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<ABSTRACT>

It is shown that multigroup transport equations with

· nondiagonal cross section matrices arise when the modal

approximation is applied to energy dependent transport

equations. This work is a study of such equations for the

case that the cross section matrix is nondiagonalizable.

For the special case of a two-group problem with a

noninuertible scattering matrix, the problem is solved

completely via the wiener—Hopf method. For more general

problems, generalized Chandrasekhar H equations are derived.

A numerical method for their solution is proposed. Also,

the exit distribution is written in terms of the H

functions.
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1. INTRÜDUCTION

Multigroup transport equations with nondiagonal cross

section matrices have been proposed as models of, for

example, neutron transport in reactors.1’2 Staceyl has

shown that multigroup equations with nondiagonal cross

section matrices arise when the energy dependence of the

neutron transport equation is expanded as a finite sum of

orthogonal functions, and then the method of weighted

residuals is applied to determine equations satisfied by the

coefficients of the expansion. The method of weighted

residuals is discussed for general problems in Ames,3'4 and
T

in Stacey, where different choices of orthogonal functions

and weights are considered. Stacey shows that by

appropriately choosing the weighting functions it is

possible to minimize the error in some particular physical

quantity. For example, if the error in the solution is to

be minimized at n different spatial locations, he has shown

that the appropriate weighting functions are delta

functions. It should be noted that the traditional

multigroup equation is a special case of this more general

procedure. To derive the standard multigroup equations, the

orthogonal functions are chosen to be characteristic

functions with non-overlapping domains and the weighting

functions to be the same set. If this procedure is carried

out for the neutron transport equation, then the cross
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section matrix will be diagonal. This equation has been

studied by numerous authors.5_8 However, for different

choices of orthogonal functions and weighting functions, the

cross section matrix will in general be nondiagonal, and

possibly even nondiagonalizable. In the case of a

diagonalizable cross section matrix a similarity _

transformation applied to the equation will reduce the

equation to the equation studied in Refs. 5 and 6, the only

difference being that the scattering matrix might no longer

be positive, or even real. In such cases it may be easier

to work with a nondiagonal cross section matrix directly

rather than make the change of variables.? However, the

cross section matrix might be nondiagonalizable, in which

case no change of independent variables will reduce the

transport equation to a form which has already been studied.

Furthermore, if the number of groups is large it may be

tedious to compute all the eigenvalues of the matrix in

order to determine if the matrix is diagonalizable, and if

it is diagonalizable it is difficult to determine the

correct similarity transformation, since one needs all the

eigenvectors. Therefore, this work is study of multigroup

transport equations with nondiagonalizable cross section

matrices.

There are two methods for solving such transport

equations, namely, the Case eigenfunction method,1Ü and the
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wiener—Hopf method.11 The Case eigenfunction method has the

advantage that, at least at the outset, the formulas

resemble the eigenfunction expansions so widely used in

quantum mechanics. But unlike quantum mechanics, the

operators used in transport theory are in general not

self—adJoint, and so it is uncertain that an eigenfunction

expansion does in fact exist. For many transport equations,

these expansions do exist, but the eigenfunctions can be

distributions, i.e. delta functions or principal values.

The expansion coefficients satisfy equations which are in

general singular integral equations. Singular integal

equations have been investigated extensively by

mathematicians, and methods for their solution are

known.12’13 The crucial step in their solution is the

construction of the wiener-Hopf factorization of some

function, which is of course the same factorization required

by the wiener—Hopf method for the original equation. Thus,

either method of solution is equivalent to constructing a

wiener—Hopf factorization, but the wiener-Hopf method avoids

the principal values and delta functions which appear in the

Case eigenfunction method. For this reason, the wiener-Hopf

method will be followed exclusively in this work.

In Sec. 2 a derivation of the multigroup equation is

presented. In particular, the reasons behind the possible

choices of weight functions are given. In Sec. S, it is
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proven that the multigroup equation is equivalent to an

integral equation with a convolution Kernel. For the case

of a semi—infinite slab, this equation is the vector

equivalent of the wiener-Hopf equation. In Sec. 4, the

existence and uniqueness of the integral equation for the

finite slab problem is investigated. It is shown that

questions of existence and uniqueness can be answered by a

simple application of the Fredholm alternative. In Sec. 5,

the transport equation will be specialized to a two-group

equation, with half range boundary conditions, and a

nondiagonalizable cross section matrix. For this problem

the wiener-Hopf factorization can be explicitly constructed

provided that the scattering matrix is noninvertible. A

noninvertible scattering matrix is not an exceptional case,

as Zweifel and Seiwertä have shown that for problems in

radiative transfer the scattering matrix has a degenerate

form i.e., CIJ = AiBJ. In Sec. é, necessarx and sufficient

conditions for the existence of the canonical wiener—Hopf

factorization will be found by studying the invertibility of

the symbol of the equation. Once the wiener—Hopf

factorization has been found, it is possible to express the

exit distribution, that is ?<O,pJ, for u > O, in terms of

the wiener—Hopf factorization. This will be done in Sec. S.

Rather than restrict the exit distribution solutions to the

two—group case, the general N—group equation will be
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considered, even though the wiener-Hopf factorization might

not be known. For the N—group equation problem, no general

formula exists for the factorization. The best that can be

done is to write down equations which the factors must

satisfy. These equations are derived in Sec. 11, by making

use of Mullikian’s work.1q These equations are nonlinear

integral equations which must be solved numerically. If the

solutions are to have the analyticity properties required by

the wiener—Hopf factorization, then the equations must be

supplemented by constraint equations. In Sec. 12, an

iterative method of solution which will automatically

satisfy the constraint equations is presented. These

solutions are shown to converge in an appropriate Banach

space.



2. DERIUATIUN UF THE MULTIGRUUP EUUATIUN

Consider a one dimensional transport equation with

azimuthal symmetry. The density of particles, ?<x,u,E>, is

then a function of the one spatial coordinate x, of p, the

cosine of the angle that the velocity vector makes with the

x axis, and of E the energy. For radiative transfer

problems it is customary to use the wavelength instead of

the photon energy. The equation governing the time

independent density is

1. m
päx? + E<E>? =

J
S<p,p’,E,E’)?<x,p’,E’§ dp’dE’. (1)

-1 0

Here BX is the derivative with respect to x, E<E) is the

total cross section for scattering, which depends only on

the energy of the particle, and S<p,p’,E,E’> is the rate at

which particles with energy
E’

and direction cosine
p’

are

scattered into energy E and direction p. Unless simplifying

assumptions are made, solving Eq. E1) is hopelessly

difficult. Une assumption which greatly reduces the

complexity of Eq. (1) is to assume isotropic scattering,

i.e., to assume that 3 is a function of energy only. Even

with the assumption of isotropic scattering, the transport

equation is still not amenable to analytical solutions, so

approximate solutions are sought. Une possioility, the so

called modal approximation, is to approximate the energy

_ 6
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n
?(x,p,E) = E 1-(x,p)@ (E) . (2)

J=0 J J

A variety 0% choices %or QJ have been considered, %or

example Laguerre or Hermite polynomials multiplied by

Gaussians.2’ 15 It is now necessary to determine equations

for the ?J. Perhaps the most obvious choice is to

subsititute the approximate solution EEq. (2)] into the

transport equation with the result;

JE0p®JcX?J + J;Ü¢J„PJ -

1 oo I1S(p,u’E,E’)
E ¢-(E')?-(x,p’)_dE’dp’. (3)

*.]:0 J J

-1 0

m
1% we multiply by

I
dE @n(E); the result is,

Ü I

1 . .dp’ , (4)

-1

where the Einstein sum convention is in %orce and

1
(@m,@n) = @m(x)®n(x) dx , (5)

-1
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and S is the integral operator with Kernel SCp,p’,E,E’).

