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(ABSTRACT »

It iz shown that multigroup transport esquations with
nondiagonal crosse section matrices arise when the modal
approximation is applied to energy dependent transport
equations. This work is a study of.such equations for the

case that the cross section matrix is nondiagonalizable,

For the special case of a two-group problem with a
noninvertible scattering matrix, the preoblem s sclved
completely wia the Wiener-Hopf method, For more general

problems, generalized Chandrasekhar H equaticons are derived.
& numerical method for their solution i=s proposed. Also,
the exit distribution is written in terms= of the H

functions.
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1. INTRODUCTION
Multigroup transport equations with nondiagonal cross
section matrices have been proposed as models of, For

1,2 Stacerl

example, neutron transport in reactors. has
shown that multigroup equations with nondiagonal cross
section matrices arise when the energy dependence of the
neutron transport equation is expanded as a finite sum of
orthogonal functions, and then the method of weighted
residuals is applied to determine equations satisfied by the
coefficients of the expansion. The method of weighted

3,4 and

residuals is discussed for general problems in Ames,
in Stacey, where different choices of orthogonal functions
and weights are considered. Stacey shows that by

appropriately choosing the weighting functions it is

possible to minimize the error in some particular physical

[n}

quantity. For example, if the error in the solution is t
be minimized at n different spatial locations, he has shown
that the appropriate weighting functions are delta
functions. It should be noted that the traditicnal
multigroup equation is a special case of this more general
procedure, To deriwe the standard multigroup equations, the
orthogonal functions are chosen to be characteristic
functions with non-overlapping domaine and the weighting

functions to be the same set. I+ this procedure ies carried

n
m

cut for the neutron transport equation, then the <ros



section matrix will be diagonal. Thie e=quation has been
‘ -

studied by numerous authors.s = However, for different

choices of orthogonal functions and weighting functians, the

cross section matrix will in general be nondiagonal, and

possibly even nondiagonalizable. In the «case of a
diagonalizable cross section matrix Y similarity
transformation applied to the equation will reduce the

equation to the equation studied in Refs. S5 and 6,‘the onlw¥
difference being that the scattering matrix might no laonger
be positive, or even real. In such cases it may be easier
to work with a nondiagonal cross section matrix directly

4 However, the

rather than make the change of variables.
cross section matrix might be nondiagonalizable, in which
case no change of independent wvariables will reduce the
transport equation to a form which has already been studied.
Furthermore, i+ the number of groups is large it may be
tedious to compute all the eigenvalues of the matrix in
order to determine i+ the matrix is diagonalizable, and if
it is diagonalizable it is difficult to determine the
correct similarity transformation, since one needs all the
eigenvectors. Therefore, this work is study of multigroup
tranzsport egquations with nondiagonalizable cross section
matrices.

There are two methods +or =solving such transport

. ) : . . 10
equaticons, namely, the Case eigenfunction method,'~ and the



11 The Case eigenfunction method has the

Wiener—Haopf method.
advantage that, at least at the outset, the +ormulas
resemble the eigenfunction ex<pansions so widely used in
gquantum mechanics. But wunlike guantum mechanics, the
operators used in transport theory are in gensral not
self~-adjoint, and so it iz uncertain that an eigenfunction
expansion does in fact exist. For many transport equations,
these expansions do exist, but the eigenfuncticns can be

distributions, i.e. delta functions or principal wvalues.

The expansion coefficients satisfy equations which are in

general singular integral equations. Singular integal
equations have been investigated extensively by
mathematicians, and methods for their solution are
known.lz’13 The crucial step in their solution is the

construction of the Wiener-Hopf Ffactorization of some
function, which is of course the same factorization reguired
b» the Wiener—Hopf method for the original eguation. Thus,
@2ither method of solution is equivalent to constructing a
Wiener-Hopf factorization, but the Wiener-Hoptf method avoids
the principal values and delta functions which appear in the
Caze ejgenfunction method. For this reason, the Wiener—Hopt
method will be followed exclusively in this work.

In Sec. 2 a derivation of the multigroup equation is

presentesd, in particular, the reasone behind the possible

(]

C a

Ay
D

choices of weight functions are giwven. In



proven that the multigroup equation is eqguivalent to an
integral! equation with a convolution Kernel. For the czase
of a <emi-infinite slab, this equation i= the wvector
equivalent of the Wiener—Hopf eguation. In Sec. 34, the
existence and uniqueness of the integral equation for the
finite slab problem is investigated. It is shown that
questions of existence and uniqueness can be answered by a
simple application of the Fredholm alternative. In Bec. 5,
the transport équation will ke specialized to a two—-group
equation, with half range boundary conditions, and a
nondiagonalizable cross section matrix. For this problem
the Wiener—-Hopf factorization can be explicitly constructed
provided that the scattering matrix is noninuerfible. A
noninvertible scattering matrix is not an exceptional case,
as Zweifel and Seiwerts have shown that for problems in
radiative transfer the =scattering matrix has a degenerate

form i.e., C = éiej. In Sec. &, necessary and sufficient

iJ
conditions for the existence of the canonical Wiener—-Hop¥f
factorization will be found by studying the invertibility of
the symbol of the equation. Once the lWiener—Hopof
factorization has been found, it iz possible fto express the
exit distribution, that i= ¥<(0,p2, for g > 0, in terms of
the Wiener—-Hopf factorization. This will be done in Sec,

Rather tham restrict the exit distribution zgiutions to the

tiwo=-group case, the general MN-group eguation will be



considered, even though the Wiener-Hopf factorization might
not be Known. For the M-group equation problem, no general
formula exists for the factorization. The best that can be
done is to write down eguaticons which the factors must
satiesfry. These equations are derived in 3Sec. 11, by makKing

14 These equations are nonlinear

use of Mullikian’s work.
integral equations which must be solved numerically. If the
solutiones are to have the analyticity properties regquired by

the Wiener~Hopf factorization, then the equations must be

supplemented by constraint equations. In Sec. 12, an
iterative method of solution which will automatically
satisfy the constraint egquations is presented. These

solutions are shown to converge in an appropriate Banach

space.



2. DERIVATION OF THE MULTIGROUP EGUATION

Consider a one dimensional transport equation with
azimuthal symmetry. The density of particles, ¥lu,pn,2>, is
then a function of the one spatial coordinate x, of u, the
cosine of the angle that the welocitr vector makes with the
X axis, and of E the energy. For radiative transfer
problems it is customary to use the wavelength instead of
the photon energy. The equation governing the time

independent density is

na ¥ + E(EXY = f IJ' ¥ B, u L EN0¥Ck,p7,EY) dpidES. (1)
-1 0

Here Bx is the derivétiue with respect to x, Z{(E> is the
total cross section for scattering, which depends only on
the energy of the particle, and S{p,p’,E,E")> iz the rate at
which particles with energqr E” and direction cosine g7 are
scattered into energy E and direction p. Unless simplifring
assumptions are made, solving Eg. 17 iz hopslessly
difficult, One assumption which greatly reduces the
complexity of Eg. (1> is to assume isotropic scattering,
i.e., to assume that £ is =a function of gnergy only,. Even

with the assumption of isotropic scattering, the transport

equation iz still not amenable to analytical solutions, so
approximate solutions are sought. One possibility, the =o
called modal approximation, is to approximate the energy



¥(x,p,E) =

e

Tk, p0d E) (23

J=0

A wvariety of choices +or QJ have been considered, +for

example Laguerre or Hermite polynomials multiplied by

2, 13 14

Gaussians. is now necessary to determine equations

for  the ?J. Perhaps the most obvious choice is to
subsititute the approximate solution [Eg. (221 into the

transport equation with the result;

n
.3 ¥
AN A

1 © n
j f SCu,u‘E,E’) T & .(E’>¥.(x,p’> dE"dp’. (3
i=0 Y J
-1 "o

0

1f we multiply by f dE #_(Ed; the result |
0

w

uax?m + (&

J ($,58 0%, du’ , (4)

where the Eintstein sum conventicn is in force and

1
(P _,¢_» = j @m{x}@n(x} dz {53

m* n
-1



and 5 is the integral operator with Kernel S(p,pn",E,E"2.

