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Hepatitis E is recognized as a zoonosis, and swine are known reservoirs, but how broadly enzootic its
causative agent, hepatitis E virus (HEV), is remains controversial. To determine the prevalence of HEV
infection in animals, a serological assay with capability to detect anti-HEV-antibody across a wide variety
of animal species was devised. Recombinant antigens comprising truncated capsid proteins generated
from HEV-subgenomic constructs that represent all four viral genotypes were used to capture anti-HEV
in the test sample and as an analyte reporter. To facilitate development and validation of the assay, serum
samples were assembled from blood donors (rn = 372), acute hepatitis E patients (n = 94), five laboratory
animals (rhesus monkey, pig, New Zealand rabbit, Wistar rat, and BALB/c mouse) immunized with HEV
antigens, and four pigs experimentally infected with HEV. The assay was then applied to 4,936 sera
collected from 35 genera of animals that were wild, feral, domesticated, or otherwise held captive in the
United States. Test positivity was determined in 457 samples (9.3%). These originated from: bison (3/65,
4.6%), cattle (174/1,156, 15%), dogs (2/212, 0.9%), Norway rats (2/318, 0.6%), farmed swine (267/648,
41.2%), and feral swine (9/306, 2.9%). Only the porcine samples yielded the highest reactivities. HEV RNA
was amplified from one farmed pig and two feral pigs and characterized by nucleotide sequencing to
belong to genotype 3. HEV infected farmed swine primarily, and the role of other animals as reservoirs of
its zoonotic spread appears to be limited.

Hepatitis E virus (HEV), the causative agent of hepatitis E, type from the Norway rat (Rattus norvegicus) (25) and the
is a nonenveloped, single-stranded, positive-sense RNA virus other from a wild boar (56), were recently reported. In addi-
that belongs to the Hepeviridae family (11). Among the mam- tion to mammalian HEV strains, avian HEV (38) and the
malian HEV, at least four genotypes have been recognized newly described cutthroat trout virus represent new genera (3).
(47). In addition, two putative genotypes of HEV, one geno- Among mammalian HEV, genotypes 1 and 2 are primarily

associated with fecal-oral transmission among humans which
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age-wise correlation (30). Although HEV may be imported
from people who have traveled to regions where HEV is hy-
perendemic, it can also be acquired by those who have not so
traveled or been in contact with travelers.

Non-travel-associated hepatitis E is thought to be a zoono-
sis, the vertebrate reservoirs identified being pigs and boars
(Sus scrofa) and deer (Cervus nippon, Cervus elaphus, and
Capreolus rufus). Worldwide, anti-HEV seroprevalence rates
in farmed swine are consistently high and, especially among
piglets, HEV RNA and infectious virions can be found in
blood and stools (38). In Europe and Japan, anti-HEV IgG
and HEV RNA are also detected in boars and deer, although
not as extensively as in farmed pigs (4, 26, 38, 58). HEV
genomic sequences amplified from these three varieties of
ungulates are closely related to those from geographically
proximate humans, and instances of direct HEV transmission
from them to humans have been documented (38, 58). Impli-
cated routes of transmission include (i) the ingestion of their
meat and offal as food, (ii) occupational or recreational contact
with their body fluids and excreta, (iii) contact with environ-
mental water contaminated with sewage, wastewater, and
sludge effluents, and (iv) ingestion of shellfish feeding from
such contaminated water (6, 33, 50, 58).

