DWT, are preserved. Figure 2.13 is a plot of (f ⋆ g)(τ) us-

ing only the approximation coefficients of the Daubechies 3 DWT, at levels 1, 2, and 3.

We can see that the approximations at levels 1 and 2 are virtually identical to the original

cross-correlation, while the approximation at level 3 only noticeably differs at the peaks and

troughs of the cosine-like oscillations. However, approximation coefficients make up roughly

a 1
2J

sized portion of the coefficients in a level J DWT. Therefore, the level 3 approximation-

only cross-correlation requires about 1
8

as much data to be stored as the traditional method.

Another common form of compression is thresholding. In Figure 2.14, (f ⋆ g)(τ) computed

using only the largest 10% of Daubechies 3 DWT coefficients in magnitude is plotted, at

levels 1, 2, and 3. While the level 1 and 2 approximation coefficients more accurately
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Figure 2.13: Plot of wavelet-domain cross-correlations computed using only the approxima-
tion coefficients at levels 1, 2, and 3. The number of stored approximation coefficients is
roughly halved for each level.

preserve the cross-correlation values, the level 3 approximation does it with significantly

fewer coefficients, allowing it to better preserve the values at a constant compression factor.
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Figure 2.14: Plot of wavelet-domain cross-correlations computed using the top 10% of coef-
ficients in magnitude at levels 1, 2, and 3.

Wavelet compression is considered a useful denoising technique [1], but it is still useful to test

how well wavelet-compressed cross-correlations respond to noise. To evaluate this, we added

random Gaussian noise (µ = 0, σ = 4) to our numeric representations of f and g, seeding the

random generator differently before each call. We then calculated the wavelet-domain cross-

correlation values on this noisy data at compression factor 10 (using a level 3 Daubechies

3 DWT), and compared it to both the original signal and the wavelet compressed cross-

correlations. A plot of these results is shown in Figure 2.15. In this case, there is minimal

difference between the noisy and noiseless wavelet compressed results, and only a modest

difference between the these and the original signal-derived values, supporting the notion
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Table 2.1: Counts of coefficients that are preserved in a level 3 Daubechies 3 DWT, after
thresholding with a compression factor of 10. “Total” refers to the number of coefficients
stored in the wavelet transformed data without compression.

Coefficient Total Preserved (No Noise) Preserved (Noise)
Approximation 1254 1002 921

Detail 3 1254 0 34
Detail 2 2503 0 13
Detail 1 5002 0 34

that wavelet compressed cross-correlations are robust to noise.
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Figure 2.15: Plot of wavelet compressed cross-correlations of two sine curve signals with
random noise added, at compression factor c = 10. The cross-correlations of the original
noiseless signals, computed directly and with the wavelet-domain algorithm at c = 10, are
added for comparison.

One final observation for this simple test case is the relative breakdown of preserved coef-

ficients in the wavelet compressed representation of f , shown in Table 2.1. In the noiseless

case, where f(t) = 10 sin(2t) for t ∈ [0, 1000], we see that all preserved coefficients are in

the approximation level, while all detail coefficients are thresholded. Once Gaussian noise

is added, a small number of detail coefficients at each level are preserved, but the majority

of preserved coefficients are still from the approximation level. Since f and g both repre-

sent a signal active at only one frequency, it appears the scaling function in this DWT best

represents data of that frequency.



2.5. TEST CASES 47

2.5.2 Signal from Real Data

The previous test case provides a useful example of the effectiveness of our wavelet-domain

algorithm and its ability to calculate reasonably accurate cross-correlations while using a

relatively small portion of the original data volume. However, real life signal data in most

applications is active on a range of frequencies, and generally does not resemble a basic

mathematical function such as a sine curve. For a more realistic but still relatively simple

test case, we took time series vibration data from a single channel in a multichannel sensor

array, sampled over one minute (2 ms per sample). A plot of this signal and its frequency

components, calculated using a Fourier transform, are available in Figure 2.16. A heatmap

displaying the Fourier transforms of 10 second windows is also available in Figure 2.17. We

can see that most of the signal is represented by frequency components below 10 Hz, with

additional significant components at roughly 30 Hz and 120 Hz. The 120 Hz component

is constant across the entire time sample, while the other major frequency components are

somewhat less consistent.
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Figure 2.16: Plot of one minute of vibration data from a multichannel sensor array, and its
Fourier transform. Note the strongest activity occurs at ≤ 30 Hz and ≈ 120 Hz.

We can calculate the autocorrelations of this signal with a subset of itself - a plot of this is

available in Figure 2.18. Note that the cross-correlation values peak at 400 ms (time-lag 200)

due to the indexing of the subset used. There are both rapid oscillations within the cross-
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Figure 2.17: A heatmap of 10 second windows of FTs of the data in Figure 2.16.

correlation values, indicative of the relative phases of the signal at the particular time-lags,

as well as slower, more gradual changes in these values. The cross-correlations calculated

using the traditional signal based method and our wavelet-domain algorithm are virtually

identical, since this example uses the full DWT (level 3, Daubechies 3 wavelets).

The time-lags for this cross-correlation test case correspond to intervals of 2 milliseconds each,

due to the sampling frequency of this signal. A more detailed visualization of the oscillations,

such as in Figure 2.19, shows that roughly six cycles occur every 50 milliseconds, which

corresponds to a frequency of 120 Hz. Thus the rapid oscillations in our cross-correlations

are almost certainly related to the 120 Hz component within this signal.

For the next part of this test, we calculated the wavelet-domain autocorrelations of this

signal two more times, each using only certain subsets of the DWT: just the approxima-

tion coefficients for one, and thresholded coefficients at a compression factor of 10 for the

other. Plots of results from both of these compression methods are available in Figure 2.19.

Notice that the approximation-only autocorrelation does not preserve the rapid oscillations

that likely correspond to the 120 Hz component, but otherwise closely follow the original
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Figure 2.18: Autocorrelations of our signal in Figure 2.16 with a subset of itself. Part of the
time-lag range has been zoomed in for clarity.

Table 2.2: A table showing the number of wavelets in a time series signal from a multichannel
sensor array that are preserved by thresholding (compression factor 10).