Now if matrices Emn and Cmn are detined by;

z = (3

m n

Cmn = 2(¢m,8¢n) s {Ab)
and if we assume isotropic scattering, i.e. 5 i3 independent
of p and p‘, then Eg. (32> can be written as a wvector
equation, namely;

1
na ¥ + E¥ = C/Ef Fx,p’ddp’ (73

-1

where ¥ is now & vector with components (?D,?l,...?n) .
Mote that the matrix Z given by Eg. (%a) is real and

symmetric, hence is diagonalizablte. Therefore in this case,
-1

i+ U is a matrix which diagonalizes Z, than ¥ =y ¥
zatisfies the equation,
~ o ~ ptloL
wa ¥ + ¥ = cxzj Fix,p’> dp’ . ¢85
-1

where T is the diagonal matrix, T = ulzu, and & = U

—~
l-\.

Equation (2 has been studied under the assumptions of

tant, noninvertible, and C.. & O by Siewert and

P iJ



Zweifels in their study of radiative transfer problems, and

~

for invertible C and Cij » 0 by Sancaktar and Zweifellé
among others. Note that the matrix C in Eg. ¢(8) i= not
necessarily positive; however, the analyses given in Refs.
5, and 18 require 1little modification for negative C
matrices. Note that the matrix C is real.

Stacey has pointed out that alternative methods for
obtaining equations for the ?n exist, which mayr be,.for some
physical problems, more appropriate then the analysis given

above. Stacey in Ref. 1, has promoted the method of

weighted residuals to determine equations for the ¥,. In

this me thod, rather than multiplying Eq. (3 by

©

@®
j dE ¢m(E), the equation is multiplied by j dE Nm(E),
0 0

where the functions W m=0,1,2...N, are called the

m!
weighting functions. More generally, the wm could be
operators. The weighting functions are chosen to minimize
the error in the approximate solution [Eq. (2] in s=some

sense. To illustrate this procedure, it is convenient to

rewrite the transport equation [Eq. (121 in operator form

where H = linear, and represent the soluticn to this



10

equation as a +tinite sum plus a remainder,

n
Flx,p,E> = Z & (B (x,p) + &F(x,u,ED {10as
v i=0 J J

= ¥ + &F c10b:

approx

Substituting Egq. (10b> into Eg. (%), and making use of the

linearity of H, we find

H?approx + HAY = 0 . (115

Suppose that it is desired to minimize the error term, i.e.
minimize Ha¥, in the 1least squares sense, that so0 we

require

f dxdpdE (HATYZ = minimum. (123
Stacey has shown that the weighting functions {(actually in
this cace they are weighting operators) Nm(E) which do this
are given in Dirac notation byr

W (Ey = ¢ & | H (13

cev¥ gives other chaoices of

[/

* . N -
where H iz the adjoint of H. £t

weighting operators which minimize the error in the sclution



11

at m spatial points, f{(by choosing the weights toc be delta
functions) or the error in the +Ffirst m-moments of the

distribution, etc.

"

I+ this procedure is applied to Egq. (3, then {t i
easy to see that the matrices £ and C defined by Eqs.

(Sa)=(éb? will be given by (again in Dirac notation?
= =< $_ | H ZT 1| & 3 {1d4a>
_ *
c = 2%, | H S 1 %, 5 . (14b>
The matrix Emn is no longer symmetric, in fact it might not
even be diagonalizable. The case of a transport equation

with a nondiagonalizable cross section matrix and isotropic

scattering is the subject of thisz work.



3. AN EQUIVALENT INTEGRAL EQUATIOM

As explained in the introduction, the Wiener—-Hop¥
method will be wuszed in this work. In order to use the
Wisner-Hopf methad, an integral equation equivalent to the
integro-differential equation [Egq. (7)1 is sought. This
integral equation is derived in Theorem 1.

Theorem L: I+ ¥ satisfies the integro-differential
equation;

+1
na ¥ + ¥ = C/2 FCx,p’) dp’, xe[0,m) (15}
A

-1
where Z and C are constant matrices, subject to the

boundary conditions:

¥(x,p) — 0, x— (1éal
YCO,p2 = & (po uwelD,11, {1&b>
n
¥ e B Loi0,2) ® Lo(-1,10 , (14c)
i=f *~ “

each of the conditions [Egs. (1&ar-(14bd]1 holds for where

each component of ¥ separately, and we assume that the

spectrum of I is contained in the right half plane [we

denote the spectrum of & by o(Z)1, then G, defined by

+1
B{xy =." Tix,p’) du’ (17

-i

satizsfies the Wiener—Hopf =quation
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[va]

G(x) = UCx) + —-| Kix-y)>CB(y) dy , (18)
0
whers
.1
UCxs = J exp(-xEﬂu}®+(p) dp (12
0
and
L.
K(x) = j plexpe-1xiz iy dp . (207
0

Proof: Using the detfinition of G, [Eq. (1731, rewrite

Eg. (1352 as
na ¥ + ¥ = 3CG . (21>

I+ the right-hand-side of Eq. (21) is known, then one can
solve this equation for ¥ by introducing the integrating
factor. The integrating Ffactor for this eguation is

exXpliAZ pn?, so Eg. 212 can be rewritten as

3, LexplxZ pnd¥l = E&exp(xEKu)CS{x) . (222
Therefore,
eXpl{HESpIF(x,pd = E% J expl(yo/7pICG ridy + A(pNI . L2322

Here, A{p) is an arbitrary constant of integration, and the

limits of integration must be chosen to satisfy the boundary



14

W
[ 1]
-+
n
-+,
e
-+
e
1]

conditions [Eges. (1da)-(idc>r]. In order to
condition ¥(x,pd—0, xX—po, for p & 0 it is necessarr *to
chocose A(p) = 0, and the limits of integration toc be x and

0, therefore;

]
Y
[+

~

o0
F(X,p) = —.1 expl-{x-y)Z/ pICGC¢y> dy , pga . L
P}

X

For p » 0, the boundary condition Egq. (18b> must be
satisfied. To satisfy this condition one must choose A{p) =

P, (pd, and the limits of integration to be 0 and x. So,

X
F(x,u) = expl-xI/Wdd, (p) + E%I expl—(x-y)T/p1C6¢y)dy (24b)
0

for p > 0. To derive the integral egquation that G must

0
satisfy, multiply both sides of Eq. r24a’ by f dp and Eg.
-1
1
{Z24bJ) by f du, and add these two term=. The result is;
0

1
G(x) = f exp(~xZ/p0d, (p) dp

0
1] 1p @
- ( EEI expl=(x—-¥I)Z/7p1CG(y) dy
"-1 <
1 X
+ f 1 f expl—(x=y T NICG¥) dy . (25
ZR

Mow interchange the order of integration in the laszt two
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integrals, which is permissible by Fubini“s Theorem, due to
the condition on the spectrum of Z, and the boundary
condition (1&a>. Upon simplification, Egq., ¢18) results.

The integral equation iz easily modified to finite slab
probiems, that is xe¢[0,L], where L is the length of the slab
measured in mean free paths. For this problem, the boundaryr
condition {(14a> must be replaced by ¥(L,p> = &_(pnd, for p ¢

eazy to see2 that ths

w

0. With this boundary condition it i

integral equation for G is replaced by

L
Gix) = Ulx) + J K{x=»3)CG(y)> dy (245a)
0
where;
0
ix) = [ exp(—xZ/p)d_(po dp
-1
1
+ J' expl—xI 0§, (u) dp {24b)
0
and K¢{(.) 1i= given by Eq. ©20J. The existence and

uniqueness of <=oluticons to Eq. (28) will be discussed in

ec. 4.

