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Abstract: We argue that the neutrino oscillation probabilities in matter are best un-

derstood by allowing the mixing angles and mass-squared differences in the standard

parametrization to ‘run’ with the matter effect parameter a = 2
√

2GFNeE, where Ne

is the electron density in matter and E is the neutrino energy. We present simple analyti-

cal approximations to these ‘running’ parameters. We show that for the moderately large

value of θ13, as discovered by the reactor experiments, the running of the mixing angle

θ23 and the CP violating phase δ can be neglected. It simplifies the analysis of the result-

ing expressions for the oscillation probabilities considerably. Approaches which attempt

to directly provide approximate analytical expressions for the oscillation probabilities in

matter suffer in accuracy due to their reliance on expansion in θ13, or in simplicity when

higher order terms in θ13 are included. We demonstrate the accuracy of our method by

comparing it to the exact numerical result, as well as the direct approximations of Cervera

et al., Akhmedov et al., Asano and Minakata, and Freund. We also discuss the utility of

our approach in figuring out the required baseline lengths and neutrino energies for the

oscillation probabilities to exhibit certain desirable features.
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1 Introduction

When performing long-baseline neutrino oscillation experiments on the Earth with ac-

celerator based beams, or when detecting atmospheric neutrinos coming from below, the

neutrinos necessarily traverse the Earth’s interior [1–8]. This makes the understanding

of matter effects [9–12] on the neutrino oscillation probabilities an indispensable part of

analyzing such experiments. These matter effects can of course be calculated numerically

for arbitrary matter profiles, but approximate analytical expressions are useful not only for

making initial estimates on the requirements one must place on long-baseline experiments,

but in obtaining a deeper understanding of the physics involved.

The exact three-flavor neutrino oscillation probabilities in constant-density matter can

be expressed analytically [12–23]. This requires the diagonalization of the 3 × 3 effective

Hamiltonian in matter whose ee-element in the flavor basis is shifted by a = 2
√

2GFNeE,

where Ne is the electron density and E is the neutrino energy. The eigenvalues of the

effective Hamiltonian yield the effective neutrino mass-squared differences in matter1, while

the diagonalization matrix is multiplied with the vacuum neutrino mixing matrix to yield

its in-matter counterpart. Many authors adopt the standard vacuum parameterization of

the mixing matrix to the matter version, and absorb matter effects into shifts of the mixing

angles and CP violating phase, yielding the effective values of these parameters in matter

[13, 14, 16, 22]. Thus, the neutrino oscillation probabilities in matter can be obtained from

those in vacuum by simply replacing the mass-squared differences, mixing angles, and CP

violating phase with their effective values. Unfortunately, the final exact expressions for the

neutrino oscillation probabilities obtained this way are too complicated to yield physical

insight, especially if re-expressed in terms of the vacuum parameters.

Consequently, various analytical approximations have been devised to better under-

stand the physics potential of various neutrino experiments [12, 22, 25–32]. These ap-

proximations relied on expansions in the small parameters α = δm2
21/δm

2
31 ≈ 0.03 and/or

s13 = sin θ13 in one form or another, a systematic treatment of which can be found in

Ref. [29]. In some cases the matter-effect parameter a = 2
√

2GFNeE was also assumed to

be small [12, 26]. For instance, the formula of Cervera et al. in Ref. [27] and that of Ahkme-

dov et al. in Ref. [29] include terms of order O(α2), O(αs13), and O(s213). Unfortunately,

the accuracies of these formulae suffer when the value of θ13 is as large as was measured by

Daya Bay [33, 34] and RENO [35], consistent with both earlier and later determinations

by T2K [36], MINOS [37, 38], and Double Chooz [39, 40]. Given that the current world

average of s13 = sin θ13 is about 0.15 [41], the terms included are not all of the same order.

Asano and Minakata [32] have derived the order O(αs213) and O(s413) corrections to the

Cervera et al. formula, but the simplicity of the original expressions is lost. Further im-

provements in accuracy are possible at the expense of simplicity, as was shown by Freund

in Ref. [22] where an approximate expression for the oscillation probability P (νe → νµ)

including all orders of θ13 was derived.

1The cubic characteristic equation for the eigenvalues of the effective Hamiltonian can be solved analyt-

ically using Cardano’s formula [24].
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In previous papers [42, 43], we had argued the advantage of not expressing the neu-

trino oscillation probabilities in matter directly in terms of the vacuum parameters, but to

maintain their expressions in terms of the effective parameters in matter which ‘ran’ with

the parameter a = 2
√

2GFNeE. Further, it was shown that the Jacobi method [44] could

be utilized to find approximate expressions for the ‘running’ parameters in a systematic

fashion, leading to fairly simple and compact expressions. In particular, it was shown that

the effective values of θ23 and the CP violating phase δ do not ‘run’ to the order considered,

maintaining their vacuum values at all neutrino energies and baselines. (The non-running

of θ23 and δ has also been discussed in Ref. [17].) The a-dependence of the resulting ex-

pressions for the oscillation probabilities in terms of the approximate running parameters

could be analyzed in a simple manner, facilitating the understanding of matter effects.

The approximation of Refs [42, 43] worked extremely well except when θ13 was very

small, a possibility that could not be ignored until the Daya Bay/RENO measurements. In

this paper, we reintroduce the method with further refinements which improve the accuracy

of the approximation for large θ13, while maintaining its ease of use.

This paper is organized as follows. In section 2, we explain our approach to the

matter effect problem, and list all the formulae necessary to calculate the approximate

‘running’ parameters in our approach. Approximate oscillation probabilities are obtained

by replacing the mass-squared differences and mixing angles in the vacuum oscillation

probabilities with their effective ‘running’ values. In section 3, we demonstrate the accuracy

of our approximation at various baseline lengths, different mass hierarchies, and different

values of the CP violating phase δ. Comparisons with the approximations of Cervera et

al. [27], Akhmedov et al [29], Asano-Minakata [32], and Freund [22] are also made. In

section 4, we show how simple calculations using our approximation can be used to derive

the baselines and energies at which the oscillation probabilities exhibit desirable features.

We conclude in Section 5. Detailed derivation of our approximation is given in appendices

B and C.

2 The Approximation

In the following, we use the conventions and notation reviewed in Appendix A.

2.1 Diagonalization of the Effective Hamiltonian

If the matter density along the baseline is constant2, the effective Hamiltonian which gov-

erns the evolution of neutrino flavor in matter is given by

Ha = U

 0 0 0

0 δm2
21 0

0 0 δm2
31

U † +

 a 0 0

0 0 0

0 0 0

 , (2.1)

where U is the neutrino mixing matrix in vacuum, and

a = 2
√

2GFNeE = 7.63× 10−5
(
eV2

)( ρ

g/cm3

)(
E

GeV

)
. (2.2)

2At baseline length L = 10690 km or longer, the neutrino beam crosses the core-mantle-boundary and

experiences a sudden jump in matter density. See Ref. [46] for treatments of non-adiabatic transitions.
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Figure 1. The dependence of the line-averaged mass density ρ on the baseline length L based on

the Preliminary Reference Earth Model [45]. The labels on the right edge of the frame indicate the

corresponding values of a/E. The green and red dashed lines indicate ρL = 54000 km · g/cm3 and

ρL = 32000 km · g/cm3, respectively, which are conditions that will be discussed in section 4.

Here, Ne is the electron number density, ρ the matter mass density along the baseline,

and E the neutrino energy. The above term appearing in the ee-component of Ha is

due to the interaction of νe with the electrons in matter via W -exchange, and Eq. (2.2)

assumes Ne = Np = Nn in Earth matter. It also assumes E �MW since the W -exchange

interaction is approximated by a point-like four-fermion interaction. Z-exchange effects are

flavor universal and only contribute a term proportional to the unit matrix to Ha, which

can be dropped.

If we write the eigenvalues of Ha as λi (i = 1, 2, 3) and the diagonalization matrix as
∼
U , that is

Ha =
∼
U

 λ1 0 0

0 λ2 0

0 0 λ3

 ∼U † , (2.3)

then the neutrino oscillation probabilities in matter are obtained by simply taking their

expressions in vacuum and replacing the elements of the mixing matrix U and the mass-

square differences δm2
ij with their effective ‘running’ values in matter [9–11] :

Uαi →
∼
Uαi , δm2

ij → δλij ≡ λi − λj . (2.4)

Note that a is E-dependent, which means that both
∼
Uαi and δλij are also E-dependent.

They also depend on the baseline length L since the average matter density ρ along a

baseline varies with L. The L-dependence of the average ρ and the corresponding value of

a/E are shown in Fig. 1.
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For anti-neutrino beams, the flavor-evolution Hamiltonian in matter is

Ha = U∗

 0 0 0

0 δm2
21 0

0 0 δm2
31

UT +

−a 0 0

0 0 0

0 0 0

 . (2.5)

In comparison to Eq. (2.1), the CP violating phase δ in U and the matter-effect term a

both acquire minus signs. Let us write the eigenvalues of Ha as λi (i = 1, 2, 3) and the

diagonalization matrix as
v
U , that is

Ha =
v
U
∗

 λ1 0 0

0 λ2 0

0 0 λ3

 v
U

T
. (2.6)

Note that the tilde above
v
U here is flipped to distinguish it from

∼
U in Eq. (2.3). The anti-

neutrino oscillation probabilities in matter are then obtained by making the replacements

Uαi →
v
Uαi , δm2

ij → δλij ≡ λi − λj , (2.7)

in the vacuum expressions.

2.2 Effective Running Mixing Angles

While it is possible to write down exact analytical expressions for
∼
Uαi and δλij , as well as

their anti-neutrino counterparts [16], simpler and more transparent approximate expres-

sions are often desirable. One popular approach is to expand the probability formulae in

terms of small parameters such as δm2
21/|δm2

31| and θ13. Our approach, however, utilizes

the Jacobi method [44]. Instead of obtaining approximations for the probabilities directly,

we derived the approximations for the effective mixing parameters. In the following two

sections, we list the expressions necessary to calculate the effective running mixing angles

and the effective running mass-squared differences for the neutrino and anti-neutrino cases

separately. Detailed derivation of our approximation is given in Appendix B.