Coefficient Total Preserved Percent Preserved
Approximation 3754 1843 49.09 %

Detail 3 3754 32 0.85 %
Detail 2 7503 871 11.61 %
Detail 1 15002 256 1.71 %

Total 30013 3002 10.002 %

cross-correlation values. Meanwhile, the thresholded autocorrelation preserves slight 120 Hz

oscillations, noticeable in the more detailed subsection of the plot, but they also primarily

resemble the lower frequency features of the original autocorrelation. Both of these computa-

tions on reduced portions of the transformed signal are still valuable for the typical purposes

of cross-correlations, such as detecting similar events, but they preserve or emphasize specific

features.

Table 2.2 displays the total coefficient counts associated with the DWT of this signal, and the

number of coefficients in each level preserved by thresholding to a compression factor of 10.

Similar to the tests with a sine function, certain levels of the transform seem to have larger

coefficients. In this case, the approximation coefficients are still heavily prioritized, though

not to the same degree. Interestingly, the level 2 detail coefficients are also preserved by
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more than the overall compression factor, while only a small portion of detail 1 and virtually

no detail 3 coefficients remain. This suggests that the level 3 scaling function and level 2

wavelet function best represent the original time series signal, or at least certain components

of the signal.
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Figure 2.19: Autocorrelations of the signal in Figure 2.16, calculated by the wavelet-domain
algorithm using two separate forms of compression (approximation coefficients and thresh-
olding). A closer view of a subset of time-lags is also provided.

To better understand the relationship between the time-domain frequency spectrum and the

corresponding wavelet representation, we computed the Fourier transforms of the wavelet

and scaling functions present in a level 3 Daubechies 3 DWT, and plotted the results in

Figure 2.20. The frequencies have been calculated assuming these functions’ supports are

defined as they are used in the transform of our vibration data signal, on a scale of 2 ms per

sample. We can see that the scaling function’s (approximation’s) frequency components are

strongest below 20 Hz and weaker, but still present, below 50 Hz and at small pockets of

higher frequencies. Since most of the stronger frequency components in this example signal

are below 30 Hz (especially in the 0-10 Hz range), it seems reasonable that the majority

of the preserved coefficients in thresholding are approximation coefficients. Meanwhile, the



2.5. TEST CASES 51

level 2 wavelet function (detail 2) possesses the strongest 120 Hz component in this DWT.

Given the prominence of that frequency in the signal, it also seems reasonable that a sig-

nificant number of the preserved coefficients are in detail 2. Neither detail 1 nor detail 3

are active at high amplitude frequencies from the signal in Figure 2.16, especially detail 3,

potentially explaining why a large portion of those coefficients are thresholded relative to

the compression factor.
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Figure 2.20: The frequency bands of scaling and wavelet functions (approximation and detail
levels) in a level 3 Daubechies 3 discrete wavelet transform.

Plots of the Fourier transforms of the wavelet compressed signals, both by approximation-

only preservation and thresholding, are available in Figure 2.21. These support our notions

developed from observations of the functions’ frequency bands. The approximation-only

compressed signal is active primarily at frequencies represented by the scaling function:

0-50 Hz, and to a much lesser extent at roughly 90-100 and 150-160 Hz. The strongest

activity is below 10 Hz, aligning with both the vibration signal and the scaling function,

and other significant activity occurs at roughly 30 Hz. The thresholded signal frequency

components are very similar below 50 Hz, which seems reasonable as the majority of preserved

coefficients are in the approximation level, with the additional presence of frequencies around

and especially at 120 Hz. A few frequencies seem to be more prominent (at least relatively)

here than in the original signal in Figure 2.16, primarily at roughly 33 Hz and 130 Hz.

However, the strongest frequency activity is consistent with the original signal.
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Figure 2.21: Plots of the frequency components of our wavelet compressed signal. The
first one uses only the approximation coefficients, while the second one thresholds with
compression factor 10.

The most significant change in the thresholded vibration data signal is the reduction in

energy at 120 Hz. While still prominent, it has a lower amplitude than in the original data.

This is likely related to the 120 Hz oscillations in the wavelet compressed cross-correlations

being far less pronounced than those computed from the original signal. Since activity at

120 Hz is consistent across the entire minute of data, it is probably not related to temporal

changes within the signal.

Compressing by only using one or more specific levels of the transformed signal can ef-

fectively mimic a band-pass filter for specific frequencies (depending on the wavelet and

level used), providing a means to highlight important information within certain frequency

bands. Meanwhile, using a compression technique such as thresholding can preserve all of

the important frequency components of a signal and relevant features within the signal cross-

correlations. However, it does not necessarily preserve the relative differences between the

most prominent frequencies, which may emphasize or de-emphasize certain behaviors in the

resulting cross-correlations. Because of this, wavelet-compressed cross-correlations may have

a high entrywise error compared to those from the original data, but can still provide some

of the same useful information to indicate time-lags at which there is high similarity.
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Table 2.3: A table showing the runtime of the wavelet-domain cross-correlation algorithm
on two fixed signals, with key enhancements implemented.

Method Computing full V Redundancy Rules With FFTs
Runtime 231.0 ms 77.6 ms 10.6 ms

2.5.3 Algorithm Speed and Performance

The primary benefit of the wavelet-domain cross-correlation algorithm’s ability to operate

directly on the DWT coefficients is that there is no longer a need to reconstruct the original

data (or an approximation of it) using an inverse wavelet transform. If our transformed

data is stored in a sparse, wavelet compressed format, than this sharply reduces the total

memory costs of computing large numbers of cross-correlations (though our algorithm does

still produce a modest overhead, with the formations of V,Xr, and Xs in Algorithm 2).

However, it is also important to evaluate the speed of the new method, and compare it to

traditional cross-correlations computed directly on the reconstructed signal data.

The original multi-time-lag implementation of our wavelet-domain algorithm was rather

slow. This is primarily because the computation of the interior coefficient cross-correlation

values (represented by v⃗ in Algorithm 1, and V in Algorithm 2) requires us to compute

the cross-correlations of the coefficient vectors x⃗(r)j and x⃗
(s)
k , at several offsets. Employing

the redundancy pattern described at the end of section 2.3 allows us to only compute the

cross-correlations for the first row of V , then use simple rules to calculate subsequent rows,

which sharply reduces the total number of floating-point operations required to compute V .

Moreover, using FFTs with the cross-correlation theorem to compute the first row improves

performance further. A relative comparison of the wavelet-domain algorithm with these

changes, employed on the same two signals, is available in Table 2.3.