()]

One <should not be intimidated by the exponential
functions of possibly nonself-adjoint matrices appearing in
the above formulas. They are easy to compute if the Jordan

decomposition is uwsed. The Jordan decomposition of & matrix
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A ie defined br
A=5 + N, SHN =NS (277

with § self-adjoint and N nilpotent. Such a decomposition
exists for all matrices, and formulas for S and N can be
found in Ref. 17. For any csufficiently differentible
function F, F{A) may be computed by

() 5N (2

L

F(Aady =
0 [}

1=

n

where F(n)Ais the n-th derivativwe of F, and M is order of
nilpotency of N. The matrices F(n)(S) may be combuted by
makKing wuse ot the spectral theorem for <self-adjoint

matrices.



4. THE FINITE SLAB PROBLEM

Guite oftem in transport theory, it is easy to prove

U

that the equation has at most one sclution, but it |
considerably more difficult to pFove that a solution doces in
fact exist. Questions of existence and uniqueness are not
Just academic, asz we typically look for time independent
solutions to transport equations, and as we Know many
physical systems have more than one equilibrium (time
independent) solution. An example of this is the Yasav
equation. It has infinitely many time independent
solutions.19

I¥+ both C and Z-C are positive definite matrices, then
it is possible to prove that the transport equation subject

to the boundary conditions [Eqs. (18a)-(18b)], has at most

one =solution, that is, if & solution exists then it 1is

unigue., This result haolds Ffor either finite or
semi—infinite boundary conditicons. In the case of a finite
slab, the integral operator appearing in Eg. {2&a) iz
compact, so that the Fredholm alternatiuels can be used to

prove that the equation has exactly one =oclution. Recall

that the Fredholm alternative states that if K is compact,

1

m

then either (I-K) * exists as a bounded operator, or H |

not injectiwve, f(We denote the identity operator by I.) In

other words, if K is injectiwve, then (I-FJ)_1 exists as a

bounded operator, A discussion of the applicability of

17
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ueing the Fredholm alternative to prowve the existence of

solutions to transport equations can be found in Ref. 20.

The uniqueness proof given in this section s a
generalization of the proof found in Casze2 and Zueifel.lo
The proof relies on a simple positivity argument.

Theorem 2: The transport equation subject to the

boundary conditions (146a)—-(14b) has at most one solution if
both C and Z-C are positive definite.

Proot: The proaf for the finite slab problem will be
given; the proof for semi-infinite boundary conditions is
essentially the same. For the purpose of contradiction,
assume that the ¢transport equation has two solutions, say
?1 and ?2. Since the transport equation is linear, ¥ =
wl-wz is alse a solution, but it satisfies the boundary

conditions;

F(O0,p2 =0 w0 (2Fal
F(L,pr =0 n¢o, (2%b)
that is the incident <flux iz zZero. Let ¥ be a column
vector, and ?T its transpose. Multiply the transport

L
equation by the operator f dx ¥¥. The result is
0

. L T (r L v o 1
j dx ¥ (pa, + D)¥ = 5 dx -;f‘n:.J dp’ FCx 0 (]
| =J

0 a -1

[EA]
o
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The first term on the left-hand-side is an exact

differential, so Eg. (30> simplifies to

e

RCETE (L, p0 = SuceTer¢0 0

L . L 1
+ f dx ¥'zy = & J dx ?ch dp’ F(x,p7) ¢31)
0 g -1
1
Mow, multiply Eq. (31> by the operator 2{ dp, and use the
-1
baundary conditions (27a)-(2%b). lWe find
1 T 0 T
f WCFTEICL, p) dp - f WCETE) O, 10
0 -1

1 o.L T
+ I j di dx FTOx,pOTFCx 1O
-1

0
1 . L - 1

= f f dp dx ¥ (x,u)CJ g’ FCx,p70 {3E)
-1 %y -1

The right-hand-side can be analyzed by using the frick in

Ref. 10. Consider

% £%T(x,p}—?T(x,p‘)JC[?(x,u)—?ix,u’)] dpdp
v
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Sl te 1 o
= 4j FTC¥x,p) dp —zf J P, 0% ex,p07) dpdp’ . (23

-1 -1 -1

Uzing the boundary conditions [Egs. (2%a)-(2%b>l and Egq.
(32), Eq. (32> can be rewritten as

0

L T T
j WCETEY (L, u) dp - j RCEFTEIC0, 00 dp

n -1

Lot o
+ f J ¥ ¢x, 1> CE-CO¥(x,p) dpdx
L

Lptet o - '
= - J' f j LET Cx ) =T Cx,p /2 ICIFCx, 1) =¥ <x, 07> ] dudu”’ dx
0
-1" -1

The <crucial point is that the integral terms involving
¥<(0,pn> and FCL,pd are greater then zero, so that provided
both Z-C and C are positive definite the left-hand side of
Eg. (34> is 3 0, while the right-hand-side i3 £ 2.
Therefore, it must be the case that ¥ = 0, g0 unigueness has

been proven. Mote that the conditions on € and Z-C reduce

[

Lo}

13 in the one-group

]

to the well Known condition C

cCase.

o
0

far &ll we Hhawe proven s that the tranzport
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equation has at most one solution. Now we must show that
the equation has exactly one solution. Ae  previously
mentioned, the Fredholm alternative sayrs that unigueness
implies existence provided that the integral operator
appearing in Eq. (28%a) is compact, I+ L { w, then the
operator is indeed compact.

Theorem 2: The integral operator defined by

L
(KE) (x) = j K{x=y)¥(y) dy 0 <L w (35a)
0
I
Kix) = f wlexpC-xzpy ap (35by
. .
c(Z) C { zeC : Redz) { 0 X {35c»

iz compact on LE(O,L)Q"'QLE(D,L).

11}

Proof: It suffices to show that K i

Hilbert-Schmidt,!> which will be true prowvided

. L. L o
J f [K_ (x=y)1% dxdy < = (3&)

0 0

holds each element of the matrix K. The werification of
inequality (3&) is a straightforward calculation, zo it will

not be presented. Therefore, the conditions;
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W
~J
a

~r

C, and Z-C positive definite (3

[}
~J
o
St

g(E) C £ z ¢ € 1 Relz>» » 0O I {

are sufficient to guarantee that the transport equation with

finite slab geome try possess a unigue solution,.
Unfortunately, the integral operator with L = « [see Eg.
21

(1221 is not compact, so0 that in this case uniqueness doss
not imply existence. Existence for one particular haldf
space problem will be discussed in Sec. 3.

It might be mentioned that it is alsc possible to prove
uniqueness using the egquivalent integral equation, rather
than the transport equation. To do this, it is sufficient
to show that the norm of the integral operator is less than
one. This approach might be useful if one wanted to prowe

unigqueness in a Banach space, =ay L,, rather than in &
Hilbert space as was done in Theorem 2. For the one-group
problem, this criterion gives the same condition as found by

using positivity arguments.



S. THE HALF SPACE PROEBLEM

In this Secticon the ftransport equation

]
U]

4
pad ¥ + ¥ = =C J- Tlx, 02 dp”

subject to the boundary conditiones Egs. (1dar-(18c), will b=
studied. Az previously mentioned, if Z is diagonalizable
then a similarity transformation will reduce Egq. (3&8) to.the

s o

problem considered in Ref. 5. More generally, Egq. (383 is
also soluble for the case where the matrices Z and C are
simul taneously upper triangularizable. In such a caze, a
similarity transformation can be applied to the transport
equatidn to reduce it to a tractable +form. To see this,
suppose that both £ and C are upper triangular. Then the

last component of ¥, call it ?n’ is not coupled to the other

ti

fies the one-group

[]1]

components of T, Theretore, ?n

neutron transport equation; thus its solution can be written

10 These

in terms of the Chandrasekhar H functicons.
functions have been numerically computed to greaft accuracy.

