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Surface aging phenomena are discussed for semi-infinite systems prepared in a fully disordered initial state
and then quenched to or below the critical point. In addition to solving exactly the semi-infinite Ising model in
the limit of large dimensions, we also present results of an extensive numerical study of the nonequilibrium
dynamical behavior of the two-dimensional semi-infinite Ising model undergoing coarsening. The studied
models reveal a simple aging behavior where some of the nonequilibrium surface exponents take on values that
differ from their bulk counterparts. For the two-dimensional semi-infinite Ising model we find that the expo-
nent b1 that describes the scaling behavior of the surface autocorrelation vanishes. These simulations also
reveal the existence of strong finite-time corrections that to some extent mask the leading scaling behavior of
the studied two-time quantities.
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I. INTRODUCTION

Intriguing phenomena are observed when bringing simple
ferromagnets out of equilibrium through a temperature
quench.1–5 Consider a ferromagnetic system prepared at high
temperatures, i.e., in a disordered and uncorrelated initial
state, that is suddenly quenched onto or below the critical
point. If the quench is onto the critical point, critical dynam-
ics sets in, yielding a dynamical correlation length that in-
creases with time. For a quench inside the ordered phase, the
formation and growth of well-ordered domains are observed.
Interestingly, these two physically very different cases have
in common that the relevant length scale L �which in the first
case is the dynamical correlation length, whereas in the sec-
ond case it is given by the typical extent of the ordered
domains� increases as a simple power law of time

L�t� � t1/z. �1�

Assuming nonconserved dynamics �which is the only dy-
namics studied in this paper� one finds for the dynamical
exponent z the value 2 below the critical temperature Tc,
whereas at Tc the dynamical exponent may take on values
slightly larger than 2.

The power-law growth �1� is responsible for many non-
equilibrium phenomena which are usually summarized under
the header of simple aging. Thus, it follows directly from Eq.
�1� that two-time quantities, such as dynamical correlation
and response functions, display dynamical scaling. Introduc-
ing the time- and space-dependent order parameter ��r� ; t�,
the correlation function can be written as

C�t,s;r� − r��� = ���r�;t���r��;s�� , �2�

whereas the response function, which measures the response
of the order parameter at site r� at time t to an external field
h�r� ;s� acting on site r�� at time s, is defined by

R�t,s;r� − r��� =� ����r�;t��
�h�r��;s�

�
h=0

�t � s� . �3�

In writing these equations we assume spatial translation in-
variance, as encountered in ferromagnetic bulk systems. The
usually studied autocorrelation function C�t ,s� and autore-
sponse function R�t ,s� are obtained by setting r�=r�� in Eqs.
�2� and �3�, respectively. In the dynamical scaling regime
with t, s, t−s��micro, where �micro is a microscopic time
scale, these two-time quantities can be cast into a simple
scaling form. For example, for the autocorrelation and the
autoresponse functions we have

C�t,s� = s−bfC�t/s� and R�t,s� = s−1−afR�t/s� , �4�

where a and b are nonequilibrium exponents, whereas fC and
fR are scaling functions that for large arguments display a
power-law decay

fC�y� � y−�C/z and fR�y� � y−�R/z, �5�

with the autocorrelation6,7 and the autoresponse exponents8

�C and �R. At the critical point, the nonequilibrium expo-
nents a and b can be expressed by known critical exponents,
yielding a=b= �d−2+�� /z, where d is the dimensionality of
the system and � is the usual static critical exponent govern-
ing the power-law decay of the spatial correlations at equi-
librium. In the ordered phase one has b=0 and a=1/z for
systems with exponentially decaying static correlations.1,9,10

At the critical point the autocorrelation exponent is related to
the so-called initial slip exponent.11 In addition, autocorrela-
tion and autoresponse exponents can be shown to be identi-
cal in systems with short-ranged initial correlations and
purely relaxational dynamics.1,12

This briefly described simple aging scenario has been
studied very intensively in bulk systems, but for systems
bounded by surfaces the investigation of local aging pro-
cesses close to surfaces is only at its very beginning.3,13,14

The emerging interest in surface aging phenomena can be
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related to the increasing importance of surface dominated
small systems in research and technology. Indeed, nonequi-
librium processes are deeply affected by the presence of sur-
faces which can result in changes in the physical behavior
even at macroscopic distances from the surface. In principle,
these surface properties can be studied by x-ray scattering at
grazing incidence.

Looking at critical systems bounded by surfaces, it is al-
ready well known that the static critical behavior at a surface
is different from the bulk critical behavior, yielding new sets
of static surface critical exponents.15–18 In fact, one even en-
counters different surface universality classes for a given
bulk universality class, depending on the value of the surface
couplings or on the existence of a surface field. Looking at
the dynamics, it has to be noted that in the case of purely
diffusive dynamics the dynamical exponent z has the same
universal value close to the surface as inside the bulk.19–21

One then expects a surface aging behavior similar to the bulk
behavior, but with local nonequilibrium exponents and scal-
ing functions of local two-time functions that differ from the
corresponding bulk quantities.

