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ABSTRACT 
 

 

 

 A CONWIP (Constant Work-In-Progress) system is basically a hybrid system with a 

PUSH-PULL interface at the first machine in the line. This research addresses the most general 

case of a cyclic CONWIP system by incorporating two additional constraints over earlier studies 

namely; stochastic processing times and limited intermediate storage. One of the main issues in 

the design of a CONWIP system is the WIP level ‘M’, to be maintained. This research proposes 

an iterative procedure to determine this optimal level. The second main issue is the optimization 

of the line by determining an appropriate job sequence. This research assumes a ‘permutational’ 

scheduling policy and proposes an iterative approach to find the best sequence. The approach 

utilizes a controlled enumerative approach called the Fast Insertion Heuristic (FIH) coupled with 

a method to appraise the quality of every enumeration at each iteration. This is done by using a 

modified version of the Floyd’s algorithm, to determine the cycle time (or Flow time) of a 

partial/full solution. 

 

The performance measures considered are the Flow time and the Interdeparture time 

(inverse of throughput). Finally, both the methods suggested for the two subproblems, are tested 

through computer implementations to reveal their proficiency.    
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Chapter 1: Introduction 
 

 

 

1.1 Background and Motivation 
 

 Modern day high volume manufacturing and assembly lines are excellent examples of 

Transfer lines and automated flexible flow lines. Such lines are capital intensive and thus must 

be utilized to their full extent. As a result, a lot of research has been done to develop production 

control rules, to obtain a tighter control of production parameters such as throughput, machine 

utilizations and work-in-progress.  Many systems, which control the flow of material in assembly 

lines, exist and a lot of research has been done on them since the widespread use of automation. 

These systems are also described as Order Release Mechanisms. Many criteria are used to 

optimize such a system. Trade-off between high line utilization and WIP, is one such commonly 

encountered trade-off. Some authors discuss the minimization of total WIP (Spearman et al. 

1989), while others aim at minimizing the location as well as the quantity of WIP.  

 

The importance of the work in this area stems from the fact that Material Requirement 

Planning (MRP) and Manufacturing Resources Planning (MRP-II) were the first structured 

methods to be developed for Production Planning and Control (PPC) and their disadvantages are 

now started to become apparent in modern day optimized customer driven settings. To this day, 

these methods are deployed commonly in industry. MRP-based methods provide a timely plan 

for the acquisition of raw materials and their processing, based on the Bill of Materials (BOM), 

and the procurement and production Lead Times of the end products (those highest in the MRP 

hierarchy). MRP-II based methods further accommodate the limited capacity of the available 

resources, ensuring that the MRP timely plans would be feasible. 
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Another important fact is that, in factories, the WIP levels between machines have 

capacity limits. This is mainly due to the limited physical space available to store the parts 

temporarily. Other reasons could be found in semiconductor or electronic manufacturing 

industries. Some parts need to be heated to a fixed predetermined temperature before they can be 

worked on the machine down the line. This means that if the queue before a machine down the 

line is too big, the average wait time for the parts would be too high and the parts would cool off 

to a temperature below the lower acceptable limit. This limitation has been overlooked in the 

research carried out in this area. The queue capacities between the machines or stations are 

typically considered to be infinite. However, this research considers limited intermediate 

(between machines) buffers and thus is more in tune with the real world systems. 

The last but most important factor, which differentiates this research from the others, is the 

consideration of processing times as stochastic variables. This is very true in actual production 

settings where processing times are not deterministic and more so if one of the operations in the 

line is a manual operation or requires some level of manual interference. This variance could 

even be the sole cause of failure of perfectly planned MRP-based system, which is very highly 

sensitive to any system internal variations. 

 

Next to set the stage, we describe the various production control systems, their 

differences, analogies, advantages and disadvantage over each other, with more importance 

given to a CONWIP system, as it is the operational system under consideration in this research. 
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1.2 Push and Pull systems – Definition and differences 
 

 Virtually, all descriptions of just–in–time (JIT) systems make use of the terms push and 

pull production systems. In the following paragraph, we present the two systems by offering a 

formal definition at the conceptual level. The reason for superiority of pull systems over push 

systems is also explained. By separating the concepts of push from pull in their specific 

implementations, we observe that most real-world systems are actually hybrids or mixtures of the 

“pure push” and “pure pull” systems. The CONWIP system, considered in this research, is just 

such a synthesis. 

The father of JIT, Taiichi Ohno (Ohno 1988) used the term pull in a very general sense. The 

following words are quoted from his research: 

 

Manufacturers and workplaces can no longer base production on desktop planning alone and 

then distribute, or push, them onto the market. It has become a matter of course for customers, 

or users, each with a different value system, to stand in the frontline of the marketplace and, so 

to speak, pull the goods they need, in the amounts and at the time they need them. 

 

Wallence J. Hopp and Mark L. Spearman in their book “Factory Physics” [2nd ed], define push 

and pull system as follows: 

 

Definition: A push system schedules the release of work based on demand, while a pull system 

authorizes the release of work based on the system status. 



 13

Figure 1.1 contrasts these two methodologies: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1: Release triggers of push and pull production systems (As mentioned in Chapter 10 of 

Factory Physics) 
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A push system does not accept feedback from the system factors themselves. It releases a 

job in the production process when called for by an external and predetermined schedule. The 

time of release is not modified in accordance with what happens internally in the system. Thus, if 

a machine or a processing station fails and is down for some time, parts start to pile up till the 

machine is repaired. However, if that station had sent a signal, which was interpreted by the push 

system, the schedule could be modified to avoid or at least reduce the blocking. On the contrary 

a pull system releases a job onto the shop floor only when a signal generated by the line status 

calls for it. 

 

Another useful way to think about the distinction between push and pull systems is that 

push systems are inherently make-to-order while pull systems are make-to-stock. That is, the 

schedule that drives a push system is driven by orders (or forecasts), but not by the system status. 

The signals that authorize releases in a pull system are voids in a stock level somewhere in the 

system. Viewed in this sense, the base stock model, which triggers orders when the stock drops 

below a specified level, is a pull system. A MRP system, which releases orders into the system 

according to a schedule based on customer orders, is a push system. 

Most real-world systems such as the CONWIP system (which is a push-pull system) are of 

course a mixture of these pure systems. Hybrid systems such as the push-pull system gives better 

control under certain conditions. 

 

One such idea introduced by Spearman et al (1990), was to set a predetermined WIP level 

for a pull system and was called the CONWIP (Constant Work In Progress) system. This 

research deals with issues related to this type of control system. 

 

All the differences explained in the preceding paragraph can thus be summarized into the 

following statement:  

Push systems control throughput and observe WIP whereas Pull systems control WIP and 

observe throughput. 

 

 

 

 



 15

The operation of a CONWIP system is depicted in the Figure 1.2 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2: An illustration of a CONWIP system 

 

 In any production system, there are a finite number of products to be manufactured on the 

line (in reality, this could be a very large number). If the jobs, which were already sequenced or 

which entered the system are deleted from the job set of all parts planned to be manufactured, the 

jobs left constitute a backlog list. One of the aims of this research is to sequence the jobs on this 

list. Any CONWIP system can be considered as consisting of a finite number of containers 

shown schematically in the above figure. The containers, shown schematically, are of a fixed 

capacity (lot size or transfer size; if different from lot size) or as assumed in the present research, 

of size one. The first machine has an ever-available reservoir of jobs, which are loaded on 

machine 1 as soon as its status is idle. A constant number of containers circulate in the system, 

thus maintaining a constant WIP. After leaving the system at machine m, the containers reenter 

the system at machine 1 with a new job or set of jobs in them. The intermediate storage buffer 

capacities limit the number of such containers (or jobs), which can be stored between machines. 
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1.3 Effect of Variability 
 

 In a given production shop, all production related parameters need not be deterministic 

and constant. For example, the processing time of any machine in the production line may vary 

due to many extraneous and internal factors. If the line throughput is optimized based on the 

deterministic values, a small change in the values will disrupt the plan and more than often, this 

is the case in reality. Another common example of variability is the demand of products. Static 

scheduling rules based on forecasted demand, lose their effectiveness when there is a deviation 

of the actual demand from the forecasted value. If WIP levels are high, parts must be released to 

the plant floor well in advance of their due dates. Due to the fact that customer orders become 

less certain as planning horizon is increased, the inherent variability of far fetched future 

demands, has an influence on the system output reliability and thus degrades the performance of 

the system if the WIP level is still maintained the same. 

Also, high WIP levels impede priority or scheduling changes, as parts may have to be moved out 

of the line to make way for a high-priority part. A pull system releases work as late as possible 

based on the systems internal inputs, which ensures that the releases are based on firm customer 

orders to the greatest possible extent. 

 

The key to keeping customer service high is a predictable flow through the line. In other 

words, we need to have low cycle variability. If the cycle time variability is low, then we know 

with a high degree of precision how long it will take a job to get through the plant. This allows 

us to quote more accurate due dates or shipping dates. Low cycle time variability also helps in 

quoting shorter lead times to customers. If cycle time is 10 days plus or minus 5 days, then we 

will have to quote a 15-day lead-time to ensure high quality of service. On the other hand, if 

cycle time is 10 days plus or minus 2 days, then a quote of 12 days will suffice for the same level 

of service.  

According to Spearman and Hopp (“Factory Physics [2nd ed]”), kanban achieves less 

variable cycle times than does a pure push system. Since cycle time increases with WIP level (by 

Little’s Law), and kanban prevents WIP explosions, it also prevents cycle time explosions. 

However, note that the reason for this, again, is the WIP cap – not the pulling at each station. 
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Hence, any system that caps WIP prevents high explosions in WIP, and hence cycle time, that 

can occur in a pure push system. 

 

For more explanation about the effect of variability on system behavior, refer to section 

1.4. In order to create a model robust enough to allow limited variability, this research assumes 

stochastic processing times at all the machines. The algorithm proposed will be tested for such a 

non-deterministic system, to appraise the quality of the solution. The first part of the problem 

considered in this research, is finding the value of the optimal WIP level and the proposed 

solution algorithm uses the stochasticity to its benefit.  
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1.4 Importance of Bottleneck:  A Comparison of CONWIP with kanban 
 

In Eliyahu Goldratt's book “The Goal: A Process of Ongoing Improvement (1984)”, the 

importance of a bottleneck in a factory is described through an analogy to a troop of boy scouts 

out for a march. One of the scouts, who is carrying an extra-heavy backpack, walks more slowly 

than the rest, so a gap keeps opening between him and the scouts in front. This is then connected 

to how inventory masses up in front of a slow machine in the factory.  

But this is less than half the story. In a column of marching soldiers, the problem is not a 

slow marcher falling behind. Each soldier carries the same weight, so the line is balanced, and 

there is no pronounced bottleneck. The problem is variability amplification: If the first soldier for 

some reason speeds up a little bit, the second soldier will see a gap open in front of him, and take 

this as a signal to speed up, as well. But, he will have to speed up more than the first soldier did, 

in order to catch up with him. When he has caught up, he then needs to slow down again to avoid 

bumping into the one in front.  

Now, the third soldier sees a gap opening up even faster than the second one did, so he 

has to speed up by even more, and has to slow down more abruptly when he has closed the gap. 

This way, the small change in speed amplifies down the line like a whiplash, and the poor guy at 

the end of the line will alternate between running flat out and marching in place.  

This is what occurs in a kanban line. The last machine in the line tries to track the 

demand process, but adds some noise to it due to process variability. The second last machine 

tries to track the input process of the last machine, but adds some more noise. This amplifies the 

noise upstream, so the first machine in the line will alternate between working at capacity and 

waiting for something to be taken out of its output buffer. To get rid of the problem, one has to 

eliminate all process variability, such as machine failures and operation time variability. This can 

be time-consuming and expensive.  

How do soldiers counteract this age-old problem? Very simply as follows: If the soldiers 

are recruits, they get the attention of a very loud drill sergeant that yells out the cadence. More 

seasoned soldiers will be singing a marching song as they go along, and any infantry outfit has a 
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large supply of these songs. Both of these techniques have the effect of distributing the proper 

cadence to every soldier in the line, simultaneously.  

This is what the CONWIP control does. It passes the demand information, without any 

noise, to the first machine on the line. All downstream machines know that any part arriving in 

their input buffer can be worked on, so they hear the signal, too.  

But marching soldiers do not close their eyes and march blindly. Even if they receive the 

proper cadence, they will still be watching the distance to the marcher in front. If the gap widens, 

they will take longer strides, and if it narrows, they will shorten their steps. This way, the 

marchers act on two types of information at once: The global information flow that determines 

the overall speed, and the local information that is used for minor adjustments.  

This is also the way the hybrid policy works: The CONWIP control gives a global 

information flow (like the drill sergeant), and the kanban control gives a local flow of 

information (like watching the distance to the guy in front). In the hybrid policy, the global 

information flow from the demand process is supplemented by the local information from the 

buffer levels. This attains the advantages of CONWIP control, while using the strengths of 

kanban control to cancel its disadvantages.  
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1.5 Robustness of a control system: CONWIP vs. Push 
 

 So far, we have talked at length about analogies and differences between CONWIP and 

kanban methodologies, both being variations of Pure Pull methodology. In this section, we 

discuss a very important notation namely the “Robustness” of a system, with respect to 

CONWIP and Push methodologies.  

Wallace J. Hopp and Mark L. Spearman in their book “Factory Physics[2nd ed]” define the law of 

robustness of a system as follows: 

The profit function: 

 

Profit = pTH – hw        (1.5.1) 

 

where, 

p is the marginal profit per job 

TH is the throughput rate 

h is a cost for each unit of WIP (this includes the costs for increased cycle time, decreased 

 quality, etc.) 

w is the average WIP level 

 

In a CONWIP system, throughput will be a function of WIP, that is, TH(w), and we will choose 

the value of w to maximize profit. In the push system, average WIP is a function of release rate 

w’(TH), and we will choose the value of TH that maximizes profit. 

Now, the CONWIP robustness law is concerned with what happens if w is chosen at a sub 

optimal level in the CONWIP system or TH is chosen at a sub optimal level in the push system. 

Since WIP and throughput are measured in different units, we can measure the sub optimality in 

terms of percentage error. The curves of Profit functions vs. percentage deviation from optimal 

are given below: 
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Fig 1.3: Relative robustness of CONWIP and pure push systems (As mentioned in “Factory 

Physics [2nd ed] 
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1.6 People Issues 
 
 Finally, we complete our comparison of CONWIP and kanban with two people-related 

observations. One should note that a kanban system is a pure pull system for all workstations. 

However, a CONWIP system is a pull system only for the first station, but not for the stations 

that follow. All these stations are allowed to process products as soon as all the resources needed 

are available. In a pull system, operators must wait for a need for the product somewhere down 

the line and when they do receive this signal, they are expected to produce as soon as possible to 

replenish the starvation. This induces an operator’s stress called the “pacing” stress. In a 

CONWIP system, this stress will only be induced at the first station, whereas the stations down 

stream do not experience this stress. This is known to be a main reason of operator 

dissatisfaction.  

 

The second most discussed issue in the literature is that pulling at each station, in a 

kanban line, may foster a closer relationship between operators of adjacent workstations. Since 

operators must pull needed parts in a kanban system, they will communicate with the operators 

of the upstream machines. This provides an opportunity to check parts for quality problems and 

to identify and discuss any problems pertaining to the production rate. 
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1.7 Trade-off between high line utilization and WIP 
 

One always strives for a high service level of predictability. Thus, it is a normal human 

tendency to carry a high WIP in the system, as it is the easiest way to achieve that goal. 

However, WIP is locked capital and should be avoided in any case. In other words, only that 

amount of WIP should be carried, which affects the system performance such as throughput.  

Thus, one of the most important parameter, which should be carefully chosen, is the WIP level. 

This is more relevant for a CONWIP system as the whole advantage of this system depends upon 

the carefully chosen WIP level. If the WIP level is chosen very high, the flow time is 

unnecessarily high and does very less to aid in maintaining a high throughput. However, if the 

WIP is very low, the throughput is directly affected in a detrimental fashion and the system 

cannot produce to its capacity due to the dearth of products in the system. A high WIP increases 

the mean and variance of flow time thereby resulting in long lead times, poor forecasting and late 

feedback. Thus, generally, we want as small a WIP as possible that allows us to approach the 

maximum throughput of the system. The results of a simulation study, performed to study the 

effect of WIP in a CONWIP system on interdeparture time and cycle time (Flow time), are 

shown in Figure 1.4: 
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Fig 1.4: Variation of Flow time and Cycle time with WIP level m 

 

The plot clearly shows that after the optimal m (WIP level), the interdeparture time remains 

unchanged, while the Cycle time (Flow time) increases from its value at optimal. 
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1.8 Concluding Remarks 
 

 This chapter throws light on the relevant issues related to control of a CONWIP system. 

Even though the detailed knowledge of all these factors is not required for the understanding of 

this research, they provide the reader with a good base to appreciate the topic. Some of these 

issues such as the Robustness of a CONWIP system to WIP level are used to our benefit in the 

methodology proposed. This research is the first to incorporate the condition of variability 

(stochastic processing times) in a limited intermediate storage CONWIP line with blocking. 

Finally, issues such as Peoples issues, though not in the domain of this problem have to be 

considered with as much seriousness as the factors considered in this research. 
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Chapter 2:  Problem Background and Literature 
Review 

 

 

 

 As mentioned in Chapter 1, the problem that we address is two-pronged. Both the WIP 

level M, and the sequence in which the jobs are released into the system impact its performance. 

This is illustrated in the Table 2.1: 

 

 Table (2.1): Variation of flow time over M and sequence 

 

 

The table shows the variation of flowtime over both M and sequence. For each sequence, the 

values of Flow time and Interdeparture time is noted for each job for every level of WIP (M). 

The last row is the total of these times. Thus, the optimal sequence, which results in the least 

flow time, could be anywhere in this matrix. In this case however, the M* is the same for both 

  M = 2 M = 3 M* = 4 M = 5 
  Job # FT IT FT IT FT IT FT IT 

A 14 17 14 14 20 13 23 13 
B 12 17 12 14 16 13 21 13 

A
B

C
 

C 7 17 12 14 16 13 19 13 

  Total 33   38   52   63   
C 14 17 14 14 20 13 23 13 
B 9 17 13 14 17 13 19 13 

C
B

A
 

A 10 17 11 14 15 13 20 13 

    33   38   52   62   
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the sequences (since value of flowtime is the same and equals 52), which might not always be 

the case. 

  

 Thus, the problem that we address pertains to the determination of the optimal values of 

both M and the sequence in which to release the jobs into the system, while considering finite 

buffer capacity in front of each station except the first one on the line. Thus, any feasible solution 

can be stated mathematically as flowtime or cycletime (henceforth referred to as FT or CT 

respectively) = f (M, seq.) or throughput. 

  

 This chapter defines the problem statement precisely and describes the scope of the 

research. It also lists the premises on which the research is based. As mentioned in the earlier 

chapter, this research assumes stochastic variables to represent processing times of the jobs on 

the machines. Thus, an important consideration in the design of the system is the proper choice 

of a probability distribution function (pdf). Many researchers use Exponential distribution due to 

its ease of use and simplicity to understand and also because only one parameter is required to 

define the distribution. However, an Erlang distribution with a low mean added to a high 

constant is more suited to manual lines as described in this chapter. An equally important issue in 

any research is to define the performance measures, which would be used to determine the 

quality of the proposed solution. A couple of performance measures are defined in this chapter. 

  

 Finally a summary of an exhaustive literature review is presented, which is divided into 

four parts from the basic study of a CONWIP system and its advantages to the use of queuing 

theory, and finally a brief description of a few in the multitude of flow shop-sequencing 

heuristics as used to address the CONWIP sequencing issues. 
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2.1 Problem definition 
 

2.1.1  Problem Statement 
 

This research attempts to find optimal solutions to the following two questions, which are 

cardinal in the design and control of a CONWIP flow line production system: 

• What constant work in progress (WIP) should be maintained? 

• What is the optimal sequencing policy at the first machine, at this optimal WIP level? 

Thus the main aim is to find the optimal combination of CONWIP level M and input sequence, so 

as to minimize the FT or CT and to maximize the throughput. The above two questions have to 

be answered for a general case of a flow line, with finite intermediate buffers (leading to the 

occurrence of “Blocking”), and stochastic processing times. 

 

2.1.2  Scope and Assumptions  
 

 We have mentioned in the earlier chapters that the objectives that we have coined for 

this research pertain to both the WIP level selected, as well as the sequence in which the jobs are 

to be released into the system. Greco and Sarin (1996) studied this issue for a CONWIP system, 

with deterministic processing times and unlimited buffer capacities between stations. A heuristic 

to sequence the jobs in the backlog list was proposed. Their heuristic was a modification of the 

existing procedure employed in cases of static flow shops, to minimize the makespan.  

This research attempts to determine the following: 

• The optimal value (or very close to optimal value as the curve in Chapter 1 indicates that 

CONWIP is relatively insensitive to minor deviations from the optimal value) of m. 

• A lower bound on the value of M* (optimal m; to help achieve the above). 

• The optimal sequence of the jobs in the Backorder list in order to minimize both M and 

makespan (or Flow or Cycle time). 
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This research is based on the following assumptions: 

1) Production line type: Mixed models (single item flow, no setup between models). Serial 

production line. 

2) Size of models: Large (3 job families or more) 

3) Arrivals: Static (all items are available at t = 0)  

4) Number of workstations: Large (3 or more) 

5) Type of workstation: No parallel machines; serial flow line 

6) Job release policy: Cyclic; Pull for the first machine and push for all the other machines in 

the line. 

7) Processing times: Stochastic; Exponentially distributed 

8) Homogeneity: Non-homogeneous (for each model) 

9) Work station reliability: 100 % Reliable 

10) Buffer size: Finite and constant. 

11) Production control methodology: CONWIP with n jobs in the system. (For initial study the 

following system types were tried: 

i. Open system with infinite buffer capacity 

ii. Buffers with a finite capacity 

iii. CONWIP system. 

(A comparison of results corroborated the previously published results of similar experiments, 

indicating superior control of CONWIP system over other methods. These experiments are 

however irrelevant to this research and hence are not included.) 

12) Buffers queuing discipline: FCFS 

13) Due-Dates: None (Made to Stock) 

16) System state: All parameters are measured after the system has reached its steady state. 
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2.2  Outline of thesis 

 

 The outline of the thesis is as follows. Chapter 1 provides the required background and 

discusses various issues related to the CONWIP system. This chapter brings out the relevance of 

this type of control in a modern day manufacturing environment. Chapter 2 gives a brief outline 

of the problem under study, and also states succinctly, the assumptions made. This is followed by 

a detailed and exhaustive literature review, which is divided into four relevant. Chapter 3 

presents relevant analysis of the CONWIP system. A MIP formulation is presented, which 

generates additional insights of the problem. The iterative method to determine the value of M* 

is presented in chapter 4. The computer code is included in Appendix A, and the results of 

experimentation are mentioned in Appendix B. Chapter 5 addresses the issue of finding the best 

permutational sequence at the input. Appendix C and D present the computer code used to test 

the algorithm and the results of the code respectively. Finally, chapter 6 presents conclusions and 

recommendations for further research. 
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2.3  Stochastic distribution – Why exponential?? 
 

 It is very important to choose a distribution, which captures the actual process as close as 

possible. The deviation of the actual sample from the real system should be within certain tight 

limits of the corresponding values generated from the fitted distribution.  

The stochastic models studied in the literature usually assume very special processing time 

distributions. The exponential distribution, for example, is a distribution that has been studied at 

length. In reality, processing times usually are not distributed exponentially. Studies in the past 

have shown that the density functions in practice are as shown in Figure 2.1: 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1: The Density function of job processing time observed in practice 

 

One can think of this curve to be a mixture of an Erlang (k) distribution and a constant 

value. That the processing time may have this distribution is highly plausible especially for 

manual operations. One can imagine that there is a certain minimum time that is needed to 

perform the task to be done. Even the fastest worker cannot finish the task before this constant 

portion of the time. The Erlang part of the time captures the variability involved with manual 

operation. For automated operations, however, the time is more or less deterministic, with little 

or no variation.  However, in this research, we choose the exponential distribution, as it is the 

most commonly used distribution for many applications. Also, it is the most researched and is 

t 

f(t) 
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easy to use, which simplifies the solution especially of difficult NP-hard problems such as this 

one. 

 

Another important issue with stochastic data is the correlation involved. Successive 

processing times on the same machine may tend to be positively correlated in practice. However, 

in this research, we assume the processing time values of the jobs to be independent. When the 

down times of the machines are considered, they can be added to the processing times. Thereby 

resulting in an increase in the processing time variability. 
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2.4  Performance measures 
 

 Operational parameters need to be estimated to enable us to predict job completion times 

in order to aid the management in the optimization of monetary criteria, customer service and 

system design. In this research, we estimate two low level operational parameters: 

• Maximum throughput/ Minimum interdeparture time 

• Minimum WIP/ Minimum flow time 

 

The mean interdeparture time is the inverse of the mean throughput rate and therefore may be 

used in its place. Flow time (cycle time) is another important parameter that characterizes the 

system performance and is thus of interest to us. There is always a trade-off between these two 

parameters when the system is sub-optimal, after which the flow time increases without any 

decrease in throughput with increase in WIP. This point is the optimal CONWIP  level.  

This trade-off is clearer from the inverse correlation between these two parameters as given by 

Little’s law applied to the whole line.  

   

                        

M =  
          (FT or CT)

       (2.4.1) 

             Interdeparture time 
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2.5 Literature Review 
 

 CONWIP control strives to maintain a constant work-in-progress (Spearman et al. 1990). 

When the present WIP level is reached, no new job is allowed to enter the system until a job 

leaves. Although the CONWIP system of control is not new to industry, not much research has 

been reported in this context, which addresses the issues at hand. 

 

The literature review is divided into four categories: 

• Study of the CONWIP system and the advantages of using a CONWIP system over other 

existing systems with a view to build a good base, introduce common terms in this context 

and coin some common premises for this research. 

• Shed some light on a few approaches, presented in past research, on this topic such as the use 

of simulation to analyze the behavior of the system due to the difficulty in obtaining 

analytical results, and relevant methodologies used in related research. 

• Discuss the use of Queuing theory models and Mean Value Analysis to similar types of 

problems, and 

• Discuss the importance of a sequencing policy at the optimal (or good) value of the 

CONWIP level. 

