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Eigenvalue Statistics for Random Block Operators

Daniel Flint Schmidt

(ABSTRACT)

The Schrödinger Hamiltonian for a single electron in a crystalline solid with independent, identi-
cally distributed (i.i.d.) single-site potentials has been well studied. It has the form of a diagonal
potential energy operator, which contains the random variables, plus a kinetic energy operator,
which is deterministic. In the less-understood cases of multiple interacting charge carriers, or of
correlated random variables, the Hamiltonian can take the form of a random block-diagonal opera-
tor, plus the usual kinetic energy term. Thus, it is of interest to understand the eigenvalue statistics
for such operators.

In this work, we establish a criterion under which certain random block operators will be guaran-
teed to satisfy Wegner, Minami, and higher-order estimates. This criterion is phrased in terms of
properties of individual blocks of the Hamiltonian. We will then verify the input conditions of this
criterion for a certain quasiparticle model with i.i.d. single-site potentials. Next, we will present
a progress report on a project to verify the same input conditions for a class of one-dimensional,
single-particle alloy-type models. These two results should be sufficient to demonstrate the utility
of the criterion as a method of proving Wegner and Minami estimates for random block operators.

This work was supported in part by NSF grant DMS-1210982.
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Chapter 1

Introduction

1.1 Background

The study of random Schrödinger operators is an attempt to understand certain questions arising in
the mathematical foundations of quantum mechanics. The central question in this study concerns
the reasons for the presence or absence of diffusion of various particles or disturbances in solids.
This field of study traces its origin largely to a paper by P.W. Anderson in 1958 [3].

Anderson’s original work focused on the absence of diffusion of spin waves in certain solids, and
explained this absence in terms of a random component of the electric potential. Similar reasoning
has been applied to the diffusion of electrons and other charge carriers. In both contexts, a suffi-
ciently strong random component of the potential can cause severe interference between various
multiple-scattering paths, which in some cases is sufficient to halt the long range propagation that
might have occurred in a strictly periodic potential.

The standard Anderson model is a “single particle” model, in the sense that it does not include
electron-electron interactions. It also assumes that the random variables that determine the po-
tential are independent and identically distributed. In this work, we will consider models which
generalize the Anderson model in various ways. In one case, we will modify the model by con-
sidering the motion of a quasiparticle, instead of the usual single electron. In a second case, we
will modify the model by allowing the random variables in the potential to be correlated to some
degree, instead of the usual case of i.i.d. random variables.

1.2 Mathematical Setting of the Problem

We begin with an overview of the mathematical setting of this work. (Note that this chapter will
be only an abbreviated account of this background. Excellent references are available for further
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Daniel Schmidt Chapter 1. Introduction 2

details—see for example [19], [27], and [8].)

Consider a solid with a crystal structure, which we may represent by a graph. Suppose ions of
various charges (perhaps including both positive and negative charges) are arranged randomly at
the lattice points of this crystal. The electrons in this solid will in reality be influenced by elec-
trostatic forces from both the lattice ions and the other electrons, but as a simplifying assumption,
it is standard practice to ignore electron-electron interactions. This gives us a so-called “single
particle” model, as described above. There are at least two major questions we could ask about
the electrons in this system. First, what energy levels can an electron occupy? Second, given some
energy level, will an electron at this energy be in a bound state or in a free state?

Normally, one would address questions about the dynamical behavior of electrons in any given
state by using the time-dependent Schrödinger equation:

i~
∂

∂t
ψ(r, t) = Hψ(r, t) (1.2.1)

Where ψ(r, t) is the electron’s state function and H = H0 + V is the Hamiltonian for the system,
also referred to as the Schrödinger operator. Here H0 is the Laplacian, or kinetic energy opera-
tor, and V is a multiplication operator representing the electric potential energy. Note that any
randomness in the arrangement of ions will appear only in the potential energy term V .

Similarly, one would find the electron’s “stationary states” and the corresponding energy levels by
solving the time-independent Schrödinger equation:

Hψ(r) = Eψ(r) (1.2.2)

Note that this equation takes the form of an eigenvalue problem, and thus it would be natural to
expect that the energy levels and state functions would be given by the eigenvalues and eigen-
functions, respectively. In fact, the matter is more subtle than this intuition suggests. Since the
Hamiltonian may be an operator on an infinite-dimensional vector space, its spectrum can include
points which are not, strictly speaking, eigenvalues. This is not just a technical point—the distinc-
tion between various types of points in the spectrum will turn out to be crucial to determining the
dynamical behavior of electrons, and we will revisit that matter below.

In this work, we will use the tight binding approximation, in which we model the electrons as
jumping from one lattice point to another, rather than traveling freely through all of space. This
means that the space the electrons occupy is Zd or some other graph, rather than Rd. This in turn
means that the appropriate form of the LaplacianH0 is the so-called “discrete Laplacian” or “graph
Laplacian” given below.

(H0ψ)(n) =
∑

d(n,m)=1

(ψ(m)− ψ(n))

Here d(m,n) = ||m− n||1 is a metric defined in terms of the `1 norm.
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Also, in our context, the potential operator is the sum of the single-site potentials ui(n) generated
by the individual lattice ions.

V (n) =
∑
i∈Zd

ui(n)

This gives the form of the Schrödinger equation that is relevant to our situation. In principle,
all we need to do is to insert the potential for any given model, and solve the two forms of the
Schrödinger equation to answer our questions about the energy levels and dynamical behaviors of
electrons. Unfortunately, while it is possible to solve the Schrödinger equation exactly for some
simple systems, this will be unfeasible for a large crystal lattice with a very complex potential.
Furthermore, in our context we want the arrangement of ions at the lattice points to be random, so
finding the solutions for any single configuration would not be sufficient anyway. Instead, we want
statistical information about how the electrons and their energy levels will behave in “almost all”
configurations, where “almost all” is understood to be a measure-theoretic statement with respect
to the probability measure that determines the distribution of ions.

1.3 Spectral Decomposition

Our first major tool will be a decomposition of the spectrum σ(H) of the Hamiltonian. It will
take several steps to define the spectral decomposition, (and the corresponding decomposition of
the state space) but when we are finished, there will be a close connection between the part of the
spectrum in which an energy level lies, and the dynamical behavior of the corresponding state.

Given an operator H , define a projection-valued spectral measure to be any function µH which
maps subsets of the spectrum σ(H) to projections on the state spaceH, satisfying the following:

1. µH(A) is an orthogonal projection, for any set A ⊂ σ(H).

2. µH(∅) = 0, where 0 is to be understood as an operator.

3. µH(σ(H)) = I , where I is the identity operator onH.

4. µH(A ∩B) = µH(A)µH(B), for any A,B ⊂ σ(H).

5. µH(
⋃∞
n=0An) =

∑∞
n=0 µH(An) for any collection of pairwise disjoint sets An ⊂ σ(H).

More specifically, we may define a particular projection-valued spectral measure µH as follows.
For a given set of energies A ⊂ σ(H), let µH(A) be the projection operator onto the subspace of
H spanned by the state functions whose energies are in A. (See [19], [8].)

The purpose of the projection-valued spectral measure is to define the following (real-valued)
measure:

µψ(A) = 〈ψ, µH(A)ψ〉
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This gives a different real-valued measure for each function ψ ∈ H. This measure can be loosely
thought of as quantifying the dependence of a state function ψ on the “basis states.” Hence if
ψ = c1ψ1 + c2ψ2 + c3ψ3, where the functions ψi are stationary states corresponding to eigenvalues
Ei, respectively, then µψ({E1, E2}) = |c1|2 + |c2|2, for example.

Strictly speaking, a rigorous treatment of the use of stationary states as a basis for H will require
a discussion of rigged Hilbert spaces. For our purposes, this will not be necessary, and the above
paragraph may be interpreted simply as a guide to intuition. For a treatment of rigged Hilbert
spaces, see [23].

We will split the spectrum into three parts by applying a modified form of the Lebesgue decompo-
sition theorem to the spectral measure µψ. For reference, the usual version of that theorem is stated
below. (See [26].)

Theorem 1.3.1. Lebesgue Decomposition Theorem For any two σ−finite measures µ and ν on
a measure space (Ω,Σ), there exist two sigma finite measures νs and νac on (Ω,Σ) such that:

1. ν = νs + νac

2. The measure νac is absolutely continuous with respect to µ.

3. The measure νs is singular with respect to µ.

Furthermore, the measures νs and νac are unique.

In applying this theorem, we will let µ = m, the Lebesgue measure. Also, we will decompose
the measure νs further into two more measures νsc and νpp. The first of these is called a singular
continuous measure, which means that it is singular with respect to Lebesgue measure, but still
satisfies νsc(x) = 0 for any singleton. The second measure νpp is called a pure point measure, and
is a sum of Dirac measures (i.e. it is supported only on singletons).

Now we may decompose the state spaceH according to the spectral decomposition.

1. If µψ is absolutely continuous with respect to Lebesgue measure, then ψ is in the spaceHac.

2. If µψ is singular continuous with respect to Lebesgue measure, then ψ is in the spaceHsc.

3. If the measure µψ is pure point, then ψ is in the spaceHpp.

Note that under these definitions, the original state space is not a union of the three new spaces,
but rather a direct sum of the three, since a spectral measure µψ may be a sum of components of
all three types. Thus, we have:

H = Hpp ⊕Hac ⊕Hsc

We have used the decomposition of measures to define a decomposition of the state space. Now
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we use the latter to define a decomposition of the spectrum of H . Define

σpp := σ(H|Hpp)

σac := σ(H|Hac)

σsc := σ(H|Hsc)

The set σpp is in fact the closure of the set of eigenvalues of H .

We now have σ(H) = σpp ∪ σac ∪ σsc. This decomposition turns out to be physically signifi-
cant, since the spectral type of an energy level will be related to the dynamical properties of the
associated state.

1.4 Physical Significance of the Spectral Decomposition

A theorem by Ruelle, Amrein, Georgescu and Enss, which we will not state in full rigor here,
clarifies the physical significance of the spectral decomposition.

1. Energies in σpp correspond to bound states of electrons.

2. Energies in σac correspond to free states in which electrons travel to infinity.

3. Energies in σsc correspond to states in which electrons travel to infinity in the time average.

For further details, see [19].

For discrete random Schrödinger operators, we know that the spectrum itself is nonrandom: with
probability 1, we have

σ = {V (x) : x ∈ Λ}+ [0, 4d]

Here Λ is a finite box restriction of the lattice, and d is the dimension of the lattice. However, we
do not know in general where σpp, σac, and σsc lie within the spectrum, or even whether any given
set among these three is non-empty.

We can describe several vague, often unproven, expectations for what the spectrum of a Schrödinger
operator should look like in various situations. For example, in a model with random potentials and
no long-range correlation of random variables, σsc is expected to be empty. Note that this is not
true in general: the spectrum for a Hamiltonian describing a quasicrystal—in which the single-site
potentials have long-range, non-periodic order—may include all three spectral types [19].

Also, we expect the spectrum to have a band structure, with pure point spectrum near the band
edges and absolutely continuous spectrum near the center of each band, at least for weak disorder
in dimension d ≥ 3. In stronger disorder regimes, the pure point spectrum can extend all the way
to the center of the band [1]. In dimension d = 1, the Hamiltonian is known to have dense pure
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point spectrum for any nonzero disorder. Random Schrödinger operators on dimension d = 2 are
an open problem [4].

Once again, not all of these expected results are known rigorously. In particular, the existence
of σac has not been proved in most cases. On the other hand, we do have ways to prove the
existence of σpp for some models. Two common methods are the fractional moment method and
the method of multiscale analysis (MSA). The latter is an inductive procedure on the size of a finite
box restriction of the lattice. The use of this method requires an initial-scale estimate for the initial
step, and a Wegner estimate (to be described below) for the inductive step.

A Wegner estimate is an inequality of the following form:

P((σ(HΛ) ∩ I) 6= ∅) ≤ C|Λ||I| (1.4.1)

If we assume, without loss of generality, that the interval I has the form I = (−ε, ε), then this can
be rewritten as:

P(Cε(HΛ) ≥ 1) ≤ C|Λ|ε (1.4.2)

where Cε is the function that counts eigenvalues, according to algebraic multiplicity, in the interval
(−ε, ε).

Note that the Wegner estimate counts eigenvalues only. Since we are using a finite box restriction
of the Hamiltonian, rather than the original Hamiltonian, the operator whose spectrum we consider
acts on a finite-dimensional vector space. Thus, while H itself may have pure point, absolutely
continuous, and/or singular continuous spectrum, all points in the spectrum of HΛ are eigenvalues.

In light of the above discussion, proving a Wegner estimate is a key to proving existence of the
pure point spectrum, which in turn gives localization of electrons. The Wegner estimate turns out
to have other uses as well, such as proving Poisson statistics of eigenvalues. In that case, we also
need to have a Minami estimate:

P(Cε(HΛ) ≥ 2) ≤ C|Λ|ε2 (1.4.3)

Thus, we can determine the dynamical properties of electrons (among other things) in a given
system if we have information about the statistical distribution of the eigenvalues for a finite box
restriction of the Hamiltonian. The remainder of this work will be devoted to studying the eigen-
value statistics for certain types of Hamiltonians. In some cases, the Wegner and Minami estimates
are already known. For example, the simplest kind of random Schrödinger operator would be a
single particle model in which the single site potentials are i.i.d. random variables (i.e. the standard
Anderson model). In this case, Wegner and Minami estimates have been proved already [24].

It is more difficult to establish the eigenvalue statistics for models with correlated random variables,
or (in a mathematically similar problem) models that involve multiple interacting charge carriers.
In both cases, the Schrödinger operator can take the form of a block operator, in which different
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blocks depend on different random variables, but the random variables within a block may be
correlated.

Loosely speaking, the more correlated variables the model includes, the more difficult the proofs
tend to be. In the extreme case in which all the variables are equal, the Minami estimate is actually
false. In the other extreme, in which there are no correlations, we have the standard Anderson
model, and the estimates are already known. The open questions lie between these two extremes.

1.5 Organization of this Work

In chapter 2, we establish a general criterion under which random block operators are guaranteed
to satisfy Wegner and Minami estimates. We then apply this criterion to prove the two estimates
for a certain quasiparicle model arising from the theory of dirty superconductors.

In fact, the first major theorem of chapter 2 is actually a more abstract result from linear algebra.
We use this theorem to demonstrate the eigenvalue statistics criterion, which is the main application
theorem of that chapter. After that criterion is established, the proof that it applies to the specific
case of the quasiparticle model is actually straightforward.

In chapter 3, the situation is reversed: the implications of the criterion may be assumed by this
time, but the proof that the criterion applies to the specific model is challenging. Chapter 3 is a
progress report on an attempt to apply this criterion to a certain class of alloy-type models.

In order to prove that, we need to prove another abstract theorem, this time from algebraic geom-
etry. This theorem shows that the solution set to a system of n polynomial equations in n + m
variables is almost always of dimension m, and its measure is normally not too small, in a sense to
be made precise later. Chapter 4 gives the proof of this theorem.