Once the +Function ?n ie known, the n-1"th component of ¥

obeys an egquation involwving only ¥ and oy Thus ¥ 1

[}

alsga

obews an inhomogeneous one group eguation, so it i

possible to solwve for ¥ in terms of the H Ffunction=.

n—-1
Proceeding in this fashion it is possible to solwe for each
component of ¥, Thus we zee that whenever Z and C are
simul taneously Wpper triangularizable, the muttigroup

. 23
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equation is scluble {at least in principlel. It would be
nice .to Know necessary and sufficient conditions for two
matrices to be simultanecusly upper triangularizable,. A

sutficient condition for two matrices to be simultaneausly

upper triangularizable is that they commute, but a necessary

candition is apparently unknown, In +fact, it is not
necessary for two matrices to commute in order for them to
be simultaneously upper triangularizable; an example will
occur in Sec. 7.

In the following, the simplest equation of the form of
Eg. t38) will be studied for which £ is not diagonalizable,
and for which Z and C are not simultaneously upper
triangularizable. In particular we consider the two group

equation defined by

= = 1 « : O o= c CIE ) L2997
0 1 oy Ea22

with w # 0 and Coy * 0 . It is easily verified that £ and C
o

satisfyr the two previously mentioned conditions.

additionally, in this section we =hail assume that the

cattering matrix? is noninvertible. Fecall

w

matrix C (the

that Siewert and Zwei%e]s have shown that problemszs in
radiative transfer naturally lead to noninvertible
szattering matrices. For these problemz the scattering
matrix has a degenerate +form, i.2. there exist constanfts a

and b. =0 that c.. = a.b. . It is 2asy to prove that swery
J i
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degenerate matrix is noninvertible. For a noninvertible
scattering matrix it is possible to conztruct explicitly
the Wiener-Hop+ factorization of the symbol of the
equivalent fntegral equaticon at least +or the tweo-group
case, a task which iz identical to s=solving the transport
equation. Actually, a similarity transformation can alwars
be applied to set «x = 1 in Eq. (3%), but for bocockKesping
purposes it is convenient to leave « as an arbitrary
parameter so that the limit «x — 0 is apparent. Uhen «— 0O,
£q. (38> reduces to the multigroup equation with a diagonal
cross section matrix. Thus, the lTimit o« — 0 will serve as
a check of the formulas in the next section where the
invertibility of the symbol of the Wiener—-Hopf equation will
be studied. Note that every nondiagonalizabtle 2 X 2 matrix
i= proportional to T after an appropriate similarity
transformation, 30 the choice of £ i= not as restrictive as

might first be thought.



4. THE WIENER-HOPF METHOD OF SOLUTION

Wz now praceed to solve the integral equation [Eq.

7,11

(131 wusing the Wiener—Hopf method. Foellowing the

standard notation define the functions G+, G, U+, and U~

by ;
GT(x) = G(x) for x 3 O (40a)
6T (x> =0 for x ¢ O (40b)
and,
G (x) =0 for x 3 O £40c)
G (x) = G{x) for x ¢ 0 , (40d)

and similarly for ut and UT. With these definitions, Eq.
(18) can be rewritten as a convolution equation on the

entire real line, namely;

6Yexy + 6 (x) = U o+

|"C‘ Lol

<o +
J Kix-v30GT ¢y dy . £41)

[xod
The +function K has been defined in Egq. (20). The Fourier

transform of Eq. (41) yields;

L T o T S
WRAIGE () + G (x) = U "(x2 . (42
. s - - . - - fad
Here the Fourier transform of a functionm F i=s denoted as F,
whersa

26
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~ E )
F(a) = J expliaxy Flx) dx . (42>

-
The matrix valued function W iz called the symbol of the

Wiener-Hopf egquation, and is given by I - E or by
Ay 7 -1.,_ -1 . 2,-1

WCRY = 1 = &% “¢tan A0 + (1437 "MC . (44)
Here 1 is the 2 X 2 identity matrix, and M is the nilpotent
part of the matrix I. The nilpotent part of the matrix I
can be computed by making use of Ret. 17, or for this simple
case it can be found by inspection. The Jordan

decomposition of T [see Eq. (2731 is

T = + 0 « (45a)

=1+ M. 45k

The crucial =tep in the Wbliener—~Hopf method s the
construction of the Wiener—Hop+ factorization of the =ymbol.,
If the symbel is a scalar function, i.e. a 1 X | matrix,
then the factorization can alwayrs be reduced to
quadratures.22 Trpically these integrals are nat
expressible in terms of any =tandard elementary functions,

but nevertheless, they can be numerically evaluated to anr

s 2

e

zired ACCUracy . Fopr the ocne-—-grou case the
= ]

fu
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-
L

Y

¥

factorizations were first evaluated by Chandrasekhar.

Rather than =evaluate the integral expressions for the

1]

Wiener-Hopf factoriztions, Chandrasekhar found approximats
solutions to the nonlinear integral egquations cobeyed by the
factors of the symbol. His procedure was to replace the
integral termes by gquadrature formulas. The resulting
equations were tractable algebraic equations.
Unfortunately, the Wiener-Hopf factorization of a matrix
valued function can only be constructed for special cases
when the order of the matrix is greater than one.
Therefore, for many cases it will be necessary to resort to
a method similar to the one introduced by ChandrasekKhar.
This will be done in Sec. 12,

A canonical Wiener—-Hopf factorization is a pair of

functions WY and W™ so that

WRY = W (R W 0 e R, Q&
such that the matrix function WY W7y is anmalvtic in the
open upper {(lower) half complex plane, and continuous and
invertible in the closzed upper <lower) hal+$ plane. For the

[T}

one group cace, a factorization of the form Eg. (44) exist

only for C lees than one. The nonexistence of a cancnical
factorization implies that the integral =zguation does not

'j - . .
have & unique ao}utlan.‘4 Phwsicallv, this means that the
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one speed neutron transport equation has a unique solution
only if the average number of neutrons liberated per
collision ie less tham one. For radiative transfer
problems, C less than one means that the medium absorbs
energy on the average from the photons. Since the canonical
factorization is by assumption invertible +For all real
values of the argument of the symbol, a necessary condition
for the existence of a canonical factorization is that W(XD
must be invertible for 2 ¢ RU { o ¥, that is, det W{(X> = 0
for X € R@. For this reason, one must study the zeros of
det W. The determinant of the symbol is called the
dispersion function. Explicitly, the dispersion function is
given by;

2,-1

det W) = t1-tr I3 ttan™1a1 + ®Coy D142 . (47>

Here, tr C denotes the trace of C, and the assumption that

det C = 0 hasz been used (i.e. C is noninvertible). It is
not surprising that the product ®Coy plars a special role in
Eg. (47>, because if either « or Cay = 0, then all formulas
must reduce to the well Known results with a diagonal cross
section matrix. Observe that the dispersion function has
branch points at =zi. We will always choose the branch cuts
to be the lines z = it, Iti % 1. Therefore the dispersion

function is analytic on the set L ~ { z ¢ C : z = it, It 3
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1, te R ¥. Note that
Tim det W(X) =1 31— (48a

haoldes inside the region of analyticity. In order to study

the zeros of det W, the symmetries;

tdet WeAY1¥ = det WL ™ (48b)

det W(=23%)

det WX, (48c>
where the superscript # means complex congjugate, are
useful. The symmetries Eqs. (48a)-(48b), are not unusual;
they hold whenever the Kernel of the integral operator is
real and symmetric. These symmetries imply that AO is a zero
of the dispersion function if and only if both %*0 and -AO
are also zeros of the dispersion function. Therefore the
dispercsion function must have an even number of zeros. The
svmmetries [Egs.(48b)>-(48c>] along with the behavior of det
W at infinity [Eg. (428a)] allow one to compute the number of
zeros of the dispersion function by computing the change of
the argument of det W along the branch cuts, f(the Nrguist