In Figure 2.22, we plot a comparison of the runtimes of standard signal cross-correlations

and our dense wavelet-domain algorithm, on a range of time-series signal lengths. The
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Figure 2.22: Plot comparing the runtimes of signal-based cross-correlations and our wavelet-
domain algorithm on dense coefficients. Displayed runtime is logarithmic.

number of time-lags in this computation is fixed at 1000. We see that the wavelet-domain

implementation is much faster than the direct cross-correlation method, and scales much

better with longer signals: it is only 1.75 times faster at signal length 10000, but 38.3 times

faster at signal length 150000. However, our algorithm is slower than signal based cross-

correlations computed with FFTs, though its relative scaling improves with longer signal

lengths - it is 14.9 times slower at length 10000, but only 4.05 times slower at length 150000.

A plot comparing FFT signal cross-correlations to sparse wavelet-domain cross-correlations

at compression factors 5, 10, and 20 is available in Figure 2.23. The main performance

improvement of the sparse algorithm is by computing the entries of V at each level with a

sparse cross-correlation function on x⃗(r)j and x⃗(s)k . Although we can no longer use FFTs with

the cross-correlation theorem to compute the entries of V , sparse cross-correlations are much

faster than dense cross-correlations at sufficient high sparsity levels. At compression factor

c = 5 (where the coefficients vectors are 80% sparse), the wavelet-domain implementation is

still significantly slower than signal FFTs, although it is faster than the dense algorithm. At

c = 10, we see comparable performance to signal FFTs at longer lengths, and even better
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Figure 2.23: Plot comparing the runtimes of FFT signal cross-correlations and our wavelet-
domain algorithm on sparse compressed coefficients, at different compression factors.

performance at length 150000 (the upper end of most typical use cases in geophysical data

analytics). We see significant improvements in speed at c = 20, though we have not found

this level of compression to be reliably accurate in all use cases. Still, this test suggests the

sparse wavelet-domain algorithm has good performance scaling compared to typical FFT-

based signal cross-correlations.

As a final performance test, we evaluated the runtime of various signal and wavelet-domain

methods on larger problems: the cross-correlations of two signals of lengths 5× 105 through

2×106, with 1000 time-lags. The results are shown in Figure 2.24. The dense algorithm (not

plotted) is roughly 4.4 times slower than the FFT based signal cross-correlation on signals

of length 106, which is consistent with the differences noticed in tests on smaller problems.

However, the sparse algorithm scales well on the larger problems: at compression factor

c = 10 (90% sparse), it is roughly 1.8 times faster at signal length 106 and over 2 times

faster at length 2 × 106; at compression factor 20 (95% sparse), it is over 4.8 times faster

at length 106 and over 5.8 times faster at length 2 × 106. This further supports the sparse
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Figure 2.24: Plot comparing the runtimes of FFT signal cross-correlations and our wavelet-
domain algorithm on sparse compressed coefficients, at longer signal lengths.

wavelet-domain cross-correlation algorithm scaling well on larger problem sizes. Further

enhancements to the sparse algorithm, perhaps by implementing Xr and Xs as described

in Algorithm 2 as sparse matrices, or by identifying wavelet families that allow for higher

compression factors while preserving accuracy, will likely improve this scalability further.

Many current applications of cross-correlations on vibration data sets still feature signals

of smaller lengths, roughly 104 − 105. However, as higher resolution datasets become more

common in geophysical analysis, demanding cross-correlations of longer signals, the improved

scaling of the sparse wavelet-domain algorithm may become more valuable.



Chapter 3

Accelerated Multichannel Analysis of

Surface Waves

This chapter mostly consists of material already submitted for publication. [9]

3.1 Overview of Problem

Multichannel Analysis of Surface Waves (MASW) consists of two main processes, MASW

dispersion and MASW inversion. Dispersion requires collecting near-surface wave data,

primarily ground roll, from an array of sensors, and using spectral analysis to compute the

dispersion curve of the ground roll. This process is only done once per site, and typically

does not lend itself well to parallelization (it often requires some judgement and manual

input by the user to “trace” the ideal curve in the dispersion plot). MASW inversion is

better suited to parallelization, and there is a much greater need for it since it is run once

for each proposed near-surface model of the site, and there can be hundreds of such models.

Our algorithms are for MASW inversion.

A typical use case for MASW inversion has two “loops”, regarding potential optimizations.

Optimizing the “inner loop” consists of further enhancements to the MASW inversion algo-

rithm itself, improving its performance when computing the theoretical dispersion curve of

a near-surface model. As one computes MASW inversion for more models, improvements

57



58 CHAPTER 3. ACCELERATED MULTICHANNEL ANALYSIS OF SURFACE WAVES

to the inner loop become more valuable. Optimizing the “outer loop” means reducing the

number of models that must be assessed to find an accurate prediction for this near-surface.

This in turn reduces the total number of necessary iterations of MASW inversion.

Existing optimizations to MSAW inversion focus on improving the outer loop. Various algo-

rithms have been employed to optimize the choice of near-surface models to test, including

pattern matching and bee swarm algorithms [15, 16]. However, there were no previous open-

source MASW implementations that optimize the inner loop through parallelization or use

of GPUs. Our MASW inversion implementations do this. These inner loop enhancements

can improve performance for both individual runs and large quantities of runs of MASW.

Moreover, they can be combined with the outer loop optimizations to further improve per-

formance.

We review the a standard serial algorithm for MASW inversion from MASWaves, an open

source implementation written in MATLAB [12], and note optimizations we have made in

our C implementation. We then propose new algorithms that parallelize MASW inversion

using MPI, and that perform MASW inversion on GPUs.

3.2 Serial Implementation

Before parallelizing the algorithm for MASW inversion, we need to implement a C serial

version of the code which can then be modified with MPI and CUDA. We used MASWaves,

an existing implementation written in MATLAB as our reference to compare against [12].

Initially our C serial implementation was a simple port of MASWaves to C, but we later

made a number of changes to the algorithm to improve its efficiency.

The model evaluation process in MASW consists of two main algorithms. First, the model
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parameter inputs are used to compute the most likely velocities for each wavelength in the

experimentally derived dispersion curve. This is done in the function MASW Theoretical

Dispersion Curve, illustrated in Algorithm 3. The model parameter inputs (M) are the num-

ber of finite thickness layers, the thickness and density of each layer, and the compressional

(P) and shear (S) wave velocities through each layer.