2.3 Neutrino Case

We first recognize that the mixing matrix in matter can be parameterized in the same

fashion as in the vacuum case:

∼
U = R23(

∼
θ23, 0)R13(

∼
θ13,

∼
δ)R12(

∼
θ12, 0) . (2.8)

The effective mixing angles can be approximated by

∼
θ12 ≈ θ′12 ,∼
θ13 ≈ θ′13 ,∼
θ23 ≈ θ23 ,
∼
δ ≈ δ , (2.9)
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where θ′12 and θ′13 are given by

tan 2θ′12 =
(δm2

21/c
2
13) sin 2θ12

(δm2
21/c

2
13) cos 2θ12 − a

,

tan 2θ′13 =
(δm2

31 − δm2
21s

2
12) sin 2θ13

(δm2
31 − δm2

21s
2
12) cos 2θ13 − a

. (2.10)

while the angle θ23 and the CP-violating phase δ at kept at their vacuum values [17].

The eigenvalues λi (i = 1, 2, 3) of Ha are also given approximate running expressions:

λ1 ≈ λ′− ,

λ2 ≈ λ′′∓ ,

λ3 ≈ λ′′± , (2.11)

where the upper(lower) sign is for the normal(inverted) hierarchy, with

λ′± ≡
(δm2

21 + ac213)±
√

(δm2
21 − ac213)2 + 4ac213s

2
12δm

2
21

2
,

λ′′± ≡

[
λ′+ + (δm2

31 + as213)
]
±
√[

λ′+ − (δm2
31 + as213)

]2
+ 4a2s′212 c

2
13 s

2
13

2
, (2.12)

and s′212 = sin2 θ′12. For the inverted hierarchy case, δm2
31 < 0, the above expressions

simplify to

λ2 ≈ λ′′+ ≈ λ′+ , λ3 ≈ λ′′− ≈ δm2
31 < 0 . (2.13)

Thus, to take matter effects into account when calculating neutrino oscillation probabilities,

all that is necessary is to take their expressions in terms of the mixing angles and CP-phase

in vacuum as is, and replace the two angles as well as the mass-squared differences with

their effective running values in matter: θ12 → θ′12, θ13 → θ′13, δm
2
ij → δλij = λi−λj . This

simplifies the calculation considerably, and allows for a transparent understanding of how

matter-effects affect neutrino oscillation by looking at the a-dependence of the effective

parameters.

2.4 Anti-Neutrino Case

Similarly, in the anti-neutrino case, the mixing matrix can be parameterized by:

v
U = R23(

v
θ23, 0)R13(

v
θ13,

v
δ)R12(

v
θ12, 0) . (2.14)

Note that the sign in front of the matter effect parameter a is flipped relative to the neutrino

case, so these effective mixing angles will be different. Our approximation is given by

v
θ12 ≈ θ

′
12 ,

v
θ13 ≈ θ

′
13 ,

v
θ23 ≈ θ23 ,

v
δ ≈ δ , (2.15)
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where

tan 2θ
′
12 =

(δm2
21/c

2
13) sin 2θ12

(δm2
21/c

2
13) cos 2θ12 + a

,

tan 2θ
′
13 =

(δm2
31 − δm2

21s
2
12) sin 2θ13

(δm2
31 − δm2

21s
2
12) cos 2θ13 + a

. (2.16)

Again, θ23 and δ are unaffected while θ12 and θ13 are replaced by their effective running

values in matter.

The eigenvalues λi (i = 1, 2, 3) of Ha are given approximate running expressions as in

the neutrino case. The three eigenvalues of the effective Hamiltonian are approximated by

λ1 ≈ λ
′′
∓ ,

λ2 ≈ λ
′
+ ,

λ3 ≈ λ
′′
± , (2.17)

where the upper(lower) sign is for the normal(inverted) hierarchy, with

λ
′
± ≡

(δm2
21 − ac213)±

√
(δm2

21 + ac213)
2 − 4ac213s

2
12δm

2
21

2
,

λ
′′
± ≡

[λ
′
− + (δm2

31 − as213)]±
√

[λ
′
− − (δm2

31 − as213)]2 + 4a2c′212 c
2
13 s

2
13

2
, (2.18)

and c′212 = cos2 θ
′
12. For the normal hierarchy case, δm2

31 > 0, the above expressions simplify

to

λ1 ≈ λ
′′
− ≈ λ− , λ3 ≈ λ

′′
+ ≈ δm2

31 . (2.19)

Thus, the calculation of matter effects for anti-neutrino beams entails the replacements

θ12 → θ
′
12, θ13 → θ

′
13, δm

2
ij → δλij = λi − λj .

2.5 The β-dependence of Mixing Parameters

We show plots depicting how our various effective parameters run with the matter-effect

parameter a. Due to the wide separation in scale between δm2
21 and δm2

31, we find it

convenient to introduce the parameter β via3

a

|δm2
31|

= ε−β , ε ≡

√
δm2

21

|δm2
31|
≈ 0.17 , (2.20)

and plot our effective running parameters as functions of β instead of a. Here β = 0

corresponds to a = |δm2
31|, β = −2 to a = δm2

21, and so on. The dependence of the

effective mixing angles on β are shown in Fig. 2 and that of the sines of twice these angles

in Fig. 3. The β-dependence of approximate eigenvalues of the effective Hamiltonian are

shown in Fig. 4.

3We avoid the use of the symbols α or A since they often respectively denote δm2
21/δm

2
31 and a/δm2

31

in the literature.
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(b) anti-neutrino mixing angles

Figure 2. The dependences of the effective mixing angles on β = − logε(a/|δm2
31|) for the neutrino

(a) and antineutrino (b) cases. β = 0 corresponds to a = |δm2
31|, and β = −2 to a = δm2

21. The β-

dependences of θ′13 and θ
′
13 depend on the mass hierarchy: when δm2

31 > 0 (normal hierarchy, NH)

θ′13 increases toward π/2 whereas θ
′
13 decreases toward zero, while in the δm2

31 < 0 case (inverted

hierarchy, IH), it is the other way around.
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(b) anti-neutrino case

Figure 3. The β-dependences of the sines of twice the effective mixing angles for the neutrino

(a) and antineutrino (b) cases. The difference in the behavior of the effective θ13 mixing angle for

normal and inverted hierarchies will allow us to determine which is chosen by nature.

3 Demonstration of the Accuracy of the Approximation

In this section, we plot neutrino oscillation probabilities in several scenarios to demonstrate

the accuracy of our approximation. As seen in the previous section, our formulae for both

the neutrino and anti-neutrino cases are fairly compact and easy to code. In particular,

the effective mixing angles for the neutrino and anti-neutrino cases can be calculated with

the same code by simply flipping the sign of the matter-effect parameter a, cf. Eqs. (2.10)

and (2.16). The same can be said of λ′± and λ
′
± defined in Eqs. (2.12) and (2.18). In the

case of λ′′± and λ
′′
±, one also needs to make the swap λ′+ ↔ λ− but otherwise the code
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(c) anti-neutrino, normal hierarchy
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Figure 4. Dependence of the approximate eigenvalues of the effective Hamiltonian on β =

− logε(a/|δm2
31|) for the (a) neutrino normal hierarchy, (b) neutrino inverted hierarchy, (c) anti-

neutrino normal hierarchy, and (d) anti-neutrino inverted hierarchy cases.

will be essentially the same. For the vacuum values of the mixing angles and mass-squared

differences, we use the global fit values from Ref. [41] listed in Table 1. All plots are

generated assuming constant Earth matter density.

We begin by comparing our approximation to Eq. (16) of Cervera et al. [27], Eq. (3.5)

of Akhmedov et al. [29], sum of Eqs. (4.2) to (4.4) of Asano and Minakata [32], and Eq. (36)

of Freund [22]. Note that both Cervera et al. and Akhmedov et al. expand the oscillation

δm2
21 7.5 × 10−5 eV2

δm2
31 2.47× 10−3 eV2

sin2 θ23 0.5

sin2 θ12 0.3

sin2 θ13 0.023

Table 1. Best-fit values of oscillation parameters taken from Ref. [41].
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Figure 5. Comparison of the approximation formulae of Cervera et al., Akhmedov et al., Asano-

Minakata, Freund, and this work at L = 4000 km. In left panel, the dashed line gives the exact

numerical result assuming the line-averaged constant matter density of ρ = 3.81 g/cm3. This has

been estimated using the PREM profile of the Earth [45].
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Figure 6. Comparison of the approximation formulae of Cervera et al., Akhmedov et al., Asano-

Minakata, Freund, and this work at L = 810 km, which is the distance from Fermilab to NOνA.

In left panel, the dashed line gives the exact numerical result assuming the line-averaged constant

matter density of ρ = 2.80 g/cm3. This has been estimated using the PREM profile of the Earth

[45].

probabilities to the same order, so their expressions are quite similar except for a minor

difference: Eq. (16) of Cervera et al is the same as Eq. (38) of Freund, while Eq. (3.5) of

Akhmedov et al. is obtained from the same by setting cos θ13 = 1 while keeping sin θ13
non-zero.

In Fig. 5(a), we plot the approximate νµ → νe oscillation probabilities calculated

using these three approximations against the exact numerical result for the baseline length

L = 4000 km. This is the distance used by Asano and Minakata in Ref. [32] to demonstrate
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Figure 7. Comparison of the approximation formulae of Cervera et al., Akhmedov et al., Asano-

Minakata, Freund, and this work at L = 8770 km, which is the distance from CERN to Kamioka.