Now i+ matrices Emn and Cmn are de+ined by;

Emn = C¢m,E®n) Céa)

Cmn = 2C®m,$¢n) , Céb)

and i+ we assume isotropic scattering, i.e. 3 is independent

0+ p and p', then Eq. C3) can be written as a vector

equation, namely;

1
p3XQ + EQ = C/Ef

Q<x,p’)dp’ C?)

-1

where Q is now a vector with components CQÜ,Q1,...Qn) .

Note that the matrix E given by Eq. (oa) is real and

symmetric, hence is diagonalizable. There+0re in this case,

i+ U is a matrix which diagonalizes E, then Q
=U_1

Q

satis+ies the equation,

an .v„-v ev *+1 rv

pSvQ + EQ = C/Bj QCx,p’) dp’ . C3)

-1

where ä is the diagonal matrix, ä = U_1EU, and E = U_1CU.

Equation C3) has been studied under the assumptions 0+ E

constant, noninvertibie, and Eij ; Ü by' Siewert and
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2weifel5 in their study of radiative transfer problems, and

for invertible C and Cij 3 0 by Sancaktar and Zweifellé

among others. Note that the matrix C in Eq. (S) is not

necessarily positive; however, the analyses given in Refs.

5, and 16 require little modification for negative C

matrices. Note that the matrix C is real.

Stacey has pointed out that alternative methods for

obtaining equations for the in exist, which may be, for some

physical problems, more appropriate then the analysis given

above. Stacey in Ref. 1, has promoted the method of

weighted residuals to determine equations for the fn. In

this method, rather than multiplying Eq. (3) by

dE ¢m(E), the equation is multiplied by dE wm(E),

0 0

where the functions wm, m=O,1,2...N, are called the

weighting functions. More generally, the wm could be

operators. The weighting functions are chosen to minimize

‘
the error in the approximate solution [Eq. (2)] in some

sense. To illustrate this procedure, it is convenient to

rewrite the transport equation [Eq. (1)] in operator form

H f = 0 , * C?)

where H is linear, and represent the solution to this
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equation as a finite sum plus a remainder,

n
?(x,p,E> = E Q-(E3?-(x,p3 + &?(x,u,E3 (10a?

V J=Ü J J

= Qapprüx + ä? . (10b)

Substituting Eq. (10o> into Eq. (93, and making use of the

linearity of H, we find

0 . (11)

Suppose that it is desired to minimize the error term, i.e.

minimize Hoi, in the least squares sense, that so we

require

_ dxdudE (H&?b2 = minimum. (123

Stacey has shown that the weighting functions (actually in

this case they are weighting operators> wm(E> which do this

are given in Dirac notation by

w (E3 = ( Q l H* (133
m m

where H* is the adjoint of H. Etacey gives other choices of

weäghting operators which minimize the error in the solution
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at m spatial points, (by choosing the weights to be delta

functions) or the error in the first m—moments of the

distribution, etc.

If this procedure is applied to Eq. (3), then it is

easy to see that the matrices E and C defined by Eqs.

(6a>—(éb> will be given by (again in Dirac notationb

1*1
_-

*
x

amn
— ( Qm I H E I on , (14a)

_ s
Cmn

— 2( Qm I H S I Qn ) . (14b)

The matrix Emn is no longer symmetric, in fact it might not

even be diagonalizable. The case of a transport equation ~

with a nondiagonalizable cross section matrix and isotropic

scattering is the subject of this work.



3. AN EQUIUALENT INTEGRAL EGUATION

As explained in the introduction, the wiener-Hopf

method iuill be used in this work. In order to use the

wiener-Hopf method, an integral equation equivalent to the

integro-differential equation [Eq. (7)] is sought. This

integral equation is derived in Theorem 1.

Theorem 1: If ? satisfies the integro-differential

equation;
l

. + 1
päx? + E? = C/2f ?(x,u’) dp’, x6[0,o) (15)

-1

where E and C are constant matrices, subject to the

boundary conditions: ·

?(x,p) -+ 0, x—»m (loa)

?(0,u) = @+(u) pe[0,l], (lob)

n
I 6

iii
L2(0,m) ® L2(—l,l) , (loc)

each of the conditions [Eqs. (loa)-(1ob)] holds for where

each component of ? separately, and we assume that the

spectrum of E is contained in the right half plane [we

denote the spectrum of E by o(E)], then G, defined by

+1
G(x) = %(¤,p’) dp” , (17)

-1

satisfies the wiener-Hopf eouation

12
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. 1 °°G(x) = U(xJ + éyf Kfx-y)CGCy) dy , (13)

U

where
J

U(x) =
J

exp(—xEfp)®+(p) dp (19)

U

and
1 -1K<x) = p exp(—|xiE/p) dp . (20)

0

Proof: Using the definition of G, EEq. (17)], rewrite

Eq. (15) as
·

p8XQ + EQ = éüü . (21)

If the right-hand-side of Eq. (21) is known, then one can

solue this equation for Q by introducing the integrating

factor. The integrating factor for this equation is

expüxä/p), so Eq. (21) can be rewritten as

3V[exp(xE/p>Q] = E&exp(xE/p)CG(x) . (22)

Therefore,

e>=p<¤<E/i1)Q<><,11) = e:><p<yE/p)¤3G<;«)oy + mp) . 123;

Here, ääpb is an arbitrary constant of integration, and the

limits of integration must be chosen to satisfy the boundary
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conditions IEqs. ä1éa)-(loch]. In order to satisfy the

condition ?<x,p>—+0, x-4m, for p 4 0 it is necessary to

choose A<u> = 0, and the limits of integration to be y and

m, therefore;

, 1°° .. ..
?xx,p> = -1ETI expf-(x-yba/p]CG<y> dy , u4ü . t24a>

x

For p > 0, the boundary condition Eq. Ciéb) must be

satisfied. To satisfy this condition one must choose äüu) =

®+<p>, and the limits of integration to be U and x. So,

?<x,p> = exp<—xE/u>@+<p> + EK{ exp!-<x—y)E/p]CG<y>dy (24b)
{

0

for p > 0. To derive the integral equation that G must
0

satisfy, multiply both sides of Eq. <24a> by { du and Eq.
-1

1
(24b) by { dp, and add these two terms. The result is;

0

1
Géx) = { exp<—xE/u>©+<pb dg

U

G1 oo dy
Ü-1

x

1 x_1 dy . £25>
dg

0 U

How interchange the order of integration in the last two
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integrals, which is permissible by Fubini’s Theorem, due to

the condition on the spectrum of E, and the boundary

condition (16a). Upon simplification, Eq. (I3} results.

The integral equation is easily modified to finite slab

problems, that is xeEO,L], where L is the length of the slab

measured in mean free paths. For this problem, the boundary

condition (16a) must be replaced by ?<L,p> = ®_<p>, for p $ ·

0. with this boundary condition it is easy to see that the

integral equation for G is replaced by

L
G(x) = U(x) df (2éa)

O

where;

U
U(x) dp

-1

1
du üiébä

O

and KC.) is given by Eq. €20>. The existence and

uniqueness of solutions to Eq. (26) iuill be discussed in

Sec. 4.