Algorithm 3 MASW Theoretical Dispersion Curve
1: M = Guessed model parameters
2: W = Wavelength values from experimental dispersion curve
3: Ct = Velocity corresponding to each wavelength given M
4: V = Range of potential velocity values to test
5: dold = Determinant value for previous entry in V
6: dnew = Determinant value for current entry in V
7: for w in W do
8: dold = stiffness_matrix(M , V [0])
9: dnew = stiffness_matrix(M , V [1])

10: n = 1
11: while sign(dold) == sign(dnew) do
12: n = n+ 1
13: dold = dnew
14: dnew = stiffness_matrix(M , V [n])
15: end while
16: Ct[w] = V [n]
17: end for

MASWaves utilizes the stiffness matrix method [6] to compute the theoretical dispersion

curve. Given a wavelength, sparse stiffness matrices are computed for each test velocity

(in V ) in increasing order, until one has a determinant (dnew) with a different sign than its

predecessor, suggesting the matrix generated at this test velocity is near a singular matrix.

This test velocity (V [n]) is then stored as the theoretical velocity corresponding to that

particular wavelength, i.e. it is stored as Ct[w]. The process is repeated for each wavelength

in the experimental dispersion curve to generate a theoretical dispersion curve of Rayleigh

wave velocities and their wavelengths.



60 CHAPTER 3. ACCELERATED MULTICHANNEL ANALYSIS OF SURFACE WAVES

The entries of each matrix are a function of its corresponding test velocity in V and the model

parameters M : the number of finite-thickness layers, layer densities, layer thicknesses, layer

shear wave velocities, and layer compressional wave velocities, which are all constant for a

single run of MASW inversion. The matrices are always symmetric and heptadiagonal, and

their size is dependent on the number of layers in M .

A stiffness matrix may be generated for each wavelength and each test velocity. Realistically

a dispersion curve may have up to 100 wavelengths and 1,000 test velocities, requiring a total

of 100,000 stiffness matrices to be generated (in practice this number is often lower, since the

ideal test velocity is usually found before all velocities are checked for a given wavelength).

These stiffness matrices also have a sparse banded structure, which is not clearly taken

advantage of in MASWaves but is in our algorithms.

The algorithm also requires the determinants for each of these matrices to be computed. The

stiffness matrices are of size 2(N + 1)× 2(N + 1), where N is the number of finite-thickness

layers in M . Since they have a symmetric heptadiagonal structure, computing the entries of

a stiffness matrix and its determinant requires O(N) operations.

Algorithm 4 MASW Misfit
Ct = Velocity corresponding to each wavelength given M

2: Ce = Experimentally derived velocities
e = Relative errors

4: l = Length of W, Ct, and Ce

m = the average misfit
6: for i = 1 to l do

e = e + |Ct[i]−Ce[i]|
Ce[i]

8: end for
m = e

l

Once the theoretical dispersion curve Ct is computed, the second part of the algorithm

compares its velocities to the velocities experimentally derived from the data, labelled Ce.

The average relative error is labelled the misfit, and indicates how accurate M serves as a
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model of the ground structure. Essentially the misfit behaves as a loss function for MASW.

The model parameters M , along with the given test velocity and wavelength, are used to

compute each stiffness matrix. If the theoretical velocity for each wavelength is close to the

experimental velocity (i.e. the misfit is small), then the model parameters are more likely to

be a good approximation of the ground truth.

One downside to MASW is that it does not have any form of backpropagation to accompany

its loss function. Therefore the only way to minimize the misfit is to compute theoretical

dispersion curves for a large quantity of plausible model parameters, each of which require

forming and finding the determinants of up to 100,000 small matrices. While methods have

been used to more efficiently select which models should be tested, such as the pattern search

and bee swarm algorithms, these still require a large number of model theoretical dispersion

curves to be computed [15, 16]. Since each of these curves and their misfits can be computed

independently, this algorithm can benefit from parallelization, both between different test

models and within individual models.

3.3 MPI Parallelism

It is possible to visualize MASW as a mesh computation, although it is not a literal ground

mesh. Stiffness matrices must be computed with several different values of wavelengths and

test velocities and the same values of model parameters. If the wavelength and velocity

values are thought of as the x and y axis, then MASW_Theoretical_dispersion_curve can

be viewed as computing data points along a two dimensional “grid”. It is reasonable to

partition this grid of computations into multiple processes in an MPI implementation.

There are two obvious ways to partition this grid. The stiffness matrix method heavily uti-
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Figure 3.1: Visualization of original MPI partition. Darker colors correspond to determinants
that were computed, with the darkest highlighting the theoretical curve. Each rank has its
own color scheme. Note the number of computed determinants varies heavily for each rank.

lizes the test velocities in computing the individual matrices. Therefore, one could partition

the grid along the velocity axis: given S processes and V test velocities, compute stiffness

matrix determinants for all wavelengths and the first V
S

velocities in process 0, then the next
V
S

velocities in process 1, and so on. This approach would allow components of the stiffness

matrix dependent on the test velocity to be pre-computed, reducing the number of repetitive

computations.

Partitioning along the velocity axis would have significant drawbacks, however. Once the

determinants are computed, a linear search must be performed along each wavelength to find

the first sign change. Since the determinants for each wavelength are split along multiple

processes, a significant amount of communication would be required between each process

to find the first sign change. In addition, determinants for higher test velocities might not

even need to be computed if the first sign change (and thus correct test velocity) has already

been found. Thus this approach may lead to several unnecessary computations.

Because of these difficulties, the method used was partitioning along the wavelength axis.
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The stiffness matrix computations do not feature the wavelength input as much as the test

velocity, so there is little potential to pre-compute components of the matrices for each

wavelength. But finding the ideal test velocity for a given wavelength has no dependence on

other wavelength values, so no communication between processes is required for the disper-

sion curve. In addition, once the ideal test velocity is found for a particular wavelength, the

process can begin computing matrix determinants for the next wavelength. This preserves

the serial implementation’s advantage of avoiding unnecessary matrix and determinant com-

putations. Partitioning along the wavelengths also makes computing the misfit parallel as

well, with only one reduction operation required to combine the errors from each process.
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Figure 3.2: Visualization of modular MPI partition, with the same color rules in place. In
this case the computed determinants are balanced more evenly.