An increasingly disparate variety of other animals has been
implicated as playing host to HEV. These include rodents (1,
10, 12, 14, 25, 27, 28, 51, 60, 64), cats (31, 35, 41, 43), dogs (1,
35, 41, 60, 71), horses (14, 16, 49, 71), donkeys (14), goats (14,
16, 45, 52, 71), sheep (5, 45, 61, 66, 68), cattle (1, 5, 14, 21, 60,
63, 71), rabbits (16, 17), nonhuman primates (46, 67), mon-
gooses (34, 42), chickens (18, 23, 52, 60, 71), ducks (16, 71),
and an assortment of other birds (71, 72). Except for farmed
Rex rabbits (Oryctolagus cuniculus) in China (15, 16, 36), the
evidence for HEV as being enzootic in species other than pigs,
boars, deer, and chickens is weak, for several reasons. First,
HEV RNA or antigen is infrequently, if ever, detected in their
blood, bile or feces (1, 14, 16, 25, 35, 51, 63, 69). Although
HEV RNA sequences have occasionally been amplified from
single animals (71, 72), such detection would not necessarily
implicate HEV enzooticity in the species to which those ani-
mals belong; rather, they could be accidental hosts or their
samples (especially if of fecal origin) might have been contam-
inated with HEV shed from true maintenance hosts sharing
the same habitats (58). Second, the anti-HEV detection rates
are widely variable and never as high as in pigs and chickens.
Such variability may be due to geographical differences in
genus- or species-specific HEV prevalence or to variation in
performance characteristics of the assays used for antibody
detection.

Many enzyme immunoassays (EIAs) developed for anti-
HEYV detection are of the indirect format, so require that the
second-layer (reporter) antibody be genus specific. This re-
quirement restricts their use in serosurveys across the animal
kingdom and also necessitates the production of genus-specific
positive controls via immunization of animals representing the
genus or species under investigation (45). Moreover, in most
assays, the antigens used for antibody capture are derived from
HEV genotype 1 or genotypes 1 and 2. Because the HEV
genotypes thus far identified to infect animals belong instead
to genotype 3, genotype 4, and the newer putative genotypes,
the possibility that low antibody detection rates reflect weak
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binding of antibody to heterotypic antigens rather than true
antibody absence (2, 19, 24, 44, 45, 48, 62) cannot be excluded.

In the United States, no studies have investigated HEV
infection in animals other than rodents (10, 12, 27, 53), pigs
(38, 39), chickens (23), and sika deer (68). To evaluate the
extent of HEV enzooticity more broadly, we devised a double-
antigen sandwich assay (DASA) for anti-HEV detection that is
trans-genus-wide and circumvents the obligatory requirement
in indirect assays for the analyte reporter to be an antibody.
The antibody capture reagent consists of a cocktail of recom-
binant HEV proteins derived from all four genotypes. The
detector of the bound antibody comprises the same mixture
but with the proteins conjugated to a reporter enzyme. After
development and validation, DASA was applied to detect anti-
HEYV in 35 genera of animals that were wild, feral, owned, or
otherwise held captive. All samples found DASA-reactive were
tested for HEV RNA. The results suggest that HEV is not
extensively enzootic in the United States.

MATERIALS AND METHODS

HEV antigen preparation. HEV antigens (hereafter called p166 antigens)
were generated from amino acid positions 452 to 617 of open reading frame 2
(ORF2) of the following strains: HEV-Morocco F86 (genotype 1), Mexico-14
(genotype 2), US-1 (genotype 3), and China-9829 (genotype 4). Each antigen is
a 166-amino-acid, truncated capsid protein which in dimeric form contains an
immunodominant, conformation-dependent epitope (37). The antigens were
tagged with histidine (His) and mixed equimolarly. Another antigenic cocktail
was prepared by tagging glutathione S-transferase (GST) to the same mixture of
p166 antigens and conjugating them to horseradish peroxidase (HRP) by using a
SureLINK HRP conjugation kit (KPL, Gaithersburg, MD) (37, 70).

Study samples. For assay development and validation, the following serum
samples were assembled: 372 sera obtained from U.S. blood donors (BBI
Diagnostics, West Bridgewater, MA); 94 sera derived from patients identified
with acute hepatitis E in whom anti-HEV IgM and HEV RNA were detected
(8); one serum sample each from a rhesus monkey, a pig, a New Zealand
White rabbit, a Wistar rat, and a BALB/c mouse derived from blood taken 8
weeks after immunization with recombinant HEV-ORF2 antigens; and four
serum panels generated from pigs that were experimentally infected with
HEV and followed up weekly for 8 weeks (13). For diagnostic sensitivity
determinations, a World Health Organization (WHO) reference reagent for
HEYV antibody was purchased from the National Institute of Biological Stan-
dards and Controls (South Mimms, United Kingdom) (product code 95/584).
To determine the anti-HEV detection rate in various animal species, 4,936
serum samples were collected. The diversity and origins of the source animals
are summarized in Table 1.