In order to discuss the expected aging phenomenology
close to a critical surface in more detail, let us consider an
idealized semi-infinite lattice in d dimensions where we
write the position vector r� as r�= �x� ,y�. Here x� is a
�d−1�-dimensional vector parallel to the surface, whereas y
labels the layers perpendicular to the surface �with y=1 be-
ing the surface layer�. With this we obtain the following
generalizations for the correlation and response functions:

C�t,s;y,y�,x� − x��� = ���x�,y ;t���x��,y�;s�� ,

R�t,s;y,y�,x� − x��� =� ����x�,y ;t��
�h�x��,y�;s�

�
h=0

,

where we assumed spatial translation invariance in the direc-
tions parallel to the surface. For y, y�→	 we recover the
bulk quantities, whereas y=y�=1 yields the surface correla-
tion and response functions. Of special interest are the sur-
face autocorrelation and autoresponse functions with x� =x��
that we write as C1�t ,s�ªC�t ,s ;1 ,1 ,0�� and R1�t ,s�
ªR�t ,s ;1 ,1 ,0��. For these surface quantities, the simple
scaling forms

C1�t,s� = s−b1fC1
�t/s�, fC1

�t/s� � �t/s�−�C1
/z,

R1�t,s� = s−1−a1fR1
�t/s�, fR1

�t/s� � �t/s�−�R1
/z �6�

are expected3,13 when t ,s and also the difference t−s are
large compared to some microscopic timescale. The scaling
functions fC1

�t /s� and fR1
�t /s� should again display a simple

power-law behavior for large values of t /s. General scaling
arguments3 allow us to express the surface exponents appear-
ing in Eq. �6� through other known exponents

a1 = b1 = �d − 2 + ���/z and �C1
= �R1

= �C + �� − � ,

�7�

where �� is the static exponent that governs the decay of the
correlations parallel to the surface. As for bulk systems,22,23

surface autocorrelation and autoresponse functions can be
combined to yield the surface fluctuation-dissipation ratio13

X1�t,s� =
TcR1�t,s�
�sC1�t,s�

, �8�

with a universal limit value

X1
	 = lim

s→	
�lim

t→	
X1�t,s�	 �9�

that characterizes the different dynamical surface universal-
ity classes.3 The scaling picture �6� and the relations between
the various nonequilibrium exponents have been verified by
one of us through a numerical study of the out-of-
equilibrium dynamics of various critical semi-infinite Ising
models.13 In addition, the critical semi-infinite Gaussian
model3 and the critical semi-infinite spherical model14 were
also found to display this simple aging scenario.

Whereas at least some knowledge has accumulated in re-
cent years on the local aging behavior close to critical sur-
faces, almost nothing is known on surface aging processes
taking place in coarsening systems. In Ref. 14 we have
looked at the out-of-equilibrium dynamical behavior of the
semi-infinite spherical model. For this special model we have
verified the existence of dynamical scaling and simple aging
close to surfaces for quenches inside the ordered phase. Sur-
prisingly, the nonequilibrium exponent b1, describing the
scaling behavior of the surface autocorrelation, was found to
take on the value b1=1, different from the standard value b
=0 of the corresponding exponent in bulk systems undergo-
ing phase ordering. This result calls for a thorough investi-
gation of surface aging phenomena in other semi-infinite sys-
tems with phase-ordering dynamics.

In this paper we continue our study of local aging pro-
cesses in bounded ferromagnets. On the one hand, we dis-
cuss the semi-infinite short-range Ising model in the limit of
high dimensions that can be solved exactly. On the other
hand, we present results of extensive Monte Carlo simula-
tions of the standard two-dimensional semi-infinite Ising
model prepared at high temperatures and then quenched in-
side the ordered phase. These numerical results yield new
and interesting insight into the local processes taking place in
coarsening systems close to surfaces. All the systems studied
have in common that the dynamical exponent takes on the
value z=2.

The paper is organized as follows. In Sec II. we compute
scaling functions and nonequilibrium exponents in the ex-
actly solvable semi-infinite model. Our numerical results ob-
tained from simulations of the two-dimensional semi-infinite
Ising model undergoing phase ordering are then presented in
Sec. III. Finally, in Sec. IV we draw our conclusions and
summarize our results.

II. QUENCHING SEMI-INFINITE SYSTEMS FROM HIGH
TEMPERATURES: EXACT RESULTS

Exactly solvable models are often quite unrealistic and
even artificial. One of the reasons for nevertheless studying
this kind of models in physics is to obtain a guidance for the
development of a future more sophisticated theoretical ap-
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proach. With this in mind, we discuss in the following the
nonequilibrium dynamical behavior of the exactly solvable
short-range semi-infinite Ising model in the limit of high
dimensions that is prepared in an uncorrelated initial state
with vanishing magnetization and then quenched below or at
the critical point. As in that limit the model is mean-field-
like, we expect the same critical exponents and the same
scaling functions �up to some numerical prefactors� as those
found in the semi-infinite Gaussian model.3

The out-of-equilibrium behavior of the bulk Ising model
with nearest neighbor ferromagnetic interactions has recently
been studied in the limit of a large number d of space
dimensions.24 Here we generalize the calculations of Garriga
et al. to the semi-infinite case.

Using a semi-infinite hypercube with lattice constant 1,
the Hamiltonian of our model can be written in the very
general form

H = −
Js

2d



�x�,x���


x�,1
x��,1 −
Jb

2d


y�2



�x�,x���


x�,y
x��,y

−
Jb

2d


y�1



x�


x�,y
x�,y+1, �10�

where the sum over �x� ,x��� indicates a sum over all nearest-
neighbor pairs lying in the same layer. The spins can take on
the values ±1, and an additional field term can be added if
needed. In writing Eq. �10� we take into account the layered
structure of the lattice and distinguish between nearest-
neighbor pairs lying in a layer parallel to the surface and
nearest-neighbor pairs belonging to different layers. As usual
when dealing with semi-infinite systems,13 we have intro-
duced a different coupling constant Js for interactions be-
tween nearest-neighbor spins located both in the surface
layer. We will, however, restrict ourselves in the following to
the special case Js=Jb=1. On the one hand, this yields in the
limit d→	 the critical temperature Tc=1 �where we set kB
=1�, on the other hand we then encounter at the critical tem-
perature the so-called ordinary transition13 where the bulk
alone is critical.