Chapter 2

Eigenvalue counting inequalities, with
applications to Schrödinger operators

2.1 Introduction

2.1.1 Small eigenvalues and the Green function

Let A be an invertible Hermitian N × N matrix with inverse A−1, and let IN be the N × N
identity matrix. Let G(x, y) denote the matrix element in the (x, y) position of A−1, also known
as the Green function of A. Our first objective in this work is to relate information about the small
eigenvalues of A to the behavior of G(x, y). Let us denote by Cε(A) the number of eigenvalues
(counting multiplicities) of A in the interval Iε := (−ε, ε). As a first step, let us ask the most basic
question: Does A have at least one eigenvalue in the interval Iε? A well known result in the matrix
analysis says that

Cε(A) > 0 ⇐⇒ ‖A−1‖ > 1

ε
.

Since ‖B‖max ≤ ‖B‖ ≤ N‖B‖max for any N ×N matrix B with

‖B‖max = max
x,y
|B(x, y)|,

we obtain the relations

Cε(A) > 0⇒ There exists a pair {x, y} such that |G(x, y)| > 1

Nε
; (2.1.1)

|G(x, y)| > 1

ε
for some pair {x, y} ⇒ Cε(A) > 0 .

It is natural to try to quantify these relations further, viz. to detect whether the matrix A has at least
m small eigenvalues from the behavior of G(x, y). To this end, we prove the following result.

8
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Theorem 2.1.1. Let A = A∗ be an N × N invertible matrix. Let A[α, β] denote the submatrix
of A with rows indexed by index subset α and columns indexed by index subset β. Consider the
following two assertions:

I. Cε(A) ≥ m;

II. There exist index subsets

αm = {i1, . . . , im}, βm = {j1, . . . , jm}

of {1, . . . , N} such that

A−1[αm, βm]A−1[βm, αm] >
K2

ε2
IN [αm, αm] for some K > 0, (2.1.2)

where IN is the N ×N identity matrix.

Then (I) implies (II) with

K =
Cm
N
, Cm =

1

m! 2m−1
(2.1.3)

Conversely, (II) with K = 1 implies (I).

The constant Cm in (2.1.3) is not sharp for m > 1. However, the dependence on N is optimal (and
we will be interested in small m, large N behavior in the application below).

It is often convenient to work with principal submatrices A−1[γ] of A−1. One can tailor Theorem
2.1.1 somewhat differently to accommodate this requirement, at the cost of increasing the cardi-
nality of the corresponding index subsets αm, βm. Namely, we have the following result:

Corollary 2.1.2. Let A = A∗ be an N × N invertible matrix. Consider the following two asser-
tions:

I. Cε(A) ≥ m;

II. There exists an index subset γm = {i1, . . . , i2m} of {1, . . . , N} such that for any subset γ ⊃
γm for which the matrix A−1[γ] is invertible

Cε/K

((
A−1[γ]

)−1
)
≥ m for some K > 0. (2.1.4)

Then (I) implies (II) with

K =
Cm
N
, Cm =

1

m! 2m−1

Conversely, (II) with K = 1 implies (I).

Remark. The matrix (A−1[γ])
−1 coincides with the Schur complement of A[γc] in A, see (2.2.1)

below for details. Here γc = {1, 2, . . . , N} \ γ.
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2.1.2 Application to random Schrödinger operators

In quantum physics, the tight-binding approximation is often used as the prototypical model for
the study of electron propagation in solids. In this model, the evolution of the wave function ψ on
the d-dimensional lattice Zd is given by the Schrödinger equation

i~ψ̇t = Hψt; ψ(0) = ψ0, (2.1.5)

where the self-adjoint Hamiltonian H is a sum of the hopping term H0 and the potential V , of the
form

(Hψ)(x) = (H0ψ)(x) + V (x)ψ(x), x ∈ Zd.

In this work we consider the random operators that have this functional form. Let us list few of
these:

Anderson model HA One of the best-studied models for disordered solids was introduced by P.
H. Anderson in [3]. In this model the Hilbert space is `2(Zd), the hopping term H0 is the discrete
Laplacian ∆, and the potential V in H above is of the form V (x) = g

∑
ax−yv(y), where the

single site potentials v(y) are independent random variables. The real parameter g is a coupling
constant which describes the strength of the disorder.

Alloy-type Anderson model Halloy Here the Hilbert space is also `2(Zd), the hopping term H0 is
a short range ergodic operator. The value of the potential V (x) at a site x ∈ Zd is generated from
independent random variables {u(y)} via the transformation

V (x) = g
∑
y∈Γ

ax−yu(y) ,

where the index y takes values in some sub-lattice Γ of Zd. The Hamiltonian HA coincides with
Halloy provided H0 = ∆, Γ = Z

d; az = δ|z|, where δx is Kronecker delta function: δ0 = 1; δx = 0
for x 6= 0. In general, the random potential at sites x, y is correlated for this model. As its name
suggest, Halloy is used to describe (random) alloys in the tight binding approximation.

Random block operator Hblock The Hilbert space is `2(Zd;Ck) ∼=
(
`2(Zd)

)k (the space of square-
summable functions ψ : Zd → C

k). The kernel H0(x, y) of the hopping term is a deterministic,
translation invariant k × k matrix. The random potential V (x) at each site is an independently
drawn random k × k Hermitian matrix multiplied by g.
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Previous Results

Anderson [3] argued that in the g � 1 regime, the solution of the initial value problem (2.1.5) for
HA stays localized in space for all times almost surely if the initial wave packet ψ0 is localized.
Mathematical study of Anderson localization is an active field; we refer readers to the recent re-
views [19, 28] on the subject for the detailed bibliography. In this work, we focus our attention on
a single aspect of Anderson localization—the so-called m-level Wegner estimate.

Let |S| denote the cardinality of the set S. Let HΛ
A be a restriction of the operator HA to a finite

box Λ. Then the m-level Wegner estimate is an upper bound on the probability of n eigenvalues
being in the same energy interval Iε := (E − ε, E + ε):

P
(
Cε(HΛ

A − E) ≥ m
)
≤ Cm(|Λ|ε)m,

for random variables v(x) with a bounded density. As such, it gives some measure of the cor-
relation between multiple eigenvalues. We will refer to the 1-level bound simply as the Wegner
estimate (first established by F. J. Wegner in [31]). It plays the instrumental role in the proof of
Anderson localization.

If localization occurs in some energy interval I ⊂ R, the entire spectrum ofHA in I is pure point. It
is then natural to study the distribution of the eigenvalues for HΛ

A in this interval. Physicists expect
that there is no energy level repulsion for states in the localized regime: that is, the eigenvalues
should be distributed independently on the interval I . The first rigorous result in this direction,
namely that the point process associated with the (rescaled) eigenvalues converges to a Poisson
process, was obtained by Molchanov [25] in the setting of a one-dimensional continuum.

Minami [24] established the analogous result for HA under the assumption that the distribution
of every v(n) has a bounded density. The key component in [24] is the 2-level Wegner estimate,
which is consequently known as the Minami estimate.

By now the localization phenomenon for the original Anderson model HA is well understood. In
particular, the general m-level Wegner estimate is known to hold for essentially all distributions µ
of the random potential v(x); see [5, 16]. We refer the reader to [9] for the state of the art results
concerning eigenvalue counting inequalities for HA. However, the current understanding of many
(in fact almost all) other random models of interest remains partial at best.

The Wegner estimate for a special class of alloy-type Anderson model Halloy was first established
by Kirsch in [18]. By now it is known to hold in fair generality (albeit not universally). See the
recent preprint [22] for the extensive bibliography on the subject. The Wegner estimate for a ran-
dom block operator Hblock—with V (x) = gv(x)A where v(x) are independent random variables
and A is a fixed invertible Hermitian matrix—holds in perturbative regimes. That is, it holds near
the edges of the spectrum, [7] and in the strong disorder regime 1 � g, [13]. A weaker bound
(weaker in terms of the volume dependence) near the edges of the spectrum was established for the
Fröhlich model, where the matrix-valued potential is given by V (x) = gU(x)∗AU(x), where A
is a fixed self-adjoint k × k matrix, and the U(x) are independently chosen according to the Haar
measure on SU(k), [6].
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On the other hand, not much progress has been made on extensions of the multi-level Wegner
estimate, besides allowing for more general background operators H0 than the discrete Laplacian.
In particular, apart from two special examples below, all previous works require a non-correlated
random potential. In [21], this limitation was partially removed in the continuum one-dimensional
setting, allowing for positively correlated randomness. In [10], the authors announced the estab-
lishment of the Minami estimate and subsequently Poisson statistics for a general class of positively
correlated random potentials. Unfortunately, although [10] contains a new elegant and efficient
proof of Minami’s estimate for HA, its extension to the generalized setting has a significant gap,
which so far has not been removed. Finally, let us mention the recent result [29], which estab-
lished the Minami estimate for a special class of weakly correlated randomness for which one can
transform the problem to the uncorrelated one.

The reader may wonder about the glaring disparity between the wealth of results on the 1-level
Wegner estimate and the scarcity of results for its many-level counterparts. The reason can be
traced to the direct (and frequently exploited) link between the former and the underlying Green
function given by (2.1.1). The amenable nature of the Green function then allows one to establish
a robust 1-level Wegner estimate in many situations of interest. In the present work, we harness
the connection between the many-level Wegner estimate and the Green function given by Theo-
rem 2.1.1 to establish an m-level Wegner estimate for a certain class of models with correlated
randomness. Roughly speaking, our method works if the randomness in the system is sufficiently
rich. (We will quantify this statement in the sequel.)

Although in most known applications (such as localization, simplicity of the spectrum, and Pois-
son statistics of eigenvalues) one is interested in the 1- and 2-level Wegner estimates, it is nonethe-
less natural from a mathematical perspective to investigate the general many-level case. From a
practical perspective, it can yield some insight on the nonlinear Anderson model via multi-state
resonance phenomenon, [14].

The blessing and the curse of the existing methods employed in proof of the Minami estimate (with
the single exception of [21]) is that the nature of the background operator H0 plays little if any role
in the proofs. It is however clear that in the case of the correlated random potential in HA one
cannot hope to get the Minami estimate without exploiting the structure of H0. Indeed, consider
the one dimensional operator Halloy with H0 = 0, and the random potential at odd sites being i.i.d.
random variables, while v(2n) = v(2n − 1). Its spectrum consists of (the closure of) the set of
eigenvalues {λn} = {v(n)}, each one being degenerate. Consequently, even though Halloy in this
setting is perfectly localized, the probability of finding two closely lying eigenvalues is equal to 1.

The m-level Wegner estimate for the random block model Hblock

We will consider the class of random block models Hblock introduced earlier.

Let G = (V , E) be a graph with degree at most κ, such that the set of vertices (sites) V is finite with
cardinality N . The main example of this model is the restriction of the lattice Zd to the box, but
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the greater generality does not require additional effort here.

Let (Ω,P) be a probability space. Let {V (x) = gAω(x) : x ∈ V , ω ∈ Ω} be a collection of
independent, identically distributed random k × k Hermitian matrices.

Basic Assumption We now state the main technical condition that we will use as an input for our
application theorem below.

(A) For an integer n, let S be a given set of 2nk distinct integers. Then the matrix Aω(x)− a is
invertible for all a ∈ S and all ω ∈ Ω. Moreover, there exists an α > 0 such that, for any integer
a ∈ S, any ε ∈ [0, 1] and arbitrary Hermitian k × k matrix J the bound

P
(∣∣det

(
(Aω(x)− a)−1 + (J + a)−1

)∣∣ ≤ ε
)
≤ Kεα (2.1.6)

holds.

It guarantees that the randomness in the system is rich enough to imply the result below (Theorem
2.1.3). At the first glance, a more natural condition should concern the properties of the matrix
Aω(x) + J as it is the correct functional form of the corresponding Schur complement of Hω (see
Section 2.3 for details). However, this turns out to be an unsuitable choice because of the absence of
an a priori bound on the norm of the background operator J (which encodes the information about
the environment of the x-block in Hω). On the other hand, for a sufficiently large set of numbers
{ai} one can ensure that regardless of the norm of J , one of the matrices {(J + ai)

−1} is bounded
in norm by 1 (see Proposition 2.3.2). We then exploit the fact that matrices (A− a)−1 + (J + a)−1

(which appears in (3.1.2)) and A+ J are related:

(A+ J)−1 = (A− a)−1

− (A− a)−1
(
(A− a)−1 + (J + a)−1

)−1
(A− a)−1, (2.1.7)

provided that A − a and J + a are invertible. One can readily verify (2.1.7) (which is in fact a
particular case of Woodbury’s matrix identity) by multiplying both sides by A+ J .

We now introduce our single-particle Hamiltonian. Namely, let Hω(g) be a random block operator
Hblock acting on `2(V ;Ck) (the space of square-summable functions ψ : V → C

k) as

(Hω(g)ψ)(x) = (H0ψ)(x) + gAω(x)ψ(x), (2.1.8)

where g > 0 is a coupling constant, H0 is an arbitrary deterministic self-adjoint operator on
`2(V ;Ck), and Aω(x) is an independently drawn random k × k Hermitian matrix as above. We
use the notation Hω(g) instead of Hblock to stress the random nature of this operator as well as the
dependence on the parameter g.
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Theorem 2.1.3. Assume (A). Then

I. For any E ∈ R the operator Hω(g)− E is almost surely invertible.

II. Moreover, there exist ε0 > 0 and C > 0 (which depend only on k,m, α) for which we have

P (Cε(Hω(g)− E) ≥ m) ≤ C |ln(Nε/g)(Nε/g)α|m (2.1.9)

for any E ∈ R, for any ε ∈ [0, ε0] and for all m ≤ n. In the m = 1 case we can improve the
above bound to

P (Cε(Hg − E) ≥ 1) ≤ C(Nε/g)α. (2.1.10)

Examples

• Anderson model HA. As we mentioned earlier, the nontrivial Minami estimate is well under-
stood only for the original Anderson model among all alloy-type models. It is therefore a litmus
test to verify Assumption (A) for HA.

Theorem 2.1.4. Suppose that the distribution µ of the v(x) variables inHA is compactly supported
on the interval I = [−b, b] for some b > 0 and is β-regular, i.e. for any Lebesgue - measurable
S ⊂ I we have

µ(S) ≤ C|S|β.

Then Assumption (A) holds with α = β.

Our approach to the Minami estimate is also meaningful for the Γ-trimmed Anderson model intro-
duced in [11], near the edges of the spectrum, in the sense that the assumption (A) can be verified
for it.

• Fröhlich model and alloy type Anderson model Halloy. Assumption (A) is either not satisfied
for a single site x or is satisfied with a power α which is too small to make the result meaningful.
However, the close inspection of the proof of Theorem 2.1.3 shows that the matrix J that appears
in Assumption (A) is not required to be completely arbitrary. In fact, the relevant matrices J carry
the structure of the Schrödinger operator (with arbitrary boundary conditions). It seems plausible
(and is on our to-do list) that Assumption (A) can be verified for such J and sets of sites that
include x and its neighbors.