Anti-HEV detection. Wells of flat-bottom, 96-well, Nunc Polysorp microplates
were coated with His-tagged p166 antigens (0.5 pg/ml, 100 pl/well) and incu-
bated at room temperature overnight. Unbound antigens were washed with 10
mM phosphate-buffered saline containing 0.05% Tween 20 (PBS-T). To each
well, undiluted test serum (100 pl/well) was added. The plates were then incu-
bated at 37°C for 1 h. After a washing step with PBS-T, 100 I of the GST-tagged,
HRP-conjugated p166 antigens was added, and the plates incubated at 37°C for
1 h. After washing, tetramethylbenzidine was added as substrate and, following
color development, optical density (OD) readings were read spectrophotometri-
cally. A signal/cutoff (s/co) value of =1 was considered a positive reaction.
Human sera and dilutions of the WHO reagent were tested in duplicate. Samples
from animals, which were often made available for the present study in small
volumes, were tested once.

HEV genome detection and characterization. Two sets of HEV universal
primers were designed to amplify RNA from conserved regions of the viral
genome. One set was used for amplification of a 578-bp segment of ORF1, and
the other set used a 643-bp segment from ORF2. The sequences and positions of
the primers are listed in Table 2. Briefly, total RNA was extracted from 100 .l
of serum and eluted in 50 pl of elution buffer. Reverse transcription and first-
round PCR were performed using a Qiagen OneStep RT-PCR kit. Reverse
transcription was carried out at 50°C for 45 m and terminated by heating at 95°C
for 15 m, after which PCR consisting of 35 cycles proceeded, with each cycle
consisting of denaturation at 94°C for 30 s, annealing at 50°C for 30 s, and
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TABLE 1. Location, captivity status, and anti-HEV seropositivity rates of study animals

No. of anti-HEV-positive
Animal Location of habitat (U.S. states) Captivity status samples/total no. of
samples tested (%)

Alpaca (Lama pacos) IN Domesticated (in zoo) 0/2
Addax (Addax nasomaculatus) IN Captive, wildlife (in zoo) 0/3
Badger (Taxidea taxus) CA Wild 0/2
Bat (Eptesicus fuscus) Eastern United States Wild 0/14
Bear (Ursus americanus) IN Captive, wildlife (in zoo) 0/1
Bison (Bison bison) wY Domesticated (as livestock) 3/65 (4.6)
Cat (Felis silvestris) GA Domesticated (as pet) 0/163

GA Feral 0/22

NY Domesticated (as pet) 0/14
Cattle (Bos taurus) IW, KS, and WY Domesticated (as livestock) 174/1,156 (15)
Cockatoo (Eolophus sp. and Cacatua sp.) AZ, CA, FL, IL, MD, and MN Domesticated (as pet) 0/10
Colobus (Colubus guereza) IN Captive, wildlife (in zoo) 0/2
Coyotes (Canis latrans) CA Wild 0/302
Deer, white-tailed (Odocoileus virgineanus) CT and IN Wild 0/788

IN Captive, wildlife (in zoo) 0/1
Dog (Canis lupus familiaris) AL, GA, IL, and NY Domesticated (as pet) 2/212 (0.9)
Ferret (Mustela putorius furo) NY Domesticated (as pet) 0/1
Fox, gray (Vulpes vulpes) CA Wild 0/1
Horse (Equus caballus) W Domesticated (as pet or 0/201

for sport)