One should not be intimidated by the exponential

functions of possibly nonself-adjoint matrices appearing in

the above formulas. They are easy to compute if the Jordan

decomposition is used. The Jordan decomposition of a matrix
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A is defined by

A = E + N , SH =N3 CE?}

with S self-adjoint and N niipotent. Such a decomposition

exists for aii matrices, and formuias for S and N can oe

found in Ref. I?. For any sufficientiy differentibie

function F, F(A> may be computed by
I

Mi=<¢.> = E Q.- i=‘"’<a>i~i" <2e>
n=Ü I.

where
F(n)

is the n-th derivative of F, and M is order of

niipotency of bh The matrices
F(n)(S> may be comouted by

making use of the spectrai theorem for self-adjoint

matrices.



4. THE FINITE GLAS PROBLEM

Quite often in transport theory, it is easy to prove

that the equation has at most one solution, but it is

considerably more difficult to prove that a solution does in

fact exist. Questions of existence and uniqueness are not

just academic, as- we typically look for time independent

solutions to transport equations, and as we know many

physical systems have more than one equilibrium (time

independent) solution. An example of this is the Ulasov

equation. It has infinitely many time independent

solutions.19

If both C and E—C are positive definite matrices, then

it is possible to prove that the transport equation subject

to the boundary conditions [Eqs. (16a)—(1éb)l, has at most

one solution, that is, if a solution exists then it is

unique. This result holds for either finite or

semi—infinite boundary conditions. In the case of a finite

slab, the integral operator appearing in Eq. (Eéa) is

compact, so that the Fredholm alternativelg can be used to

prove that the equation has exactly one solution. Recall

that the Fredholm alternative states that if K is compact,

then either (I-K)_1 exists as a bounded operator, or K is

not injective. (we denote the identity operator by I.} In

other words, if K is injective, then (I—K)—i exists as a

bounded operator. A discussion of the applicability of

„l7
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using the Fredholm alternative to prove the existence of

solutions to transport equations can be found in Ref. 20.

The uniqueness proof given in this section is a

generalization of the proof found in Case and Eweifel.1Ü

The proof relies on a simple positivity argument.

Theorem Q: The transport equation subject to the

boundary conditions (16a)-(16b) has at most one solution if

both C and E—C are positive definite.
l

Qgggj: The proof for the finite slab problem will be

given; the proof for semi—infinite boundary conditions is

essentially the same. For the purpose of contradiction,

assume that the transport equation has two solutions, say

W1 and W2. Since the transport equation is linear, W =

Wl—W2 is also a solution, but it satisfies the boundary

conditions;

W(O,p) = 0 pyü <2?a§

W(L,p> = 0 p<U, <2?b>

that is the incident flux is zero. Let ~P be a column

vector, and eT its transpose. Multiply the transport

equation by the operator dx W+. The result is

·L T ..
1·‘-

.T" , ,. ,„ ..j dx ·«1» wax + zw = dx ·~1· iz] dtv ·-;·w,„· .> ·..aa,·
U 0 -1
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The first term on the left-hand-side is an exact

differentiai, so Eq. (30) simpiifies to

ép<%T?>(L,p> - %p<?T?){Ü,p)

L .L 1
+

I
dx QTEQ = é J

dx QTcf dp' ?<x,p’) . (31)

0 Ü -1

1
Now, muitipiy Eq. (31) by the operator 21 dp, and use the

-1
boundary conditions <2?a)—<29b>. we find

1 T Ü T .

I
p<Q ?)(L,p) dp - pä? ?><Ü,p)

Ü -1

1 L T+
I I

dp dx Q (x,p)E?(x,p>
-1

O

1 1. T 1
=

I I
dp dx Q <x,p>cf dp’ ¥<x,p’§ 1221

'1 0 -1

The right—hand—side can be anaiyzed by using the trick in

Ref. 10. Consider

T 1. 1 T T
T 1

{1 dpdp’
6 6

-1 -1
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. 1 T 1. 1 T= 45 Q CQ(x,p) dp Q (x,p)CQ(x,p’) dpdp’ . (33)

-1 -1 -1

Using the boundary conditions [Eqs. (29a)-(29b)] and Eq.

(33), Eq. (32) can be rewritten as

1 T 0 T
f u<e Q)(L,p) dp - p<e e><0,p> dp
0 -1

L 1 T+
I I

~1« <>«,p><z-c>~1»<x,i,t> cipcix
Ü -1

L 1 1 T T
I

= — JI
[Q (x,p)-Q (x,p’)]C[Q(x,p)—Q(x,p’)] dpdp’dx

° -1 -1
. (34)

The crucial point is that the integral terms involving

Q(U,p) and Q(L,p) are greater then zero, so that provided

both E—C and C are positive definite the le¥t—hand side ot

Eq. (34) is ; 0, while the right-hand-side is ä Q.

There¥ore, it must be the case that Q = Ü, so uniqueness has

been proven. Note that the conditions on C and E-E reduce

to the well known condition C e [0,1) in the one-group

case.

So far all we have proven is that the transport
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equation has at most one solution. Now we must show that

the equation has exactly one solution. As previously

mentioned, the Fredholm alternative says that uniqueness

implies existence provided that the integral operator

appearing in Eq. <26a) is compact. If l. { w, then the

operator is indeed compact.

Theorem Q: The integral operator defined by

L
<K?)<x) = K(x—y)?<y) dy 0 ( L ( m (35a)

0

1-1 „
K(x> = p exp<—xEp) dp (35b)

-

6(E) C { zeß : Reiz) ( O } {35c)

is compact on L2(0,L)®"'$L2(D,L).

Proof: It suffices to show that K is

Hilbert-Schmidt,13 which will be true provided

. L L dxdy ( w (36)
0 0

holds each element of the matrix K. The verification of

inequality {36) is a straightforward calculation, so it will

not oe presented. Therefore, the conditions;
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C, and E—C positive definite (37a)

i
o<E> C { z e E : Red:} ) U } €3?b>

are su+¥icient to guarantee that the transport equation with

finite slab geometry possess a unique solution.

Un¥ortunately, the integral operator with I. = m [see Eq.

(13}] is not compact,21 so that in this case uniqueness does

not imply existence. Existence +or one particular hal¥

space problem will be discussed in Sec. 5.

It might be mentioned that it is also possible to prove

uniqueness using the equivalent integral equation, rather

than the transport equation. To do this, it is su¥+icient

to show that the norm of the integral operator is less than

one. This approach might be use¥ul i¥ one wanted to prove

uniqueness in a Banach space, say L1, rather than in a

Hilbert space as was done in Theorem 3. For the one-group

problem, this criterion gives the same condition as ¥ound by

using positivity arguments.



5. THE HALF SPACE PROSLEM

In this Section the transport equation

Q 1
p3xI + EI = §C Ä- I(x,p’> dp’ {SS)

-1

subject to the boundary conditions Eqs. C16a>—<1éc), will be

studied. As previously mentioned, if E is diagonalizable

then a similarity transformation will reduce Eq. (38) to the

problem considered in Ref. 5. More generally, Eq. ESS) is

also soluble for the case where the matrices E and C are

simultaneously upper triangularizable. In such a case, a

similarity transformation can be applied to the transport

equation to reduce it to a tractable form. To see this,

suppose that both E and C are upper triangular. Then the

last component of I, call it In, is not coupled to the other

components of In Therefore, In satisfies the one—group

neutron transport equation; thus its solution can be written

in terms of the Chandrasekhar H functions.1Ü These

functions have been numerically computed to great accuracy.