• The third model arises from the study of dirty superconductors via the Bogoliubov - de Gennes
equation. After a suitable change of the coordinate basis, the Bogoliubov-de Gennes (BdG) model
above can be described in terms of the operator defined in (3.1.1), with Aω(x) = σω(x) ∈ M2×2,
where σω(x) is a random Pauli matrix of the form

σω(x) =

[
ux vx
vx −ux

]
; ux, vx are random variables. (2.1.11)
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The m-Wegner estimate for these models has only been established for m = 1 case, for a re-
stricted class of joint distributions of u, v variables (absolutely continuous and with support in a
half plane), and for a specific background operator H0 in [20, 15]. We establish the robust Wegner
and Minami estimates for this model.

Theorem 2.1.5. Let each Aω(x) be given by (2.1.11). Suppose that the joint distribution µ of the
u, v variables is supported on a unit disc O and is β-regular, i.e. for any Lebesgue - measurable
S ⊂ O we have

µ(S) ≤ C|S|β.

Then Assumption (A) holds with α = β.

2.1.3 Paper’s organization

We prove our main abstract result, Theorem 2.1.1, along with its corollary, in Section 2.2. We prove
our result on eigenvalue estimates, Theorem 2.1.3, in Section 2.3. We consider the implication of
the latter result for the random block operators in Section 2.4. These proofs depend on a number
of auxiliary results, which we prove in Section 2.5.

2.2 Proof of Theorem 2.1.1 and Corollary 2.1.2

2.2.1 Notation

Let n be a positive integer, and let α and β be index sets, i.e., subsets of {1, 2, . . . , n}. We denote
the cardinality of an index set by |α| and its complement by αc = {1, 2, . . . , n} \ α. For an n× n
matrix A, let A[α, β] denote the submatrix of A with rows indexed by α and columns indexed by
β, both of which are thought of as increasing, ordered sequences, so that the rows and columns
of the submatrix appear in their natural order. We will write A[α] for A[α, α]. If |α| = |β| and if
A[α, β] is nonsingular, we denote by A/A[α, β] the Schur complement of A[α, β] in A, [32]:

A/A[α, β] = A[αc, βc]− A[αc, β] (A[α, β])−1A[α, βc]. (2.2.1)

We will frequently use Schur’s complementation and its consequences in this work; we refer the
reader to the comprehensive book [32] on this topic.

For a Hermitian matrix A and a positive number a we will write

Ba(A) := |σ(A) ∩ [a,∞)|.

Let Pε(A) denote the spectral projection of the Hermitian matrix A onto the interval (−ε, ε) for
ε > 0.
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2.2.2 Proof of Theorem 2.1.1

Suppose that (I) holds. We will use the following assertion:

Proposition 2.2.1. Let A be an N × N positive definite matrix, and suppose that Ba(A) = k
for some a > 0. Then there exists an index subset αk = {i1, i2, . . . , ik} of {1, . . . , N} such that
A[αk] ≥ a

k! 2k−1N
IN [αk] .

By Proposition 2.2.1 there exists αm such that

Pε(A)[αm] ≥ Cm
N
IN [αm].

with Cm = 1
k! 2k−1 . Combining this bound with

A−2 >
1

ε2
Pε(A)

we obtain
A−2[αm] >

Cm
Nε2

IN [αm].

Since σ(TT ∗) \ {0} = σ(T ∗T ) \ {0} for any operator T , we deduce from the previous equation
(with T = IN [αm, αN ]A−1) that there exists an orthogonal projection Q of rank m such that

A−1IN [αm]A−1 >
Cm
Nε2

Q.

Applying now Proposition 2.2.1 once again, we conclude that there exists βm such that (2.1.2)
holds with K given by (2.1.3).

Conversely, suppose that (2.1.2) holds with K = 1. Since

A−2[αm] ≥ A−1[αm, βm]A−1[βm, αm],

the assertion follows from the Cauchy interlacing theorem for the Hermitian matrix A−2 and its
principal submatrix A−2[αm].

Proof of Proposition 2.2.1. The proof will proceed by induction in k. If k = 1, the result follows
from the fact that A is positive, so tr A =

∑
λ∈σ(A) λ ≥ a. Since the trace is at least a, there exists

a diagonal entry which is greater than or equal to a
N

.

Suppose we have established the induction hypothesis for k = K. We want to verify the induction
step, i.e. the case k = K + 1. To this end, choose the index i1 so that Ai1i1 ≥ Aii for all i. Without
loss of generality, let us assume that i1 = 1. Then A is of the block form

A =

[
A11 u
u∗ B

]
.
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Consider now the matrix D = A/A11. It is positive definite by the Schur complement condition
for positive definiteness (as A is positive definite). Also, the matrix

F =

[
A11 u
u∗ B −D

]
is rank one (since F/A11 = 0), so by the rank one perturbation theory, Ba(A − F ) ≥ K. But
Ba(A − F ) = Ba(D). Using the induction hypothesis, we conclude that there exists an index set
αK = {i2, . . . , iK} with 1 /∈ αK such that D[αK ] ≥ a

K! 2K−1N
IN [αK ].

The induction step (with αK+1 = αK ∪ {1}) now follows from the following assertion:

Lemma 2.2.2. Let A be an l × l positive definite matrix of the block form

A =

[
A11 u
u∗ B

]
. (2.2.2)

Suppose that in addition A11 ≥ Aii for all i ∈ {1, . . . , l}, and A/A11 ≥ a for some a > 0. Then
A ≥ a

2l
.

Proof of Lemma 2.2.2. To show that A − a
2l
≥ 0 it suffices to check (by the Schur complement

condition for positive definiteness) that

A11 −
a

2l
≥ 0; (A− a

2l
)/(A11 −

a

2l
) ≥ 0. (2.2.3)

Since A/A11 ≥ a, we have Aii ≥ a for all i ≥ 2 as a is positive, so by assumption of the lemma
A11 ≥ a as well (and hence we have established the first bound in (2.2.3)). Next we write

(A− a

2l
)/(A11 −

a

2l
) = B − a

2l
− u∗u

A11 − a
2l

=

(
B − u∗u

A11

)
− a

2l
− au∗u

2lA11(A11 − a/2l)
(2.2.4)

≥ a− a

2l
− a u∗u

l(A11)2
.

Now observe that since A is positive, the contraction A[{1, i + 1}] is also positive for all i, and in
particular detA[{1, i+ 1}] = A11Bii− |ui|2 ≥ 0. But A11 ≥ Bii for all i, hence |ui|2/(A11)2 ≤ 1.
We therefore can estimate

‖u∗u‖ = ‖u‖2 ≤ (l − 1)(A11)2.

Substitution of this estimate into (2.2.4) yields the second bound in (2.2.3).
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2.2.3 Proof of Corollary 2.1.2

We first observe that if sets of indices α, β satisfy α ⊂ β, then A−1[α] is a principal submatrix of
A−1[β], and we have

Cε

((
A−1[β]

)−1
)
≥ Cε

((
A−1[α]

)−1
)

(2.2.5)

by the Cauchy interlacing theorem, provided the matrices A−1[α], A−1[β] are invertible. There-
fore, it suffices to establish the corollary for the smallest set γmin that contains γm and for which
A−1[γmin] is invertible. Without loss of generality we will assume that γmin = γm.

Suppose that (I) holds. Then the assertion (II) of Theorem 2.1.1 holds with K given by (2.1.3).
Construct now the set γm = αm ∪ βm with αm, βm from the assertion (II) of Theorem 2.1.1. Let
us consider the matrix

B :=
(
A−1[γm]

)−1
.

Since A−1[αm, βm] is a submatrix of A−1[γm] we see that the condition (II) of Theorem 2.1.1 is
fulfilled for B. Hence we can apply Theorem 2.1.1 to B to conclude that Cε/K(B) ≥ m.

Conversely, suppose that (2.1.4) holds with K = 1. Then (I) holds as well, as follows from (2.2.5)
with α = γm, β = {1, . . . , N}.

2.3 Proof of Theorem 2.1.3

We first observe that by scaling it suffices to prove the result for the g = 1 case. We will use the
shorthand notation Hω instead of Hω(1) in the sequel.

Next, we prove the first assertion of the theorem, using induction in N . To initiate the induction,
we consider the case N = 1, so that Hω = Aω(x) + K, where K is a deterministic Hermitian
matrix. It follows from Assumption (A) and (2.1.7) that Hω − E is invertible almost surely.

Suppose now that the induction hypothesis holds, i.e. the matrixHω−E is almost surely invertible
for N ≤ M and all E. We want to establish the induction step (N = M + 1 case). To this end,
let V̂ be any subset of V of cardinality M , and let Ĥω be a restriction of Hω to V̂ . By the induction
hypothesis, Ĥω − E is invertible almost surely for all E. Let us consider some configuration ω
for which Ĥω − E is invertible. Then Hω − E is invertible if and only if the Schur complement
of Ĥω − E in Hω − E, i.e. (Hω − E)/(Ĥω − E), is invertible, [32]. But (Hω − E)/(Ĥω − E)
is a Hermitian k × k matrix of the form Aω(x) + J , where {x} = V \ V̂ , and J is a matrix
independent of the randomness in Aω(x). It follows by the same argument as in the N = 1 case
that (Hω − E)/(Ĥω − E) is invertible for almost all values of the randomness in Aω(x).

We now prove the second assertion of the theorem. We will only consider configurations ω in Ω
such that Hω−E is invertible (for the remaining set of configurations has measure zero by the first
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assertion).

For the random operator Tω, let Eε(Tω) be the event {ω : Cε(Tω) ≥ m}. With this notation, we
wish to estimate the size of the set Eε(Hω − E). If we enumerate the vertices v ∈ V , we can think
of Hω as a kN × kN Hermitian matrix with a block form, i.e. the indices {lk − k + 1, . . . , lk}
correspond to the vertex l in V , with l = 1, . . . , N .

Size reduction We first reduce the dimensionality of the original problem using Corollary 2.1.2.
This assertion gives us the existence of the index subset γm with |γm| = 2m such that inclusion

Eε(Hω − E) ⊂ Eε/K
((

(Hω − E)−1[γ]
)−1
)

(2.3.1)

holds for any index set γ ⊃ γm for which (Hω − E)−1[γ] is invertible, with K given by (2.1.3).
(To be precise, the matrix size N in that corollary gets replaced by kN .)

In general, the submatrix (Hω − E)−1[γ] can be a complicated object, so it is not immediately
clear that such a reduction is helpful. However, if the set γ happens to consist of the indices that
agree with the block structure of Hω, something interesting happen. More precisely, suppose that
i ∈ γ ⇒ (j ∈ γ for any j with bj/kc = bi/kc), where b · c is the floor function. In this case we can
associate γ with a subset V ′ of the original vertex set V . Then the submatrix ((Hω − E)−1[γ])

−1

retains the same block form as Hω, in the following sense: If we go back to the vertex representa-
tion for ((Hω − E)−1[γ])

−1 (which is possible due to the special form of the set γ), then for any
ψ ∈ `2(V ′;Ck) and any x ∈ V ′ we have((

(Hω − E)−1[γ]
)−1

ψ
)

(x) = (T0ψ)(x) + Aω(x)ψ(x). (2.3.2)

This can be seen from the fact that the matrix ((Hω − E)−1[γ])
−1 coincides with the Schur com-

plement of (Hω − E)[γc] in Hω − E,(
(Hω − E)−1[γ]

)−1
= (Hω − E)/(Hω − E)[γc].

It is important to note that the operator T0 in (2.3.2) is independent of the randomness associated
with matrices {Aω(x)}x∈V ′ (though it does depend on the other random variables). We also note
that the matrix ((Hω − E)−1[γ]) is almost surely invertible (as follows from the first part of the
theorem).

Combining these observations, we conclude that it is beneficial (and sufficient) to consider the sets
γ in (2.3.1) that respect the block structure of Hω and therefore contain up to 2km indices (i.e. up
to 2m vertices in V ′, as in Corollary 2.1.2, and exactly k indices per vertex, to preserve blocks).
Thus, we have obtained the following intermediate result:

Lemma 2.3.1. Suppose that the second assertion of Theorem 2.1.3 holds for all N ≤ 2m. Then it
holds for any N .
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Norm reduction The deterministic part of Hω—namely the operator H0—can be arbitrary large
in norm (even if ‖H0‖ ≤ C for the original Hω, the size reduction process indicated above creates
a new background operator T0 with uncontrollable norm). Our next step in the proof will require
that the background operator is bounded in norm by a constant, say by 1/2. We achieve this by
means of the following transformation.

Proposition 2.3.2. Let B1,2 be a pair of Hermitian L × L matrices with ‖B1‖ ≤ 1. Consider the
matrices

B = B1 +B2, B̂ = (B1 − aIL)−1 + (B2 + aIL)−1

where a ∈ R. Then there exists an integer a ∈ [−L− 3,−3]∪ [3, L+ 3] (which depends on B2 but
not on B1) and ε0 > 0 (which depends only on L) such that for any ε < ε0

max
(∥∥(B1 − aIL)−1

∥∥ ,∥∥(B2 + aIL)−1
∥∥) ≤ 1

2
; (2.3.3)

Cε/(225L4)

(
B̂
)
≤ Cε (B) ≤ C7L2ε

(
B̂
)
. (2.3.4)

We will apply this proposition to the operatorHω−E by choosingB2 = H0−E,B1 = Hω−H0. By
the hypothesis of Theorem 2.1.3, the assumptions of Proposition 2.3.2 are satisfied, with L = kN .
Combining this observation with the size reduction, we obtain the second intermediate result.

Lemma 2.3.3. Assume (A). Let Ĥω be an operator acting on `2(V ;Ck) as

(Ĥωψ)(x) = (H0ψ)(x) + (Aω(x)− a)−1ψ(x). (2.3.5)

Suppose that ‖H0‖ ≤ 1/2. If there exist ε0 > 0 and b > 0 (which depend on k,m, α) so that for
all integers a ∈ [−km− 3,−3] ∪ [3, km+ 3] and all N ≤ 2m the bound

P

(
C7k2m2ε(Ĥω) ≥ m

)
≤ b| ln ε|mεα

holds uniformly in H0 and ε < ε0, then the second assertion of Theorem 2.1.3 holds.

Reduction to the determinant Suppose that C7k2m2ε(Ĥω) ≥ m. Since by construction ‖Ĥω‖ ≤ 1,
the operator Ĥω can have no more than kN −m large eigenvalues, and each of these can have an
absolute value no larger than 1. As a result, we obtain the bound:

| det Ĥω| ≤ (7k2m2ε)m. (2.3.6)

We may now employ the following lemma to calculate the probability of the aforementioned bound
on the determinant. Its proof can be found in Section 2.5.
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Lemma 2.3.4. Assume (A). Let Ĥω be as in (2.3.5), and let Êδ be the event

Êδ = {ω ∈ Ω : det(Ĥω) ≤ δ}.

Let
δ0 := exp

(
2Kα1+1/N

)
.

Then for any δ ∈ [0, δ0] we have

P(Êδ) ≤ (2Kα)N lnN(δ−1)δα. (2.3.7)

Using this result in conjunction with (2.3.6) we obtain the there exist ε0 > 0 and b > 0 that depend
on k,m, α so that

P

(
C7k2m2ε(Ĥω) ≥ m

)
≤ b| ln ε|mεmα, (2.3.8)

for N ≤ m and for ε < ε0. The combination of Lemma 2.3.3 and (2.3.8) yields (3.1.3).