Kangaroo (Macropus giganticus) IN Domesticated (in zoo) 0/1
Mountain lion (Felis concolor) CA Wild 0/3
Macaw (Ara sp.) FL, IL, KY, MI, PA, TN, TX, and WA Domesticated (as pet) 0/10
Muntjac (Muntiacus reevesi) IN Captive, wildlife (in zoo) 0/1
Opossum (Didelphis virginiana) CT Wild 0/21
Ostrich (Struthio camelus) IN Captive, wildlife (in zoo) 0/1
Otter, river (Lontra canadensis) CA Wild 0/15
Parrot, African gray (Psittacus erithacus) AZ, CA, FL, KY, NH, and PA Domesticated (as pet) 0/10
Parrot, Amazon (Amazona sp.) FL, GA, IL, MD, and MI Domesticated (as pet) 0/10
Rabbit, eastern cottontail (Sylvilagus floridanus) TX Wild 0/14
Rabbit, blacktailed (Lepus californicus) TX Wild 0/156
Raccoon (Procyon lotor) CA Wild 0/313
Rat, Norway (Rattus norvegicus) MD Wild 2/318 (0.6)
Skunk (Mephitis mephitis) Eastern United States Wild 0/92
Squirrel (Sciurus carolinensis) CT Wild 0/63
Swine (Sus scrofa) AK, FL, GA, NC, SC, and TX Feral 9/306 (2.9)
Swine (Sus scrofa domesticus) W Domesticated (as livestock) 267/648 (41.2)
Wallaby (Macropus rufogriseus) IN Captive, wildlife (in zoo) 0/5
Warthog (Phacochoerus aethiopicus) IN Captive, wildlife (in zoo) 0/1
Total 457/4,936 (9.3)
extension at 72°C for 80 s, with a final extension at 72°C for 10 min. Next, 3 .l by using a Applied Biosystems BigDye v3.1 sequencing kit and an Applied
of the first-round PCR product was submitted for nested PCR using Tag DNA Biosystems 3130 genetic analyzer. Sequence analysis was conducted by using
polymerase (Roche) consisting of 35 cycles, with each cycle involving denatur- SeqMan and MegAlign programs from the Lasergene DNA and protein analysis
ation at 94°C for 30 min, annealing at 56°C for 30 s, extension at 72°C for 80 s, software (version 7.0). Phylogenetic trees were constructed by using the neigh-
and a final extension at 72°C for 10 min. Amplicons were purified and sequenced bor-joining method (MEGA version 4.0).

TABLE 2. Nucleotide sequences and positions of primers used for RT-PCR amplification and sequencing of HEV RNA

Location in HEV

Function Primer” Nucleotide sequence (5'-3") Positions”
genome
Reverse and first-round PCR ORF1 IM502(F) AGGCCCAYCAGTTYATWAAGGCTC 32-55
JMS505(R) TASCCWGCACTAGWGTCMCCCTC 713-691
OREF2 IM10(F) GAYGGSACYAAYACYCATATWATGGC 5648-5673
IM34(R) TYGGCTCGCCATTGGCYGAGAC 6371-6350
Nested PCR and sequencing ORF1 IMS503(F) CTGGCRTYACWACTGCYATTGAGC 56-79
IM504(R) TRCCRGGKGGKARCAGSACCTC 631-610
ORF2 IM11(F) GARGCWTCWAATTAYGCCCAGTAYCG 5678-5703
IM33(R) CAGCCGACGAAATCAATTCTGTCG 6320-6297

“F, forward; R, reverse.
> Numbered according to the nucleotide sequence of HEV Bur82 (GenBank accession number M73218).
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FIG. 1. Comparison of DASA and DS EIA reactivities. (A) Distribution of signal/cutoff OD values. Numerals atop bars denote sample
numbers. (B) Correlation between signal cutoff values. (Inset: 2 X 2 table showing concordance of detection).