In left panel, the dashed line gives the exact numerical result assuming the line-averaged constant

matter density of ρ = 4.33 g/cm3. This has been estimated using the PREM profile of the Earth

[45]. Note that the Asano-Minakata formula gives negative probability for E ∼ 4 GeV.

the strength of their formula. The line-averaged constant Earth matter density4 for this

baseline is 3.81g/cm3 which has been estimated using the Preliminary Reference Earth

Model (PREM) [45]. We consider the normal hierarchy case, δm2
31 > 0, with the CP

violating phase δ set to zero. The differences between the exact and approximate formulae

are plotted in Fig. 5(b). As can be seen, at this baseline, both the Asano-Minakata formula

and our approximation work much better than the Cervera et al. or the Akhmedov et al.

formulae. The Freund formula works well in the energy range E . 8 GeV, but leads to a

kink at E ∼ 8 GeV due to some terms in the expression changing sign at a = |δm2
13| cos 2θ13.

The comparison at a shorter baseline length of L = 810 km, which is the distance from

Fermilab to NOνA, is shown in Fig. 6. There, all five approximations work well, with our

approximation being the most accurate.

The situation changes at the longer baseline length of L = 8770 km, which is the

distance from CERN to Kamioka [47], as can be seen in Fig. 7. There, the Cervera et

al. and the Akhmedov et al. formulae greatly overestimate P (νµ → νe), while the Asano-

Minakata formula leads to negative probability for E ∼ 4 GeV. The Freund formula is

accurate up until E ∼ 7 GeV where a kink occurs at a = |δm2
13| cos 2θ13. In comparison,

our approximation remains accurate for all energies.

The accuracy of our approximation for both the neutrino and anti-neutrino cases, and

both mass hierarchies, for different values of the CP violating phase δ, is demonstrated in

Figs. 8 and 9 for the two baselines L = 1300 km and L = 2300 km, respectively. These

distances correspond to those between Fermilab and Homestake (1300 km), and CERN

and Pyhäsalmi (2300 km) [48]. As is evident, our approximation maintains its accuracy

for all energy ranges and mass densities.

4All the results presented in this paper have been derived assuming the line-averaged constant Earth

matter density (based on the PREM profile) for a given baseline.
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Figure 8. Comparison of our approximation formulae (colored) to the exact numerical results

(black, dashed) for various values of the CP violating phase δ at L = 1300 km. The line-averaged

constant matter density for this baseline length is ρ = 2.87 g/cm3.

4 Applications

4.1 Determination of the Mass Hierarchy from νe Oscillations

Consider the νe survival probability in matter which is given by

P (νe → νe)

= 1− 4 |
∼
U e2|2

(
1− |

∼
U e2|2

)
sin2

∼
∆21

2
− 4 |

∼
U e3|2

(
1− |

∼
U e3|2

)
sin2

∼
∆31

2

+ 2 |
∼
U e2|2|

∼
U e3|2

(
4 sin2

∼
∆21

2
sin2

∼
∆31

2
+ sin

∼
∆21 sin

∼
∆31

)

= 1− 4 c′213s
′2
12

(
1− c′213s′212

)
sin2

∼
∆21

2
− sin2(2θ′13) sin2

∼
∆31

2

+ s′212 sin2(2θ′13)

(
2 sin2

∼
∆21

2
sin2

∼
∆31

2
+

1

2
sin
∼
∆21 sin

∼
∆31

)
s′12≈1−−−−→ 1− sin2(2θ′13)

(
sin2

∼
∆21

2
+ sin2

∼
∆31

2
− 2 sin2

∼
∆21

2
sin2

∼
∆31

2
− 1

2
sin
∼
∆21 sin

∼
∆31

)
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Figure 9. Comparison of our approximation formulae (colored) to the exact numerical results

(black, dashed) for various values of the CP violating phase δ at L = 2300 km. The line-averaged

constant matter density for L = 2300 km is ρ = 3.54 g/cm3.

= 1− sin2(2θ′13) sin2

∼
∆32

2
, (4.1)

where we have assumed that a� δm2
21 so that s′12 ≈ 1 is a good approximation. Similarly,

we find:

P (νe → νµ)

= 4 |
∼
U e2|2|

∼
Uµ2|2 sin2

∼
∆21

2
+ 4 |

∼
U e3|2|

∼
Uµ3|2 sin2

∼
∆31

2

+2 <
(∼
U
∗
e3

∼
Uµ3

∼
U e2

∼
U
∗
µ2

)(
4 sin2

∼
∆21

2
sin2

∼
∆31

2
+ sin

∼
∆21 sin

∼
∆31

)

+4
∼
J (e,µ)

(
sin2

∼
∆21

2
sin
∼
∆31 − sin2

∼
∆31

2
sin
∼
∆21

)
(4.2)

= 4 s′212c
′2
13

(
c′212c

2
23 + s′212s

′2
13s

2
23 − 2s′12c

′
12s
′
13c23s23 cos δ

)
sin2

∼
∆21

2
+ 4 s′213c

′2
13s

2
23 sin2

∼
∆31

2
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+2 s′12s
′
13c
′2
13s23

(
c′12c23 cos δ − s′12s′13s23

)(
4 sin2

∼
∆21

2
sin2

∼
∆31

2
+ sin

∼
∆21 sin

∼
∆31

)

−4 s′12c
′
12s
′
13c
′2
13s23c23 sin δ

(
sin2

∼
∆21

2
sin
∼
∆31 − sin2

∼
∆31

2
sin
∼
∆21

)
(4.3)

s′12≈1−−−−→ s223 sin2(2θ′13) sin2

∼
∆32

2
, (4.4)

P (νe → ντ )

= 4 |
∼
U e2|2|

∼
U τ2|2 sin2

∼
∆21

2
+ 4 |

∼
U e3|2|

∼
U τ3|2 sin2

∼
∆31

2

+2 <
(∼
U
∗
e3

∼
U τ3

∼
U e2

∼
U
∗
τ2

)(
4 sin2

∼
∆21

2
sin2

∼
∆31

2
+ sin

∼
∆21 sin

∼
∆31

)

+4
∼
J (e,τ)

(
sin2

∼
∆21

2
sin
∼
∆31 − sin2

∼
∆31

2
sin
∼
∆21

)

= 4 s′212c
′2
13

(
c′212s

2
23 + s′212s

′2
13c

2
23 − 2s′12c

′
12s
′
13s23c23 cos δ

)
sin2

∼
∆21

2
+ 4 s′213c

′2
13c

2
23 sin2

∼
∆31

2

−2 s′12s
′
13c
′2
13c23

(
c′12s23 cos δ + s′12s

′
13c23

)(
4 sin2

∼
∆21

2
sin2

∼
∆31

2
+ sin

∼
∆21 sin

∼
∆31

)

+4 s′12c
′
12s
′
13c
′2
13s23c23 sin δ

(
sin2

∼
∆21

2
sin
∼
∆31 − sin2

∼
∆31

2
sin
∼
∆21

)
s′12≈1−−−−→ c223 sin2(2θ′13) sin2

∼
∆32

2
. (4.5)

From Fig. 3, it is clear that the factor sin2(2θ′13) in these expressions behaves quite differ-

ently depending on the mass hierarchy. For normal hierarchy sin2(2θ′13) will peak around

a ≈ δm2
31 but for the inverted hierarchy case it will not. This will become manifest if the

factor sin2(
∼
∆32/2) also peaked at or near the same energy.5

For the normal hierarchy case, when a ≈ δm2
31 we have

δλ32 = λ′′+ − λ′′− ≈
√

[λ′+ − (δm2
31 + as213)]

2 + 4a2c213s
2
13 ≈ 2s13 a . (4.6)

5If we expand the running parameters in our Eq. (4.4) in powers of the vacuum s13 and α = δm2
21/δm

2
31,

the leading order term expressed using the notation of Freund [22] takes the form

P (νe → νµ) = s223 sin2(2θ′13) sin2

∼
∆32

2
= s223

4s213

(Â− 1)2
sin2

[
(Â− 1)∆̂

]
+ · · ·

where Â = a/δm2
31 and ∆̂ = δm2

31L/4E. This is the same as Eq. (38a) of Freund with sin2 2θ13 replaced

by 4s213, and agrees with the corresponding term of Akhmedov et al. [29]. The enhancement discussed in

the main text can be seen to occur at Â = 1, that is a = δm2
31, which is possible only when δm2

31 > 0.

However, the formulae of Cervera et al. [27], Akhmedov et al. [29], Asano and Minakata [32], and Freund

[22] compared in the previous section all suffer in accuracy around the resonance region Â ≈ 1. This is not

the case for our expression, which has a smooth transition across the resonance. The fact that the CP-phase

dependent terms are negligible at the relevant energies and baselines is also clear in our approach.
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Figure 10. Comparison of the exact oscillation probabilities P (νe → νe) between the normal and

inverted hierarchies at (a) L = 10000 km (ρ = 4.53 g/cm3), and (b) L = 8770 km (ρ = 4.33 g/cm3)

Therefore,

∼
∆32

2
=

δλ32
4E

L ≈ s13 a

2E
L =

(
2.9× 10−5

)( ρ

g/cm3

)(
L

km

)
=
π

2

(
ρL

54000 (km · g/cm3)

)
. (4.7)

From Fig. 1, it is clear that ρL < 54000 (km · g/cm3) as long as the neutrino beam

does not enter the core of the Earth, at which point the constant average matter density

approximation breaks down. Therefore, in order to take
∼
∆32/2 as close as possible to π/2

while preventing the beam from entering the Earth’s core, we need L ∼ 10000 km.

For instance, if we take L = 10000 km for which ρ = 4.53 g/cm3, we have ρL ≈
45300 km · g/cm3. The value of

∼
∆32/2 at resonance a ≈ δm2

31 is then

π

2
× 45300

54000
= 0.42π , (4.8)

leading to an oscillation peak/dip factor of sin2(
∼
∆32/2) = 0.94. Using Eq. (2.2), the

neutrino beam energy at which a ≈ δm2
31 is found to be

E

GeV
=

(δm2
31/eV2)

(7.63× 10−5)× (ρ/(g/cm3))
=

(2.47× 10−3)

(7.63× 10−5)× (4.53)
≈ 7 . (4.9)

Indeed, in Fig. 10(a) we show the exact νe survival probabilities at L = 10000 km for

both hierarchies, and we can see that the normal hierarchy case dips by over 95% around

E ∼ 6.5 GeV. Thus, our rough estimates give a highly reliable result.