Improvement on the Wegner bound We want to improve on this bound for the special case that
m = 1. In this case we need to verify the (improved) input for Lemma 2.3.1 for N = 1 and
N = 2. In the former case, the bound (3.1.4) follows from (A) and Proposition 2.3.2 (where we
choose B2 = H0−E, B1 = Hω−H0). So for the rest of the argument we will assume that N = 2.

Let Eε, Sε be the events

Eε = {ω : Cε(Hω − E) ≥ 1};
Sε = {ω : Cε2/3(Hω − E) ≥ 2}.

We first observe that it follows from (3.1.3) (which we already established earlier) that

P(Eε ∩ Sε) ≤ P(Sε) ≤ C
∣∣ln(ε2α/3)ε2α/3

∣∣2 ≤ Cεα

for ε sufficiently small. Therefore, to get (3.1.4) it suffices to show that P(Eε r Sε) ≤ Cεα. To this
end, suppose that ω ∈ Eε r Sε. Then

(Hω − E + ε)−1 + 2ε−2/3 > 0;
∥∥(Hω − E + ε)−1 + 2ε−2/3

∥∥ ≥ 1

2ε
. (2.3.9)

If V = {x, y}, let us denote by Px (Py) the rank k projection onto the site x (accordingly y). The
positivity of the left-hand side can be exploited by means of Lemma 2.3.5 below with choices
P1 = Px, P2 = Py.

Lemma 2.3.5. Let A > 0, and let P1,2 be orthogonal projections that satisfy P1P2 = 0. Let
P = P1 + P2. Then we have

‖PAP‖ ≤ 2 max(‖P1AP1‖, ‖P2AP2‖) . (2.3.10)
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Using (2.3.9) and (2.3.10), we infer that ω ∈ Rε (and thus Eε r Sε ⊂ Rε), where

Rε =

{
ω : max

i=x,y

(∥∥Pi(Hω − E + ε)−1Pi
∥∥+ 2ε−2/3

)
≥ 1

4ε

}
.

But

Px(Hω − E + ε)−1Px =
(

(Hω − E + ε)/Px(Hω − E + ε)Px

)−1

= (Aω(x) + J)−1

by the block inversion formula. Here the operator J depends on Aω(y) but not on Aω(x). Hence
we can deduce from (A) and Proposition 2.3.2 that

P

(∥∥Px(Hω − E + ε)−1Px
∥∥ ≥ 1

5ε

)
≤ C̃ε,

with C̃ that depends on k, α but not on ε. The same bound holds with Px replaced by Py. Hence
we infer that for ε small enough

P(Rε) ≤ Cεα,

and the result follows.

Proof of Lemma 2.3.5. Let A1 = P1AP1, A2 = P2AP2, and A12 = P1AP2. Then by Schur
complement condition for positive definiteness

A2 > 0 ; A1 ≥ A12A
−1
2 A21.

Since A2 is positive, A−1
2 ≥ 1/‖A2‖, hence

A1 ≥ A12A21/‖A2‖ ,

and so
‖A1‖‖A2‖ ≥ ‖A12‖2 ,

where in the last step we have used A12 = A∗12. Since

‖PAP‖ ≤ max(‖A1‖+ ‖A12‖, ‖A2‖+ ‖A21‖) ,

the result follows.

2.4 Proof of Theorems 2.1.4 and 2.1.5

2.4.1 Proof of Theorem 2.1.4

Let a be an integer that satisfies a − b ≥ 2, and let j be arbitrary fixed real number. Then if
ε ∈ [0, 1/(2a)], the inequality ∣∣∣∣ 1

vx − a
+

1

j + a

∣∣∣∣ < ε (2.4.1)



Daniel Schmidt Chapter 2. Eigenvalue counting inequalities 23

for vx has solutions in I only if 0 < j + a < 1. Since equation∣∣∣∣ 1

vx − a
+

1

j + a

∣∣∣∣ = ε

define the pair of points

vx = a+
1

(j + a)−1 ± ε
,

the set of vx for which (2.4.1) holds is the interval Î of length

|Î| = 1

(j + a)−1 − ε
− 1

(j + a)−1 + ε
=

2ε

(j + a)−2 − ε2
< 4ε,

where in the last step we used 0 < a+ j < 1, ε < 1/(2a) < 1/4. Hence

P

(∣∣∣∣ 1

vx − a
+

1

j + a

∣∣∣∣ < ε

)
≤ Cεβ

by the hypothesis of the theorem.

2.4.2 Proof of Theorem 2.1.5

We first establish the bounds

P(| det(σω(x) + J)| ≤ ε) ≤ Cεβ; (2.4.2)
P(Cε(σω(x) + J) 6= 0) ≤ Cεβ (2.4.3)

for ε ∈ [0, 1]. Indeed, note that det(σω(x) + J) = c2 − (ux − a)2 − (vx − b)2 with some constants
a, b, c originating from J . Therefore the set | det(σω(x) +J)| ≤ ε is an intersection I of the disc O
with the annulus centered at a, b and with radii R− =

√
max(c2 − ε, 0), R+ =

√
c2 + ε. The area

of this set therefore cannot exceed π(R2
+ − R2

−) ≤ 2πε and (2.4.2) follows. To establish (2.4.3),
we note that

P(Cε(σω(x) + J) 6= 0) = P(‖(σω(x) + J)−1‖ ≥ 1/ε).

The value of ‖(σω(x) + J)−1‖ however can be evaluated explicitly and is given by

‖(σω(x) + J)−1‖ =
∣∣∣|c| −√(ux − a)2 + (vx − b)2

∣∣∣−1

,

with the same constants a, b, c as before. Hence the set of the points in O that satisfy ‖(σω(x) +
J)−1‖ ≥ 1/ε is an intersection Î of the disc O with the annulus centered at a, b and with radii
R− = ||c| − ε|, R+ = |c| + ε. The area of Î cannot exceed the circumference of the unit circle
times the maximal thickness 2ε of the annulus, so |Î| ≤ 4πε, and (2.4.3) follows.

The assertion of the theorem follows now from Lemma 2.4.1 below (whose proof can be found in
Section 2.5) and bounds (2.4.2) - (2.4.3).
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Lemma 2.4.1. Let A and J be Hermitian k × k matrices, and let a be some real number that
satisfies |a| ≥ 2. If ‖A‖ ≤ 1 and

∣∣det
(
(A− a)−1 + (J + a)−1

)∣∣ ≤ 1

16|a|

{
|a| − 1

2(|a|+ 1)2

}k−1

then we have (
2(|a|+ 1)2

)−k |det (A+ J)| ≤
∣∣det

(
(A− a)−1 + (J + a)−1

)∣∣
or

1

16|a|
{

2(|a|+ 1)2
∥∥(A+ J)−1

∥∥}1−k ≤
∣∣det

(
(A− a)−1 + (J + a)−1

)∣∣ .
2.5 Proofs

Proof of Proposition 2.3.2. If |a| ≥ 3, then since ||B1|| ≤ 1, we have:

ν :=
∥∥(B1 − a)−1

∥∥ , (L+ 4)−1 ≤ ν ≤ 1/2 . (2.5.1)

Since B2 is L× L, it has at most L distinct eigenvalues. On the other hand, for every set S of real
numbers with |S| = L there exists an integer a ∈ [−L−3,−3]∪ [3, L+3] so that dist(S,−a) ≥ 2,
hence we can choose a that satisfies (2.3.3).

With this choice of a, consider the block matrix W of the form

W =

[
(B2 + aIn)−1 (B1 − aIn)−1

(B1 − aIn)−1 − (B1 − aIn)−1

]
.

Note that the Schur complements to the upper and lower diagonal blocks are

−W/W11 = (B1 − a)−1 + (B1 − a)−1 (B2 + a) (B1 − a)−1 ;

W/W22 = (B2 + a)−1 + (B1 − a)−1 .

Let
T = (B1 − a)−1 /ν, (2.5.2)

where ν is given by (2.5.1).

In what follows, we will need two lemmas:

Lemma 2.5.1.

1. Let D = D∗, D̃ = D̃∗ ∈Mn,n. Then

Cε(D) ≤ C2ε(D̃) ,

provided ‖D − D̃‖ ≤ ε.
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2. Cε (A) ≤ Cε (BAB) whenever

A = A∗, B = B∗, ‖B‖ ≤ 1

Lemma 2.5.2. Suppose D = D∗ ∈Mn,n is of the form

D =

[
A V
V ∗ B

]
,

with A ∈Mk,k, B ∈Mm,m, ‖V ‖ ≤ 1/2, and

C2ε(B) = 0 . (2.5.3)

Then
Cε (D/B) ≤ Cε (D) ; (2.5.4)

Cε (D) ≤ Cβε (D/B) , (2.5.5)

with β = 2(‖B−1‖+ 1)2.

Armed with these results, we can infer that

Cε (B) = Cν2ε
(
ν2B

)
≤ Cν2ε

(
ν2TBT

)
= Cν2ε (W/W11)

≤ Cν2ε (W ) ≤ Cβν2ε (W/W22) = Cβν2ε
(
B̂
)
, (2.5.6)

where in the second step we have used Lemma 2.5.1 and in the remaining steps we have used
Lemma 2.5.2. Here

β = 2
(∥∥(W22)−1

∥∥ + 1
)2 ≤ 2 (L+ 5)2 ≤ 25L2

for L ≥ 2. (It is straightforward to check that the relation Cε (B) ≤ Cβν2ε
(
B̂
)

holds for L = 1.)
Plugging in the upper bounds for ν, β we get the second inequality in (2.3.4):

Cε (B) ≤ C7L2ε

(
B̂
)
.

On the other hand, let

U = κ

[
B2 + aIn B1 − aIn
B1 − aIn −B1 + aIn

]
; κ =

1

2‖B1 − a‖
.

Then

U/U22 = κB ;

−U/U11 = κ
(
B1 − a + (B1 − a) (B2 + a)−1 (B1 − a)

)
.
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Similarly to (2.5.6), we obtain

Cν2ε/(25L2)

(
B̂
)

= Cε/(25L2)

(
κ−1T (U/U11)T

)
≤ Cκε/(25L2) (U/U11) ≤ Cκε/(25L2) (U)

≤ Cκβε/(25L2) (U/U22) ≤ Cε(B) ,

with T given by (2.5.2) and

β = 2
(∥∥(U22)−1

∥∥ + 1
)2 ≤ 2 (‖B1 − a‖+ 1)2 ≤ 25L2 .

Since
ν2ε

25L2
≥ ε

25L2(L+ 4)2
≥ ε

225L4
,

the first inequality in (2.3.4) follows.

Proof of Lemma 2.5.1. For the first part, we use the Weyl’s theorem, cf. Theorem 4.3.1 in [17],
which states that if

σ(A) = {λi(A)}ni=1 , σ(B) = {λi(B)}ni=1 , σ(A+B) = {λi(A+B)}ni=1

for Hermitian A, B, with the eigenvalues arranged in increasing order, then

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B) , k = 1, ..., n .

Therefore, every number λk(A+B) which lies in the interval [−ε, ε] can be matched with λk(A) ∈
[−2ε, 2ε], provided that ‖B‖ ≤ ε.

For the second part, observe that there exists a Hermitian matrix Â such that

1. ‖Â− A‖ ≤ ε;

2. nul(Â) = Cε(A);

3. Â has no non-zero eigenvalues in the interval (−ε, ε).

Then Sylvester’s law of inertia implies that nul(Â) ≤ nul(BÂB) (with equality in the case of
nonsingular B). Since ‖BAB −BÂB‖ ≤ ε we can use Weyl’s theorem again to conclude that

Cε(BAB) ≥ nul(BÂB) ≥ nul(Â) = Cε(A).
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Proof of Lemma 2.5.2. The relation (2.5.4) follows from the interlacing theorem for inverses of
Hermitian matrices—see Lemma 2.3 in [32], which is itself a simple consequence of the the Schur
complement formula and Cauchy interlacing theorem for Hermitian matrices.

To prove (2.5.5) note that there exists a matrix

D̂ :=

[
Â V̂

V̂ ∗ B̂

]
such that

1. ‖D̂ −D‖ ≤ ε;

2. nul D̂ = Cε(D);

3. D̂ has no non-zero eigenvalues in the interval [−ε, ε].

where nul D̂ is the multiplicity of the zero eigenvalue of D̂, and equals zero if this eigenvalue is
absent. One can readily prove the existence of D̂ by diagonalizing D and replacing all eigenvalues
less than or equal to ε with zeros. Using the Haynsworth inertia additivity formula, we get

nul D̂ = nul B̂ + nul
(
D̂/B̂

)
.

Observe that the condition (1) above implies ‖B̂ − B‖ ≤ ε. We can therefore infer from (2.5.3)
and Lemma 2.5.1 that

Cε(B̂) = 0 . (2.5.7)

As a result we obtain the equality

Cε(D) = nul D̂ = nul
(
D̂/B̂

)
. (2.5.8)

Note now that

‖V̂ B̂−1V̂ ∗ − V B−1V ∗‖
≤ ‖(V̂ − V )‖ · ‖B̂−1V̂ ∗‖+ ‖V ‖ · ‖B̂−1 −B−1‖ · ‖V̂ ∗‖

+ ‖V B̂−1‖ · ‖(V̂ ∗ − V ∗)‖

≤ ε‖B̂−1‖
(

1

2
+ ε

)
+

1

2
‖B̂−1 −B−1‖

(
1

2
+ ε

)
+

1

2
‖B̂−1‖ε

=
(
ε+ ε2

)
‖B̂−1‖+

(
1

2
ε+

1

4

)
‖B̂−1 −B−1‖

≤ 3

2
ε‖B̂−1‖ +

1

2
‖B̂−1 −B−1‖ .

(We have assumed that ε ≤ 1
2
.) Using the first resolvent identity, we get the bound

‖B̂−1 −B−1‖ = ‖B̂−1(B̂ −B)B−1‖ ≤ ε‖B−1‖ · ‖B̂−1‖ , (2.5.9)
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which in turn implies the estimate

‖B̂−1‖ ≤ ‖B−1‖ + ε‖B−1‖ · ‖B̂−1‖ ≤ 2‖B−1‖ ,

where we have used (2.5.7) in the last step. Inserting the last inequality into the right-hand side of
(2.5.9), we finally obtain

‖B̂−1 −B−1‖ ≤ 2ε‖B−1‖2 .

As a result, we arrive at

‖V̂ B̂−1V̂ ∗ − V B−1V ∗‖ ≤ 3

2
ε‖B−1‖ + ε‖B−1‖2 ,

hence ∥∥∥D̂/B̂ −D/B∥∥∥ ≤ ε(1 +
3

2
‖B−1‖ + ‖B−1‖2) < ε(‖B−1‖+ 1)2 =:

εβ

2
.

Consequently, we get

Cε (D) = nul
(
D̂/B̂

)
≤ Cβε

2

(
D̂/B̂

)
≤ Cβε (D/B) ,

where we have used (2.5.8) in the first step and Lemma 2.5.1 in the last one.