The main difference between the present case and the
model considered in Ref. 24 is of course the absence of
spatial translation invariance in the direction perpendicular to
the surface. Due to this, the time-dependent local fields that
the spins experience are now layer dependent, leading to the
expressions

hx�,y�t� = hx�,y
ext�t� +

1

2d�
x�,y+1�t� + 

x���x��


x��,y�t�� for y = 1,

�11�

hx�,y�t� = hx�,y
ext�t� +

1

2d�
x�,y+1�t� + 
x�,y−1�t�

+ 

x���x��


x��,y�t�� for y � 1,

where the sum over x���x�� is the sum over the in-plane
nearest-neighbor lattice sites x�� of x�. We added in these equa-
tions an external field hx�,y

ext�t� needed for the computation of

the response function �for the computation of the correlation
function, hx�,y

ext�t� is, of course, set to zero	. Using heat-bath
dynamics, these local fields hx�,y�t� �which depend on the di-
mension d� appear in the flip rates, as each spin will flip
independently with the rate 
1−
x�,y�t�tanh�hx�,y�t� /T	� /2. It is
important to note that in absence of an external magnetic
field the magnetization remains at any time at is initial value
zero everywhere in the sample.

A. The correlation function

In their paper24 Garriga et al. derived very general equa-
tions of motion for the one- and the two-time correlation
functions C and C that can also be used in our case by plug-
ging in the layer-dependent local fields �11�. Recalling that
we still have invariance for spatial translations parallel to the
surface, we can write the following equations:

�tC�t;y,y�,x� − x��� = − 2C�t;y,y�,x� − x��� + ��tx�,y�t��
x��,y��t��

+ ��
x�,y�t��tx��,y��t�� , �12�

�tC�t,s;y,y�,x� − x��� = − C�t,s;y,y�,x� − x���

+ ��tx�,y�t��
x��,y��s�� , �13�

where we use the notations �tx�,y�t�ª tanh�hx�,y�t� /T	
− �tanh�hx�,y�t� /T	� and �
x�,y�t�=
x�,y�t�− �
x�,y�t�� for the de-
viations from the averages.

In the limit of large d we can develop tanh�hx�,y�t� /T	 in
1 /d �recall that no external field is acting on the spins and
that the local fields hx�,y are layer dependent� which then
yields the following expressions for the equations of motion:

�tC�t;y,y�,x�� = − 2C�t;y,y�,x�� +



2�C�t;y + 1,y�,x��

+ C�t;y − 1,y�,x�� + C�t;y,y� + 1,x��

+ C�t;y,y� − 1,x�� + 2

z��x��

C�t;y,y�,z���
+ b�t;y,y�,x�� �14�

�tC�t,s;y,y�,x�� = − C�t,s;y,y�,x�� +



2�C�t,s;y + 1,y�,x��

+ C�t,s;y − 1,y�,x�� + 

z��x��

C�t,s;y,y�,z���
�15�

with

C�t,s;0,y�,x�� = 0 = C�t,s;y,0,x�� . �16�

In writing these equations we exploit the spatial translation

invariance parallel to the surface by setting x��=0� . The pa-
rameter 
 is given by 
ª1/ �Td�, whereas the sum over z��x��
indicates a summation over the in-plane nearest-neighbor lat-

tice sites of x�. The quantity b�t ;y ,y� ,x��=�y,y��x�,0�b̄�t ;y�,
which is needed to enforce the condition C�t ;y ,y ,0��=1 for
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all times t, has to be determined self-consistently.24 In addi-
tion, the two-time correlator must yield the one-time cor-
relator for t=s, i.e.,

C�t,t;y,y�,x�� = C�t;y,y�,x�� . �17�

The solution of these equations of motion is outlined in the
Appendix. For decorrelated initial conditions, our result is

C�t,s;y,y�,x��

= e−�t+s�
Iy−y�„
�t + s�… − Iy+y�„
�t + s�…�

��
i=1

d−1

Ixi
„
�t + s�… + 


u�1
�

0

s

d�b̄��,u�e−�t+s−2��

��
i=1

d−1

Ixi
„
�t + s − 2��…
Iu−y„
�t − ��… − Iu+y„
�t − ��…�

�
Iu−y�„
�s − ��… − Iu+y�„
�s − ��…� , �18�

where the functions I� are modified Bessel functions25 and
where we have taken into account the special form of
b�t ;y ,y� ,x�� and Eq. �A18�. It remains to fix the parameter

b̄�t ,y�, which we determine from the condition C�t ;y ,y ;0��
=1. For large d the factor 
=1/ �Td� becomes small, and we
can use the following approximation:

Iy−y�„
�t − ��… � �y,y� + O�1

d
� �19�

and similarly for other terms, see also Ref. 24. This yields for
vanishing layer magnetization the equation

1 = e−2t + �
0

t

d� e−2�t−��b̄��,y� �20�

for all y and t. This equation can be solved by Laplace trans-

form, yielding the result b̄�t ,y�=2 for all y and t. It then
follows that the correlation function in the semi-infinite

model is given by Eq. �18� with b̄�t ,u� set to 2. One can get
rid of the sum over u by using 
m=−	

	 Im+k�z1�Im�z2�= Ik�z1

+z2� and In�z�= I−n�z�. After doing so, we obtain for the sur-
face autocorrelation function the expression

C1�t,s� = e−�t+s�
I0„
�t + s�…�d−1
I0„
�t + s�… − I2„
�t + s�…�

+ 2�
0

s

d� e−�t+s−2��
I0„
�t + s − 2��…�d−1

�
I0„
�t + s − ��… − I2„
�t + s − 2��…� . �21�

It is worth noting that in the limit where y�y�→	 we also
recover the known bulk behavior of the correlation function,
as we get with the help of expression �A18� the expression

C�t,s;y,y�,x�� = e−�t+s�Iy−y�„
�t + s�…�
i=1

d−1

Ixi
„
�t + s�…

+ 2�
0

s

d� e−�t+s−2��

�Iy−y�„
�t + s − 2��…�
i=1

d−1

Ixi
„
�t + s − 2��…

�22�

which is precisely the expression found by Garriga et al.24 in
Fourier space.