If we take a somewhat shorter baseline of L = 8770 km, which is the distance between

CERN and Kamioka [47], we have ρ = 4.33 g/cm3, and ρL ≈ 38000 km · g/cm3. The value

of
∼
∆32/2 at resonance a ≈ δm2

31 is then

π

2
× 38000

54000
= 0.35π , (4.10)
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leading to an oscillation peak/dip factor of sin2(
∼
∆32/2) = 0.8, which is still fairly prominent.

Using Eq. (2.2), the neutrino beam energy at which a ≈ δm2
31 is found to be

E

GeV
=

(δm2
31/eV2)

(7.63× 10−5)× (ρ/(g/cm3))
=

(2.47× 10−3)

(7.63× 10−5)× (4.33)
≈ 7.5 . (4.11)

The actual oscillation peak occurs slightly off resonance around E = 6.5 GeV as can already

be seen in Fig. 7. Comparison of P (νe → νe) at L = 8770 km with δ = 0 for the normal

and inverted hierarchies are shown in Fig. 10(b). P (νe → νµ) is compared in Fig. 11(b).

The differences between the normal and inverted hierarchies for both baselines is mani-

fest, indicating that measuring these oscillation probabilities at this baseline would allow us

to determine the mass hierarchy easily. (We consider the dependence on the CP violating

phase δ in the next section.) Eqs. (4.1), (4.4), and (4.5) also suggest that the measurement

may provide a better determination of sin2 θ23.

4.2 The “Magic” Baseline

The “magic” baseline is the baseline at which the dependence of P (νe → νµ) on the CP

violating phase δ vanishes [49].6 Looking at Eq. (4.2), the only term without δ-dependence

is the |
∼
U e3|2|

∼
Uµ3|2 term. To make every other term vanish, we must have

sin

∼
∆21

2
= sin

(
δλ21
4E

L

)
= 0 . (4.12)

Therefore, the magic baseline condition is

δλ21
4E

L = nπ , n ∈ Z . (4.13)

If we are in the energy and mass-density range such that δm2
21 < a < |δm2

31|, we can see

from Fig. 4 that δλ21 ≈ a = 2
√

2GFNeE, and the above condition reduces to

√
2GFNeL ≈ 2nπ , (4.14)

which is the usual magic baseline condition. Using Eq. (2.2), this condition for the n = 1

case becomes

∼
∆21

2
≈ a

4E
L = (9.7× 10−5)

(
ρ

g/cm3

)(
L

km

)
= π , (4.15)

that is
ρL

km · g/cm3
≈ 32000 . (4.16)

This is satisfied for L ≈ 7500 km as can be read off of Fig. 1. Indeed, in Fig. 11(a) we plot

the bands that P (νe → νµ) at L = 7500 km sweeps for both mass hierarchies when δ is

varied throughout its range of [0, 2π]. We can see that the dependence on δ is very weak.

6An illuminating discussion on the physical meaning of the “magic baseline” can be found in Ref. [50].
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Figure 11. The dependence of the exact oscillation probability P (νe → νµ) on the CP violating

phase δ at (a) L = 7500 km (ρ = 4.21 g/cm3), and (b) L = 8770 km (ρ = 4.33 g/cm3) for the normal

(red) and inverted (green) mass hierarchies.

However, if we look at Eq. (4.3) carefully, it is clear that all terms that include the CP

violating phase δ are multiplied by c′12 which goes to zero when a � δm2
21. Indeed, this

was why δ did not appear in Eq. (4.4). The condition a� δm2
21 demands(

ρ

g/cm3

)(
E

GeV

)
� 1 , (4.17)

which is clearly satisfied around the oscillation peak for the L = 8770 km case just discussed

in the previous section. Thus, P (νe → νµ) for this baseline is also only very weakly

dependent on δ as shown in Fig. 11(b). We can conclude that, in general, as long as

Eq. (4.17) is satisfied, one does not need to be at a specific “magic” baseline to suppress

the δ-dependence of P (νe → νµ).

5 Summary

We have presented a new and simple approximation for calculating the neutrino oscillation

matter effects. Our approximation was derived utilizing the Jacobi method [44], and we

show in the appendix that at most two rotations are sufficient for approximate diagonal-

ization of the effective Hamiltonian. The two rotation angles are absorbed into effective

values of θ12 and θ13.

As explained in detail in the appendix, the approximation works when θ13 = O(ε),

where ε =
√
δm2

21/|δm2
31| = 0.17, a condition which has been shown to be satisfied by Daya

Bay [33] and RENO [35]. Our formulae are compact and can easily be coded as well as be

manipulated by hand. The application of our method to finding the νe → νµ, ντ resonance

conversion condition, and that to the determination of the ‘magic’ baseline [49, 50] have

been demonstrated.

In this paper, only the matter effect due to Standard Model W exchange between the

neutrinos and matter was considered. New Physics effects which distinguish between neu-

trino flavor would add extra terms to the effective Hamiltonian, which would require further
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rotations for diagonalization. This has been discussed previously in Ref. [43], and the po-

tential constraints on New Physics from long baseline neutrino oscillations experiments in

Refs. [51–53]. Updates to these works will be presented in future publications.
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A Conventions, Notation, and Basic Formulae

Here, we collect the basic formulae associated with neutrino oscillation in order to fix our

notation and conventions.

A.1 The PMNS Matrix

Assuming three-generation neutrino mixing, the flavor eigenstates |να〉 (α = e, µ, τ) are

related to the three mass eigenstates |νj〉 (j = 1, 2, 3) via the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix [54–56]

(VPMNS)αj ≡ 〈να|νj〉 , (A.1)

that is,

|νj〉 =
∑

α=e,µ,τ

|να〉 〈να|νj〉 =
∑

α=e,µ,τ

(VPMNS)αj |να〉 ,

|να〉 =
∑

j=1,2,3

|νj〉 〈νj |να〉 =
∑

j=1,2,3

(VPMNS)∗αj |νj〉 .
(A.2)

The standard parametrization is given by

VPMNS = UP , (A.3)

with7

U = R23(θ23, 0) R13(θ13, δ) R12(θ12, 0)

=

 1 0 0

0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13eiδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

 ,

P = diag(1, eiα21/2, eiα31/2) . (A.4)

Here, Rij(θ, δ) denotes a rotation matrix in the ij-plane of clockwise rotation angle θ

with phases ±δ on the off-diagonal ji and ij-elements, respectively, and sij ≡ sin θij ,

cij ≡ cos θij . Without loss of generality, we can adopt the convention 0 ≤ θij ≤ π/2,

0 ≤ δ < 2π [57]. Of the six parameters in this expression and the three neutrino masses,

which add up to a total of nine parameters, neutrino → neutrino oscillations are only

sensitive to six:

• the three mixing angles: θ12, θ23, θ13,

• two mass-squared differences: δm2
21, δm

2
31, where δm2

ij = m2
i −m2

j , and

7Cervera et al. in Ref. [27] use a different convention in which the sign of δ is flipped.
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• the CP-violating phase: δ.

The Majorana phases, α21 and α31, only appear in lepton-number violating processes

such as neutrinoless double beta decay, and cannot be determined via neutrino→neutrino

oscillations. The absolute scale of the neutrino masses also remain undetermined since

neutrino oscillation is an interference effect.

A.2 Neutrino Oscillation

If a neutrino of flavor α is created at x = 0 with energy E, then the state of the neutrino

at x = 0 is

|να,0(x = 0)〉 = |να〉 =

3∑
j=1

(VPMNS)∗αj |νj〉 . (A.5)

At x = L, the same state is

|να,0(x = L)〉 =
3∑
j=1

eipjL (VPMNS)∗αj |νj〉 = eip1L
3∑
j=1

ei(pj−p1)L (VPMNS)∗αj |νj〉 . (A.6)

Assing mj � E we can approximate

pj =
√
E2 −m2

j = E −
m2
j

2E
+ · · · (A.7)

so that

pj − p1 ≈ −
δm2

j1

2E
, δm2

j1 = m2
j −m2

1 , (A.8)

and we find

|να,0(x = L)〉 = eip1L
3∑
j=1

exp

(
−i
δm2

j1

2E
L

)
(VPMNS)∗αj |νj〉 . (A.9)

Therefore, the amplitude of observing the neutrino of flavor β at x = L is given by (dropping

the irrelevant overall phase)

Aβα = 〈νβ|να,0(x = L)〉

=

[
3∑

k=1

〈νk| (VPMNS)βk

][
3∑
j=1

exp

(
−i
δm2

j1

2E
L

)
(VPMNS)∗αj |νj〉

]

=

3∑
j=1

(VPMNS)βj exp

(
−i
δm2

j1

2E
L

)
(VPMNS)∗αj

=

3∑
j=1

Uβj exp

(
−i
δm2

j1

2E
L

)
U∗αj

=

[
U exp

(
−iδM

2

2E
L

)
U †
]
βα

– 20 –



=

[
exp

(
−iH0

2E
L

)]
βα

, (A.10)

where

δM2 =

 0 0 0

0 δm2
21 0

0 0 δm2
31

 , (A.11)

and

H0 = U δM2 U † . (A.12)

Thus, the probability of oscillation from |να〉 to |νβ〉 with neutrino energy E and baseline