Proof of Lemma 2.3.4. We use induction in N . For N = 1 the result follows from (A). Suppose
that (2.3.7) holds for |V| = N . We wish to establish the induction step, i.e. (2.3.7) for |V| = N+1.
We can evaluate det Ĥω using the Schur determinant formula. Namely, for x ∈ V let us denote by
Ĥ

(x)
ω the restriction of Ĥω to the site x. Then

det Ĥω = det Ĥ(x)
ω det(Ĥω/Ĥ

(x)
ω )

by Schur’s determinant formula. Both determinants on the right-hand side are random, but the first
one depends only on randomness associated withAω(x), a fact which we will exploit momentarily.
We note now that the Schur complement Ĥω/Ĥ

(x)
ω is by itself also of the form (2.3.5) (with V

replaced by V \ {x}). Note that the H0 term in Ĥω/Ĥ
(x)
ω might depend on Aω(x), but not on the

other random variables {Aω(y)}. By the induction hypothesis, we have

P

(
| det(Ĥω/Ĥ

(x)
ω )| ≤ r

)
≤ (2Kα)N lnN(r−1)rα, r ∈ [0, 1]. (2.5.10)

Let S := {ω : | det Ĥω| ≤ ε}, and let

Fω = | det Ĥ(x)
ω |, Gω = | det(Ĥω/Ĥ

(x)
ω )|.

We set Q := {ω : min(Fω, Gω) ≤ ε}, then by Assumption (A) and the induction hypothesis

P(Q) ≤
(
K + (2Kα)N lnN(ε−1)

)
εα. (2.5.11)
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On the other hand, we have

χ(S rQ) =

∫ 1

ε

χ(sGω ≤ ε)δ(Fω − s)ds.

Taking expectations on both sides and using (2.5.10), we obtain

Eχ(S rQ) ≤ E

∫ 1

ε

ds δ(Fω − s)E
(
χ(sGω ≤ ε)

∣∣∣Aω(x)
)

≤ (2Kα)NεαE

∫ 1

ε

lnN( s
ε
)δ(Fω − s)
sα

ds

= (2Kα)NεαE
lnN(ε−1Fω)χ(1 > Fω > ε)

(Fω)α

≤ (2Kα)Nεα lnN(ε−1)E
χ(1 > Fω > ε)

(Fω)α
. (2.5.12)

Using now (A) and the layer cake representation, we get

E
χ(1 > Fω > ε)

(Fω)α
=

∫ ε−α

1

P
(
(Fω)−α ≥ t

)
dt ≤ K

∫ ε−α

1

1

t
dt

= Kα ln(ε−1) (2.5.13)

Combination of (2.5.11), (2.5.12), and (2.5.13) yields the induction step.

Proof of Lemma 2.4.1. We have∣∣det (A+ J)−1
∣∣

=
∣∣det(A− a)−1

∣∣ ∣∣det(J + a)−1
∣∣ ∣∣∣det

(
(A− a)−1 + (J + a)−1

)−1
∣∣∣ .

Suppose first that C16|a|

(
((A− a)−1 + (J + a)−1)

−1
)

= 0. According to (2)

C16/|a|

(
(A− a)−1

(
(A− a)−1 + (J + a)−1

)−1
(A− a)−1

)
≤ C16/|a|

(
(|a|/2)−2

(
(A− a)−1 + (J + a)−1

)−1
)

= C4|a|

((
(A− a)−1 + (J + a)−1

)−1
)

= 0,

where we have used ‖A− a‖ ≥ |a|/2. Since

‖(A− a)−1‖ ≤ (|a| − 1)−1,
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we can use (2.1.7) to decompose

det (A+ J)−1 = det
(

(A− a)−1
(
(A− a)−1 + (J + a)−1

)−1
(A− a)−1

)
det (H − I) ,

with
H =

(
(A− a)−1 + (J + a)−1

)
(A− a).

It follows that ‖H‖ ≤ 1/2, and consequently | det (H − I) | ≥ 2k. On the other hand, |det(A− a)| ≤
(|a|+ 1)k, and we can conclude that∣∣det (A+ J)−1

∣∣ ≥ (2(|a|+ 1)2
)−k ∣∣∣det

(
(A− a)−1 + (J + a)−1

)−1
∣∣∣ , (2.5.14)

whenever C16|a|

(
((A− a)−1 + (J + a)−1)

−1
)

= 0.

On the other hand, if C16|a|

(
((A− a)−1 + (J + a)−1)

−1
)
6= 0, then

∥∥∥((A− a)−1 + (J + a)−1
)−1
∥∥∥k−1

≥ 1

16|a|

∣∣∣det
(
(A− a)−1 + (J + a)−1

)−1
∣∣∣ .

Hence∥∥∥(A− a)−1
(
(A− a)−1 + (J + a)−1

)−1
(A− a)−1

∥∥∥
≥ (|a|+ 1)−2

∥∥∥((A− a)−1 + (J + a)−1
)−1
∥∥∥

≥ (|a|+ 1)−2

{
1

16|a|

∣∣∣det
(
(A− a)−1 + (J + a)−1

)−1
∣∣∣}1/(k−1)

.

Using (2.1.7), we conclude that

∥∥(A+ J)−1
∥∥ ≥ (|a|+ 1)−2

{
1

16|a|

∣∣∣det
(
(A− a)−1 + (J + a)−1

)−1
∣∣∣}1/(k−1)

− (|a| − 1)−1

≥ 1

2
(|a|+ 1)−2

{
1

16|a|

∣∣∣det
(
(A− a)−1 + (J + a)−1

)−1
∣∣∣}1/(k−1)

, (2.5.15)

if C16|a|

(
((A− a)−1 + (J + a)−1)

−1
)
6= 0, whenever (2.2.2) holds.

Combining (2.5.14) and (2.5.15) we establish the assertion.



Chapter 3

Progress report on eigenvalue statistics for
alloy-type models

3.1 Introduction

In chapter 2, we proved that if the blocks of a Hamiltonian satisfy a certain criterion, then the
λ−level Wegner estimate will hold. In that work, we applied this criterion by verifying the input
condition for a certain quasiparticle model. We now turn to the task of verifying the same input
condition for a one-dimensional alloy-type model—that is, a single-particle model with correlated
random variables. Before proceeding, we will repeat the key theorem from the previous chapter
for reference.

Let G = (V , E) be a graph with degree at most κ, such that the set of vertices (sites) V is finite
with cardinality N . (Here the degree of the graph is the maximum number of edges incident at any
vertex. The degree of Zd, for example, is 2d.)

Let (Ω,P) be a probability space. Let {V (x) = gAω(x) : x ∈ V , ω ∈ Ω} be a collection of
independent, identically distributed random k × k Hermitian matrices.

Let Hω(g) be a random block operator Hblock acting on `2(V ;Ck) (the space of square-summable
functions ψ : V → C

k) as

(Hω(g)ψ)(x) = (H0ψ)(x) + gAω(x)ψ(x), (3.1.1)

where g > 0 is a coupling constant, H0 is an arbitrary deterministic self-adjoint operator on
`2(V ;Ck), and the matrices Aω(x) are independently drawn random k × k Hermitian matrices.
We use the notation Hω(g) instead of Hblock to stress the random nature of this operator as well as
the dependence on the parameter g.

Theorem 3.1.1. Assume the following:

31
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For an integer ν, let S be a given set of 2νk distinct integers. Then the matrix (Aω(x)− a) is
invertible for all a ∈ S and all ω ∈ Ω. Moreover, there exists an α > 0 such that, for any integer
a ∈ S, any ε ∈ [0, 1] and an arbitrary Hermitian k × k matrix J the following bound holds:

P
(∣∣det

(
(Aω(x)− a)−1 + (J + a)−1

)∣∣ ≤ ε
)
≤ Kεα (3.1.2)

Then we have the following eigenvalue statistics result:

I. For any E ∈ R the operator Hω(g)− E is almost surely invertible.

II. Moreover, there exist ε0 > 0 and C > 0 (which depend only on k, λ, α) for which we have

P (Cε(Hω(g)− E) ≥ λ) ≤ C |ln(Nε/g)(Nε/g)α|λ (3.1.3)

for any E ∈ R, for any ε ∈ [0, ε0] and for all λ ≤ ν. In the λ = 1 case we can improve the
above bound to

P (Cε(Hg − E) ≥ 1) ≤ C(Nε/g)α. (3.1.4)

Thus, in order to establish the λ−level Wegner estimate for a random block operator, we only need
to verify that the individual blocks satisfy the condition 3.1.2.

3.2 The alloy-type model

We wish to apply this theorem to an alloy-type model on the one-dimensional lattice Z. We will
assume that the Hamiltonian has diagonal blocks of the form Aω, that these blocks are each of
the same form, and that each contain random variables independent of the variables in the other
blocks, as described above. The operator Aω + J for this case is:

Hω = Aω + J =



v 1 0 0 0 0
1 v 1 0 0 0
0 1 v 0 0 0

. . .
0 0 0 u1 1 0
0 0 0 1 u2 1
0 0 0 0 1 u3

. . .


+



b1 0 0 0 0 0 . . . b2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
... . . .
b2 0 0 0 0 0 b3


(3.2.1)

Here we have a block diagonal Hamiltonian in which each block Aω has an n × n sub-block
depending on v, followed by (n + m) pairwise independent 1 × 1 sub-blocks depending on the
variables u1, u2, . . . , un+m. As always, the subdiagonal and superdiagonal entries of Aω are all
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1’s, and the other entries are all 0’s. The work that follows will not be sensitive to the structure of
the matrix J , so we will largely ignore the bi variables. It is enough to say that the bi’s depend on
random variables from other sites not included in the block Aω. For the precise definition of J , see
chapter 2.

The conjecture below represents our main goal.

Conjecture 3.2.1. Let Aω and J be as above, and assume that v, u1, . . . , un+m are i.i.d. random
variables uniformly distributed on the interval [−1, 1], so that the point (v, u1, . . . , un+m) = (v, ω)
lies in the probability space [−1, 1]× Ω where Ω := [−1, 1]n+m. Then:

P
(
det((Aω + a)−1 + (J − a)−1) ≤ ε

)
≤ Kεα = Kε(

1
2

+δ)

for m ≥ 1.

Note on the exponent: The exponent α = 1 would be optimal, but any value of α strictly greater
than 1

2
(hence any value of δ strictly greater than zero) will give a meaningful Minami estimate.

3.3 Outline of the Proof

We will not offer a complete proof of Conjecture 3.2.1, but we will offer several partial results,
which together amount to an outline of the proof of this conjecture. Note that the proofs of the
lemmas below are complete. (In general, anything in this work not labeled “conjecture” has a
complete proof.) For an explanation of why these partial results are insufficient, see the following
subsection (and further details in section 3.4 and in the discussion at the end of section 3.5).

3.3.1 Partial Results

The determinant det ((Aω + a)−1 + (J − a)−1) can be treated as a rational function in v. Let
p(v) and r(v), respectively, represent the numerator and denominator of this function, under the
assumption that p(v) and r(v) have no common factors, and that the leading coefficient of p(v) is
1. Then we have

p(v)

r(v)
≤ ε =⇒ p(v) ≤ r(v)ε =⇒ p(v) ≤ rmaxε
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where rmax is the maximum value of r(v) on the probability space Ω, which is guaranteed to
exist since r(v) is continuous and Ω is compact. Then p(v) is a polynomial of degree n in v with
coefficients that depend on the variables {u1, u2, . . . un+m}.

Ultimately, we want to prove that P(p(v) ≤ ε) ≤ Kεα, but as we will see later, this turns out to
be problematic if two roots of p(v) are close together. Thus, we will first want to show that when
the roots are sufficiently far from each other, the statement above will hold, and then show that the
case of closely-lying roots is itself rare.

Define the following two sets:

Sη = {ω ∈ Ω | ∃λ1, λ2 ∈ R : p(λ1) = p(λ2) = 0 AND |λ1 − λ2| ≤ η}
Tε = {ω ∈ Ω | p(v) ≤ ε}

In this notation, we need to verify the two statements P(Tε\Sη) ≤ K1ε
α and P(Sη) ≤ K2ε

α

separately. (Here η will turn out to be a power of ε.) Note that the probability of the event Sη
depends only on the random variables ui. That is, it does not depend on v.

In fact, we will be able to prove that P(Sη) ≤ K2ε
α, but we will not be able to prove that

P(Tε\Sη) ≤ K1ε
α, at least for the desired exponent α > 1

2
. In section 3.4, we offer a proof

of this statement for the best exponent we have been able to achieve so far.

3.3.2 Strategy for Proving the Partial Results

We will first summarize our strategy, and explain why the closely-lying roots are a problem, before
dedicating one section to each of the two probability statements above.

The method for proving that P(Tε \ Sη) ≤ K1ε
α is as follows. We know that the integral

∫ 1

0
1
xs
dx

is finite if and only if s < 1. To put this a different way:

Lemma 3.3.1. If ∫ 1

0

1

p(v)s
dv = K∗1 <∞ (3.3.1)

then P(p(v) ≤ ε) ≤ K1ε
s. (In fact, K1 will turn out to be proportional to K∗1 .)

Proof. First, note that we will clearly have a problem if, for some choice of the ui variables, p(v)
is equal to zero for all v. However, we can essentially rule this out: p(v) ≡ 0 if and only if each
coefficient of the polynomial is zero. Each of these coefficients is itself a polynomial function in
the ui variables. These polynomials can in fact equal zero, but only on a set of measure zero in Ω,
which may be safely ignored.
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Of course, if the coefficient functions were themselves identically zero, this reasoning would fail,
but that would imply that the matrix from 3.2.1 is singular for all choices of the random variables,
and clearly it is not.

Rewrite the integral using the layer cake representation.∫ 1

0

1

p(v)s
dx =

∫ ∞
Ms

m

{
v ∈ [0, 1] :

1

p(v)s
≥ t

}
dt (3.3.2)

whereM is the maximum value of p(v) on [0, 1], andm(·) represents Lebesgue measure onR. It is
easy to show that, for any given polynomial p(v) (with fixed coefficients), the preimage under p of
the interval [0, ε] has measure K1ε

γ , for all sufficiently small ε > 0 and for some γ which depends
only on the polynomial. Note that this is not an inequality—we actually have the equation:

m ({v ∈ [0, 1] : p(v) ≤ ε}) = K1ε
γ

(In fact, γ will simply be the reciprocal of the highest multiplicity of any of the roots of p, which
means that with probability 1, we have γ = 1.) We may modify this statement slightly to get:

m ({v ∈ [0, 1] : p(v)s ≤ ε}) = K1ε
γ/s (3.3.3)

This last equation may be further rewritten:

m

({
v ∈ [0, 1] : p(v)s ≤ 1

t

})
= K1

(
1

t

)γ/s
(3.3.4)

m

({
v ∈ [0, 1] :

1

p(v)s
≥ t

})
= K1

(
1

t

)γ/s
(3.3.5)

Substituting this expression into 3.3.2 will show that that integral converges if and only if γ > s.
(Note that the interval of integration here is [M s,∞), so we want an exponent greater than one,
in contrast to the original integral, where we needed an exponent less than one.) Specifically, the
integral would be: ∫ 1

0

1

p(v)s
dx =

∫ ∞
Ms

K1

(
1

t

)γ/s
dt

=

[
K1

t1−γ/s

1− γ/s

]∞
Ms

= −K1
M s−γ

1− γ/s

= K1
M s−γ

γ/s− 1

= K∗1
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If the integral above converges, then we have:

P(p(v) ≤ ε) ≤ K1ε
γ < K1ε

s

Thus, if the integral from Equation 3.3.2 (or equivalently the integral from Equation 3.3.1) con-
verges to K∗1 for some value of s, then the probability statement P(p(v) ≤ ε) ≤ K1ε

s holds for the
same s. Here K1 = K∗1

(
γ/s−1
Ms−γ

)
.