 

2.5.1  Study of CONWIP systems and terminologies used 
 

CONWIP, as kanban, operates as a pull system, i.e. the start of a batch is triggered by the 

completion of another batch. In order to achieve this method of control, CONWIP utilizes a 

closed production system approach. Another way to look at a CONWIP system, as mentioned in 

chapter 1, is to consider a fixed number of containers (or cards) that traverse a circuit, which 

constitutes the entire production line. Each container is then sent back to the beginning of the 

line where it waits in queue to receive another batch of items. During each container’s cycle, all 

items in the container are of the same type. The amount of material loaded in the container, is 

equal to a predetermined transfer lot size. 
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It was shown by Spearman et al. (1990) for a single production line, that in the cases of 

variable processing times and/or unreliable machines, the kanban policy tends to build up WIP 

upstream of the bottleneck machine. However, by maintaining higher (but still, constant) WIP 

level, the system results in higher bottleneck utilization and as a consequence, a higher 

throughput. 

There are several factors, which motivate the use of CONWIP over kanban. Some of these as 

alluded to in Spearman’s paper are: 

• Large product mixture (which affects the repetitiveness of the production system) 

• Long setup times 

• Process variability 

• Unbalanced workload 

 

Thus, it is not purely due to high variability that CONWIP is preferred over kanban. In 

fact, CONWIP addresses all these issues by relaxing one of the cardinal constraints for kanban 

system of control. Kanban aims at keeping a minimum WIP level, and where possible, zero. 

However a CONWIP system allows a low constant inventory, which minimizes the flow time, 

while maintaining a high throughput. Dar-El, Herer and Masin (1998), list the following 

advantages of CONWIP over kanban system: 

• It is very robust regarding changes in the production environment. 

• It easily handles the introduction of new products and changes in the product mix 

• It copes with flow shop operations with large set-up times and permits a large product mix 

• CONWIP systems yield larger throughput than kanban systems for the same number of 

containers (maximum inventory), even for systems with yield losses. 

 

Spearman et al (1990) has shown, that this inherent difference between CONWIP and 

kanban, of maintaining a constant level of inventory, has resulted in rendering the CONWIP 

model more robust in terms of system performance due to process variability. Kanban assumes 

negligible setup times and this condition is more often untrue than true in actual manufacturing 

setups. CONWIP ensures faster response to market demand, because some work has already 

been carried out and incoming orders need not necessarily be processed from the very beginning 
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(unlike Kanban), thus allowing setup times not to be negligible. In fact, this is the very reason 

that CONWIP is more suited to handle a large product mix than does kanban. 

 

 Research carried out by Bonvik, C.E. Couch and Gershwin (1997) at MIT compares the 

performances of different production line mechanisms. The performance of a four-machine 

tandem production line was studied under different control policies such as kanban, Minimal 

blocking, CONWIP and hybrid kanban-CONWIP. The main performance measures considered 

were service level and amount of WIP. The research basically used simulation to test various 

strategies and compared their results statistically. The CONWIP and hybrid policies gave better 

response to changes in demand rate.  

 

Dar-El, Herer, Masin (1999) performed a study on CONWIP closed production control 

system and developed estimates for the level of WIP for four important performance measures. 

The model assumes finite mean and variances of processing time distributions. Detail insights 

were generated from the analytical model developed, into how a CONWIP production system 

operates. 

 

2.5.2  Use of simulation in related research 
 

 Another interesting method employed has been the use of simulation along with 

scheduling rules to determine the release policy for a CONWIP system. The problem alluded to 

in the paper by Graves and Milne, addresses the issue of when to authorize work centers to 

produce or, conversely, authorize to remain idle. This problem is a little different from the 

problem on hand (of this research), but is nevertheless important to know, as it is an ingenuous 

methodology to deal with the issue of order release, rather than ordering of jobs at an individual 

work center. The manufacturing set up considered by Grave and Milne bears similarity to this 

research from the fact that the processing times at the work centers are probabilistic in nature. 

This heuristic releases jobs only if their estimated times are sufficiently small. Waiting times are 

estimated using simulation. Finally, simulation is also used to examine the performance of the 

heuristic. 
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 Due to the complexity of the analytical methods for multistage production lines, the 

analytical results are limited to two – or three – station lines under some restrictive assumptions. 

Thus, many approximate decomposition solutions procedures of the performance measures have 

received considerable attention. The study carried out by Tan and Yeralan (1997), uses an 

iterative decomposition scheme, which does not alter the station parameters such as the 

breakdown, repair and service rates. At every iteration, the input and the output processes of the 

station model are matched to the most recent solutions of the adjacent stations. The processing 

and repair times are assumed to be deterministic.  Due to the fact that the single station models 

have closed form solutions with respect to the buffer capacity, the computational effort 

associated with the decomposition method is independent of the buffer capacities. The issue of 

convergence, typically associated with such approximate iterative methods, is also addressed. 

 

2.5.3  Use of Queuing theory models and Mean Value Analysis to similar problems  

 

 Queuing network theory has rapidly progressed since the fifties. More general classes of 

networks turned out to have a product-form solution. The generalizations include multiple 

customer classes or product types, queuing policies (FIFO, LIFO etc.) and general distributions 

of service time distributions. The pioneering work in this area was presented by Jackson (1957). 

Jackson presented a situation with n ‘departments’, each being a system with a finite capacity 

and a Poisson input distribution and exponential processing times. He proved in this study that 

if the mean arrival rates at the various departments are properly defined, then the result is a 

steady-state distribution, of the waiting-line lengths (at the departments) that are independent 

and are exactly like those of the ‘ordinary’ multiserver systems that they resemble. 

 

 Dubois D (1982) presented a mathematical model of a flexible manufacturing system 

with limited in-process inventory. Unlike earlier approaches, consisting of closed queuing 

networks, Dubois proposed an open queuing network with limited amount of inprocess 

customers. He mentions that for such queuing networks, the product form of state probabilities 

is valid and the normalization constant can be easily obtained. 
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 Chandy M. K. and Sauer C. H. (1978) explain the trade of between the cost of building 

and solving a model to solve the problem of Optimization of Computing Systems and the 

credibility of the model. He shows that queuing theory can be successfully be used to address 

this problem resulting in a sufficiently credible approximate solution. 

 

 Though Mean Value Analysis (MVA) existed before it was first used to address issues in 

a stochastic manufacturing problem, Riser (1980) was first to find solutions to queuing 

networks with product-form solutions in terms of mean queue size, mean waiting time and 

throughput. This new analysis lead to simpler algorithms, which have better numerical behavior 

than the ones previously proposed. Riser pointed out that little attention was paid to a strange 

property of the product-form solution, namely, the fact that from the many parameters, 

necessary to specify a network, much fewer entered into its solution. His research was based on 

the following two intuitively appealing principles: 

• A customer upon arrival into the system sees, in the long term, the same closed system as 

the one with himself removed (one less customer). 

• Little’s law applies to both the entire system as well as each queue individually. 

For the single class system, they define the following variables: 

 

K Number of customers 

N Number of queues 

i Mean service time of queue i 

ti Mean waiting time of queue i (including service) 

ni Mean queue size of queue i (including customer in service) 

λ(K) Throughput of the chain, with K customers in the system 

 

The first principle stated above can be restated in mathematical terms as follows: The 

probability to see state k upon customer arrival in S(k) is the same as the long term equilibrium 

probability of k in S(k-1). 

 

Or 
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ti(k) = i + i ni (k-1)            (2.5.3-1) 

 

The second principle, stated above can be expressed in mathematical form as follows: 

�N�� �N���∑
=

N

i
kit

1
)(          (2.5.3-2) 

and   ni�N�� � �N��
� )(kit         (2.5.3-3) 

 

 Though Riser proposed the MVA algorithm, he did so intuitively, and did not prove its 

correctness mathematically. Due to its simplicity, it was computationally much less demanding 

than a convolution algorithm, and also avoided the problems of floating point 

overflow/underflow, which were inherent with earlier algorithms. 

 

 Hildebrant (1980) used Riser’s MVA methodology to address the issue of scheduling 

flexible manufacturing systems.  The algorithm used was essentially the same as proposed by 

Riser, but was extended to more than one server at each processing station. He showed that 

queuing methods yield good solutions for the purpose of balancing work among resources. It is 

not necessary that they predict system performance exactly. Relative accuracy seems sufficient. 

He also proved that this algorithm was much more efficient computationally, when compared to 

the non-linear programming model he developed as a part of his research. 

 

 Another heuristic method based on Mean Value Analysis for flexible manufacturing 

systems performance measures was suggested by Cavaille and Dubois (1982), just after Riser’s 

work was published. Researchers started using queuing theory as a cheap and quick but not very 

accurate method as an alternate for expensive simulation techniques.  An interesting contribution 

of this research is the critical discussion about whether MVA can be used to solve FMS related 

problems.  

 

 Suri (1982) studied the robustness of analytical-models for non-classical discrete event 

systems. An important point, which the author made, was about the use of the “Homogeneous 

Service Times” (HST) assumption. HST has been criticized as being restrictive since, for 

analysis of non-classical discrete event systems. His results proved that performance measures 



 40

were in fact less sensitive to such violations. It thus further explained the robustness of queuing 

models.  

 
As mentioned, Hildebrant, (1980) introduced in the MVA algorithm, a variable� � DV� D�

correction term to improve its accuracy. He, however, does not mention the reason behind the 

expression used to get the value of this correction term. Schweitzer and Seidmann (1986) did 

research to get a more accurate value of this term. The approximate MVA treatment by Riser and 

Lavenberg considers mean queue lengths as seen by an arriving customer, in a closed network 

with product form solution, equal to the ergodic mean queue lengths in the same closed network 

from which the arriving customers has been removed. Their research describes properties 

characterizing the original approximation, which the authors hope to result in providing useful 

guidelines, in order to create better algorithms. 
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2.5.4  Sequencing policy at the first machine  
 

Sequencing and scheduling is concerned with the optimal allocation of resources to 

activities over a period of time, which could be infinite of finite.  Of obvious practical 

importance, it has been the subject of extensive research since the early 1950’s and an impressive 

amount of literature has been created. Thus, any discussion of the available material is bound to 

be selective. In the following subsections we cover relevant research done since this problem 

was first studied. The terminology ‘flow shop’ is used to describe a serial production system in 

which all jobs flow along the same route. A more general case would however be when some 

jobs are not processed on some machines. In other words these jobs simply flow through the 

machines, on which they are not processed at, but without having to spend any time on them. To 

generalize the situation, we can assume that all the jobs have to flow through all the machines 

but have a zero processing time at the machines, which are not in the routing matrix. The static 

flow shop-sequencing problem denotes the problem of determining the best sequence of jobs on 

each machine in the flow shop. The class of shops, in which all the jobs have the same sequence 

on all the machines, is called ‘Permutation’ flow shop. Thus, in this case, the problem is then be 

that of sequencing the jobs only on the fist machine, due to the addition of an extra constraint of 

same job sequence at each machine. Ironically this problem is a little harder to address than the 

more general case, even though this might seem as a small part (sub problem) of the general 

case. Various objectives can be used to determine the quality of the sequence, but the majority of 

the research considers the minimization of makespan (i.e., the total completion time of the entire 

list of jobs) as the primary objective.  Other objectives that can be found in the literature of flow 

shops are flow time related (e.g., minimal mean flow time), due-date related (e.g., minimal 

maximum lateness), and cost related (e.g., minimal total production cost). 

 

2.5.4.1    Analytical and Heuristic Approaches 
 

The earliest analytical results for flow shop sequencing are due to Johnson (1954).  He 

has shown that, in a two-machine flow shop, an optimal sequence can be constructed as follows:  
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Given the pair { }a bi i, , the processing time of each lot i on each machine j (j=1,2), the optimal 

sequence on both the machines is the one in which the following condition is satisfied for any 

two lots i,k: 

 

if: { } { }min , min ,a b a bi k k i≤ then lot i precedes lot k    (2.5.4.1-1) 

 

 The above condition is known as Johnson’s rule.  One way to implement the rule is to 

first arrange the lots with a bi i≤  (i.e., for which machine 2 is dominant) in increasing order of 

ai  and then to arrange the remaining lots in decreasing order of bi .  In other words, the lots are 

sequenced according to a shortest processing time (SPT) rule on M1  and a longest processing 

time (LPT) rule on M 2 . 

  

An immediate result of the above solution is that the same sequence is utilized for both 

the first and the second machines, i.e., the sequence need not be modified.  As mentioned earlier 

this family of sequences is termed a “permutation sequences”.  Although permutation sequences 

need not be optimal in general m-machine flow shops, it has become a tradition to assume 

identical processing sequence on the machines and to look for the best permutation sequence 

(Lawler et al, 1993).  Conway et al (1967) have observed that, due to the inverse property of the 

makespan objective, there exists an optimal sequence which is identical on M1  and M 2  as well 

as on M m−1  and M m .  Hence, for the three-machine flow shop, there must exist an optimal 

permutation sequence.  

  

Unfortunately, Johnson’s rule cannot be generalized to yield optimal sequences for flow 

shops with more than two machines.  The three-machine flow shop problem is strongly NP-hard 

as shown by Gary, Johnson & Sethi (1976). Special problems of three machines in which one 

machine dominates the others can be reduced to equivalent two-machine problems. The property 

of dominance in general can be stated in mathematical terms as: 
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        (2.5.4.1-2) 
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Consider a special case when one machine has very little load assigned to it, compared to 

the neighboring machines. Then, no jobs will ever wait in queue at this machine. That is, the 

moment a job is released from the machine immediately upstream, it will start it’s processing on 

this machine. Thus, intuitively, it appears that this machine serves as a buffer or a waiting room 

for the busier neighboring machine downstream. Thus heuristics are typically used to address 

this typically combinatorial problem. Next we present some well-known heuristics and 

methodologies for the flow shop problem. 

 

Page (1961) was the first to introduce the concept of a slope index in prioritizing jobs.  

Palmer (1965) then adopted this idea and proposed the following slope index to be utilized for 

job sequencing in a general m-machine flow shop: 
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( ) ( ) ( )
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m p m p m p
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. . .

    
  (2.5.4.1-3) 

 

Then, a permutation schedule is constructed using the job ordering: 

 

s[1] ��V [2] ��«���V [n] 

 

Where si  is the slope index of job type i.  The sequence is constructed in the decreasing order of 

the slope indices of the lots.  In the spirit of Johnson’s SPT(1)-LPT(2) rule, Palmer’s rule gives 

priority to jobs having higher tendency to progress from short times to long times.  However, for 

m=2, Palmer’s rule does not coincide with Johnson’s rule and therefore does not guarantee 

optimality even for the two-machine case. 

 

Campbell et al (1970) proposed a simple heuristic extension of Johnson’s rule to the m-

machine flow shop problem.  This extension is known in the literature as the CDS heuristic.  The 

heuristic constructs at most (m-1) different sequences from which the best sequence is chosen.  

Each sequence corresponds to the application of Johnson’s rule on a new two-machine problem 

that is derived from the original problem in the following manner: 

The new processing time of job i on the first machine is: ∑
=

=
k

j
iji pp

1

’
1   
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The new processing time of job i on the second machine is: p pi i m j
j

k

2 1
1

’
,= − +

=
∑   

 

For each 1,...,2,1 −= mk  a (possibly) different sequence is generated.  The best makespan from 

the corresponding schedules is identified and the respective sequence is chosen.  Notice that for 

m=2, the CDS heuristic reduces to Johnson’s rule and is thus optimal. 

 

Gupta (1971) investigated cases in which Johnson’s rule is optimal for three-machine flow 

shops.  He proposes the following slope index for the general m-machine flow shop based on his 

analysis: 
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Several other heuristics have also been proposed. A different type of approach in this 

region is Controlled Enumeration and few of its variations are discussed in the following section. 

 

 

2.5.4.2    Controlled Enumerative Approaches 
 

A branch and bound procedure was developed by Ibnall and Schrage (1965) and a similar 

one independently by Lomnicki (1965). The job sequence was constructed in a forward direction 

in proceeding down the branching tree. For each node on the tree, a lower bound on the 

makespan associated with the completion of the corresponding partial sequence σ  is obtained by 

considering the work remaining on each machine. A variety of extensions and refinements have 

been developed for the branch and bound algorithm. The major modifications were the 

refinement of bounds and use of job and machine based bounds, which identified the dominant 

jobs and machines. 
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Recent trends use the more efficient search techniques such as simulated annealing and 

genetic algorithms. Osman and Potts (1989) use the random search simulated annealing 

technique to solve the problem. Simulated Annealing is motivated by an algorithm from 

statistical thermodynamics developed by Metropolis et al. that simulates the cooling at material 

in a heat bath known as annealing. Approximately 30 years after this initial formulation, the 

Metropolis algorithm was modified and applied to discrete optimization problems by Kirkpatrick 

et al [76]. They showed that a discrete optimization algorithm could be created by randomly 

searching the neighborhood of the current solution for a new solution via a neighborhood 

function and computing the change in the objective function. An inferior solution is accepted 

with a certain probability calculated by the following formula: 

 

P{Accepting solution j as new solution from old solution i} = 








≤∆

>∆
∆−

0,1

0),exp(

ij

ij
k

ij

t  

where tk is the temporary parameter at iteration k, such that tk > 0 for all k and 0lim =
∞→ k

k
t . Later 

Das H., et al (1990) used this technique to schedule a serial multiproduct batch process under the 

assumption of permutation schedule. They propose four versions of the Simulated Annealing 

algorithm based on two move acceptance criteria, the Metropolis algorithm and he Glaube 

algorithm, and two annealing schedules, the exponential schedule and the Aarts and Van 

Laarhoven schedule. 

 

Matsuo et al (1988) used Simulated Annealing to schedule a general job shop. They 

developed a controlled search Simulated Annealing method, which utilizes a good initial 

solution, relatively small search neighborhood, and acceptance probability of interior solution 

that are independent of the change in the objective function. This method was demonstrated to 

outperform the best heuristic methods available.  

 

Another type of enumerative approach is the use of tabu search. Nowicki E. (1997) 

proposed a tabu search approach to minimize the make span of permutation flow shop with 

limited capacity buffers between machines. They showed that this algorithm was able to achieve 

excellent results for problems up to 200 jobs and 20 machines. 
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2.5.4.3    Sequencing problem for added constraints such as CONWIP control, cyclic flow and 

finite intermediate buffers  

  
Pinedo, Shenker and Wolf (1988) consider an assembly line with m stations in series 

having finite capacity buffers. Production requirements are defined for each class of jobs. They 

state that the length of the critical path around a cylinder formed by a single MPS (Minimal Part 

Sequence) equals the cycle time. A network flow model to seek additional insight into the 

problem by dualing the ‘longest path around a cylinder’ is proposed. They show that similarity 

between the longest path problems to determine the critical path to the minimum flow problem. 

A general maximum cut plane approach is then utilized to solve the dual problem. Finally, a 

‘profile fitting’ heuristic is proposed to sequence the jobs within an MPS. 

 
Selcuk, Panagiotis and Kiran (1992) address the non-preemptive flow shop-scheduling 

problem for makespan minimization. The problem is modeled as a min max problem. Using the 

property for a directed graph that the solution to a max min problem is always lower than that of 

a max min problem, a lower bound is suggested. A game theoretic interpretation is also 

suggested due to the type of objective function, which is analogous to that of a two person zero 

sum game. However, this approach is not effective due to the combinatorial nature of the 

problem of constructing a game theory problem. A branch and bound scheme is employed to 

address the problem. 

 

Kamoun and Sriskandarajah (1993) study the complexity of scheduling jobs in a 

repetitive manufacturing system. Problems of finding schedules in a flow shop; open shop and 

job shop are studied where the sequence is cyclic (repetitive). Rock (1984) has proved that a 

F3|no-buffer, no-wait|Ct problem is strongly NP-hard. This is very relevant to this research as a 

general flow shop with limited buffers can be converted to an equivalent problem with no 

buffers. Due to the complexity of the acyclic case, they mention that the corresponding cyclic 

scheduling problem is also NP-hard in the strong sense. 
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Song and Lee (1998) develop a petri net model for a general cyclic shop with blocking. 

They propose a sequential buffer control policy that restricts a job to enter the input buffer of the 

next machine in a specified sequence. It is shown that the scheduling model of a cyclic shop with 

finite buffers can be transformed into a scheduling model of a cyclic shop with no buffer that can 

be modeled as a timed marked graph. They also present a mixed integer-programming model to 

obtain a deadlock-free schedule that minimizes the cycle time. 

 

In one of the most recent studies, Logendran and Sriskandarajah (2000), attempt to 

minimize weighted tardiness in a two-machine scheduling problem with blocking and 

anticipatory setups. An algorithm based on tabu search technique is developed. A simple 

heuristic based on the earliest due date (EDD) rule is employed to identify as initial solution that 

can be used to trigger the application of tabu search-based algorithm to finally find the best 

solution. 
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Chapter 3: Preliminaries: Concepts and 
Terminologies of CONWIP in view of the problem 

at hand 
 

 

 

3.1 Concepts 

3.1.1  One Product Case 
  

 The simplest case of a CONWIP system is the one that involves only one job family. 

When the processing times are deterministic, the system will pass through a transient stage and, 

then, finally reach a steady stage, when the various system parameters such as throughput, flow 

time etc reach a constant value. This value remains the same for as long as the system exists and 

the input remains constant. In the case of stochastic processing times, the same effect is observed 

though it is not so apparent. However, the trend of both the throughput and flow time plot is 

identical to that for the deterministic case. This fact was found by extensive simulation runs 

performed as a part of this research. The results of these experiments are included at the end of 

this Chapter. 

 

Our first concern now is to find the optimal level of WIP. As discussed in Chapter 1, that 

the throughput increases as WIP level (M) is increased but only to a certain point after which the 

throughput remains constant even though m is increased. For the values of M’s before this point, 

the flow time remains at a constant level, after which it increases at a linear rate. Any increase in 

flow time, after the throughput reaches steady state, causes unnecessary wait. We say that the 
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system is running at an optimal level when the minimal value of M (M*), gives optimal 

throughput. 

The value of M* for a single product case, where ti is the processing time at station i and tb is the 

processing time at the bottleneck station (highest ti) is as follows: Hopp & Spearman (1991) 

 

 

         
b

N

i

i

t

t
M

∑
== 1*            (3.1.1-1) 

 

 

When m* is a fractional value, it may be rounded to the next higher integer. For N machines, it is 

apparent from the formula that the value of m* would range from 2 to N. For lower values of m* 

the bottleneck station is more dominant than when the value of M* is higher. Obviously, for a 

given value of N, the system is perfectly balanced. 

 

Little’s law holds true for a CONWIP system and is stated mathematically for this case as 

follows: 

 

 

   
IT

FT
M =            (3.1.1-2) 

 

 

where FT is the flow time and 

 IT is the Interdeparture time. 

 

It should be noted that this law is applicable only until M reaches M*. After M*, the value of CT 

remains constant. However, the value of FT increases and thus the above equation is no longer 

valid. 
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3.1.2  Multi-product case 
 

In this case, there are a number of families, which need to be scheduled in the backlog 

list. A backlog list contains jobs at the start of station 1, which need to be sequentially fed into 

the system, taking into consideration the CONWIP level. If the product whose individual 

bottleneck (IBN) is at a machine somewhere down the line is first scheduled and is then followed 

by a product who’s IBN is at a machine different from the IBN of the first job, then we say that 

the bottleneck has “shifted”. This property can be utilized to our advantage by scheduling 

products such that the proceeding job gives the IBN of the earlier job enough time to recuperate 

and the queue build up to subside. This way, the same throughput can be achieved with a lower 

level of WIP. Thus, it is very important to schedule the jobs in the Backlog list appropriately. 

Greco and Sarin (1996) have proved that a mixed sequence always gives a higher throughput rate 

than long sequential runs of individual products. This is, however, only true when the CBN 

(Conceptual Bottleneck machine, defined in Section 3.1.3) station is not the bottleneck for each 

individual product. When the processing time of one of the products at the CBN is not the 

highest processing time of the product on all the stations, then the throughput rate that is 

governed by the CBN is superior to that of unmixed sequences. 

Consider a two-product case. The processing time at the CBN station of both the products is 

determined by the following formula: 

 

  ∑
=

=
2

1

),(max
i

j
jittcbn          (3.1.2-1) 

If the bottlenecks for the products are at different stations then: 

 

  )2()1( tbtbtcbn +≤        (3.1.2-2) 

 

Consequently, the following inequality must be satisfied: 

 

  
)2()1(
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tbtbtcbn +
≥        (3.1.2-3) 
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The first term is the Equation 3.2.1-3 is an upper bound on the throughput level for a mixed 

sequence. The second term is applicable to the unmixed case. Thus, the above expression 

confirms that mixing the two products can increase throughput with the exception when all the 

IBNs are at the CBN.  

 

3.1.3  Conceptual Bottleneck Machine (CBN) 
 

 The case considered in this research is that of multiple product classes. Each product 

class has its own bottleneck station and will form a queue only in front of that station. Thus, we 

define a machine as the bottleneck for the entire problem, whose addition of processing time of 

all classes is the highest. This machine is called the “Conceptual Bottleneck Machine” or CBN. 

Here, we assume that each station has the same capacity, or in other words can work on only one 

product at a time.  We have discussed the ideal WIP level in the system in Chapter 1. Under the 

ideal case, the CBN should work continuously, without a queue before it or in any other part of 

the system. 
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3.2  Analysis of Preliminary Test Results 
 

The main objective of this study is to observe using simulation, variations if any, in the 

flow time and the interdeparture time, due to changes in the sequence in which the jobs are 

dispatched at the first machine and the CONWIP level M.  The results of these experiments 

would prove that an improvement is infact possible, and also would give an idea of the 

magnitude of improvement to be expected. The results of experiments to prove the superiority of 

a CONWIP system over variations of open systems are also discussed. 

 

3.2.1  Common Data 
 

For all simulation runs, the following jobs were considered: 

2 jobs of type A 

1 jobs of type B 

1 jobs of type C 

 

The number of machines for all the runs were assumed to be 5 as this problem would reflect any 

changes in the sequence due to its relatively large size. 

It was also assumed that all the products were available at the first machine at time t = 0. All the 

processing times are stochastic following an Exponential distribution. The following matrix 

gives the averages of processing time distributions of all the jobs at the machines:  

 

 Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 

Job type A 1 15 1 5 1 

Job type A 1 15 1 5 1 

Job type B 4 5 1 2 13 

Job type C 15 6 2 1 1 
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3.2.2  Experiment description 
 

The possible sequences for the above mentioned job types are: 

1A1A1B1C 

1A1A1C1B 

1A1B1A1C 

 

For each of the above-mentioned sequences, the following cases were studied: 

• No constraints on the limit on the number of parts in the system at any time (or no 

CONWIP level). 