25) : 10

me thod just az is dome in the one—-group case. Recall

that the argument principle says that if F is a function of
a complex wariable which is analytic inside a simple closed
positively oeriented contour, and F is nonvanishing on the

in the argument of F after

o
i ()

contour, then the chang
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completing one complete circuit around the contour is equal
to 27 times the number of zeros of F inside of the contour.
We apply the argument principle to the contour in Fig. 1.
This problem divides into three special cases: (i) tr C =0,
Ciid XCny = 0, and (iii> both tr C = 0 and HCoy * 0. The
case tr C = 0 is solved easily by algebra, and case (ii) is

identical to the one-group dispersion function so that the

number of zeros is known.10 These results are summarized in
Fig. 2. Case (iii)> requires special attention. UnliKe the
one-group dispersion function ’ i €. HCoy = a, the

dispersion function now has poles at the branch points due
to the term «coy |21+J't.2]-1 [see Eq. (47)1. For this case,
the change in the argument when rounding the branch points
is now important. For this reason, the change in the
argument of the dispersion function (denoted by & Arg det W)
along the contour in Fig. 1 will be considered in the limit
g and § l g. First study A Arg det W along the =traight
lines FE by taking the 1limit e l 0 while Keeping 4 a
constant, then =tudy & arg det W along the circle Cé =33
taking the limit & l 0. Along the lines FE the real and

imaginary parts of the boundary wvalues of det W are;

+w

D -
Re det (20 + iy) = ¢tr C/20in|BE] + ey <1-vHTH carw

Im det W20 + iy) = = (qwtr C /2y (42h>
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(Note that Egq. (49b) prowes that det W is nonvanishing on
the contour T as required by the argument principie.) With
these formulas, the Nygquist diagram for the contour FE can
be sketched; for the case wcgoy 2 0 and tr C > 0 the result
is shown in Fig. 2. The diagrams for the other posszible
choices of signs of wcpy and tr C are similar. To complete
the Nyquist diagrams, the contour Cé must now be considered.
Along the Cé, the pole term (1+}2)_1 dominates, and the
contour approaches a circle at infinity as & l 0. Cn Cé,
the dispersion function can be estimated by, for & > 0 and

-8/2 £ & § /2

det WCi+se'®) = —jacy, 67le™ ¥ wtr Cede 4 ocins™!y, ¢S0a)
and for 72 { # § Sw/2,
ot W cisgel® = —iweg s teT Pate o3l ¢ 0anTh  (SOB)

Therefore, as ¢ l 0, the image of Cé (note Cé is
counterclockwise) approaches a circle at infinity with the
copposite orientation, i.e., the image iz clockwise. Wi th
this information, the MNyrguist diagrams can be sKetched (zee
Fig. 3, and thes number of zercs of the dispersion function

eros ot the

~

can be deduced. Mow  that the number of
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dizpersion function is Known, the remaining task is to
determine whether the zeros are purely real, purely
imaginary, or neither. Recall that a necessary condition
for the existence of a canonical Wiener—-Hopf tactorization
iz that the symbol must be invertible for all real numbers.
Therefore, if the dispersion function has a purely real
Zero, then a canonical factorization does not exist.
Fortunately, the graphs of the real and imaginary parts of

2asy to

1]

the dispersion function are easy to skKetch, so it i
determine if the dispersion function has a real zero. These
results are summarized in Fig. 3. Thus we can conclude that

W(x), % € R is invertible for l+xca,, > tr C and tr C (.

e!
Note that when the number of groups is reduced to one, the

condi tion 1+0<c21 « tr C reduces to the familiar condition

it might also be mentioned that the line defined b
®Coy = tr C -1 (see Fig. 2) is a line of degenerate roots,
which of course correspond to degenerate eigenvaluszs of the
transport equation. As this line is approached in the
(uczi, tr C) plane, two nondegenerate zeros collide to form

one degensrate root.

We now turn cur attention to the cormstruction of the

Wiener—Hopf factorization of the symbol.
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Im Z

Fig. 1. Contour for computing A Arg det W.
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no zeros
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four complex
zeros

four real

zeros
two real
two complex
zeros

two imaginary
zeros

two real zeros

Fig. 2 The zeros of det W in the trC, aCZ] plane.

trc
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- Im Z

det W(=)

Re Z

contour of rE contour of C6

Fig. 3 Nyquist diagram for acz] > 0 and trC > 0.



CONSTRUCTION OF THE WIEMER-HOPF FACTORIZATIONM

~J

The matrix valued function to be factored is

weny = Goltan"laoe + an® T iMe g (51)

11

the matrix M has been defined in Eq. ¢45). In general it i

not Known how to construct the Wiener-Hopf factorization of

-
matrices, but Larsen and 2weifel,‘° have shown how to factor

"

any upper triangular matrix. More generally, it iz alzo
possible to construct the factorization if the matrix is
similar to an upper triangular matrix. 0OFf course, every
matrix is similar to an upper triangular matrix, but the
similarity transformation must not involve the independent
variable if this procedure is to work. That iz, the
similarity transformation must be constant. The matrix (Si)
can De upper triangularized by a zimilarity transformation
with constant elements. One possible transformation is

given by;

g = 2 21 ! , (S52a)

and A is

37
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A= oy ke 07 if tr C2 0

A =0 i f b Base By {S2b)
The matrix S is always invertible because det § = —c,__,i2
which is nonvanishing by assumption. {Here again we see

that Coy has a distinguizshed role.? The choice Ffor the
transformation S is not unique; if T is any iﬁuertible
triangular matrix, then TS will alsc upper triangularize the
s»mbol. The particular choice [Eq. (52a)] has been made
with forethought so that the transformed matrices MC and C

are especially simple. Explicitly the transformed matrices

are;

S-iifI + MJCE = 0 ﬂ_ s, tr C=10, (S522)
a B oy
and for tr C 2 0
- =T - zft C\_: =
s~1¢1 + MyCS = e TR L | (s3>

0 tr C + xcoy i

o

The transformed matrix § "CS is given by the same expr ion

hd
"

but with w=0. It is tempting to thinK that the similarity

transformation [Eq. (52a)] applied to the original eguation
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will result in a similar simplification, but this iz not the
case. The reason iz that although € and MC are
simul tanecusly upper triangularizable, C and Z are not.
Recall that a sufficient condition for two matrices to be
simutaneously upper triangularizable is that they commute.
This condition is not neceessary; an easy calculation shows
that the matrices C and MC provide an counterexample.

The Wiener—-Hopf factorization can now be computed. I+

s"ly s is denoted by W, then

W= 1 K (S4ar
0 det WCH)
where
Ked) = —coy A7ltan™ln, trC =0, (54b)
- 2 -1 -.2 "'1 Y
Kexd) = —XC oy (e C) (14375 , tr C =0 . (Sdco

~

The function W is an upper triangular of second order and
the procedure for geting its Wiener—Hopf facteorization when
it existe hazs been dewveloped by Cebotareu.z? Here we follow
the method of Ref. 246. First we note that the factors of an

upper triangular matrix can be taKen to be upper triangular,

so we set

=
]
FaN
st
~—
-
—~
et
~
o
i
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with X (Y} analytic and invertible in the lower {upper’ half
plane. I1f the elements of the matrices ¥ and Y are denocted
by xiJ and YiJ respectively, then the following system of
equations result when Eq. (S3) is substituted intoc Egq. (31),
and corresponding matrix elements are equated,

1 = (S&ar

X117

1= ctr 03 Htan T ¢ weg 143D T = X 00Y 00 (560

~Ccyy-AtP o ltan~ty - cc21A<1+12>‘1

= Xll(})le(}) + X12Y22(}) . (Ssc)

These equations do not uniquely determine X and Y, since XU

1

and U 'Y satisfy Egs. (S&a)-(S5&c) whenever X and Y do, where

U ie any invertible matrix. It is consistent to impose the

condi tions
Xij(*) = YiJ(mD = 4&.. . (57>

With this condition, Eg. (3éa) uniguely determines Kll’ and
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X,03) = Yll(l) = 1, g=1-F

11

while the solution to Eq. {(35éb> is given by

1 to + /2 pegy
Xon(hd = exp{g?Tf B2 g2y, (S%a)
-0 + /2

where

B(z> = Inl1 - ¢tr Coz tan™lz + wep 142%™l L (SPB)
The expression for Y22 is‘the same except that the limits of
integration are replaced by o - /72 and -wo - /2. In
deriving Egs. (59a)-{(5%¢b), the standard formulas for the
factorization of scalar functions have been used. These
formulas are proven in many texts, but prehaps the clearest

. . . . . . 22
di .ion {with many examples) is given in Roos.