Since the algorithm does not require communication between different wavelengths of the

dispersion curve, there is freedom to choose exactly how to partition the problem along the

wavelength axis. The original approach was to assign wavelengths contiguously: given s

processes and W wavelengths, assign wavelengths 0, 1, . . . , W
s

to process 0, wavelengths W
s
+

1, . . . , 2W
s

to process 1, and so on. However, dispersion curves are continuous and typically

monotonic, so this leads to an unbalanced workload between processes. We determined a
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more efficient approach was to partition wavelengths in a modular pattern: assign every

wavelength equivalent to 0 mod s to rank 0, every wavelength equivalent to 1 mod s to rank

1, and so on. This is a simple way to improve the load balancing of the MPI implementation,

by taking advantage of typical features in the dispersion curve data.

3.4 GPU Acceleration

Model parameters, 
wavelengths, test 

velocities, experimental 
dispersion curve

Allocate and form stiffness 
matrices (step 2)

Theoretical dispersion 
curve, misfit

Compute sparse stiffness 
matrix determinants (step 

3)

Linear search of 
determinants, get 

theoretical dispersion 
curve (step 4)

Compute misfit (step 5)

CPU GPU

(step 1)

(step 6)

Data transfer

Data transfer

Figure 3.3: General outline of GPU implementation.

Many workstations used by geotechnical engineers contain CPUs with multiple cores as well

as graphics cards. Thus, in addition to writing MASW for MPI, we have also implemented

the MASW algorithm for graphics processing units (GPUs). MASW requires calculating

many determinants of sparse matrices, a problem which has not previously been adapted to

GPUs.

There are five main steps to the GPU implementation that are distinct from the serial and

MPI versions of MASW. First, the initial input values to the algorithm - wavelengths, test

velocities, experimental dispersion curve, and the ground model parameters - are transferred
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from the CPU “host” to the GPU “device” as shown in step 1 of Figure 3.3. Copying memory

between the host and device is costly, but the volume of data copied here is relatively small

(the test velocity array may have ≈ 1000 entries, and the other inputs are scalars or much

shorter arrays), so this transfer is not problematic.

Once the inputs are on the device, the stiffness matrices are allocated as global device

memory and their entries are filled in based on the model parameters M , shown in step 2

of Figure 3.3. Forming the stiffness matrices is one of the most costly steps in MASW, so

effective parallelization is critical. Since a GPU contains thousands of cores (as opposed to

the dozens that may be available on one or more CPUs), it is feasible to partition the problem

along both the wavelength and velocity axis dimensions of the grid. In fact, it is reasonable to

compute all the stiffness matrices concurrently since they are mutually independent. Using

CUDA, each thread is assigned to fill in the entries for one stiffness matrix.

Computing values for a stiffness matrix is O(N) as described in the serial implementation,

where N (the number of finite thickness layers in M) is typically small (N ≤ 10). Entries

in the stiffness matrices are incrementally increased multiple times, so trying to compute a

stiffness matrix across multiple threads can lead to race conditions. Thus assigning a single

thread to each stiffness matrix is reasonable.

Once the stiffness matrices are formed, Gaussian elimination is performed so their deter-

minants can be easily computed, shown in step 3 of Figure 3.3. This is roughly equal

to forming the stiffness matrices in terms of time cost. Initially, we used the function

cublasZgetrfBatched() to perform LU factorizations on the stiffness matrices. This func-

tion took over 50% of the runtime of the GPU implementation, most likely because it did

not take advantage of the stiffness matrices’ banded structure and was therefore O(N3) for

each factorization. Because of this, we replaced it with a kernel that assigned one thread to

each stiffness matrix to perform a banded Gaussian elimination. This function was roughly
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ten times faster than cublasZgetrfBatched(), and approximately equal in runtime to the

kernel that formed the stiffness matrices.

The next step is to find the first test velocity whose corresponding determinant is the opposite

sign of its predecessor for each wavelength, which is step 4 in Figure 3.3. Normally this

would require a linear search along all the test velocities for each wavelength - a serial O(N)

process that does not lend well to GPU architecture. However, there is still some potential

to partition the problem along the device cores. The search kernel breaks up the stiffness

matrices along its blocks by wavelength, and along threads within each block by test velocity.

This is illustrated in Figure 3.4.

Test Velocity 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Determinants 9 7 3 -1 -3 -5 -4 2 4 6 7 8 8 10 9

Block 0 Block 1 Block 2

First sign change: 2.0 (Index 3) 4.0 (Index 7) N/A

First overall sign change: 2.0 (Index 3)

Figure 3.4: Outline of GPU determinant search along one wavelength. The first sign change
within each block is found, then a search over the blocks finds the first overall sign change.

Each wavelength will be paired with multiple blocks, since the block size is assumed to be

256 (for compatibility with older GPUs) and often MASW is run with ≥ 500 test velocities.

Within each block, thread i computes the determinant of its respective stiffness matrix by

multiplying the diagonal entries, then compares it to the determinant of thread i + 1. It

then stores the result of the sign comparison into shared memory.

Once this is complete for all threads, the first thread of each block then performs a linear

search for the first sign change in its shared memory block, and stores this as the index of the

first sign change within that range of test velocities. These results are placed in the matrix
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∈ Rℓ×b, where ℓ is the number of wavelengths and b is the number of blocks assigned to

each wavelength. The next kernel then iterates over S to find the first recorded sign change

for each wavelength, which is a small linear search over approximately 4 entries. The test

velocity whose stiffness matrix determinant produced the first sign change is then labelled

as the velocity corresponding to that wavelength in the theoretical dispersion curve.

The final steps are to average the errors between the theoretical dispersion curve and ex-

perimental curve to get the overall misfit, and to send the theoretical dispersion curve and

misfit to the host, which are steps 5 and 6 of Figure 3.3. The former is effectively equivalent

to a vector dot product (in terms of number of floating-point operations), which is straight-

forward to implement in CUDA. The latter is simply a CUDA memory copy involving a

vector of length ≤ 100 and a scalar. Steps 1 and 6 require only a small amount of data to be

transferred between the host and device, while the stiffness matrices, which take up much

more memory, are allocated and freed exclusively on the device.

3.5 Test Cases

We developed a variety of tests for correctness of the code (unit tests and end-to-end tests),

as well as performance and scalability tests to understand code efficiency.

We used two main test cases to evaluate MASWAccelerated’s performance. A synthetic dis-

persion curve of identical wavelength values was used to provide a “uniform” dataset. This

is useful because of the design of the serial and MPI algorithms - since every test velocity is

evaluated in increasing order, varying wavelengths with different theoretical velocities will

have different runtimes. Thus a uniform test allows us to observe other factors that may af-

fect how MASWAccelerated scales with more data. The second test case was a more realistic
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“variable” dataset, with decreasing wavelengths, matching a typical dispersion curve. We

present these test cases in the code as testScaling and testProcess, respectively. Both of

these functions also have wrappers (testScaling_full and testProcess_full) that enable

test cases to be run multiple times in a loop.