• No CONWIP level and a total intermediate storage size of 5 

• No CONWIP level and a total intermediate storage size of 10 

• No CONWIP level and a total intermediate storage size of 15 

• A CONWIP system with a level of 5 

 

The first experiment shows the superiority of a CONWIP system over other the first 4 types of 

systems listed above. The second experiment shows the variation of Flowtime and Interdeparture 

time with the CONWIP level M, the sequence maintained the same. 

 

3.2.3 Definitions Used and Results 
 

Flow time: The time interval between the instant a product enters the first machine to the instant 

it leaves the last machine. 

 

Interdeparture time: The time interval between the instant a product leaves the last machine in 

one cycle to the instant it leaves the same machine in the succeeding cycle. 

 

The Table 3.2.3-1 summarizes the results of the first experiment: 
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Table 3.2.3-1: Comparison between Different Production Control Policies 

 

IT = Interdeparture time and FT = Flow time       
Q = size of the system         
           
  Open Q = 5 

  1 2 3 4 
Avg. of 

1,2,3 &4 1 2 3 4 
Avg. of 

1,2,3 &4 

2A1B1C 42.02 42.11 42.03 42.03 42.05 42.93 43.01 42.95 42.90 42.94 

2A1C1B 43.18 43.03 43.06 43.06 43.08 42.00 42.02 41.98 41.97 41.99 IT 

1A1B1A1C 39.64 39.66 39.69 39.69 39.67 41.60 41.30 41.32 41.59 41.45 
                        

2A1B1C 
2542.5

1 2557.02 2560.32 2561.68 2555.38 65.97 79.05 78.88 71.92 73.95 

2A1C1B 
2798.8

8 2815.62 2809.53 2819.35 2810.84 69.27 80.46 64.05 80.59 73.59 
FT 

1A1B1A1C 50.20 52.49 51.35 55.68 52.43 70.68 75.84 66.41 70.42 70.84 
            
            
  Q = 10 Q = 15 

  1 2 3 4 
Avg. of 

1,2,3 &4 1 2 3 4 
Avg. of 

1,2,3 &4 
2A1B1C 41.11 41.23 41.31 41.13 41.20 42.68 42.67 42.67 42.68 42.67 
2A1C1B 40.72 40.84 40.63 40.66 40.71 39.47 39.47 39.48 39.47 39.47 IT 

1A1B1A1C 41.67 41.53 42.00 41.93 41.78 41.48 41.46 41.47 41.46 41.47 

                        
2A1B1C 116.45 127.55 122.58 120.68 121.81 177.39 185.57 177.02 175.89 178.97 
2A1C1B 118.86 123.87 112.85 123.72 119.83 154.70 163.22 145.35 158.66 155.48 FT 

1A1B1A1C 117.49 123.02 120.47 125.06 121.51 163.19 170.66 159.74 164.42 164.50 

 

 

  CONWIP M = 5 

  1 2 3 4 
Avg. of 

1,2,3 &4 
2A1B1C 42.70 42.66 42.65 42.63 42.66 

2A1C1B 43.84 43.96 43.81 43.83 43.86 IT 

1A1B1A1C 39.64 39.66 39.62 39.69 39.65 
              

2A1B1C 49.49 63.15 55.01 50.06 54.43 

2A1C1B 54.89 69.28 43.44 61.18 57.20 FT 

1A1B1A1C 50.20 52.49 51.35 55.67 52.43 
 

The values of Flow time and Interdeparture time for a CONWIP system are always lower than 

the corresponding values for an open system with the same system size. Though this is not an 
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exhaustive study to make such a claim, such in-depth studies have been done and mentioned in 

the literature review. 

 

The second experiment shows the variation of these parameters with CONWIP level M. The 

following table summarizes the results of the second experiment for a CONWIP level of 5: 

 

Table 3.2.3-2: Variation of IT and FT with CONWIP level M 

 

Sr. 
No. IT FT 
1 46.5 56.2 
2 25.26 60 
3 25.26 90 
4 25.26 120 
5 25.26 150 
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Figure 3.1: Variation of IT and FT with CONWIP level M 

 

The graph shows that in this case the optimal level of WIP (M*) is 2.  For values of M above 2, 

the flow time increases linearly but the throughput remains the same. Thus the point where the 

Interdeparture time curve just becomes horizontal is the optimal point. 
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3.3 MIP programming formulation 
 

  To generate useful insights, the problem was modeled as a Mixed Integer Programming 

problem (MIP). To achieve this, and to take into consideration the complexity of the problem, 

the following two conditions were relaxed: 

 

• Stochastic processing times to avoid the probability terms. 

• Limited buffer capacities for queues in-between machines. 

 

The following is the MIP formulation: 

 

Pij �3URFHVVLQJ�WLPH�RI�MRE�M�RQ�PDFKLQH�L 

Pi(k) �3URFHVVLQJ�WLPH�RI�WKH�MRE�LQ�WKH�Nth slot on machine i 

Xjk �HTXDOV���LI�WKH�MRE�M�LV�WKH�Nth job in the sequence 

          0 otherwise 

Iik �GHQRWHV�WKH�LGOH�WLPH�RQ�PDFKLQH�,�EHWZHHQ�WKH�SURFHVVLQJ�RI�WKH�MRE�LQ�WKH�Nth position 

and (k+1)th position 

Wik �:DLWLQJ�WLPH�RI�WKH�MRE�LQ�WKH�Nth position in between machines i and i+1 

n �7RWDO�QXPEHU�RI�MREV�WKDt need to be scheduled 

m �&21:,3�OHYHO�WR�EH�PDLQWDLQHG 

M �7RWDO�QXPEHU�RI�PDFKLQHV 

f �&21:,3�F\FOH�QXPEHU��I� ��«���+LJKHU�LQWHJHU��
m

n
) 
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Refer to Figure 3.1 for the time sequence graph: 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig 3.2: Job i and j on the Gantt chart 

 

Before we start building the model, it is important to note that on all machines, from 1 to 

M-1, both or either of the variables Ijk and Wik can be a finite value. However, it is only on the 

last machine that Wik = 0 and Ijk can have a finite value. 

Also, the objective of minimizing the makespan is equivalent to minimizing the total idle time on 

the last machine, machine M. The total idle time on machine M can be further subdivided into 

idle time that must occur before the job in the first position reaches the last machine and the 

second part being the idle time between successive jobs on the last machines. This fact is 

reflected in the objective function of the model. 

 

 

 

 

Pi+1(k-1) Pi+1(k+1) Pi+1(k) 

Pi(k) Pi(k+1) 

¨ik 

Machine i 

Machine i + 1 

Wik 

Iik Wi,k
1

Wik > 0 and Ii+1,k = 0 
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MIP Formulation: 

 

Objective function: 
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Constraints: 
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CONWIP condition: 
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Though we do not use the formulation directly in this research, as the complexity prohibits its 

use, especially when the problem is large, we do gain some insights, which could prove helpful 

in the methodology to be proposed. One of the observations made is that, to decrease the 
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summation of idle times and waiting times at all machines, the following difference has to be 

minimized: 

 

r(i,k) = Pi+1(k-1) – Pi(k)  for k = 2 to m      (3.2-1) 

 

For a simple Flow shop problem, Stinton & Smith (1982), suggest a methodology using a 

formulation as a Traveling Salesman Problem (TSP) with a cost matrix of r(i,k)’s. They argue 

that a low value of cost elements in the matrix is preferable since this indicates the likelihood of 

a better fit between any two jobs. However, this argument is myopic in the fact that it does not 

consider all the jobs at once. Thus, the solution obtained by this method need not be optimal, 

though a good one. 
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Chapter 4: Modified Mean Value Analysis 
Algorithm (MMVA) 

 

 

4.1 Introduction 
 

In this Chapter, the concepts of Chapter 3 are further expanded. The Modified version of 

the Mean Value Analysis Algorithm is proposed and implemented on the Flow Shop problem on 

hand (with finite CONWIP level and finite intermediate buffers).  

 

As alluded to earlier, the problems of finding the optimal CONWIP level (M) and the 

optimal sequence cannot be separated and solved to optimality independently. Thus, there is a 

need to device a methodology wherein the two can be dealt with appropriately, to get a close-to-

optimal solution. In this chapter, we describe a method, which insulates the problem of finding 

the CONWIP level M, from that of finding the optimal sequence. It uses to its advantage, the 

following facts about the system: 

• Processing times are stochastic 

• Processing times are exponentially distributed and Interarrival time at the first machine 

follows Poisson distribution. 

• The system has reached the state of dynamic equilibrium. 

 

A method to determine a close-to-optimal sequence among jobs is presented in Chapter 5. 

The algorithm developed to determine ‘M’, is a modification of the MVA algorithm originally 

proposed by Reiser (1979) and then later modified by Hildebrant (1980). In order to solve the 

system analytically, the flow line needs to be broken into single machine stations, which can then 

be treated individually using standard queuing theory formulae. We develop an iterative 



 61

decomposition algorithm, which results in values of arrival rates at each buffer/machine and the 

probabilities of having no products at any machine and its buffer. Using these values, the values 

of average waiting times at each buffer, and finally, the average blocking time can be computed 

by a separate approximate method, which follows a proposed iterative algorithm. This Chapter 

also describes the concept of “Cascading Bottlenecks” and proves two results, which are used in 

the algorithm. Finally, the results of experimentation, to reflect the accuracy of the solution 

obtained and hence the reliability of the proposed method, are presented. A unique testing 

methodology is suggested and used, which is expected to be more reliable than that used by 

Hildebrant and Reiser (1980). The methodology is more in tune with the assumptions of the 

MVA algorithm and hence provides a superior testing scheme. 
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4.2 Mean Value Analysis Algorithm 
 

 As mentioned in the Literature review, Mean Value Analysis was first presented, without 

proof, by M Riser (1979). Richard R. Hildebrant (1980) further refined it for a FMS application. 

Due to the strong relevance of the algorithm presented by Hildebrant to this research, it is first 

presented in this section before it is further modified to include the additional features assumed 

in this research over that of Hilderbrant’s. The Mean Value Analysis is based on the following 

two intuitively appealing principles: 

• A customer upon arrival, into the system, sees the same closed system with himself removed 

(one less customer) in long term. 

• Little’s law applies to the entire system as well as to each queue individually. 

 

We need the following notation to present the Hildebrant’s algorithm 

 

 

 

ni Population size of part type i 

),....,( 21 nnnnn =
→

 
Population Vector 

t
i,k Service time of part type i at machine k 

q
k
 Equilibrium mean queue size at machine k 

q
i,k Equilibrium mean number of part type i at machine k 

ki ,τ  Equilibrium mean waiting time (including service time) of part i at 

machine k 

kτ  Mean waiting time at machine k.  

i
 Throughput of part type i  

M
i
 Set of machines part type i visits for processing 
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MVA Algorithm: 

 

Step 1: Initial: q
i,k = n

i
 / | m

i
 | for all k in m, 

                 q
i,k =  0 for all m not in m 

Step 2: Repeat steps (3) through (6) until a suitable convergence criterion is met. 

Step 3: Determination of the approximation factor: 
)(kj,

)(kj,

, q

q

n

nj

ki Σ
=ε ;  i = j 

                   =     0, otherwise 

Step 4: Mean Value Equation: 

        ki ,τ  = t
i,k + 

j
Σ  t

i,k
(q

i,k
 - ε j

ki ,
) 

Step 5: Little’s Result for parts 

������� �
i
 = n

i
 / 

k
Σ  ki,τ  

Step 6: Little’s Result for machines 

        q
i,k  � i

 / ki ,τ  

 

Hildebrant (1980) analyzed the above-mentioned MVA Algorithm for its accuracy and 

reliability. To reduce the inherent variability associated with exponential distributions, 

Hildebrant used uniformly distributed processing times between 1 and 29 on a 4-machine 

problem, which processed an unlimited number of 10 job types. The processing times were 

chosen from the uniform distribution and were fixed during simulation runs. The results for the 

simulation runs were averaged over 50 runs and were compared with those obtained using the 

above-mentioned MVA Algorithm. The results showed significant differences between the 

numbers obtained by these procedures, reminding us of the fact that these algorithms are 

incapable of resulting in an exact solution. Due to the complexity of the problem at hand, further 

complicated by the stochasticity involved, analytical methods are impossible to resort to. 

However, the results obtained by the above MVA algorithm, show the same inherent trend as 

those of the simulation runs. 

 

The above algorithm assumes infinite size buffers between machines. To adapt it to the 

finite intermediate storage case on hand, some modifications need to be made to incorporate the 
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effect of blocking. We describe this in the next section. This modification leads to an inclusion of 

an extra term in step 4 of the MVA. The rest of the algorithm is essentially the Little’s law 

applied to the jobs and machines and, thus, remains unchanged. We utilize the MVA to iterate 

towards a good value of ki ,τ . Our goal is to find ∑∑
ki

ki ,τ , which is the total flow time of a 

cycle for all the product types or classes. This term is the average blocking time of a part at a 

machine when the buffer queue at the immediately succeeding machine in the line is full. In 

order to find this mean blocking time, the concept of “Cascading Bottlenecks” is used. 
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4.3 Cascading Bottlenecks 
 

   Due to the finite capacity of the immediately succeeding machine (node) k+1, server k 

will get blocked from time to time. The server remains blocked until a service completion 

occurs at node k+1. It may also get blocked for longer duration, if the customer who just 

completed its service at node k+1, gets blocked due to the queue in front of node k+2. In 

general, when node k gets blocked, nodes k+1 to j, j ��N�����DUH�DOUHDG\�EORFNHG��,Q�WKLV�FDVH��

when a customer completes its service at node j+1 and given that it does not get blocked, nodes 

k and j become unblocked and each blocked customer moves to the next node. This blocking 

effect, due to the downstream nodes, has to be incorporated into the service mechanism of each 

node, when studied in isolation. Another important point to be noted is that the first node is 

always assumed to be saturated (i.e. never empty). This is a common assumption when studying 

production systems and it implies that there is an unlimited supply of raw material at the first 

node. Similarly, the last machine is never blocked, as jobs are always free to leave the system 

when they are finished processing on the last machine. 

 

   We next present the modified algorithm and develop necessary results. Before we 

proceed, some additional notations are introduced. Other notations are defined later, before they 

are used.  

P
k
(x) Probability of having x parts at a station k (in the processor plus in queue) 

φk Capacity of station k 

 k Average arrival rate at station k 

 k Processing rate at station k 

m Number of stations in the system 

ξo Instant in time during which part i leaves machine k to be the last job in the 

queue at machine k+1 

ξint  Instant in time during which part i+1 leaves machine k 

ξ
q
 Instant in time during which the first part on machine k+1 is finished 

processing and part i moves one position ahead in queue k+1 to accommodate 

part i+1 
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The rest of the variables remain the same as those used in Hildebrant’s algorithm. 

    

   As explained earlier, it is desired to develop an expression to determine the blocking time 

term as close to the actual expression as possible, for inclusion in step 4 in Hildebrant’s 

Algorithm. Each station (a machine with a buffer preceding it) is studied in isolation, so that 

standard one-machine formulae can be used to determine the variables associated with each 

station. However, due to the dynamics of the system and the interrelation of various variables 

among different machines, the stations have to be mathematically separated, to allow individual 

analysis. 

 

 For a M/M/1:FCFS/N/��PRGHO��WKH�SUREDELOLW\�RI�KDYLQJ�µQ¶�FXVWRPHUV�DW�D�VWDWLRQ�LV�JLYHQ�

by the following expression (Operations Research by Hira & Gupta, 1996; all standard formulae 

used in this chapter are taken from this book and are hence not referred from this point on to 

avoid repetition): 

 

n
NnP ρ

ρ
ρ

*
1

1
1+−

−=     )( Nn ≤         (4.3-1) 

where N = size of the single server system. Thus, the probability of having φk parts at machine 

(station, machine and node, are used synonymously in this research) is given by the following 

equation: 

 

k

k
k

k

k
kkP φ

φ ρ
ρ
ρφ *

1

1
)(

1+−
−=          (4.3-2) 

Now, the probability of having φk + 1, φk + 2, φk + 3, φk + 4 or in general φk + n parts is zero due 

to the limitation on the number of jobs at a station due to the intermediate storage size of φi.  

Thus, the probability of having n ��φk is  

k

k
k

k

i
kkP φ

φ ρ
ρ

ρφ *
1

1
)(

1+−
−=          (4.3-3) 
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where 

 
==

k

k
k µ

λρ
 
% utilization of each machine

 

:H� WKXV� QHHGHG� WR� ILQG� WKH� YDOXH� RI� i for each machine, in order to determine the value of 

)( kkP φ . 

 

1RWH� WKDW�� IRU� D� VHULDO� OLQH�� WKH�YDOXH�RI� k� LV� QRW� DOZD\V� HTXDO� WR� k-1. Thus, to calculate the 

value of )( kkP φ ��ZH�QHHG�WR�GHWHUPLQH�WKH�YDOXH�RI� k. 

Here, we propose an iterative procedure to obtain the value RI� k. This procedure is explained 

next. 

As we defined earlier, the arrival process is Poisson and service times are exponential. If a part 

cannot be processed due to the finite capacity of node i, it is considered lost. Thus, those jobs 

that are served during the time the server 1 is blocked are treated as lost jobs from the point of 

view of the entire system. The percentage of time station i is busy (i.e. either serving or blocked) 

is 1- Pi(0). Consequently it follows that: 

))0(1( 11 −− −= iii Pµλ            (4.3-4) 

 

We formally state and prove this result next: 

 
Statement:  
 
If λi is the arrival rate of the jobs at machine i, and µi, is its processing rate, and if the probability 

of having zero parts at station i is Pi(0), then the arrival rate at machine i is given by the 

following expression: 

 
))0(1( 11 −− −= iii Pµλ  

 
Proof: 
 
Consider a black box representation of the system as shown below: 

 

 
λk 

λk’  

µ
k-1 
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Let µk-1 be the processing rate at machine k-1 and λk be the ideal output rate of machine k-1. Let  

λk’ be the actual or as observed, output rate of machine ‘k-1’. We assume in the definition of λk, 

that the machine k does not run “dry”, which means that no capacity of machine is lost due to 

parts not being available for processing.  

If the machine runs dry, for some period of time, the output rate λ1 drops say to a value λ1’. We 

call this output rate the “effective” output rate.  

Let: 

ξ1: time of departure of job 1 from machine k-1 

ξ2: time of departure of job 2 from machine k-1 

P0(k-1): probability of having 0 jobs at station k-1 

tk-1: actual processing time at machine k-1 

tk’: effective processing time at machine k 

Now, we consider two cases for an exhaustive analysis: 

Case I: λ0 > 0 and Case II: λ0 = 0 

For any general case, we can write the following equation: 

 

 
2

10
1
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12

)]1([)]1(1[
1

−− −+−−=
− kk kPkP µµ
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                Case I Case II 
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∞
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Since tk’ = ξ2 – ξ1 = effective interdeparture time 
 

1
0

1
)]1(1[

1

−

−−=′
kk
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t
 

 
Thus, 
 

“Ideal output rate” or output rate of the 
machine, before machine 0 
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1
0

1
)]0(1[’

−

−=
k

k t
Pλ  

 
or 10 )]0(1[’ −−= kk P µλ  

 
QED 
 
Corollary: 
 
Consider the first two machines. According to our assumption, all jobs are available at the first 

machine at the start of the scheduling period. Thus, the first machine never runs dry or, in other 

words, the probability of there being no job at the first machine is zero. 

Mathematically stating: 

P1(0) = 0 

Thus ]01[12 −= µλ  or 12 µλ =  
 
 
Let kµ  be the effective service rate with blocking and let Tr be the average throughput for the 

entire system. Then, 

 

)0(1 k

r
k P

T

−
=µ            (4.3-5)  

 

We assume that a server can process the job and then can check the queue size in the following 

machine to confirm its blocked status. Thus, processor k serves as an additional unit capacity 

buffer for machine k+1. Consequently, we analyze the system as a series of M/M/1/mk+1 queues 

in isolation. 

The following is a standard formula for a single server queuing system: 

 

2

1

1
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−
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kk
kP φ

φ

ρ
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         (4.3-6) 

 

where  kkk µλρ =  

Combining equations (4.3-4), (4.3-5) and (4.3-6), we obtain the following equation: 
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)]0(1/[

)]0(1[ 11

kr

kk
k PT

P

−
−= −−µρ           (4.3-7) 

 

We know, by assumption, that the first machine is never starved and the last machine is never 

blocked. Thus, we get the following two equalities, out of which, the second one was proved 

earlier, as a corollary: 

mm µµ =             

12 µλ =  

 
7KH�IROORZLQJ�DOJRULWKP�LV�SURSRVHG�WR�GHWHUPLQH�WKH�YDOXHV�RI�

k
’s 

 
ALGORITHM  

Step 1: Assume some starting value of Tro. A good value might be 
k

k µ
1

min  

Step 2: Knowing P1(0) = 0, we solve equations (4.3-6) and (4.3-7) simultaneously to find 

the value of P2(0). We continue this process till we get the value of Pm(0).  

 Notes: The values of Tr� DQG� k-1 are known in equation (4.3-7). Substituting 

these values in the equation, results in a relationship between Pk(0) and  kρ . This 

value of kρ , in terms of Pk(0), can be substituted in equation (4.3-6), to obtain a 

polynomial equation in Pk(0). This equation can then be solved using numerical 

techniques using standard software such as Mathematica™. 

Step 3: Using Pm(0), we compute a new value of Tr say Tr1. If  ε>− 01
rr TT , then go to 

step 1, else stop.  

 Notes: The value of iλ is found from Equation (4.3-4). The value of Pm(0) can be 

used separately in Equation (4.3-6), to obtain the new value of mρ . Using these 

two values, the value of mµ can be calculated which can then be used in Equation 

(4.3-5) to obtain the value of Tr for the next iteration. 

At the end of the algorithm, we have a set of values of Pk(0)’s for all the 

machines. 
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Using the set of Pk(0)�IURP�WKH�ODVW�LWHUDWLRQ��ZH�WKHQ�FDOFXODWH�WKH�YDOXHV�RI� k from Equation 

4.3-4.  

Consequently, for each machine, we calculate the following: 

k

k
k µ

λρ =       and then values of Pk(mk)’s 

 

We have thus so far studied the system as ‘m’ queues in isolation and have incorporated 

all the properties of a serial queue system in it to compensate for the behavioral dynamics of the 

various parameters. The next step is to find the blocking time value, which will be added to step 

4 of the original MVA algorithm. 
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4.3.1 A Method to determine the approximate value of Blocking time 
 

The following is the method proposed to determine the value of Blocking time: 

 

The variables ξo, ξint, ξq were defined at the start of section 4.3. We study the case from 

the instance, just before blocking occurs due to the immediate down the line station getting full, 

to the instance the block is cleared. Consider a pair of stations k and k + 1. Let the second station 

in the pair be one job short of reaching its capacity, and let the first job just enter the first 

machine. After finishing processing on the first machine, the first job enters the second machine. 

Now the second station has reached its capacity, thus blocking the first machine. The second job 

after processing on the first machine leaves the first station, but cannot enter the second station 

because it is full. It thus waits in between the two stations for a job in the machine of the second 

station to be processed. The time instance the second job leaves the first machine is designated 

by ξint. After some time interval, the second machine finishes processing the job and all the jobs 

in its queue move one slot ahead in its queue. The second job can now enter the queue of the 

second machine in the last position, unblocking the first machine in the process. This time 

instance is called ξq. 

Figures 4.1 and 4.2 further clarify the significance of the variables. 

 

 

 

 

 

 

 

 

 

Fig 4.1: Schematic depiction of Events at a buffer under consideration on a time line 

 

The interval of time m/c i is 
blocked 

ξint ξq  ξo  

Time line 
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The following three figures are snapshots, in time of the system, just as the blocking occurs. 

Thus, each figure is the state just after an event, which occurs at the time instance mentioned on 

the right hand side. 

 

 

 

 

 

 

 

 

 

 

 

At ξ0 

 

  

 

At ξint 

 

State: 

Machine k is blocked and 

job 2 (i+1) cannot enter 

machine k+1 and queue is 

full. 

  

 

At ξq 

 

State: 

Machine k is not blocked. 

Both jobs 1 and 2 (i and i+1 

respectively) wait to be 

served at machine k+1 

 

 

Fig 4.2: Snapshots in time of the arrival and departure events at a buffer 

 

The time period over which machine k is blocked is max|0, ξq  - ξint| and thus depends on 

whether ξint lies on the left or the right side of ξq. If ξint lies on the right of ξq, machine i is not 

blocked. 

Now, for interval (ξo, ξint), the following equation holds: 

k k+1 

2nd job 1st job 

φk φk+1 

k k+1 

2nd job 1st job 

k k+1 

2nd job 1st job 
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(ξ
int

 – ξ0) [1 – Pk(0)] = tk          (4.3-8) 

where tk is the average processing time at station k, as defined earlier 

  

This is because (ξint – ξ0) may consist of idle or empty (starvation) time of station k, when there 

is no part in the queue or processor k. 

For interval (ξq , ξ0), the following statement holds true: 

 
Statement:  
 

For the time interval over which the blocking occurs and is then cleared due to the finishing of 

process of the second job at the second machine, the variables kq ξξξ ,, 0  are as defined earlier, 

the following equality holds true:  
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We provide an intuitive argument for this equality: 

The left-hand side of the equality (LH) represents the expected time job 2 or (i+1) has to wait to 

enter the queue of the second machine. During the same time interval, a job on machine k + 1 

finishes processing, thus allowing the last job in the queue of machine k+1, job 1 or (i), to move 

forward a slot in the queue. Assuming a straight-line projection of the processing time, a job at 

machine k + 1, takes ][*5.0
1

11

+

++ −

k

kk t

φ
τ

 amount of time to finish processing, with a probability of 

)]1([ 1 ++ kkP φ . This is the right hand side of the equality (RH) 
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More formally, to justify equation (4.3-9), we present the following argument: 

 
1. Expected time job 2 is waiting after processing at machine k = ξq – ξ0 – tk. 

2. As 1+kτ is the equilibrium mean waiting time (including the service time) of a part s at 

service center k+1, the average time in queue = 1+kτ – tk+1  

3. Let us assume that the product moves in the queue towards the machine at a constant rate. 

Thus, time taken by the product to shift a slot = 
2/)1( 1

11

−
−

+

++

k

kk t

φ
τ

. Note that the denominator is 

(φi+1 – 1)/2 and not φi+1/2 as there are only φi+1 – 1 products in queue. Also, if this time is 

assumed to satisfy approximately a straight-line slope, the denominator should be (φi+1 – 

1)/2 or average queue size. Other more accurate methods of estimating the waiting time 

could be found by detailed study.  