L is given by

P (να → νβ) =
∣∣Aβα ∣∣2

=

∣∣∣∣∣∣
3∑
j=1

Uβj exp

(
−i
δm2

j1

2E
L

)
U∗αj

∣∣∣∣∣∣
2

= δαβ − 4
∑
i>j

<
(
U∗αiUβiUαjU

∗
βj

)
sin2 ∆ij

2
+ 2

∑
i>j

=
(
U∗αiUβiUαjU

∗
βj

)
sin ∆ij ,

(A.13)

where8

∆ij ≡
δm2

ij

2E
L = 2.534

(
δm2

ij

eV2

)(
GeV

E

)(
L

km

)
, δm2

ij ≡ m2
i −m2

j . (A.14)

Since

∆32 = ∆31 −∆21 , (A.15)

only two of the three ∆ij ’s in Eq. (A.13) are independent. Eliminating ∆32 from Eq. (A.13)

for the α = β case yields

P (να → να) = 1− 4 |Uα2|2
(
1− |Uα2|2

)
sin2 ∆21

2
− 4 |Uα3|2

(
1− |Uα3|2

)
sin2 ∆31

2

+ 2 |Uα2|2|Uα3|2
(

4 sin2 ∆21

2
sin2 ∆31

2
+ sin ∆21 sin ∆31

)
, (A.16)

and for the α 6= β case we have

P (να → νβ) = 4 |Uα2|2|Uβ2|2 sin2 ∆21

2
+ 4 |Uα3|2|Uβ3|2 sin2 ∆31

2

+2 <
(
U∗α3Uβ3Uα2U

∗
β2

)(
4 sin2 ∆21

2
sin2 ∆31

2
+ sin ∆21 sin ∆31

)
+4 J(α,β)

(
sin2 ∆21

2
sin ∆31 − sin2 ∆31

2
sin ∆21

)
, (A.17)

8Note that our notation differs from that of Cervera et al. in Ref. [27]. There, the symbol ∆ij is defined

without the factor of L, that is, ∆ij = δm2
ij/2E. It also differs from that used by Freund in Ref. [22] where

∆ = δm2
31, and ∆̂ = δm2

31L/4E. Huber and Winter in Ref. [49] define ∆ = δm2
31L/4E, which is also used

in Ref. [58]. So care is necessary when comparing formulae.
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where J(α,β) is the Jarlskog invariant [59]:

J(α,β) = +=(U∗α1Uβ1Uα2U
∗
β2) = +=(U∗α2Uβ2Uα3U

∗
β3) = +=(U∗α3Uβ3Uα1U

∗
β1)

= −=(U∗α2Uβ2Uα1U
∗
β1) = −=(U∗α1Uβ1Uα3U

∗
β3) = −=(U∗α3Uβ3Uα2U

∗
β2)

= −J(β,α) . (A.18)

In the parametrization given in Eq. (A.4), we have

J(µ,e) = −J(e,µ) = J(e,τ) = −J(τ,e) = J(τ,µ) = −J(µ,τ) = Ĵ sin δ , (A.19)

with

Ĵ = s12c12s13c
2
13s23c23 . (A.20)

The oscillation probabilities for the anti-neutrinos are obtained by replacing Uαi with its

complex conjugate, which only amounts to flipping the sign of δ in the parametrization of

Eq. (A.4). It is clear from Eq. (A.16) that P (να → να) = P (να → να), which is to be

expected from the CPT theorem. For flavor changing oscillations, only the Jarskog term

in Eq. (A.17) changes sign.

A.3 Matter Effects

If the matter density along the baseline is constant, matter effects on neutrino oscillations

can be taken into account by replacing the PMNS matrix elements and mass-squared

differences with their “effective” values in matter:

∆ij →
∼
∆ij , Uαi →

∼
Uαi , (A.21)

where
∼
U is the unitary matrix that diagonalizes the modified Hamiltonian,

Ha =
∼
U

 λ1 0 0

0 λ2 0

0 0 λ3

 ∼U † = U

 0 0 0

0 δm2
21 0

0 0 δm2
31


︸ ︷︷ ︸

= δM2

U †

︸ ︷︷ ︸
= H0

+

 a 0 0

0 0 0

0 0 0

 , (A.22)

and
∼
∆ij =

δλij
2E

L , δλij = λi − λj . (A.23)

The factor a is due to the interaction of the |νe〉 component of the neutrinos with the

electrons in matter via W -exchange:

a = 2
√

2GFNeE . (A.24)

Assuming Ne = Np ≈ Nn in Earth matter, Ne for mass density per unit volume of ρ can

be expressed using Avogadro’s number NA = 6.02214129× 1023 mol−1 as

Ne = Np ≈ ρNA/2 =
(
3.011× 1023 /cm3

)
×
(

ρ

g/cm3

)
. (A.25)
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Thus, putting back powers of ~c to convert from natural to conventional units, we find

a = 2
√

2GFNeE × (~c)3

=
(
7.63× 10−5 eV2

)( ρ

g/cm3

)(
E

GeV

)
. (A.26)

For anti-neutrino beams, a is replaced by −a in Eq. (A.22). Note that a is E-dependent,

which means that both
∼
U and

∼
∆ij are also E-dependent. It is also assumed that E �MW

since the W -exchange interaction is approximated by a point-like four-fermion interaction

in deriving this expression.

B Jacobi Method

B.1 Setup

As mentioned in the introduction, it is possible to write down exact analytical expressions

for
∼
∆ij and

∼
Uαi [16]. However, simpler and more transparent approximate expressions can

be obtained using the Jacobi method as will be shown in the following.

We introduce the matrix

Q = diag(1, 1, eiδ) , (B.1)

and start with the partially diagonalized Hamiltonian:

H ′a = Q†U †HaUQ

= Q†


 0 0 0

0 δm2
21 0

0 0 δm2
31

+ U †

 a 0 0

0 0 0

0 0 0

U
Q

= Q†

 0 0 0

0 δm2
21 0

0 0 δm2
31

Q+ aQ†

U∗e1Ue1 U∗e1Ue2 U∗e1Ue3U∗e2Ue1 U
∗
e2Ue2 U

∗
e2Ue3

U∗e3Ue1 U
∗
e3Ue2 U

∗
e3Ue3

Q
=

 0 0 0

0 δm2
21 0

0 0 δm2
31

+ a

 c212c
2
13 c12s12c

2
13 c12c13s13

c12s12c
2
13 s212c

2
13 s12c13s13

c12c13s13 s12c13s13 s213


=

 ac212c
2
13 ac12s12c

2
13 ac12c13s13

ac12s12c
2
13 as

2
12c

2
13 + δm2

21 as12c13s13
ac12c13s13 as12c13s13 as213 + δm2

31

 . (B.2)

The matrix Q serves to rid H ′a of any reference to the CP violating phase δ. The strategy

we used in our previous papers [42, 43] was to approximately diagonalize H ′a through the

Jacobi method using

ε =

√
δm2

21

|δm2
31|
≈ 0.17 , (B.3)

as the parameter to keep track of the sizes of the off-diagonal elements. We argued that

approximate diagonalization was achieved when the off-diagonal elements were of order

O(ε2s13|δm2
31|).
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Note that our ε differs from Asano and Minakata’s ε in Ref. [32] where

ε =
δm2

21

|δm2
31|
≈ 0.03 . (B.4)

That is, ε = ε2. So care is necessary when comparing formulae.

B.2 Diagonalization of a 2 × 2 Matrix

Recall that for 2× 2 real symmetric matrices, such as

M =

[
α β

β γ

]
, α, β, γ ∈ R , (B.5)

diagonalization is trivial. Just define

R =

[
cω sω
−sω cω

]
, where cω = cosω , sω = sinω , tan 2ω ≡ 2β

γ − α
, (B.6)

and we obtain

R†MR =

[
Λ1 0

0 Λ2

]
, (B.7)

with

Λ1 =
αc2ω − γs2ω
c2ω − s2ω

=
(α+ γ)∓

√
(α− γ)2 + 4β2

2
,

Λ2 =
γc2ω − αs2ω
c2ω − s2ω

=
(α+ γ)±

√
(α− γ)2 + 4β2

2
, (B.8)

where the upper and lower signs are for the cases α < γ and α > γ, respectively. The

Jacobi method [44] entails iteratively diagonalizing 2 × 2 submatrices of a larger matrix

in the order that requires the largest rotation angle at each step. In the limit of infinite

iterations of this procedure, the matrix will converge to a diagonal matrix.

In the case of H ′a given in Eq. (B.2), at most two iterations are sufficient to achieve

approximate diagonalization, neglecting off-diagonal elements of order O(ε2s13|δm2
31|), re-

gardless of the size of a. We demonstrate this in this appendix.

B.3 Neutrino Case

B.3.1 Mixing Angles and Mass-squared Differences

Let us first evaluate the sizes of the sines and cosines of the three vacuum mixing angles

in comparison to the parameter ε defined in Eq. (B.3). The current best fit values for the

mass-squared differences and mixing angles are listed in Table 1. The sines and cosines of

the central values of the mixing angles are

s23 = 0.71 , c23 = 0.71 ,

s12 = 0.55 , c12 = 0.84 ,

s13 = 0.15 , c13 = 0.99 .

(B.9)

Therefore, s13 is O(ε) while all other sines and cosines are O(1).
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Figure 12. (a) The dependence of θ′12 on β = − log ε
(
a/|δm2

31|
)
. (b) The β-dependence of λ′±.

B.3.2 First rotation

The effective hamiltonian we need to diagonalize is

H ′a =

 ac212c
2
13 ac12s12c

2
13 ac12c13s13

ac12s12c
2
13 as

2
12c

2
13 + δm2

21 as12c13s13
ac12c13s13 as12c13s13 as213 + δm2

31


=

 aO(1) aO(1) aO(ε)

aO(1) aO(1) + δm2
21 aO(ε)

aO(ε) aO(ε) aO(ε2) + δm2
31

 . (B.10)

Of the off-diagonal elements, the 1-2 element is the largest regardless of the size of a.