We immediately remark that for a quench inside the or-
dered phase with T�Tc=1 no simple scaling behavior of the
surface autocorrelation is observed, due to the extremely rap-
idly �i.e., exponentially� increasing Bessel functions. A simi-
lar absence of dynamical scaling is also seen in the bulk
system quenched below the critical point.24 At the critical
point, however, when T=1 and therefore 
=1/d, we can use
the approximation e−uI��u���2�u�−1/2 exp�−�2 / �2u�	. As
the first term in Eq. �21� decreases more rapidly than the
second one, we find in the scaling regime �with Y = t /s�

C1�t,s� = 4�2�

d
�−d/2

sd/2��Y − 1�−d/2 − �Y + 1�−d/2	 . �23�

This allows us to identify both the nonequilibrium exponents
b1 and �C1

and the scaling function fC1
�Y�, see Eq. �6�:

b1 =
d

2
, �C1

= d + 2, �24�

fC1
�Y� = 4�2�

d
�−d/2

��Y − 1�−d/2 − �Y + 1�−d/2	 ,

where we used that in the limit of large d the critical dynami-
cal exponent is equal to 2.

B. The response function

In order to compute the response function we start from
the differential equation24

�t�
x�,y�t�� = − �
x�,y�t�� + �tx�,y�t�� �25�

for �
x�,y�t�� in the presence of a small external magnetic field
hx�,y

ext. As both hx�,y
ext and 1/d are small we can develop the tanh

to first order in both quantities

tanh�hx�,y�t�/T	 �
1

T
hx�,y

ext�t� +



2�
x�,y+1�t� + 
x�,y−1�t�

+ 

z��x��


z�,y�t�� , �26�

where it is understood that 
x�,0=0. The definition
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R�t,s;y,y�;x� − x��� ª� ��
x�,y�t��

�hx��,y�
ext �s� �

h=0

�27�

of the response function now directly yields the differential

equation �where we set again x��=0��

�tR�t,s;y,y�,x�� = − R�t,s;y,y�,x�� +



2�R�t,s;y + 1,y�,x��

+ R�t,s;y − 1,y�,x�� + 

z��x��

R�t,s;y,y�,z���
+

1

T
��t − s��y,y��x�,0� �28�

with R�t ,s ;0 ,y� ,x��=0=R�t ,s ;y ,0 ,x��. This equation is
solved with similar methods as outlined in the Appendix for
the correlation function. As a result we obtain

R�t,s;y,y�,x�� =
��t − s�

T
e−�t−s�
Iy−y�„
�t − s�…

− Iy+y�„
�t − s�…��
i=1

d−1

Ixi
„
�t − s�… . �29�

For the case T=Tc=1 the surface autoresponse function can
again be evaluated in the scaling regime, yielding �with Y
= t /s�

R1�t,s� =
2d

Tc
�2�

d
�−d/2

s−d/2−1�Y − 1�−�d+2�/2 �30�

and, therefore,

a1 =
d

2
, �R1

= d + 2, fR1
�Y� =

2d

Tc
�2�

d
�−d/2

�Y − 1�−d/2−1.

�31�

We can now also compute the surface fluctuation-dissipation
ratio from the expressions �23� and �30� and obtain

X1�t,s� =
TcR1�t,s�
�sC1�t,s�

=
�Y − 1�−d/2−1

Y��Y − 1�−d/2−1 − �Y + 1�−d/2−1	 − ��Y − 1�−d/2 − �Y + 1�−d/2	
�32�

from which the limit value X1
	=1/2 follows.

Comparing with the results obtained for the spherical
model, see Table I, we note that the values of the nonequi-
librium exponents in the critical short-range Ising model in
the limit of high dimensions are in full agreement with the
values obtained for the critical spherical model in dimen-

sions d�4.14 Even the scaling functions are identical up to a
nonuniversal numerical prefactor. In addition, the values of
the universal quantities are identical to the values obtained in
the field-theoretical Gaussian model.3 This nicely demon-
strates that in the aging regime universal nonequilibrium fea-
tures are indeed encountered close to critical surfaces.

TABLE I. Available values of nonequilibrium critical surface quantities at the ordinary transition deter-
mined in aging systems quenched to the critical point.

model a1=b1 �R1
=�C1

X1
	

spherical model �2�d�4� �Ref. 14� d

2

3d

2
1−

2

d

spherical model �d�4� �Ref. 14� d

2
d+2 1

2

Gaussian model �Ref. 3� d

2
d+2 1

2

Ising model in large dimensions d

2
d+2 1

2

Ising model in d=3, ordinary transition �Ref. 13� 1.24�1� 2.10�1� 0.59�2�

Ising model in d=2 �Ref. 13� 0.46�1� 1.09�1� 0.31�1�
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III. QUENCHING SEMI-INFINITE SYSTEMS FROM HIGH
TEMPERATURES: NUMERICAL RESULTS

In the following we present the results of extensive nu-
merical simulations of the standard two-dimensional semi-
infinite Ising model with only nearest-neighbor interactions
quenched inside the ordered phase. In the bulk case this
model is known to render rather faithfully the physics of real
systems undergoing phase ordering. The Hamiltonian is
given by the usual expression

H = − J

�i,j�


i
 j , �33�

where i and j label the sites of a semi-infinite lattice. The
sum extends over nearest-neighbor pairs, and we have the
same coupling strength J�0 for every bond connecting
neighboring spins. This system exhibits a continuous phase
transition at the bulk critical point Tc=2/ ln��2+1��2.269
�where the temperature is measured in units of J /kB, with kB
being the Boltzmann constant�.

