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(ABSTRACT) 

Partial group delay has an interpretation as a parameter that measures the time-lag 

relationship between two channels of a multiple time series after adjustments have been 

made for the influence of the remaining channels. The time-lagged relationship is 

typically studied frequency by frequency. In this dissertation a procedure for estimating 

the partial group delay parameter is proposed which is intended to work well even for 

small sample sizes. The only published procedure for estimating the partial group delay 

parameter is by Zhang and Foutz [1989]. The procedure by them is an asymptotic one 

and requires a fairly large sample size. 

The proposed procedure for estimating the partial group delay parameter uses the 

frequency domain approach of time series analysis. The frequency domain approach is 

also known as spectral analysis and models a time series using sine-cosine functions. The 

two most important spectral tools used in the dissertation are the discrete Fourier 

transform and the periodogram ordinates.



The procedure consists of finding preliminary values for the partial group delay 

parameter. The mean of the preliminary values is then estimated using transforming and 

modeling techniques on the preliminary values. A key requirement for the procedure is 

that the periodogram and cross periodogram ordinates at each Fourier frequency are 

independent of the periodogram and cross periodogram ordinates at all other Fourier 

frequencies. Under this requirement, the estimate is uniformly minimum variance 

unbiased. The key requirement is satisfied as the sample size increases or if the channels 

of the multiple time series are Guassian white noise processes and are not cross 

correlated. The performance of the procedure is demonstrated using a simulation study 

and is compared to the only published procedure by Zhang and Foutz [1989].
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Chapter 1 

Introduction 

1.1 Motivation 

Time series analysis involves analysis of observations that are correlated and taken over 

time. The techniques of time series analysis can be broadly classified into two major 

categories, namely, techniques in the time domain, and techniques in the frequency 

domain. In the present work we extensively make use of the latter techniques. Analysis 

in the frequency domain is typically referred as 'Spectral Analysis' and these techniques 

make use of the fact that the wave like patterns in a series can be modeled using a sine- 

cosine function. 

In the present work we propose a new procedure for estimating the partial spectral 

parameter called the partial group delay. This parameter is also known as the partial time 

delay or the adjusted group delay. Throughout this work these terms will be used 

interchangeably. Note that estimation of partial group delay involves three or more 

series. The aim of the present chapter is to familiarize the reader with the term partial 

group delay and to put forth our motivation for introducing a procedure for estimating the 

partial group delay parameter. In the following paragraphs, using a few examples we try 

to accomplish this aim. 

Consider monthly data for the following series : production of lumber, prices of wood, 

and prices of furniture. It is evident that changes in the production of lumber will have its 
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effect on the prices of wood and prices of furniture. For instance, a drop in the lumber 

production will lead to a shortage of wood, thus causing an increase in the wood prices 

and furniture prices. In addition the increase in the wood prices will cause an additional 

increase in the furniture prices. This increase will not be reflected immediately but may 

happen over a period of time. It would be of interest to quantify the extent of this time 

lag, that is, one would like to know, how soon are the changes in wood prices reflected in 

the prices of the furniture after adjusting for the effect of the lumber production. 

One can observe several such groups of economic series, for instance, consider monthly 

data for production of crude oil, production of gasoline, and gasoline prices. A natural 

entity would be to calculate the time lag for the changes in gasoline production to be 

reflected in the gasoline prices after adjusting for the effects of production of crude oil. 

Another example would be that of finding the time lag between say iron and steel 

industry, and housing after adjusting for the prime interest rates. 

Groups of similar such series can also be observed in fields of study, such as, 

oceanography, seismology, meteorology, geo-physics, and signal processing. For 

instance, in oceanography one might be interested in knowing the time lag between the 

changes in air pressure that are reflected on the height of the tidal wave after adjusting the 

two series for the effect of wind velocity. Another important use of the adjusted time lag 

is that it can be used to estimate other parameters. For instance, in sonar and radar 

systems, the estimation of time delay between the transmitted and the received signal 

from a target can be used to find the location and the velocity of the target (see Quazi 

[1981] for more details). 
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The entity which determines the time lag of one series over another series after adjusting 

for the influences of the common series is called as the partial group delay. In the 

following paragraph a formal definition for partial group delay is given using the result 

by Zhang and Foutz [1989]. The problem of estimating the partial group delay is an 

important one but is rarely addressed in the literature. There is only one method by 

Zhang and Foutz [1989] for estimating the partial group delay. This procedure requires a 

fairly large sample size. Our basic motivation for the present research has been the 

unavailability of an alternate procedure for estimating the partial group delay that works 

well even for a small sample size. 

Let A be a band of frequencies and let X,, Y,, and (ZinrZanseeeerZy,a) be the 

components of the continuous, weakly stationary, and stochastic processes X, Y, and 

(Z,,Z,5.+++5Z,) respectively in the band A. As A shrinks to a single frequency say A,, 

the relationship between X,, and (Y,5Zs.4sZy.qseeersZa) reduces to a simple linear 

time lagged relationship as shown below, 

X,(t)=aY,(t-1)+a,Z,,(t—1,)+...... +0,Z, (t - t,) +€, 

where —0 <t<o, €, is uncorrelated with (Ys ZiqsZoqovesZoa)s and t is called the 

partial group delay of X behind Y after adjusting for the delays 1,,1,,....,t, due to the 

series (z, Arla rere Le, a) respectively. 

In many instances the lead or the lag will be a function of the frequency, for example, a 

wave propagating through a dispersive medium will have its speed of propagation 

dependent on the frequency. Hence, in the literature the phrase 'time delay' is used to 

suggest that the lead or lag is constant and the phrase 'group delay’ to convey that the lead 

or the lag is dependent on frequency. 
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Other important partial spectral parameters are the partial spectral density, partial cross 

spectral density, partial phase, and partial coherence. Partial coherence is a very 

important parameter and it quantifies the strength of the relationship between the two 

series after adjusting for the effect of the common influencing series. We refer the reader 

to chapter 2 for a detailed discussion on these parameters as a thorough understanding of 

these parameters will facilitate understanding the partial group delay parameter in greater 

depths. 

1.2 Organization Of The Thesis 

The dissertation is divided into six chapters. In chapter 2 we present the basic concepts in 

time series analysis with emphasis on spectral analysis. The thrust of the discussion is 

not on technical terms but rather on the intuitive understanding of the concepts especially 

in spectral analysis. This chapter is strongly recommended for the reader who is 

unfamiliar with the notions in spectral analysis. Having acquired the requisite 

background knowledge we present in chapter 3 brief discussions of the papers referred by 

us during the course of this dissertation. The literature discussed falls into five main 

categories, namely, papers concerned with the estimation of unadjusted time delay and 

other spectral parameters; paper discussing the existing procedure for estimating partial 

group delay; papers on the merits/demerits of transforming data; and papers describing 

spline models and their application. Again we do not give the technical details but rather 

point out some of the key issues which were of help to us. In chapter 4 we present step- 

by-step details of the procedure for estimating the partial group delay. The use of the 

proposed procedure is then demonstrated using simulation studies in chapter 5. Finally 
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we end this dissertation with conclusions, ideas for further research and an example in 

chapter 6. In the appendix we have details of the Box-Cox transformation technique and 

present the C language code for the various programs that were written by us to 

demonstrate the procedure. 
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Chapter 2 

Review Of Spectral Analysis 

2.1 Introduction 

A ray of light is composed of many different colors occurring in varying proportions. 

Using an optical device such as a prism, a ray of white light can be split into its 

constituent colors. In physics this is referred to as a Spectrum. Alternately, if the 

different colors and their respective proportions were known, a ray of light could be 

reconstructed by mixing the colors in their right proportions. So, spectral analysis in 

physics refers to studying the composition and properties of light. Spectral analysis in the 

context of time series refers to expressing a process as a sum of sinusoids (sine-cosine 

wave), thus displaying the patterns and the variability in the. process. 

A time series is a sequence of observations made at regular intervals of time. By regular 

interval of time we mean that the observations are equispaced and the unit of time could 

be seconds, hours, days, months or years. Examples of such series are the daily 

temperatures, monthly unemployment figures, and annual rainfall figures. 

The primary objectives for analyzing a time series are descriptive, inferential, prediction, 

and control. Using tools such as the correlogram or periodogram, data can be 

represented graphically. This will enable us to observe and study the patterns in the 

series, thus aiding us to understand and appreciate the underlying process which 

generated the series. Having depicted the series graphically, one would like to model the 
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series, thereby quantifying the observed patterns. The fitted model in turn, would help to 

control the series and forecast values for the future. For instance, one could build a 

model for the sales data of a store based on previous months sales records. With the aid of 

the fitted model, the store can make predictions for the future months. The forecasted 

sales will aid the store in having just the right level of inventory, thereby increasing 

profits. 

Some of the frequently used tools for analyzing data are the techniques of regression and 

analysis of variance. These techniques try to establish a relationship between a dependent 

variable and one or many independent variables. In addition, it is also assumed that the 

errors are independently distributed. In the analyses of time series we make use of the 

knowledge that the subsequent observations and hence subsequent errors are correlated. 

Often we try to seek a relationship between the past and the current observations. This 

relationship aids in understanding the nuances of the process and helps in predicting 

(forecasting) values for the future. Unlike other forms of analyses, in time series analysis 

the observations are first detrendend and the errors around the trend are modeled. 

The two primary approaches employed in analyzing a time series are the time domain 

approach (Box Jenkins models) and frequency domain approach (Spectral Analysis). For 

the time domain approach, depending on the behavior of the series, the series is fitted 

with either an AR (autoregressive) model or a MA (moving average) model or an 

ARIMA (autoregressive integrated moving average) model. Spectral Analysis makes use 

of the fact that many phenomena in nature exhibit cyclical patterns. Using a Fourier 

transform the observed data are transformed to a sum of sinusoids (sine-cosine wave) and 

the variability in the data are studied frequency by frequency. 
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In this work data are analyzed using the frequency domain approach. The techniques used 

in spectral analysis are illustrated in the following example obtained from BMDP 

Statistical Software Manual. Figure 2.1 shows the annual number of Canadian lynx 

trappings for the years 1821-1934. The series exhibits an oscillatory pattern with 

approximately a 10 year period. To model this data set, a sine wave of the same period 

is fitted, this is shown in figure 2.2. The sine wave seems to fit the data well but it fails to 

take into account the heights of the peaks. To account for the peaks different sine waves 

with varying periods can be fitted. Figure 2.3 shows a sum of seven sine waves with 

periods ranging from 7% to 12’4 years fitted to the data. Further refinement can be 

obtained by taking the sum over several frequency bands as shown in figure 2.4. 
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In the following sections, we describe some of the basic elements of spectral analysis. 

Emphasis is laid more on concepts than on technical details. For greater details the 

reader is referred to Koopmans [1974] as it has been extensively referred to in this work. 

The assumptions necessary for the analysis of a time series are listed and two forms ot 

representation of a time series are given. The need to select an appropriate sampling 

interval is discussed in the sampling and aliasing section. Two crucial concepts namely 

transforming the data using Fourier transforms and constructing periodograms/cross- 

periodograms are also discussed. These two steps form the basis for analyzing any time 

series in the spectral domain. This is followed by sections which discuss univariate, 

bivariate. and multivariate spectral parameters and their interpretations. Finally, we end 

this chapter with a brief discussion on the notion of linear filters. 
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2.2 Assumptions 

For the process {X(t)}, —00 <t<oo, under consideration, the following assumptions are 

made, 

l. As the observations are made over time, we assume that subsequent observations are 

correlated. 

The process under consideration is said to be stochastic (random), that is at time point 

t (say), the process assumes not a single value but rather a set of values. The series 

under study is then just one possible realization from the collection of all possible 

realizations. 

The process is weakly stationary, that is, the mean of the process remains constant 

and the covariance depends upon 1, the displacement in time but not on time t. Also 

the variance of the process is finite. The property of weak stationarity can be 

represented mathematically as, 

E(X(t))=p -O<t<o 
E(X(t)X(t+1)) =c(t) -0<t,T<0 

V(X(t)) <0 -0<t<a 

We will assume throughout that p = 0. 

The underlying process which generated the series is continuous and the series is just 

sampled over discrete time intervals. Typically, we assume that the series is sampled 

at time t = 1,2,...... JN. 

A point worth noting here is about an important class of processes called the 

nonstationary processes. These processes, unlike stationary processes do not wander 

about a constant mean. Instances of nonstationary processes are typically encountered in 
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fields of study such as economics and business. An example of the same would be stock 

prices observed over several months. In general, although the process fluctuates at 

different levels at different times, the series shows a similar behavior when the 

differences in the levels are accounted for. Nonstationary processes can be modeled by 

assuming that the d-th difference of the process is stationary. Models which make this 

assumption are called the autoregressive integrated moving average models (ARIMA). In 

this work we do not consider such processes. 

2.3 Representation Of A Time Series 

Let {x(t)},—00 <t<oo be the time series of interest and let x(t) represent the value taken 

by the series {x(t)} at time point t. One way of modeling a series which exhibits a wave 

like pattern is by using the sine and cosine functions. For instance, the series could be 

represented exclusively by a sine function or by a cosine function or by a mixture of sine- 

cosine functions. Two forms of representing a time series, namely, the Cartesian 

representation, and the complex representation are discussed below. In this work the latter 

representation is of main concern to us. The Cartesian representation of a series {x(t)} 

is given as, 

X(t)= A, Sin(At+ >, ) -0<t<o [2.1] 

where A is the angular frequency, A, is the amplitude, @, is the phase, and the 

summation represents sums over different amplitudes, phases and frequencies. 