"
]

cus

Finally, we must determine Y,, and X;,. To do this, divide

4

Eg. (3éc) by Yzﬁ, and define the left-hand side of Eg. (35&c)
to be L<(X>. Then
YIE(A)

Lix? - + Xy a(h) . (&0)

amhY  Yanld)
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The left-hand-side of this equation is Known, while the
right-hand-side is the sum of two functions, one analrtic in

the upper half plane, the other in the lower half plane. To
1

solve Ffor le it is only necessary to write LY22— as the
sum of two functions:
Y, (R _
L¢ay _ _12 +x,=Lron e LTon (61

Y22(}) Yoo (A

with LY <L™> analytic in the upper (lower} half plane.

Therefore

i/2 .
1 L(z)/Y22(z) dz ¢42a)

+ to
L"*’=2'1rrf :
- = i/2 r )

L™¢x = E%TI et R Laaatmd gy (&2b)
- + /2 z-
Now with the definitions
Yotk = Yo(3) LYoo (43a)
X n(h) = L) (432b)

the matrices X and Y have &ll the propertiss required of a

factorization.



3. THE EXIT DISTRIBUTION

Once the canonical Wiener—Hopf +facterization has been
computed, an expression for the exit distribution, that is
F(D,ﬁ) for p { 0, can be written in terms of the factors of
W(x?», Unlike the one speed case, the exit distribution will
involve derivatives of the factors of W(1/iX). The method
followed in this section parallels the one given by van der

Mee.28

First, the exit distribution for the two szpeed

problem defined by Eg. (39> will be derived; then the

formulas will be generalized to the N-group problem.
Following Gohberg and Krein,29 there exists a resolvent

Kernel YCayad so that the general solution to the

Wiener—Hop+ equation

v+
G(x) = f K(x=y> G(y) dy + U(x) ($4a)
0

can be written as

w0
G(x) = Ulx) + J‘ vix,y) UCy) dy , (440
0

and the general solution to the transposed equation

r

o

(it
-

0
Gex) = J' Glyd Kiy=x) dx + Ulx) [ g
0

can be written as

43—
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€O

BCx) = Ulx) + J UCyd v(¥,x) dy . (&5a7
0

Note that the resclvent Kernels for Eg. (843> and Eq. (85a’
are identical. Returning to Eg. {24a), the exit

distribution can be written in terms of G by the formula

©

Fea,u) = ,21? J' e?EM C Gey) dy, n < 0 . (&8)

i

Introducing the resolvent Kernel r(.,.0 this can be

rewritten as

(=] <
FCO,p) = —mb eYE/ROLsCy—2)+y(y,2>IUCzodzdy . (&7)
o dy

If the expression for U(z) in terms of the incident flux is

used in Eq. (47>, then

@ w© 1 .
FCO,p) = ""IE J' J' J' 27 B s y-2)

0 0 0

+ yiy,z>le 25 %5¢2) dsdzdy . (&8)
This equation relates the exit distribution to the incident

distribution by making use of the resolvent Kernel. To

write Eg. (&8) in terms of the factors of W, it is necessaryr
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to write,

© o ~— - -
j f B RO s (y=2) + w(y,z)1e 2275 dzdy (&%)
0 ‘a0

in terms of the factors of W. This will be accomplished in

two parts. First

Lemma 1

w© @© . -/
f j e? BCrs¢y-2) + wiy,z>1e 2873 gzdy
0 Yo

=H](—p)[75%; Hr<s>—s<1ﬁg;>‘<HP<s> +(p=sIH_ “ ()M, (707

where,

Wiy = Hy GO H G

is a canonical factorization with H] and Hr analrvtic in the
open right half plane and conticuous and invertible in the

closed right half plane.

Proof: Let G(x;s) be a soclution to the matrix Wiener—-Hop+t

equation:

«© —_ T
G(xj;s) = [ K(lx=y13G(yjz) dy + o 7275 (713
Y0
In this egquation the wvariable = ie considered to be a

parameter, MNote that the left-hand-side of Eg. (70} is
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]
Li>
-

=
W
~

N|

J
e

&
j 'z'>"'/u Giyis) dy
0

If Eq. (71) is extended to the entire real line in the usual

way and the Laplace transform is defined by

® X/ A .
Beay = J' dx e G(x> , Re(d) = 0, (73>

Q0

and 2¢X) is defined by 2(x) = W{1/i}x>, then the Laplace

transform of the integral equation [Eq. (7131 is
zoo Btoo + ETor = 221 - s2 (74>

The Ffunctions 5 and G~ have already been defined by Eqs.
{40a)-(40d), and the matrix M was introduced in Eq. (43a’.

Now assume that the Ffactorization of Z24(32) is given by
27 e = HycmoH o, (75>

where the functions HX and Hr are analrtic and invertible on
the open right half plane, and continuous and invertible on
the closed right half plane. Using the factorization [see

Eq. (7521, Eq. (74 may be rewritten as
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Hy "l Bh e« HLoGOB G0

—
|

m

~

\'f

[\
4
s

= H. (w I Téé? s . (74
If the right-hand-side of Eq. (78) can be written as the sum
of two terms, one analytic and invertible in the right half
plane, the other one analytic and invertible in the left
half plane, then Liouville’s theorem can be invoKed to solwe
for GY and 6°. Due to the second order pole in Eq. (Fé>, it
is necessary to introduce derivatives of the H-functions
into this splitting. By inspection, the splitting is given

by the sum of

S -
7?5;' [ H. (> = H(s) ]

~

- 5(155?)2[ Ho(w) = H_ ¢s) = (p=sdH_ "¢s) 1M, ¢

which iz analrtic in the right half plane, and the

expression

s - = 1 2 = e v s
Tiég-Hr(=) °(Tﬁ??) [ H.(2) + (u=s)H_ 7(s) 1M, (77B)
which is analytic in the left half plane. An application of
Liouville’s theorem then proves Lemma {. Note whern ™M = 0,

e

£q. L77b) reduces to the result given in Ref. ZB. Using
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Lemma 1| it is now possible to write Eq. (&%) in terms of the

H-functions. To do this it is expedient to detfine
Tip,s> = right hand side of Eq. (70) . (72

Now substitute the explicit formula for exp(-yZ/n) into Eg.