RESULTS

DASA development and validation. (i) Setting the assay
cutoff. Initial testing by DASA of 372 blood donor samples
showed that OD values ranged from 0 to 3.7 (Fig. 1A). For the
purpose of calculating the DASA cutoff value, the same panel
of samples was tested for reactivity in the Diagnostic Systems
(DS) anti-HEV-IgG EIA (Saronno, Italy). The specificity and
sensitivity of the HEV antigens incorporated in the DS assay
for anti-HEV detection had been evaluated earlier (9). A total
of 33 samples were found to be reactive in the DS assay, and 5
samples that exhibited OD values of >0.5 after testing by
DASA were excluded. The cutoff was then set as the average
OD of the remaining 334 samples plus three times the standard
deviation, i.e., 0.03 + (3 X 0.049), to give a value of 0.18.

(ii) Diagnostic specificity determination. Of 372 blood donor
samples, 36 were determined to be anti-HEV-positive by DASA
based on the established cutoff of 0.18 (Fig. 1B). The concordance
between DASA and DS reactivities was 95.4%, and the diagnostic
specificity of DASA determined to be 97.1%.

(iii) Diagnostic and analytic sensitivity determinations. A
total of 94 serum samples collected from patients with hepatitis
E were used to constitute an anti-HEV-positive panel. All of
the samples in this panel were reactive by DASA, indicating a
diagnostic sensitivity of 100% (confidence interval = 94 to
100%). To evaluate the analytic sensitivity, DASA was applied
to serial, 2-fold dilutions of the WHO HEV-antibody reference
reagent. The endpoint reactivity was determined as 0.062
U/ml
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FIG. 2. Anti-HEV reactivities in swine seroconversion panels. Symbols: @, DASA; A, 55-kDa-EIA. ID16, uninoculated control; ID25, ID34,
and ID1238, inoculated with human genotype 3, human genotype 4, and swine genotype 3 HEV, respectively.

(iv) Trans-genus detection and quantification of immune
sera of laboratory animals. Immune sera, obtained from a
rhesus monkey, pig, rabbit, rat, and mouse that had been
immunized with HEV antigens, were tested by DASA. With
reference to the WHO reference reagent dilution curve, the
sera were determined to contain, respectively, 743, 206, 1,076,
1,154, and 1,063 U/ml of anti-HEV.

Seroconversion detection in swine. Four seroconversion pan-
els assembled from pigs experimentally infected with HEV that
were sampled weekly postinoculation were tested by DASA, and
the reactivities were compared to an indirect EIA that uses as an
antigen the 55-kDa-capsid protein derived from Sar-55 HEV
strain expressed from a recombinant baculovirus, hereafter re-
ferred to as the 55-kDa-EIA (13). As shown in Fig. 2, the control,
ID16, remained anti-HEV negative at all of the time points
tested, while ID25, ID34, and ID1238, which were inoculated with
human genotype 3, human genotype 4, and swine genotype 3
HEYV, respectively, showed evidence of seroconversion. In these
three pigs, although anti-HEV was first detected at about the
same time points by both DASA and the 55-kDa-EIA (between
the second and fourth weeks postinoculation), the s/co values
obtained from DASA were mostly higher than those from the
55k-Da-EIA. A more striking difference between the two assays is
that for DASA the s/co values at the first time point for each of
the three pigs (week 2 for ID25, week 4 for ID34, and week 3 for
ID238) were higher than those generated by the 55-kDa-EIA.
These initial DASA s/co values declined by the following week
and thereafter rose again (Fig. 2).

DASA reactivity in diverse animal groups. A total of 4,936
serum samples drawn from various animals were tested by
DASA. Positivity was determined in 457 samples from five
species (Table 1). The positivity rates among farmed swine,
feral swine, bison, cattle, dogs, and Norway rats were, respec-
tively, 41.2, 2.9, 4.6, 15, 0.9, and 0.6%. The highest s/co values
were obtained from porcine and bovine samples, i.e., 70 and
20%, respectively, yielding s/co values of >4 (Fig. 3). The
values from samples from bison, dogs, and rats were all <4.