 

Now, we can write: 

 

Job 2 waiting 

time, after 

processing at 

machine k 

 

 

* 

 

Probability that 

machine i is not idle 

during the wait  

 

= 

Expected waiting 

time of job 1 at 

machine k+1 to move 

one slot in the queue 

 

* 

Probability of having 

k+1 full with φk+1 

parts in queue 

 

 

Thus from points 1, 2, and 3 and the above equality, we can write the following: 
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The term in each bracket of this equality corresponds to the term mentioned in the descriptive 

equation, mentioned immediately above it. 

  

Now, blocking time = ξq – ξint = (ξq – ξ0) – (ξint – ξ0) 
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∴ Waiting time = 1+kτ  [1 – Pk+1(0)] – tk [1 – Pk(0)]-1 

 

From the iterative procedure mentioned earlier, we know the value of Pk(0).  

Using λk from the iterative procedure, we can find 1+kτ according to the following standard 

formula for a (M/M/1:FCFS/φk/���PRGHO� 
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We now determine the mean blocking time of different machines (i’s) using (tq – t0 – ti) as the 

waiting time of machine k due to φk+1 parts at machine k+1.  

Thus, 

Probability of k being blocked = (probability of only machine k+1 having φk+1 parts) + 

(probability of only machine k+1 having φk+1 and machine 

k+2 having φk+2 parts) + … 

 

Hence, 

Blocking time for machine k (BTk) is:  
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                   (4.3-10) 
 

where, 

)Pr1( kφ<−  is the probability of machines other than k+1 having less than φk parts in their 

queues. In other words, only machine k + 1 is full in the whole line, and 1,int )( +− kkq ξξ  is the 

interval of time machine k is blocked due to machine k + 1 having φk+1 jobs in its queue. 
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This blocking time is then added in step 4 of the MVA algorithm. Steps 5 and 6 remain 

unchanged, as they are simply Little’s law applied to parts and to machines. Finally, ∑∑
k i

ki ,τ  

gives us the value of flow time, which needs to be minimized. 

It is important to note that, since the MVA method is only an “approximate” method proposed 

initially by Reiser without proof, there is a possibility that during an iteration, ∑
i

kiq , become 

greater than mi. In such a case, ∑
i

kiq , is scaled down to φk and the procedure is continued. Once 

a queue is scaled or gets full, it is not included in any future calculations. This is due to the fact 

that the changes in values of the queue lengths are fairly monotonic, which means that if they are 

increasing, they do not decrease in the next iteration. Thus, once a queue length takes a value 

above the buffer size, there is no chance of missing any solution with a queue length lower than 

its capacity. 
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4.4 A Lower Bound on M* 
 

It should be noted that the MMVA method is only a descriptive method and not a 

prescriptive one as related to the problem of finding M*. In other words, it describes the system 

parameters in the closest possible way only when the ‘Job Population Size’ defined as ni in the 

algorithm is known. This variable is nothing but the CONWIP level in case of a closed queuing 

system. Thus we need to start with a good value of M, which is as close to the actual M* as 

possible. Greco and Sarin (1996) suggested a lower bound on M for a CONWIP system with 

unlimited intermediate buffers. They assume that the sequence is known in advance and propose 

the following formula to determine the value of M* for a pair of jobs i and i’: 
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))’,(max(
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itcb
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 B is the conceptual bottleneck machine  

      )(itcb   is the summation of processing times of all job types at machine i 

Job i triggers the job i’ to enter the system  

            ),( jit  is the processing time of job i on machine j 

 

Since the sequence of the jobs is yet unknown, we use a sequence, which results in the 

lowest value of M [LB(M*)], so that we can test only for values above M, in the MMVA.  We 

can observe, from the second expression in equation (4.4-1), that a job pair for which, the job 

leaving the (Combined Bottleneck) cbn machine has the lowest summation of processing times 

on all the machines downstream of cbn and the job entering the system, the least summation of 

processing time on the machines upstream of cbn, so that the value of )’,( iitr will be the lowest. 

Thus, we select two jobs, which satisfy the above condition, to find the value of LB (M*). We 

then use this M value as a starting value in our method. Since limited size intermediate buffers 

can only add to increased blocking over a similar system with unlimited buffer, for which 

formula (4.4-1) was proposed, the matrix tr(i,i’) would be lower and consequently the value of 

LB(M*) would be lower. Even though the quality of LB(M*) will deteriorate, for the finite 



 79

intermediate storage case, it is still  the actual lower bound on  M*. The following example 

explains the selection of these two jobs. 

Example: 

Consider the following processing time matrix: 

 

 J1 J2 J3 J4 Total 

M1 2 4 4 5 15 

M2 1 3 4 5 13 

M3 6 1 7 7 21 

M4 2 3 5 3 13 

Sub total for 

job leaving 

2 3 5 3  

Sub total for 

job entering 

3 7 8 10  

 

Thus Machine 3 is the CBN designated as B.  

The leaving job is selected as J1 as it has the least processing time after the cbn. The entering job 

is chosen as J2 as J2 is the second lowest after job J1 which we already chose as the entering job.  

Thus the value of )’,( iitr  = 7 + 2 = 9 and )(itcb  = 21 

Hence, the value of M* is found using the formula as follows: 

 

428.1
21

27
1*)( =++=MLB  or 2 

 

All values from 2 are then used successively as value of ns, in the MMVA till the point where 

the interdeparture time reaches a constant and FT (or CT) starts rising at a constant rate. This M 

is the best CONWIP level. For a more detailed explanation of the concepts used in this method, 

refer to Greco, M.P, 1996, Sequencing Policy for a CONWIP Production System, M.Sc. Thesis, 

Virginia Polytechnic Institute and State University, VA, USA. 

 

cbn 
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4.5 Description of the Experiments Conducted and the Observations Made 
 

It should be noted that the method proposed in Section 4.3 is only a descriptive one and 

does not result in a value of M*. However, given a value of M, the method can be used to 

determine the value of Flow time. The proposed method of determining M* starting from the 

lower bound value of M, determined by using the method presented in section 4.4, and 

increasing it successively in the MMVA, until the interdeparture time reaches steady state and 

FT (or CT) starts to increase, is next tested to determine the quality of the solution obtained. The 

solution quality is tested by comparing it to the optimal solution value obtained from simulation. 

The quality is inversely proportional to the deviation from the optimal. 

 

The details of the experiments conducted are as follows: 

• Number of jobs: 7; Number of Machines: 10 

• Distribution for processing time: Uniform between 5 and 25 

• Number of replications: 30 with Ran Generator number 1, 2, 3,.. , 30. Thus 30 replications 

were performed for each of the five time matrices and for each of the three CONWIP levels. 

Notes: Taylor II™ has 100 different seeds, which can be used to generate random numbers 

during run time. The use of a specific seed, results in the same random numbers. Each of this 

seed is given a number from 1 through 100 called simply as the Random Number Generator 

Number.  

• CONWIP levels tested  (M): 7, 14, 35 (below M*, near M*, and well above M* respectively) 

• Buffer sizes: Summarized in the table (4.5.1): 
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Table (4.5.1): Intermediate storage sizes used in the experiment 

 

Buffer number (# 1 is 

between machines 1 & 2 

Size in 

units 

1 4 

2 3 

3 2 

4 5 

5 2 

6 8 

7 4 

8 20 

9 5 

 

To find the optimal solution, a simulation model was built using the Taylor II™ 

simulation software (software courtesy of Ericsson, Lynchburg) developed by F&H Simulations 

Inc. The model used the random generator inherent in Taylor II™. The results were analyzed 

using an Excel worksheet and compared to the results obtained from the modified MVA 

algorithm. The MMVA was coded in Visual Basic Ver. 6.0 on a Win NT station. Each 

simulation run was allowed 20 cycles to warm up. This number was determined from 

experimentation, in order to ensure steady state. 

 

A more realistic testing scheme is employed here, than that used by Hildebrant (1980). 

Hildebrant used uniform distribution, as compared to exponential distribution, which MVA 

assumes. The reason for this was to curb the high random deviation of the exponential 

distribution. The random deviations of an exponential distribution increase proportional to the 

value of the mean and may even take extreme values of zero to infinity in very rare instances. 

However, here we assume a smaller range for the uniform distribution to generate the means for 

the exponential distributions. The runs however used a “truncated” or “bound” exponential 

distribution generated by Taylor II as depicted in Figure 4.3. 
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Fig 4.3: Depiction of Methodology to generate processing time values during simulation from 

the Pre-defined exponential distributions 

 

The values of processing times, thus generated, produce a reliable testing scheme, more in tune 

with the MVA assumptions. 

The 30 observations for each output metric (avg. queue size & avg. queue wait) are averaged into 

3 groups of 10 each. This is done merely for presentation purposes for lack of space. The 

standard deviation however, was taken separately over all the 30 readings.  

For an exhaustive study the three CONWIP levels chosen namely (7, 14, 35), represent values 

below, near and above M*. 

 

The time matrices generated in Excel for the simulation are given in the Appendix B. A 

summary of the output data, which highlights the difference between the optimal simulation 

results and the MMVA, is presented below. The following four parameters were chosen to test 

the accuracy of the method: 

• Average total queue size 

• Average total wait time at the buffers 

• Percentage standard deviation of average total queue size 

• Percentage standard deviation of the average total wait time at buffers 

These parameters for each time matrix and every CONWIP level are summarized in the 

following tables. The last two columns are the totals of the percentage differences in Average 

Queue and Average Waits. 

Exponential Distribution 
with mean m 

Upper Bound 

Mean (m) 

Lower Bound 

Mean + ½  the range of Uniform distribution 

Mean + ½ the  range of Uniform distribution 



 83

Table (4.4-1): Comparison between the simulation and MMVA results for CONWIP level of 7 
 
  Differences in Means of Percentage Differences in Sum of Mean % Sum of Mean % 

 Sr. No. Avg. Queue Avg. Wait Avg. Queue Avg. Wait error in  error in  

           Queue length Wait time 
1 -0.012 0.880 -2.76 6.04     
2 0.009 -0.073 18.57 -4.30    
3 -0.010 -0.423 -9.09 -10.78    
4 -0.020 2.473 -3.33 11.89    
5 0.017 1.663 4.10 11.87    
6 -0.002 0.417 -1.59 8.22    
7 0.000 -0.410 0.12 -4.18    
8 -0.012 -1.157 -10.00 -28.40    C

O
N

W
IP

 le
ve

l m
: 

7 
   

   
   

 
T
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e 

m
at
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x 

#:
 1

 

9 -0.001 0.480 -1.38 14.24 -5.36 4.62 

              
10 0.007 2.107 1.46 10.65     
11 0.011 -1.407 3.21 -10.11    
12 0.005 -0.097 10.00 -5.00    
13 0.015 -0.920 9.36 -15.13    
14 -0.020 1.190 -6.90 10.40    
15 -0.012 0.007 -7.06 0.10    
16 0.050 4.010 7.81 15.87    
17 -0.002 0.443 -1.25 5.97    C

O
N

W
IP

 le
ve

l m
: 

7 
   

   
   

 
T

im
e 

m
at

ri
x 

#:
 2

 

18 -0.030 -1.103 -13.64 -12.92 3.00 -0.17 

              
19 -0.002 -0.060 -3.85 -3.85     
20 0.007 -0.167 7.69 -5.41    
21 -0.005 -0.163 -3.64 -3.21    
22 -0.207 4.927 -20.81 14.25    
23 -0.002 -0.060 -1.79 -1.90    
24 0.004 -0.330 8.13 -17.28    
25 -0.013 0.317 -3.69 2.65    
26 -0.019 5.434 -2.31 18.67    C

O
N

W
IP

 le
ve

l m
: 

7 
   

   
   

 
T
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e 

m
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x 

#:
 3

 

27 0.011 -0.153 22.00 -8.39 1.74 -4.47 

              
28 0.010 1.813 2.50 12.54     
29 -0.110 -1.083 -15.71 -4.27    
30 0.001 -0.100 1.82 -7.25    
31 0.004 0.180 2.65 3.09    
32 0.004 0.780 1.59 7.85    
33 -0.005 0.173 -4.21 3.66    
34 -0.021 4.280 -3.07 17.38    
35 0.012 -0.403 6.25 -5.89    C

O
N

W
IP
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x 

#:
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36 0.008 -1.503 5.71 -29.61 -2.47 -2.50 

              
37 -0.040 -1.617 -13.33 -14.65     
38 0.000 -0.133 -0.20 -2.16    
39 -0.013 0.473 -7.14 6.81    
40 0.007 0.397 6.25 10.08    
41 0.020 0.290 8.33 3.25    
42 0.053 3.353 10.00 16.87    
43 -0.050 -1.400 -9.80 -7.39    
44 -0.011 1.043 -2.72 6.69    C

O
N

W
IP
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45 0.011 -0.623 7.33 -11.16 -1.28 8.33 
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Table (4.4-2): Comparison between the simulation and MMVA results for CONWIP level of 14 

  Differences in Means of Percentage Differences in Sum of Mean % Sum of Mean % 

 Sr. No. Avg. Queue Avg. Wait Avg. Queue Avg. Wait error in  error in  

           Queue length Wait time 
91 -0.100 3.787 -8.77 12.58     
92 0.008 -0.633 5.61 -17.51    
93 -0.007 -1.053 -1.57 -9.32    
94 0.107 -2.020 4.49 -3.20    
95 -0.007 0.837 -0.91 4.30    
96 -0.002 0.093 -0.53 1.12    
97 0.009 2.270 1.63 14.89    
98 -0.008 -0.550 -4.72 -11.53    

C
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T
im

e 
m
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x 
#:

 1
 

99 0.024 -0.110 13.40 -2.31 8.62 -11.00 

              
100 -0.017 9.303 -0.96 18.01     
101 0.070 -4.133 8.24 -16.27    
102 0.005 0.120 4.38 3.75    
103 -0.010 -2.900 -1.60 -14.94    
104 -0.040 -2.207 -6.56 -12.08    
105 -0.003 -2.610 -0.33 -8.71    
106 -0.070 -6.823 -3.61 -11.68    
107 -0.009 3.220 -1.95 24.14    C

O
N

W
IP
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14
   

   
   

  
T
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e 

m
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x 

#:
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108 -0.037 2.117 -7.67 14.42 -10.07 -3.36 

              
109 -0.007 -0.383 -8.00 -16.91     
110 -0.017 -0.117 -6.33 -1.64    
111 0.017 1.027 3.29 7.61    
112 0.247 14.277 9.96 21.44    
113 0.020 0.027 12.45 0.61    
114 -0.009 0.480 -6.50 13.26    
115 -0.107 -5.233 -13.62 -24.84    
116 -0.030 -13.370 -1.12 -18.33    

C
O

N
W

IP
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ve
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14

   
   

   
  

T
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e 
m
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ri

x 
#:

 3
 

117 0.003 0.233 3.23 8.41 -6.64 -10.39 

              
118 -0.007 9.193 -0.36 18.23     
119 -0.103 -10.207 -6.68 -24.24    
120 0.000 0.150 0.00 7.77    
121 0.014 2.117 2.38 12.85    
122 -0.010 -1.007 -1.64 -6.05    
123 0.063 -1.050 13.97 -8.47    
124 -0.117 -2.770 -8.08 -7.01    
125 0.040 -1.177 9.30 -9.98    

C
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IP
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x 
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126 -0.007 0.763 -1.94 8.12 6.95 -8.77 

              
127 0.057 -4.050 7.59 -19.99     
128 -0.010 -0.405 -2.27 -3.39    
129 -0.067 0.517 -18.87 5.35    
130 0.020 1.077 5.56 10.79    
131 0.043 -2.363 7.83 -15.57    
132 0.270 -13.950 11.84 -22.31    
133 -0.053 3.240 -4.15 9.31    
134 -0.003 4.443 -0.36 13.02    

C
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x 
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135 -0.045 1.757 -10.84 15.41 -3.67 -7.37 
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Table (4.4-3): Comparison between the simulation and MMVA results for CONWIP level of 35 

  Differences in Means of Percentage Differences in Sum of Mean % Sum of Mean % 

 Sr. No. Avg. Queue Avg. Wait Avg. Queue Avg. Wait error in  error in  
           Queue length Wait time 

189 -0.153 4.500 -8.13 9.54     
190 -0.030 -1.647 -3.03 -6.61    
191 0.100 0.920 9.17 3.35    
192 0.040 -12.097 1.15 -13.75    
193 0.053 -4.363 6.18 -19.88    
194 -0.100 1.263 -24.11 12.03    
195 0.063 1.763 9.27 10.14    
196 0.014 -0.500 6.03 -8.59    

C
O

N
W

IP
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l m
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35
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m
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x 
#:
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197 -0.013 -0.020 -5.88 -0.35 -9.36 -14.12 

              
198 -0.067 -13.273 -1.92 -14.79     
199 -0.100 1.840 -7.58 5.35    
200 -0.050 1.063 -13.51 10.96    
201 0.173 7.393 9.67 15.75    
202 0.137 1.130 12.93 4.07    
203 0.083 -7.440 2.72 -9.20    
204 0.193 8.633 7.63 12.83    
205 -0.067 -1.457 -8.40 -6.90    C

O
N

W
IP
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206 0.083 -2.327 9.33 -9.74 10.87 8.33 

              
207 -0.073 -1.893 -4.74 -5.11     
208 0.090 -6.367 4.35 -12.75    
209 -0.247 3.453 -15.29 8.83    
210 0.203 18.127 4.58 16.77    
211 -0.012 0.423 -5.00 7.46    
212 0.044 0.990 15.65 14.39    
213 -0.043 0.510 -3.65 1.75    
214 0.867 -48.427 10.25 -23.29    
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x 
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215 0.002 0.160 1.14 4.42 7.27 12.48 

              
216 0.347 6.497 9.72 7.15     
217 -0.007 -9.097 -0.36 -19.26    
218 -0.007 -0.193 -7.14 -7.87    
219 -0.060 1.460 -7.69 7.26    
220 0.080 1.227 11.94 7.13    
221 0.047 1.913 6.80 10.81    
222 0.090 -10.263 5.59 -24.64    
223 -0.067 -2.370 -11.63 -15.95    
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224 -0.073 2.953 -16.79 25.90 -9.57 -9.47 

              
225 0.183 -5.657 5.80 -7.35     
226 0.137 3.123 6.52 6.07    
227 0.127 3.537 8.58 9.71    
228 -0.613 -13.240 -15.62 -13.60    
229 0.100 -1.980 5.75 -4.56    
230 0.507 -26.167 7.55 -15.56    
231 0.087 -1.447 4.91 -3.23    
232 -0.307 5.780 -16.11 11.95    
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233 -0.060 1.810 -13.33 15.81 -5.97 -0.77 
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Comparison chart of simulation vs MMVA results for CONWIP level 
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 Fig 4.4: Comparison plots of simulation vs. MMVA outputs for CONWIP level of 7 and Time 

matrix # 1 
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Fig 4.5: Comparison plots of simulation vs. MMVA outputs for CONWIP level of 14 and Time 

matrix # 1 
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Comparison chart of simulation vs. MMVA results
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Fig 4.6: Comparison plots of simulation vs. MMVA outputs for CONWIP level of 35 and Time 

matrix # 1 

 

The following observations can be made from the above data and plots: 

• The MMVA gives good results for the two metrics defined, namely, average queue lengths at 

buffers and Average wait times at buffers, with a slightly better result for the average queue 

length. 

• The maximum deviation of the sum of percent deviation of average queue is about 11 % and 

that for average wait is about 15 %. However individual percent deviations show a large 

deviation, as high as 25 %. This alludes to the fact that the proposed method is only an 

approximate method. This magnitude of error is not unexpected as reported by Hildebrant 

(1980) and Reiser (1979). Inspite of such errors, this method is still widely favored due to the 

absence of closed form solutions of this complex problem. 

• Though the average percent error increases as the CONWIP level increases, the increase is 

marginal and could be due to some magnification of the randomness associated with the 

processing times. Also the percentage error near M* (M = 14), is strictly below 10%, which 

is the best obtained so far for a problem of this type and complexity. 
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• As expected the standard deviation of the average increases as the value of the corresponding 

mean of average increases. 

 

As mentioned in Chapter 2, Spearman proved that a small deviation in the selected 

CONWIP level does not make any significant difference in the value of the profit function due to 

the inherent flatness of the curve near the optimal value of M. Thus, we use to our benefit, the 

ease of implementation of this method without sacrificing much on the accuracy of throughput of 

the system. 
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4.6 Conclusions 
 

A new solution to queuing networks, which are known to be complex due to their size 

and intricate behavioral dynamics, is proposed. Such networks do not possess a closed product 

form solution, which could be found by analytical methods. In spite of these difficulties, the 

solution obtained by this method, is entirely in terms of mean queue size, mean waiting time and 

throughput. This new analysis leads to a simpler algorithm with a better numerical behavior than 

the previous ones and also reduces the computational complexity as compared to the convolution 

algorithms. Thus, no joint distributions of product form or normalizing constants are involved. 

As pointed out by Reiser (1980), MVA also avoids problems of floating point 

overflow/underflow inherent in the earlier algorithms.  

 

An approximate yet fairly good and reliable performance of this method does not affect 

the quality of the final objective significantly due to the flatness of the profit function curve 

around the optimal value of CONWIP level (M*). 
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Chapter 5: Sequencing multiple job types in a 
fixed intermediate storage CONWIP 

system 
 

 

5.1 Introduction 
 
 The previous chapter alluded to the issue of finding the optimal (or a near optimal) 

CONWIP level. Having the right level maintains a constant flow of parts to the combined 

bottleneck station, and ensures that it is utilized to its capacity. The second part of the problem is 

to find the optimal sequence with a low WIP (which in theory need not be the lowest CONWIP 

level achievable, to guarantee 100% utilization). This chapter starts with a discussion on the 

complexity of the sequencing problem at the first machine, and then a Network Flow Integer 

Program model is presented. Finally, a fast enumeration and appraisal technique is used to 

generate a good quality sequence. As will be explained, the problem has already been proven to 

be NP-hard. It is observed that such problems can often be simplified or at least some useful 

insights can be generated, by modeling it as a network flow problem. Various network flow 

algorithms can then be used to solve the problem or at least to reduce it to a problem of 

manageable size. Following this concept, the problem was divided into two sub-problems as 

follows: 

• Generation of possible partial feasible sequences, which can then be rated for their quality 

and then build-up successively to sequence all the jobs in the set. 

• Testing the quality of the sequences generated to reject the lesser effective partial sequences.  

The first part of the first-subproblem problem is NP-hard while its second part consists of 

determining the optimal sequence from the partial job sets in the presence of the existing 

conditions such as a fixed CONWIP level and limited intermediate storage. The second sub-
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problem is a critical path problem, and belongs to the class P problems, which can be solved in 

polynomial time. Thus, it is obvious that the overall quality of the solution will depend upon the 

capability of generating an optimal sequence, especially on the assumption it is based upon, 

which is that if a partial sequence is better in comparison to others in the partial job set, an 

addition of a job in the right slot retains that superiority. Since this assumption is not always true, 

the method does not always result in the optimal solution. 

 

For the first sub-problem, this research uses an enumerative approach called Fast 

Insertion Heuristic devised by Nawaz et al (1983). According to Lawler et al (1993), the fast 

insertion heuristic (FIH) and the less efficient simulated annealing algorithm of Osman and Potts 

(1989), are few of the most effective procedures for the flow shop scheduling problem. 
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5.2 Complexity of the sequencing problem 
 

Practical experience indicates that some scheduling problems are easier to solve than the 

others. Scheduling algorithms have been known for decades for some types of problems, which 

are capable for solving instances of large size problems. However, for some types of problems 

called NP-hard, the best algorithms strain to cope with only a handful of jobs. A computational 

problem can be viewed as a function f  that maps each input x  in some given domain to an 

output )(xf  in some given range. Although there may be many ways to represent the input 

domain for a particular problem, these specifics are largely unimportant. We would be interested 

in studying the time required to compute )(xf as a function of the length of encoding of the 

input x , denoted || x . Generally speaking, if a problem can be solved by a branching scheme of 

polynomial depth, then the problem is said to belong to the NP (nondeterministic polynomial) 

class. A problem is NP-complete, if it is in NP and every problem in NP reduces to it. All other 

problems can be reduced to class P, which have simpler solutions. 

 

Large flow shop problems have been long known to be NP-hard. In fact the F3|Cmax 

problem was shown to be strongly NP-hard by Garey, Johnson and Sethi (1976). The problem at 

hand only considers permutation schedules. We know that for a general F|Cmax problem, 

permutation schedules are not necessarily optimal. However, due to their simplicity to execute 

and ease to model (as the whole problem of sequencing at each machine can be shortened to that 

of only on the first machine), they have been widely used and studied.  