This means that we can verify the input condition of Theorem 3.1.1 simply by checking that a
certain integral converges. The potential problem here is that the integral can diverge when two or
more of the roots of p(v) are equal, and it can become arbitrarily large when these roots are nearly
equal. This is why we need to first exclude a set in probability space (in Ω) of the form Sη. We
must now show that both P(Tε \ Sη) and P(Sη) are acceptably small.

3.4 Bound on P(Tε \ Sη)

If p(v) has no multiple roots, then the integral from Equation 3.3.1 can be broken into a finite
number of integrals over subintervals which each contain only one root. On each subinterval, the
integral is at worst of the form below. Here we assume that p(v) has roots at 0 and at η, and that
the other roots r1, . . . , rj are far away. (That is, they have absolute value at least d, for some d > 0
which does not depend on η.)

∫ η/2

0

1

p(v)s
dv =

∫ η/2

0

1

c1(v − r1)s . . . (v − rj)svs(v − η)s
dv

≤ C

∫ η/2

0

1

vs(v − η)s
dv

≤ C

(
2s

ηs

)∫ η/2

0

1

vs
dv

= C

(
2s

ηs

)(
η(1−s)

(1− s)2(1−s)

)
= C

(
η(1−2s)

(1− s)2(1−2s)

)
(3.4.1)

Here C is a constant that depends only on d and s. Note that we must have s < 1 and η > 0. This
gives the following lemma:
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Lemma 3.4.1. If the coefficients of p(v), other than the constant term, are fixed, and the nearest
two roots of p(v) are separated by a distance of at least η, and the other roots are separated from
these and from each other by a distance of at least d, then for s < 1 and η > 0,∫ 1

0

1

p(v)s
dv ≤ Lη(1−2s) (3.4.2)

where the constant L is independent of η.

The problem with this calculation is that we assume the other roots are “far away.” In fact, the
definition of Sη does not guarantee this. (We could, for example, have roots at 0, η, and 2η.) Thus,
we will need to do a separate calculation for the case in which there are three or more roots in a
small interval. The proof of the next lemma is essentially the same as the proof of Lemma 3.4.1
above.

Lemma 3.4.2. If the coefficients of p(v), other than the constant term, are fixed, and no k roots of
p(v) are in a single interval of width less than η, then for s < 1 and η > 0,∫ 1

0

1

p(v)s
dv ≤ Lη(1−ks) (3.4.3)

where the constant L is independent of η.

This immediately implies another lemma.

Lemma 3.4.3. P(Tε \ Sη) ≤ K1ε
s ≤ Lεsη1−ks where L is independent of ε and η.

The problem here is that the exponent on ε is too small, especially for large k values. Before we
can prove the conjecture, we will need to tighten the bound on P(Tε \ Sη) in this section.

3.5 Bound on P(Sη)

We now turn to the task of proving that two roots of p(v) will rarely be closer together than η.
We will extend this at the end of the section to consider the probability that several roots are close
together.

3.5.1 Strategy

Consider the graph of p(v) in the plane. The polynomial p can have two roots within distance η
of each other if and only if its graph has an extremum with a function value near zero. (Hence the
v−axis nearly touches an extremum.) We want to control the probability of this event.



Daniel Schmidt Chapter 3. Alloy-type models 38

The first n coefficients of the polynomial p(v) determine the shape of the curve, while the constant
term cn+1(u1, . . . , un+m) determines the vertical position of the curve. If cn+1 depended on a
variable independent of the variables that determine the other coefficients, then we could argue
that very few values of cn+1 would cause an extremum to be near zero, and thus Sη would be
appropriately small. The trouble, of course, is that cn+1 and the other coefficients all depend on the
same m + n random variables, so that changing any one of these variables alone will affect both
the shape and the vertical position.

However, there is another way to decouple the constant term cn+1 from the other coefficients.
Suppose the shape of the curve is fixed, and therefore the first n coefficients are fixed. This gives
us n− 1 polynomial equations in n+m variables. (Recall that the leading coefficient c1 was fixed
already.) Intuitively, one would expect that the solution set for this system would have Hausdorff
dimension m + 1. Within this solution set, the last coefficient function cn+1 will still depend on
the position of ω, but the shape of the curve will not. This means that we can change cn+1 without
affecting the shape, at least a bit. It should then follow that Sη is small in some (hopefully useful)
sense.

3.5.2 Outline of the proof

To make this argument work, we need to establish two things. (1) The solution set for the system
of polynomial equations is usually appropriately large, in a sense to be made precise later, and (2)
the dependence of cn+1 on the ui variables is acceptable, in the sense that cn+1 cannot lie in the
same small interval for too many values of the random variables. These two goals will occupy the
remainder of this chapter and the next. The results are stated below. The proof of the first is in
chapter 4, and the proof of the second is in the last section of this chapter.

Theorem 4.2.1 (Size of the solution set) Let n ≥ 2 and m ≥ 2 be integers. Let {pi(x)}ni=1 be a
collection of polynomial equations of degree at most n(n + m) on a compact set Ω ⊂ Rn+m. For
a point ω ∈ Rn+m, define Qω := {x ∈ Rn+m : pi(x) = pi(ω) for all i ≤ n}. Then the following
statements hold:

(1) Qω has Hausdorff dimension at least m for almost all values of ω.

(2) µm+n{ω ∈ Ω : µm(Qω ∩ Ω) ≤ ε} ≤ C1ε
1−δ0

where δ0 > 0 may be chosen to be arbitrarily small and may depend onm, but not on ε, C1 depends
only on n, δ0 and Ω, and µ represents the Hausdorff measure of the appropriate dimension.

Note that for simplicity of notation, Theorem 4.2.1 and its proof use n polynomial equations in
n + m variables, whereas in our case we actually have the somewhat better system of n − 1
equations in n+m variables. This means that in our case, the restriction on m is actually m ≥ 1.

Theorem 4.2.1 establishes that the solution set is usually not too small. The next lemma shows
that, within this solution set, the constant term cn+1 from the polynomial p(v) is “well-behaved” in
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the sense that cn+1 is in any given small interval only with small probability.

Lemma 3.5.1. (Dependence of cn+1 on ui)
Assume the same conditions as in Theorem 4.2.1. Let a be any real number. Let ω0 ∈ Ω be fixed,

and let Pω0 denote the relative probability of an event given that ω is in the solution set generated
by ω0. Then the inequality Pω0(a ≤ cn+1 ≤ a + ε) ≤ L̂ε1/2+δ0 holds for all ω0 outside a set of
measure L̃ε1/2+δ0 .

Lemma 3.5.1 allows us to exclude cn+1 from any interval of width ε, with probability 1− ε1/2+δ0 .
It is not hard to show that if we move cn+1 by a distance ε, we can guarantee that no two roots of
p(v) are closer together than ε1/2. Thus, we have this lemma:

Lemma 3.5.2. The probability that the polynomial p(v) has at least two roots in an interval of
width η is bounded above by a constant multiple of η1+δ0 .

Equivalently, there are at least two roots in an interval of width ε1/2−δ1 with probability at most a
constant multiple of ε1/2+δ1 .

Now, assume that there are at most two closely-lying roots of p(v). Then we may apply Lemma
3.4.3, with k = 2, and get this result:

P(Tε \ Sη) ≤ Kεs = L2ε
sη1−2s

= L2ε
s
(
ε1/2−δ1

)1−2s

= L2ε
s+ 1

2
−s−δ1+2sδ1

= L2ε
1
2

+(2s−1)δ1

Provided s > 1/2, this probability is acceptably small.

More than two nearby roots. The above calculation works only for the case k = 2. For the
other cases, we will need to modify the technique. We begin with the following lemma.

Lemma 3.5.3. If all coefficients of the polynomial p(v) other than the constant term are fixed, then
p(v) cannot have more than two distinct roots in an arbitrarily small interval, unless p(v) is a
constant function.

Proof. If the first n coefficients are fixed, then the shape of the curve y = p(v) is fixed, and only
its vertical position can be changed. Let β1 ≤ β2 ≤ · · · ≤ β` be the values of v at which p(v) has
local extrema. (Note that ` ≤ n − 1.) Now let dp := min{|βi − βj|}. dp is independent of the
vertical position of the curve, so in the context of this lemma, it is fixed.

Now suppose η < dp. An interval of width η can contain at most one local extremum, and therefore
it can contain at most two distinct roots of p(v), by the mean value theorem. Hence, if we make η
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sufficiently small, we can guarantee that there will be at most two roots of p(v) in any interval of
width η, regardless of vertical spacing.

Lemma 3.5.3 does allow for the existence of more than two roots in an interval of width η if they
are not distinct, but this case is easily avoided. A double or higher-order root may exist only if
the function p(v) has a critical point vc such that p(vc) = 0. Changing the constant term by an
arbitrarily small amount will be sufficient to avoid this. Thus, outside a finite set of cn+1 values, it
is safe to assume that all roots are simple, and then Lemma 3.5.3 shows that there can be at most
two roots in a sufficiently small interval, even counting multiplicities.

Lemma 3.5.3 by itself does not solve our problem, because η depends dp, which depends on the
choice of ω ∈ Ω. However, this lemma does clarify one matter: it shows that dp depends only on
the first n coefficients of p(v), whereas the vertical position of the curve depends only on cn+1.
This hints at a sort of statistical independence between the two, which we will exploit shortly.

Consider the case k = 3. That is, suppose there are three roots of p(v) in an interval of width η,
and all the others roots are separated from each other by a distance of at least d, where d is fixed.
By the mean value theorem, this can happen only if there are at least two critical points of p(v) in
the η−interval, but note that critical points of p(v) are roots of p′(v). If we apply Lemma 3.5.2 to
p′(v) instead of p(v), then we can see that this happens with probability at most a multiple of η.

This is not all we have to work with. The fact that there are three roots in the η−interval implies
not only that there are two critical points in this interval, but also that the function values of these
critical points are close to zero. To see this, observe that if p′(v) is treated as a function of all the
variables v, u1, . . . , un+m, then this function is a polynomial with fixed coefficients on a compact
space, and thus its absolute value is bounded by a constant. Hence the slope of p(v) cannot be too
large, so in an interval of width η, the range of p(v) will have width at most a multiple of η.

Thus, if we are to have three roots in this small interval, we must have both (1) two critical points
of p(v) in the interval, and (2) function values at those critical points which are less than a multiple
of η. Lemma 3.5.3 shows that these two events are statistically independent. Lemma 3.5.2 shows
that the first event occurs with probability η, and Lemma 3.5.1 shows that the second event occurs
with probability η1/2+δ0 . Thus, the probability that three roots of p(v) lie in the same interval of
width η is bounded above by a constant multiple of η3/2+δ0 .

Since we are allowed to discard a set in probability space of size ε1/2+δ0 , we may choose η =
ε1/3+δ0 for this case. (This is not a sharp bound, but it is good enough.)
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Now we may repeat the calculation based on Lemma 3.4.3, with k = 3.

P(Tε \ Sη) ≤ Kεs = L2ε
sη1−3s

= L2ε
s
(
ε1/3+δ0

)1−3s

= L2ε
s+ 1

3
−s+δ0−3sδ0

= L2ε
1
3

+(1−3s)δ0

Note: Unfortunately, the exponent in the above calculation is too small—it would need to be
strictly greater than 1

2
to b useful. In order to complete the proof of the desired theorem, we would

need to find a tighter bound. Below we describe the analogous situation for k > 3.

Of course, k can be greater than 3 as well, but by now the technique for handling this situation
is clear: if k = 4, for example, we know that there must be at least three roots of p′(v) in the
η−interval, and therefore there must be at least two roots of p′′(v) in the same interval. Thus,
we have three events that must occur in order to have four roots of p(v) in the η−interval: (1)
there must be at least two roots of p′′(v) in this interval, (2) the p′(v) values must be near zero,
and (3) the p(v) values must be near zero. All three events will be statistically independent, and
their respective probabilities will be η1/2+δ0 , η, and η. Thus, the probability of all three events is
proportional to at most η5/2+δ0 .

More generally, the probability that there are k roots of p(v) in an interval of width η is bounded
above by a constant multiple of η

2k−3
2

+δ0 . Thus, we may choose η = ε
1

2k−3
+δ0 .

Thus, if we are allowed to discard a set in probability space of size η = ε1/2+δ0 , then the worst-case
scenario is that p(v) has roots:

v = 0, η, η1/3, η1/5, η1/7, . . . , η
1

2n−3 (3.5.1)

Note: Once again, the integral calculation from Equation 3.4.1 will not work in this setting. We
will need to either rule out this worst-case scenario, or find some tighter bounds on the calculation
from Equation 3.4.1.

3.6 Proof of Lemma 3.5.1

Lemma 3.5.1 (Dependence of cn+1 on ui)
Let a be any real number. Let ω0 ∈ Ω be fixed, and let Pω0 denote the relative probability of an
event given that ω is in the solution set generated by ω0. Then the inequality Pω0(a ≤ cn+1 ≤
a+ ε) ≤ L̂ε1/2+δ holds for all ω0 outside a set of measure L̃ε1/2+δ.



Daniel Schmidt Chapter 3. Alloy-type models 42

Proof. Intuitively, this lemma works if we can guarantee that moving ω some distance in the
solution set will cause cn+1 to move a comparable distance on the real line. Our solution set may
not leave much room for movement, so before even fixing a point ω0, we need to exclude certain
regions of probability space a priori. In particular, we wish to avoid any point at which any first
partial derivative of cn+1 equals zero. It is near these points that cn+1 might change too slowly with
respect to some of its variables.

Fortunately, this is not difficult to do. The function cn+1(un, . . . , un+m−1) is linear in each of its
variables (with coefficients depending on the others). The derivative of this function with respect
to any one variable will of course still be linear with respect to each variable.

We want to show that these derivatives are less than ε on a set of size at most L1ε
1−δ. Then we

could a priori exclude a set in probability space of size proportional to ε1/2+δ, and outside this set
we would be guaranteed that the absolute value of each derivative is reasonably large.