Using the trigonometric relation, 
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Sin(a + b) = SinaCosb + CosaSinb 

and de Moivre relation, 

e™ = Cos(At)+ iSin(At) 

the complex representation for the series {X(t)},-0o <t<o can be constructed by 

expanding and rearranging expression [2.1] as given below, 

  

X(t)= )°C,e™ -O<t<o [2.2] 
ta 

id; — 

where, C, = — and C=C, 
1 

2.4 Sampling And Aliasing Effect 

It has been stated in the assumptions that the process {x(t)} is continuous and stochastic 

by nature. To gain better understanding of the underlying continuous process, the process 

needs to be sampled at discrete time interval say t = 0,+1,+2,....., in particular for the 

purpose of analysis we consider t=1,2,..,N. This time interval denoted by the symbol 

At is typically equispaced and is referred to as the sampling interval. 

In spectral analysis we are concerned with functions of the type e”' (see expression [2.2]) 

where A is the angular frequency and t is the time. When time t assumes discrete values 

say t =0,+1,+2,..... the functions e™ and e'*?™" (gs is some integer) become almost 

indistinguishable. That is, the components in {X(t)} at frequency A+2n,A+4n7,...... 

seem to have the same frequency A. This phenomenon is called the aliasing effect and 

At2ns (s=1,2,3....) are said to be aliases of A. Asa result of this effect even the best 
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estimates of the sampled series may prove to be poor estimates for the original 

continuous series. 

The problem of aliasing can be minimized by choosing a proper sampling interval At. 

Using the sampling theorem an appropriate choice of At can be made. The theorem 

states that if for some frequency A, the power (variance) for the time series {X(t)} 

outside the range -A <A <A is zero then the underlying continuous time series can be 

reconstructed from the sampled series, such that the sampling interval is 

At=mk/A, k=0,+1,... 

2.5 Discrete Fourier Transforms 

Let {x(t)}, t =1,2,3,...,N be the sampled version of the process {X(t)},-co <t<o. The 

discrete Fourier transform is defined as, 

Six(te™ — -[M]<k<[¥] 2.3] I 
N ta 

where [c] is an integer not greater than c and A, = The frequencies 1, are called the 

W,(A,) = 

Fourier frequencies. Note that, only discrete values of k will be used. The inequalities in 

expression [2.3] around k are used for compactness of the expression . In practice Fourier 

coefficients are found at Fourier frequencies A,, k = 0, 1,2,...,[2]. 

In expression [2.3] each observation of the time series {x(t)} at time t is multiplied by its 

corresponding observation on the sine and cosine waves. Each cross product is summed 

over all N observations and the average is found. This is equivalent to finding two 
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covariances, namely, (i) between the series and the sine wave, and (ii) between the series 

and the cosine wave at the Fourier frequency 4, , —[%=]<k<[¥]. Thus, finding the 

Fourier transforms of the data at Fourier frequency A, , —[] <k< [=] is equivalent 

to finding how well the data are modeled by the sine and cosine wave at Fourier 

frequency A, , —[4]<k <[¥] , 

If the time series {x(t)} is Gaussian then the Fourier coefficients W,(A,) follow a 

multivariate complex normal distribution with mean 0 and variance f,(4,), called the 

spectral density function. The Fourier coefficients are uncorrelated provided the sample 

size is large and the spectral density function is smooth. 

It can be shown that for the time series {x(t)} sampled at discrete time points 

t=1,2,...,N, the variability (power) of the series {x(t)} is given by, 

N [¥] ; : 
<x = DW) 24) 
te 

This implies that the variance accounted for by each Fourier frequency 

A, » -[%]<k<[¥] or rather by each wave pattern can be added to give the total 

variability for the series {x(t}. If we were to consider the different waves as our various 

treatment groups, then this process of accounting for the variability as explained by each 

wave can be thought of as the technique of ANOVA. 

For reasons of convenience we shall use the denominator ¥2nN instead of N. Also for 

simplicity of an expression, the subscript k will be dropped from 4, and the Fourier 

transform at a Fourier frequency A will be represented as, 
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  W, (2) = x > x(t)e™ [2.5] 

2.6 Periodograms And Cross Periodograms 

Using the Fourier transforms W,(), periodogram ordinates are constructed as, 

[2.6] 
  

  

where W.(A) is the complex conjugate of W, (A). Comparing expression [2.4] to 

expression [2.6], the periodogram ordinate can be interpreted as a measure of the 

amount of variability at frequency A. Another way of describing a periodogram ordinate 

is that it is a sample statistic for measuring the variability in a series at a frequency 2. 

The periodogram ordinates are asymptotically independent for k 20 and follow a Chi- 

squared distribution with mean f,(4,) and the respective variances for k # 0,4; k=0; 

and k = = are f2(A,), 2£2(0), and 2f?(z). 

For the bivariate case, let 1x,(t)}, and {x,(t)},-c0<t <0 be the two series under 

consideration, then the cross periodogram ordinates are constructed at the Fourier 

frequencies A as, 
  

1, (A) = W;(A)W, (A) (2.7] 
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The cross periodogram ordinate 1s a measure of covariance between the series 1X,(t)}, 

and {x,(t)} at frequency A. 

2.7 Univariate Spectral Parameter 

In probability theory, one way of summarizing the behavior of the random variable is by 

means of probability density function. Likewise in spectral analysis it would be of 

interest to measure the variability of not just a single instance but of the entire stochastic 

process {x(t}, —0o<t<oo. Such a spectral parameter is called the autospectrum, 

commonly known as the spectral density function. It is denoted by f, (1), where A is a 

frequency of interest. Typically 4 is taken to be the Fourier frequency. 

The periodogram ordinates display the variability for one realization of the process and 

can be thought of as S’, the sample variance in basic statistics. If repeated samples of size 

N were to be drawn from the stochastic process {x(t)}, —00 <t<oo we would get a 

collection of periodogram ordinates at the various frequencies. The expected value of the 

ordinates at the respective frequencies can be found to give us the distribution of power 

for the stochastic process. Thus the spectral density function can be thought of as the 

quantity o*, the population variance in basic statistics. Note that, in this work the term 

power and variability will be used interchangeably. 

The estimates of the univariate spectral parameters are easily derived from the 

periodogram ordinates. For example, it can be shown that the periodogram ordinate at 
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frequency A is an asymptotically unbiased estimate of f,(%), the spectral density of the 

series {x(t)}. This is expressed in notations as, 
N 2 

(2) =16(2)=| pier Do x(e™ [2.8] 
  

However, for smaller sample sizes the periodogram ordinates are biased estimates of the 

spectral density function. 

A major drawback of the periodogram ordinates is, that it is not a consistent estimator. 

That is, the variance of the periodogram ordinate does not tend to zero as the sample size 

N increases. This can be explained by observing the fact that the periodogram ordinates 

are Fourier transforms of C(x), the sample autocovariance function (see Koopmans 

[1974], pp. 74, expression 3.23, and pp. 266, expression 8.19), 

ao 

1, (a) = tI ye C(t) [2.9] 
2n T= 

where 

C C= Lx X(t+|e|)X(t) |e] <N-1 
[2.10] 

= 0 |t| >N-1 

For lags near N-1, C(t) is an average of fewer pairs of observations. This leads to an 

unstable estimate of C(t) and hence an unstable I, (.) irrespective of the sample size N. 

The above drawback can be remedied by averaging the periodogram ordinates over a 

window. This is also known as smoothing a periodogram. A smoothed periodogram 

estimator is represented as, 

w= SK (4-2, I,(2,) [2.11] 
=-[S3] 

v=-[4S] 
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where K() the window function is symmetric and real valued. It is also referred to as 

the periodic weight function. An example of such an estimator is the Danielle estimator. 

For the Danielle estimator a window is considered such that the frequency of interest is at 

the center of the window. The periodogram ordinates in this window are then averaged to 

give us an estimate of the spectral density for the frequency of interest. It can be shown 

(see Koopmans [1974], pp. 269, expressions 8.24-8.25 ) that the Danielle estimate is 

asymptotically unbiased and consistent. 

Likewise for the time domain representation we can define a weighted covariance 

estimator for the spectral density function as, 

f(x) = = Siew, (t)C(t) (2.12] 

where W,, (t), also called the lag window is the weight function. By applying smaller 

weights to unstable C(x) , we can eliminate their effect and make the estimator consistent. 

2.8 Multivariate Time Series 

In practice it would be of interest to study two or more series simultaneously, thus 

leading to a multivariate system of study. Examples of such systems in time are 

encountered in fields of study such as agriculture, engineering, social sciences, biological 

sciences, and economics. The primary objectives for analyzing a multivariate time series 

would be to study the interrelationship among the univariate series that form the system 

or to know whether a series or a group of series influence another group of series. 

Brillinger [1975, pp. 1] points to a multivariate system of series generated from a set of 

2 Review Of Spectral Analysis 19



signals recorded by an array of seismometers in the aftermath of an earthquake or nuclear 

explosion. Stock prices for various blue chip companies would form an interesting 

economic multivariate series. Monthly sales data of clothing items split up in categories 

such as skirts, blouses, shirts, trousers, and coats would be another example of 

multivariate time series. 

Let X'(t)= (fx, (ph {x,(0}, be seeeaes {x,(o}), -0 <t<oo bea multivariate system of 

interest, such that each 1x,(t)}, j=1,2,....,p 1S a univariate series. For X(t) to be a 

stationary stochastic process, each {x (t)} should be weakly stationary. The covariance 

between the series 1x, (t)}, and {x, (t)}, j#k_ should be stationary, that is, it should 

depend on lag t, and not on time t. It is expressed as, 

Cy(t)=E[X,(t)X,(ttt)] -o<t,r<0, 1<jk<p, j#k [2.13] 

When j=k , this becomes the condition of covariance stationarity. 

The multivariate system can be adequately described by the parameter spectral density 

matrix (or covariance matrix). Other spectral parameters like phase, coherence, group 

delay can be derived from the spectral density matrix. We shall discuss below the 

parameters, how to estimate them and their interpretation. 

The spectral density matrix f(A), where A is usually a Fourier frequency of interest has 

autospectrums, (2), j=1,2....p, on the diagonals and the cross spectral densities 

fi. (A), j,k =1,2....p, j# k on the off-diagonals. It is represented as, 
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(ay=] i 7 [2.14] 

Similarly the covariance matrix, C(t), with autocovariances C i (t) j=1,2....p and cross 

covariances C , (t) j,k =1,2....p, j#k is given by, 

C,,(*) Cia(*) vee C,,(t) 

a] re ass 
C,,(t) C,,(t) bees C,,(t) 

where C (t) is given by expression [2.13]. 

Estimates of the elements of the spectral density matrix are obtained by sampling each 

of the univariate series 1X,(t)}, j=1,2,....,p, at discrete time intervals, say t = 1,2,....,N. 

To each univariate series Fourier transformation is applied at the Fourier frequencies 

27k ; , 
=, k = 0,1,2..... [¥] . Let the Fourier transforms at Fourier frequency A be 

represented by W, (A), j=1,2,....,p. The periodogram, and cross periodogram ordinates 

are constructed as, 

J 
L(A)=W(A)W(aA) j=1,2,....p 

[2.16] 
  

1, =W(A)W, (A) jk = 1,2...,p j#k 

As discussed in the previous section, I (4) is an unbiased estimate of the autospectrum 

for the j-th univariate series. Similarly, it can be shown that the cross periodogram 

ordinate | (A) estimates the cross spectral density f,,(2), a complex valued function. 

The cross periodogram ordinates like the periodogram ordinates are asymptotically 
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unbiased and are not consistent estimators. It can also be shown (see Koopmans [1974], 

pp. 124, expression 5.15) that the cross spectral density is a Fourier transform of the cross 

covariances, that is, 

f,(7)=— Ye™C,,(t) [2.17] 

To make the cross periodograms consistent estimators, the real and the imaginary parts 

are smoothed. The cross spectral density is a measure of covariance between the series 

{X,(t)}, and {X, (t)}. 

Koopmans [1974, pp. 137] defines the parameter phase at frequency A as the angular lead 

or lag of the series 1X (of over the series {X,(t)}. The parameter phase denoted by 

05 (2) for an observed series cannot be measured directly but can be calculated from the 

cross spectral density function f;, (A) as 

[2.18] 0,,(4) =—Are oof 
Ref, (A) 

In the paper by Hannan and Thomson [1973], it is mentioned by them that, if 6,, (A) is 

differentiable and has a smooth derivative then the estimate of 0, (A) can be replaced by 

an estimate of 0'.(2), often called the group or time delay. Group delay is a much more 

meaningful parameter because it has a direct interpretation as the time-lead or time-lag of 

the series {X (t)} over the series {x, (t)} at frequency 4. The group delay at frequency 

X is usually represented as follows, 

  (A) = 
on 
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The coefficient of coherence p (A) at frequency A is given by, 

f(A) 
_ (A) = ———_—————— 

Px) =F Ok 
It is interpreted as a measure of correlation between the series {x (of. and {x, (t)} or as 

[2.20] 

a measure of linear association between the series 1X, (t)}. and {x, (t)}. By linear 

association we mean the degree to which one series can be expressed as the output of a 

linear filter with the other series as the input. Using the Schwartz inequality, it can be 

shown that p,, (1) satisfies O0<p,(A)<1 . If the coefficient p,(A) is zero, it would 

imply lack of correlation and a coefficient of one signifies maximum association. One of 

the important properties of coherence is that if the univariate series are passed through 

respective linear filters with the same phase shift, then the coherence between the output 

of the linear filters is same as that of the input series. A nicer interpretation can be given 

using p%, (a), the squared coefficient of coherence. The coefficient p5, (4) measures the 

amount of power explained by expressing either one of the'series as a linear combination 

of the other series. 