 

Since we convert the finite intermediate storage problem to a no-wait problem, it would 

be relevant and interesting to know that a F3|no wait|Cmax problem has been proven to be 

strongly NP-hard by Röck (1984). Since the makespan problem is NP-hard in the strong sense, 

the corresponding cyclic scheduling problem is also NP-hard in the strong sense as pointed out 

by Karmoun and Sriskandarajah (1992). They also prove that a F3|no-buffer (1,2), no-wait 

(2,3)|Cmax problem for a cyclic shop is NP-hard in the strong sense. Thus, it is obvious that 

addition of constraints such as stochastic processing times would only make the problem more 

difficult to address and thus NP-hard in the strong sense. A network flow based IP model is 

developed for the problem of scheduling the jobs, and is presented in Section 5.3.2. The 
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subsequent two sections pertain to the second part of the problem, which is to determine the 

length of the critical path. Again, Netwok Flow models are developed to generate useful insights, 

which further help to address the sub-problem. 
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5.3 A Network Flow Integer Programming Model of the Problem to determine 
the critical path and Other Related Concepts 

  

5.3.1 The Concept of Critical Path or Flow time for a permutation, and the definition of 
variables 

 
The following variables are used in the sequel: 

 

 $�SHUPXWDWLRQ�LQ�WKH�VHW�RI�SHUPXWDWLRQ�VFKHGXOHV� ��� ��� ���« 

3RVVLEOH�QXPEHU�RI� ¶V��RU�_6_�� �Q��IRU�D�0�PDFKLQH��Q�MRE�SUREOHP� 

�L� ith job in permutDWLRQ� �RU�WKH�MRE�LQ�WKH�Lth slot 

Xjik Indicator variable 

= 1, if job k is the ith�MRE�RQ�PDFKLQH�M�LQ�WKH�SHUPXWDWLRQ�  
= 0, otherwise 

& (i),j  Completion time of the ith�MRE�LQ� �RQ�PDFKLQH�M 

3 (i),j Processing time of the ith�MRE�LQ� �RQ�PDFKLQH�M 

/� � /HQJWK�RI�FULWLFDO�SDWK�IRU�SHUPXWDWLRQ�  

  

 

We can assume, without loss of generality, that a general flow shop with finite 

intermediate storage between machines can be converted to a shop with no storage between 

machines. This can be achieved by replacing buffers in the original system, by machines with 

unit capacity and a zero processing time for all the jobs. Thus, we construct a network only for 

the zero buffer case. This network is for the open shop (no CONWIP level) and a static schedule, 

which means that there is no cycling. This simplified model acts as a stepping stone towards the 

model developed for the problem on hand.  
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Fig 5.1: Network Flow RepresentatioQ�IRU�0DNHVSDQ�&DOFXODWLRQ�RI�D�3HUPXWDWLRQ�6FKHGXOH� ��

for a Zero Buffer Capacity case 

 
Refer to the network in Figure 5.1. The nodes represent the completion times of the job 

�L��RQ�PDFKLQH�M�IRU�D�JLYHQ�SHUPXWDWLRQ�� ��'LUHFWHG�DUFV�DUH�GHILQHG�IURP�HDFK�QRGH��& (i),j) 

WRZDUGV� �& (i+1)j��� �& (i),j+1�� DQG� �& (i+1),j-1��� $UFV� IURP� QRGHV� �& (i),j�� WR� �& (i+1),j-1) 

KDYH� ]HUR� ZHLJKWV� DVVRFLDWHG� ZLWK� WKHP�� $UFV� IURP� QRGHV� �& (i),j�� WR� �& (i),j+1) have 

FRUUHVSRQGLQJ� ZHLJKWV� RI� 3 (i),j+1 associated with them anG� WKRVH� WR� �& (i+i),j) have 

FRUUHVSRQGLQJ�ZHLJKWV�RI�3 (i+1),j. Thus, the above network is a directed graph. The problem of 

finding the makespan value or flow time corresponding to a schedule is analogous to the 

determination of the maximum path on the above-PHQWLRQHG�DF\FOLF�JUDSK�IURP�QRGH��& (1),0) 

WR��& (n),m). 

 
For a zero buffer flow shop, the following recursive relationship specifies the completion 

WLPHV��& (i),j,�FRUUHVSRQGLQJ�WR�WKH�QRGH� �L��M��LQ�WKH�DERYH�QHWZRUN� 

………… 

………… 

 

Slot n Slot 2 Slot 1 Slot 3 

& (2),m ………… 

…
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. 

…
…

. 

…
…
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…
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.

& (1),0 & (2),0 & (3),0 & (n),0 

& (1),1 & (2),1 & (3),1 & (n),1 

& (1),2 & (2),2 & (3),2 & (n),2 

& (3),m & (n),m & (1),m 

3 (1),1 

3 (1),2 
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3 (2),1 3 (3),1 

3 (2),2 3 (3),2 
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& (i),j� �PD[�^PD[�^& (i),j-1,�& (i-1),j`���3 (i),j��& (i-1),j+1}   (5.3.1-1) 

 

for 1��L���Q�DQG�����M���P 

 

)RU�DQ\�JLYHQ�SHUPXWDWLRQ��RU�VFKHGXOH� ���ZH�FDQ�ILQG�WKH�FULWLFDO�SDWK��7KH�FULWLFDO�SDWK�

is the path such that the summation of the processing times of the jobs on that path is higher than 

that of the jobs on any other path. The length of the critical path corresponding to a schedule is 

WKH�YDOXH�RI�WKH�IORZ�WLPH�IRU�WKDW�VFKHGXOH��$OO�SHUPXWDWLRQV�> � �^6`��_6_� �Q�@�ZLOO�KDYH�WKHLU�

own critical paths and values of flow times. The minimum among these flow times (or the 

critical path lengths) is the flow time of the optimal schedule. This is explained in a more 

mathematical fashion in the following paragraph. 

 

7KH�OHQJWK�RI�DQ\�SDWK�IURP��& (1),0��WR��& (n),m) can be written as follows: 

 

∑∑∑
−===

+++=
m

wj
jn

w

wj
j

w

j
j

n

PPPL
1

2

1

1

),(),2(
1

),1( ..........)( σσσσ      (5.3.1-2) 

 

where integers 121 ,...,, −nwww  define the path. Also mw ≤≤ 11 ; ......1 21 mww ≤≤−  

For example, referring to Figure 5.2, the critical path as shown in brown color can be defined 

mathematically by the following values of sw’ .  

21 =w , 22 =w , 33 =w , 34 =w  and so on. 

7KH�PD[�RI�/� ���DPRQJ�DOO�SHUPXWDWLRQV�LQ�VHW�6��LV�WKH�FULWLFDO�SDWK� 

Now, if 112 −= ww � RU� WKH� SDWK� IROORZV� WKH� DUF� IURP� �& (i),j�� WR� �& (i+1),j-1), then 

0
2

1

),( =∑
=

w

wj
jiPσ . 

 

We still have not defined as to which jobs would be on this critical path. This problem, 

rather, is reverse of what was just explained. The jobs are first assigned to specific slots, 

resulting in a fixed schedule, the critical path of whose network graph is the value of the 
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objective function or Flow time. The indicator variable Xjik does this function by assigning the 

MRE� WR� VORWV�RQ� WKH�FULWLFDO�SDWK��&RQVHTXHQWO\��ZH�FDQ�ZULWH� WKH�HTXDWLRQ� IRU�/� ��� LQ� WHUPV�RI�

Xjik as follows: 

..........)(
2

1

1

2),2(
1

1),1( ++= ∑∑∑∑
=

w

w
kjj

k

w

j
kjj

k

XPXPL σσσ     (5.3.1-3) 

or 

 

∑∑∑∑
−====

=
l

l

w

wj
jikji

m

l

n

i

n

k

XPL
1

),(
111

)( σσ  

This is the length of a path on the network for a specific sequence or permutation. Thus, the 

maximum of this value among all paths for a particular sequence {
w

max /� �} is the critical path 

(or Flow time), which we would like to minimize. The problem of finding the optimal sequence 

can be formulated as an IP problem as shown in the following section. 
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5.3.2 An IP Model to determine the optimal sequence 
 
Objective Function: 

 

)(σ
σ

LMin  where   })({max)(
1

),(
111

∑∑∑∑
−====

=
l

l

w

wj
jikji

m

l

n

i

n

k
w

XPL σσ σ  

or 

})({
1

),(
111

∑∑∑∑
−====

l

l

w

wj
jikji

m

l

n

i

n

k

XPMaxMin σσσ
 where )(σjikX  defines the sequence for a particular 

permutation σ  

 

Constraints: 

The following constraint states that the length of any path is smaller than the longest path (or the 

critical path) for a given σ  

)()(
1

),(
111

σσσ LXP
l

l

w

wj
jikji

m

l

n

i

n

k

≤∑∑∑∑
−====

 for all w’s and σ ’s 

 

Also, one slot can hold one job 

1=∑
k

jikX   for all i,j   

 

Job k can be assigned to only one slot i 

1=∑
i

jikX   for all j,k  

 

Only one job can occupy a slot on a machine 

 

1)( =∑ σ
j

jikX  for all i,k 

 

)1,0(,, ∈kijX  for all j, i, k 
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Unfortunately, this IP problem cannot be solved in Polynomial time. However, the sub-

SUREOHP�RI�ILQGLQJ�WKH�FULWLFDO�SDWK�IRU�DQ\�SHUPXWDWLRQ� �LV�RI�WKH�RUGHU�RI�2�QP��DV�VKRZQ�E\�

Lawler (1976) and can thus be solved in polynomial time. 

 

Thus, the above problem is separated into the following two sub-problems: 

• Find the sequence for which the critical path has the least value. This problem cannot be 

solved in polynomial time and thus a fast heuristic or a search method needs to be employed 

to solve it. An enumerative approach, called Fast Insertion Heuristic and devised by Nawaz 

et al (1983) is used to this end. 

• Determine the critical path. This is done by a network flow technique, which exploits the 

specific properties of the network. 

 

We use the concept of scheduling epochs in modeling the problem of finding the critical path 

of a permutation. A schedule can be as divided into groups of jobs such that the groups follow a 

strict precedence constraint relationship. We can say that, virtually, any job in the set of jobs 

which form one epoch, has to be finished, before any job in the set of the next epoch can be 

started, though this is not necessarily true on the time scale. This virtual precedence 

relationships, act as constraints in the IP model to determine the critical path. The following two 

sections, present a mathematical definition of these epochs. The concept is built using the 

following two stages, for ease of understanding: 

• Open system with intermediate storage of size zero. 

• Closed system with a CONWIP level of M, and intermediate storage size of zero. 
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5.4 An IP Model to Determine the Length of Critical Path for a given sequence 
among jobs 

 

5.4.1 Model for an Open System with Zero Buffers 
 
The following variables are defined: 

Let Pji be the processing time of job i on machine j and  

Xji Indicator variable 
= 1, if job i on machine j is on the critical path 
= 0, otherwise 

 

Model: 

 

Objective function: 

 

Max L, where 

ji

m

j

n

i
ji XPL ∑∑

= =

=
1 1     

 

Constraints: 

 

1,1,1,1, −−+− ++= ijijijij XXXX   for all j,i 

 

and  11,1 =X  and 1, =nmX  

}1,0{∈jiX  for all i,j 

 

In the following sub-section, we present a formulation to determine the critical path for a closed 

system with the CONWIP level of size M. 
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5.4.2 A Model to determine critical path for a System with Zero Buffer Between 
Machines and CONWIP Level of M  

 

CONCEPT OF SCHEDULING EPOCHS 
 

Refer to the Network representation shown in Figure 5.1. We define the Epochs as follows: 

Epoch 1 (Red): 3 (1),1 

Epoch 2 (Blue): 3 (1),2, 3 (2),1 

Epoch 3 (Green): 3 (1),3, 3 (2),2, 3 (3),1 

These Epochs are shown as colored heavy lines on the network in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.2: 1HWZRUN�)ORZ�5HSUHVHQWDWLRQ�IRU�0DNHVSDQ�&DOFXODWLRQ�RI�D�3HUPXWDWLRQ�6FKHGXOH� ��

showing the Epochs and the critical path using a colored scheme 
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0 0

0 0

3 (1),3 
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The critical path is shown in a heavy brown line, and runs from the first to the last node. 

These Epochs can be viewed as progressive boundaries between the start and end nodes, and 

which thus have to be cut enroute the last node from the first one. It can be easily noted from the 

above depiction of Epochs and the critical path that we have to follow only one of the arcs on all 

the Epochs.   

The following two statements formally define the concept of scheduling epoch. 

 

Statement 1: 
 
A schedule can be divided into segments or epochs, which for the M ��P�FDVH�FDQ�EH�WKRXJKW�RI�

as time slots demarked by vertical lines joining the end points of successive jobs on all machines. 

 
Statement 2: 
 
Only one of the jobs in every scheduling epoch can be on the critical path. This statement can be 

written in mathematical form for a noncyclic (or acyclic) sequence as follows: 

 

1
1

1, =∑
=

+−

l

k
klkX  for all values of l = 1 to m      (5.4.2-1) 

1
1

1, =∑
=

+−

m

k
klkX  for all values of l = m+1 to n      (5.4.2-2) 

 

Any sequence in the case of an open flow shop can be depicted schematically as shown in 

Figure 5.3. The schedule can be viewed in terms of vertical columns (or epochs) defined as 

follows. The first job on machine 1 constitutes the first vertical column. The second vertical 

column consists of the second job on the first machine and the first job on the second machine. 

The third vertical column consists of the first job on the third machine, the second job on the 

second machine, and the third job on the first machine, and so on. This was shown in color 

scheme earlier. 
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Fig 5.3: Schematic Graph of a Typical Open Flow shop Gantt chart 

 

The scheduling Epochs are vertical slots as shown in Region 3. As can be observed, the 

scheduling epochs can be differentiated into three distinct types, as labeled in Figure 5.3. These 

groups of similar epochs are called “Regions”. All the jobs in the epochs belonging to a region 

can be represented by a common mathematical equality in the form of a constraint in the IP 

model, to determine the critical path. Thus a Region is a collection of separate epochs with a 

similar form of mathematical equation defining them, which are clubbed together only for 

modeling purposes. An example is the Region defined by a common equation (5.4.2-3). The 

variable i defined earlier is the index of these Regions, whereas l is the index of the individual 

epochs. We can divide the whole graph into 3 distinct regions based on the configurations of the 

scheduling epochs. Also, as stated earlier, only one job of each epoch can be on the critical path. 
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We now need to mathematically derive an expression, to determine the length of the critical path. 

Let us consider Region 1. Refer to Figure 5.3. On the X-Axis, Region1 extends until m. The 

following equation states that at least one job in this period is on the critical path. 

For Region 1: 

1
1

1, =∑
=

+−

l

k
klkX  for all values of l = 1 to m      (5.4.2-3) 

 

Now, there can be cases of multiple critical paths, in which case, more than one job in a period 

could be on the critical path. However such critical paths result in identical objective function 

values. Thus, we can neglect one path altogether and still claim that only one job in each path is 

on the critical path. 

Similarly, for Region 2 and 3, we can write the following equations: 

 

Region 2: 

1
1

1, =∑
=

+−

m

k
klkX  for all values of l = m+ 1 to n      (5.4.2-4) 

 

Region 3: 

1
1

1, =∑
+−=

+−

m

nlk
klkX  for all values of l = n+1 to n+m-1     (5.4.2-5) 

 

In the determination of the critical path, we assume that the sequence is known. In other words, 

the job types in all the epochs are known. 

  

The following variables are used in the sequel: 

m Number of machines (actual # of machines + Summation of buffer sizes) 

n Number of jobs in the sequence 

M CONWIP level 

l Index of Epoch; (explained in the sequel) 

k Job number in a scheduling epoch 

Pkl Processing time of the job type k in epoch l  
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Xk,l =1, if job type k, in scheduling epoch l, is on the critical path 

=0, otherwise 

i An integer representing Index of the region type (e.g. ith region of type 

(2) etc). This is explained in detail later but is defined here with other 

variables to facilitate easy reference. 

 

 

The following two cases arise: (i) M ��P�DQG��LL��0���P��7KH�ILUVW�FDVH�LPSOLHV�WKDW�WKHUH�

are atleast as many jobs in the system as the number of machines. Since we are considering the 

case of zero intermediate buffers, this implies that M ��P�LV�QRW�SRVVLEOH�DQG�KHQFH�ZH�QHHG�WR�

consider only the M = m case. The second case implies that we have less number of jobs in the 

system than m. 

 

Case I: M = m 

This case results in an open shop situation where the CONWIP level condition is relaxed 

This can be explained as follows:  

Refer to Figure 5.1. Due to the manner of constructing arcs in the network presented in Figure 

5.1 to capture completion times of the jobs processed in a known fixed sequence, the only way 

SRVVLEOH�WR�PRYH�IURP�QRGH���& (i),j��WR��& (i+1),j-1) is along the diagonal arc with zero weight. 

7KXV��WR�PRYH�IURP�QRGH��& (i),m��WR�QRGH��& (i+M),0), ‘M’ nodes, along the diagonal path to 

the right, need to be traversed. In case M ��P��QRGH��& (i+M),0) will be reached in m steps using 

the diagonal arcs and no additional arcs need to be drawn in the network to establish the 

CONWIP precedence constraint. Thus, the original network remains unchanged. This follows 

from the fact that; a system with ‘m’ machines (under the case of no buffer) can hold at most m 

jobs at any time. Now, if M ��P��WKHQ�WKH��0���th job cannot enter before the first job leaves, 

due to the insufficient capacity (m) of the system. 
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Case II: M < m 

 

In this case, we have to consider the extra arcs added due to the CONWIP constraint. The 

FULWLFDO�SDWK�PD\�LQFOXGH�WKH�DUFV�MRLQLQJ�WKH�QRGHV��& (i),m��DQG��& (i+M),0). We thus have to 

make sure that the (i+M)th job on the first machine, is not in the same Epoch as the ith job on the 

last machine. We thus need to push the (i+M)th job on the first machine, by one Epoch. The need 

of this modification is explained by the fact that we want to hold statement 2, mentioned earlier, 

true. This will create a gap in the Epoch on the first machine. We follow the same procedure for 

the (i+M+1)th job on the second machine and so on creating a slanting gap between regions as 

shown in the schematic Gantt chart in Figure 5.4 below. For an example, refer to Figure 5.5. The 

entire sequencing area can be divided into the following four types of regions (marked on the 

Figure): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.4: Schematic Graph of a Typical Flow Shop Gantt chart with CONWIP level condition 
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Each region spans a few or even a single epoch. Region 3 can be further divided into region 3a 

and 3b. 

It can be noticed that region 1 is same as region 1 for the m < M case. Thus the same formula 

applies here, which is restated as follows: 

 

1
1

1, =∑
=

+−

l

k
klkX  for all values of l = 1 to m      (5.4.2-6) 

 

We now device formulae, for only the first parallelogram, and region 3b. Then we use those 

results, to generalize to any parallelogram or region anywhere in the long sequence. 

 

Region2: 

 

1
1

1, =∑
+−=

+−

l

Mlk
klkX  for all values of l = M + 1 to m     (5.4.2-7) 

 

Regions 3b: 

 

1
1

1, =∑
−

=
++−−

ml

k
MmklkX  for all values of l = n + 1 to n + m - 1 

 

Region 3a:          (5.4.2-8) 

1
1

1, =∑
+−=

+−

m

Mlk
klkX  for all values of l = n + 1 to n + m - 1 

 

We test these results on any typical sequence. The Gantt chart of this sequence is as shown in the 

Figure 5.5 

For Region 1: l = 3 
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=
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For Region 2: l = 4 

 

11,42,33,2

4

2
5,

4

134
5, =++== ∑∑

=
−

+−=
− XXXXX

k
kk

k
kk

      

 

For Region 3: 

 

We have Region 3 = Region 3a + Region 3b 

 

1
1

1,
1

1, =+ ∑∑
+−=

+−

−

=
++−−

m

Mlk
klk

ml

k
Mmklk XX   for all l = m + 1 to m + M    

 

For l = 5 

1
4

3
6,

1

1
5, =+ ∑∑

=
−

=
−

k
kk

k
kk XX

 

or  

12,43,34,1 =++ XXX
 

 

For l = 6 

1
4

4
7,

2

1
6, =+ ∑∑

=
−

=
−

k
kk

k
kk XX

 

or  

13,44,25,1 =++ XXX
 

 

Now, as defined earlier in the variable definitions, i is an integer, which denotes the number of 

regions of a particular type before the next region of the same type. 

Thus i = 4 for region 3 would be the fourth region of type 3 in succession. 

We now extend these results to any ith region of any type as follows: 

 

Region 1: 
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1
1

1, =∑
=

+−

l

k
klkX    for all l = 1 to m       (5.4.2-9) 

 

Region 2: 

 

1
)1(

1)1(
1)1(, =∑

−−

+−−−=
++−−−

mil

Mmilk
iMkmilkX   for all l = (i-1)m + M + 1 to im    (5.4.2-10) 

 

Region3: 

 

1
1)1(

1)1()1(,

)(

1
1, =+ ∑∑

+−−−=
+−+−−−

−

=
++−−

m

Mmilk
Mimiklk

iml

k
iMimklk XX   for all l = im + 1 to im + M (5.4.2-11) 

 

Region 4: 

 

1
1

1,
=∑

+



−=

+



−−

m

m
M

n
lk

m
M

n
klk

X   for all l = im + M + 1 to n + m – 1   (5.4.2-12) 

 

Regions 1 and 4 will appear only once in any sequence. These conditions are true if and only if 

statement 2 is true. For the case of m ��0��ZH�FDQ�VXSSRUW�WKH�VWDWHPHQW�ERWK�WKHRUHWLFDOO\�DQG�

by means of an example, that this statement is false. We then add a term to these equations to 

restore their validity.  

 

Supportive Explanation: 

 

Consider the network shown in Figure 5.5. If m = 4 and M = 3, then job 4 on machine 1 

is pushed in the slot 5. Thus, the fourth Epoch has no job on machine1 as shown on the network. 

7KH�DUF�IURP��& (4),0��WR��& (4),1��>DQG�IURP��& (3),1��WRZDUGV��& (4),1)] is no longer in the 

HSRFK�� $OVR�� ZH� KDYH� WR� MRLQ� QRGH� �& (4),0�� WR� QRGH� �& (1),3) by an arc of zero weight to 

FRQVLGHU� WKH� SUHFHGHQFH� RI� �& (1),3�� EHIRUH� �& (4),0). To generalize, arcs joining the nodes 
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�& (i),m��DQG��& (i+M),0) have to be added to the network and should also be included in the 

constraints. Thus our statement 2 is proved wrong. 

The following example makes it clearer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.5: Gantt chart showing the concept of Epochs in a CONWIP system 

 

We can clearly see that no job in epoch 4 is on the critical path. Thus, we need to generalize the 

Statement 2 as, either one on slot 4 or job 3 on machine 1 is on the critical path. 
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Thus, the revised Statement 2 states: 

At most one of the jobs in every scheduling epoch can be on the critical path. In case none of the 

jobs of an epoch on a machine lies on the critical path, then a job from the previous epoch on 

that machine should be on the critical path. 

 

For any general case we need to add the following 1,0 integer to the equations: 

 

1, =− iMiMlX
 

 

This, however, would not affect region 1 and 4. The equations for region 2 and 3 would now be 

as follows: 

 

Region 1: 

 

1
1

1, =∑
=

+−

l

k
klkX   for all l = 1 to m 

 

Region 2: 

 

1,

)1(

1)1(
1)1(, =+ −

−−

+−−−=
++−−−∑ iMiMl

mil

Mmilk
iMkmilk XX   for all l = (i-1)m + M + 1 to im 

 

Region3: 
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iml

k
iMimklk XXX   for all l = im + 1 to im + M 

 

Region 4: 

1
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X   for all l = im + M + 1 to n + m – 1 
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The above equations can be inserted into the model presented in section 5.4.1 to represent 

the CONWIP system with finite intermediate buffers and cyclic flow of multiple classes of jobs. 

Though this model cannot be solved in Polynomial time, it provides us with interesting insights 

concerning the issue of finding the critical path for any permutation. The complete model is as 

presented below: 
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Objective function: 

 

Max L, where 

kl

m

k

mn

l
kl XPL ∑ ∑
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1

    

 

Constraints (constructed in earlier sections for all 4 types of regions): 

 

Region 1: 

 

1
1

1, =∑
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+−

l

k
klkX   for all l = 1 to m 

 

Region 2: 
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Region 4: 
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X   for all l = im + M + 1 to n + m – 1 

 

 

}1,0{εjiX  for all i,j 
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The following sections of this chapter are devoted to the explanation of the actual method 

proposed to solve the whole sequencing problem. As mentioned in the earlier sections, a Fast 

Insertion Heuristic (FIH) along with a modified form of Floyd’s algorithm is used. We later try 

different modifications of the FIH, to determine the best strategy to choose the order in which the 

jobs should enter the partial job set. 
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5.5 FIH in its simplest form (As suggested by Nawaz et al (1983)) 
 

The Fast Insertion Heuristic (FIH) for flow shop sequencing problems 

 

 Step 1.  For each job i, compute: 

T pi ij
j

m

=
=

∑
1

 

 Step 2.  Arrange the jobs, in a LIST, in decreasing order of Ti . 

 Step 3.  Pick the first two jobs on the LIST. 

   Find the best partial sequence of these two jobs, and make it the ‘current  

  sequence’. 

   Set i=3 

 Step 4.  Pick the job in the i-th position on the LIST.   

   Insert it in all possible positions in the ‘current sequence’ and evaluate the 

   sequence. 

   Make the best resultant partial sequence the ‘current sequence’. 

 Step 5.  If i n≤ , then set i i= + 1and go to Step 4. 

 

To select the best partial sequence in the FIH, a modified version of Floyd’s Heuristic is 

employed. It can be observed from the network that a large percentage of arcs between the nodes 

have a weight of zero. This fact can be used to our benefit to simplify the amount of calculations, 

by using the Floyd’s method, in which successive matrix manipulations to be performed are 

simplified. The FIH algorithm is mentioned in the following section. 
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5.6 Modified Floyd’s Algorithm for determination of the critical path 
 
We first explain the Floyd’s algorithm and its underlying principle. 

Floyd’s algorithm is a more generalized algorithm compared to Dijkstra’s because it determines 

the shortest route between any two nodes in the network. We thus need to modify the algorithm 

to result in the length of longest path between any tow nodes. The algorithm represents an nm-

node network as a square matrix with nm rows and nm column. Entry (i,j) of a matrix gives the 

distance dij  from node i to node j, which is finite if i is linked directly to j, and infinite otherwise.  

The Floyd’s algorithm is based on a simple intuitive logic. It states that if the travel to a node 

from its preceding node can be made shorter by traveling via another node, which is linked to the 

preceding node, it is always advisable to travel via the extra node so that the travel distance is 

minimum. This can be stated mathematically as follows: 

Given three nodes i, j and k as shown in the figure 5.6, with the connecting distances shown on 

three arcs, it is shorter to reach k from i passing through j if  

 

dij  + djk < dik 

 

 

 

 

 

 

 

 

 

 

Fig 5.6: A Directed Graph Showing Nodes i, j, and k 

 

In such a case, it is optimal to replace the direct route (i,k) by the sum of routes (i,j) and (j,k). A 

systematic method to exhaust all routes joining every node set i,j,k, is to first form a matrix D0. 

This matrix is formed by the distances between all the possible pairs of nodes in the network. A 

j 

i k 
dik 

dij djk 
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row and a column is chosen in such a way that they intersect at a diagonal element. A triple 

operation exchange is then applied to the chosen nodes using the following steps: 

(These steps are as mentioned in the book Operations Research, An Introduction by Hamdy A. 

Taha [6th edition]) 

 

Step 1: Define the starting distance matrix Do as explained earlier. The diagonal elements are 

marked with (-) to indicate that they are blocked. Set step number k equal to 1. 