(&9). The result is

& ©
f j XML 1 4 (x/udM 1 C
0o Jo

x [8¢x~2) + ¥(x,z) le Z&/F dzdx . (79>

The contribution due to the term e-x/u gives CIri{p,s), while
the term (x/p)eX/u gives rise to derivatives of the function

r. 1t is easily checked that

el 20 . —_—
f j (x/wre* M Ol sex-z) + 7ix,z) 1e* ZE K dzdx
0 0

= ucapr(u,s) . {807
Theretore,

1
F(O,p) = =l I - p@a M 1C J Tip,s2d(=) ds . (81)
0
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It is routine to generalize the exit distribution formula
[Eq. (8121 to the N-group problem. I+ Z =D + M is the
Jordan decomposition of £ with D a diagonal matrix given by
diag{ci}izl, then the right-hand side of Eg. (74} 35

replaced by

T (-D™ diagt s¢—£™ 3 Ny, (82)
m=0 ks = :
Now it is necessary to write
N-t m 2 N m
Hotp) T =17 diag s(iﬁggo 3oy M (83

m=0

as the sum of two terms, -just as was done for the two group
case, Note that Eq. (83) has poles at p = s/oi, which are
in the right half plane. Denoting the i-th column of a

matrix A by [A](i) and noting that
[ H (p) diag ¢ s(Em™b oy g
(84>

then Eq. (83> can easily be written as the sum of two terms,
one analytic in the right half plane, the other one analxtic
in the left hand plane. This ie accomplished by writing Eg.

(24) as the sum of
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N-1
+ — - 1. m i{m?2
0 QpCR,sd) 1y = [ H. Gy = m;ﬂ Frip-c, /)7 H' ["(s/0;) 1,4,
% s(:ﬁ%;)m+1 (85>

which is analytic in the right half plane, and

N-1
= = 1 _ m ., (m)
L Gn(u,s) ](i> = I mEU ATCR ci/s) H L (s/c;? ](i)
- m+ 1
=<Tﬁg;> (36
which is analytic in the left half plane, where H(T) and

H(T) are the m-th derivatives of Hr and H] respectively.
Therefore the generalizéfion of Lemma 1 to the N-group
problem is

N-1

Tip,s) = Hy(-p) EO G tp,sMT (37
n=

and the exit distribution [ F(O,ud ](i> is given by

1
ﬁ%cu/ci>m<au>m J [ M™ F¢pso,,8) 1,,,8(s) ds . (28)
0

Mot only can the exit diatribution-be written in terms

of the factors of the symbol, but the zolution for any value

()

of x can also be written in & simialar fashion. This can b
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done by making use of Egq. (24b) which relates Fix,u) to

G¢x), and the results of this Section. First note that

n 1 :
Gty = J' Fip,s)d(s) ds . (89>
0

From this expression it is possible to recover the function
G. Now that G is Known, the solution F(x,u) for X { 0 can

be computed by making use of Eq. (24b).



?. INVERTIBLE SCATTERING MATRICES

In Sec. 7, a two—-group transport equation with half
range boundary conditions and a noninvertible scattering
matrix was solved. We now turn our attention to problems
with invertible scattering matrices which might arise in,
for example, energy dependent neutron transport.

Thg symbol of the Wiener-Hopf eguation [see Eg. (5131
is the same for either noninvertible or invertible
scattering matrices; however, the dispersion function, that
is the determinant of the symbol, gains an additional term
proportional to det c if the scattering matrix is
invertible. Recall that the construction of the Wiener-Hop¥f
factorization presented in Sec. 7 was contingent on the
simul taneous upper tfiangularization of the matrices C and
MC. It is straightfoward to show that C and MC are
simul taneously upper triangularizable if and only if C is
noninvertible. Therefore, if the scattering mairix is
invertible, no general procedure is Known for the
construction ofvthe factorization; for this case the best
that can be done is to derive egquations which the factors
must =satisfy and +ind an algorithm which solues the
equations numerically. These equations are a generalization
of Chandrasekhar’s H eguations. Pragmatically, one often
resort= to solving the H equations numerically even when

quadrature formulaz similar to Eq. (5%a) and Eqs.{&Zar-(&2b)
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are Known, since iterative methods for solwing the H
equations often converge rapidly, while the guadrature
formulas involve integrations over unbounded sets which may
present numerical difficulties.

In Sec. 10, the zeros of the dispersion function are
investigated. The generalized ChandrasekKhar H =2quations are
derived in Sec. 11, and finally, a numerical method for

their =solution is given in Sec. 12,



10, INVERTIBILITY OF THE SYMBOL: INVERTIBLE C
1f the matrix C iz invertible, then the dispersion
function is

1

det W) =1 = t0 € 03 Ytan~in1 + det € 3 lean~tn1®

2,-1
+t xCoy [1+3°] . (%02

For this case, a detailed study of the zeros of det W),
similar to the one given in Sec. &, would be tedious, So
for this problem, we give only a sufficient condition for
invertibility. Mu]]ikian14 has shown that a sufficient
condition for invertibility of the symbol is that the
spectral radius of the matrix B defined by

[
B;; = J IKiJ(x)l dx (91>

o

is le2ss than one, where K is given by Eq. (20). It is easy

to check that the spectral radius of B will be less than one

if

I Ccit + 1 MC ot (P2
where | i1 is the matrix norm. Mot only does this
condition give a sufficient condition for the invertibility
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of the symbol, but Mullikian!®

has shown that it also gives
a sufficient condition for the unique solwvability of the
integral equation [Eg. (13)1. Mullikian‘s proof of this
fact involves estimating the spectral radius of the integral

operator.



11. THE GENERALIZED CHAMDRASEKHAR H-EQUATIONS
Mullikian in Ref. 14 has derived nonlinear integral
equations which the factors of the symbol satisfyr. Theyr

are, for Im z 3 0,

@ o
Hl(t)K( 1 dt (92a)

-1 = 1 i
Hr(Z)“I+27r'TJ
—~co t+z

KOEYH (1) dt, (92b)

Hilezy = 1 + - ®
e 2mi
- t+z

where K is the Fourier transform of the Kernel of the
Wiener—-Hopf equation, and I is the identity matrix. The
matrix wvalued functions H] and Hr have the following
properties:

i Hr and H] are analytic in the half plane Im z , O,
and continuous for Im 3 0.

{iid Hr and H] are invertible in the half plane Im 3 0

Ciiiy 1 - Ktz) = HilcoHThea

We now specialize Eqs. (?Za)-(¥2b) to the two group
problem defined by Eg. (3%) and det C # 0 by introducing the

explicit form of Q;
A -— D -
Rizy = (L tanlooc - 14257 Mo, LY

where M is the nilpotent matrix given by Eg. (3%). Recall
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that K is analytic on € ~ £z ¢ C : z=it,ltl 3 1 3. The
integrals appearing in the H-equations ([Egqs. (%2a)-(?P2b)]
can be rewritten into a more familiar form by makKing use of
Cauchy’s Theorem. The calculation for Eg. (?2a) will be
shown; the procedure for Eg. (?2b) is essentially the same.

Substitute Egq. (3> into Eq. €(1a); the result is

-1 _ i ® 4 -1 _ 2. -1
Hilczy = 1 + e J (i tan”lt © - 1+t5H 7 Mo
-0
(94)

We analyze each term of the integrand separately. First,

consider the term (1+t2)-1 MC. MNote that Hr(t)/(t+z> is

analytic in the upper half plane, and Hp(th/(t+z)(1+t2}

vanishes at infinity as t <. Therefore, Cauchy’s Theorem
rields
1 ® Hr(tb HP(I) (9545
<mi J (1+£<) (t+2) 142

1t. The contour

Next, consider the term containing t—ltan_
can be completed in the upper half plane if the branch cut

(i, iw>» iz avoided, The result iz
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» -1 H_(t)
f tan “(t) 'r dt
t t+z
-0
L -1, -1, H. ) .
= I Lrtan~lcitsn) - tan”l¢it-001—L— at, (7Sb)
i t+z
<
where tanl¢it = 0) are the boundary values of tan~ ! alang
the imaginary axis. Using,
tan"l¢it + 00 - tan"lcit - 0> = —im , 1t oy, (P8
the right-hand-side of Eq. (?3b) becomes
J" i PP g, (97>
Tt T,

100

& simple change of variables gives

i -1 H (t2 1 iH_ (i %)
j tan “(t) r = f S R P {92)
t t+z 0 t{z+i/t)

ico

1t is ronvenient to define functions X and Y br

Kiz) = H](i/z> and, {¥2a2
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The final form of the H equations is derived by substituting

Egs. (?5a) and (¥8) into Eq. ($Z2a). The result is

_ 1 } |
Xzy =1+ 5 ¢ J' a5 Yo
0
1 z ,
+ fMe E- van (100a>

Simialrly, the H-equation corresponding to Eq. (?2b) is

1
-1 - 1 z ,
ylezy =1+ 4 J' dh 5 Xtw) C

1 4
t 3 I X<¢1y MC . <100b>

Note that if M = 0, then Eqs. (100ar and (100b) reduce toO
the Chandrasekhar H-equations.23 It is straightfoward to
show that every soclution of Egs. ¢100ay-<100b) provides a

factorization of the srmbol. A Banach space analysis of

these equations is the next topic.