2.9 Partial (Adjusted) Spectral Parameters 

The univariate and multivariate parameters discussed above aided in explaining the 

relationship between two time series. In this work the focus is on slightly different 

parameters and is motivated by the following example. Electron-encephalogram studies, 

commonly known as EKG studies are conducted to understand how specific regions of 

the brain function. For example, one might want to know the centers where epilepsy is 

manifested. The brain is a very complicated surface and is made of millions of neurons. 
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These neurons are responsible for the electrical activities in the brain. To study these 

electrical activities a set of electrodes are placed at different sites in the brain. When an 

impulse is passed, data are recorded at the various sites. Data collected at each site can be 

thought of as an univariate series, thus generating a multivariate system of study. Suppose 

we study the electrical activities at Q chosen sites. In particular we are interested in the 

interrelationship between two of the Q sites and suppose we observe that the electrical 

activities at these two sites are almost the same. We are then led to conclude that either 

the neurons at the two sites are really connected by a physiological pathway or the 

neurons at the other (Q—2) sites are driving the neurons at the sites in question. In this 

work the latter case is of concern to us. It is of interest to study the association between 

two sites after isolating the effects of some common influencing sites. To study these 

relationships, we will consider the parameters partial spectral density, partial phase, 

partial group delay and partial coherence. 

Let x(t) =({x,(t) £x, (t)}, beveee {x,(t)}), —0<t<oo be a multivariate system of 

study and let, (x, (t),X,, (t), Xn, (t)} be the q series influencing the series 

1X, (t)}, and {x,(t)}. It is of interest to find whether the series 1x,(t)}. and {x,(1)} are 

genuinely related or do they appear to be related because of their association with the q 

series. To determine the exact relationship between the series {x (t)}, and {X, (t)}, the 

effect of the q influencing series should be subtracted from the series 1x,(t)}, and 

{x, (t)}. This is achieved by constructing linear functions of the q series that best 

approximates the series {x (th, and {X, (t)} respectively. In time series terminology the 

linear function is called a 'Linear Filter' and the process as ‘filtering’ the data. 
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Let,{X, (1)}, m =(m,,m,, bees .m,}; be the best approximation of the series 1x, (t)} 

obtained by constructing a linear filter oof the q series, 

({x,, (bX, (t)}, beste 1X», t)}). The residual process for the series 1x, (t)} can then 

be represented as, 

Vim (t) = X,(t)-X,,, (t) [2.21] 

Similarly, let 1X (1)}, m = (m,,m,, besees ,m,), be the best approximation of the series 

{x, (t)} obtained by constructing a linear filter of the q__ series, 

({x,, (t)}.{X,, (tf, besees Xe, (ty). The residual process for the series {x, (t)} is then 

given by, 

Vim (t) = X,(t)-X,,. (t) [2.22] 

LV (t)}, and {v,_.(t)} are residual processes, free of the influence of the q common 

series and hence will be used to determine the true relationship between the series 

1x, (t)} and {x, (t)}. Note that the notations in expressions [2.21], and [2.22] represent 

the entire time series observed at time t=1,2,...,N and not just the value at a specific time 

point t. 

The cross spectral density between the series 1x, (t)} and {x,(t)} after removing the 

influences of the q series at frequency A is called the partial cross spectral density. It is 

equivalent to finding the cross spectral density between the residual series LV (t)} and 

{V, (t)} and is given by, 

fv 

jk.m (2) = £%(2)—£% (a) fx (a) £% (2) [2.23] 

where f im (A) is a 1xq vector of cross spectral densities between {Xx (th and 1X, (t)}, 

  

i=1,2,...,q. The qxl vector, f*,(4) is the complex conjugate of the vector f£*,(2) of 
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cross spectral densities between {x, (t)} and Xp, (t)}, i=1,2,...,.q and f*(A), is a 

qxq matrix of spectral, and cross spectral densities of 1X, (t)}., 1=1,2,...,q. The indices 

for j and k vary from 1,2,...... p (j#k), excluding the indices m,,m,,...... m_.. When 

j= k, we get the partial auto spectral density. 

The coefficient of partial coherence between the series 1x, (t)} and {x, (t)}, is 

equivalent to calculating the coefficient of coherence between the residual processes 

{V,,.(t)} and {V,,, (t)}, and is given by, 

———————————— 2.24 

f(A) fiym (A) ee 
P ik. m (0) = 

P ikem (2.) is a measure of linear association between {x (t)} and {x, (t)} at frequency A, 

after removing the influence of the q series. 

Partial phase, denoted by 6, ,, (a), measures the angular displacement of {x (d} and 

{x, (t)} at frequency A after removing the influence of the q series. The parameter 

Bim (1) is given by, 

ev fim (A)f2 (2) fee, A) 
“ fim (2) 

(2) = arg] 1- +63 (A) [2.25]   

where the term in the bracket, is the proportion of variability not explained by the 

regression of Lx, (t)}, and {x,(t)}, individually, on the q _ series, 

({x, OE {X,, (Df {Xn, (tf): 

Partial group delay, Ty» (2) expresses the true lead or lag 1x,(t)} has on {x, (t)} at 

frequency A, after removing the influence of the q series. This is equivalent to finding 

the group delay between the residual processes 1Vin (t)} and {V,.. (t)}. It is given by, 
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—_* [2.26] T km (A) on 

2.10 Linear Filters 

The term 'filter' originated in Electrical Engineering. The need to design systems which 

could attenuate/accentuate the input at certain frequencies gave rise to the theory of linear 

filters. A practical application of filters is found in the AM or FM radio tuners. This 

device suppresses the transmission of a signal in unwanted frequencies and transmits the 

signals only in its specified frequency range. 

There are different types of filters. Filters found in audio amplifiers for example, pass all 

components in the frequency band (-2, Ao ). Such filters are called "Low Pass' filters. 

These filters reduce the effect of high frequency distortion. Others such as the one used 

in the base control of an audio amplifier passes all components outside the frequency 

band (—2,,A, ). These filters are called as 'High-Pass' filters. 

An important application of spectral analysis is in the study of systems which are linear 

and invariant in time. By invariant in time we mean, if the two inputs to the filter are the 

same except that they are displaced in time then the outputs will also be the same with the 

same displacement in time. A linear filter transforms an input series {x(t)} to an output 

series {y(t)}. Using the linear operator L the most generalized form of a linear filter can 

be represented as, 

Y(t) = L(X(t)) [2.27] 

2 Review Of Spectral Analysis 27



In particular, the output series {Y(t)} of a linear filter with input {X(t)}, for a continuous 

process, can be represented as 

Y(t) = fg(u)x(t-u)du [2.28] 

and that for a discrete process is, 

Y,= > 8X [2.29] 
u=0 

where g(u) and g, are some deterministic function and are independent of the form of 

the input. The functions g(u) and g, measures the effect of the input in the time domain 

and are called as the impulse response function. One can also conceive of systems where 

the output is based on future input values. But such systems are unrealizable and hence 

will not be considered in our discussion. 

Just as the impulse response function measures the effect of the input in the time domain, 

the complex valued transfer function, denoted by B(), measures the effect of the input 

in the frequency domain. It can be shown that B(2) is a Fourier transform of the impulse 

response function g(u) and can be represented as, 

B(A) = fe(u)e*du [2.30] 

For the frequency domain approach, the relationship between the spectral density of the 

output of a linear filter and its input is as follows, 

spectral density of the) ( squared norm of x { spectral density of the 
output at frequency A) | the transfer function) | input at frequency A 

mathematically this can be represented as, 
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f, (2) =|B(A) | £, (A) [2.31] 

Expression [2.31] shows the simplicity of working in the frequency domain. It shows 

that the value of the output spectral density depends on 1B(a)|° and the input spectral 

density at frequency A and is not contaminated by any other frequency say 4’. In contrast 

the time domain representation given by expression [2.29] shows its contamination due to 

the inclusion of the input values at other time points as well. Analyzing the data in the 

frequency domain makes it possible to study the properties of the system separately at 

each frequency. 
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Chapter 3 

Literature Review 

3.1 Introduction 

The objectives of this research are to introduce a procedure for estimating the parameter 

partial group delay and the procedure should be such that it works well even for a small 

sample size. The parameter partial group delay is defined as the lead or lag between two 

series of interest after eliminating the spurious effects of one or many common 

influencing series. In this chapter we give a brief overview of procedures available in the 

literature for estimating partial group delay and partial coherence in conjunction with the 

procedures available for estimating group delay and coherence. We use the terms group 

delay and coherence to refer to the lead (or lag) and degree of relationship respectively 

between two series of interest. 

Literature has many papers addressing the problem of estimating group delay and 

coherence. To mention a few these are by Carter [1981,1987], Hannan and Thomson 

[1971, 1973, 1981, 1988], Hinich and Wilson [1992], Nikias and Pan [1988], and Ramsey 

and Foutz [1992]. The problem of estimating the partial group delay parameter hardly 

appears in the literature. In fact there is only one procedure by Zhang and Foutz [1989] 

for estimating the partial group delay. It is in the light of this situation that we think our 

research in this direction is important and it is our hope that the procedure we propose 

will prove to be of much use. 
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The material discussed in this chapter is divided into four sections. In the first section we 

discuss procedures that produce valid estimates under the standard assumption of 

normality and incoherence of the signal and noise series. We also discuss procedures that 

are to be used when the signal and or noise series are not Gaussian and the signal and the 

noise series are correlated. We thus hope to give the reader a broader picture of the 

procedures available for estimating group delay and coherence. These references have 

been of immense help in understanding the behavior of the various spectral parameters 

and their interrelationship with each other. In the second section we discuss the literature 

available for estimating the partial group delay. In the third section we discuss briefly the 

Box Cox transformation technique and in section four brief information regarding spline 

models is given. Finally, in section five we mention other miscellaneous references used 

in the development of this work. 

3.2 Review Of Literature For Estimating Group Delay 

The problem of estimating group delay is motivated well by Carter [1981] in the context 

of estimation techniques for passive sonar signal processing for naval systems. The 

estimation of the group delay is not just to find the lead or lag of one series over another 

but to go a step further and use this estimate of group delay to estimate the position and 

velocity of a moving acoustic source. The group delay problem has been considered by 

Foutz [1980] in the examination of the tree rings. 

The literature for estimating group delay can be broadly divided into two categories, 

namely those procedures that fall under the class of generalized cross-correlators and 
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those procedures that make use of higher ordered spectrum. In the following two 

paragraphs we discuss briefly the procedures that fall in the above two classes. We 

assume that each of the series to be examined is made up of two components, namely, a 

signal plus a noise component. 

The procedures that fall in the class of generalized cross-correlators can be used provided 

for each of the series the signal and the noise series are incoherent (uncorrelated) and the 

noise series for the different time series under consideration are incoherent with each 

other. It is also assumed that the signal and the noise series are stationary Gaussian series. 

Procedures belonging to this class consists of two steps, namely, (1) compute a standard 

correlation function as given below, 

R(t) = E[X,(t)X,(t+7)] 

and (ii) maximize the function, such that t that maximizes R(t) provides an estimate of 

the group delay. Intuitively one can think of these procedures as those that find the peak 

of the sample cross-correlation function of the outputs of the two sensors. A detailed 

review of work on group delay estimation and coherence in the class of generalized cross- 

correlators is given by Carter [1987]. 

Procedures based on higher ordered spectra are used when the signal is non-Gaussian and 

noise sources are spatially correlated or when the signal and noise sources are correlated. 

Note that the extent of dependency (correlation) is not known. Estimation in the class of 

generalized cross-correlators is not considered as these procedures do not have the ability 

to suppress the effect of correlated noise sources. As a result the cross correlation 

function is now composed of the joint effect of the signal plus the noise and not just the 

signal. This is highly undesirable, and hence to circumvent this problem estimation using 
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higher order spectrum is considered. Higher ordered spectra are given in terms of higher 

ordered cumulants which have the ability to preserve information on the non-Guassian 

stationary random processes. Higher ordered spectra have also been used to detect non- 

linearities in the mechanisms that generated the series. Also higher ordered spectra are 

independent of the correlated noises as polyspectra of order greater than two are zero. 

Estimates obtained by these methods are unbiased unlike the estimates obtained by the 

cross-correlator methods which are typically biased. For further details on higher ordered 

spectra the reader is referred to Akaike [1966]. For procedures based on higher ordered 

spectra to estimate the group delay and coherence the reader is referred to Hinich and 

Gary [1990], Nikias and Pan [1988], and Carter [1986]. 

We have extensively referred to the papers by Hannan and Thomson [1971, 1973, 1981, 

1988] in this dissertation. The procedures suggested by them fall in the class of 

generalized cross-correlators. We discuss in the following paragraphs some of the key 

points illustrated in each of their papers. 

It was observed by Akaike and Yamanouchi [1963] that when the time delay is large the 

conventional procedures used for estimating the coherence produces a biased estimate. 

This is referred to in the time series literature as 'coherency bias'. Hannan and Thomson 

[1971] introduced a procedure for estimating the coherence when the lag between the two 

series was big. The procedure is based on the likelihood function of complex valued 

Fourier transforms which asymptotically follow a complex multivariate normal 

distribution. 
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Hannan and Thomson [1973] suggest a procedure for estimating group delay. This 

procedure closely follows the Hannan and Thomson [1971] procedure. The procedure 

consists of Fourier transforming the data and obtaining cross-periodogram ordinates. A 

band B consisting of m Fourier frequencies is constructed around a frequency of interest 

say 4, and the estimated group delay is found as the value of t that maximizes the 

function given below, 

q(t) =|[B(z) P=— Se B.] 
An intuitive explanation for the procedure is as follows :- A narrow band is constructed 

around the frequency A. Each series {x (t)} is filtered in this narrow band to produce the 

output }X,(A,t)¢. Let t maximize the function E{X,(A,t)X,(a,t+7) , then as the 
J   

band narrows indefinitely the optimizing t approaches the group delay. In this paper 

Hannan and Thomson suggest that phase is not defined for zero coherence. Also the 

reliability of the estimate of the group delay depends on coherence and _ for small 

coherence the rate of approach of the distribution of the estimate to its asymptotic form 

becomes slow. 