HEYV genomes in DASA-reactive animal samples. A total of
457 DASA-reactive samples were processed for reverse tran-
scription-PCR (RT-PCR) to amplify HEV RNA from ORFs 1
and 2. Both fragments were amplified from two feral swine
samples, designated USfsw-1 and USfsw-2. The ORF1 frag-
ment was only amplified from one sample from a farmed pig,
designated USsw-21. Phylogenetic analysis following nucleo-
tide sequencing of the amplicons indicated that USfsw-1 and
USfsw-2 belonged to genotype 3, sharing 99.2 and 100% iden-
tities with each other in the ORF1 and ORF?2 regions, respec-
tively (Fig. 4). The USsw-21 strain also belonged to genotype 3
and showed 91.9 and 91.7% OREF-1 sequence identities to
USfsw-1 and USfsw-2, respectively. In the ORF1 region am-
plified (Fig. 4A), comparisons with GenBank HEV sequences
indicated that the sequences from the three new HEV strains
were more closely related to sequences from HEV strains
known to circulate in the United States than to those else-
where. Thus, USfsw-1 and USfsw-2 showed 89.8 and 90.5%
identities with US1, 89.8 and 90.5% identities with US2, and 97
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and 97.4% identities with US swine, respectively. USsw-21 shared
89.3, 88.9, and 92.7% identities with US1, US2, and US swine. For
ORF2 (Fig. 4B), the USfsw-1/USfsw-2 sequence was 90.6, 90.1,
and 97.5% identical to US1, US2, and US swine, respectively.
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transmission and may underlie the occurrences of non-travel-
associated hepatitis E in industrialized countries, including the
United States (38, 58). To effect programs for the surveillance
of HEV infection in humans and animals, several molecular
and serological approaches have been developed and applied.
Molecular techniques such as RT-PCR generate data that
identify active HEV infection by revealing the presence of the
HEV genome in the tissues, body fluid, and excreta of the
infected hosts. Viremia and fecal HEV shedding are mostly
transient, however, and persistent HEV infection is rare, so the
likelihood of identifying active infection in a person or an
animal in cross-sectional investigations is small. Thus, in the
present study, only 3 of 457 animals determined to be DASA-
reactive were found to carry HEV RNA in their blood.

Serological EIAs are widely used for detection of anti-HEV,
a marker of prevalent HEV infection (29). Most of these EIAs
employ for antibody capture antigens that are derived from
HEYV genotypes 1 and 2 and so may not be sufficiently sensitive
to detect heterotypic antibodies generated in human and ani-
mal hosts infected by genotype 3 (19, 24, 45, 48) or genotype 4
(2, 23, 62). Moreover, some indirect EIAs tend to generate
false-positive reactivities (52, 65) and therefore require, in
order to validate the specificity of their reactivities, the extra
steps of neutralization, immunoblotting, or prior production of
genus-specific positive controls (1, 12, 35, 45). To circumvent
such problems inherent to indirect EIAs, DASAs have been
developed. A principal advantage of DASAS is that they enable
transgenus antibody detection. Another advantage is that sen-
sitivity is potentiated by the detection of total rather than
class-specific antibodies. DASAs have particular capability to
detect IgM. Being decavalent, IgM substantially amplifies
DASA OD readings, because for each pentameric immuno-
globulin complex from which one Fab end has bound to the
capture antigen, nine other Fab ends are potentially free to
bind to the reporter antigen. Thus, in the course of testing the
porcine seroconversion panels, we observed peaks of DASA
s/co values in the immediate few weeks after experimental
infection (Fig. 2), reflecting the possible detection of anti-
HEV-IgM that were being transiently generated during acute
infection.

The DASA we developed has several unique features. First,
it incorporates antigens representing all four HEV genotypes,
so allowing for the detection of antibodies generated in the
host regardless of the genotype of the infecting HEV. Other
DASAs developed for anti-HEV detection (14, 22, 55, 63)
mostly utilize antigenic preparations derived from one geno-
type only. Second, the highly immunodominant p166 antigens
(37) are used to capture antibody, as well as to report its
solid-phase capture, thereby conferring both sensitivity and
specificity to anti-HEV detection. The fine specificity is exem-
plified in the low background OD readings generated from the
blood-donor samples (Fig. 1), thereby lending DASA the ca-
pability to test samples without predilution. Testing samples
undiluted preserves sensitivity by conserving the original con-
centration of the analyte and facilitates ease of use for field
studies. Third, the antigen mixture utilized for antibody cap-
ture was His tagged, whereas the mixture for antibody detec-
tion was GST tagged. Such a design was conceived to enhance
the specificity of the DASA by minimizing solid-phase capture
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of antibody against His or GST that might be carried in the test
sample.