3.5.1 Serial Tests

The primary purpose of our serial C implementation is to enable usage of MPI and CUDA to

parallelize MASW. However, it is still important to make sure the serial C version is correct,

and it is useful to compare its speed to the original MATLAB version of MASWaves. We

timed the speed of MASWaves on our realistic dataset, and compared it to MASWAcceler-

ated’s speed on the variable dataset when run in serial. Both of these tests were run ten

times on a laptop with a 3.1 GHz Intel Core i7 CPU, and the mean results are shown in

Figure 3.5, along with errors denoting one sample standard deviation.

Initially the serial C implementation, while mathematically correct, was slower than MASWaves,

which is not ideal. This is likely because MASWaves made use of MATLAB’s vectorized op-

erations to compute stiffness matrix determinants, while the initial Gaussian elimination

algorithm written for MASWAccelerated was not vectorized.

The stiffness matrices formed by MASW are always sparse, and moreover have a banded

heptadiagonal structure (nonzero entries only on the main diagonal and the three above and

below it). We used this fact to improve the Gaussian elimination algorithm to be only O(N)

instead of O(N3), which increased the algorithm’s speed by 2.0 times, as shown in the C

(sparse) column. We also noticed components of the entries in the stiffness matrices could

be pre-computed before iterating over the matrix entries in a loop, reducing the number of
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Figure 3.5: Comparison of MATLAB and C on a variable dataset.

arithmetic operations required and increasing the algorithm speed a further 18% as shown

in the time for C (precomputed). These improvements enable the serial C implementation

to be over twice as fast as MASWaves without any parallelization or vectorization calls. The

precomputed serial C version is used as the basis for the MPI algorithm, and for performance

comparison with the GPU algorithm.

It is worth noting the runtime for the first instance of MASWaves was significantly slower

than subsequent runs, causing the increased variability. This may be due to some type of

caching effect in MATLAB which is not present in C.

3.5.2 MPI Tests

As the MPI implementation with one process is virtually identical to the serial implementa-

tion, the main purpose of testing is to evaluate how it scales with more processes and larger
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datasets. For this purpose we ran a few strong and weak scaling studies.

For the strong scaling study, we first tested the algorithm on the uniform dataset with 1000

wavelengths, allowing for distinctions in runtime to be more noticeable. The results are

shown in Figure 3.6, which shows the average runtime for each process count on ten runs.
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Figure 3.6: MPI strong scaling on uniform data.

This test was run on the NewRiver computing cluster at Virginia Tech, using two Haswell E5-

2680v3 2.5GHz processors with 12 cores each. The algorithm scaled almost exactly linearly

with more cores, which is expected given the minimal amount of communication required

between processes and the highly parallel method used to partition MASW.

In practice, dispersion curves usually have a couple features that make the MPI algorithm

scale less than linearly, as seen in the strong scaling test for the uniform dataset.

One problem is that dispersion curves do not have identical wavelength values throughout,

but rather varying wavelength values which correspond to different velocities. Since MASW

must evaluate test velocities in increasing order to identify the determinant sign change,
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entries with larger velocities will require more stiffness matrix determinants to be computed,

resulting in a longer run time. Because of this, the MPI algorithm is prone to load imbalanc-

ing on realistic data, even though the entries of the dispersion curve are partitioned evenly.

For near-surface imaging, most dispersion curves are decreasing in both wavelength and

velocity, and usually resemble a continuous curve. A naive contiguous partition of the dis-

persion curve will place entries with similar wavelengths and velocities on the same process,

thus resulting in a few processes receiving all of the high-velocity entries, exacerbating the

load imbalance. The modular partition of the dispersion curve mitigates this problem, and

improves the MPI algorithm’s strong scaling as a result. The comparison of speedup for

these partitions on the variable dataset can be seen in Figure 3.7. A line has been added to

compare both to ideal linear scaling.
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Figure 3.7: MPI strong scaling on variable data, using different partitions. The variable data
highlights the two features that can make MASW problematic for MPI: large variations in
wavelength values for the dispersion curve, and short dispersion curve length.
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This test was run on the same hardware as the uniform strong scaling, and again the av-

erage of ten runs per size was used. Although still not linear, the modular partition scales

significantly better than the original contiguous partition: with 3 processes it has a speedup

of nearly 2.8 compared to 1.9 for the naive approach, and with 8 processes it has a speedup

of nearly 7.0 compared to only 4.2. Overall, the MPI algorithm with a modular partition

will have near-linear scaling for most datasets with relatively few processes.

The reduction in speedup with more processes is likely due to another problem - most

dispersion curves have a relatively short length (the variable dispersion curve has 40 entries,

which is fairly typical). When the size of the partition is small, approximately 10 or less,

each additional process reduces the number of dispersion curve entries computed for all of

the other processes. For example, at size 3 each process is computing velocities for 13 or

14 wavelengths, while at size 4 each process is computing velocities for only 10 wavelengths.

This is a significant reduction in workload and results in major speedup as seen in Figure 3.7.

But at larger sizes there is not a reduction in workload for every process. For example, at size

20 each process is computing 2 entries, while at size 24, 16 processes are still computing 2

entries and the last 8 are computing 1. Since many processes have no reduction in workload,

the overall runtime of the algorithm is not reduced. Therefore, the MPI partition scales near

linearly with relatively few processes (depending on the size of the dispersion curve), but

experiences diminishing returns with more processes.

A weak scaling study was also performed on the NewRiver cluster using the uniform dataset,

again with the same hardware and taking the average of ten runs per size. The size of the

dispersion curve was 1000 × the number of processes. As seen in Figure 3.8, the MPI

implementation scaled efficiently by this measure, having no significant increase in time

with more data and processes. There are a few sizes with marginally higher runtimes - 7, 10,

and 15 - but these are minor and likely due to external factors, such as additional processes
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Figure 3.8: MPI weak scaling on uniform data, with a dispersion curve of length 1000 ×
number of processes.

being run on these resources. Like the strong scaling study with uniform data, this test

highlights the minimal communication requirements for the MPI implementation.