A procedure for estimating group delay when it is not constant over all frequencies is 

suggested by Hannan and Thomson [1981]. This procedure uses modeling techniques for 

spectra and cross-spectra in the time domain unlike the procedure proposed by us in this 

work which uses modeling techniques in the frequency domain. Hannan and Thomson 

[1988] suggest a procedure for estimating the group delay when the signal to noise ratio 

is low for all frequencies. In Hannan and Thomson [1981] it was suggested that 

frequencies with low coherence can be omitted but in this situation it would not be an 

acceptable procedure as the signal-to-noise ratio is low for all frequencies. Hence they 

propose a procedure which uses a weighing scheme for the different frequencies. The 
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procedure is an iterative one where an initial estimate of group delay is obtained. The 

data are realigned using this initial estimate. Estimate for the cross spectra is obtained 

using modeling techniques in the time domain. A new estimate for the group delay is 

obtained using a modified formula which closely resembles expression [3.1]. In the 

67(A,) 
modified formula each of the frequencies are weighed by the quantity 1-30,) where 

—o° (A, 

o(A,) is the coherence at frequency A,. Thus, cross periodogram ordinates at frequencies 

with high coherence get weighed more and those with low coherence get weighed less. 

The procedure is repeated using the new estimate of group delay. 

The method of Ramsey and Foutz [1992] is a two stage procedure. In stage I preliminary 

estimates for the spectral parameters are obtained and in stage II these preliminary 

estimates are modeled using polynomial regression techniques to obtain point estimators 

for the various spectral parameters. This method is different from the other methods in 

the sense that it uses modeling techniques in the frequency domain rather than in the time 

domain. Under a certain condition these estimates are uniformly minimum variance 

unbiased and the method provides confidence estimators that have exact confidence 

coefficients. The condition is assumed to hold asymptotically as the sample size 

increases. This procedure is also applicable for small sample sizes and requires that the 

series be preprocessed so that the condition holds approximately. 

3.3 Review Of Literature For Estimating Partial Group Delay 

The only procedure for estimating partial group delay is by Zhang and Foutz [1989]. 

This procedure closely follows the Hannan and Thomson [1973] procedure for estimating 
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group delay. The authors derive the conditions for consistency and asymptotic normality 

of the estimating sequence. This procedure also falls in the class of generalized cross- 

correlators except that the peak is located in the sample cross spectrum of the residual 

processes. The residual processes are the ones that are obtained by adjusting for the 

effect of the common influencing series from the series of interest. For more details 

about this procedure the reader is referred to chapter 4. 

3.4 Review Of Literature On Transformation Techniques 

For issues related to the choice of an appropriate transformation and for merits/demerits 

of using transformed data an abundant amount of information is found in the literature. 

Especially the papers by Andrew [1971], Box and Cox [1964], Carroll and Ruppert 

[1981], Hinkley and Runger [1984], and Tukey [1955] draw interesting points regarding 

the pros and cons of transforming the data and working in the transformed metric. 

In the analysis of data using linear models the following assumptions must hold :- 

1. Simplicity of the structure of E(y) ( example : model should be additive) 

2. Errors should be normally distributed 

3. Variance of the error should be constant and 

4. Observations should be independently distributed 

Tukey [1955] suggests that we have two choices for data that does not satisfy these 

assumptions, namely, to transform the data so that the assumptions hold or to invent new 

methodology which will use data in its original form. One can readily see that the former 

alternative seems much simpler than the latter one, though the precise nature of the 
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transformation will depend on what ills we are trying to rectify. For instance, Bartlett 

[1947] suggests that a transformation to stabilize variance can be obtained by determining 

the relationship between variance and mean. This could be done simply by plotting a 

graph of the variance versus the mean. To detect departures from normality Anscombe 

[1961], and Anscombe and Tukey [1963] suggest analysis of the residuals. Box and 

Tidwell [1962] suggests transformation of the dependent as well as independent 

variables. 

Box and Cox [1964] suggests transformations of the dependent variable in the power 

family. An important point drawn by them is that the objective of transformation should 

not only be that the assumptions hold but it should also lend to easy interpretation of the 

results in the transformed metric. For instance, a formal analysis may show that Jy is 

the best transformation to achieve normality and constant variance for errors but one may 

have compelling arguments of ease of interpretation for working with say log(y). In this 

dissertation we have used the Box-Cox transformation technique to find a transformation 

so that the assumptions hold. The details of the procedure are given in the appendix. 

Having obtained the right transformation, the traditional estimates in the original units are 

obtained by applying an inverse transformation on the transformed estimates. These 

estimates are typically biased. Neyman and Scott [1960] introduce a procedure which will 

obtain uniformly minimum variance unbiased estimates in original units. Carroll and 

Ruppert [1981] focus their attention on the issues related to prediction of observations in 

original units when data is transformed so as to follow a linear model. 
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3.5 Review Of Literature On Spline Models 

Wold [1974] quotes from Rice [1969] that functions which express physical relationships 

are frequently of a disjointed or disassociated nature. In other words their behavior in one 

region maybe totally unrelated to their behavior in another region. It is precisely for this 

reason that approximating such functions by ordinary polynomials will prove to be 

inadequate. Instead the use of spline functions is recommended. Several references can 

be found in Buse and Lim [1977] for application of splines to real world problems. To 

mention a few, splines can be used to test for structural changes, wage determination, and 

in analysis of chemical data. 

Spline functions are defined as piecewise polynomials of degree n. The abscissa where 

the pieces join are called the knots and fulfill continuity conditions for the function itself 

and its (n—1) derivatives. Polynomials with no knots and piecewise polynomials with 

more than one discontinuous derivatives may also be considered as splines. Thus, in 

general splines are smooth continuous curves with one or more discontinuities. The 

degree of smoothness depends on the number of knots. Spline functions with fewer knots 

will be much smoother than functions with many knots. Though, the fit of the data will be 

much better with more knots. 

For a spline function the parameters at the users disposal are (1) the degree n of the spline 

function, (2) the number of knots, and (3) position of the knots. Wold [1974] and Smith 

[1979] both agree that the latter two parameters of spline functions are important aspects 

but difficult to determine. Wold [1974] suggests that instead of treating knots as free 

parameters, one should choose knots so as to correspond to the overall behavior of the 
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data. In the same context Simth [1979] comments that if knots are considered as 

parameters to be estimated then they enter into the regression analysis in a non-linear 

fashion and then one is faced with all the ills associated with non-linear regression. Thus, 

the choice of fixed knots seems to be the most simplified approach as one can then use 

ordinary least squares for estimation purposes. 

There are different types of spline functions, for instance, Wold [1974] discusses B- 

splines, Smith [1979] analyzes data using '+' functions. Fuller [1969] describes linear and 

quadratic splines. Buse and Lim [1977] show how to fit a piecewise polynomial of 

varying degree with varying continuity restriction. The reader is also referred the 

SAS/STAT User's Guide version 6.0 (pages 1567-1575) for a number of numerical 

examples on how to fit a spline function. Results for spline functions using fixed knots 

can easily be obtained by using the 'Proc Transreg' procedure of the software SAS. To 

use Proc transreg the user specifies one or all of the following :- the degree of the spline, 

the number and position of the knots and the discontinuities. The model for a spline of 

degree three with discontinuities at knots x = 5, 10, 15 can be represented as follows, 

y=B,+B,x+ B,x’ +B,x° +B,(x-5) + B,(x- 10)" + B,(x- 15)" +e€ 

Thus, the spline in the above expression is a weighted sum of a constant, a straight line, a 

quadratic curve, a cubic curve for the portion of x <5, a cubic curve for the portion of x 

between 5 and 10, a different cubic curve for the portion of x between 10 and 15, and a 

cubic curve for the portion of x >15. 
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3.6 Review Of Literature On Other Relevant Material 

The text books by Bloomfield [1976], Box and Jenkins [1976], Brillinger [1981], 

Brockwell and Davis [1991], Koopmans [1974], Priestley [1981], and Wei [1990] have 

aided in understanding the theory and application of time series. The papers by Akaike 

[1962], Akaike and Yamanouchi [1962], Deaton and Foutz [1980], and Hannan and 

Robinson [1973], Koopmans [1964a, 1964b] were useful in the context of spectral 

estimation. The papers by Granger [1969, 1980, 1981] investigate causality and are a 

good source of real world examples on which times series techniques can be applied. The 

text books by Cooper et al. [1974], Kellaway and Peterson [1976] introduced the EEG 

(electroencephalogram) technology to us. The authors extensively make use of the 

spectral tools to investigate and collect information about the centers in the brain where 

epilepsy is manifested. The text book by Pankratz [1991] provided data for the example 

in chapter 6. The text-books by Graybill [1976], and Myers [1990] were referred for 

queries regarding linear models and regression analysis respectively. 
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Chapter 4 

Estimating Partial Group Delay 

4.1 Introduction 

Consider the data obtained from an EEG (electroencephalogram) study. In particular, let 

X, Y, and Z be the three sites which are of interest to us. Suppose we have the following 

scenario: we observe that the electrical activities recorded at sites X and Y are almost 

similar to that at site Z except that the electrical patterns are delayed in time. This 

suggests that the neurons at site Z are driving the neurons at sites X and Y. Further let us 

suppose that the electrical activity observed at site Y appears to have a bigger delay than 

the electrical activity pattern at site X. This leads us to believe that the neurons at site X 

are connected by physiological pathway to the neurons at site Y. The question of interest 

is to find the exact delay that is observed at site Y due to the neurons at site X after 

removing the influence of the neurons at site Z from both sites X and Y. Often the term 

‘delay’ is referred to as the lead of site X over site Y or the lag of site Y with respect to 

site X. A spectral parameter which measures the lead or lag of one series over another 

after removing the influences of some common series is called the partial group delay. 

In the literature there is only one procedure by Zhang and Foutz [1989] to estimate the 

parameter partial group delay and this procedure requires a fairly large sample size. In 

the present work an effort has been made to put forth a procedure that will serve as 

another method for estimating the partial group delay parameter and yield better results 

under certain situations. The proposed technique is especially intended for use when 
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sample sizes are not too big. In the following paragraph we briefly describe the two 

important steps of the proposed technique. 

The proposed technique involves two main stages. In stage-I a preliminary estimate for 

partial group delay is found using the procedure by Zhang and Foutz [1989]. Their 

procedure was an extension of the work done on estimating the unadjusted group delay 

by Hannan and Thomson [1973]. The technique falls in the class of generalized cross- 

correlators. As explained in chapter 3, section 3.1 these techniques try to find the peak of 

the sample correlation function. So in the context of this work it would be the peak of the 

sample partial correlation. Traditionally group delay was estimated as the derivative of 

the phase and thus if the phase was badly estimated this would in turn lead to a bad 

estimate of group delay. The work by Hannan and Thomson [1973] is therefore 

significant in the sense that it is no longer necessary to estimate the phase in order to 

estimate the group delay. Stage-II of the procedure uses the preliminary estimates from 

stage-I in the procedure by Ramsey and Foutz [1992]. This stage treats the preliminary 

estimates as observations. Using various transforming and modeling techniques for these 

observations an estimate of the mean is obtained. Under an ideal condition this estimate is 

uniformly minimum variance unbiased. 

We shall discuss, in the following paragraphs, details of the proposed technique when 

there is only one influencing series, the ideal condition, modification to the technique 

when there are two or more influencing series, how to compute the confidence intervals, 

an alternative method for finding the preliminary estimates, and changes required for the 

procedure when sample sizes are small. 
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4.2 Procedure - Stage I 

Let {x(t)}, and {y(t)} represent the two series influenced by the common series 

({z,(t)}.{Z, (t)}, beceee {z,(t)}), t=1,2,...,N. The series under consideration are assumed 

to be sampled at discrete time intervals from underlying processes that are stochastic, 

weakly stationary, and continuous. For each series construct the Fourier transforms at the 

Fourier frequencies as, 

  

  

  

i < int W, (A) = Tran 2ex(e [4.1] 

1 x iat W, (4) = ay Le [4.2] 

i Ww at: 
W,(A) = say zie j=1,2......4 [4.3] 

27k 
where the Fourier frequencies are given by A= , k= 0,1,2,...,[%], where [x] is an 

ND 

integer not greater than x. 

From the Finite Fourier transforms the periodogram ordinates for the series {x(t)}, 

  

  

  

{y(t)}, and {Z,(t)}, j= 1.2,...q are constructed as, 

1, (0) = W, (A) W, (A) [4.4] 
1, (A) = W, (A) W, (a) [4.5] 

1,(A)=W,(A)W,(A),  j=1,2,......4 [4.6] 

and the corresponding cross periodogram ordinates for distinct pairs of series are 

constructed as, 
  

  

  

I,, (4) = W, (A) W, (A) [4.7] 

1,,(4) = W,(A)W, (2) and [4.8] 

L(a)=W,(A)W(A)  j=1,2,....q [4.9] 
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The procedure for obtaining preliminary estimates will be explained for the simplest case 

when we have only one influencing series, that is q=1. The procedure with slight 

modifications can then be extended for the case q > 1. Let {Z(t)} be the series influencing 

the series {x(t}, and {y(t)}. Let B, be a band centered at frequency w, and containing 

m Fourier frequencies. Let {eos aoa scenes hom t be the m frequencies in the band B,. 