 

General step k: Define row k and column k as pivot row and pivot column. As explained earlier, 

row k and column k intersect at a diagonal element. Apply the triple operation to each element 

dij in Dk-1 (i.e. on all elements in Dk-1, which are not on the diagonal and not on the selected 

row and column k) , for all i and j. If the condition 

 

dik + dkj < dij, (i ≠ k, j ≠ k, and i ≠ j) 

is satisfied, make the following change: 

 

Create new matrix Dk by replacing dij in Dk-1 with dik + dkj 

 

Step k of the algorithm can be more readily explained by representing Dk-1 as shown in figure 

5.7. The intersection of row k and the column k defines the pivot element. Row i represents any 

general row 1, 2,….., k-1 and row p represents any row k+1, k+2, ….., n. Similarly, column j 

represents any column 1, 2, ……, k-1 and column q represents any column k+1, k+2,……, n. 

The triple operation can be applied as follows: 

 

If the sum of the elements on the pivot row k and the pivot column (shown by squares) is greater 

than the associated intersection element (shown by circles), then it is optimal to replace the 

intersection distance (or the values in the circles) by the sum of the pivot distances (values in the 

squares). 
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Fig 5.7: Schematic Diagram showing the Pivot Manipulation in a Floyd’s Matrix 

 

After n steps the longest route between any two nodes i and j can be determined as the entry dij 

in the matrix Dn.  

 

This algorithm gives the shortest path between any two nodes. It is, however, desired to find the 

longest path between the first and the last node of our processing time network. Thus, we need to 

modify the algorithm. The modification pertains to additional checks at step k. The modified 

algorithm, is as follows.  

 

Modified Floyd’s Algorithm: 

 

Step 0: Define the starting distance matrix Do as given subsequently. The diagonal elements are 

marked with (-) to indicate that they are blocked. Set k = 1. 

 

General step k: Define row k and column k as pivot row and pivot column. Apply the triple 

operation to each element dij in Dk-1, for all i and j. The if conditions are as follows (they are 

given in a programmer friendly way to help in its coding and understanding): 

 

If (i ≠ k, j ≠ k, and i ≠ j) 

 dij 

 dpq  dpj 

 diq  dik 

 dpk

 dkj  dkq

Row i 

Pivot Row k 

Row p 

Column j 
Pivot 

Column k Column q 

 � 
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 If dik ≠ ∞ and dkj ≠ ∞ 

  If dij = ∞ 

      or dij ≠ ∞ and dik + dkj > dij 

then make the following change: 

 

Create Dk by replacing dij in Dk-1 with dik + dkj 
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These additions can be shown in the form of a flow chart as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.8: Flow Chart Showing the Additions to the Floyd’s Heuristic 

Is 
i ≠ k, 

j ≠ k, and i ≠ j ? 

Is dik ≠ ∞ 
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The FIH heuristic calls the Modified Floyd’s algorithm (MFA) in each iteration i number 

of times, if i is the number of jobs in the partial job set at that iteration. In other words, the ith job 

to be introduced in the permanent set have i possible slots it can be introduced. For each of such 

possible combination, the MFA is called to return the value of the critical path. In the 

implementation of the MFA, the following points need to be highlighted, as they are further 

modifications to suit this problem: 

The critical path passes from the first job on machine 1 to the last job on the last machine.  

The last step is to include the cyclic nature of the sequencing policy. To that end, it is necessary 

to study the entire cycle rather than just one set of jobs. At times depending upon the value of 

CONWIP level M and the number of jobs in the partial job set, more than one set of jobs might 

need to be considered to study one complete cycle. The following explains this fact. 

 

5.6.1 Determination of Cycle Length 
 

Statement: The cycle length, which needs to be considered in the determination of the critical 

path, is the Least Common Multiplier of the CONWIP level M and the number of job types n, in 

the partial job set.  

To illustrate, let there be 4 jobs in the partial job set and the CONWIP level is 3. Then the length 

of a cycle is LCM (4 , 3 ) = 15. Thus, if the job types are A, B, C, D, E then the following insert 

shows how a cycle is determined: 

 

 

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D ………. 

 

 

 

 

 

First cycle 
Cycle length = 12 

Second cycle …… 
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Now consider a case when the cycle length is the actual LCM of the two and not their product. 

For example, if the number of jobs are 8 and CONWIP level in 6 then the cycle length is LCM (8 

, 6) = 24 and not 48 as shown below 

 

 

A B C D E F G H A B C D E F G H A B C D E F G H A B C D E F G H ……… 

 

 

 

 

 

The critical path now spans over a network, covering jobs multiple times and not just 

once as in one MPS. Thus, the critical path length would be the flow time which could be 

defined as the time interval between the instant the job type A enters the first machine to the 

instant the job type A enters again 4 MPS later. The number of jobs at any iteration in the FIH is, 

however, the same, which is LCM(M,n). The partial sequence corresponding to the shortest path 

length is selected and the new job is fixed in relation to the other jobs in the set to form the 

optimal partial job set at that iteration. 

 

 

5.6.2 CONWIP Level & Cyclic Sequence Considerations in the Network Representation 
 

Another important issue to be noted is the inclusion of the CONWIP level in the network 

representation in addition to the fact that the sequence is cyclic. Extra arcs have to be added to 

the network to include these conditions. The nodes & (i),m on the last machine m for any job i 

are joined to nodes & (i+M),0 on the zeroth machines. The zeroth machine nodes represent the 

starting times of the jobs on the first machine and are so named only for convenience even 

though there is no zeroth machine physically. All these arcs have a weight of zero. These 

establish the precedence constraints between the start of (i+M)th job to the end of the ith job on 

the last machine. These arcs not only span over a single MPS but also between the corresponding 

First cycle 
Cycle length = 24 

Second cycle …… 



 123

jobs oversuccessive MPS for an entire cycle length, which is M, MPS sets. It is important to note 

that the network should be first augmented to include the cyclic condition and then should be 

followed by the addition of arcs to include the CONWIP condition. 
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5.6.3 Computational Complexity of the method to determine the best sequence 
 

We have thus far included all the unique conditions, which this research assumes. The 

computational complexity of this method is limited by the FIH heuristic, since the MFA only 

adds a finite number of computations at every iteration, depending upon the matrix size (or the 

iteration number). At any iteration i, the number of computations for finding the length of the 

critical path by the MFA is ( �– 1)2��ZKHUH� � � �1XPEHU�RI�0DFKLQHV��;� �1XPEHU�RI� -REV���

There are n such iterations, where n in the number of jobs to be sequenced. Newaz et al (1983) 

mention in their research that the complexity of the FIH heuristic is of the order of O(n2) since, 

at each iteration, at most n positions are considered and this step is repeated (n-2) times. It can 

further be shown that the number of enumerations in the algorithm is: 

 

      1
2

)1.( −+nn
 

Thus the use of MFA does not change the total complexity and is of the order of O(n2). 
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5.7 Experimental Study to test the Quality of the Sequences Generated 
 

The methodology proposed to determine the backlog sequence consists of two steps. The 

first step deals with the generation of partial sequences and the second one pertains to the 

selection of the best solution from among the possible ones at any iteration. Several partial 

solutions are generated using the modified FIH heuristic developed by Nawaz et al (1983). 

Selection of an appropriate solution from among them is accomplished by finding the critical 

path length between the end nodes of the network, which is a measure of the flow time. This is 

done using the Modified Floyd’s algorithm. Although the method of generating the sequences is 

only an approximate one, the method of calculating the critical path length is optimal. Thus, the 

accuracy of the entire problem hinges upon the quality of the solution to the first problem of 

generating good partial sequences.  

The final sequence suggested by the proposed procedure need not be optimal. An 

experimental study was undertaken to determine the quality of the sequences obtained. The 

solution generated by the proposed heuristic was compared with the corresponding figures 

generated by another method, and whose solutions are known to be reliable. To assure a fair 

comparison, various factors, which affect the final solution, have to be considered. The effects of 

each of these factors have to be studied by quarantining their effects on the problem solution. In 

this study, we compared the solution obtained by the proposed procedure with the optimal 

sequence obtained via enumeration and evaluation using simulation. 

 

5.7.1 Experiments Design 
 

The Modified Fast Insertion Heuristic and Modified Floyd’s Algorithm (MFIH + MFA) 

heuristic was coded using C++ and run on a Windows NT platform. The actual code for one 

variation of the heuristic is included in Appendix C. The output was displayed for analysis in the 

form of text files. Two such typical output files that show the sequential building of the best 

sequence and the Floyd matrix at every iteration are included in the Appendix D.  
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The simulation models were built using the Taylor II simulation software, courtesy of 

Ericsson, Lynchburg. The performance measure used for comparison was the flow time (or CT).  

From the preliminary study done at the inception of this research, it was determined that the 

following factors affect the final solution value and thus have to be carefully studied to consider 

their effect.  

• The CONWIP level M 

• Problem size (number of job types) 

• Level of stochasticity 

 

It is not possible to study the effect of all these input factors on the quality of the flow 

time when a high level of stochasticity in the processing times is involved. This is due to the fact 

that the exact optimal solution cannot be determined in a stochastic case. Such studies would 

involve probabilities of achieving a close to optimal or optimal solutions, and would muddle the 

issue of appraisal of the closeness of the flow time to the optimal value obtained by enumeration 

and evaluation using simulation. Thus, it was found appropriate to test the effectiveness of the 

first two factors using deterministic time values to determine a level of accuracy, and to the study 

the third factor separately.  

 

The Table 5.7.1-1 summarizes the experiments performed with the deterministic processing 

times: 

 
Table (5.7.1-1): Summary of the Experiments Performed 
 

Problem 
size 

CONWIP level 

3 2 4 5 
4 3 4 5 
5 - 4 5 
7 - 4 6 
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5.7.2 Results and analysis of the experiments 
 

Experiment 1: 

 

The FIH heuristic as suggested initially chose the jobs to enter the partial job set 

according to the summation of the processing times of all the jobs on different machines. 

However, to fine-tune the heuristic, it was decided to employ different strategies to select the 

entering job. These are as mentioned below: 

• Incr: This strategy is the same as that proposed by Newaz (1983). 

• Decr: This strategy is exactly opposite to the one proposed and selects the jobs in decreasing 

order of the summation of processing times of the jobs on the machines. 

• Ends: This strategy orders the jobs just as the Incr strategy. However the jobs are chosen as 

the first job as the first to enter, last job as the second to enter, second job as the third to 

enter and so on. 

• Ends_r: This was an exactly opposite to the Ends strategy. 

• Random: No specific rule. The jobs were chosen in the order they appeared in the time 

matrix. 

 

The Table 5.7.2-1 shows results of experiments performed to determine the optimal strategy. Ten 

runs were made with different processing time matrices, and all the heuristics were run for every 

time matrix. 

 

Table (5.7.2-1): Summary of results of experiments of comparison between job selection 

strategies 

 Length of critical path or Flow time of a cycle 
Method Run # 1 Run # 2 Run # 3 Run # 4 Run # 5 Run # 6 Run # 7 Run # 8 Run # 9 Run # 10 
Incr 230.2 224.2 192.6 192.2 204.8 213.0 200.8 190.0 195.5 217.9 
Decr 231.0 224.0 201.0 199.2 207.0 214.2 204.6 196.4 202.0 226.9 
Ends 234.5 227.7 202.6 197.6 210.1 223.6 204.3 193.6 195.5 219.4 
Ends_rev 227.0 223.5 193.0 190.1 199.5 211.4 197.0 188.7 192.8 213.7 
Random 233.6 227.3 204.2 197.6 204.2 214.1 202.3 192.5 191.0 215.8 
 

The critical path values are plotted in Figure 5.9 for easy comparison. 
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Comparison of job selection strategies in FIH
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Figure 5.9: Graph of Flow time resulting from different job selection strategies 

 

The graph clearly shows the superiority of the Ends and Ends_r selection strategy. Thus, 

only these two strategies were used in future experiments, where the actual quality of the 

heuristic was tested by comparing it with an enumerative simulation scheme. To ensure that the 

limited size of the first experiment did not result in the superiority of the selected strategies, all 

the strategies except Random were used in several other cases of the second experiment but not 

all. 

 

Experiment 2: 

 

The second experiment determines the quality of the proposed method, by comparing the 

value of flow time of the sequence suggested by the heuristic, to that obtained by the 

enumerative simulation scheme. Deterministic processing times are assumed in this experiment. 

Averages of the processing time distributions are generated using a uniform distribution ranging 

from 5 to 25. To facilitate fair comparison between runs, the same time averages were used for 

all the runs.  

The optimal solution was obtained by running the simulation model for each possible 

sequence, and by determining the least flow time. The methodology proposed in this research 
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returns the value of the length of the critical path, which is a measure of Flow time. However, 

since the Flow time as we have defined and used in all the earlier chapters, is for only one MPS, 

and not M (CONWIP level) MPSs, we cannot compare the two. Thus, the value of flow time for 

the sequence generated by the heuristic is found by running that sequence using a simulation 

model. This flow time was compared with the optimal value of flow time obtained by complete 

enumeration using the same simulation model. The percentage deviation from the optimal was 

calculated for all these cases, for comparison. 

 

The following points were noted: 

 

• The heuristic was optimal in almost all the cases. 

• The probability of the heuristic resulting in an optimal solution is higher for smaller size 

problems than for bigger size problems. This is corroborated by the results of the 

experiments carried out with 3 machines, which result in all optimal solutions while the one 

with the 4 jobs gave optimal values for all except 3 cases. The five-job experiment resulted in 

2 non-optimal solutions even when the experiment size was small. This is, however, expected 

from any heuristic solution.  

• The heuristic gave an optimal solution in one case of the experiment with 7 jobs and a very 

close to optimal solution for the second case again with 7 jobs, but a higher CONWIP level. 

• The largest deviation obtained was of 4.016 % in the 5-job case. The average percentage 

error was less than one percent. 

 

Refer to Appendix D for the detailed results of the experiments for the 3, 4 and 5 job case. 

 
Experiment 3: Stochastic Processing Times 

 

It is assumed that in reality, the deviation of the processing times from their respective 

averages does not exceed 10%.  Thus, two levels of stochasticity were chosen, namely, 5% and 

10%. The 4-job, 4-machine case was used for this study. Ten replications of each deviation level 

were run; with Random numbers generated from generators 1 through 50 in Taylor II™. The 

processing times for the above experiment were obtained from a uniform distribution between 5 
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through 25. Tables (5.7.2-5) and (5.7.2-6) show the times for both levels of deviation. The 

processing time distribution averages is shown in the Table (5.7.2-4). 

 

Table (5.7.2-2): Processing time distribution averages  

 

 J1 J2 J3 J4 
 Job type A Job type B Job type C Job type D 
M1 15 9 16 12 
M2 (CBN) 8 22 23 11 
M3 6 5 11 13 
M4 11 7 9 12 

  

 

Table (5.7.2-3): Processing time distribution extremes with deviation level of 5% (± 2.5 %) 

 

  Job type A Job type B Job type C Job type D 

M1 Upper bound 15.375 9.225 16.4 12.3 
  Lower bound 14.625 8.775 15.6 11.7 

M2 Upper bound 8.2 22.55 23.575 11.275 
  Lower bound 7.8 21.45 22.425 10.725 

M3 Upper bound 6.15 5.125 11.275 13.325 
  Lower bound 5.85 4.875 10.725 12.675 

M4 Upper bound 11.275 7.175 9.225 12.3 
  Lower bound 10.725 6.825 8.775 11.7 

  

 

Table (5.7.2-4): Processing time distribution extremes with deviation level of 10% (± 5 %) 

 

  A B C D 

M1 Upper bound 15.75 9.45 16.8 12.6 
  Lower bound 14.25 8.55 15.2 11.4 

M2 Upper bound 8.4 23.1 24.15 11.55 
  Lower bound 7.6 20.9 21.85 10.45 

M3 Upper bound 6.3 5.25 11.55 13.65 
  Lower bound 5.7 4.75 10.45 12.35 

M4 Upper bound 11.55 7.35 9.45 12.6 
  Lower bound 10.45 6.65 8.55 11.4 

 

 



 131

Table (5.7.2-3) gives the values of the Flow time obtained using simulation for the two chosen 

deviation levels.  

 
Table (5.7.2-5): Flow times for the stochastic case, obtained using simulation 

 

% deviation Sr. No. ABCD 
BACD 

(optimal) ACBD ADBC CBAD BDCA Rand gen. no. 
1 52.165 50.872 54.121 51.982 52.691 52.802 1 
2 52.232 50.822 54.312 51.891 52.721 51.821 10 
3 52.412 50.851 54.246 51.872 52.735 51.796 15 
4 52.183 50.843 53.942 51.914 52.729 51.799 20 
5 52.318 50.831 54.001 51.941 52.696 51.83 25 
6 52.162 50.871 54.041 51.894 52.719 51.793 30 
7 52.212 50.869 54.295 51.911 52.728 51.823 35 
8 52.191 50.858 54.213 51.9 52.722 51.83 40 
9 52.213 50.867 54.247 51.881 52.689 51.823 45 

5% 

10 52.241 50.881 54.381 51.894 52.728 51.825 50 
1 52.167 50.838 54.004 51.985 52.735 51.796 1 
2 52.132 50.873 53.955 51.957 52.692 51.821 10 
3 52.053 50.852 54.11 51.921 52.842 51.723 15 
4 52.101 50.799 53.874 52.042 52.728 51.591 20 
5 52.069 50.824 54.251 52.221 52.759 51.924 25 
6 52.11 50.88 54.521 51.871 52.592 51.841 30 
7 52.121 50.782 53.87 51.724 52.812 51.728 35 
8 52.067 50.871 53.921 52.121 52.652 51.49 40 
9 52.131 50.821 54.12 51.692 52.91 51.816 45 

10% 

10 52.991 50.869 53.891 52.012 52.731 51.732 50 

 

 

 As can be observed from the Table (5.7.2-3), the maximum of the flow times for the 10 

replications for the best sequence is less than the minimum for other sequences. If this were not 

true, it would be necessary to perform statistical tests, like the F-test to determine if the 

differences between the flow times are significant. If they were significant, then it would be 

necessary to choose the minimum to determine the optimal.   The proposed method also resulted 

in BACD as the optimal sequence.  
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Chapter 6:  Summary and Conclusions 

 

6.1 Summary and Conclusions 
 

This research work has been motivated by the need to develop efficient and practical 

solutions to the problem of achieving a tighter production control of a CONWIP system. Two 

important issues were addressed in this research, for such a CONWIP flow shop. These are as 

follows: 

 

• Determination of the optimal CONWIP level M. As discussed in the first few Chapters and 

also in the literature, a lower than optimal work in progress results in an underutilized 

system, with a low throughput. On the other hand, a higher than optimal WIP, does not 

increase the throughput any higher than the capacity of the system, but results in a higher 

flow time. Thus, just enough WIP level should be maintained so that the throughput is up to 

the system capacity. 

• Determination of the optimal sequence of job types .The ordering of the CONWIP backlog 

list, which specifies the sequence, affects the performance of the system and, therefore, is 

important to determine for system effectiveness. 

 

Benefits of the study have been evaluated with respect to the following two, commonly used 

parameters: 

• Total flow time, of all job types through the system. It is shown in earlier studies, that this is 

the same as the total cycle time. 

• Interdeparture time of jobs, measured at the last machine. 
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As explained earlier, the choice of the optimal WIP level, ensures optimal throughput or in other 

words, the interdeparture time. Thus, the second problem is evaluated only in terms of the flow 

time, since the problem of the determination of the flow time is studied only after the optimal 

CONWIP level is known from the solution of the first part. For each performance parameter, the 

percentage deviation from the optimal value is provided as an indication of the solution quality.  

 

This research is different than the studies undertaken in the past due to the collective 

consideration of the following additional constraints, which make the system under study closer 

to an actual production environment: 

• Stochastic processing time 

• Finite CONWIP level  

• Cyclic sequencing of jobs. A job cycle is repeated for a large number of times, as in normal 

flow line production set up. 

 

Chapter 1 describes the background and motivation for the research. The basic concepts 

are introduced and control systems such as PULL and PUSH are compared with the CONWIP 

system. The Chapter also describes other relevant CONWIP control related issues, which are 

cardinal in its implementation 

 

The problems of finding the optimal CONWIP level (M*) and the optimal sequence have 

been described in the literature review, which is included in Chapter 2. The literature provides an 

extensive body of knowledge on the use of the queuing theory to address FMS production 

control issues as well as the general flow shop sequencing issue. However, both these problems 

have not been studied in the light of the additional constraints mentioned above. Although earlier 

research has studied the effect of these constraints on the above mentioned performance 

parameters, all the factors were not considered together in one model.  

 

First introduced by Reiser (1979) and later modified by Hildebrant (1980), we use a 

modified form of the “Mean Value Algorithm” (MMVA), to address the issue of the 

determination of the optimal CONWIP level. The problem is modeled as a closed queuing 

network problem and is described in Chapter 4.  Such networks do not possess a closed product 
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form solution, which can be determined by analytical methods. In spite of these difficulties, the 

solution obtained by MMVA, is entirely in terms of mean queue size, mean waiting time and the 

throughput. This new analysis leads to a simpler algorithm with a better numerical behavior than 

the previous ones and also reduces the computational complexity as compared to the convolution 

algorithms. Past studies have used queuing theory to study a FMS system, but have not 

considered the limitations on inter-station storage capacities. The presence of such a limitation 

may result in blocking of stations, due to the succeeding station having reached its storage 

capacity. If this station is blocked for a long enough time, the phenomenon called “Cascading 

Bottlenecks” may occur and is described in the Chapter 5. Thus, there is a need to include a 

blocking time term in the MMVA. An iterative procedure to approximate this time is proposed. 

The MMVA gives good results for the two metrics defined, namely, average queue lengths at 

buffers and Average wait times at buffers, with a slightly better result for the average queue 

length. The percentage error was observed to increase slightly with CONWIP level (M), and the 

size of the problem (number of jobs and machines). Even for a CONWIP level, almost twice the 

optimal level, the error was within 10%. Thus the results obtained are of good quality, especially 

considering the inherent complexity of the problem, which is further enhanced by the 

stochasticty in the processing times. 

 

The problem of determining the optimal sequence is modeled as an IP program. The 

concept of scheduling epochs is introduced and used to build an IP model. Insights generated 

from the model reveal that the problem at hand can be broken down into two sub-problems, 

namely that of generating good quality partial sequences, and that of determination of the flow 

time of these partial feasible solutions. The first part of the problem is NP-hard, as explained in 

Section 5.2. The second part however, can be solved to optimality in polynomial time. To 

address the first part, a modified version of the Fast Insertion Heuristic (MFIH), originally 

proposed by Newaz et al (1983), is suggested. Different methods of choosing the entering job 

type were tried, and finally two (Ends & Ends_r) were selected on the basis of the superior 

quality of solution they consistently resulted in. A modified version of the Floyd’s algorithm 

(MFA) was used to determining the flow time (length of the critical path).  The inclusion of all 

the constraints in the determination of the critical path is what sets this research apart, from 

previous studies. The computational complexity of this method is limited by the MFIH heuristic, 
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since the MFA only adds a finite number of computations at every iteration, and is of the order 

of O(G*n2), where 1 �� *� �� Q�� $Q� XQLTXH� H[SHULPHQWDO� VFKHPH� WR� WHVW� WKH� PHWKRG� ZDV�

implemented, wherein processing time values were generated from a bounded exponential 

distribution. The largest deviation obtained was 4.016 % in the 5-job case. The average 

percentage error from the optimal was less than one percent. 

 

6.2 Future Research 
 

Potential ideas for areas of future research: 

• Expand the MMVA+MFA algorithm to include stochastic processing times and breakdowns. 

• Study the effects of having a smaller CONWIP system within a larger CONWIP system. The 

idea is explained further as follows: 

o Balance the line by grouping the stations according to capacity.  

o Device a method to obtain an optimal CONWIP level for each of these clusters for 

better control. 

The idea behind the CONWIP system of control as mentioned in Section 1.4, is that the 

whiplash effect in a flow line produced due to variability in processing times, is curtailed or 

atleast reduced by the tighter control allowed by maintaining a fixed WIP level. The same 

principle can be extended further to smaller parts of the line, by maintaining a predetermined 

WIP level among clusters. The throughput rate of the clusters is defined by their capacities 

and cannot be controlled, thus leading to the whiplash effect between these clusters. This loss 

of control can be offset by the tighter control obtained by the introduction of the CONWIP 

level between them. 

• Incorporate the effects of sequence dependent set-up times. 

• Device a better method to determine the approximation term (ε j

ki,
 ) used in the MMVA 

algorithm. 

• Perform similar study for a more general case of a non-serial production system. 