3.5.3 GPU Tests

First we compared the CPU and GPU implementations on the variable dataset. This was

done eleven times in the wrapper loop testProcess_full using the MPI implementation

(with one process), then eleven times both in a loop and separately with the CUDA imple-

mentation. The resultant run times are shown in Figure 3.9. Note the blue bars are the

first run for each method, while the orange bars are the means of subsequent runs with their

sample standard deviation posted. The CPU algorithm is unchanged from the serial and

MPI tests, but its runtime is different since it was run on a different machine.

All three of these implementations were run on the same desktop, using an Intel Xeon CPU
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Figure 3.9: Comparison of CPU and GPU on the variable dataset.

E3-1271 v3 @ 3.60 GHz and an Nvidia Quadro K620 GPU. The first run is the run time of the

first instance of MASW_inversion, while the subsequent runs denote the mean runtime of all

other instances. The error bars denote one standard deviation for the subsequent runs. The

GPU implementation of MASW_inversion is about 25% faster than the CPU implementation

when run once, but over 3.2 times faster when it is run multiple times in a for loop. This is

likely because of just-in-time compilation, used by Nvidia to allow CUDA kernels to benefit

from new device architectures. When a kernel is run multiple times within a function call,

it only needs to be compiled for the first kernel run while it is “cached” for subsequent runs.

Since MASW inversion is often run multiple times with different test velocity models, it

is reasonable to call MASWAccelerated functions repeatedly to run inversions on multiple

models to take advantage of this caching effect. It is worth noting that, while not as dramatic,

there is still roughly 8% speedup when running the inversion multiple times individually on

the GPU, but no significant speedup for the CPU implementation.
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We next use the uniform dispersion curve to evaluate how the GPU implementation performs

on progressively larger datasets. This test ran the MPI (one rank) and CUDA implementa-

tions of MASW_inversion on dispersion curves of lengths 50 - 500. The wavelength values of

these curves were designated to match test velocities of 72, 238, and 256 (each implementa-

tion and each dispersion length was run three times with three different wavelength values).

The results are shown in Figure 3.10, run on the same desktop used for the previous test.

Scalability of CPU and GPU Implementations

Figure 3.10: Comparison of CPU and GPU on increasing uniform datasets.

As expected, the CPU implementation scaled linearly with the length of the dispersion curve.

The exact run time is highly dependent on the theoretical velocity values, as shown in the

MPI scaling studies. The GPU implementation was significantly faster (since the caching

effect was recognized in testing the variable data, we made use of it here), and had no

dependence on the theoretical velocities since all stiffness matrices are computed regardless.

It is worth noting that too large a dispersion curve or too many test velocities can overload

the GPU memory on the CUDA implementation, since all the stiffness matrices are formed
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concurrently in global memory and the dispersion curve and test velocities determine the

number of stiffness matrices. The exact upper limit depends on the memory space of the

GPU and the number of finite thickness layers in the model M (which determines the size

of the stiffness matrices), but typical problem sizes for MASW will not take up too much

memory, even for older GPUs. We found dispersion curves larger than 500 typically caused

memory problems for the Quadro K620 GPU, which has 2 GB of global memory. This is

because each stiffness matrix has 196 entries, each of which is a CuDoubleComplex datatype

that takes 16 bytes, so 500 wavelengths × 1000 test velocities × 3136 bytes ≈ 1.6 GB, close

to the memory limit of the GPU.
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Conclusions and Future Work

In this thesis, we have described the design and implementation of efficient algorithms for two

commonly used methods in geophysical imaging: cross-correlations on wavelet-compressed

data, and Multichannel Analysis of Surface Waves (MASW). Both of these methods are

frequently used on DAS data, and our algorithms address some of the challenges posed by

geophysical data used in this context, although they can be used on general data collected

by other sources as well.

For the first method, we have designed an algorithm for computing cross-correlations of data

stored in the wavelet-domain by a discrete wavelet transform (DWT), without requiring the

use of an inverse transform to reconstruct the signal. We have tested implementations

that use both dense DWT coefficients, and thresholded sparse coefficients. The algorithm

avoids the costs of an inverse transform, and appears to scale better than typical cross-

correlation computations when making use of sparsity. In designing the algorithm, we have

also developed theory that may be useful for wavelet analysis in other contexts: the wavelet

properties pertaining to cross-correlations, and error bounds of wavelet thresholding on cross-

correlations.

For the second method, we designed algorithms for MASW using MPI and CUDA, which

can take advantage of multiple CPU cores and GPUs, respectively. The MPI implementation

has been found to scale near-linearly with smaller numbers of computing cores, and requires

minimal communication between processes. The GPU implementation also sees marked

77
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improvement in performance compared to serial CPU implementations, while still possessing

linear scalability on larger problem sizes. In addition, it features a linear algebra operation

that is currently unavailable in existing libraries for CUDA: a determinant solver for several

small, banded matrices.

4.1 Future Work

The wavelet-domain cross-correlation algorithm is currently implemented in Python, pri-

marily utilizing NumPy for vectorized linear algebra operations, PyWavelet for DWTs, and

custom-written C code for performing sparse cross-correlations. There are existing GPU

algorithms that perform the DWT, so a GPU implementation of wavelet-domain cross-

correlation could be part of an efficient pipeline for wavelet compression and analysis of

data. However, while the development of properties for the correlation matrix W (τ) is useful

for this serial implementation, any representation of W (τ) for use on a GPU would require

additional work.

Another, less ambitious enhancement is tailoring the wavelet-domain algorithm for specific

problems. Our test cases show that individual levels of wavelet or scaling functions in a DWT

are ideal for representing particular frequency components of a signal. If we are interested in

only a specific frequency band in the data (for example, we are looking for a particular event

that is active at only certain frequencies), then we could choose an appropriate wavelet

family and modify our cross-correlation algorithm so it only computes cross-correlations

for the levels at which the desired frequency occur. This can reduce the total volume of

necessary storage for the compressed data and further improve the algorithm’s speed, but it

is dependent on the particular use case and data.

Lastly, in a more theoretical direction, there is the possibility to generalize or modify the
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properties used to efficiently store W (τ) to work with mathematical structures similar to

wavelets, such as curvelets. This may allow us to perform efficient cross-correlations on data

better preserved by alternatives to wavelet compression. Similarly, some of the concepts used

to prove the properties of W (τ) may also inform design and implementation choices for ma-

chine learning algorithms that can take wavelet-domain data as inputs, such as hierarchical

neural networks.