Once the function In is known, the n—1’th component of I

obeys an equation involving only In and In_1. Thus In_1

obeys an inhomogeneous one group equation, so it is also

possible to solve for In_1 in terms of the H functions.

Proceeding in this fashion it is possible to solve for each

component of I. Thus. we see that ivhenever E and C are

sim¤.1ltaneousl;:»·· upper triangularizable, the multigrciup

-23
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equation is soluble (at least in principle}. It would be

nice -to know necessary and sufficient conditions for two

matrices to be simultaneously upper triangularizable. A

sufficient condition for two matrices to be simultaneously

upper triangularizable is that they commute, but a necessary

condition is apparently unknown. In fact, it is not

necessary for two matrices to commute in order for them to

be simultaneously upper triangularizable; an example will

occur in Sec. 7.

In the following, the simplest equation of the form of

Eq. (38) will be studied for which E is not diagonalizable,

and for which E and C are not simultaneously upper

triangularizable. In particular we consider the two group

equation defined by

2=
I

1 CC
I

;¤:=I C11 C12 I, ·:a·;·>
Ü 1 C21 C22

with E = Ü and cßl = 0 . It is easily verified that E and C

satisfy the two previously mentioned conditions.

Additionally, in this section we shail assume that the

matrix C (the scattering matrix} is noninvertible. Recall

that Siewert and Zweifelä have shown that problems in

radiative transfer naturally lead to noninvertible

scattering matrices. For these problems the scattering

matrix has a degenerate form, i.e. there exist constants ai

and bj so that céj = aibj . It is easy to prove that every
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degenerate matrix is noninvertible. For a noninuertible

scattering matrix it is possible to construct explicitly

the wiener—Hop¥ factorization o¥ the symbol o¥ the

equivalent integral equation at least ¥or the two-group

case, a task which is identical to solving the transport

equation. Actually, a similarity transformation can always

be applied to set u = 1 U1 Eq. (39), but for bookkeeping

purposes it is convenient to leave a as an arbitrary

parameter so that the limit m -6 U is apparent. when M-6 U,
t

Eq. (38) reduces to the multigroup equation with a diagonal

cross section matrix. Thus, the limit m -6 0 will serve as

a check o+ the formulas in the next section where the

invertibility o¥ the symbol of the wiener-H0p¥ equation will

be studied. Note that every nondiagonalizable 2 X 2 matrix

is proportional to E a¥ter an appropriate similarity

trans¥ormation, so the choice o¥ E is not as restrictive as

might ¥irst be thought.



6. THE wIENER—HOFF METHOD OF SOLUTION

we now proceed to solve the integral equation [Eq.

(18)] using the wiener—Hop¥ method.?*11 Following the

standard notation de+ine the ¥unctions 6+, 6-, U+, and U-

bwl

6+(x) = 6(x) ¥or x ) O (40a)

6+(x) = O for x ( 0 (40b)

and,
‘

6—(x)
= O for x ) 0 (40c)

6•(x) = 6(x) for x ( 0 , (40d)

and similarly for U+ and U-. with these definitions, Eq.

(18) can be rewritten as a convolution equation on the

entire real line, namely;

_ CO
6+äx) + 6 j- K(x—y)C6+(y) dy . (41)

“·L‘O

The ¥unction K has been de¥ined in Eq. (20). The Fourier

transform of Eq. (41) yields;

i.ii<:„>i.% *<:(> + Ü 'cm = Ü *<:(> . ·:a2>

Here the Fourier trans¥orm of a ¥unction F is denoted as F,
I

where

26 _
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^ im
F<l> = j

expdiäxb F<x> dx . (43)
“@

The matrix valued function w is called the symbol of the

wiener-Hopf equation, and is given by I — or by

„ _ „ _ -1. _ -1 . 2 -1l«1(.».>— 1. }. (tal'! }.)C. + (1+}. D MC „ (44)

Here I is the 2 X 2 identity matrix, and M is the nilpotent

part of the matrix E. The nilpotent part of the matrix E

can be computed by making use of Ref. 17, or for this simple

case it can be found by inspection. The Jordan

decomposition of E [see Eq. (27)] is

2 = 1 Ü + 0 °‘ visa:
D 1 0 G

= I + M . (45b)

The crucial step in the wiener-Hopf method is the

construction of the wiener-Hopf factorization of the symbol.

If the symbol is a scalar function, i.e. a 1 X 1 matrix,

then the factorization can always be reduced to

quadratures.22 Typically these integrals are not

expressible in terms of any standard elementary functions,

but nevertheless, they can be numerically evaluated to any

desired accuracy. For the one—group case, these
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factorizations were first evaluated by ChandraseKhar.23

Rather than evaluate the integral expressions for the

Miener—Hopf factoriztions, Chandrasekhar found approximate

solutions to the nonlinear integral equationsiobeyed by the

factors of the symbol. His procedure was to replace the

integral terms by quadrature formulas. The resulting

equations were tractable algebraic equations.

Unfortunately, the wiener-Hopf factorization of a matrix

valued function can only be constructed for special cases

when the order of the matrix is greater than one.

Therefore, for many cases it will be necessary to resort to

a inethod similar to the one introduced by Chandrasekhar.

This will be done in Sec. 12.

A canonical wiener—Hopf factorization is a pair of

functions w+ and N- so that

w(A) = N- (R) w+(l) E e E , (46)

such that the matrix function w+ (w-) is analytic in the

open upper (lower) half complex plane, and continuous and

invertible in the closed upper (lower) half plane. For the

one group case, a factorization of the form Eq. (46) exists

only for C less than one. The nonexistence of a canonical

factorization implies that the integral equation does not

have a unique solution.2q Physically, this means that the
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one speed neutron transport equation has a unique solution

only if the average number of neutrons liberated per

collision is less than one. For radiative transfer
V

problems, C less than one means that the medium absorbs

energy on the average from the photons. Since the canonical

factorization is by assumption invertible for all real

values of the argument of the symbol, a necessary condition

for the existence of a canonical factorization is that N<3)

must be invertible for A 6 R U { m }, that is, det NCA) # 0

for 3 6 RQ. For this reason, one must study the zeros of

det N. The determinant of the symbol is called the

dispersion function. Explicitly, the dispersion function is

given by;
’

'

der w<>.> = 1-tr

CE}.-ltan-1}.]Here,tr C denotes the trace of C, and the assumption that

det C = O has been used <i.e. C is noninvertible). It is

not surprising that the product ¤c21 plays a special role in

Eq. (47), because if either u or :21 = 0, then all formulas

must reduce to the well known results with a diagonal cross

section matrix. Übserve that the dispersion function has

branch points at zi. Ne will always choose the branch cuts

to be the lines 2 = it, Itl 3 1. Therefore the dispersion

function is analytic on the set E X { 2 6 C : 2 = it, ltl 3
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1, te R }. Note that

lim det w<A) = 1 11I-+ m (4Sa}

holds inside the region of analyticity. In order to study

the zeros of det M, the symmetries;

wet w<>„>1* = det w<>„*> <4ab>

det w(—ä) = det w(}), (48c)

where the superscript * means complex congjugate, are

useful. The symmetries Eqs. <4&a>-(43b), are not unusual;

they hold whenever the kernel of the integral operator is

real and symmetric. These‘symmetries imply that A0 is a zero

of the dispersion function if and only if both ä*Ü and -AÜ

are also zeros of the dispersion function. Therefore the

dispersion function must have an even number of zeros. The

symmetries [Eqs.(4Sb>—(4Sc)l along with the behavior of det

w at infinity [Eq. (43a)] allow one to compute the number of

zeros of the dispersion function by computing the change of

the argument of det N along the branch cuts, (the Nyquist

method25> just as is done in the one-group case.1Ü Recall

that the argument principle says that if F is a function of

a complex variable which is analytic inside a simple closed

positively oriented contour, and F is nonvanishing on the

contour, then the change in the argument of F after
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completing one complete circuit around the contour is equal

to Zn times the number of zeros of F inside of the contour.