Lemma 3.6.1. Let the function f(u1, u2, . . . , un+m) be linear with respect to each of its variables,
with coefficients possibly depending on the other variables. Then

µ{ω ∈ Ω : |f(x)| ≤ ε} ≤ L1ε
1−δ (3.6.1)

Proof. First, we will use a change of variables to rewrite the function f in a more convenient form.
Since f is linear with respect to each variable, we may write:

f(u1, u2, . . . , un+m) = q1(u2, . . . , un+m)u1 + q2(u2, . . . , un+m)

=

(
u1 +

q2(u2, . . . , un+m)

q1(u2, . . . , un+m)

)
q1(u2, . . . , un+m)

Let the new variable w1 denote the quantity inside the parentheses above. It is easy to see that
P(w1 ≤ ε) ≤ D1ε, since the variable u1 is uniformly distributed and independent of q1 and q2.
Furthermore, this inequality holds for the same D1 regardless of the values of the u2, . . . , un+m

variables. This leaves us with a new formula for f :

f(w1, u2, . . . , un+m) = w1q1(u2, . . . , un+m)

We may iterate this process to replace each variable ui with a new variable wi, each satisfying
P(wi ≤ ε) ≤ Diε. Now we have:

f(w1, u2, . . . , un+m) = w1w2 · · ·wn+m

Note that the wi variables are not independent, but since the Di coefficients are constant, the wi’s
are “independent enough.” That is, the probability that any two variables wi, wj are simultaneously
less than ε is bounded above by a constant multiple of ε2.

Now we have f in the same form as the function from Section 4.3.4. The calculations from that
section may be repeated here, with the same result.
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Thus, we know that each of the first partial derivatives of f with respect to ui is less than ε on a set
of size at most L1ε

1−δ. Equivalently, we may discard a set in probability space of measure ε1/2+δ,
and outside this set we know that the absolute value of each derivative is at least

L2ε
( 1/2+δ

1−δ ) = L2ε
(1/2+δ)(1+δ+δ2+δ3+... )

≥ L2ε
(1/2+δ)(1+2δ)

= L2ε
( 1
2

+δ+δ+2δ2)

≥ L2ε
( 1
2

+4δ) (3.6.2)

Fix some point ω0 outside the throwaway set described above. This point determines a solution
set In. Now suppose that on the solution set In, some coordinate ui is free to take any value in an
interval of width d. Then by Equation 3.6.2 above, the corresponding cn+1 values will have a range
of width at least

L2 d ε
1/2+4δ (3.6.3)

We now need to prove that d is in fact sufficiently large—that is, we need to know how far the
variables ui are able to move within the solution set In determined by ω0.

According to Theorem 4.2.1, the m−dimensional Hausdorff measure of In is at least L3ε
1/2+δ, for

ω0 values outside an acceptably small set. We will now show that, for a solution set of this size,
some of the coordinates are able to move a reasonably large distance, in a sense to be clarified
below.

First, we need a certain technical lemma. As counterintuitive as it may seem, in order to prove
that some of the coordinates are able to move a reasonably large distance, we must first show
that none of them can move too far. That is, we need to determine how long a certain type of
curve in the solution set can be. Specifically, take the original n equations defining the solution
set, and add more equations of the form ui = constant until the solution set for the new system is
one-dimensional. Essentially, we have fixed enough variables that the solution set becomes a curve.

Lemma 3.6.2. Let Ĉ ⊂ In be an algebraic curve in a compact set Ω ⊂ Rn+m, defined by n+m−1
or more polynomial equations of degree at most n(n+m), and let 〈u1(t), u2(t), . . . , un+1(t)〉 be a
parametrization of this curve. Then for each single variable function ui(t) one of the following is
true.
(1) The function ui(t) has at mostN local extrema, whereN depends only on n,m and the diameter
of Ω.
(2) The function ui(t) is constant on some component of the curve, and nonzero elsewhere.

Proof. Note that we assume the algebraic variety Ĉ is in fact a curve: that is, it has Hausdorff
dimension 1. This may in some cases require more equations than variables.
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We want to know how many times u′i(t) = 0. First, letX(t) be the wedge product of the n gradient
vectors ∇pi(r(t)). By the definition of the curve r(t), the tangent vector r′(t) is perpendicular to
all of these gradient vectors, and thus r′(t) is parallel to X(t) for any t. If we are to have u′i(t) = 0,
then we must have Xi(t) = 0 as well. For any particular t, the equation Xi(t) = 0 is a polynomial
equation in the uj variables of degree at most n(n+m)(n− 1).

Now, to have a point on Ĉ where u′i(t) = 0, it must be true that this point satisfies the original
n + m − 1 polynomial equations, as well as the new equation Xi(ω) = 0. Thus we have a set of
n+m polynomial equations in n+m variables. Let us call the solution set for this new system Ĉ∗.
This intersection could be one-dimensional or higher, but if it is zero-dimensional, then by Bézout’s
theorem, the number of solutions is bounded above by a finite number N which depends only on
the degrees of the polynomials. Thus, we have a bound on the number of solutions, provided that
the number of solutions is actually finite.

If the number of solutions is infinite, then it is an entire component of the curve Ĉ. In that case,
u′i(t) = 0 everywhere on this component, so the coordinate function will be constant there, and the
derivative will not be zero on any other components of the curve.

Hence, if the set Ĉ∗ is finite, then the single-variable function ui(t) has at most N local extrema,
as desired.

From this lemma, it follows that there are at most nN points at which any one of the single variable
functions ui(t) has a local extremum. For values of t in an interval (a, b) that does not contain any
of these points, each of the functions ui(t) is monotone. Now if Ω has diameter dΩ and dimension
n+m, a curve in Ω with monotone components can have arc length at most dΩ(n+m). It follows
that the length of the curve r(t) overall (not just on (a, b)) is at most dΩ(n+m)nN .

In the case that the single-variable function u′i(t) equals zero everywhere on a component of the
curve Ĉ, it follows that ui is constant on that component, and monotone elsewhere. In this case,
the reasoning from the previous paragraph still works. Thus, we have proved the following lemma.

Lemma 3.6.3. Let Ĉ be an algebraic curve in a compact set Ω ⊂ Rn+m, where the n + m − 1
polynomials defining Ĉ each have degree at most n(n + m). Let dΩ be the diameter of the set Ω.
Then the curve Ĉ has length bounded above by a constant `max which depends only on n,m and
dΩ.

We may now represent the measure of In in terms of the measures of its coordinate projections.
For each i, Let Si be the projection of In onto the ui axis.

For illustrative purposes, we first consider the simple case in which In has Hausdorff dimension
2. (That is, the case m = 3.) Assume, without loss of generality, that the largest coordinate
projection of In is S1, the second largest is S2, and so on. Suppose we fix the value of u2 within
S2. This gives a curve Ĉ in In which can have length at most `max. In fact, we can say more. Since
S1 is the largest coordinate projection, the entire curve Ĉ is contained in an (n+m)−dimensional
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cube of side length µ1(S1), in the same way that the more general curve from Lemma 3.6.3 was
contained in a cube of side length dΩ. From the proof of that lemma, it follows that the curve Ĉ in
this new context has length at most

µ1(S1)(n+m)nN =
µ1(S1)`max

dΩ

This is an upper bound on any curve Ĉ in In, for any fixed value of u2. We can then integrate this
upper bound over the u2 values to get the area of In. However, we cannot simply integrate with
respect to u2 itself, since this would not take into account the curvature of the surface In. Instead,
we would integrate with respect to arc length along the curve in In on which u1 is fixed. By the
same reasoning as above, this curve can have length at most

µ1(S2)(n+m)nN =
µ1(S2)`max

dΩ

Thus the area of In can be at most µ1(S1)µ1(S2) ((n+m)nN)2. Similarly, for the more general
case that In has dimension m, we have this bound on the measure of In.

µm(In) ≤ µ1(S1) . . . µ1(Sm) ((n+m)nN)m

Since each of the one-dimensional measures also satisfies µ1(Si) ≤ 2, by definition of the set Ω,
we have:

µ1(S1) ≥ µm(In)

µ1(S2) . . . µ1(Sm) ((n+m)nN)m

≥ µm(In)

2m−1 ((n+m)nN)m
(3.6.4)

Outside a set of size ε1/2+δ, this becomes:

µ1(S1) ≥ L4ε
1/2+δ+δ0

2m−2 `max

≥ L4ε
1/2+2δ

2m−1 ((n+m)nN)m
(3.6.5)

provided δ > δ0. (Recall that δ0 comes from Theorem 4.2.1, and may be arbitrarily small.) Similar
inequalities hold for any other projection Si.
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Thus we have:

µ1(Si) ≥ L5ε
1/2+2δ (3.6.6)

where Si may be any of the projections, for i ≤ m, and L5 may depend on n and m, but not on ε.

All of the Si sets have at least this measure, but clearly only one projection could actually be this
small, and only if the others had maximal measure. The largest set Si must have measure at least:

µ1(Si) ≥ L
1/m
5 ε

1+4δ
2m (3.6.7)

Similarly, the largest two sets must each have measure at least

µ1(Si) ≥ L
1

m−1

5 ε
1+4δ

2(m−1) (3.6.8)

This, finally, is the distance d that we needed in equation 3.6.3. If a coordinate ui is free to take
any value in a set of the size given by equation 3.6.8, then cn+1 will have a range in R of measure
at least

L2L
1

m−1

5 ε
1+4δ

2(m−1) ε1/2+4δ = L6ε
( 1+4δ
2(m−1)

+ 1
2

+4δ) (3.6.9)

Now we need to know the probability that a ≤ cn+1 ≤ a + ε given that ui is in a set as described
above. This probability is simply ε divided by the last expression from equation 3.6.9, which is:(

1

L6

)
ε(

1
2
− 1+4δ

2(m−1)
−4δ) (3.6.10)

This probability by itself is too large, but since we have two different ui coordinates which are
statistically independent of each other, the probability with respect to both these ui that a ≤ cn+1 ≤
a+ ε is given by the square of the above expression:(

1

L6

)2

ε(
1
2
− 1+4δ

2(m−1)
−4δ)(2) =

(
1

L6

)2

ε(1− 1+4δ
(m−1)

−8δ) (3.6.11)

For m ≥ 2, and sufficiently small δ, the exponent on ε will be strictly greater than 1
2
, as needed.

This completes the proof of Lemma 3.5.1.



Chapter 4

Solutions to systems of polynomial
equations

4.1 Background

A familiar result from linear algebra states that a system of n linear homogeneous equations in n
variables, which can be written as a matrix equation Ax = 0 for an n × n matrix A, has a unique
solution, provided that the columns of A are linearly independent. Furthermore, a system of n
linear homogeneous equations in n + m variables (an underdetermined system), which may be
described by a matrix equation Ax = 0 for an n× (n+m) matrix A, has a solution set isomorphic
to Rm, again provided that the columns of A are linearly independent.

It is natural to ask whether these two statements could be extended to systems of polynomial equa-
tions of degree greater than one. In asking these questions, we will relax the conditions somewhat,
and will no longer demand that the right hand side of each equation (the term independent of any
of the variables) is equal to zero.

The first question is answered by Bezout’s theorem. According to this theorem, the solution set for
a system of n polynomial equations in n variables is either infinite, or is finite with a number of
solutions bounded above by the product of the degrees of the polynomials. [30]

The second question concerns underdetermined systems of polynomial equations. We would like
to show that a system of n polynomial equations in n + m variables “normally” has a solution set
of Hausdorff dimension m, and that the Hausdorff measure of this set is “usually not too small” in
a sense that obviously will need to be made more precise later.

NOTATION: In what follows, the word “surface” refers to an algebraic variety of arbitrary dimen-
sion. The word “dimension” refers to Hausdorff dimension, and finally, the term “k–dimensional
measure of S” (denoted by µ(S) or µk(S)) refers to the k–dimensional Hausdorff measure on
the appropriate surface. (Hausdorff measure is defined differently by different authors. Here we

47
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use the form that is normalized so that the k−dimensional Hausdorff measure is equal to the
k−dimensional Lebesgue measure for subsets of Rk.)

4.2 Size of the Solution Set

Theorem 4.2.1. Let n ≥ 2 be an integer. Let {pi(x)}ni=1 be a collection of polynomials of degree
at most n(n + m) on a compact set Ω ⊂ Rn+m. For a point ω ∈ Ω, define Qω := {x ∈ Rn+m :
pi(x) = pi(ω) for all i ≤ n}. Then the following statements hold:

(1) Qω has Hausdorff dimension at least m for almost all values of ω.

(2) µm+n{ω ∈ Ω : µm(Qω ∩ Ω) ≤ ε} ≤ C1ε
1−δ0

where δ0 > 0 may be chosen to be arbitrarily small and is independent of ε, C1 depends only on n,
δ0 and Ω, and µ represents the Hausdorff measure of the appropriate dimension.

Note 1: Qω may or may not lie completely within Ω, but the measure in part (2) refers to the
intersection of the set Qω with Ω, not the set Qω itself.

Note 2: Part (1) above is technically a special case of part (2), since a set of dimension less than
m would have m−dimensional measure zero.

Note 3: It is possible for a system of polynomial equations to have an empty solution set, but the
setup of this theorem guarantees that this will not happen. Thus, this theorem is not a result on
systems of polynomial equations in general, but rather a result on systems of polynomial equations
that have nonempty solution sets.

4.3 Proof

4.3.1 Strategy

Let {Si}ni=1 be the collection of level surfaces defined by Si := {x ∈ Rn+m : pi(x) = pi(ω)}.
Next, let Ik := S1 ∩ S2 ∩ · · · ∩ Sk, for each k. In this notation, Qω = In.

We want to show that the final intersection In has measure at least ε in most cases. Recall that the
surfaces Si are not fixed—they depend on the choice of the point ω ∈ Ω ⊂ Rn+m. The key idea of
this proof is to find a relationship between the measure of Ii and the measure of Ii+1, which will
then allow an iterative estimate of the measure of the final intersection In.
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The strategy will be as follows. Suppose we consider the first surface S1 to be momentarily fixed,
but allow ω to change within this surface, thus changing the choice of S2. Then we can use a
variant of Fubini’s Theorem: if the “bad” values of ω (values that give an In with measure less
than or equal to ε) occupy only a set of (n+m−1)−dimensional measure at most ε on S1 for each
choice of S1, then they occupy a set of (n + m)−dimensional measure at most C2ε in Ω as well.
(It is crucial here that Ω is compact. Otherwise this result would not necessarily hold, because we
could have a thin but arbitrarily tall cylinder of bad points, for example.)

Note: Compactness can be problematic as well as helpful. It is possible that even though the
solution set In is reasonably large, as we will show below, it lies mostly outside Ω. We will return
to this point at the end of the proof.

Thus, we must show that the set of “bad” values of ω on S1 has small (n + m − 1)−dimensional
measure, as described above, and this task will occupy the remainder of the proof.

We will begin by considering the (n+m−2)−dimensional measure of the intersection I2, and later
we will intersect this with the other Si surfaces one at a time, to perform an iterative calculation
of the size of the measure of the final solution set In. It is of course possible that the intersection
I2 has infinite measure, which would be a good thing, since we want the final intersection In to
be reasonably large. Here though, we will consider the worst-case scenario in which all of the
intersections Ii have finite measure, in an attempt to determine how small In could be.