Let B, be another band to the left of band B,, containing m Fourier frequencies 

{An ssdpoeesessApm f- Similarly, let By be a band to the right of band B,, also 

containing m Fourier frequencies {re re AR im \ Note that the Fourier 

frequencies in all the three bands are distinct. The purpose of defining these three bands is 

to find a preliminary estimate at the center of the band B,. The following three 

expressions summarize the notation used in this paragraph, 

By = {AopsAozereese2 bom [4.10] 

By ={AyysAygeeerees dpm f [4.11] 

By = AgyAparceessbp mt [4.12] 

Using the Fourier transforms in the bands B,, B,, and B, we then find the smoothed 

periodogram and cross periodogram ordinates at each of the Fourier frequencies 

ho j=1,2,.....,m as, 

Tan (Aaj) + 1g (20; ) + Tea (Ae;) 
  

  

S.,(%0;) = 7 a=X,Y,Z [4.13] 

a ig,) = mess! ta ns) tal) a,b=X,Y,Z a ¥ b [4.14] 

We then find the partial cross spectral density of the series {x(t)}, and {y(t)} adjusted 

for the influences of the common series {Z(t} as given below, 

Bayz (2, ) = Sy (2. ) ~S,, (2, )s., (2, y Sy (2.9, ) [4.15] 
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The conventional way of adjusting the series {x( t)}, and {y(t)} for the delay due to the 

common influencing series {2(t)} is by using the method of linear filtering (see chapter 

2, section 2.9 for details). The method of linear filtering involves expressing one series as 

a linear approximation of another series. Let L,, and L, be two linear filters of the series 

{z(t)} that approximate the series {x(t)} and {y(t)} respectively. Let 1X(+)} and 

1¥(t)} be the best approximations of the series {x(t)} and {y(t)} respectively. From 

these approximations construct the residual processes as follows, 

{v, (t)} ={x(t)}-{X(0)} [4.16] 
{v,()}={¥@}- {0} (4.17) 

From the residual processes {V, (t)} and Lv, (t)} the cross spectral density is constructed. 

This is also termed the partial cross spectral density of {x(t)} and {y(t)} adjusted for 

{2(t)}. Note that the filtering is done for the entire series not just the individual data 

points. For more details on filtering the reader is referred to chapter 2, section 2.10. One 

easily can see that computing the partial cross spectral density as given in expression 

[4.15] is a much simpler way than computing it using the linear filtering method. 

A preliminary estimate of 1, the partial group delay, is the value of t that maximizes the 

function 
2 

q(t) = [4.18] 
    

I A -it 
— 982 (Ae 
m By 

where & represents the sum over all frequencies in the band B,. Represent this 

preliminary estimate of the group delay by A(a, ) where @, is the average of the Fourier 

. ; 1< , ; , 
frequencies in band B,, that is, w, = —WAo;. The estimate for t in expression [4.18] 

jel 

can be explained intuitively, as the highest peak in the partial cross spectral density 
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function. Thus, if the series were realigned by shifting {y(t)} by Tt units, the coherence 

between {x(t)} and {y(t)} would be maximum. 

The process of constructing bands B,, B,, and B, each containing m distinct Fourier 

frequencies, forming smoothed periodogram and cross periodgram ordinates, forming the 

partial cross spectral density, and maximizing expression [4.18] is repeated till we 

exhaust all the data points. Thus, at the end of stage-I we have n distinct preliminary 

estimates A(a,),A(o,), bese ,A(o,) at distinct frequencies @,,0,,0,,...,0, 

respectively. Note that each of these estimates is formed from three sets of m distinct 

Fourier frequencies. 

4.3 Procedure - Stage II 

The preliminary estimates A(a, ),A(o, ), beeees A(a, ) will be used in the method by 

Ramsey and Foutz [1992]. Their method uses transforming and modeling technique to 

obtain uniformly minimum variance unbiased estimates for the mean of the preliminary 

values found in Stage I. Since the preliminary estimates are highly variable and the 

assumption of normality may be violated, we need to find a transformation f~', such that 

each of the transformed variables, Bla, } = F"'(A(o,))j =1,2....,n follows a linear 

model of the form, 

B(@,) 

=WBt+eE [4.19] 

B(o,) 
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where W is a known matrix, B is a vector of unknown parameters and ¢ is a vector of 

independent normal random errors with mean 0 and variance o”. 

In the simulation studies of chapter 5, we have used the Box-Cox transformation to find 

f-'. This method simultaneously uses the modeling and transforming technique to 

identify the transforming parameter 4 and the unknown parameters B. The Box-Cox 

transformation is given by, 

B(o,) = —+— [4.20] 

and one possible model for the transformed variable Blo i ), j=1,2....,n, could be the 

polynomial model, 

B(o,)=B, +B,0, +B,07+.....4B,oite, j=1,2,.....,n [4.21] 

where the e,'s are random and normally distributed. Note that the transformation obtained 

should be invertible, so that the Alo is can be written as a Taylor series expansion in 

Blo, ) j=1,2....,n. That is, 

A(o,)=f(B(@,))  j=1,2....5n [4.22] 

A(o,)=£()+ Y= 1 (0)(o,) j=1,2,....n [4.23] 
h=1 *4> 

where f‘")(Q) is the h” derivative evaluated at zero. Finally, if expectation can be taken 

inside the summation then the mean Alo ), for the preliminary estimate 

A(o ) j=1,2.....n is a function of Gaussian moments, 

6(o,)=E[A(o,)]=£© +> £(0)E[B(0,)"] j=12,...n [4.24] 
h=1 *: 

and its estimate is given by 
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6(o,)=E[A(o l= FO+D £0 (O)T, j=1,2,....n [4.25] 

where T, is an UMVU estimate of E[B(o i )’ Jand is based on bthe least square estimator 

Bo,)"", is 
of B and S’, the error sum of squares. Thus T, for odd moments, that is E 

  

  

given by, 

hs)! (yyy [SC-8 7" _ TE) 
Tan = Lee Dh aw) 4 | T@th-k [4.26] 

And T, for even moments, that is E[B(o i)’ | is given by, 

___ (2h)! »fS2a-8)] a) 

ec ee 
where W, is the jth row of matrix W, § = W; (w'w)” W;, U(x) =(x-1)! is the Gamma 

function, and v =(number of rows— number of columns) of matrix W. With this we 

complete stage two of the procedure and in the following paragraph we discuss the ideal 

condition necessary to get UMVU estimate. 

4.4 Ideal Condition 

The condition necessary for Ala ) in expression [4.25] to be an UMVU estimate for the 

mean of Alo j } , 1s that the periodogram and cross periodogram ordinates at each Fourier 

frequency should be independent of periodogram and cross periodogram ordinates at 

every other Fourier frequency. This condition is achieved if {x(t)}, {y(t)}. and {z (t)} ; 

j=l1,2,.....q are Gaussian white noise processes and the channels of 

K(t) =(X(t), ¥(t),Z,(t),...-Z,(t)), t=1.2,..,N are not cross-correlated. Note that a 

4 Estimating Partial Group Delay 48



white noise process is a weakly stationary stochastic process with continuous spectra and 

constant spectral density function (see Koopmans[1974], pp. 50). This condition is also 

satisfied asymptotically as the sample size N —o for processes that are linear (see 

Hannan [1970], pp. 248-249). 

4.5 Procedure For q>1 

When we have more than one series influencing {x(t)}, and {y(t)} , the above 

procedure needs to be modified slightly. Let 1z,(t)}, j=1,2,....,q, be the q influencing 

series. When q =1, that is, when there was only one influencing series we formed one 

band to the left and right of the center band, such that, in all we had three bands. When 

we have more than one influencing series we construct p= [3] + 1 bands where [x] is an 

integer not greater than x. Thus, to the left of band B,, we construct bands 

B,, » By, ..---- ,B,, each containing m Fourier frequencies and to the right of band B,, we 

have bands B, ,Bag,...... ,B, each containing m Fourier frequencies. 
P 

Each of the series involved is Fourier transformed at Fourier frequencies. Periodogram 

ordinates are formed for each of the series and cross periodogram ordinates are formed 

for each pair of series. The smoothed periodogram and cross periodogram ordinates at 

each of the frequency A, pp j= 1,2,...,m are then constructed as follows, 

  

1 Sa(05)= 5 Dla (as) a=X,Y,Z,...Z, aon 

d =L,,....L,,0,R,,...,R 
oP? Pp 
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S(Xo,)=——Dlg(y,)  ab=X.YZ,,.Z, aed 
opti’ [4.29] 

Construct at frequency A,,, J=1,2,...,.m M,,(A), the pxp matrix containing the 

smoothed periodogram ordinates for 1Z,(t)}. j=1,2,....,q, and cross periodogram 

ordinates for 1z,(t)}, and {z,,(t)}, j=1,2,.....q J#k; 1xp row vector R,, (A) of the 

smoothed cross periodograms for the {x(t)}, and 1Z,(t)}, j=1,2,....,q and px! column 

vector C,,(4) of the smoothed cross periodograms for the {y(t)}, and 1Z,(t)}, 

j=1,2,....,q. Construct the estimates of the partial cross spectral density for the various 

frequencies as given below, 

By2(%o;) = Sy (Aa;)—Rye(%0j)Man(%o;) Cy (Ao) jal2...m [4.30] 

A preliminary estimate of 1, the partial group delay is the value of t that maximizes the 

function given in expression [4.18] 

Represent this preliminary estimate of the partial group delay by A(o,) where 
m 

—_ 1 ° . . 

O,=s y A, and repeat the process at different frequencies @, ,@,,...... ®, to give us 
J=l 

the preliminary estimates A(a,), beeeee ,A(ao,), respectively. Note that each of these 

estimates is formed from (2x p+1) sets of m distinct Fourier frequencies. These 

preliminary estimates are then used in the stage-II of the procedure. Note that Stage II of 

the procedure remains identical even when we have more than one influencing series. 
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4.6 Confidence Interval Estimation 

Under the ideal condition, a 100(1-a)% confidence interval for a(w ,) is constructed as 

follows: Stage-II of the procedure uses transforming and modeling technique to transform 

the preliminary estimates Alo ) to Blo i). j=1,2,...,n Let, 

u = E[B(o i) [4.31] 

and 0? = V[Blo | [4.32] 

Since the h® moment of B(a ) is a function of 1 and o”, we can write 

E[B(@,)"]=M,(n,07) [4.33] 

The sequence {M, ( Lo? )} can be generated recursively as, 

M,(u,0?) =p [4.34] 
M,(p,02)=p24+0? [4.35] 

M,(p,07)=M,,(p,07)+o7(h-1)M,,(u,07) if h>2 [4.36] 

Thus, expression [4.24] can be written in terms of the moments as, 

e(o,)=E[A(o,)]= £(0)+ Y— 6M, (1,0?) j=1,2,....0 [4.37] 
h=] **° 

Let g, and g, be such that, g, follows a chi-squared distribution with 1 degree of freedom 

and g, follows a chi-squared with udegrees of freedom and are defined as follows, 
2 

(Wb-p) 
J 

Z, =—— [4.38] 
Eo 

S? 

Next, pick two constants c,, and c, such that, 

P(g, <c,)P(g, >c,)=1-a [4.40] 
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In Ramsey and Foutz [1992] it is shown that a 100(1-a)% joint confidence set for ( L,o? ) 

is given by, 
2 

E= {io o< =, Wb- Eco? <p< Wb+ Ec," [4.41] 
2 

Finally, the set E can be mapped into the 100(1-a)% confidence interval of values for 

e(o,) as given by 

1(o,):(1,02) cE} 

where A(« ,) is given by expression [4.37] 

4.7 Finding Preliminary Estimates Using The Slope Method 

In section 4.2 a method for finding preliminary estimates for partial group delay was 

described. In the present section we describe one more method for finding the 

preliminary estimates and we will refer to this method as the slope method. In the present 

work this method has not been extensively investigated by simulation studies and hence 

we refrain from making concrete comments regarding the merits of this procedure. 

However this is one idea for future research and we demonstrate the use of this procedure 

using some naturally occurring time series in chapter 6. 

For the three series {x(t)}, {y(t}, and {z(t)} we obtain the Fourier transforms at 

Fourier frequencies, the periodogram ordinates and the cross periodogram ordinates as 

given by expressions 4.1 - 4.9 in section 4.2. Next we construct a band say B, containing 

m Fourier frequencies {AypsAig acces Aim f- Thus, a total of M = [%] such bands can be 

formed. Note that each of the bands contains m distinct Fourier frequencies and [x] is an 
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integer not greater than x. Let {B,,B,,...,B,,} represent the M bands each containing m 

distinct Fourier frequencies. 

For each of the bands B.. j=1,2,..M , smoothed periodogram and cross periodogram 

ordinates are constructed as follows : 

s.(a,)=—> la (i) a=X,Y,Z; L=1,2,..,M [4.42] 
m 

S(a,)=—Slp(A,,) ab=XY,Z;a#b; b= 1,2...M [4.43] 
ns 

J 

From the smoothed periodogram, and cross periodogram ordinates the estimated partial 

cross spectral density for the series {x(t)} and {y(t)} adjusted for the effect of the series 

{z(t)} is obtained for each of the bands B,, j=1,2,..M as follows, 

By 2( AL) = Syy (Az) -Sy-(A1)S2(Az) Sz (Az) L=1,2,..M [4.44] 

and for each of the bands B;. j=1,2,..M the estimated partial phase is obtained as the 

argument of the estimated partial spectral density and is represented as follows, 

iby) rel ())= arta Ene) ; [4.45] 
Re Exyz (A, ) 

Finally, preliminary estimates for the partial group delay at frequency say 1, are obtained 

  

as follows, 

. 6, (Ay .,)-9,, (A 
t(A,)= 92 Ar) Payer) L=1,2,...(M-1) [4.46] 

Mia AL 

where hy = AE, 

This method thus results in n=(¥] preliminary estimates for the partial group delay. 

These n estimates will be used in Stage II of the procedure as described in section 4.3 to 
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obtain uniformly minimum variance estimates for the mean of the preliminary values. 

Naively comparing the two procedures it appears that the present method is 

computationally simpler to use. Also for a bandwidth of say m the present method yields 

more preliminary estimates than the method of section 4.2. But as stated at the beginning 

of this section we refrain from making any conclusions about the merit of this procedure 

as no simulation studies have been conducted to test this procedure . 