Therefore, our first step is to diagonalize the 1-2 submatrix.
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Figure 13. (a) The dependence of s′12 = sin θ′12 and c′12 = cos θ′12 on β = − log ε
(
a/|δm2

31|
)
. (b)

The dependence of as′12 and ac′12 on β. The values are given in units of |δm2
31|. The asymptotic

value of ac′12 is δm2
21s12c12/c

2
13 ≈ 0.014 |δm2

31| = O(ε2|δm2
31|).
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Define

V ≡

 cϕ sϕ 0

−sϕ cϕ 0

0 0 1

 , (B.11)

where

cϕ = cosϕ , sϕ = sinϕ , tan 2ϕ ≡ ac213 sin 2θ12
δm2

21 − ac213 cos 2θ12
,
(

0 ≤ ϕ ≤ π

2

)
. (B.12)

Using V , we find

H ′′a ≡ V †H ′aV =

 λ′− 0 ac′12c13s13
0 λ′+ as′12c13s13

ac′12c13s13 as
′
12c13s13 as

2
13 + δm2

31

 , (B.13)

where

c′12 = cos θ′12 , s′12 = sin θ′12 , θ′12 ≡ θ12 + ϕ , (B.14)

and

λ′± ≡
(δm2

21 + ac213)±
√

(δm2
21 − ac213)2 + 4ac213s

2
12δm

2
21

2
. (B.15)

The angle θ′12 = θ12 + ϕ can be calculated directly without calculating ϕ via

tan 2θ′12 =
δm2

21 sin 2θ12
δm2

21 cos 2θ12 − ac213
,

(
θ12 ≤ θ′12 ≤

π

2

)
. (B.16)

The dependences of θ′12 and λ′± on β = − logε
(
a/|δm2

31|
)

are plotted in Fig. 12. Note

that θ′12 increases monotonically from θ12 to π/2 with increasing a. The β-dependence of

s′12 = sin θ′12 and c′12 = cos θ′12 are shown in Fig. 13(a). For a� δm2
21, s

′
12 and c′12 behave

as

s′12 = 1− s212c
2
12

2

(
δm2

21

ac213

)2

+ · · · ,

c′12 = s12c12

(
δm2

21

ac213

)
+ s12c12(c

2
12 − s212)

(
δm2

21

ac213

)2

+ · · · . (B.17)

Therefore, for a� δm2
21 we have as′12 ≈ a while ac′12 ≈ δm2

21s12c12/c
2
13 = ε2|δm2

31|s12c12/c213 ≈
0.014 |δm2

31| = O(ε2|δm2
31|). This behavior is shown in Fig. 13(b). Note that ac′12 never

grows larger than O(ε2|δm2
31|) for any a.

The values of λ′± away from the level crossing point a ∼ δm2
21 for the a � δm2

21 case

are given by

λ′− = ac213c
2
12

[
1− s212

(
ac213
δm2

21

)
− s212(c212 − s212)

(
ac213
δm2

21

)2

+ · · ·

]
,

λ′+ = δm2
21

[
1 + s212

(
ac213
δm2

21

)
+ s212c

2
12

(
ac213
δm2

21

)2

+ s212c
2
12(c

2
12 − s212)

(
ac213
δm2

21

)3

+ · · ·

]
,

(B.18)
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Figure 14. (a) The β-dependence of φ for the normal and inverted hierarchies. (b) The β-

dependence of the difference φ′ − φ.

and those for the a� δm2
21 case by

λ′− = δm2
21c

2
12

[
1− s212

(
δm2

21

ac213

)
− s212(c212 − s212)

(
δm2

21

ac213

)2

+ · · ·

]
,

λ′+ = ac213

[
1 + s212

(
δm2

21

ac213

)
+ s212c

2
12

(
δm2

21

ac213

)2

+ s212c
2
12(c

2
12 − s212)

(
δm2

21

ac213

)3

+ · · ·

]
.

(B.19)

We will use this expansion for λ′+ later. Thus, the asymptotic values of λ′± are λ′− →
ac213c

2
12, λ

′
+ → δm2

21 in the a→ 0 limit, and λ′− → δm2
21c

2
12, λ

′
+ → ac213 in the a→∞ limit.

B.3.3 Second rotation

The effective hamiltonian after the first rotation was given by Eq. (B.13). When a < δm2
21,

both non-zero off-diagonal elements are of order O(εa) < O(ε3|δm2
31|), since s′12 and c′12

are both O(1) in that range as can be discerned from Fig. 13(a). However, as a increases

beyond δm2
12 and θ′12 approaches π/2, we have as′12 → a, ac′12 → O(ε2|δm2

31|) and the 2-3

element becomes the larger of the two. Therefore, a 2-3 rotation is needed next.

We define

W ≡

 1 0 0

0 cφ sφ
0 −sφ cφ

 , (B.20)

where

cφ = cosφ , sφ = sinφ , tan 2φ ≡ as′12 sin 2θ13
δm2

31 + as213 − λ′+
. (B.21)

The angle φ is in the first quadrant when δm2
31 > 0, and in the fourth quadrant when

δm2
31 < 0. Then,

H ′′′a ≡ W †H ′′aW =

 λ′− −ac′12c13s13sφ ac′12c13s13cφ
−ac′12c13s13sφ λ′′∓ 0

ac′12c13s13cφ 0 λ′′±

 , (B.22)
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where the upper(lower) sign corresponds to the normal(inverted) hierarchy case with

λ′′± ≡

[
λ′+ + (δm2

31 + as213)
]
±
√[

λ′+ − (δm2
31 + as213)

]2
+ 4a2s′ 212 c

2
13 s

2
13

2
. (B.23)

The β-dependences of λ′′± and φ are shown in Fig. 4 ((a) and (b)), and Fig. 14(a), respec-

tively, for both mass hierarchies. For the normal hierarchy case, δm2
31 > 0, the values of

λ′′± away from the level crossing point a ∼ δm2
31 are approximately

λ′′+ ≈ δm2
31 + as213 ,

λ′′− ≈ λ′+ , (B.24)

when a� δm2
31, and

λ′′+ ≈ a+ s213δm
2
31 + c213s

2
12δm

2
21 ,

λ′′− ≈ c213δm
2
31 + s213s

2
12δm

2
21 , (B.25)

when a� δm2
31. For the inverted hierarchy case, δm2

31 < 0, where there is no level crossing,

the values of λ′′± are approximately

λ′′− ≈ δm2
31 < 0 , λ′′+ ≈ λ′+ , (B.26)

for all a.

At this point, we argue that the angle φ defined in Eq. (B.21) is well approximated by

the angle φ′ which we define via

tan 2φ′ ≡ a sin 2θ13
(δm2

31 − δm2
21s

2
12)− a cos 2θ13

. (B.27)

This approximation is obtained by first noting that φ is significantly different from zero

only when a � δm2
21. The expansion of λ′+ in the denominator of the right-hand-side of

Eq. (B.21) in powers of δm2
21/a was given in Eq. (B.19). Keeping only the first two terms,

and noting also that s′12 ≈ 1 to the same order when a� δm2
21 (c.f. Eq. (B.17)) we obtain

Eq. (B.27). The β-dependence of the difference φ′ − φ is plotted in Fig. 14(b), and we can

see that the disagreement is at most O(ε4). Thus, we replace φ with φ′ in the following.

Now, the effective Hamiltonian after the second rotation was given by Eq. (B.22). Note

that all of the non-zero off-diagonal elements include the factor ac′12, which is never larger

than O(ε2|δm2
31|) regardless of the value of a as discussed above. They also all include

a factor of s13, which is O(ε) as we have seen in Eq. (B.9). Therefore, all off-diagonal

elements of H ′′′a are of order O(ε2s13|δm2
31|) = O(ε3|δm2

31|) or smaller regardless of the

size of a. Note that had the value of s13 been smaller, the sizes of the neglected terms

would have been proportionately smaller also. We conclude that, at this point, off-diagonal

elements are negligible and a third rotation is not necessary.
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B.3.4 Absorption of φ′ into θ13

From the above consideration, we conclude that the matrix which diagonalizesH ′a, Eq. (B.2),

is given approximately by VW , and that the effective neutrino mixing matrix becomes

∼
U ≈ UQVW = R23(θ23, 0)R13(θ13, δ)R12(θ12, 0)︸ ︷︷ ︸

U

QR12(ϕ, 0)︸ ︷︷ ︸
V

R23(φ
′, 0)︸ ︷︷ ︸

W

. (B.28)

Using

R12(θ12, 0)Q = QR12(θ12, 0) ,

R13(θ13, δ)Q = QR13(θ13, 0) , (B.29)

we find

∼
U ≈ R23(θ23, 0)R13(θ13, δ)R12(θ12, 0)QR12(ϕ, 0)R23(φ

′, 0)

= R23(θ23, 0)QR13(θ13, 0)R12(θ12, 0)R12(ϕ, 0)R23(φ
′, 0)

= R23(θ23, 0)QR13(θ13, 0)R12(θ12 + ϕ, 0)R23(φ
′, 0)

= R23(θ23, 0)QR13(θ13, 0)R12(θ
′
12, 0)R23(φ

′, 0) . (B.30)

Here, we argue that

R12(θ
′
12, 0)R23(φ

′, 0) ≈ R13(φ
′, 0)R12(θ

′
12, 0) , (B.31)

that is, the 2-3 rotation becomes a 1-3 rotation when commuted through R12(θ
′
12, 0). This

is due to the fact that φ′ only becomes non-negligible when a � δm2
12 where s′12 ≈ 1 and

c′12 ≈ 0, which means

R12(θ
′
12, 0) ≈

 0 1 0

−1 0 0

0 0 1

 , (B.32)

and it is straightforward to see that 0 1 0

−1 0 0

0 0 1


 1 0 0

0 c′φ s′φ
0 −s′φ c′φ

 =

 c′φ 0 s′φ
0 1 0

−s′φ 0 c′φ


 0 1 0

−1 0 0

0 0 1

 , (B.33)

where s′φ = sinφ′ and c′φ = cosφ′. In the range a . δm2
21, the angle φ′ is very small and

both R23(φ
′, 0) and R13(φ

′, 0) are approximately unit matrices and Eq. (B.31) is trivially

satisfied. Curiously, this approximation breaks down around a ∼ δm2
31 for the normal

hierarchy case when θ13 is O(ε2) or smaller, as is discussed in appendix C. However, given

that the current experimentally preferred value of θ13 is O(ε), the approximation is valid.