Me apply the argument principle to the contour in Fig. 1.

This problem divides into three special cases: (i) tr C = 0,

(ii) uczl = 0, and (iii) both tr C = 0 and mc21 ¢ 0. The

case tr C = 0 is solved easily by algebra, and case (ii) is

identical to the one-group dispersion function so that the

number of zeros is known.1O These results are summarized in

Fig. Z. Case (iii) requires special attention. Unlike the

one-group dispersion function , i.e. uc21 = 0, the

dispersion function now has poles at the branch points due

to the term uczl [1+A2]_1 {see Eq. (47)]. For this case,

the change in the argument when rounding the branch points

is now important. For this reason, the change in the

argument of the dispersion function (denoted by ü Arg det M)

along the contour in FLg. 1 will be considered in the limit

6 and 6 i 0. First study ü Arg det M along the straight

lines FE by taking the limit 6 l 0 while keeping 6 a

constant, then study* ä arg det M along the circle C6 by

taking the limit 6 l 0. Along the lines FE the real and

imaginary parts of the boundary values of det M are;

Re det (:0 + iy) = (tr C/Zyblniäéäl + uc21(1-y2)—1 (4?a)

Im det M(:0 + iy) = : (ntr C >/Zy (4?b)
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(Note that Eq. (49b) proves that det w is nonvanishing on

the contour T as required by the argument principle.) with

these formulas, the Nyquist diagram for the contour Fc can

be sketched; for the case uczl > 0 and tr C > O the result

is shown in Fig. 3. The diagrams for the other possible

choices of signs of uczl and tr C are similar. To complete

the Nyquist diagrams, the contour C6 must now be considered.

Along the C6, the pole term (1+ä2)—1 dominates, and the

contour approaches a circle at infinity as 6 T 0. Un C6,

the dispersion function can be estimated by, for 6 > 0 and

-w/2 $ 6 $ n/2

der u<a+6•;·‘°> = -i¤«;2,6°°‘e"°+ti~and

for nßi 6 B $ Sw/2,

Therefore, as 6 L 0, the image of C6 (note C6 is

counterclockwise) approaches a circle at infinity with the

opposite orientation, i.e., the image is clockwise. with

this information, the Nyquist diagrams can be sketched (see

_ Fig. 3), and the number of zeros of the dispersion function

can be deduced. Now that the number of zeros of the
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dispersion function is known, the remaining task is to

determine whether the zeros are purely real, purely

imaginary, or neither. Recall that a necessary condition

for the existence of a canonical wiener-Hopf factorization

is that the symbol must be invertible for all real numbers.

Therefore, if the dispersion function has a purely real

zero, then a canonical factorization does not exist.

Fortunately, the graphs of the real and imaginary parts of

the dispersion function are easy to sketch, so it is easy to

determine if the dispersion function has a real zero. These

results are summarized in Fig. 3. Thus we can conclude that

w(X), X 6 R6, is invertible for lfuczl > tr C and tr C (.

Note that when the number of groups is reduced to one, the

condition 1+uc21 + tr C reduces to the familiar condition

c { 1.

It might also be mentioned that the line defined by

ucgi = tr C -1 (see Fig. 3) is a line of degenerate roots,

which of course correspond to degenerate eigenvalues of the

transport equation. As this line is approached in the

üucgl, tr C) plane, two nondegenerate zeros collide to form

one degenerate root.

we now turn our attention to the construction of the

wiener—Hopf factorization of the symbol.
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Im Z

Re Z

Fig. 1. Contour for computing A Arg det W.
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°‘C21

no zeros four complex four real
zeros zeros

. two real
two complex
zeros

trC
two imaginary
zeros

two real zeros

Fig. 2 The zeros of det w in the trC, ¤C2] plane.
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Im Z

4

contour of 1"E contour of C6

Fig. 3 Nyquist diagram for aC2] > 0 and trC > 0.
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will result in a similar simplification, but this is not the

case. The reason is that although C and MC are

simultaneousiy upper triangularizable, C and E are not.

Recall that a sufficient condition for two matrices to be

simutaneously upper triangularizable is that they commute.

This condition is not necessary; an easy calculation shows

that the matrices C and MC provide an counterexample.

The wiener-Hopf factorization can now be computed. If

3-1w S is denoted by Ü, then

C3 = 1 K11) , <s4a>
Ü det w<ä)

where
-

K<)) = -c21 k—1tan_1A, tr C = 0, (54b)

„{%) _ 2{ -1 .2 -1 { „„ . - -mc21 „tr C) (1+x ) , tr C = 0 . .54c;

The function Ü is an upper triangular of second order and

the procedure for geting its wiener-Hopf factorization when

it exists has been developed by Cebotarev.2? Here we follow

the method of Ref. 26. First we note that the factors of an

upper triangular matrix can be taken to be upper triangular,

so we set
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with X (Y} analytic and invertible in the lower (upper} half

plane. If the elements of the matrices X and Y are denoted

by Xij and Yij respectively, then the following system of

equations result when Eq. (55} is substituted into Eq. (51),

and corresponding matrix elements are equated,

1 = X11Y11 (56a}

1 - (tr C}ä_1tan-1} + mc, (1+ä2}_1 = X„,(A}Y (X} (5éb)L1 LL 22

and,

These equations do not uniquely determine X and Y, since XU

and
U_1Y

satisfy Eqs. (5éa)-(5éc) wheneuer X and Y do, where

U is any invertible matrix. It is consistent to impose the

conditions

XiJ(m) = Yijtmb = äij . (57}

with this condition, Eq. (5éa} uniquely determines X11, and

Y11 to be;
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XIICAP = Y11<h) = 1, (58)

while the solution to Eq. (5éb) is given by

+00 + i/2 dz} , <sea>
*00 + E/2

where _

B<z> = lnE1 — (tr C (59b)

The expression for Y22 is the same except that the limits of T

integration are replaced by m - i/2 and -m -— i/2. In

deriving Eqs. (59a)—(5?b), the standard formulas for the

factorization of scalar functions have been used. These

formulas are proven in many texts, but prehaps the clearest

discussion (with many examples) is given in Roos.22

Finally, we must determine Y12 and X1,. To do this, divide

Eq. (56c) by Yza, and define the left—hand side of Eq. (5éc)

to be L(A). Then

, Y ,<A)AA-L = AA + ><,,,<:„> . cam
Yäzüäb “
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The left—hand-side of this equation is known, while the

right-hand—side is the sum of two functions, one anaiytic in

the upper half plane, the other in the lower half plane. To

solve for Y,2 it is only necessary to write LY22-1 as the

sum of two functions:

Y (A) _
il-L=-i-+><12=1."<>1> + 1. <>1>. ·:61>
Y22(A) Y22(A)

with L+ (L-) analytic in the upper (lower) half plane.