4.8 Procedure For Small Samples 

When sample sizes are small, the procedure of Ramsey and Foutz [1992] needs slight 

modification because the condition of independence of periodograms and cross 

periodograms at each of the Fourier frequencies is violated. It is known that for a white 

noise process the periodogram ordinates and cross periodogram ordinates at the Fourier 

frequencies are independent. Hence, one way to satisfy the ideal condition is to prewhiten 

the series. The purpose of 'prewhitening' is to make the series nearly white noise, thereby 

satisfying the ideal condition. In the context of regression analysis the process of 

prewhitening can be compared to the process of transforming the data, such that the 

assumption of normality holds. 

To prewhiten the multivariate process F(t)= ({x(t)}.{y(t)}.{z,(t)}, sevens {z,(t)}) 

construct a linear filter such that the (q+2) channels of F(t) are transformed to a (q +2) 

dimensional prewhitened series G(t) = ({o(t)}.{P(t)}.{a, (t)}, besees {c,(t)}). Let the 

matrix of the transfer function of the linear filter be represented by B(A). At each Fourier 

27k N 
frequency A= k= 0,1... x] construct (q+2) dimensional matrices I,(A) of 
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periodogram and cross periodogram ordinates for the prewhitened multivariate series 

G(t). Since G(t) is white noise, the matrices I,(4) at each Fourier frequency will be 

independent of the matrices at every other Fourier frequency. The matrices I, (A) are re- 

transformed as, 

1,(A) =B(A) 'Ig(4)B(A) [4.47] 

where B(A) is the inverse of the complex transfer function matrix B(A) and B(x)" 

the transpose of its complex conjugate. Moreover the transformed matrices |] Ga 

also independent matrices at the Fourier frequencies. The procedure for estimating the 

partial group delay for small sample is carried out exactly as described in sections [4.2] 

and [4.3] except that the transformed matrices 1,(A) constructed for the multivariate 

series G(t) are used instead of the matrices I(A) for the multivariate series 

F(t)=({x(e)} {y(t} } {z,()h.......{Z,(o)}). 

One way of prewhitening the series could be to fit a vector autoregressive model of order 

p. For example, for the case q=1, that is, when there is only one influencing series 

{Z(t)}, we could prewhiten the series using a vector AR(1) process as follows, 

X(t) Ay, a. a); \f X(t—-1) g,(t) 

Y(t) {=| a, a. a3 ff Y(t—1) | +) g,(t) [4.48] 

Z(t) As, 43. a3; \ Z(t—1) g;(t) 

The above expression can be rewritten as, 

F(t) = AF(t—1)+G(t) [4.49] 

rearranging terms we get, 

G(t) = F(t)— AF(t—1) [4.50] 

G(t) = (1- AB)F(t) [4.51] 
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The transfer function for the AR(1) process is given by , 

B(A) =1-Ae™ [4.52] 

and the elements of the matrix A can be found by the usual technique of least squares. 
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Chapter 5 

Application Of The Proposed Technique 

5.1 Introduction 

In chapter 4 the theoretical concepts of the proposed procedure for estimating partial 

group delay were discussed. Our objective in this chapter is fourfold : (1) With the use of 

simulated data we will demonstrate how this procedure could be used to estimate the 

partial group delay. (ii) On the same data sets we will apply the procedure by Zhang and 

Foutz [1989] to estimate the partial group delay. As mentioned in the previous chapters 

the procedure by Zhang and Foutz [1989] is the only other procedure available for 

estimating partial group delay. (i111) Next we compare the results of our procedure to the 

results of the procedure by Zhang and Foutz [1989]. (iv) Lastly we proceed to justify the 

need for the proposed procedure by establishing the fact that for certain situations our 

procedure is much better than that of Zhang and Foutz [1989]. 

The above objectives are demonstrated by means of two simulation studies. We consider 

the simplest case when q=1, that is, there is only one series {2(t)} which influences the 

series {x(t)}, and {y(t}. In these studies the series {x(t)}, {y(t)}, and {Z(t)} were 

simulated using theoretical models in the time domain. The intent of simulating the 

series in the time domain was to demonstrate how this methodology could work in 

practice for real data sets. Using Fourier transforms the series were then converted to the 

frequency domain. The series {x(t}, and {y(t)} were constructed as an additive effect 

of three components, namely, a signal, a noise and the influencing series {Z(t)}. The 
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signal component of the series {y(t)} was the same as that of {x(t)} except that it was 

delayed in time. Further it was assumed that the signal and the noise components for 

each of the series were uncorrelated and the noise components for the series 1X(t)}, and 

{y(t)} were also uncorrelated. 

There are numerous time domain models which one can employ to construct the signal. 

For instance, a simple choice could be an autoregressive model of order p [AR(p)], a 

moving average model of order q [MA(q)], a mixed autoregressive and moving average 

model of order p, q [ARMA(p, q)] or simply a white noise process. The same choice of 

models would also be available for the influencing series {2(t)}. Models for different 

simulation studies can thus be constructed by using various combinations of the models 

for the signal and the influencing series. It would be practically impossible to try the 

procedure on each and every combination of the models and as such will be beyond the 

scope of this dissertation. We thus have selected only two interesting models for the 

simulation studies. 

The following material of this chapter is divided into four sections. In the first two 

sections we discuss at length the two simulation studies that were conducted to 

demonstrate the procedure. In the next section we compare the results of the proposed 

procedure to the results of the Zhang and Foutz [1989] procedure and demonstrate for the 

simulated cases that the use of the proposed procedure will yield better results than the 

Zhang and Foutz [1989] method. Finally in the last section we give justification for the 

choice of the bandwidth 'm'. 
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5.2 Simulation Study I 

In this study data were simulated for a theoretical partial group delay of 2, that is, after 

adjusting the two series for the effect of the series {2(t)} the series {x(t)} led the series 

{y(t)} by 2 units. In this study the signal was an MA(1) process with parameter 6 = 0.8. 

The series {2(t)} was constructed as an AR(1) process with parameter 6=0.5. The 

material in this section is divided into three sub-sections. In the first sub-section details 

of the model that was used to simulate the data are given. In the second sub-section 

details of how the procedure was applied and estimates of partial group delay are 

presented and finally in sub-section three we compare the results of the proposed 

procedure to the results of the Zhang and Foutz [1989] method. 

5.2.1 Model For Simulated Data 

The series {x(t)}, {y(t)}, and {z(t)} were constructed as, 

Z(t) =.5Z(t-1)+ y(t) [5.1] 

X(t) =.8Z(t+1)+e,(t) [5.2] 

Y(t) =.6Z(t+2)+e,(t) [5.3] 

where y(t) was a white noise process with mean 0 and variance 0.06 and was not 

correlated with the signal {2(t)}. The residual processes {e (t)}, and e,(t)} were 

constructed as, 

e.(t)=S(t)+a(t) [5.4] 

e,(t) =S(t+2)+B(t) [5.5] 

where {o(t)}, and {p(t)} were white noise processes with mean 0 and variance 0.4 and 

were uncorrelated with the signal process {s(t)}. Also the white noise process {o(t)} 
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was uncorrelated with the white noise process {a(t)}. The signal process {s(t)} was 

constructed as, 

S(t) = n(t)+0.8n(t -1) | [5.6] 

where { n(t)} was a white noise process with mean 0 and variance 2.85. Expression [5.6] 

can also be written as, 

S(t) = (14 0.8B)n(t) [5.7] 

where B is the backward shift operator that takes y(t) to n(t—1). Since {n(t)} is a white 

noise process with mean 0 and variance 2.85, its spectral density is given by, 

G 2.85 
f (Aja —t=- 7 5.8 
0{) 2x 2n D8] 

The transfer function of the output process {s(t)} can be constructed (see Koopmans 

[1974], pp. 166) as follows, 

B(A) =(1+0.8*e™ ) [5.9] 

It can also be shown (see Koopmans [1974], pp. 90-91) that the spectral density of the 

output process {s(t)} of a linear filter with input as the white noise process {n(t)} 1S 

given by, 

f,(A) =|1+0.8e"|" f(a) [5.10] 

22.85 
= [5.11] f,(A) =|1+0.8e" 

The residual processes {e_(t)}, and te, (t)} are in fact series {x(t)}, and {y(t)} 

respectively adjusted for the effect of the common series {Z(t)} and can be written in 

terms of the process {n(t)} as follows, 

e (t)=(1+0.8B)n(t)+a(t) [5.12] 

e,(t)=(1+0.8B)n(t+2)+B(t) [5.13] 
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The output {O(t)} of a linear filter L with input {1(t)} and contaminated with noise 

{N(t)} is written as follows, 

O(t) = L(I(t)) + N(t) [5.14] 

and the corresponding spectral density for the output {o(t)} is given by (see Koopmans 

[1974], pp. 145-146), 

f(A) =|B(A) £,(0) + fy(2) [5.15] 

where B(1) is the transfer function of the linear filter L. Expressions [5.12] and [5.13] 

are similar to expression [5.14] and using expression [5.15] the theoretical spectral 

densities for the residual processes {e.(t)}, and ie, (t)} can be obtained. In fact, the 

spectral densities are identical as the white noise processes {a(t)} , and {p(t)} have the 

same variances, namely 4, the same transfer function and are given by, 

f. (A)=f,, (A)= —[2.83]1+.8e"/ +04] [5.16] 
x yy IC 

To obtain the cross spectral density between the residual processes {e (t)} and ie, (t)} 

we first obtain their cross-covariances at lag t as follows, 

C(t)= E[e, (t)e, (t+7)] [5.17] 

using expanded versions of expressions [5.12] and [5.13] in expression [5.17] we get, 

E[n(t)n(t+1+2)]+0.8*E[n(t)n(t+t+1)]+ 

C(t) =40.8* E[n(t—1)n(t+t+2)]+0.64* E[n(t—Iq(t+7t+1)]+ [5.18] 

cross product terms for signal and noise 

The cross product terms are zero as the signal and noise processes are uncorrelated and 

C(t) is as given below, 
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2 : —_ Co; if t = -2 

o(2) =f 08" ift=-1 <19 
7) 0.8*6? ift=-3 19] 

0.64 *0% ift=-2 

The cross spectral density between the residual processes {e (t)} and je, (t)} is then 

given by, 
x 

(A)=L Yemc(s) — -w<a<n 5.20 

Using expression [5.19] and o, = 2.85 in expression [5.20] we get, 

f.. (.)-=> (1+0.64)*e7" +0.8%e" +0.8*e%" [5.21] 
x*y T 

* 4 2iA ; ; 

f.. (A)= = [(1+0.64)+0.8%e +0.8*e"] [5.22] ‘ey a 

f. (a)= = [2.85)1+.8e" ‘e™ [5.23] e 

The phase for the residual processes or the partial phase for the series {x(t)} and {y(t)} 

after adjusting for the series {Z(t)} is obtained from the cross spectrum of the residuals 

as, 

8... (4) =Aralf.,.. (A) = Are(e”) [5.24] 
0, (A) = 2 [5.25] 

and the partial group delay is given by the derivative of the partial phase as follows, 

(A) Bee A) ) 2 5.26 a Pe] 
As can be seen in the above expression the partial group delay is constant for all 

frequencies A. 
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The corresponding coherence for the residual processes {e,(t)} and te, (t)} is given as 

follows, 

  [5.27] 

[2.gsji+.8e*|'| 
A) = — , [5.28] 

[2.85]1+.8e"| +0.4| 
  

and in the following table the partial coherences as given by expression [5.28] for some 

of the commonly used frequencies are presented , 

Table 5.2.1 Partial Coherences For Simulation Study I 
  

  

        

™ 7 
Frequency 0 4 > m 

Par.Coherence 0.95848 0.95179 0.921167 0.22178     
  

§.2.2 Results 

Using the model of section [5.2.1] 100 data sets were simulated. The simulation was 

conducted on a personal computer using the statistical package SAS. It took 

approximately 20 minutes to generate 100 data sets. Each data set consisted of 512 

observations. In the context of spectral analysis this can be considered as a small sample. 

In fact the literature does not specify what constitutes a large sample and what qualifies 

as a small sample. It seems to be an unwritten law that a data set of several 1000 

observations would constitute a large sample and a data set of a few 100 observations 

would qualify as a small sample. 
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To give the reader a visual idea of the nature of the series, we have on the following two 

pages shown plots for two sets of simulated series. In the figures a separate graph for 

each of the series {x(t}, {y(t}, and {Z(t)} are plotted versus time. The plots in the 

first figure are for data set number | and the one in the next figure are for data set number 

25. Plots for the remaining 98 data sets can be generated easily using SAS. They are not 

included in this work so as to keep this work concise and brief. 

The series {x(t}, fy(t)}, and {2(t)} generated in the time domain were first tapered 

using a 5% taper and then converted to the frequency domain using a Fourier transform at 

the Fourier frequencies. We had a total of 256 distinct Fourier frequencies at which the 

periodogram and cross periodogram ordinates were constructed. The bands B,, B,, and 

B, were formed. Each band contained eight Fourier frequencies, that is, m=8. The 

choice of m=8 will be justified in section [5.5]. Having constructed the bands B,, B,, 

and B, smoothed periodogram and cross periodogram ordinates were formed. The 

partial cross spectral densities were obtained for the various frequencies and the function 

q(t) (see chapter 4, expression 4.18) was maximized to give the preliminary estimate for 

the partial group delay. For each data set ten preliminary estimates were obtained. 