Thus,

∼
U ≈ R23(θ23, 0)QR13(θ13, 0)R12(θ

′
12, 0)R23(φ

′, 0)

≈ R23(θ23, 0)QR13(θ13, 0)R13(φ
′, 0)R12(θ

′
12, 0)

= R23(θ23, 0)QR13(θ13 + φ′, 0)R12(θ
′
12, 0)

= R23(θ23, 0)QR13(θ
′
13, 0)R12(θ

′
12, 0)
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= R23(θ23, 0)R13(θ
′
13, δ)R12(θ

′
12, 0)Q , (B.34)

where we have defined

θ′13 ≡ θ13 + φ′ . (B.35)

This angle can be calculated directly without calculating φ′ via

tan 2θ′13 =
(δm2

31 − δm2
21s

2
12) sin 2θ13

(δm2
31 − δm2

21s
2
12) cos 2θ13 − a

. (B.36)

The diagonal phase matrix Q appearing rightmost in the above matrix product can be

absorbed into the redefinition of the major phases and can be dropped. Thus, we arrive at

our final approximation in which the vacuum mixing angles are replaced by their effective

values in matter

θ12 → θ′12 = θ12 + ϕ ,

θ13 → θ′13 = θ13 + φ′ ,

θ23 → θ23 ,

δ → δ , (B.37)

and the eigenvalues of the effective Hamiltonian are given by

λ1 ≈ λ′− ,

λ2 ≈ λ′′∓ ,

λ3 ≈ λ′′± . (B.38)

Note that of the mixing angles, only θ12 and θ13 are shifted. θ23 and δ stay at their vacuum

values.

B.4 Anti-Neutrino Case

B.4.1 First Rotation

For the anti-neutrino case, the matter effect parameter a acquires a minus sign. Thus, the

effective hamiltonian to be diagonalized is

H
′
a =

 −ac212c213 −ac12s12c213 −ac12c13s13
−ac12s12c213 −as212c213 + δm2

21 −as12c13s13
−ac12c13s13 −as12c13s13 −as213 + δm2

31


=

−aO(1) −aO(1) −aO(ε)

−aO(1) −aO(1) + δm2
21 −aO(ε)

−aO(ε) −aO(ε) −aO(ε2) + δm2
31

 . (B.39)

The largest off-diagonal element is the 1-2 element. Therefore, our first step is to diagonalize

the 1-2 submatrix.

Define

V ≡

 cϕ sϕ 0

−sϕ cϕ 0

0 0 1

 , (B.40)
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Figure 15. (a) The dependence of θ
′
12 on β = − logε(a/|δm2

31|). (b) The β-dependence of λ
′
±.

where

cϕ = cosϕ , sϕ = sinϕ , tan 2ϕ ≡ − ac213 sin 2θ12
δm2

21 + ac213 cos 2θ12
,
(
−π

2
< ϕ < 0

)
.

(B.41)

Using V we find

H
′′
a ≡ V

†
H
′
aV =

 λ
′
− 0 −ac′12c13s13
0 λ

′
+ −as′12c13s13

−ac′12c13s13 −as′12c13s13 −as213 + δm2
31

 , (B.42)

where

c′12 = cos θ
′
12 , s′12 = sin θ

′
12 , θ

′
12 ≡ θ12 + ϕ , (B.43)

and

λ
′
± ≡

(δm2
21 − ac213)±

√
(δm2

21 + ac213)
2 − 4ac213s

2
12δm

2
21

2
. (B.44)

The angle θ
′
12 can be calculated directly without going through ϕ via

tan 2θ
′
12 =

δm2
21 sin 2θ12

δm2
21 cos 2θ12 + ac213

,
(

0 ≤ θ′12 ≤ θ12
)
. (B.45)

The β-dependences of θ
′
12 and λ

′
± are shown in Fig. 15. Note that in contrast to the

neutrino case, there is no level crossing. θ
′
12 decreases monotonically toward zero as a is

increased. For a� δm2
21, s

′
12 and c′12 behave as

s′12 = s12c12

(
δm2

21

ac213

)
− s12c12(c212 − s212)

(
δm2

21

ac213

)2

+ · · · ,

c′12 = 1− s212c
2
12

2

(
δm2

21

ac213

)2

+ · · · , (B.46)

and we see that, this time, we have ac′12 ≈ a and as′12 ≈ δm2
21s12c12/c

2
13 = O(ε2|δm2

31|).
These β-dependences of s′12, c

′
12, as

′
12, and ac′12 are shown in Fig. 16(a) and (b).
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Figure 16. (a) The β-dependence of s′12 = sin θ
′
12 and c′12 = cos θ

′
12. (b) The β-dependence of as′12

and ac′12. The asymptotic value of as′12 is δm2
21s12c12/c

2
13 ≈ 0.014 |δm2

31| = O(ε2|δm2
31|).

In the range a� δm2
21, λ

′
± can be expanded as

λ
′
− = −ac213c212

[
1 + s212

(
ac213
δm2

21

)
− s212(c212 − s212)

(
ac213
δm2

21

)2

+ · · ·

]
,

λ
′
+ = δm2

21

[
1− s212

(
ac213
δm2

21

)
+ s212c

2
12

(
ac213
δm2

21

)2

− s212c212(c212 − s212)
(
ac213
δm2

21

)3

+ · · ·

]
,

(B.47)

while in the range a� δm2
21, we obtain

λ
′
− = −ac213

[
1− s212

(
δm2

21

ac213

)
+ s212c

2
12

(
δm2

21

ac213

)2

− s212c212
(
δm2

21

ac213

)3

+ · · ·

]
,

λ
′
+ = δm2

21c
2
12

[
1 + s212

(
δm2

21

ac213

)
− s212(c212 − s212)

(
δm2

21

ac213

)2

+ · · ·

]
. (B.48)

The asymptotic values are thus λ
′
+ → δm2

21, λ
′
− → −ac213c212, in the limit a → 0, and

λ
′
+ → c212δm

2
21, λ

′
− → −ac213, in the limit a→∞.

B.4.2 Second Rotation

After the first rotation, the effective hamiltonian was given by Eq. (B.42). When a < δm2
21,

both non-zero off-diagonal elements are of order O(εa) < O(ε3|δm2
31|). In contrast to the

neutrino case, as a increases beyond δm2
21, the angle θ

′
12 approaches 0, and it is the 1-3

element that becomes the larger of the two. Therefore, a 1-3 rotation is needed next.

We define

W =

 cφ 0 sφ
0 1 0

−sφ 0 cφ

 , (B.49)
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where

cφ = cosφ , sφ = cosφ , tan 2φ ≡ − ac′12 sin 2θ13

δm2
31 − as213 − λ

′
−
. (B.50)

The angle φ is in the fourth quadrant when δm2
31 > 0, and the first quadrant when δm2

31 <

0. Using W , we find

H
′′′
a ≡ W

†
H
′′
aW =

 λ
′′
∓ as′12c13s13sφ 0

as′12c13s13sφ λ
′
+ −as′12c13s13cφ

0 −as′12c13s13cφ λ
′′
±

 , (B.51)

where the upper(lower) sign corresponds to normal(inverted) mass hierarchy with

λ
′′
± ≡

[
λ
′
− + (δm2

31 − as213)
]
±
√[

λ
′
− − (δm2

31 − as213)
]2

+ 4a2c′212c
2
13s

2
13

2
. (B.52)

The β-dependence of λ
′′
± and φ are shown in Fig. 4 ((c) and (d)), and Fig. 17(a), respectively,

for both normal and inverted mass hierarchies. For the normal hierarchy case, δm2
31 > 0,

there is no level crossing, and λ
′′
± are well approximated by

λ
′′
+ ≈ δm2

31 , λ
′′
− ≈ λ

′
− . (B.53)

Level crossing occurs for the inverted hierarchy case, δm2
31 < 0, in which we have

λ
′′
+ ≈ λ

′
− ,

λ
′′
− ≈ −δm2

31 − as213 , (B.54)

when a� δm2
31, and

λ
′′
+ ≈ −c213δm2

31 + s213s
2
12δm

2
21 ,

λ
′′
− ≈ −a− s213δm2

31 + c213s
2
12δm

2
21 , (B.55)

when a� δm2
31.

Here, as in the neutrino case, we approximate φ with the angle φ
′

defined via

tan 2φ
′

= − a sin 2θ13
(δm2

31 − s212δm2
21) + a cos2 2θ13

, (B.56)

which is obtained by using Eqs. (B.46) and (B.48) on Eq. (B.50). The difference between

φ
′

and φ is shown in Fig. 17(b), and it is clear that the difference is negligible.

Now, the effective Hamiltonian after the second rotation was given by Eq. (B.51). Note

that all of the non-zero off-diagonal elements include the factor as′12, which is never larger

than O(ε2|δm2
31|) regardless of the value of a as discussed above. They also all include

a factor of s13, which is O(ε) as we have seen in Eq. (B.9). Therefore, all off-diagonal

elements of H
′′′
a are of order O(ε2s13|δm2

31|) = O(ε3|δm2
31|) or smaller regardless of the

size of a. We conclude that, at this point, off-diagonal elements are negligible and a third

rotation is not necessary.
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Figure 17. (a) The β-dependence of φ for the normal and inverted hierarchies. (b) The β-

dependence of the difference φ
′ − φ.