Owing to the absence of gold standards for HEV serology,
evaluating the performance characteristics of the DASA de-
scribed here required various assemblages of test samples and
reagents. Considering that as much as a fifth of the U.S. gen-
eral population may be anti-HEV positive (30), it would be
inappropriate, for the purpose of establishing the DASA cut-
off, to include OD reactivities generated from every U.S. blood
donor serum sample acquired. Therefore, only those of blood
donor samples that were unreactive in the DS assay and un-
reactive or weakly reactive in DASA were included. The es-
tablished cutoff value was then used as basis to determine the
diagnostic specificity of DASA. Next, to determine diagnostic
sensitivity, we incorporated another panel, constituted from
sera derived from people who were undergoing acute hepatitis
E. Although such a panel would not represent prevalent HEV
infection, the presence of HEV RNA assured that its constit-
uents originated from truly HEV-infected hosts. Nonetheless,
such a panel preferentially favors the detection of IgM, so the
ability of DASA to identify monomeric immunoglobulins may
not have been fully assessed. An evaluation using sera obtained
from five species of laboratory animals that had been immu-
nized with HEV proteins provided proof of concept that
DASA can detect anti-HEV generated across different genera
and species. Lastly, the added usage of the WHO reference
reagent permitted the analytic sensitivity of our DASA to be
determined; this reagent was also used as a standard against
which the content of anti-HEV in animal sera could be mea-
sured.

HEV-infected animals potentially serve as reservoirs of in-
fection to other animals and to humans. Since the discovery of
the first porcine HEV strain (39), evidence has mounted to
indicate that HEV is epizootic in swine (38). The present study
reveals a DASA reactivity rate of 41% among farmed pigs,
which is consistent with anti-HEV seropositivity rates deter-
mined in other studies (ranging between 15 and 90%). Because
our study samples were collected from adult pigs, it is not
unexpected to find just one sample to carry HEV RNA, since
the majority of pigs in the United States are infected between
2 and 4 months of age (39). The HEV seroprevalence in feral
pigs, in contrast to farmed ones, has not been reported in the
United States. We found that 3% of the feral pigs sampled
were DASA reactive, and these seropositive pigs were col-
lected in the vicinity of domestic swine farms (data not pub-
lished). The seropositivity proportion is substantially lower
than in farmed pigs, which not only suggests that HEV is less
prevalent among feral than farmed pigs but implicates the
pig-farming environment as potentially fostering HEV spread
among swine. Such disparity might be due to geographical
differences in the endemicity of HEV in farmed pigs and the
proximity of farmed to feral pigs, which would facilitate cross-
transmission of microbial agents (7). Phylogenetic analyses
indicated that all of the three newly identified porcine HEV
strains belonged to genotype 3 and were most closely related to
human and porcine HEV strains in the United States than to
those known to circulate elsewhere. These findings suggest the
potential in the United States for HEV transmission between
farmed and feral swine, as well as cross-species transmission
from them to humans (and vice versa).
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Subclinical human infection with attenuated HEV strains
such as porcine HEV might explain the high anti-HEV sero-
positivity rates among people living in developed countries (33,
38, 58). Nonetheless, much of the U.S. population, being pre-
dominantly urban (59), is neither likely to come into frequent
contact with swine or their excreta nor disposed to adopt eat-
ing habits that would entail ingestion of raw or inadequately
cooked pork, other pig meat, or offal including liver (6, 20, 54,
58). These considerations suggest that even if swine are main-
tenance hosts for HEV, they may not necessarily serve as the
only reservoir of HEV infection (47).