The preliminary estimates were used in the procedure by Ramsey and Foutz [1992] to 

obtain UMVU estimates for the mean of the preliminary estimate at the respective 

frequencies. Only the first eight preliminary estimates were used and the last two were 

discarded. The reasons for doing so are as follows : (i) Its relatively simple to model over 

a narrower band than over a wider band of frequencies. (11) A low partial coherence 

implies that the magnitude of the relationship between {X(t)} and {Y(t)} is considerably 

low, thus leading to preliminary values for the partial group delay that are badly 
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estimated. Note that the partial coherences at the discarded frequencies 4 = 2.43596 and 

2.73049, were 0.75 and 0.55 respectively and the partial coherences at other frequencies 

were greater than 0.89. As a result of low partial coherence the preliminary values 

estimated at these frequencies were highly inflated and hence we were justified in 

eliminating them. This seems to be an acceptable practice by many statistician in the 

estimation of spectral parameters. For instance Hannan and Thomson [1981] make the 

following suggestion in the context of estimating phase : 

"Figs. 3 and 4 show © for two simulations and indicate how inaccurate is > for low ©. 

Undoubtedly better results would have been achieved had frequencies above about 1.25 

radians been eliminated." 

Recall that the Ramsey and Foutz [1992] method involves modeling the preliminary 

estimates as functions of frequencies. The two modeling techniques employed were 

polynomial regression and spline models. In all there were six data sets that were 

modeled using regression models. These models were typically first, second, or third 

order models. Thirty-two data sets were modeled using spline regression. Here the knots 

varied from one through four. The remaining sixty-two data sets had to be transformed 

using the Box-Cox transformation technique. The Box-Cox parameter A typically varied 

between Zero and one. 

In the following table, we present the partial group delay estimates using the proposed 

procedure and the Zhang and Foutz [1989] method at frequency A=1.25786. The table 

also includes 90% confidence intervals for the two methods at the same frequency. 
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Table 5.2.2 : Partial Group Delay Estimates For Proposed Procedure And Zhang 

& Foutz [1989] Procedure - Study I 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Data Set Proposed Proposed 90% C.I = |Zhang's Est. Zhang's 90% C.I. 

Est LBD UBD LBD UBD 
] 2.173 -0.43 4.777 3.5 2.759387 4.240613 

2 2.377 -0.878 20.274 0.6 -0.14061 1.340613 

3 4.328 -1.007 36.253 -3.1 -3.84061 -2.35939 

4 3.423 1.159 22.625 49 4.159387 5.640613 

5 4.015 1.115 25.238 1.3 0.559387 2.040613 

6 0.951 -0.775 2.678 1.1 0.359387 1.840613 

7 1.282 -1.848 30.762 -3.2 -3.94061 -2.45939 

8 1.783 0.227 3.338 1.9 1.159387 2.640613 

9 3.433 0.554 6.312 3.4 2.659387 4.140613 

10 2.328 0.077 22.147 -0.8 -1.54061 -0.05939 

11 2.729 0.619 4.84 4.7 3.959387 5.440613 

12 1.777 -0.754 24.19 -1.8 -2.54061 -1.05939 

13 3.971 1.213 17.895 1 0.259387 1.740613 

14 4.85 1.159 8.541 4.3 3.559387 5.040613 

15 -0.625 -2.865 1.616 0.3 -0.44061 1.040613 

16 0.561 -1.19 8.871 -1.3 -2.04061 -0.55939 

17 2.351 -0.473 126.566 42 3.459387 4.940613 

18 2.226 -2.744 53.755 4.1 3.359387 4.840613 

19 5.875 2.198 9.553 6 5.259387 6.740613 

20 1.432 -0.498 3.363 2.5 1.759387 3.240613 

21 6.098 4.102 8.094 4.6 3.859387 5.340613 

22 3.851 0.534 7.167 1.8 1.059387 2.540613 

23 5.615 0.387 35.556 1.9 1.159387 2.640613 

24 2.08 -1.389 22.172 -4.6 -5.34061 -3.85939 

25 2.652 1.428 3.876 2.5 1.759387 3.240613 

26 2.13 0.756 3.504 1.6 0.859387 2.340613 

27 2.898 0.7 67.279 4] 3.359387 4.840613 

28 4.009 0.355 71.829 3.8 3.059387 4.540613 

29 6.17 3.197 9.144 5.7 4.959387 6.440613 

30 2.79 -0.919 24.898 -3.1 -3.84061 -2.35939 

31 5.397 -0.182 34.251 2.6 1.859387 3.340613 

32 -2.548 -4.961 -0.136 0.9 0.159387 1.640613 

33 2.043 -0.101 27.782 -0.4 -1.14061 0.340613 

34 1.617 -3.12 48.442 -2.9 -3.64061 -2.15939 

35 2.147 -0.058 4.352 0.3 -0.44061 1.040613 

36 -0.82 -3.2 1.56 -1 -1.74061 -0.25939 

37 2.111 0.815 15.763 4.3 3.559387 5.040613 

38 0.825 -0.937 15.356 -2.4 -3.14061 -1.65939 

39 3.633 -0.094 32.04 1.4 0.659387 2.140613               
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Data Set Proposed Proposed 90% C.I |Zhang's Est. Zhang's 90% C.I. 

Est LBD UBD LBD UBD 

40 3.147 0.632 5.662 5.7 4.959387 6.440613 

41 3.733 1.97 18.208 0.4 -0.34061 1.140613 

42 1.867 -0.481 20 -1.5 -2.24061 -0.75939 

43 2.125 0.717 3.533 2.6 1.859387 3.340613 

44 2.929 1.03 4.828 4.8 4.059387 5.540613 

45 -0.811 -1.348 -0.274 -0.8 -1.54061 -0.05939 

46 2.294 -1.105 25.51 2.6 1.859387 3.340613 

47 0.865 -0.704 17.065 ] 0.259387 1.740613 

48 1.44 -0.533 16.978 -1.3 -2.04061 -0.55939 

49 2.114 -6.419 80.115 5.4 4.659387 6.140613 

50 3.142 1.475 4.808 3.5 2.759387 4.240613 

51 4.999 1.142 8.857 8 7.259387 8.740613 

52 2.751 -0.056 28.229 1.5 0.759387 2.240613 

53 -0.378 -6.398 5.642 -2.9 -3.64061 -2.15939 

54 2.165 -1.162 28.293 -2.8 -3.54061 -2.05939 

55 1.537 -0.051 3.125 1.6 0.859387 2.340613 

56 2.055 -9.851 13.961 4.3 3.559387 5.040613 

57 ~1.05 -2.484 0.383 -0.1 -0.84061 0.640613 

58 2.625 -0.739 35.908 1.4 0.659387 2.140613 

59 1.934 -0.649 4.517 1.8 1.059387 2.540613 

60 2.17 1.177 3.162 2.4 1.659387 3.140613 

61 3.118 -2.984 57.533 -6.2 -6.94061 -5.45939 

62 3.29 -1.696 19.629 3.8] 3.059387 4.540613 

63 1.467 -0.565 3.498 0.3 -0.44061 1.040613 

64 1.192 -0.49 47.502 -0.1 -0.84061 0.640613 

65 2.24 -0.879 46.947 1 0.259387 1.740613 

66 3.353 2.434 6.835 2.2 1.459387 2.9406 13 

67 2.921 1.106 19.098 4.7 3.959387 5.440613 

68 7.091 1.228 38.764 7.5 6.759387 8.240613 

69 1.756 -1.804 48.624 -2.6 -3.34061 -1.85939 

70 2.961 1.052 4.87 2.6 1.859387 3.340613 

71 1.616 -0.31 13.006 2.3 1.559387 3.040613 

72 0.112 -2.543 2.767 -0.3 -1.04061 0.440613 

73 4.009 1.642 17.08 4.4 3.659387 5.140613 

74 3.291 -1.449 28.444 -1.7 -2.44061 -0.95939 

75 0.277 -1.581 139.075 -2.4 -3.14061 -1.65939 

76 0.795 -0.887 20.515 5.3 4.559387 6.040613 

77 2.097 -0.88 31.548) 2.8 2.059387 3.540613 

78 -2.422 -6.381 1.536] -1.1 -1.84061 -0.35939 

79 4.36 0.127 26.161 7.4 6.659387 8.140613 

80 2.053 -0.918 32.456 -0.1 -0.84061 0.640613 

81 3.952 0.577 22.341 1.6 0.859387 2.340613               
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Data Set Proposed Proposed 90% C.I {Zhang's Est. Zhang's 90% C.I. 
Est LBD UBD LBD UBD 

82 1.75 -3.992 7.492 2.8 2.059387 3.540613 

83 2.142 1.146 10.066 2.1 1.359387 2.840613 

84 2.653 -0.434 30.879 3.5 2.759387 4.240613 

85 1.6 -0.794 37.022 -1.5 -2.24061 -0.75939 

86 3.449 1.508 5.39 1.3 0.559387 2.040613 

87 7.443 2.887 11.999 7.1 6.359387 7.840613 

88 2.165 0.846 32.318 0.9 0.159387 1.640613 

89 2.126 1.42 118.283 1.7 0.959387 2.440613 

90 1.577 -0.194 9.485 1.5 0.759387; 2.240613 

91 2.325 -3.289 55.509 9.4 8.659387 10.14061 

92 2.871 1.046 21.031 4.1 3.359387 4.840613 

93 1.586 0.563 2.61] 1.3 0.559387 2.040613 

94 2.118 -0.086 297.733 -0.8 -1.54061 -0.05939 

95 2.048 0.619 18.093 3.2 2.459387 3.940613 

96 3.437 -0.048 33.464 3.4] 2.659387 4.140613 

97 1.952 -11.033 102.53 0.4 -0.34061 1.140613 

98 1.533 -2.687 41.394 -2.4 -3.14061 -1.65939 

99 -5.511 -10.79 -0.232 -6.4 -7.14061 -5.65939 

100 1.965 -1.168 33.323 -0.1 -0.84061 0.640613     
  

5.2.3 Comparison Of The Results 

In this section we compare the results obtained using the proposed procedure to an 

existing procedure. This other procedure is by Zhang and Foutz [1989] and as mentioned 

previously is the only other procedure for estimating partial group delay. The summary 

statistics for the estimated partial group delay using the proposed method and the method 

by Zhang and Foutz [1989] at frequency A=1.25786 are presented in the following table: 
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Table 5.2.3. Simulation Study I - Statistics At Frequency A=1.25786 
  

  

  

  

  

  

  

  

STATISTICS PROPOSED METHOD | ZHANG'S METHOD 

MEAN 2.34349 1.552 

STD. DEVIATION 1.834841 3.01951 

VARIANCE 3.552627 9.1174406 

BIAS 0.34349 -0.448 

MEAN SQUARE ERROR 3.670612 9.318175 

NOS. OF 90% C.I CAPTURING t | 88 25 

N 100 100           
The true partial group delay for the simulated data sets was 2. Observing just the 

numbers it appears that the bias for partial group delay estimate using the proposed 

technique and the Zhang and Foutz [1989] procedure is the same. A one sample Z test 

conducted for the means of each of the methods indicated that the two means were not 

significantly different from 2, the true value of the partial group delay. The p-values for 

the proposed method and Zhang and Foutz [1989] method were 0.0614 and 0.267 

respectively. 

The variance and the mean square error for the partial group delay estimate using the 

proposed method is far less than their counterparts obtained using the procedure by 

Zhang and Foutz [1989]. A t-test was conducted to test the significance of the difference 

between the two dependent variances. We consider the variances dependent because the 

same data sets were used by the two procedures to estimate the partial group delay. The 

t-test indicated that the variances for the two methods in fact are significantly different 

from each other (p-value < .001). See Ferguson [1976] , pp. 180 for the t-statistic. 
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Recall that using the procedure by Zhang and Foutz [1989] we obtain asymptotic 

confidence interval and the intervals obtained using the proposed technique are exact 

confidence intervals provided the ideal condition (see chapter 4, section 4.4) is satisfied. 

For the proposed method 90% confidence intervals were computed. Out of the 100 

intervals computed, 88 intervals captured the true value of the partial group delay, that is, 

the true value 2 was enclosed in 88% of the intervals. Only 25 of the 100, 90% 

confidence intervals computed for the Zhang and Foutz [1989] method could capture the 

true partial group delay of 2. 

5.3 Simulation Study II 

We conducted another study to estimate the partial group delay by the proposed 

procedure. The signal process and other series involved were constructed using a 

different model. In this study also we had only one influencing series, namely {Z(t}. 

Recall that in study I the signal was a MA(1) process and the influencing series {z(t)} 

was an AR(1) process. In this study the signal process and the series {Z(t)} were both 

white noise processes. The interesting feature of this model is that it has constant partial 

coherence at all frequencies and compared to the previous model it is relatively simple. 

Secondly, we introduced a higher lag to see if any difficulties were encountered while 

applying the procedure. Thus, for this study data were simulated for a a theoretical 

partial group delay of 5, thus the series {x(t)} led the series {y(t)} by 5 units after 

adjusting for the effect of the series {2(t)}. In the following sections we describe in 

detail the model used, the results obtained, and comparison of the proposed procedure to 

that of Zhang and Foutz [1989] procedure. 
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5.3.1 Model For Simulated Data 

For this study the signal S(t) was generated as a white noise process with mean 0 and 

variance 0.8. The influencing series was also a white noise process with mean 0 and 

variance 0.6. The series {x(t)}, and {y(t)} were generated as, 

X(t) =0.4*Z(t+1)+e,(t) [5.29] 

Y(t) =0.6*Z(t+3)+¢, (t) [5.30] 

The residual processes {e, (t)}, and {e,(t)} were constructed as, 

e (t)=S(t)+a(t) [5.31] 

e,(t) =S(t+5)+ A(t) [5.32] 

where {a(t)}, and {p(t)} were white noise processes with mean 0 and variance 0.05 and 

were uncorrelated with the signal process {s(t)}. Also the white noise process {o(t)} 

was uncorrelated with the white noise process {p(t)}. 