12. A BPANACH SPACE ANALYSIS OF THE H EQUATIONS

In Ret. 20, Bowden and Zweifel presented a Banach space
analy¥sis of the ChandraseKhar H esquations. Ther =showed
that the H equations could be solved by iteration. of
course the H equations must be supplemented by constraints
which are the analyticity requirements given by conditicons
(i) and ¢ii> of Sec. 11. In Ref. 31 Bowden, Menikoff, and
Zweifel generalized their results to H equations relevant to
multigroup problems. In this Section a similar analysis is
given for Egs. (100a)>-(100b>. In Refs. 30 and 31, the it
was shown that the H equations have sclutione in the Banach
space Ll(O,l) by making use of a contracting mapping
principle. For the H equations [Eg. (100a>-(100b>] the
terms X{(1) and Y(1) prevent one from using a contracting
principle in Ll(O,l), becausze point evaluation is an
unbounded operator in LI(O,i). Thus, instead of LI(O,i), we
must uze a Banach zpace with a supremum norm. Consequently
the following analysis parallels the cne given by Ra11.32

First, we define some Banach spaces: Let XU be the
vector space XU = { T : T is a 2x2 matrix walued function,

with TEJ continuous on [0,11 } and define a norm

Mty o= bt _dLary 1l 10ia
A H
0
where 1] U 11 _{.3 is detined for 2ach = ¢ [0,1] by

60



61

= = sup =% e b
MU dsd lixl1=1 ! Ulsdx 11a {101bo
2 . . 2
where x ¢ R®, and 11| ll2 is the usual Euclidian norm on R*.
That is, for each fixed s, 11 U llm is the operator norm of

U when U is viewed as an operator on m2 - RE. And define

anocther Banach space by
X =Xy @ X (102>

with norm

T llx = 1| Ti IIX0 + 1l T2 IIX0 €103)

where T1 and T2 are the components of T.

We now rewrite the H equations [Egqs. (100a>-(100b)1 in
a form more <suitable for analysis: Postmultiply Eq. (100a5
bv ¥{z», and premultiply Eq. (100b) by Y(zJ. The results

are.:

4
X¢z) = 1 - & J‘ di FECY Xz - FETMCY (X2 (104a)
0
e z 2 y
Y(z) = 1 - = ! di TEEV(DIKGOC - FEYDHCDME L (104D)
L
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Define X € X to be the ordered pair (X,¥»; then Egs.

(104ay~<¢104b) can be rewritten in operator form as

(105>

Xt
!
-n
X

We hope to show that Eq. (105> can be solved by iteration.

That is, we hope to show that the sequence xmd *m=0

defined recursively by
i(m+1) = F%(m) €104)
will converge to the solution of Eq. (105). We shall alwars
choose §(0> = 1. First we determine if F is a contraction.
Let X = ¢(X,, X.) and ¥ = (Y,, Yo). Then
1 z 1 2z

FRizy - FY¢z) =

( % J‘ldu 2 o xa0x 2 - Yaov @ ]

g~ 2 . - -
+ MO [ Xo(1IX (2) = Yo(1)Y, ¢2) ] .

i J g i [ XptziX Gu o= YRty lc
0
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1 = r -y . - Y
+ 3 ST ML X1(1>X2(A) YI(I)YZ(A) ] ) (107>

The first component can be rewritten as

ic J'idp = [X2<u> - Yot ][ Xq(z) + Y, (2) ]
0

1 -
ic J.Odu —z-gu—{xzaw +Yolp) ][ Xy€z) = Yy(2) ]

+ dmeEy [><2<1> - Y (1 ][ Xy(z) + Yy (2) ]

L meEs [x2<1> + Y501 ][ X ¢z) - Y,(2) ]

and the second component can be rewritten in a similar form.
Let BC I 3 r > be the ball { T eX : Il I =TIL {r 2. if

¥ and ¥ £ ¥ then

"

i1 X + Y 1y € 201+P) . {108)

Using Eg. (104> and the inequality

1

‘ J' a5 l ¢ 1n2 , for z € [0,11 , (109>
0

-+
wn

poszible to estimate the norm of F¥ - FY by
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LIFX - FY11 ¢ <1+r>[1n21| CoIl + 11 MC 11]11 ¥ - Y1l . (1100
It is convenient to define
a=1n2 1l C 11 + 11 MC {1 . 1112
Therefore, F is a contraction operator provided
al{l+r) ¢ 1 . (1123

So F is a contraction operator for sufficiently small a and
r. We must now show that r can be choosen large enough so
that F: B—BE. For F to map B into B it is sufficient to

require

S0 _ ey

pud
1 - alil+r)
It is straightfoward to estimate 11FX<07 - 2¢O by
N1 A AL R (114>

Therefores, inequality (13> can be rewritten as

D8]
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The largest value of a which iz consistent with inequality
112y is
= 1 ¢
a = (1187
For this value of a, r can be determined to be
r=1. (11722

A1l that remains to be checked is inequality (112). With a

= {/3 and r = 1, we have

aCl+p) = 2/3 ¢ 1 . (118>
Therfore, if
In2 1 C 1t + 1)1 MC 1L ¢ 172 {1197

then Eq. (10S) has a unique solution inside the ball B(I;l),
Furthermore, the segquence defined by Egq. (10&) converges to
this solution if Q(D) € B(Ijzta,

Finally, we must check that %(m} converges to &

solution with the regquired analrticity and invertibilityr

properties. First,
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Lemma 2: 1§ X = (X,Y» is the unique =olution to Eg.

(105 in the ball B{I1:1), and a ¢ 1.2, then

'1
det[I + ic J db FEY ¢ Ef—rmcxru:»]: n
0

for Re z 3% 0.

Proof: Since (X,Y) € B{(Il;l)> we have

1 > I =X 1t 3 11 =11 Xl . (1200
Thus we have
X 11 g 2. (121>
Suppose that for some value of z

i 1 reRvy; = N, ? — e

-jet[l I e J‘ dn SRV + oY) =0 . (122)

a
This implies that
1 ‘1 - -
H ic J dh FEpY R ¢ FEMOYCD l 1. €123
]

or,
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1
i1 c ot f l '5%?1 dp + 11 MC I 31 . (124
0

But if Re z » 0, then

J I ?ﬁﬁr’ dp ¢ 1 . (125)

So inequality (124> implies
' C ot o+ il MCHE L. (12683
But by assumption

a=1n2 1 C1HI + 11 MC I ¢ 173,

which is a contradiction. Therefore, Q(z) defined by

ra
rd
~J
~

Rezy = 1 + 4c [ an FEpran + Fevan (1

o
r

is invertible for Re = 3> 0. The same proof shows th



<
Py
N
~

]
(-
+
._:‘n-

1

o
0

z
FEa

analytic on C/0-1,01.
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“EXUIC + XM

ie also invertible for Re z 3 0. Furthermore, % and Q are

Finally observe that 2 and ? satisty

the H equations [Egs. ¢100a>-C100b)1.

scheme defined by Eq.

H egquations,

{105) converges to the solution of the

and satisfies the constraints.

iteration
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