Whereas surface aging behavior has already been studied
in the past for Ising models quenched onto the critical
point,13 this does not seem to be the case for quenches below
the critical point. The following numerical study therefore
allows us to close a gap in our understanding of the nonequi-
librium dynamical behavior of classical spin models. Espe-
cially, it yields new insights into the local dynamical behav-
ior of systems undergoing phase ordering in the presence of
surfaces.

For these simulations we use periodic boundary condi-
tions in one direction and free boundary conditions in the
other direction. We thereby consider square systems with N
=L�L spins were L ranges from L=300 to L=1000, thus
making sure that the data obtained at any one of the two
surfaces are representative of the semi-infinite system. Only
data free of finite-size effects are discussed in the following.
Our focus lies on the surface autocorrelation function and on
the surface autoresponse function. The surface autocorrela-
tion function is given by the expression

C1�t,s� =
1

2L



i�surface
�
i�t�
i�s�� , �34�

where the sum is over all the spins in the two surfaces. The
data discussed in the following have been obtained after av-
eraging over at least 5000 different runs with different real-
izations of the noise. In order to study the response to a
magnetic field, we apply a weak binary random field be-
tween the time t=0 �at which the quench takes place� and the
time t=s.26 After the field has been switched off, we monitor
the decay of the surface thermoremanent magnetization
given by the expression

M1�t,s� =
1

2L



i�surface
�hi
i�t��/T , �35�

where hi is the strength of the binary random field at site i. In
addition to averaging over the realizations of the noise we
also average over the realizations of the random field as in-
dicated by the bar. We discuss here data obtained with �hi�

=0.1 �we checked that our conclusions remain the same
when we slightly vary the value of �hi��. As response func-
tions are very noisy, we average over many more runs than
for the autocorrelation. The thermoremanent magnetization
data discussed in this section have been obtained after aver-
aging over typically 200 000 runs.

A. Autocorrelation function

Before discussing the surface autocorrelation function, let
us briefly mention some results obtained for the autocorrela-
tion function in the corresponding two-dimensional bulk sys-
tem. The expected scaling form

C�t,s� = s−bfC�t/s� with fC�t/s� � �t/s�−�C/z for t/s � 1

�36�

has been verified in various numerical studies. These studies
showed that b=0 and yielded the value �C /z=0.63�1� �Refs.
6, 34, and 35� �recall that z=2� for the exponent governing
the long-time decay of the scaling function. Numerous theo-
retical approaches have been proposed for computing the
scaling function fC,27–31 the most successful being the recent
exploitation of space-time symmetries within the theory of
local scale invariance.10,32,33

The main question we address here concerns the scaling
behavior of the surface autocorrelation function. Let us start
by looking at the long-time decay of C1�t ,s� with s=0, as it
is well known that this quantity is usually the most appropri-
ate for the determination of �C1

. In Fig. 1 we show this
quantity for two different temperatures T=1 and 1.5, lower
than the critical temperature. For comparison we also include
the bulk autocorrelation function C�t ,s=0� for the same two
temperatures. Whereas at short times the surface autocorre-
lation �this is also true for the bulk quantity� is clearly tem-
perature dependent, at longer times the two curves get iden-
tical. Interestingly, the decay of the surface correlations
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FIG. 1. �Color online� The surface and bulk autocorrelation
functions C1�t ,s=0� and C�t ,s=0� for two different temperatures.
At the surface the correlations decay much faster than inside the
bulk, yielding the value �C1

/z=0.95�3� for the long-time power-law
exponent, considerably larger than the value �C /z=0.63�1� in the
bulk case.
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follow a power-law at late times. This power-law decay is
faster at the surface than inside the bulk, yielding the value
�C1

/z=0.95�3� which should be compared to the value
�C /z=0.63�1� obtained inside the bulk. Obviously, this faster
decay is due to the reduced coordination number at the
surface.

In Fig. 2 we discuss the behavior of the surface autocor-
relation function C1�t ,s� with s�0. When plotting C1�t ,s�
versus t /s, we do not observe a data collapse, see Fig. 2�a�,
in contrast to the data collapse observed when plotting the
bulk autocorrelation as a function of t /s. The data shown in
Fig. 2�a� at first look suggest that the local exponent b1 is
different from zero at the surface. A more thorough analysis
reveals however that a good scaling behavior can not be
achieved with a constant b1�0. Figure 2�b� shows our best
result obtained for b1=0.13. A reasonable data collapse can
be achieved this way for large values of t /s, but scaling
breaks down for t /s�25. Taken at face value, this would
suggest for the surface autocorrelation function the existence
of a large threshold value of t /s below which dynamical
scaling is not observed. The possible physical mechanism
responsible for this threshold is far from obvious. A better

data collapse can be achieved by allowing the exponent b1 to
depend itself on t /s, but a nonconstant exponent varying as a
function of t /s is not supported by any theoretical approach.