• Study the effect of buffer capacities on line performance and propose a method to design the 

capacities to optimize throughput.  
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The potential benefits of a CONWIP system of control, over other methods, are clearly 

shown to be significant. The positive results presented here and the great potential of 

improvement, warrants additional study of the CONWIP method of control. The advent of e-

business creates a highly customer driven front end for a company, which can only be sustained 

by an equally agile production system with tighter control. 
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Appendix A: Visual Basic Program to determine the best (close to optimal) WIP 
level M 

 
’/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
’// VISUAL BASIC PROGRAM FOR DETERMINING THE "BEST" WIP LEVEL  M           //                                               
//                   // 
’// Author: NIPUN P.PALEKAR                    //                                               
’// Date: JUNE 10, 2000                                   //                                               
’// Notes: 1. The code calls Mathmatica, which has to be run manually.              //                                               
’//             2. The number of iterations are limited to 500 or till the difference is reached, which ever is    //    
’//       reached earlier.                         // 
’//             3. The Following module is just one among 4, and thus will not run independently.        //                                 
//              4. The entry form prompts the user to enter the values of input parameters            //                                     
//                  // 
’////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
 
                                                  
 
Dim temp As Double 
Dim isOpen As Boolean 
Dim str As String 
Dim Ans As String 
 
 
Function MVAMain() 
 
For i = 0 To Jobs - 1 
    Queue(i, 0) = ns(i) / Machines 
Next i 
For i = 1 To Machines - 1  ’for loop to copy the columns 
    For j = 0 To Jobs - 1 
        Queue(j, i) = Queue(j, 0) 
    Next j 
Next i 
 
Dim qRowAdd() As Double ’qColumnadd() is a column matrix (addition of rows in the queue matrix) 
ReDim qRowAdd(0 To Jobs - 1, 0) 
Dim Eps() As Double 
ReDim Eps(0 To Jobs - 1, 0 To Machines - 1) 
Dim temp() As Double 
ReDim temp(0 To Jobs - 1, 0 To Machines - 1) 
Dim add As Double 
Dim oldQueue() As Double 
ReDim oldQueue(0 To Jobs - 1, 0 To Machines - 1) 
ReDim MQLen(0 To Machines - 1) As Double 
Dim Epsilon As Double 
Dim diffLarge As Double 
Dim diff As Double 
diffLarge = 0 
Iter = 0 
 
ReDim BT(0 To Machines - 1) 
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’ initially the queue is not full 
For i = 0 To Machines - 1 
    isFull(i) = False 
Next i 
 
’Declarations and Initialization ends here 
’==================================== 
 
’Step 3, 4 of the MMVA 
Do 
 
 
’ Calculate qrowadd (which is the row addition of the natrix) 
For i = 0 To Jobs - 1 
    For j = 0 To Machines - 1 
        qRowAdd(i, 0) = qRowAdd(i, 0) + Queue(i, j) 
    Next j 
Next i 
 
    For s = 0 To Jobs - 1 
        For m = 0 To Machines - 1 
            add = 0 
            Epsilon = 0 
            For j = 0 To Jobs - 1 
                 
                If j = s Then 
                    Epsilon = Queue(j, m) / qRowAdd(j, 0) 
                Else 
                    Epsilon = 0 
                End If 
                 
                temp(j, m) = Queue(j, m) - Epsilon 
                add = add + TimeMat(j, m) * temp(j, m) 
            Next j 
            Tau(s, m) = TimeMat(s, m) + add + BT(m) 
        Next m 
    Next s 
     
     
 
’ Step 5 of the MMVA 
 
    For s = 0 To Jobs - 1 
        tempadd = 0 
        For m = 0 To Machines - 1 
            tempadd = tempadd + Tau(s, m) 
        Next m 
        Lambda(s, 0) = ns(s) / tempadd 
    Next s 
 
 
’ Equate transfers the elements of matrix oldQueue()into Queue() 
Call Equate(Queue(), oldQueue(), Jobs, Machines) 
       
 
Dim Lambdatemp  ’ value of a element in the column matrix of lambda 
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Lambdatemp = 0 
  For row = 0 To Jobs - 1 
   Lambdatemp = Lambda(row, 0) 
        For col = 0 To Machines - 1 
            If isFull(col) = False Then 
                Queue(row, col) = Tau(row, col) * Lambdatemp 
            End If 
        Next col 
  Next row 
   
          
     
     
    For i = 0 To Machines - 1   ’Initialize the MQLen to array of zeros 
        MQLen(i) = 0 
    Next i 
         
     
    For i = 0 To Machines - 1   ’ Calculate MQLen as sigma Queue(j,i) 
        For j = 0 To Jobs - 1 
            MQLen(i) = MQLen(i) + Queue(j, i) 
        Next j 
    Next i 
     
    ’ Checking Queue length and calculate the scaling factor 
    For i = 0 To Machines - 1 
        If isFull(i) = True Then 
            If isCalled = False Then 
                Call Mathematica 
                isCalled = True ’ flag if the mathematica module is called for machine i 
            End If 
        Call Blk_Time(i) 
        End If 
        If MQLen(i) > BuffSize(i) Then 
            isFull(i) = True 
            Qfactor(i) = BuffSize(i) / MQLen(i) 
        Else 
            isFull(i) = False 
            Qfactor(i) = 1 
        End If 
    Next i 
     
    ’ multiply by the scaling factor 
   For i = 0 To Machines - 1 
       For j = 0 To Jobs - 1 
           Queue(j, i) = Queue(j, i) * Qfactor(i) 
       Next j 
   Next i 
’==================================== 
 
    Iter = Iter + 1 
    diffLarge = 0 
    diff = 0 
    For i = 0 To Jobs - 1 
        For m = 0 To Machines - 1 
            diff = (Queue(i, m) - oldQueue(i, m)) 
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        Next m 
    Next i 
     
Loop While Iter < 500   ’diffLarge > Threshold or limit number of iterations to 500 
 
 
’ ---------- Write the outputs to an output file -------------------------- 
opfile = FreeFile 
Open "C:\WINNT\Profiles\npalekar\Desktop\Visualbasic\OUTPUT.TXT" For Output As opfile 
 
Dim tauAdd As Double 
 
Print #opfile, "Average Waiting Time at Machine i", vbCrLf 
For i = 1 To Machines - 1 
    tauAdd = 0 
    For j = 0 To Jobs - 1 
        tauAdd = tauAdd + Tau(j, i) 
    Next j 
    tauAdd = tauAdd / (Jobs ^ 2) 
    Print #opfile, CStr(tauAdd), "  " 
Next i 
Print #opfile, vbCrLf, vbCrLf 
 
Print #opfile, "Average Queue Length at Machine i", vbCrLf 
For i = 1 To Machines - 1 
    Print #opfile, CStr(MQLen(i) / Jobs) 
Next i 
 
Close opfile 
MsgBox "Program ends", vbInformation, "Message Box" 
 
End Function 
 
’ function to call mathematica algorithm 
Public Function Mathematica() 
 
 
    Max = 0 
    For i = 0 To Machines - 1 
        If Max < Mu(i) Then Max = Mu(i) 
    Next i 
     
    Tcur = 1 / Max 
    Told = 0 
    Dim strAns As String 
    
    Diffint = 0 
 
    Do 
        A(0) = 1 
        P(0) = 0 
        B(0) = 1 
         
        For i = 1 To Machines - 1 
            temp = Mu(i - 1) * B(i - 1) / Tcur 
            tempr2 = temp ^ (BuffSize(i) + 2) 
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            tempfile = FreeFile 
            Open "E:\UsersE\\thesis\MATHIN.TXT" For Output As tempfile 
            Dim eqn As String 
            eqn = CStr(tempr2) + "*x^" + CStr(BuffSize(i) + 2) + "+" + CStr(tempr2) + "*x^" + CStr(BuffSize(i) + 1) _ 
                    + "+" + CStr(-temp + 1) 
            Print #tempfile, eqn 
            Close tempfile 
             
             ’Call Mathematica software and open a blank Kernel 
            If tempr2 <> o Then 
                Call Shell("E:\Program Files\Mathematica\mathematica.exe ", 1) 
            Else 
                A(i) = 1 
            End If 
             
            ’ Time delay for mathematica (Can be used instead of the existing manual method) 
             
            ’For k = 0 To 100000 
             ’   For j = 0 To 10000 
             ’   Next j 
            ’Next k 
             
            Open "E:\UsersE\\thesis\mathout.txt" For Input As tempfile 
            Ans = "0" 
             
            ’ ------------ 
            Do 
                Line Input #tempfile, str 
                Trim (str)  ’ remove white spaces 
                pos = InStr(1, str, "I", vbTextCompare) 
                Dim length As Integer 
                length = Len(str) 
                If pos = 0 Then         ’ real answer 
                    pos = InStr(1, str, ">", vbTextCompare) 
                    Ans = Right(str, length - pos) 
                End If 
            Loop While (Not EOF(tempfile)) 
            ’ ------------ 
             
            If Ans = "" Then Ans = "1" 
             
            A(i) = CDbl(Ans) 
            If A(i) > 1 Then A(i) = 1 
            If A(i) <= 0 Then A(i) = 1 
             
            Close #tempfile 
 
            P(i) = 1 - A(i) 
            B(i) = A(i) 
         Next i 
         
         Told = Tcur 
         Tcur = Mu(Machines - 1) * A(Machines - 1) 
              
         Diffint = Tcur - Told         ’Nipun added this statement (apr16) 
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         If Diffint < 0 Then Diffint = -Diffint 
                  
    Loop While ((Diffint) > 0.1) 
End Function 
 
Public Function Blk_Time(ByVal mc_no As Integer) 
 
    ’================================================== 
    ’ calculation of blocking time 
     
    For i = 0 To Machines - 2 
        t1_t0(i) = 1 / (Mu(i) * (1 - P(i))) 
        Lambda1(i) = Mu(i) * variables.A(i) 
        rho(i) = Lambda1(i) * variables.A(i) / Tcur 
        L(i) = (rho(i) ^ 2 - MQLen(i) * (rho(i) ^ (MQLen(i) + 1)) + _ 
                (MQLen(i) - 1) * (rho(i) ^ (MQLen(i) + 2))) / _ 
                ((1 - rho(i)) * (1 - rho(i) ^ (MQLen(i) + 1))) 
        Tau1(i) = L(i) / Lambda1(i) 
        Pn(i) = ((1 - rho(i)) * rho(i) ^ MQLen(i)) / (1 - rho(i) ^ (MQLen(i) + 1)) 
    Next i 
     
    For i = 0 To Machines - 2 
     
        tq_t0(i) = ((0.5 * Pn(i + 1) * (Tau1(i + 1) - (1 / Mu(i + 1)) / BuffSize(i + 1))) / A(i)) + (1 / Mu(i)) 
          
        WT(i) = tq_t0(i) - t1_t0(i) 
         
        If WT(i) < 0 Then 
            WT(i) = -WT(i) 
        End If 
         
   Next i 
     
    Dim P1 As Double 
    P1 = 1 
    For j = 0 To mc_no - 1 
        BT(mc_no - 1 - j) = P1 * WT(mc_no - 1 - j) 
        P1 = P1 * Pn(mc_no - j) 
    Next j 
End Function 
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Appendix B: Time matrices used in the testing of MMVA (Uniform[5 – 25]) 
 
            
Time Matrix no. 1 
          
  Machines 
  1 2 3 4 5 6 7 8 9 10 

1 5.9 9.0 24.0 14.3 15.5 12.9 22.7 9.2 16.2 12.1 
2 18.6 12.2 11.0 14.1 9.0 22.8 9.3 15.0 23.8 13.0 
3 17.9 9.6 20.8 21.7 8.6 18.5 15.6 16.4 18.8 12.7 
4 14.3 13.5 13.0 6.2 15.3 14.0 17.2 14.0 21.2 19.7 
5 12.2 25.0 17.8 15.8 19.8 22.7 24.0 9.9 9.9 9.6 
6 22.0 11.8 11.2 8.2 12.0 10.5 17.5 21.8 16.3 5.4 

Jo
b

 T
yp

e 

7 21.4 19.1 6.6 11.8 20.5 20.2 10.1 13.5 8.2 10.2 

  112.2 100.2 104.5 92.1 100.7 121.6 116.4 99.8 114.5 82.7 
            
Time Matrix no. 2 
          
  Machines 
  1 2 3 4 5 6 7 8 9 10 

1 5.4 10.5 7.0 18.9 7.8 23.8 18.5 19.9 6.3 13.0 
2 7.9 22.3 9.6 16.1 14.1 10.3 15.3 22.4 7.4 21.9 
3 16.5 22.6 21.6 15.6 15.1 13.1 12.8 20.6 19.7 15.4 
4 15.3 20.7 22.3 23.5 10.1 23.6 15.3 24.3 8.9 17.2 
5 12.7 13.6 19.3 7.0 14.3 14.5 24.6 21.9 17.2 14.3 
6 9.7 17.8 24.1 13.0 15.3 15.3 21.9 24.8 7.0 23.6 

Jo
b

 T
yp

e 

7 14.5 22.9 18.3 8.0 12.3 19.8 13.3 24.4 16.1 15.0 

  82.1 130.4 122.1 102.1 89.0 120.5 121.8 158.2 82.6 120.5 
            
Time Matrix no. 3 
          
  Machines 
  1 2 3 4 5 6 7 8 9 10 

1 5.1 12.5 17.6 20.8 23.4 16.6 18.8 10.6 9.6 6.2 
2 19.3 5.4 24.0 6.9 14.7 21.8 8.1 8.3 19.3 6.8 
3 17.8 17.1 23.9 7.8 20.8 23.5 18.2 8.6 19.3 12.0 
4 23.1 23.7 10.2 24.1 7.6 18.8 19.2 9.7 16.3 6.5 
5 5.8 24.6 12.0 23.1 17.2 19.5 23.6 23.1 8.2 10.4 
6 18.9 8.7 20.4 11.5 12.1 23.3 12.8 8.3 14.5 5.9 

Jo
b

 T
yp

e 

7 19.9 6.2 7.2 11.2 24.7 7.1 5.3 17.8 24.5 7.5 

  110.0 98.1 115.1 105.4 120.5 130.6 106.0 86.2 111.6 55.3 
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Time Matrix no. 4 
          
  Machines 
  1 2 3 4 5 6 7 8 9 10 

1 17.7 11.6 13.0 5.8 12.8 18.0 8.2 22.5 7.1 6.1 
2 10.9 18.8 18.7 19.8 10.6 18.9 15.7 22.0 21.2 14.0 
3 17.4 9.0 9.1 9.2 19.0 15.5 17.3 14.1 19.7 10.3 
4 16.4 22.0 7.2 23.8 12.4 17.5 5.7 9.7 13.7 14.5 
5 8.8 8.7 18.6 21.3 23.2 19.8 24.5 21.6 16.8 19.8 
6 12.5 15.3 24.2 8.7 22.9 5.0 6.1 8.4 15.5 12.3 

Jo
b

 T
yp

e 

7 13.1 18.9 23.4 6.0 9.4 18.6 11.7 22.5 12.8 12.2 

  96.8 104.2 114.3 94.5 110.2 113.3 89.3 120.9 106.7 89.3 
            
Time Matrix no. 5 
          
  Machines 
  1 2 3 4 5 6 7 8 9 10 

1 16.5 24.5 23.5 7.5 9.2 16.9 22.3 5.9 6.7 17.8 
2 10.7 24.6 11.4 11.5 24.5 19.7 24.3 7.9 14.6 22.4 
3 15.9 20.2 19.3 21.6 10.7 19.3 6.4 23.4 16.4 20.5 
4 7.6 18.7 9.2 6.1 5.8 6.9 17.2 15.3 12.9 8.3 
5 8.2 14.0 20.0 12.7 9.1 21.9 5.3 21.9 21.1 22.5 
6 16.3 15.8 15.1 24.4 10.5 24.9 7.6 19.5 6.5 12.1 

Jo
b

 T
yp

e 

7 12.1 16.4 12.2 11.8 10.4 14.8 23.9 20.4 20.8 12.4 

  87.3 134.2 110.6 95.6 80.2 124.4 106.9 114.3 99.0 116.0 
            
Time Matrix no. 6 
          
  Machines 
  1 2 3 4 5 6 7 8 9 10 

1 9.2 16.7 20.6 16.1 15.8 12.6 7.5 22.4 5.5 8.3 
2 10.0 10.0 20.2 24.5 18.7 13.7 23.9 9.7 6.8 22.0 
3 17.4 8.2 20.6 8.2 14.7 19.8 22.5 10.5 11.3 5.3 
4 7.2 15.2 23.8 23.0 6.4 18.2 11.0 21.8 24.8 24.9 
5 23.0 12.8 7.4 20.6 12.6 5.2 16.6 23.2 12.8 24.4 
6 14.2 24.1 7.1 10.7 5.4 21.2 21.2 10.5 22.8 21.7 

Jo
b

 T
yp

e 

7 19.3 10.7 17.5 17.5 7.5 18.3 17.8 11.0 8.3 18.9 

  100.1 97.6 117.2 120.6 81.0 109.1 120.5 109.1 92.2 125.5 
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Time Matrix no. 7 
          
  Machines 
  1 2 3 4 5 6 7 8 9 10 

1 17.9 5.6 8.3 17.7 12.4 12.7 7.5 10.8 17.8 10.9 
2 8.0 5.6 14.5 15.7 20.4 15.4 14.1 17.1 20.0 23.0 
3 5.5 15.0 16.3 12.4 13.3 17.5 15.6 24.9 12.0 18.9 
4 18.4 20.1 15.4 17.4 7.5 17.9 19.1 16.2 12.6 17.0 
5 10.6 6.6 17.7 13.2 13.3 22.1 15.8 8.2 21.5 22.9 
6 20.2 13.4 7.4 7.5 8.6 16.4 8.9 22.4 20.4 16.8 

Jo
b

 T
yp

e 

7 6.7 12.7 15.8 12.1 9.4 23.6 6.7 7.5 16.3 17.1 

  87.3 79.0 95.4 96.1 84.9 125.6 87.8 107.0 120.5 126.6 
            
Time Matrix no. 8 
          
  Machines 
  1 2 3 4 5 6 7 8 9 10 

1 24.7 9.5 16.2 14.6 12.6 16.0 6.5 10.0 20.4 22.1 
2 16.8 6.3 7.1 6.8 18.5 15.9 11.4 14.3 22.4 22.6 
3 24.1 5.5 14.0 18.2 14.4 19.7 14.2 13.9 6.2 24.2 
4 15.7 12.7 22.1 22.8 8.9 14.1 22.2 6.7 18.3 22.5 
5 5.4 25.0 17.3 6.9 22.3 23.3 18.5 7.3 19.8 15.2 
6 20.9 21.2 12.6 17.9 5.8 14.5 22.7 10.1 21.2 13.5 

Jo
b

 T
yp

e 

7 8.4 14.2 17.0 5.2 23.3 18.8 20.7 11.4 14.4 20.1 

  116.0 94.4 106.4 92.3 105.6 122.2 116.3 73.6 122.7 140.3 
            
Time Matrix no. 9 
          
  Machines 
  1 2 3 4 5 6 7 8 9 10 

1 14.0 19.6 15.8 5.6 6.4 16.1 20.1 5.5 17.7 15.4 
2 23.6 10.1 12.8 5.3 7.2 15.3 22.3 19.6 23.0 9.9 
3 7.1 23.4 8.0 20.3 19.0 11.0 17.1 9.4 17.4 11.1 
4 12.3 23.8 18.8 16.4 16.5 7.9 12.9 16.3 9.8 19.0 
5 12.0 14.2 23.2 12.7 11.1 10.2 8.4 23.4 6.5 18.8 
6 18.2 15.6 18.9 18.4 15.3 14.7 9.7 7.0 23.0 24.6 

Jo
b

 T
yp

e 

7 17.8 13.0 17.1 23.6 24.9 18.6 22.6 19.3 14.9 17.9 

  105.1 119.7 114.6 102.2 100.4 93.8 113.1 100.5 112.1 116.7 
            
 



 151

 
Time Matrix no. 10 
          
  Machines 
  1 2 3 4 5 6 7 8 9 10 

1 5.1 15.5 15.5 13.2 24.0 19.8 16.8 6.1 5.6 13.7 
2 10.7 22.0 20.3 16.3 16.4 6.6 23.3 5.5 9.4 14.4 
3 8.3 8.7 23.0 15.5 15.4 22.0 22.6 20.8 12.6 13.2 
4 11.3 8.3 21.1 17.1 20.9 15.9 18.9 24.3 14.3 11.0 
5 21.3 9.6 21.2 12.7 14.7 18.9 19.1 23.3 19.1 16.7 
6 6.5 15.2 8.1 9.4 14.6 23.1 7.0 20.3 23.6 23.5 

Jo
b

 T
yp

e 

7 15.6 14.3 6.4 14.5 22.4 9.9 21.7 20.0 22.7 13.4 

  78.7 93.5 115.5 98.7 128.3 116.3 129.3 120.4 107.5 105.9 
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Appendix C: C ++ Program to determine the “Best” sequence using FIH and   
MMVA 

 
 
The following is the code to the basic methodology. Variations in FIH algorithm, as a part of 
experimentation to improve the quality of the solution, were carried out. The code for these 
variations is not included 
 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
// C++ PROGRAM FOR DETERMINING THE "BEST" SEQUENCE USING MODIFIED FIH HEURISTIC &        // 
// FLOYDS ALGORITHM                      //   
//                        // 
// Author: NIPUN P.PALEKAR                     //  
// Date: JUNE 10, 2000                      // 
// Notes: 1. The sequence generated is not optimal but of a good quality.                 // 
//            2. The FIH heuristic developed by Nawaz et al is used as a means of enumeration.               //  
//            3. The Floyds algorithm is modified to determine the critical path, which is the Flow time for the                    // 
//   enumeration.                      // 
//            4. The values of # of Machines and # of Jobs need to entered in the code where they are defined                     //                     
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
 
 
 
#include<iostream> 
#include<fstream> 
#include<stdio.h> 
#include<math.h> 
#include<valarray> 
#include"Matrix.h" 
#include"Vec.h" 
 
using namespace std; 
 
ofstream outFile; 
 
void main() 
{ 
 // Variable Declaration 
 
 int i;     // Job Index 
 int j;     // Machine Index 
 int k;     // Used in Step II (temperory) 
 const int machines=3; // No of Machines 
 const int jobs=4;  // No of Jobs 
 int M;     // CONWIP level 
 int jobcycled; 
 double mcjob[machines+2][jobs];   // The Job Vs Machine array 
 double temp=0;       // A Temperory variable 
 double partialjobset[100][100];   // This array holds the partial job array 
 double partialjobsettemp[100][100];  // This array holds the partial job array  
           temperorily when jobs are moved one 
           position below 
  
 double partialjobsettempused[100][1000];   // This array holds the Partialjobtemp with columns  



 153

      copied to include the CONWIP-Cyclic condition 
 
 double floyd(const int, const int, double[100][1000], const int); 
 
 ofstream output; 
 
 // Prompts the user to input the processing time values and the CONWIP level (determined   
   separately earlier) 
  
 cout<<"WELCOME TO NIPUN’S C++ PROGRAM TO GENERATE THE OPTIMAL  
  SEQUENCE"<<endl<<endl; 
 cout<<"Please enter the values of processing times & CONWIP level M."<<endl; 
 cout<<"The software will prompt you to enter the processing times of all jobs, machine by  
              machine"<<endl; 
 output.open("OutputSequence.txt"); 
 output<<"OUTPUT FILE SHOWING THE GENERATION OF BEST SEQUENCING IN A  
  STEP BY STEP FASHION"<<endl<<endl; 
 
 // Input the first row which is the job number 
 
 for(i=0;i<jobs;++i) 
 { 
  mcjob[0][i]=double(i+1); 
 } 
 
 
 // Input the time matrix values 
 
 for (i=0;i<machines;++i) 
 { 
  for(j=0;j<jobs;++j) 
  { 
   cout<<"Enter element["<<i<<"]["<<j<<"] "; 
   cin>>mcjob[i+1][j]; 
  } 
 } 
 
  
 // Input the CONWIP level 
 
 cout<<"Enter the optimal CONWIP level: M  "; 
 cin>>M; 
 
 
  
 // Print the mcjob matrix 
 
 
 for(i=0; i<jobs; ++i) 
 { 
  cout<<"J"<<mcjob[0][i]<<"\t"; 
 } 
 cout<<endl; 
 
 for(i=0;i<machines;++i) 
 { 
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  for(j=0;j<jobs;++j) 
  { 
   cout<<mcjob[i+1][j]<<"\t"; 
 
  } 
  cout<<endl; 
 } 
  cout<<endl<<endl; 
 
 
 
  // Calculate the column totals  and add it as the last row 
 
 
 for(i=0;i<jobs;++i) 
 { 
  temp = 0; 
 for(j=0;j<machines;++j) 
  { 
   temp = temp + mcjob[j+1][i]; 
  } 
 
  mcjob[machines+1][i]=temp;   // Add the column totals  as the last row in the time matrix 
 } 
 
 
 // Print the above matrix with the sum row as the last row 
 
 for(i=0; i<jobs; ++i) 
 { 
  cout<<"\t"<<"J"<<mcjob[0][i]; 
 } 
 cout<<endl; 
 
 for(i=1;i<machines+2;++i) 
 { 
  cout<<"\t"; 
 
  for(j=0;j<jobs;++j) 
   { 
    cout<<mcjob[i][j]<<"\t"; 
   } 
  cout<<endl; 
 } 
 cout<<endl<<endl; 
 
 
 
 //  Sort the mcjob matrix according to the last row values (which are the sums of columns) 
 
 for (i=0;i<jobs;++i) 
 { 
  for(j=i+1;j<jobs;++j) 
  { 
   if (mcjob[machines+1][j]>mcjob[machines+1][i]) 
   { 
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     for (k=0;k<machines+2;++k) 
     { 
      // This will sort the columns 
      temp = 0; 
      temp = mcjob[k][i]; 
      mcjob[k][i] = mcjob[k][j]; 
      mcjob[k][j] = temp; 
 
     } 
   } 
  } 
 } 
 
 
 // Print the above matrix with the sum row as the last row 
 
 for(i=0; i<jobs; ++i) 
 { 
  cout<<"\t"<<"J"<<mcjob[0][i]; 
 } 
 cout<<endl; 
 for(i=1;i<machines+2;++i) 
 { 
  cout<<"\t"; 
 
  for(j=0;j<jobs;++j) 
   { 
    cout<<mcjob[i][j]<<"\t"; 
   } 
 
  cout<<endl; 
 } 
 
 cout<<endl<<endl; 
 
 
 
 // First partial martix is only the first job (Copy full column except the last element which is the  
    total of the column) 
 
 // The partial matrix has all the rows except the last row which is the totals row. 
 for (i=0; i<machines+1;++i) 
 { 
   partialjobset[i][0]= mcjob[i][0]; 
 } 
 
 // Print the partial matrix 
 
 cout<<"partialjobsettemp: "<<endl; 
 for (i=0;i<machines+1;++i) 
 { 
  cout<<partialjobset[i][0]<<endl; 
 } 
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 // Form the partial time matrix which can be used to generate the Floyd matrix 
 
 outFile.open("floydmatrix.txt"); 
 
 
 for (i=1; i<=jobs-1; ++i)  // i = number of jobs in the partial job array before inserting the chosen 
job in any iteration 
 { 
  int minj; 
  double minfloyd = -10;  // Start value of critical path length (negative value is  
        chosen as the first value) 
 
  for (j=0;j<=i;++j)   // j = Slot number where the new job is going to be  
        inserted 
  { 
 
   // Copy all jobs from partialjobset to partialjobsettemp; Do not copy the first row  
     and last row 
   int n,m;    // n = Iteration number in the FIH heuristic 
   for (n=0;n<i;++n) 
   { 
    cout<<endl; 
    for (m=1;m<machines+1;++m) 
    { 
     partialjobsettemp[m-1][n]=partialjobset[m][n]; 
    } 
   } 
   // Copying ends here 
 
 
   // Now shift all jobs from slot j, one slot right 
 
   int l,p; 
   for (k=i-1;k>=j;--k) 
   { 
    for (l=0;l<machines;++l) 
    { 
     partialjobsettemp[l][k+1] = partialjobsettemp[l][k]; 
    } 
   } 
 
   // The following four lines insert the (i+1)th job in the vacant slot (column) 
 
   for(p=0;p<machines;++p) 
   { 
    partialjobsettemp[p][j]=mcjob[p+1][i];  
   } 
 
    
 