Therefore

+ _ 1 *°° 'V2 L(z)/Y <z>·
L (A) - FFT! _ 22 dz (62a)

-00 · i/2 Z··}1

_ +00 + i/2 _, V
.__

1. <21> = L(‘>’/‘22"‘) 1:1: . (é-2b)
**00 + l/2 2*}.

Now with the definitions

Y12(A) = Y22(A) L+(A) (63a)

X12(A) =
L_(A)

; (63b)

the matrices X and Y have all the properties required of a

factorization.



8. THE EXIT DISTRIBUTION

Once the canonical wiener—Hop+ +actorization has been

computed, an expression +0r the exit distribution, that is

F(O,p) +or p ( O, can be written in terms 0+ the +actors 0+

w(A>. Unlike the one speed case, the exit distribution will A

involve derivatives 0+ the +actors 0+ w<1/ik). The method

+ollowed in this section parallels the one given by van der

Mee.28 First, the exit distribution +or the two speed

problem de+ined by Eq. C3?) will be derived; then the

+ormulas will be generalized to the N—group problem.

Following Gohberg and Krein,29 there exists a resolvent

kernel 7<.,.> so that the general solution to the

wiener-Hop+ equation -

G(x> = Af K(x·y> G<y) dy + U<x> (64a)
O

can be written as

G<x> = U(x> + J- y(x,y> U<y> dy , <é4b>
O

and the general solution to the transposed equation

G(x) = j' G(y3 K<y—x) dx + U(x) {65a}
O

can be written as

43-
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•W

G(x) = U(x) +
J

U(y) v(y,x> dy . (65a)

0

Note that the resolvent Kernels for Eq. (64a) and Eq. (65a)

are identical. Returning to Eq. (24a), the exit

distribution can be written in terms o+ G by the formula

W
i=<0,ii> = ,2%

I

JE/“
0 0<;«> ey, 0 . man

0

Introducing the resolvent Kernel 7(.,.) this can be

rewritten as _

W W

F(O,u) =
—éE ey:/“CE5(y—z)+7(y,z)]U(z)dzdy . (67)

0 0

It the expression ¥or U(z) in terms o¥ the incident ¥lux is

used in Eq. (67), then

1
1 Y?}

F(0,p) = -$E e “’uC[6(y-2)
0 Ü U

cisizszciy . <ae>

This equation relates the exit distribution to the incident

distribution by making use o+ the resoluent kernel. To

write Eq. (63) in terms ot the iactors ot M, it is necessary



45

to write,

W W •r• _ ~:•_.··_.
dzdy , (a?)

“ O Ü

in terms 0+ the +actors 0+ N. This will be accomplished in

two parts. First

Lemma L:
W W ~.

e//pC[6<y—z) + v<y,z>]e
““/'

dzdy
0 0

=H]<-p)[T;§; HP<s)-s<Tää;)2<HP<s) +(p-s)HP’<s))M], (70)

where,

_

N-1(1/ip) = H,(—p)HP(p>

is a canonical +actorization with H, and HP analytic in the

open right hal+ plane and contiouous and invertible in the

closed right hal+ plane.

Proo+: Let G<x;s> be a solution to the matrix wiener-Hop+

equation:

° —¤E/s „ „
G<x;s> = { K(Ix—yl>G<y;s> dy + e ' ' . (xi;

“
O

In this equation the variable s is considered to be a

parameter. Note that the le+t-hand—side o+ Eq. ü?0> is
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W y/p „ ^+, - .e G(y;s} dy = E (u;s} . (72}
U

If Eq. (71} is extended to the entire real line in the usual

way and the Laplace transform is defined by

Eon -
N ei X/2* — ·— x e G(x) , Re(A} — U, (73}

"00

and Z<}) is defined by Z(k) = lA(1/ik), then the Laplace

transform of the integral equation [Eq. (71}] is

2<A> ö*<>> + ö’<>i>‘ = ä 1 — a<-.,%>2r~i . <?4>

The functions G+ and G- have already been defined by Eqs.

(40a>—(4üd}, and the matrix M was introduced in Eq. (45a}.

Now assume that the factorization of E(}> is given bv

Z_1(p} = H,(-u}HP(u} , (75}

where the functions H, and HP are analytic and invertible on

the open right half plane, and continuous and invertible on

the closed right half plane. Using the factorization [see

Eq. (75}], Eq. (74} may be rewritten as
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-1 ~+ ~-H, (—p)G (p) + HP(p)G (p)

= i—iP·:t1>1 1 - —;.<Tig>2i~11 . 1:161

If the right—hand—side of Eq. (76) can be written as the sum

o¥ two terms, one analytic and invertible in the right half

plane, the other one analytic and invertiole in the left

half plane, then Liouville’s theorem can be invoked to solve

idr Ö+ and Ö-. Due to the second order pole in Eq. (76), it '

is necessary to introduce derivatives of the H-functions

into this splitting. By Inspection, the splitting is given

by the sum of

5
-Tpäg- E H(s) J

- s(Tgä?)2[ Hrfp) - Hpfs) — (p-s)HP’(s) JM , (77a)

which is analytic in the right half plane, and the

expression

gg 1-i[_<s> — at-El§g>21 1—iP»<s> + <t«--a>i-iP*<s:· 1M , <??¤>

which is analytic in the le¥t hal¥ plane. An application oi

Liouville’s theorem then proves Lemma 1. Note when M = O,

Eq. (77b) reduces to the result given in Rei. ES. Using
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Lemma 1 it is now possible to write Eq. (69) in terms of the

H-functions. To do this it is expedient to define

T(u,s) = right hand side of Eq. (70) . (73)

Now substitute the explicit formula for exp(-yE/p) into Eq.

(69). The result is

W 00

I
j' 6*/**: 1 + (x/|.1)M] c

0 0

X dzdx . <:>‘s>:·

The contribution due to the term
ex/“

gives CF(p,s>, while

the term (x/p)eX/“ gives rise to derivatives of the function

F. It is easily checked that

CO 'ÄÜ I
_

et dzdx
U O

= pC3“T(p,s) . (30)

Therefore,

1 .1
F(0,p) = —$E{ I — u3pM 1 C j

F(u,s>®(s) ds . (31)

D
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It is routine to generalize the exit distribution formula

[Eq. (31)] to the N—group problem. If E = D + P4 is the

Jordan decomposition of E with D a diagonal matrix given by

diag{6i}i§1, then the right-hand side of Eq. (74) is

replaced by

N_1 m m+1 N m2 {-1:• mag{ ·a<—ä-> >._1 M . {e2>
m=0 u S '° ·

Now it is necessary to write

N—1 m 2 N mHP(p) E (-1) diag{ s(—Ä}—) }-,1 M (83)
m=0

“ 5 I"

as the sum of two terms,·Just as was done for the two group

case. Note that Eq. (83) has poles at p = s/ci, which are

in the right half plane. Denoting the i-th column of a

matrix A by [A](i) and noting that

. . 1lIHP(p; diag_

„ m+1

then Eq. (S3) can easily be written as the sum of two terms,

one analytic in the right half plane, the other one analytic

in the left hand plane. This is accomplished by writing Eq.