We propose here another interpretation of the numerical
data that is based on the recent observation that large finite-
time corrections can to some extend mask the true scaling
behavior of the autocorrelation function in phase-ordering
systems.4 In order to take the existence of finite-time correc-
tions into account, we try to describe our data by the ansatz

C1�t,s� = fC1
�t/s� + s−b�gC1

�t/s� , �37�

where the first term is the expected scaling behavior with
b1=0, whereas the second term is the finite-time correction
that is of decreasing importance for increasing values of the
waiting time s. This ansatz has recently been used for the
analysis of the autocorrelation functions in disordered ferro-
magnets quenched below their critical point.4,36 In Fig. 2�c�
we show C1�ys ,s� as a function of s for various values of the
ratio y= t /s. The lines show that an excellent fitting of the
data can be achieved with the extended scaling form �37�
with a common value b�=0.49�1�. The scaling function
fC1

�t /s�, obtained after subtracting off the correction term, is
shown in Fig. 2�d�. As the curves for the different values of
s are not distinguishable on the scale of the figure, we only
show selected points as symbols. The data collapse shown in
Fig. 2�d� supports our interpretation that the true scaling be-
havior of the surface autocorrelation function is masked by
strong finite-time corrections. As a consistency check, we
note that the data in Fig. 2�d� present for large values of t /s
a power-law decay with an exponent 0.95�2�, in full agree-
ment with the value of �C1

/z obtained directly from C1�t ,s
=0�. Even though our data are perfectly described by Eq.
�37�, we must emphasize that we do not yet know why this
finite-time correction shows up close to the surface but is not
encountered inside the bulk.

Let us end the discussion of the surface autocorrelation
function by noticing that the value b�=0.49�1� of the correc-
tion term exponent is compatible with 1/2=1/z. However,
we refrain from making the conjecture b�=1/z here without
having studied other systems with surfaces �such as, for ex-
ample, semi-infinite Potts models�.

B. Response function

Before discussing the surface thermoremanent magnetiza-
tion M1�t ,s�, let us again first recall the behavior of the cor-
responding bulk quantity. The bulk thermoremanent magne-
tization M�t ,s� is a temporally integrated response function
that is related to the response function R�t ,s� by the integral

M�t,s� = �
0

s

du R�t,u� , �38�

where the integration is over the whole time interval during
which the magnetic field was acting on the system. From the
scaling form �4� of R�t ,s�, we therefore obtain the scaling
behavior
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FIG. 2. �Color online� Discussion of the surface autocorrelation
C1�t ,s� obtained after quenching the semi-infinite two-dimensional
Ising model to T=1. �a� Autocorrelation as a function of t /s for
different values of the waiting time s �the lowest curve shows the
data obtained for the largest value of s�. The expected data collapse
with b1=0 is not observed. �b� Plotting s0.13C1�t ,s� versus t /s leads
to a collapse of data for large values of t /s, but no scaling is ob-
served for smaller values of t /s. �c� Plot of C1�ys ,s� as a function of
s for various values of y= t /s. The full lines are fits to the extended
scaling form �37� with b�=0.49. �d� Scaling function fC1

�t /s� ob-
tained from the data shown in �a� after subtracting off the finite-time
correction term. In �c� and �d� error bars are smaller than the sym-
bol sizes.
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M�t,s� = s−afM�t/s� �39�

for the integrated response. Zippold, Kühn, and Horner37

were the first to point out the existence of a subleading cor-
rection term which can be quite sizeable. For the thermore-
manent magnetization this leads to the following more com-
plete scaling behavior:9

M�t,s� = s−afM�t/s� + s−�R/zgM�t/s� . �40�

The second term in this equation is in fact the response of the
system to fluctuations in the initial state, where the scaling
function gM�t /s� is expected to be proportional to the power
law �t /s�−�R/z.38 For the two-dimensional Ising model we
have a=1/z=1/2 and �R /z=0.63. Therefore this correction
to scaling can not be neglected but must be included in order
to obtain the correct description of the scaling behavior of
the bulk thermoremanent magnetization.9,10

In Fig. 3 we summarize our findings for the surface ther-
moremanent magnetization in the two-dimensional semi-
infinite Ising model quenched below the critical point. Figure

3�a� shows the behavior of this local response as a function
of t /s for various values of the waiting time s. In a first
attempt, we might try to achieve a scaling behavior by as-
suming that

M1�t,s� = s−a1fM1
�t/s� , �41�

thereby neglecting any possible corrections to scaling. A rea-
sonable scaling behavior is achieved this way for a value of
a1�0.40, slightly lower than the expected value 1/z=1/2.
For a more thorough analysis we can fix y= t /s and plot the
response as a function of the waiting time in a log-log plot.
Fitting a straight line to the data, we obtain from the slope of
that line a value of a1 for every considered value of t /s.
Thus, we obtain a1=0.38 for t /s=5, a1=0.39 for t /s=10,
a1=0.40 for t /s=15, and a1=0.42 for t /s=20. This points to
the existence of a correction term that vanishes for increasing
values of t /s. In Fig. 3�b� we test the more complete scaling
form

M1�t,s� = s−a1fM1
�t/s� + s−�R1

/zgM1
�t/s� , �42�

where the correction term with the scaling function
gM1

�t /s�=r1�t /s�−�R1
/z describes the response of the surface

to fluctuations in the initial state. Plugging in the value
�R1

/z=0.95 �where we assume that �R1
=�C1

holds�, we ob-
tain a consistent description for any t /s with common values
r1=−0.106�1� for the amplitude of the correction term and
a1=0.50�1� for the exponent of the leading term. The correc-
tion term being now completely fixed, we can subtract it off
from the numerical data and obtain the data collapse shown
in Fig. 3�c�. Thus, as for the thermoremanent magnetization
in the bulk,9,10 we are able to identify the leading correction
term and, in addition, obtain the value a1=a=1/z.