Accordingly, our studies extended to determine whether
HEYV can infect animals other than swine. Given the enormous
diversity of the animal kingdom, exhaustive sampling was not
possible. Emphasis was placed on investigating animals (pigs,
cattle, deer, bison, horses, cats, coyotes, dogs, rats, psittacines,
raccoons, skunks, and squirrels) which share habitats or are in
frequent contact with humans or whose meat and offal may be
eaten by humans. Testing samples from the more exotic ani-
mals (alpacas, addaxes, badgers, bats, bear, colobuses, ferret,
fox, kangaroo, mountain lions, macaws, muntjac, ostrich, ot-
ters, wallabies, and warthog) was primarily to explore the pos-
sible broader tropism of HEV, but samples available from
them were limited.

Among the nonporcine samples tested, anti-HEV positivity
was found only among cattle, bison, dogs and Norway rats, the
rates being 15, 4.6, 0.9, and 0.6%, respectively, with HEV RNA
amplified from none. Since the samples from cattle, bison,
dogs, and rats yielded weak OD readings (Fig. 3), the possi-
bility that their DASA reactivities were not specific to anti-
HEV cannot be excluded. It is also possible that the viruses
infecting these species may be more distantly related, antigeni-
cally and genetically, to genotypes 1 to 4 of mammalian HEV,
thus resulting in weaker reactivity.

The near absence of DASA reactivity among the rats sam-
pled was unexpected. Previous HEV seroprevalence studies of
rodents in the United States have yielded contradictory results.
An early study of feral rats trapped in Louisiana, Maryland,
and Hawaii found anti-HEV-seropositivity rates ranging be-
tween 44 and 90%, the seropositive species being Rattus nor-
vegicus, R. rattus, and R. exulans (27). In a subsequent investi-
gation of 26 species of wild U.S. rodents, the highest
seropositivity rate (60%) was found in Rattus, and rodents
caught in urban areas displayed a significantly higher rate than
those in rural areas (12). Norway rats sampled in Los Angeles
yielded a 14% seropositivity rate (53). Yet another study, con-
ducted in North Carolina, found none of house mice (Mus
musculus domesticus) and Norway rats trapped in pig farms to
be seropositive (64). However, an investigation conducted in
Baltimore found anti-HEV among 75% of Norway rats sam-
pled (10). Our 0.2% seropositivity rate was obtained among
Norway rats that also originated from Baltimore. The poor
concordances in anti-HEV seropositivity rates obtained from
these various studies likely reflect variability in the perfor-
mance of the serological assays applied, although geographical
and sampling variations may contribute. A recent publication
from Germany reported the detection of HEV RNA in two
Norway rats, but the nucleotide sequences generated were only
60% related to human HEV strains (25). The ability of such
divergent HEV strains to effect cross-species transmission to
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humans seems remote. Nonetheless, the extensive sequence
divergence between rat HEV and genotypes 1 to 4 of mam-
malian HEVs may also explain the lower anti-HEV-seroposi-
tivity rate among rats because of the limited antigenic cross-
reactivity to rat HEV, since the DASA is based on mammalian
HEV genotypes 1 to 4. Nonetheless, considering that perido-
mestic rodent infestation of human dwellings is rife (40), de-
finitive evidence of HEV infection in rodents would need to be
sought (57).

The development of a DASA for the detection of anti-HEV
is described here. Its performance characteristics were vali-
dated to be sufficiently specific and sensitive for trans-genus
HEYV seroprevalence studies. When the assay was applied to
nearly 5,000 sera collected from animals representing 35 gen-
era sampled from the United States, the rate and extent of
reactivity were substantial only among the porcine samples, in
which HEV-specific nucleotide sequences also were detected.
Owing to the limited numbers of samples available from the
more exotic species of animals, the status of HEV infection in
them would require further studies when more samples be-
come available. The findings thus far obtained are consistent
with limited enzooticity of HEV in the United States. Animals
other than swine are unlikely maintenance hosts to HEV and
so would not play appreciable roles as reservoirs of its trans-
mission.
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