(34) as the sum of
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N-1+ „ 1, ( >E @n<u,s> J(i) = C H„

c g m+1Ä (35)

which is analytic in the right half plane, and

N—1— _ 1 ( > ·H„

m+1„<-Ü-lä> <e6>

which is analytic in the left half plane, where
H(T)

and

H(T) are the m-th derivatives of HP and H, respectively.

Therefore the generalization of Lemma 1 to the N-group

problem is

N-1 _
mF(p,s> = HIC-p) E Qn(p,s>M , (37)

n=0

and the exit distribution [ F(0,p> }(i) is given by

N—1 .1-.,L 2: -Ä,-(Li/¤.>'“<a >"' L Mm rw/¤.,s> ](—„·1>(s> ds . ·:se>
Lpmzü m. i p

Ü
i ii

Not only can the exit distribution be written in terms

of the factors of the symbol, but the solution for any value

of x can also be written in a simialar fashion. This can be
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done by inaking use of Eq. (24b} which relates F<x,u> to

Güx), and the results of this Section. First note that

G (ub =
Ä.

F<u,s>®<s> ds . (39)

0

From this expression it is possible to recover the function

G. Now that G is known, the solution F<x,u> for x ( 0 can

be computed by making use of Eq. <24b>.



9. INUERTIBLE SCATTERING MATRICE5

In Sec. 7, a tw0—group transport equation with hal+

range boundary conditions and a noninvertible scattering

matrix was solved. we now turn our attention to problems

with invertible scattering matrices which might arise in,

+0r example, energy dependent neutron transport.

The symbol 0+ the wiener—Hop+ equation [see Eq. (51)]

is the same +0r either noninvertible or invertible

scattering matrices; however, the dispersion +unction, that

is the determinant 0+ the symbol, gains an additional term

proportional to det C i+ the scattering matrix is

invertible. Recall that the construction 0+ the wiener-H0p+

+act0rization presented in Sec. 7 was contingent on the

simultaneous upper triangularization 0+ the matrices C and

MC. It is straight+0ward to show that C and MC are

simultaneously upper triangularizable i+ and only i+ C is

noninvertible. There+0re, i+ the scattering matrix is

invertible, no general procedure is known +0r the

construction 0+ the +act0rization; +0r this case the best

that can be done is to derive equations which the +actors

must satis+y and +ind an algorithm which solves the

equations numerically. These equations are a generalization

0+ Chandrasekhar’s lé eouations. Pragmatically, one 0+ten

resorts to solving the H equations numerically even when

quadrature +0rmulas similar to Eq. £59aD and Eqs.CéEaD-üéibb

52·
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are known, since iterative methods +or solving the H

equations o+ten converge rapidly, while the quadrature

+ormulas involve integrations over unoounded sets which ma?

present numerical di++iculties.

In Sec. 10, the zeros 0+ the dispersion +uncti0n are

investigated. The generalized Chandrasekhar H equations are

derived in Sec. 11, and +inally, a numerical method +0r

their solution is given in Sec. 12.



10. INVERTIBILITY 0F THE SYMBOL: INUERTIBLE C

1+ the matrix C is invertible, then the dispersion

+unction is

-
-1 -1 -1 -1 2

det w(A) - 1 - tr C E} tan 1] + det C [E tan ll

2 -1+ uczl [1+1 1 . (90)

For this case, a detailed study 0+ the zeros 0+ det w(%),

similar to the one given in Sec. 6, would be tedious. So

+or this problem, we give only a su++icient condition +0r

invertibility. Mullikian14 has shown that a su++icient

condition +or invertibility 0+ the symbol is that the

spectral radius 0+ the matrix B de+ined by

New - |i<iJ<x>| dx «;91>
‘C0

is less than one, where K is given by Eq. (20). It is easy

to check that the spectral radius 0+ B will be less than one

i+

II C ll + il MC il ( 1 (92)

where il ii is the matrix norm. Not only does this

condition give a su++icient condition +or the invertibility

54
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of the symbol, but Mullilcianlq has shown that it also gives

ai sufficient condition for the unique solvability of the

integral equation [Eq. (13)]. Mullil<ian’s proof of this

fact involves estimating the spectral radius of the integral

operator.
i



11. THE GENERALIZED CHANDRéSEKHéR H—EQUAT10NS

Mullikian in Ref. 14 has derived nonlinear integral

equations inhich the factors of the symbol satisfy. They

are, for Im z ) 0,

-1 _ 1 ‘
°° i-1 <i;>i2<-1>HP (Z) ·· I + j
l··oo {+2

- ¤¤ ^1 dt, <e2b:·
··co {+2

where H is the Fourier transform of the kernel of the

wiener-Hopf equation, and I is the identity matrix. The

matrix valued functions H1 and HP have the following

properties:

(i) HP and H] are analytic in the half plane Im z Q 0,

and continuous for Im Q 0.

(ii) HP and H] are invertible in the half plane Im Q 0

<iia:• 1 - ié<z> = i-iQ1<z>i-i'r}<z> .
we now specialize Eqs. <92a}—<92b) to the two group

problem defined by Eq. C3?) and det C ¢ 0 by introducing the

explicit form of R;

iÜ<·:z> = ·:§ tan'1z>i: — ·:1+z2>" Mc , ·:·;»a:·

where M is the nilpotent matrix given by Eq. E3?). Recall

„ 56
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that is analytic on E ¤ { z 6 E : z=it,ltl } 1 }. The

integrals appearing in the H-equations [Eqs. <?2a>-<92b>]

can be rewritten into a more familiar form by making use o¥

Cauchy’s Theorem. The calculation ¥or Eq. (92a) will be

shown; the procedure for Eq. (92b) is essentially the same.

Substitute Eq. (3} into Eq. (ia); the result is

i-i'1<z> = 1 + 1 01 11 :a¤‘1+: c - <1++2>'1Mc 1l En: T '
‘00

X 1'1i~111 . <·;·4>
t+z

we analyze each term of-the integrand separately. First,

consider the term <1+t2)-1 MC. Note that HP<t>/<t+z> is

analytic in the upper half plane, and HPCt>/<t+z><1+t23

vanishes at in¥inity as t—2. There¥ore, Cauchy’s Theorem

yields

1 HPCIJ _ (95a}=v— —————r—————— — ——————‘"‘ _ <1+t‘>·It+z) 1+z
CO

Next, consider the term containing t_1tan_1t. The contour

can be completed in the upper half plane i¥ the branch cut

Ei, im) is avoided. The result is
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j‘°°tan’1<i;>
H«—‘”

dt
_ t t+z

OO

H i 1
_, _1 _ HP<t)

tan (¤t—0)J—————— dt, (950)

i
‘ t+z

CO

where tan—1<it : 0) are the bbundary values 0+
tan—1

al0ng

the imaginary axis. Using, -

tan_1<it + 0) - tan_1<it — 0) = —in , It! } 1 , (96)

the right-hand-side 0+ Eq. (950) bec0mes

V ir "’i—‘”" dt. <s·7>
_ TF t+z
lw

Q simple change 0+ variables gives

i -1 H Ct) 1 iH (i/t)
.L....= ;.Ü.....—. dt

_ (93)
iw t t+z Ü t<z+i/t)

It is cbnvenient t0 de+ine +uncti0ns X and Y bw

Xd:) = H,(i/2) and, <99a)

' Yi:) = Hpüi/:3 . (99b)



59

The final form of the H equations is derived by substituting

Eqs. (95a) and (99) into Eq. (92a). The result is

-1 1 1 *
1

X (2) = I + E C j- dp0

1 z .+ EMC 1Fq- Y(1) . (100a)

Simialrly, the H—equation corresponding to Eq. (92b) is

-1 _ 1 1 ,Y (z)-1+2
I

i:1;1%><·.1i>c
0

9
1 z MC .(100b)

Note that if M = 0, then Eqs. (100a) and <1U0b) reduce to

the Chandrasekhar H—equations.23 It is straightfoward to

show that every solution of Eqs. (lüüa)-(10üb) provides a

factorization of the symbol. ea Banach space analysis of

these equations is the next topic.