We will argue that it suffices to consider cases in which the set Ii+1 defined above has dimension
d− 1, where d is the dimension of Ii. In fact, it is entirely possible that Ii+1 has dimension d. (For
example, we could have Ii+1 = Ii.) However, for our purposes this would actually be better—that
is, it would give a larger solution set. Once again, we consider the worst-case scenario. It is also
possible that Ii+1 has dimension smaller than d − 1, but we do not actually need to consider this
case separately: instead, we can simply treat a set of dimension smaller than d − 1 as a set of
(d− 1)−dimensional measure zero. We will see later that this happens with probability zero.

4.3.2 Relationship Between Measures

We would like to have a connection between the d−dimensional measure of the intersection Ii, and
the (d+ 1)−dimensional measure of its interior. (This will be crucial to our iterative calculation.)
The simplest connection would be the isoperimetric inequality. Unfortunately, this inequality does
not hold in general for a d−dimensional algebraic variety embedded in a (d + 1)−dimensional
algebraic variety. (Imagine that the (d+ 1)−dimensional algebraic variety had an hourglass shape,
for example.)

However, we will be able to prove a weaker result which will suffice for our purposes.
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Lemma 4.3.1. Let V be an algebraic variety of dimension d+ 1 in a compact set Ω ⊂ Rn+m, and
let p(ω) be a polynomial on Ω. Let C(ω) be the contour given by the intersection of V with the set
where p(ω) = a for some constant a. Let Dε be the subset of V defined by the following:

Dε = {ω ∈ V : µd(C(ω)) ≤ ε}

Then µd+1(Dε) ≤ Bε. Here B depends only on the set Ω and the degrees of the polynomials.

The idea of this lemma is that we have taken the union of all contours with “length” ((d −
1)−dimensional measure) less than or equal to ε, and this union has “area” (d−dimensional mea-
sure) at most a multiple of ε. This area can be interpreted as a probability: the probability that
a point ω ∈ V is on a contour of measure less than or equal to ε is itself less than or equal to a
multiple of ε.

Proof. Each contour is determined by a level set of the polynomial p(ω), and has length at most
ε. The intuition behind this proof is that if we could define some coordinate system on V in which
one coordinate is perpendicular to the contours, and the other d−1 coordinates follow the contours,
then integrating with respect to these new coordinates would give a d−dimensional measure that
is proportional to ε.

Define a “gradient curve” as follows. A curve r(t) in V is said to be a gradient curve if, for any t,
the orthogonal projection of ∇p(r(t)) onto the tangent plane to V at r(t) is parallel to the tangent
vector r′(t) of the curve.

Each point on Dε ⊂ V is on exactly one contour of length at most ε, and on exactly one gradient
curve. If we could show that the gradient curves all have length less than or equal to some maxi-
mum value B, which does not depend on ε, then it would follow that the measure of Dε is at most
Bε.

To find this maximum length, note that we can actually write an equation to describe a gradient
curve r(t). Recall that V is an algebraic variety defined by some set {qi(x) = qi(ω)}ki=1 of polyno-
mial equations. The tangent space T (r(t)) to the surface V at the point r(t) is defined as the space
of all vectors perpendicular to each of the gradients∇qi(r(t)).

Thus we have:

r′(t) = M(t)[∇p(r(t))−∇q1(r(t)) (∇p(r(t)) · ∇q1(r(t)))

· · · − ∇qn(r(t)) (∇p(r(t)) · ∇qn(r(t)))] (4.3.1)

where M(t) is some real-valued function. Also, without loss of generality, we will choose the
parametrization for r(t) such that 0 ≤ t ≤ 1 for the part of the curve that lies in Ω.

The significance of equation 4.3.1 is that it implies that the components of r′(t) are polynomials in
the ui variables, with degrees that cannot exceed N = (n(n+m))2. We will return to this formula
in a moment.

The length of the curve r(t) may be calculated as follows:
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`(r) =

∫ 1

0

|r′(t)|dt

=

∫ 1

0

√
r′(t) · r′(t)dt

≤

√∫ 1

0

r′(t) · r′(t)dt

=

√∫ 1

0

M(t)[∇p−∇q1 (∇p · ∇q1) · · · − ∇qn (∇p · ∇qn)] · r′(t)dt (4.3.2)

Here we have suppressed the dependence of the various gradients on the point r(t) to simplify
notation. Note also that we used Jensen’s inequality to get line three above. More specifically,
Jensen’s inequality guarantees that if b− a = 1, then:(∫ b

a

f(x)dx

)2

≤
∫ b

a

(f(x))2 dx

If we take the square root of both sides of this inequality, and define g(x) = (f(x))2, then this
gives:

∫ b

a

√
g(x)dx ≤

√∫ b

a

g(x)dx

It is this last inequality that justifies line three from Equation 4.3.2.

For the next step, we will need to know that each of the dot products (∇qi · ∇p) has absolute value
bounded above by some constant R. This is guaranteed since these expressions are polynomial
functions on a compact set.

Also, we would like to remove the dependence onM(t). First, note that the only restrictions on the
curve r(t) are that its derivative is parallel to ∇p(r(t)) at any point, and that the parametrization
takes t values in the unit interval. Within these restrictions, we are free to choose M(t) = M , a
constant.
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∫ 1

0

M [∇p−∇q1 (∇p · ∇q1) · · · − ∇qn (∇p · ∇qn)] · r′(t)dt

≤
∣∣∣∣∫ 1

0

M [∇p−∇q1 (∇p · ∇q1) · · · − ∇qn (∇p · ∇qn)] · r′(t)dt
∣∣∣∣

≤M

∣∣∣∣∫ 1

0

∇p · r′(t)dt
∣∣∣∣+M

∣∣∣∣∫ 1

0

(∇q1 · ∇p)∇q1 · r′(t)dt
∣∣∣∣

· · ·+M

∣∣∣∣∫ 1

0

(∇qn · ∇p)∇qn · r′(t)dt
∣∣∣∣

≤M

∣∣∣∣∫ 1

0

∇p · r′(t)dt
∣∣∣∣+RM

∣∣∣∣∫ 1

0

∇q1 · r′(t)dt
∣∣∣∣

· · ·+RM

∣∣∣∣∫ 1

0

∇qn · r′(t)dt
∣∣∣∣

= M |p(r(1))− p(r(0))|+RM |q1(r(1))− q1(r(0))|
· · ·+RM |qn(r(1))− qn(r(0))|

The last line follows from a multivariable form of the fundamental theorem of calculus. Since the
p and qi functions are polynomials in the ui variables, and since Ω is compact, the absolute values
from the last line above each have a uniform upper bound on Ω. It follows immediately that the
length of the curve is bounded above by some constant B which depends only on the degrees of
the polynomials and on the set Ω.

The point of this section is that we have a relationship between the measure of a contour on V and
the probability that ω lies on a contour of that size or smaller. Specifically, Lemma 4.3.1 implies
the following:

µd(C) ≥ K̂µd+1(DC) (4.3.3)

where C is the contour through some point in V and DC is the set of all ω ∈ V whose con-
tours have measure less than or equal to the measure of C. Equation 4.3.3 may be viewed as a
rough analog of the isoperimetric inequality, in the sense that it gives an upper bound on a certain
(d+ 1)−dimensional measure (analogous to area) in terms of a d−dimensional area (analogous to
perimeter). This inequality implies:

µd(C)

µd+1(V )
≥ K̂

µd+1(DC)

µd+1(V )

Note that the right-hand side above is simply a ratio of two areas, and hence if we define r :=
m(DC)/m(v), the ratio r will be a random variable that is uniformly distributed on the interval
[0, 1].
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4.3.3 Iterative Calculation of Arc Length

Suppose in the worst case scenario that all the intersections Ii have finite measure. As above, we
have:

µ(In)

µ(In−1)
≥ Kn

µ(Dn)

µ(In−1)

but this may be rewritten as:

µ(In)

µ(I0)
≥ Kn

(
µ(Dn)

µ(In−1)

)
Kn−1

(
µ(Dn−1)

µ(In−2)

)
. . . K1

(
µ(D1)

µ(I0)

)
= Kn (rn)Kn−1 (rn−1) . . . K1 (r1)

= K̃rnrn−1 . . . r1

Here the symbol I0 is used to represent the “zeroth intersection” which is the probability space Ω
itself. This inequality may be rewritten as:

µ(In) ≥ K̃ (rnrn−1 . . . r1)µ(I0)

= K̃ (rnrn−1 . . . r1)µ(Ω)

4.3.4 Probability Calculation

We wish to estimate the probability that µ(In) < ε —that is, the probability that the above product
is less than epsilon. That statement may be rewritten as:

µ(In) ≤ ε =⇒ K̃ (rnrn−1 . . . r1)µ(Ω) ≤ ε

=⇒ rn ≤
ε

K̃ (rn−1 . . . r1)µ(Ω)

Since each of the random variables ri is uniformly distributed on the unit interval [0, 1], the proba-
bility of this event will be given by the integral:
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P

(
rn ≤

ε

K̃ (rn−1 . . . r1)µ(Ω)

)
≤ ε

K̃µ(Ω)

∫ 1

0

. . .

∫ 1

0

1

rn−1 . . . r1

dr1 . . . drn−1

=
ε

K̃µ(Ω)

(∫ 1

0

1

r1

dr1

)
. . .

(∫ 1

0

1

rn−1

drn−1

)

A priori this is not good, because the integrals above all diverge. However, the problem can be
circumvented. The integrals diverge only because of the infinite tails near 0, where rn grows very
large, but since in reality rn should be at most 1, we can cut off the tails and salvage the integral.
The detailed calculations are below.

For only two variables, the probability that r1r2 ≤ ε given that 0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 1 is:

∫ ε

0

1 dr2 +

∫ 1

ε

(
ε

r2

)
dr2

= ε+ ε (ln(1)− ln(ε))

= ε+ ε ln

(
1

ε

)
≤ ε+ ε

(
1

ε

)δ1
= ε+ ε1−δ1

≤ 2ε1−δ1

where δ1 > 0 may be arbitrarily small, and the inequality holds for all ε < ε0, for some ε0 that
depends on δ1.

We may now use induction to prove that a similar result holds for more than two variables. In par-
ticular, suppose we have already verified that P (r1r2 . . . rn−1 ≤ ε) ≤ K̃n−1ε

1−δ2 . To incorporate
the last variable rn and prove that

P (r1r2 . . . rn−1rn ≤ ε) ≤ K̃nε
1−δ3

we will let qn = r1r2 . . . rn−1 and note that qn is a random variable on [0, 1] with a known distribu-
tion. Thus, we may use a similar calculation to the above to find P (qnrn ≤ ε).

In the integral, we may replace qn with x
1

1−δ2 for a random variable x that is uniformly distributed
on [0, 1]. The probability that qnrn ≤ ε (equivalently, rn ≤ ε

qn
) given that qn, rn ∈ [0, 1] is:
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∫ ε

0

1 dr1 +

∫ 1

ε

(
ε

x
1

1−δ2

)
dx =

∫ ε

0

1 dr1 +

∫ 1

ε

(
εx
− 1

1−δ2

)
dx

= ε+ ε

[
x

1− 1
1−δ2

1− 1
1−δ2

]1

ε

= ε+ ε

[
x
−δ2
1−δ2

−δ2
1−δ2

]1

ε

= ε+ ε

(
1− δ2

−δ2

)[
x
−δ2
1−δ2

]1

ε

= ε+ ε

(
1− δ2

−δ2

)(
1− ε

−δ2
1−δ2

)

If we let δ3 := −δ2
1−δ2 , then this becomes:

ε+ ε

(
1− δ2

−δ2

)(
1− ε

−δ2
1−δ2

)
= ε+ ε

(
− 1

δ3

)(
1− ε−δ3

)
=

(
1− 1

δ3

)
ε+

(
1

δ3

)
ε1−δ3

≤
(

1

δ3

)
ε1−δ3

where the last inequality holds because
(

1− 1
δ3

)
is negative for sufficiently small δ3.

The precise value of this integral is unimportant. The only important part is the dependence on ε.
On that matter, we may conclude that the probability of the event in question is at most proportional
to ε1−δ3 , for some δ3 which may be arbitrarily small. (This δ3 is the δ0 value from the statement of
Theorem 4.2.1.) Note that δ3 does not depend on ε, but the coefficient of ε does depend on δ3. In
applications this will mean that it is important to keep δ3 fixed.

Thus, with probability 1−Bε1−δ3 for some constant B, the solution set will have measure at least
ε.

Note 1: Suppose the algebraic varieties I2, . . . , In are not all of finite measure, as assumed above.
This is possible only if the first several I2, . . . , Ik have infinite measure and the rest have finite
measure. If this happens, we can evaluate a truncated version of the integral above, with similar
results. (Here k = n is a real possibility, and in that case there is nothing to prove: the measure of
the set In will be infinite, which is far better than necessary.)
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Note 2: So far we have established that the solution set Qω is not too small for most values of ω.
The remaining problem is that for some ω, the solution set may be sufficiently large, but lie mostly
outside Ω. We may sidestep this issue by expanding Ω. Specifically, we define Ω̄ to be the subset
of Rn+m that includes Ω, and any point that shares a common solution set with a point of Ω. In
some cases, this set may not be compact, since some solution sets may have infinite measure.

However, we can correct this problem by cutting off all solution sets at some distance d from the
boundary of Ω, with d chosen so that each solution set will still have measure at least ε0. This third
probability space may be called Ω0, and we may now conclude that Theorem 4.2.1 holds on this
space. Clearly, though, if the statements from that theorem hold for all ω in some set that contains
Ω, then they hold for all ω in Ω itself. Thus, while the solution sets that are cut off by the boundary
of Ω may be a problem at intermediate steps of the proof, the final conclusions will still hold on
the original probability space.

This completes the proof of Theorem 4.2.1.



Chapter 5

Conclusion

In summary, we have proved a criterion under which operators of a certain block matrix form
are guaranteed to satisfy Wegner and Minami estimates, as well as higher-order estimates of the
same form. We have demonstrated the utility of this criterion by applying it to a Hamiltonian
representing a quasiparticle model arising in the theory of dirty superconductors.

We also proved two more abstract theorems, which may be of interest in their own right. The
first is a result from linear algebra which gives a lower bound on the number of small eigenvalues
of a matrix A based on properties of certain sub-matrices of A−1. The second is a result from
algebraic geometry which asserts that, subject to certain conditions, the solution set of a system of n
polynomial equations in n+m variables is almost alwaysm−dimensional, and itsm−dimensional
measure satisfies a probabilistic lower bound.

We have also presented a progress report on an attempt to verify the Wegner and Minami estimates
for a class of alloy-type models, using the same criterion mentioned above, as well as the theorem
on solution sets.

As always, this work leaves plenty of room for improvement. It would be desirable, for example,
to prove the estimates for a more general class of alloy-type models. Nonetheless, the examples
given here should suffice to demonstrate the potential of this new method of determining eigenvalue
statistics for various types of random block operators.
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[28] G. Stolz, An introduction to the mathematics of Anderson localization. Entropy and the quan-
tum II, Contemp. Math. 552, pp. 71–108, Amer. Math. Soc., Providence, RI (2011).

[29] M. Tautenhahn and I. Veselić, Minami’s Estimate: Beyond Rank One Perturbation and Mono-
tonicity. Ann. Henri Poincaré 15 (2014), 737–754.
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