We close this section by a brief discussion of the surface
fluctuation-dissipation ratio. In Fig. 3�d� we plot the ratio

Z1�t,s� =
TM1�t,s�
hC1�t,s�

�43�

as a function of s / t for various values of s. This ratio yields
asymptotically the limit value X1

	 of the fluctuation-
dissipation ratio �8�, as

X1
	 = lim

s→	
�lim

t→	
Z1�t,s�	 . �44�

For a given value of the waiting time, the ratio Z1�t ,s� con-
verges towards a constant finite value when s / t→0. At first
look this might seem surprising as in coarsening systems one
expects the limit value X1

	=0. However, this constant de-
creases for increasing values of s. Taking into consideration
the leading scaling behaviors of C1�t ,s�� fC1

�t /s� and of
M1�t ,s��s−1/2fM1

�t /s� found in our study as well as the fact
that the scaling functions fC1

�t /s� and fM1
�t /s� display for

large arguments a power-law behavior with the same expo-
nent 0.95, we find that the saturation value limt→	 Z1�t ,s�
should vanish as s−1/2. This is indeed verified in Fig. 3�e�,
where s1/2Z1�t ,s� leads to a collapse of the data onto a com-
mon curve for s / t small. This is also an a posteriori check
that we have indeed correctly identified the leading scaling
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FIG. 3. �Color online� Discussion of the surface thermorema-
nent magnetization M1�t ,s� obtained after quenching the semi-
infinite two-dimensional Ising model to T=1, where a random mag-
netic field of strength h=0.1 is applied between t=0 and t=s. �a�
M1�t ,s� plotted against t /s for various waiting times s �the lowest
curve shows the data obtained for the largest value of s�. �b� Plot of
M1�ys ,s� as a function of s for various values of y= t /s. The full
lines are fits to the extended scaling form �42�. A consistent descrip-
tion of the data for any value of t /s is achieved for �R /z=0.95, a
=0.5, and r1=−0.106, see main text. �c� Scaling function fM1

�t /s�
obtained from the data shown in �a� after subtracting off the finite-
time correction term. Error bars are smaller than the symbol sizes.
�d� Plot of Z1�t ,s�, see Eq. �43�, versus s / t for different waiting
times. �e� Plotting s1/2Z1�t ,s� versus s / t leads to a data collapse for
small values of s / t.
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behaviors of both the surface autocorrelation and the surface
integrated response functions.

IV. CONCLUSIONS

In this paper we have extended the investigation of sur-
face aging phenomena to cases not studied previously. On
the one hand, we have computed nonequilibrium surface
quantities in the exactly solvable short-range semi-infinite
Ising model in the limit of a large number of space dimen-
sions. On the other hand, we have presented numerical simu-
lations of the standard semi-infinite Ising model quenched
inside the ordered phase.

For a quench to the critical point, we added the semi-
infinite Ising model in high dimensions to the list of exactly
solved models. The universal nonequilibrium surface quanti-
ties obtained in this study agree with those obtained for the
critical semi-infinite spherical model,14 as expected for a
mean-field-like model. In Table I we summarize the known
results for surface aging phenomena in critical systems at the
ordinary transition �the only situation studied in this paper�
by listing the values of the different universal nonequilibrium
exponents as well as those of the asymptotic value of the
fluctuation-dissipation ratio. It is worth mentioning that the
existing numerical data for the semi-infinite Ising model13

indicate a nonmonotonic behavior of the limit value of the
surface fluctuation-dissipation ratio as a function of the di-
mensionality of the system �being 1

2 for d�4, then increas-
ing to 0.59 in three dimensions, before decreasing to 0.31 in
the two-dimensional system�. This behavior is unexpected,
and a satisfactory explanation is still lacking.

We also presented large-scale numerical simulations of
the two-dimensional semi-infinite Ising model undergoing
coarsening. From these results we conclude that the result
b1�0 found for the spherical model14 is not generic but that
it is very probably an artifact of that rather artificial model.
Indeed, the numerical simulations of the more realistic two-
dimensional Ising model yield b1=0. This indicates that ge-
nerically the exponent b1, that governs the scaling of the
surface correlations, vanishes, similarly to what is observed
inside the bulk.

One of the main conclusions of our work is that surface
aging phenomena in systems undergoing phase ordering dis-
play the same general features as bulk aging phenomena.
Simple scaling forms prevail asymptotically for two-time
quantities such as the surface autoresponse and the surface
autocorrelation functions, and universal nonequilibrium
quantities, with values that differ from the bulk values, can
also be identified in semi-infinite coarsening systems, see
Table II. For finite times, corrections to scaling can be rather
important and might even mask the leading scaling behavior.
In our study of the two-dimensional semi-infinite Ising
model we not only identified a subleading contribution to the
thermoremanent surface magnetization �a similar correction
also appears inside the bulk�, but we also showed the exis-
tence of corrections to scaling in the surface autocorrelation
function. The physical origin of this last term is not yet clear.
It is, however, worth noting that a similar correction term has
recently been shown to exist for the random bond Ising
model quenched below the critical point.4

The semi-infinite geometry discussed in this paper is of
course only a special case of a more general wedge-shaped
geometry. Wedges in critical systems have been studied quite
intensively in the past,18,39–41 as they lead to static critical
quantities whose values depend on the opening angle of the
wedge. However, the local critical dynamical behavior in a
wedge-shaped geometry has not yet been discussed in the
literature. Phase ordering in wedges can also be viewed as
being one of the simplest cases of phase-ordering in confined
geometries. The study of edge aging phenomena is therefore
the next logical step in the study of local nonequilibrium
dynamical behavior in confined geometries, and work along
this line is in progress.
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APPENDIX: ISING MODEL IN HIGH DIMENSIONS:
COMPUTATION OF THE CORRELATION FUNCTION

In this Appendix we compute the one-time and two-times
correlation functions for the semi-infinite Ising model in high
dimensions. We thereby start by defining the operator
�

t;y,y�,x�
�
� for a function f :R�Z�0�Z�0�Zd−1→R:

�t;y,y�,x�
�
� f�t;y,y�,x�� ª �t f�t;y,y�,x�� + 2f�t;y,y�,x��

−



2� f�t;y + 1,y�,x�� + f�t;y − 1,y�,x��

+ f�t;y,y� + 1,x�� + f�t;y,y� − 1,x��

+ 2 

x���x��

f�t;y,y�,x���� , �A1�

where x���x�� denotes the nearest neighbors of x� in the layer y.
With this, Eq. �14� reads

�t;y,y�,x�
�
� C�t;y,y�,x�� = b�t;y,y�,x�� . �A2�

In order to solve this equation we look for the Green’s func-
tion satisfying the equation

�t;y,y�,x�
�
� g�t;u,y,v,y�,x�� = ��t��y,u�y�,v�x�,0 �A3�

TABLE II. Available values of nonequilibrium surface quanti-
ties determined in aging systems quenched below the critical point.

model a1 b1 �R1
=�C1

spherical model �Ref. 14� d

2
1 d

2
+2

Ising model in d=2 1

2
0 1.90�6�
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and the boundary conditions

g�t;u,0,v,y�,x�� = 0 = g�t;u,y,v,0,x�� . �A4�

We can solve this equation by using a Fourier-Sine transfor-
mation on y and y� �which makes sure the boundary condi-
tions hold� and a normal Fourier transformation on x�:

ĝ�t;u,k,v,k�,q�� = 

y,y��0



x�

sin�ky�sin�k�y��

�eix�·q�g�t;u,y,v,y�,x�� , �A5�

g�t;u,y,v,y�,x�� = �
0

� dk

�/2
�

0

� dk�

�/2
�

B

dq�

�2��d−1

�sin�ky�sin�k�y��e−ix�·q�ĝ�t;u,k,v,k�,q�� .

�A6�

Here, the sums are over all lattice sites, whereas
B= �−� ,�	d−1 is the first Brillouin zone and dq� =�i=1

d−1dqi. It
is straightforward to work out Eq. �A3� in Fourier space,
which yields

�tĝ�t;u,k,v,k�,q�� + ��k,k�,q��ĝ�t;u,k,v,k�,q� ;t�

= sin�uk�sin�vk����t� , �A7�

where the expression ��k ,k� ,q�� is given by

��k,k�,q�� = ��k� + ��k�� + ��q�� �A8�

with

��k� = �1

d
− 
 cos�k�� , �A9�

��k�� = �1

d
− 
 cos�k��� ,

��q�� = 

i=1

d−1 �2

d
− 2
 cos�qi�� .

Equation �A7� is readily solved and yields the result

ĝ�t;u,k,v,k�,r�;t� = ��t�sin�uk�sin�vk��exp�− ��k,k�,q��t	 ,

�A10�

where ��t� is the Heaviside step function. This expression
still has to be brought back to direct space using Eq. �A6�.
With the integral �−�

� dk exp�irk+cos�k�z	=2�Ir�z� this
yields the result

g�t;u,y,v,y�,x�� = ��t�e−2t�Iu−y�
t� − Iu+y�
t�	�Iv−y��
t�

− Iv+y��
t�	�
i=1

d−1

Ixi
�2
t� . �A11�

With the help of this function, the inhomogeneous differen-
tial equation �14� is solved by

C�t;y,y�,x�� = Ch�t;y,y�,x��

+ 

u,v�0



x��
�

0

	

d� g�t − �;u,y,v,y�,x� − x��

�b��;u,v,x��� , �A12�

where Ch�t ;y ,y� ,x�� is an arbitrary solution of the homo-

geneous equation �
t;y,y�,x�
�
� Ch�t ;y ,y� ,x��=0 that satisfies the

boundary condition �16�.
In order to obtain this special solution Ch�t ;y ,y� ,x�� we

start from Eq. �A3� with a vanishing right-hand side

�t;y,y�,x�Ch�t;y,y�,x�� = 0 �A13�

for which we obtain the solution

Ĉh�t;k,k�,q�� = exp�− ��k,k�,q��t	Ĉh�0;k,k�,q�� �A14�

in Fourier space, where the initial value Ĉh�0;k ,k� ,q�� is
given by

Ĉh�0;k,k�,q�� = 

u,v�0



x���x��

sin�uk�sin�vk��e−ix��q�C�0;u,v,x��� .

�A15�

Equation �15� for the two-time correlator is also solved in
a similar way. We go to Fourier space and get the solution

Ĉ�t,s;k,k�,q�� = exp�−



2
���k� + ��q��	�t − s��Ĉ�s;k,k�,q�� .

�A16�

Inserting the Fourier transform of the solution of Eq. �A12�,
we obtain after transforming back to real space the final
result
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C�t,s;y,y�,x�� = 

u,v�0



x���x��

C�0;u,v,x���e−�t+s��
i=1

d−1

Iri−ri�
„
�t + s�…�Iu−y�
t� − Iu+y�
t�	�Iv−y��
s� − Iv+y��
s�	

+ 

u,v�0



x���x��

�
0

	

d�b��;u,v,x���e−�t+s−2��

��
i=1

d−1

Ixi−xi�
„
�t + s − 2��…
Iu−y„
�t − ��… − Iu+y„
�t − ��…�
Iu−y„
�s − ��… − Iu+y„
�s − ��…� . �A17�

For decorrelated initial conditions C�0;u ,v ,x���=�u,v�x��,0�, one can rearrange the Bessel functions in the first sum using

�=−	

	 I��z1�I�+k�z2�= Ik�z1+z2� which gives



u�0

�Iu−y�
t� − Iu+y�
t�	�Iu−y��
s� − Iu+y��
s�	 = Iy−y�„
�t + s�… − Iy+y�„
�t + s�… , �A18�

an equation needed for deriving the final result �21�.
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