   // Form the new Partialjobtemp matrix with the columns copied to include the  
      CONWIP-Cyclic condition 
   // Copy the cloumns M-1 times so that there are a total of (i+1)*M jobs which  
      make one cycle 
     
   int y, x; 
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   if (i>M) 
   { 
    for (k=0;k<machines;++k) 
    { 
     for (y=0;y<M;++y) 
     { 
      for(x=0;x<i+1;++x) 
      { 
     
 partialjobsettempused[k][((i+1)*y)+x]=partialjobsettemp[k][x]; 
      } 
     } 
    } 
   }else 
   { 
    for (k=0;k<machines;++k) 
    { 
     for(x=0;x<i+1;++x) 
     { 
     partialjobsettempused[k][x]=partialjobsettemp[k][x]; 
     } 
    } 
   } 
 
 
 
   // Returns the values of the jobcycled 
    
 
   if (i>M) 
   { 
    jobcycled = (i+1)*M; 
   }else 
   { 
    jobcycled = i+1; 
   } 
 
 
   // Print the partialjobsettemp matrix 
 
 
   cout<<endl; 
   cout<<"i=  "<<i<<"j=  "<<j<<"\t"; 
 
   outFile<<endl<<endl<<"The "<<i<<"th iteration;  slot = "<<j<<endl; 
   outFile<<"Partialjobsettemp matrix is as shown below"<<endl; 
 
   for(p=0; p<machines; ++p) 
   { 
    cout<<endl; 
    outFile<<endl; 
    for(l=0; l<i+1; ++l) 
    { 
     cout<<"\t"<<partialjobsettemp[p][l]; 
     outFile<<"\t"<<partialjobsettemp[p][l]; 
    } 
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   }  
   outFile<<endl<<endl; 
 
 
    // Call the Floyd heuristic to calculate the min for all values of j 
 
 
    double floydtemp = floyd(machines, jobcycled,  
       partialjobsettempused,M);   
    if(minfloyd<0) 
     minfloyd = floydtemp; 
    else 
    { 
     minfloyd = (minfloyd<floydtemp) ? minfloyd : floydtemp; 
     minj = j-1; // The job number of all the jobs tested in the  
          iteration which has the 
        // least critical path length. (This  
        job is chosen & inserted in slot  
        minj) 
    } 
    
  } 
 
  // Update partialjobset array for the next iteration (Following two paragraphs) 
   
  // This stanza makes space for the new column   
   
  for (k=i-1;k>=minj;--k)  
  { 
   for (int l=0;l<machines+1;++l) 
   { 
   partialjobset[l][k+1] = partialjobset[l][k]; 
   } 
  } 
 
 
  // This stanza insert the new job column 
  for(int p=0;p<=machines;++p) 
  { 
   partialjobset[p][minj]=mcjob[p][i];   
  } 
  output<<"The optimal sequence for the partial job set when the # of jobs in the partial set  
   is "<<i+1<<" is as follows:"<<endl<<endl; 
   
   
  //Print the sequence after the smallest one is chosen 
  for(int l=0; l<i+1; ++l) 
  { 
   output<<"\tJ"<<partialjobset[0][l]; 
  } 
    
  for(p=1; p<machines+1; ++p) 
  { 
   output<<endl; 
   for(l=0; l<i+1; ++l) 
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   { 
    output<<"\t"<<partialjobset[p][l]; 
   } 
  } 
  output<<endl<<endl; 
 
 
 } 
 outFile.close(); 
 output.close(); 
 
 
} 
 
 
//===============================  Main ends here ===============================// 
 
 
// Floyd uses the partialjobsettempused array and determines the critical path 
 
 
double floyd(const int machs, const int jbs, double partialjobsettempused[100][1000], const int M) 
 
 // Form the matrix : floydmatrix[i][j] 
{ 
 double result; 
 
 int i,j,k; 
 const int nodes = (machs+1)*jbs;  
 const double INF = -10;     //Infinity in floydmatrix are -10 
 const double NO = -1;     //Dashes in floydmatrix are -1 
 Matrix<double> floydmatrix(nodes+1, nodes+1);   //The job v.s. machine array 
 
// The Floyd matrix is built before it is solved. The following 2 loops build it 
 
 // Fill in the infinities and zeros in the Floyd Matrix  
 for (i = 1;i<=nodes;i++) 
 { 
  for (j = 1;j<=nodes;j++) 
  { 
   if(i!=j) 
   { 
    floydmatrix[i][j]=INF; 
    if ((i%jbs)!=0) 
    { 
     if ((i-j)==(jbs-1)) 
     { 
      floydmatrix[i][j]=0; 
 
     } 
    } 
   }else 
   { 
    floydmatrix[i][j] = NO; 
   } 
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  } 
 } 
 
 
 // Add zeros for CONWIP level condition 
 
 if(M<machs) 
 {  
  for(i=1;i<=(jbs-M);++i) 
  { 
   floydmatrix[jbs*machs+i][M+i]=0; 
  } 
 } 
 
 
 
 // Fill in the processing time elements in the Floydmatrix 
 for(i = 0; i<machs+1; i++) 
 { 
  for(j = 1; j<=jbs; j++) 
  { 
   if( (i!=0) && (j!=jbs) ) 
   { 
    floydmatrix[i*jbs+j][(i*jbs)+j+1]=partialjobsettempused[i-1][j]; 
 // for horizontal arcs in the network 
   } 
   if(i!=machs) 
   { 
    floydmatrix[i*jbs+j][(i*jbs)+j+jbs]=partialjobsettempused[i][j-1]; 
 // For vertical arcs in the network  
    
   } 
  } 
 } 
 
 
  
 // Print the matrix Floyd 
 
 outFile<<"The corresponding Floyd Matrix is as follows:"<<endl<<endl; 
 for (i = 1;i<=nodes;i++) 
 { 
  for (j = 1;j<=nodes;j++) 
  { 
   outFile<<floydmatrix[i][j]<<"\t"; 
 
   if(j==nodes) 
    outFile<<endl<<endl; 
  } 
 } 
 
 
 // Perform the matrix manipulations on the floyd matrix 
 
 for (k = 1;k<=nodes;k++) 
 { 
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  for (i = 1;i<=nodes;i++) 
  { 
   for (j = 1;j<=nodes;j++) 
   { 
    if ( (i!=j)&& (k!=i)&& (k!=j) ) 
    { 
     if (floydmatrix[i][k]!=INF && floydmatrix[k][j]!=INF) 
     { 
      if (floydmatrix[i][j]==INF || floydmatrix[i][j]!=INF\ 
       && 
(floydmatrix[i][j]<floydmatrix[i][k]+floydmatrix[k][j])) 
      { 
      
 floydmatrix[i][j]=floydmatrix[i][k]+floydmatrix[k][j]; 
 
      } 
     } 
    } 
   } 
  } 
 } 
 
 
  
 // The following stanza gives the max of the last column elements 
 
 for (j=0;j<nodes;++j) 
 { 
  if(floydmatrix[j+1][nodes]>floydmatrix[j][nodes]) 
   result = floydmatrix[j+1][nodes]; 
 } 
 
 return result; 
} 
 
// =============================  Floyd ends here ======================//
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Appendix E:  Typical Output Files from the Heuristic coded in C++ 
 
 
OUTPUT FILE #1: 
 
OUTPUT FILE SHOWING THE GENERATION OF BEST SEQUENCING IN A STEP BY 
STEP FASHION 
 
The optimal sequence for the partial job set when the # of jobs in the partial set is 1 is as follows: 
 
 J3 
 9.89 
 10.27 
 11.41 
 13.43 
 
 
The optimal sequence for the partial job set when the # of jobs in the partial set is 2 is as follows: 
 
 J1 J3 
 8.31 9.89 
 7.72 10.27 
 9.12 11.41 
 6.48 13.43 
 
The critical path length (FT) = 19.91 
 
 
 
The optimal sequence for the partial job set when the # of jobs in the partial set is 3 is as follows: 
 
 J1 J5 J3 
 8.31 10.56 9.89 
 7.72 6.93 10.27 
 9.12 8.97 11.41 
 6.48 11.83 13.43 
 
The critical path length (FT) = 38.29 
 
 
 
The optimal sequence for the partial job set when the # of jobs in the partial set is 4 is as follows: 
 
 J1 J5 J6 J3 
 8.31 10.56 11.15 9.89 
 7.72 6.93 6.21 10.27 
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 9.12 8.97 6.45 11.41 
 6.48 11.83 8.26 13.43 
 
The critical path length (FT) = 129.89 
 
 
 
The optimal sequence for the partial job set when the # of jobs in the partial set is 5 is as follows: 
 
 J1 J5 J6 J4 J3 
 8.31 10.56 11.15 6.02 9.89 
 7.72 6.93 6.21 6.03 10.27 
 9.12 8.97 6.45 9.88 11.41 
 6.48 11.83 8.26 12.98 13.43 
 
The critical path length (FT) = 166.08 
 
 
 
The optimal sequence for the partial job set when the # of jobs in the partial set is 6 is as follows: 
 
 J1 J5 J6 J4 J2 J3 
 8.31 10.56 11.15 6.02 9.05 9.89 
 7.72 6.93 6.21 6.03 8.01 10.27 
 9.12 8.97 6.45 9.88 7.73 11.41 
 6.48 11.83 8.26 12.98 9.74 13.43 
 
The critical path length (FT) = 195.51 
 
 
 
 
 
OUTPUT FILE #2: Floyd Matrix 
 
 
 
The 1th iteration;  slot = 0 
Partialjobsettemp matrix is as shown below 
 
 7.6 9.4 
 7.2 8.7 
 6.6 8.7 
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The corresponding Floyd Matrix is as follows: 
 
-1 -10 7.6 -10 -10 -10 -10 -10  
 
-10 -1 -10 9.4 -10 -10 -10 -10  
 
-10 0 -1 9.4 7.2 -10 -10 -10  
 
-10 -10 -10 -1 -10 8.7 -10 -10  
 
-10 -10 -10 0 -1 8.7 6.6 -10  
 
-10 -10 -10 -10 -10 -1 -10 8.7  
 
-10 -10 -10 -10 -10 0 -1 8.7  
 
-10 -10 -10 -10 -10 -10 -10 -1  
 
 
 
The 1th iteration;  slot = 1 
Partialjobsettemp matrix is as shown below 
 
 9.4 7.6 
 8.7 7.2 
 8.7 6.6 
 
The corresponding Floyd Matrix is as follows: 
 
-1 -10 9.4 -10 -10 -10 -10 -10  
 
-10 -1 -10 7.6 -10 -10 -10 -10  
 
-10 0 -1 7.6 8.7 -10 -10 -10  
 
-10 -10 -10 -1 -10 7.2 -10 -10  
 
-10 -10 -10 0 -1 7.2 8.7 -10  
 
-10 -10 -10 -10 -10 -1 -10 6.6  
 
-10 -10 -10 -10 -10 0 -1 6.6  
 
-10 -10 -10 -10 -10 -10 -10 -1  
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The 2th iteration;  slot = 0 
Partialjobsettemp matrix is as shown below 
 
 9.6 7.6 9.4 
 9.4 7.2 8.7 
 6.2 6.6 8.7 
 
The corresponding Floyd Matrix is as follows: 
 
-1 -10 -10 9.6 -10 -10 -10 -10 -10 -10 -10 -10  
 
-10 -1 -10 -10 7.6 -10 -10 -10 -10 -10 -10 -10  
 
-10 -10 -1 -10 -10 9.4 -10 -10 -10 -10 -10 -10  
 
-10 0 -10 -1 7.6 -10 9.4 -10 -10 -10 -10 -10  
 
-10 -10 0 -10 -1 9.4 -10 7.2 -10 -10 -10 -10  
 
-10 -10 -10 -10 -10 -1 -10 -10 8.7 -10 -10 -10  
 
-10 -10 -10 -10 0 -10 -1 7.2 -10 6.2 -10 -10  
 
-10 -10 -10 -10 -10 0 -10 -1 8.7 -10 6.6 -10  
 
-10 -10 -10 -10 -10 -10 -10 -10 -1 -10 -10 8.7  
 
-10 -10 -10 -10 -10 -10 -10 0 -10 -1 6.6 -10  
 
-10 -10 -10 -10 -10 -10 -10 -10 0 -10 -1 8.7  
 
-10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1  



 166

 
 
 
The 2th iteration;  slot = 1 
Partialjobsettemp matrix is as shown below 
 
 7.6 9.6 9.4 
 7.2 9.4 8.7 
 6.6 6.2 8.7 
 
The corresponding Floyd Matrix is as follows: 
 
-1 -10 -10 7.6 -10 -10 -10 -10 -10 -10 -10 -10  
 
-10 -1 -10 -10 9.6 -10 -10 -10 -10 -10 -10 -10  
 
-10 -10 -1 -10 -10 9.4 -10 -10 -10 -10 -10 -10  
 
-10 0 -10 -1 9.6 -10 7.2 -10 -10 -10 -10 -10  
 
-10 -10 0 -10 -1 9.4 -10 9.4 -10 -10 -10 -10  
 
-10 -10 -10 -10 -10 -1 -10 -10 8.7 -10 -10 -10  
 
-10 -10 -10 -10 0 -10 -1 9.4 -10 6.6 -10 -10  
 
-10 -10 -10 -10 -10 0 -10 -1 8.7 -10 6.2 -10  
 
-10 -10 -10 -10 -10 -10 -10 -10 -1 -10 -10 8.7  
 
-10 -10 -10 -10 -10 -10 -10 0 -10 -1 6.2 -10  
 
-10 -10 -10 -10 -10 -10 -10 -10 0 -10 -1 8.7  
 
-10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1  
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The 2th iteration;  slot = 2 
Partialjobsettemp matrix is as shown below 
 
 7.6 9.4 9.6 
 7.2 8.7 9.4 
 6.6 8.7 6.2 
 
The corresponding Floyd Matrix is as follows: 
 
-1 -10 -10 7.6 -10 -10 -10 -10 -10 -10 -10 -10  
 
-10 -1 -10 -10 9.4 -10 -10 -10 -10 -10 -10 -10  
 
-10 -10 -1 -10 -10 9.6 -10 -10 -10 -10 -10 -10  
 
-10 0 -10 -1 9.4 -10 7.2 -10 -10 -10 -10 -10  
 
-10 -10 0 -10 -1 9.6 -10 8.7 -10 -10 -10 -10  
 
-10 -10 -10 -10 -10 -1 -10 -10 9.4 -10 -10 -10  
 
-10 -10 -10 -10 0 -10 -1 8.7 -10 6.6 -10 -10  
 
-10 -10 -10 -10 -10 0 -10 -1 9.4 -10 8.7 -10  
 
-10 -10 -10 -10 -10 -10 -10 -10 -1 -10 -10 6.2  
 
-10 -10 -10 -10 -10 -10 -10 0 -10 -1 8.7 -10  
 
-10 -10 -10 -10 -10 -10 -10 -10 0 -10 -1 6.2  
 
-10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1  
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Appendix D: Test Excel Sheets for 3, 4, 5 job cases 
Number of Jobs: 3        
Number of Machines: 4        
The Optimal FT values are in bold italics      
         

 Matrix 1 Matrix 2 
SEQ M = 2 M = 3 M = 4 M = 5 M = 2 M = 3 M = 4 M = 5 
ABC 125.3 141.1 139.5 164.1 140.6 142.1 146.9 188 
ACB 125.3 141.6 138.5 163.1 140.6 141 147.5 186.6 
                  
Ends BAC BAC BAC BAC BCA BCA BCA BCA 
Ends_r CAB CAB CAB CAB ACB ACB ACB ACB 
                  

Percentage 
error from 
optimal 0 0 0 0 0 0 0 0 

         
         

 Matrix 3 Matrix 4 
SEQ M = 2 M = 3 M = 4 M = 5 M = 2 M = 3 M = 4 M = 5 
ABC 115.1 133.2 128.6 133.2 103.9 106.5 119.1 150.5 
ACB 115.1 127 125.4 127 103.9 105.4 120.2 152.5 

                  
Ends BCA BCA BCA BCA CAB BAC CAB CAB 
Ends_r ACB ACB ACB ACB BAC BAC BAC BAC 

                  

Percentage 
error from 
optimal 0 0 0 0 0 0 0 0 
         
         
         

 Matrix 5 Matrix 6 
SEQ M = 2 M = 3 M = 4 M = 5 M = 2 M = 3 M = 4 M = 5 
ABC 107.9 120.9 119.5 144.6 115.4 120.18 124.9 152.97 
ACB 107.9 116.5 121 148.6 115.4 115.6 123.98 149.81 
                  
Ends CAB CAB CAB CAB CAB CAB CAB CAB 
Ends_r BCA BCA BCA BCA BAC BAC BAC BAC 
                  

Percentage 
error from 
optimal 0 0 0 0 0 0 0 0 
         
Number of Jobs: 3        
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Number of Machines: 4        
         

 Matrix 7 Matrix 8 
SEQ M = 2 M = 3 M = 4 M = 5 M = 2 M = 3 M = 4 M = 5 
ABC 113.59 129.32 125.91 152.74 107.47 114.96 114.84 114.96 
ACB 113.59 125.96 125.09 155.85 107.47 121.31 120.43 121.31 

                  
Ends BAC BAC BAC BAC CBA CBA CBA CBA 
Ends_r CAB CAB CAB CAB ABC ABC ABC ABC 
                  

Percentage 
error from 
optimal 0 0 0 0 0 0 0 0 
         
         
         
         

 Matrix 9 Matrix 10 
SEQ M = 2 M = 3 M = 4 M = 5 M = 2 M = 3 M = 4 M = 5 
ABC 100.15 108.46 109.33 122.47 129.38 139.27 137.31 164.95 
ACB 100.15 108.59 109.37 121.07 129.38 134.91 134.41 172.91 

                  
Ends ABC ABC ABC ABC CAB CAB CAB CAB 
Ends_r CBA CBA CBA CBA BAC BAC BAC BAC 

                  

Percentage 
error from 
optimal 0 0 0 0 0 0 0 0 
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Number of Jobs: 4         
Number of Machines: 4        
          

 Matrix 1 Matrix 2 Matrix 3 
SEQ M=3 M = 4 M = 6 M=3 M = 4 M = 6 M=3 M = 4 M = 6 
ABCD 176.5 198.8 298.2 172 182.4 182.4 147 157 157 
BACD 175.5 195.2 298.2 174 186.5 186.5 146 154.4 154.4 
ACBD 177 195.7 298.2 172 183.2 183.2 147 158.7 158.7 
ADBC 175.5 198.8 295.5 174 184.3 184.3 148 155.1 155.1 
CBAD 177 198.8 298.2 174 183.1 183.1 147 156 156 
BDCA 177 198.8 295.5 172 182.1 182.1 147 154.7 154.7 

                 
Incr DBAC DABC DABC DABC DABC DABC CBDA CBDA CBDA 
Decr BDCA ADCB ADCB ACDB ADCB ADCB BCAD BCAD BCAD 
Ends CBDA CDBA CADB DACB CADB CADB ABCD ABCD ABCD 
Ends_r ADBC BDAC BDAC BDAC BDAC BDCA DCBA DCBA CDBA 
           

Percentage 
error from 
optimal 0 0 0 0 0 0 0.068 1.025641 0 
          
          

SEQ Matrix 4 Matrix 5 Matrix 6 
ABCD M=3 M = 4 M = 6 M=3 M = 4 M = 6 M=3 M = 4 M = 6 
BACD 151 174.1 264.5 150 159.4 169.5 160 184.1 247.5 
ACBD 152 174.6 262.7 146 156.8 158.9 162 182.27 252.26 
ADBC 147 175.9 263.4 147 162.9 172.1 158 183.24 245.72 
CBAD 144 174.8 264.5 152 159.2 161.3 158 183.6 247 
BDCA 154 175.9 262.7 144 156.1 161.7 163 182.09 251.39 

  155 174.1 263.4 148 161 168.5 161 183.92 246.4 

                
Incr ACDB ACDB ACDB ABDC ABDC ABDC CABD CABD CABD 
Decr CABD CABD BCAD BACD BACD BACD ACDB ACDB ACDB 
Ends BCAD ABCD BACD CBAD CBAD DBAC DACB ADCB DACB 
Ends_r DACB DACB DACB DABC DABC DABC BCAD BCAD BCAD 

Percentage 
error from 
optimal 0 0 0 0 0 0 0 0 0 
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Number of Jobs: 4         
Number of Machines: 4        
          

SEQ Matrix 7 Matrix 8 Matrix 9 
ABCD M=3 M = 4 M = 6 M=3 M = 4 M = 6 M=3 M = 4 M = 6 
BACD 142 158.21 214.19 162 184.51 183.51 162 152.45 226.68 
ACBD 142 163.59 225.19 160 182.77 182.77 165 155.68 226.91 
ADBC 144 156.45 219.67 158 179.62 177.62 158 156.47 228.07 
CBAD 144 170.13 224.81 163 184.98 184.98 163 154.99 226.68 
BDCA 141 161.06 217.63 159 180.09 179.09 159 158.99 228.25 

  143 157.41 222.34 160 181.83 179.83 160 153.36 228.83 

                
Incr CBDA CBDA CBDA DABC DABC DABC CBAD BCAD BCAD 
Decr BCAD BCAD BCAD ACDB ADCB ADCB BCDA CBDA CBDA 
Ends ABCD ABCD ABCD DACB CADB CADB DBCA DCBA DCBA 

Ends_r DCBA DCBA DCBA BDAC BDAC BDAC ACBD ABCD ABCD 

Percentage 
error from 
optimal 0 1.112 0 0 0 0 0 0 0 
          
          

SEQ Matrix 10       

ABCD M=3 M = 4 M = 6       
BACD 168 185.42 185.42       
ACBD 171 192.07 192.07       
ADBC 167 190.65 190.65       
CBAD 170 183.88 183.88       
BDCA 169 186.84 186.84       

  165 183.49 183.49       

            
Incr CDAB CDAB CDAB       
Decr DCBA DCBA DCBA       
Ends BDCA BDCA BDCA       

Ends_r ACDB ACDB ACDB       

Percentage 
error from 
optimal 0 0 0       
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Number of jobs: 5 Number of Machines: 4          
              

 Matrix 1 Matrix 2 Matrix 3 Matrix 4 Matrix 7 Matrix 8 Matrix 9 

SEQ M = 4 M = 5 M = 4 M = 5 M = 4 M = 5 M = 4 M = 5 M =4 M = 5 M = 4 M = 5 M = 4 M = 5 

ABCDE 230.4 284.3 222.7 222.7 181.59 201 215.4 268.3 206.96 255.89 191.37 194.35 180.13 196.35 

ABCED 235.4 285.8 219.9 219.9 210.2 217 215.1 269 229.34 259.01 198.59 206.92 183.09 194.88 

ABECD 234.4 285.4 219.2 219.2 215.3 222.1 217.6 266.1 229.48 256.54 203.99 219.48 182.21 194.4 

ABEDC 232.6 285.4 218.8 218.8 213.2 218.4 214.9 269.4 216.57 256.49 205 228.00 176.54 179.5 

ABDCE 232.1 286.4 222.6 222.6 204.7 204.7 214.7 269.2 213.28 258.23 201.8 209.93 183.3 206.85 

ABDEC 230.2 286.5 219.4 219.4 204.4 209.6 213.5 266.2 204.59 254.33 195.85 202.52 182.79 197.03 
                              

AEBCD 234.7 289 220.7 220.7 218.9 225.7 213.6 263.9 229.61 259.25 193.55 211.17 179.65 199.56 

AEBDC 235.1 289 219.8 219.8 216.8 222 214.4 267.2 216.4 258.47 199.81 213.66 180.11 192.61 

AEDBC 240.1 289 219.9 219.9 211.6 216.8 215.4 267 210.6 254.84 199.83 226.22 182.22 184.25 

AEDCB 239.4 289 223.7 223.7 214.1 215.3 214.2 267.5 219.41 259.18 204.64 231.19 180.66 182.15 

AECBD 233.7 287.4 221.3 221.3 217.4 224.2 214.4 264.4 231.88 258.33 199.17 217.84 177.02 194.75 

AECDB 231.2 289 224.9 224.9 217.8 219 220.4 266.5 222.17 254.72 200.37 225.98 177.06 191.41 
                              

ADBCE 237.4 285.8 221.5 221.5 199.5 199.5 225.2 267.4 208.13 253.38 194.96 223.54 183.84 207.39 

ADBEC 237.4 288 218.8 218.8 199.2 204.4 223.3 264.4 206.09 249.67 202.52 221.95 178.15 190.3 

ADEBC 236.5 287.8 218.8 218.8 202.8 208 216.6 264.3 205.91 252.94 192.85 203.53 187.67 204.34 

ADECB 237 287.8 222.4 222.4 205.3 206.5 215.4 265.8 224.1 255.82 199.37 210.28 179.08 200.98 

ADCBE 237.9 286 220.8 220.8 198 198 214.4 267.3 208.71 256.4 204.96 229.95 184.18 196.7 

ADCEB 237.9 286 220.7 220.7 197.9 197.9 214.4 267.5 210.02 259.18 215.67 229.86 181.84 195.19 
                              

ACBDE 229.9 281.4 222.6 222.6 206.9 206.9 212.6 267.5 215.93 254.12 194.83 212.34 176.7 192.64 

ACBED 234.6 282.9 220 220 208.7 215.5 215.8 268.7 235 256.28 200.78 221.42 179.16 184.19 

ACEBD 231.5 281.6 220.6 220.6 212.3 219.1 216 267.8 235.17 258.23 195.9 211.33 184.81 207.79 

ACEDB 231.2 282.9 223.6 223.6 212.7 213.9 217 269.2 224.88 254.69 196.46 218.36 181.08 193.23 

ACDBE 231.9 283.7 222 222 201.7 201.7 213.5 266.6 215.14 249.76 202.13 224.88 177.49 185.91 

ACDEB 231.4 285.9 223.6 223.6 204.5 205.7 216 267 221.64 253.03 200.63 211.27 181.59 201 
                              

Ends CBDEA CBDEA AECDB AECDB BCDEA BEDCA ACBDE CADEB BCDEA DBECA CDEAB CDEAB DCABE DCABE 

Ends_r DBACE DBACE BCADE BCADE ADECB ADECB BDAEC BCDAE ACDBE ACDBE BEDAC BEDAC EBACD EBACD 
% error from 
optimal 0 0 0 0 0 4.016 0 0 1.145 0 0 0 0 0 
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