For the implementations of MASW, there are alternative means to asses the singularity

of the matrices generated by the stiffness matrix method. The current implementation

uses determinants to predict which test velocities make these matrices near-singular. Since

the matrices are heptadiagonal, it is cheap to compute their determinants by Gaussian

elimination. However, an implementation that uses singular values instead to determine

when these matrices approach singularity may have some advantages. We know the matrices

are themselves functions of the selected range of test velocities and the parameters M of the

proposed near-surface model. We can analytically solve for the partial derivatives of these

matrices relative to M , and then find the partial derivatives of the matrix singular values

relative to M [5].

Once we have the singular value derivatives, we then know what changes to M can make our

resulting singular values approach zero at test velocities closer to the velocities of the curve

computed in MASW dispersion. This in effect can give MASW a form of backpropagation,

allowing us to determine what modifications to M can reduce the misfit of the theoretical

dispersion curve. Making effective use of the singular value derivatives presents a significant

challenge, since the matrix entries are not linear functions of our model parameters. More-

over, the determinant based approach is already only O(N) for each (small) matrix in the

method. However, developing a potential backpropagation for MASW may help optimize

the outer loop of selecting which near-surface models to evaluate.
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4.2 Available Software

The MASWAccelerated software, along with examples to produce the results in this paper,

are publicly available at https://github.com/jlk9/MASWA under an MIT license. The

MASWAccelerated code was first made publicly available in 2020 upon submission of [9].

Hardware and software requirements, as well as other code features, are available in the

repository’s README file.

Software for the wavelet-domain cross-correlation algorithms will be publicly available on a

GitHub repository soon.

https://github.com/jlk9/MASWA


Bibliography

[1] S Grace Chang, Bin Yu, and Martin Vetterli. Adaptive wavelet thresholding for image

denoising and compression. IEEE transactions on image processing, 9(9):1532–1546,

2000.

[2] Chul Hwan Kim and Raj Aggarwal. Wavelet transforms in power systems. I. General

introduction to the wavelet transforms. Power Engineering Journal, 14(2):81–87, 2000.

doi: 10.1049/pe:20000210.

[3] Fergal Cotter and Nick Kingsbury. Deep Learning in the Wavelet Domain, 2018.

[4] S. Dou, N. Lindsey, A.M. Wagner, T.M. Daley, B. Freifeld, M. Robertson, J. Peterson,

C. Ulrich, E.R. Martin, and J.B. Ajo-Franklin. Distributed acoustic sensing for seismic

monitoring of the near surface: A traffic-noise interferometry case study. Scientific

Reports, 7:article no. 11620, 2017.

[5] Juan-Miguel Gracia. Directional derivatives of the singular values of matrices depending

on several real parameters, 2020.

[6] E. Kausel and J.M. Roësset. Stiffness matrices for layered soils. Bulletin of the Seis-

mological Society of America, 71(6):1743–1761, 1981.

[7] Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif Ahmed. Edge

computing: A survey. Future Generation Computer Systems, 97:219–235, 2019.

[8] S. Klimenko, G. Mitselmakher, and A. Sazonov. A Cross-Correlation Technique in

Wavelet Domain for Detection of Stochastic Gravitational Waves, 2002.

81



82 BIBLIOGRAPHY

[9] Joseph Kump and Eileen R. Martin. Multichannel Analysis of Surface Waves Accel-

erated (MASWAccelerated): Software for Efficient Surface Wave Inversion Using MPI

and GPUs, 2020.

[10] Nathaniel J. Lindsey and Eileen R. Martin. Fiber-Optic Seismology. Annual Review of

Earth and Planetary Sciences, 49(1), 2021. doi: 10.1146/annurev-earth-072420-065213.

URL https://doi.org/10.1146/annurev-earth-072420-065213.

[11] J.N. Louie. Faster, better: Shear-wave velocity to 100 meters depth from refraction

microtremor arrays. Bulletin of the Seismological Society of America, 91(2):347–364,

2001. doi: 10.1785/0120000098.

[12] E.Á. Ólafsdóttir, S. Erlingsson, and B. Bessason. Tool for analysis of multichannel

analysis of surface waves (MASW) field data and evaluation of shear wave velocity

profiles of soils. Canadian Geotechnical Journal, 55(2):217–233, 2018. doi: 10.1139/

cgj-2016-0302.

[13] C.B. Park, R.D. Miller, and J. Xia. Multichannel analysis of surface waves. Geophysics,

64(3):800–808, 1999. doi: 10.1190/1.1444590.

[14] C.B. Park, R.D. Miller, J. Xia, and J. Ivanov. Multichannel analysis of surface waves

(MASW)- active and passive methods. The Leading Edge, 26(1):60–64, 2007.

[15] X. Song, H. Gu, X. Zhang, and J. Liu. Pattern search algorithms for nonlinear inversion

of high-frequency Rayleigh-wave dispersion curves. Computers & Geosciences, 34(6):

611–624, 2008.

[16] X. Song, H. Gu, L. Tang, S. Zhao, X. Zhang, L. Li, and J. Huang. Application of

artificial bee colony algorithm on surface wave data. Computers & Geosciences, 83:

219–230, 2015.

https://doi.org/10.1146/annurev-earth-072420-065213


BIBLIOGRAPHY 83

[17] E.M. Stein and R. Shakarchi. Fourier Analysis: An Introduction. Princeton Univer-

sity Press, 2003. ISBN 9780691113845. URL https://books.google.com/books?id=

I6CJngEACAAJ.

https://books.google.com/books?id=I6CJngEACAAJ
https://books.google.com/books?id=I6CJngEACAAJ

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Wavelet Cross-Correlation
	MASW
	Thesis Overview and Contributions

	Cross-Correlations in the Wavelet Domain
	Overview of Problem
	Properties Used For Algorithm
	Algorithm Description
	Computing a Single Time-Lag
	Computing Across Multiple Time-lags
	Use of DWT Sparsity and Overall Efficiency

	Theoretical Error Analysis
	Pointwise Error Bound for a Single Time-lag
	Bound on the Cross-Correlation 1-Norm
	Applying Error Bounds for Coefficient Vectors

	Test Cases
	Basic Sine Curve
	Signal from Real Data
	Algorithm Speed and Performance


	Accelerated Multichannel Analysis of Surface Waves
	Overview of Problem
	Serial Implementation
	MPI Parallelism
	GPU Acceleration
	Test Cases
	Serial Tests
	MPI Tests
	GPU Tests


	Conclusions and Future Work
	Future Work
	Available Software

	Bibliography