12. A BANACH SPACE ANALYSIS 0F THE H EQUATIÜNS

In Ref. S0, Bowden and Zweifel presented a Sanach space

analysis of the Chandrasekhar H equations. They showed

that the H equations could be solved by iteration. 0f

course the H equations must be supplemented by constraints

which are the analyticity requirements given by conditions

(i) and (ii) of Sec. 11. In Ref. 31 Bowden, Menikoff, and

Zweifel generalized their results to H equations relevant to

multigroup problems. In this Section a similar analysis is

given for Eqs. <100a>—<100b>. In Refs. 30 and 31, the it

was shown that the H equations have solutions in the Banach .

space L1<0,1) by making use of a contracting mapping

principle. For the H equations [Eq. <100a>—<100b>] the

terms X<1> and Y(1) prevent one from using a contracting

principle in L1{0,1>, because point evaluation is an

unbounded operator in L1{0,1>. Thus, instead of L1<0,1>, we

must use a Banach space with a supremum norm. Consequently

the following analysis parallels the one given by Rall.32

First, we define some Sanach spaces: Let KO be the

vector space XÜ = { T : T is a 2x2 matrix valued function,

with TEJ continuous on [0,1] } and define a norm

li U ilxo = ll ii U lim<.b il {101aD

where li U iim{.} is defined for each s e [0,1] by

ß0
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ll uin3

. . . 3where x 6 R , and Il Ilz is the usual Euclidian norm on R .

That is, for each fixed s, II U Ilm is the operator norm of

U when U is viewed as an operator on R2 —+ R2. And define

. another Banach space by

X = XG 9 XÜ (IDE)

with norm

ll T IIX = II Ti IIXU + Il T2 IIXÜ (103)

where T1 and T2 are the components of T.

we now rewrite the H equations [Eqs. (IDDa)-<IDDb)J in

a form more suitable for analysis: Postmultiply Eq. (IDDa)

by X(z), and premuItiply Eq. (IDDb) by Y(z). The results

are:

„ .. 1 1 2 -„ ., _ 2 „ „„„,. , „-A(z) — I —
E dp0

1
‘1 -•

~·\ 1 _' xl L J. 4 xl 4 _.1;_
-(RE. I Elli“

D
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Define X e X to be the ordered pair <X,Y); then Eqs.

(104a)-<104b> can be rewritten in operator form as

Si = FSE . ams:

we hope to show that Eq. {105) can be solved by iteration.

That is, we hope to show that the sequence { X(m) }m;Ü

defined recursively by

will converge to the solution of Eq. (105). we shall always

choose X<0)
= I. First we determine if F is a contraction.

Let ä = axl, x„> and v = avi, v„>. Then
L L

i=Siaz> — i=iiaz> =

(1 11 Lt 2•|.|...¢1-.‘. 12
0

1 — z a _ „ „

1 .1 _
dpÜ
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+ Q, ggf-V MQ ><1<1>><2<z> - Y1(1)Y2(z) ] ) <10?>

The first component can be rewritten as

1 1 zac I dp [><2<p> - Y;,<p> ><1<z;· + Y1<z>]
0

Ki: jl dp0

1 z _ „ _
+ 2, Mom [><2<1> Y1(1)X1(1.) + Y1<z>]

Qmcgq- |:><2<1> +-Y2<1> X1(z> - Y1<z>]

and the second component can be rewritten in a similar form.

Let B( I ; r ) be the ball { T 6 X : ll I — Til 5 r ). If

X and 6 X then

ii
>'€

+ ‘? ink 2<1+¤—> . (10-5)

Using Eq. (106) and the inequality

1 z‘
dp Eaqr

l
5 ln2 , for z 6 [0,1] , (109)

0

it is possible to estimate the norm of FX — F? by
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IIFQ - Fqll $ (1+P){ln2l| C ll + ll MC iljll Ä — ;ll . {110}

It is convenient to deiine

a = ln2 II C ll + ll MC ll . (111)

Therefore, F is a contraction operator provided

a<1+r> 4 1 . (112>

So F is a contraction operator for sufficiently small a and

r. we must now show that r can be choosen large enough so

that F: B—+B. For F to map B into B it is sufficient to

require

1 — a<1+r)

It es s:¤aagpt+pwarp tp estimate iiF§‘°’ - §(Ü)il py

4 a. 1114:1

Therefore, inequality (15) can be rewritten as

.
ar“ + <a-1>r + a g O . ü11E}
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The largest value of a which is consistent with inequality

(113) is

For this value of a, r can be determined to be U

r = 1 . (117)

All that remains to be checked is inequality (112). with a

= 1/3 and r = 1, we have

a(1+r) = 2/3 ( 1 . (118)

Therfore, if

ln2 II C ll + ll MC II ( 1/3 K11?)

then Eq. (105) has a unique solution inside the ball BCI;1).

Furthermore, the sequence defined bw Eq. (1Üé) converges to

this solution if
§(Ü)

6 B<I;1).

Finally, we must check that
Äqmp

converges to a

solution with the required analyticity and invertibility

properties. First,
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Lemma 2: 1% X = (X,Y} is the unique solution to Eq.

(105} in the bali S(I;1>, and a ( 1/3, then

cIe*[1+1C Ac
—-F-‘r·' > + Z 0‘

E 2+0
‘u

ETTM
‘ ’

0

$00 Re 2 g 0.

Proo%: Since (X,Y> 6 B(1;1> we have

1)|lI—Xl|}•‘1—llXI|‘. (120)

Thus we have

Il X II $ 2 . (121)

Suppose that %or some value 0% 2

·:.i•=·t[1 + 10 1-:10 i-wp; + -l„Mc~r<1;l = 0 . M22;' E 2+0 2+. J
0

This implies that

.1 „ _

H Q: j du Egivqla + sg-:~10~r·:1> g 1 . (123}
0

00,
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1 2Il C Ii
I I 1;qTI dp + II MC II Q 1 . (124)

Ü

But if Re z Q D, then

.1 Z
I I dp $ 1 . (125)

0

So inequaiity (124) impiie;

li C II + Il MC II Q 1 . (126)

But by assumption
-

a = in2 ii C il + Il MC II ( 1f3.

which i; a contradiction. Tharafora, §(2) de+ined by _

‘>”2·:z> = 1 + li: Ild ..L~r< > + ZH 2+p H ETTM ‘*’

·' 0

is invertibia ¥or Re 2 Q 0. The sam; proo¥ show; that
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^ 1 1 z - 2Y(z) = I + E
j- dp E;FX(p)C + ETTX(1)MC

0

is also inuertible for Re 2 Q 0. Furthermore, and are

analytic on C/[-1,0]. Finally observe that and ? satisfy

the H equations {Eos. (100a)-(100b)}. Thus the iteration

scheme defined by Eq. (105) converges to the solution of the

H equations, and satisfies the constraints.
4
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