B.4.3 Absorption of φ
′

into θ13

From the above consideration, we conclude that the matrix which diagonalizesH
′
a, Eq. (B.39),

is given approximately by VW , and that the effective anti-neutrino mixing matrix becomes

v
U ≈ UQVW = R23(θ23, 0)R13(θ13, δ)R12(θ12, 0)︸ ︷︷ ︸

U

QR12(ϕ, 0)︸ ︷︷ ︸
V

R13(φ
′
, 0)︸ ︷︷ ︸

W

. (B.57)

As in the neutrino case, we find

v
U ≈ R23(θ23, 0)R13(θ13, δ)R12(θ12, 0)QR12(ϕ, 0)R13(φ

′
, 0)

= R23(θ23, 0)QR13(θ13, 0)R12(θ12, 0)R12(ϕ, 0)R13(φ
′
, 0)

= R23(θ23, 0)QR13(θ13, 0)R12(θ12 + ϕ, 0)R13(φ
′
, 0)

= R23(θ23, 0)QR13(θ13, 0)R12(θ
′
12, 0)R13(φ

′
, 0) . (B.58)

Here, we argue that

R12(θ
′
12, 0)R13(φ

′
, 0) ≈ R13(φ

′
, 0)R12(θ

′
12, 0) , (B.59)

that is, the 1-3 rotation passes through R12(θ
′
12, 0). This is due to the fact that φ

′
only

becomes non-negligible when a� δm2
12 where s′12 ≈ 0 and c′12 ≈ 1, which means

R12(θ
′
12, 0) ≈

 1 0 0

0 1 0

0 0 1

 , (B.60)

thus any matrix will commute with R12(θ
′
12, 0). In the range a . δm2

21, the angle φ′ is very

small and both R23(φ
′, 0) and R13(φ

′, 0) are approximately unit matrices and Eq. (B.59) is

trivially satisfied. The accuracy of this approximation is discussed in appendix C. There-

fore,

∼
U ≈ R23(θ23, 0)QR13(θ13, 0)R12(θ

′
12, 0)R13(φ

′
, 0)
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≈ R23(θ23, 0)QR13(θ13, 0)R13(φ
′
, 0)R12(θ

′
12, 0)

= R23(θ23, 0)QR13(θ13 + φ
′
, 0)R12(θ

′
12, 0)

= R23(θ23, 0)QR13(θ
′
13, 0)R12(θ

′
12, 0)

= R23(θ23, 0)R13(θ
′
13, δ)R12(θ

′
12, 0)Q , (B.61)

where we have defined

θ
′
13 ≡ θ13 + φ

′
. (B.62)

This angle can be calculated directly without calculation φ
′

via

tan 2θ
′
13 =

(δm2
31 − δm2

21s
2
12) sin 2θ13

(δm2
31 − δm2

21s
2
12) cos 2θ13 + a

. (B.63)

The phase matrix Q appearing rightmost in the above matrix product can be absorbed

into the redefinition of the major phases and can be dropped. Thus, we arrive at our final

approximation in which the vacuum mixing angles are replaced by their effective values in

matter

θ12 → θ
′
12 = θ12 + ϕ ,

θ13 → θ
′
13 = θ13 + φ

′
,

θ23 → θ23 ,

δ → δ , (B.64)

and the eigenvalues of the effective Hamiltonian are given by

λ1 ≈ λ
′′
∓ ,

λ2 ≈ λ
′
+ ,

λ3 ≈ λ
′′
± . (B.65)

Note that of the mixing angles, only θ12 and θ13 are shifted. θ23 and δ stay at their vacuum

values.

C Commutation of R13 and R23 through R12

In the derivation of our approximation formulae above, Eqs. (B.31) and (B.59) played

crucial roles in allowing the second rotation angle to be absorbed into θ13. In this appendix,

we evaluate the validity of these approximations.

C.1 Neutrino Case

The difference between the two sides of Eq. (B.31) is given by

δR ≡ R12(θ
′
12, 0)R23(φ

′, 0)−R13(φ
′, 0)R12(θ

′
12, 0)

=

 c′12(1− c′φ) 0 −(1− s′12)s′φ
0 −c′12(1− c′φ) c′12s

′
φ

c′12s
′
φ −(1− s′12)s′φ 0

 . (C.1)
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Figure 18. β-dependence of c′12, 1− s′12, s′φ and 1− c′φ for (a) normal and (b) inverted hierarchies.

The behaviors of c′12 and 1− s′12 are common to both.
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Figure 19. β-dependence of the non-zero elements of δR for (a) normal and (b) inverted hierarchies.

It is clear that δR will vanish in the two limits a→ 0 where s′12 → s12, c
′
12 → c12, s

′
φ → 0,

and c′φ → 1, and a → ∞ where s′12 → 1, c′12 → 0, s′φ → c13(−s13), and c′φ → s13(c13) for

normal(inverted) hierarchy. The question is whether δR will stay negligible in between as

s′12 runs from s12 to 1, c′12 from c12 to 0, s′φ from 0 to c13 (normal) or −s13 (inverted),

and c′φ from 1 to s13 (normal) or c13 (inverted) as shown in Fig. 18. The dependence of

the non-zero elements of δR on β = − logε(a/|δm2
31|) is shown in Fig. 19. The bumps at

a ∼ δm2
21 for both hierarchies, and that at a ∼ δm2

31 for the normal hierarchy, happen due

to the θ′12 factor competing with the φ′ factor as one of them goes through a resonance

while the other damps to zero. The heights of the bumps depend on the narrowness of the

resonances.

For the case shown in Fig. 19, which was generated with the numbers in Table 1 as

input, all elements of δR are O(ε3) or smaller for the entire range of a, with the maximum

value of ∼ 0.01 ≈ 2ε3 occurring in c′12s
′
φ near a ∼ δm2

31 in the normal hierarchy case. Since

the size of the third rotation angle we neglected in the Jacobi procedure was O(ε2s13),

Eq. (B.31) is valid to the same order provided s13 = O(ε).

For smaller values of s13, the resonance at a ∼ δm2
31 would have been narrower, and the
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Figure 20. β-dependence of the non-zero elements of δR for different values of s13 with normal

hierarchy. (a) s13 = 0.03 = O(ε2), (b) s13 = 0.005 = O(ε3).

peaks in c′12s
′
φ and c′12(1− c′φ) higher. This is illustrated in Fig. 20. In the limit s13 → +0,

s′φ and 1 − c′φ will become step functions at β ∼ 0, and the maximum height of the peak

will be

c′12(a ∼ δm2
31) ≈ s12c12ε

2 = 0.46 ε2 = 0.014 , (C.2)

as can be discerned from Eq. (B.17). This is the same as the asymptotic value of ac′12/δm
2
31

discussed earlier. While this value may not seem particularly large, only a factor of 3/2

larger than the peak in Fig. 19(a), it is parametrically O(ε2). On the other hand, the third

rotation angle neglected in the Jacobi procedure was O(ε2s13). Thus, using Eq. (B.31)

would lead to dropping terms that are larger than the ones we keep when s13 = O(ε2) or

smaller. Also, the sudden change in the accuracy of Eq. (B.31) across a ∼ δm2
31, as can be

seen in Fig. 20, will lead to kinks in the resulting oscillation probabilities.

C.2 Anti-neutrino Case

The difference between the two sides of Eq. (B.59) is given by

δR ≡ R12(θ
′
12, 0)R13(φ

′
, 0)−R13(φ

′
, 0)R12(θ

′
12, 0)

=

 0 s′12(1− c′φ) −(1− c′12)s′φ
s′12(1− c′φ) 0 −s′12s′φ
(1− c′12)s′φ s′12s

′
φ 0

 . (C.3)

It is clear that δR will vanish in the two limits a→ 0 where s′12 → s12, c
′
12 → c12, s

′
φ → 0,

and c′φ → 1, and a → ∞ where s′12 → 0, c′12 → 1, s′φ → −s13(c13), and c′φ → c13(s13) for

normal(inverted) hierarchy. The question is whether δR will stay negligible in between as

s′12 runs from s12 to 0, c′12 from c12 to 1, s′φ from 0 to −s13 (normal) or c13 (inverted), and

c′φ from 1 to c13 (normal) or s13 (inverted) as shown in Fig. 21.

The dependence of the non-zero elements of δR on β = − logε(a/|δm2
31|) is shown in

Fig. 22, which was generated with the numbers in Table 1 as input. We can see that all
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Figure 21. β-dependence of s′12, 1− c′12, s′φ and 1− c′φ for (a) normal and (b) inverted hierarchies.

The behaviors of s′12 and 1− c′12 are common to both.
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Figure 22. β-dependence of the non-zero elements of δR for (a) normal and (b) inverted hierarchies.
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Figure 23. β-dependence of the non-zero elements of δR for different values of s13 with inverted

hierarchy. (a) s13 = 0.03 = O(ε2), (b) s13 = 0.005 = O(ε3).

elements of δR are O(ε3) or smaller for the entire range of a, with the maximum value of
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∼ 0.01 ≈ 2ε3 occuring in s′12s
′
φ near a ∼ δm2

31 in the inverted hierarchy case. Since the size

of the third rotation angle we neglected in the Jacobi procedure was O(ε2s13), Eq. (B.59)

is valid to the same order provided s13 = O(ε).

For smaller values of s13, the resonance at a ∼ δm2
31 would have been narrower, and the

peaks in s′12s
′
φ and s′12(1− c′φ) higher. This is illustrated in Fig. 23. In the limit s13 → +0,

s′φ and 1 − c′φ will become step functions at β ∼ 0, and the maximum height of the peak

will be the same as Eq. (C.2), and the asymptotic value of as′12/|δm2
31|, as can be discerned

from Eq. (B.46). This is parametrically O(ε2), while the third rotation angle neglected in

the Jacobi procedure was O(ε2s13). Thus, using Eq. (B.59) would lead to dropping terms

that are larger than the ones we keep when s13 = O(ε2) or smaller. Also, the sudden

change in the accuracy of Eq. (B.59) across a ∼ δm2
31, as can be seen in Fig. 23, will lead

to kinks in the resulting oscillation probabilities.
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