The spectral density for the white noise process {s(t)} is given by, 

oc 08 

Qn 20 

and since the residual processes {e_(t)}, and ie,(t)} were sums of two uncorrelated 

[5.33]   f(A) = 

white noise processes their spectral densities are given as follows, 

1 1 0.85 
f (Aj=—Ilc? 2 |= —/0.8+0.05] = —— . 2, (4) = [o? +02 a! + 0.05] = [5.34] 

1 1 0.85 
f.,c, (4) = 5—[0; +05 ]= =—[0.8 + 0.05] = —— [5.35] 

Thus the spectral densities for the residual processes {e (t)}, and ie, (t)} are identical. 

To obtain the cross spectral density for the residual processes we first obtain the cross 

covariance as follows, 
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C(t) = Efe, (te, (t+1)| [5.36] 

= E[{S(t)+a(t)}*{S(t+7+5)+B(t+)}] [5.37] 

= [S(t t)*S(t+7+5)+cross product terms] [5.38] 

= x ift=-5 [5.39] 

The expected value of the cross product terms are zero as the signal and noise processes 

are assumed to be uncorrelated. The cross spectral density of the residual processes 

E (t)} and Je,(t)} is then given by, 

f.. (A)= = Ye™c(t) -E<K<T [5.40] 
xty 518 raw 

i5A * 

f, ()-—— n<A<n [5.41] 
xvy T 

The partial phase for the series {x(t)} and {y(t)} after adjusting for the series {2(t)} is 

obtained from the cross spectrum of the residual processes {e, (t)} and ie,(t)} as, 

  

0... (A)= Arg(f,. (A)) = Arg(e'*) [5.42] 

6, . (4) =5a [5.43] 

and the partial group delay is given by the derivative of the partial phase as follows, 

(A) 49, (4) 5 5.44 TIA) = a [5.44] 

Thus we see that for this simulation study also the partial group delay is constant at all 

frequencies A. 

The interesting thing about this study was that the partial coherence was very high and 

most importantly constant at all frequencies A. The partial coherence is given by, 

f(a 
o(2) = fw [5.45]   
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o? — 08 — 0.8 
  A)= = = 5.46 

o(3) o.+o072 0.8+0.05 0.85 b>.46) 

o(A) = 0.9411764 VA [5.47] 

5.3.2 Results 

Using the simulation model given in the above section 100 data sets were generated on 

the IBM 3090 system. It took about 20 minutes to generate these data sets. For each of 

the data sets, the series {x(t}, {y(t)}, and {z(t)} consisted of 512 observations. The 

plots on the following two pages will give the reader a visual idea of the series generated. 

The plots are for data set number 10 and 80 respectively and in the plots the series 

{x(t)}, {y(t)}, and {Z(t)} are plotted versus time. For this simulation study the first 50 

data sets were used for the proposed procedure and the remaining 50 data sets were used 

to estimate the partial group delay by the Zhang and Foutz [1989] procedure. 

The steps for estimating the partial group delay except for a few changes are very 

identical to those of study I. First using a 5% taper the series {x(t)}, {y(t)}, and {z(t)} 

were tapered. The series were then converted to frequency domain using Fourier 

transform. The periodogram and cross periodogram ordinates were formed. Each of the 

bands B,, B,, and B, contained 8 Fourier frequencies, thus, m=8. The partial cross 

spectral densities were obtained from the smoothed periodogram and cross periodogram 

ordinates. The function q(t) (see chapter 4, expression 4.18) was then maximized to 

yield the preliminary estimates for the partial group delay. Each data set generated 10 

preliminary estimates. 
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The preliminary estimates generated for this study were more stable than those obtained 

in study I. The primary reason for this is that the partial coherence between the series 

{x(t)}, and {y(t)} after adjusting for the effect of the series {2(t)} was constant and 

very high (o(A) = 0.9411764 ) for all frequencies. Hence all ten preliminary estimates 

were used in stage II of the procedure. Recall that for simulation study I we had used only 

eight preliminary estimates in stage I] of the procedure. The preliminary estimates at 

frequencies A = 2.43596 and 2.73049 were discarded because owing to a low partial 

coherence (0.75 and 0.55 respectively) the preliminary estimates at these two frequencies 

were highly unstable. 

In stage II of the procedure which is application of the Ramsey and Foutz [1992] 

procedure we obtain UMVU estimates for the mean of the preliminary values. In this 

stage we express a relationship between the preliminary estimates and the frequencies 

using modeling techniques such as, polynomial regression, and spline models. When the 

errors were not normally distributed we resorted to transforming techniques such Box- 

Cox transformation technique. In all twenty-six data sets were transformed using the 

Box-Cox transformation, the transforming parameter 4 varied between -0.2 and 1. Seven 

data sets were modeled using spline regression. The number of knots varied from one to 

four. Seventeen data sets were modeled using polynomial regression, where the degree of 

the polynomial varied between one and three. 

The partial group delay estimates for frequency A=1.25786 obtained using the proposed 

procedure are presented in table [5.3.1] and those obtained using the Zhang and Foutz 

[1989] procedure are presented in the table [5.3.2]. For the two procedures we also 

present the 90% confidence intervals in their respective tables. 
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Table 5.3.1 Partial Group Delay Estimate For Proposed Procedure - Study II 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Data Set Proposed Proposed 90% C.I 
Est LBD UBD 

1 2.305 1.036 56.339 

2 4.481 2.163 6.799 

3 8.926 4.883 12.97 

4 5.574 2.805 17.484 

5 9.407 4.771 14.044 

6 6.153 1.542 46.981 

7 6.338 3.099 9.577 

8 4.714 1.123 8.305 

9 3.029 0.246 5.812 

10 3.889 -0.283 29.469 

11 3.897 0.929 6.866 

12 5.804 2.403 27.592 

13 4.739 2.838 6.641 

14 5 0.695 34.515 

15 3.776 1.248 6.305 

16 7.336 5.293 9.379 

17 5.144 2.27 22.011 

18 8.128 4.953 24.636 

19 6.395 4.621 41.691 

20 6.217 4.655 31.116 

21 9.168 2.546 66.327 

22 4.935 0.606 40.429 

23 5.786 2.617 18.334 

24 4.893 3.727 6.06 

25 1.004 -2.138 4.147 

26 8.352 4.988 11.717 

27 9.877 3.217 27.794 

28 10.424 4.738 38.825 

29 3.772 -1.003 34.096 

30 5.154 2.328 7.979 

31 5.725 4.878 8.232 

32 7.091 1.543 47.786 

33 3.429 1.101 5.757 

34 5.911 4.483 17.821 

35 -0.767 -3.497 1.963 

36 6.909 0.45 26.568 

37 6.216 3.104 9.327 

38 7.958 3.027 30.97 

39 3.032 1.031 5.032 

40 3.267 1.577 4.957 

4] 6.819 2.276 26.636         
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Data Set Proposed Proposed 90% C.I 

Est LBD UBD 

42 9.52 3.426 320.96 

43 3.03 0.506 5.555 

44 7.119 3.452 10.787 

45 -1.144 -3.727 1.439 

46 5.4 2.253 25.152 

47 4.232 1.31 7.155 

48 4.665 0.46 28.985 

49 -0.123 -3.603 3.357 

50 7.314 3.216 29.961           
  

Table 5.3.2 Partial Group Delay Est. For Zhang & Foutz [1989] Method - Study II 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Data Set {Zhang's Est. Zhang's 90% C.I. 
LBD UBD 

51 4.1 3.597854| 4.602146 

52 0.8 0.297854 1.302146 

53 3 2.497854 3.502146 

54 5.1 4.597854 5.602146 

55 4 3.497854] 4.502146 

56 -1.9 -2.40215 -1.39785 

57 -0.9 -1.40215 -0.39785 

58 48 4.297854 5.302146 

59 8.6 8.097854 9.102146 

60 -0.2 -0.70215 0.302146 

61 -0.2 -0.70215 0.302146 

62 14.9 14.39785 15.40215 

63 3.8 3.297854 4.302146 

64 -2.6 -3.10215 -2.09785 

65 5.4 4.897854 5.902146 

66 4.8 4.297854 5.302146 

67 6.1 5.597854 6.602146 

68 3.8 3.297854, 4.302146 

69 9.6 9.097854 10.10215 

70 -3.1 -3.60215 -2.59785 

71 9.1 8.597854 9.602146 

72 7.5 6.997854 8.002146 

73 -2.8 -3.30215 -2.29785 

74 7.4 6.897854 7.902146 

75 9.8 9.297854 10.30215 

76 6.5 5.997854 7.002146 

77 7.6 7.097854 8.102146 

78 0.3 -0.20215 0.802146             
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Data Set |Zhang's Est. Zhang's 90% C.I. 
LBD UBD 

79 4.6| 4.097854 5.102146 

80 12.9 12.39785 13.40215 

81 9.3 8.797854 9.802146 

82 5.1 4.597854 5.602146 

83 10.9 10.39785 11.40215 

84 5.8 5.297854 6.302146 

85 -0.1 -0.60215 0.402146 

86 -2.3 -2.80215 -1.79785 

87 2.5 1.997854 3.002146 

88 6.6 6.097854 7.102146 

89 5 4.497854 5.502146 

90 3.3 2.797854 3.802146 

91 6.9 6.397854 7.402146 

92 2.3 1.797854 2.802146 

93 10.3 9.797854 10.80215 

94 1 0.497854 1.502146 

95 2.1 1.597854] 2.602146 

96 41 3.597854, 4.602146 

97 13.7 13.19785 14.20215 

98 3.2 2.697854 3.702146 

99 8.5 7.997854 9.002146 

100 -0.5 -1.00215; 0.002146   
  

5.3.3 Comparison Of The Results 

To compare the results of our procedure to that of Zhang and Foutz [1989] we consider 

the following table where the summary statistics for the estimated partial group delay 

using the proposed method and the method by Zhang and Foutz [1989] at frequency 

dX. = 1.25786 are given: 
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Table 5.3.3 Simulation Study II - Statistics At Frequency A=1.25786 
  

  

  

  

  

  

  

          

STATISTICS PROPOSED METHOD | ZHANG'S METHOD 

MEAN 5.4044 4.61 

STD. DEVIATION 2.59288353 4.401171 

VARIANCE 6.72304498 19.37031 

BIAS 0.4044 -0.39 

MEAN SQUARE ERROR 6.88658434 19.55241 

NOS. OF 90% C.I CAPTURING 1 | 44 (88%) 7 (14%) 

N 50 50 
  

Recall that the true partial group delay of the simulated data sets was 5. Since we used 

different data sets for each of the two methods the estimates generated will be considered 

as two independent groups. A one sample Z-test conducted on the respective means 

indicated that they did not differ significantly from the true value of 5. The p-values for 

the proposed procedure and for Zhang and Foutz [1989] procedure were 0.27 and 0.53 

respectively. For this study also the variance and the mean square error for the proposed 

procedure are smaller than those for the procedure by Zhang and Foutz [1989]. It was 

indicated by a t-test that the two variances were significantly different (p-value = 0.001). 

The 90% confidence intervals obtained for the proposed procedure showed that the true 

partial group delay of 5 was captured by 44 data sets, that is, the true value of the 

parameter was enclosed in 88% of the confidence intervals. The 90% confidence 

intervals computed for the Zhang and Foutz [1989] method showed that only 7 out of the 

50 data sets captured the true value of the parameter. 
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5.4 Conclusions 

In the above two sections with the help of simulation studies we demonstrated our 

procedure and compared our procedure to that of Zhang and Foutz [1989]. In this section 

we summarize the results as shown by the two simulation studies and try to convince the 

reader that the use of the proposed procedure for estimating partial group delay in some 

situations is better than the existing procedure by Zhang and Foutz [1989], thus justifying 

the need for the proposed procedure and fulfilling our fourth objective. 

The two simulation studies indicate that the bias for the two method appears to be almost 

the same but are opposite in sign. However the variance for the proposed procedure is 

smaller than the variance for the procedure by Zhang and Foutz [1989]. In fact it has 

been shown in both the studies that the two variances are significantly different. Since 

there is no formal test to compare the mean square errors we have no other choice but to 

compare the numbers and this indicates in both the studies that the proposed procedure 

has a smaller mean square error than that for the Zhang and Foutz [1989] method. 

The most important test of this procedure in our view is the ability of the confidence 

intervals to capture the true value of the parameter. It has always been stressed in 

elementary statistics that an interval estimate is more preferable to a point estimate. For 

the proposed procedure the true value of the partial group delay, that is t=2 was 

captured by 88% of the intervals in simulation study I and in simulation study II 88% of 

the intervals captured the true value (t =5) of the partial group delay. To test whether 

the sample estimate p = 0.88 was significantly different from the true value p = 0.90 a Z- 

test was conducted. The p-values were 0.54 and 0.67 for simulation study I and II 
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respectively. Hence p=0.88 did not differ significantly from the true value p = 0.90. 

Recall that the confidence intervals obtained using Zhang and Foutz [1989] method are 

asymptotic. As seen in both simulation studies they drastically fail in capturing the true 

value of the parameter. In study I only 25% of the intervals captured the true value of 

t=2 and in study II only seven out of fifty (14%) intervals captured the true partial 

group delay of 5. In fact, Z-test for proportions indicates that the sample estimates 

p=0.25 and p=0.14 are significantly different from the true value p=0.90. The p- 

values for the two studies were less than 0.0001. This suggests that for small samples the 

asymptotic intervals obtained by Zhang and Foutz [1989] method are meaningless. The 

proposed procedure on the other hand provides exact intervals and the use of such a 

procedure when sample sizes are small would lead to more meaningful interval estimates. 

Thus, we can conclude that the use of the proposed procedure when sample sizes are not 

big will yield better results than the procedure by Zhang and Foutz [1989]. 

5.5 Choice Of The Bandwidth (m) 

To find the smoothed periodogram and cross periodogram estimates we formed three 

bands B,, B, , and B, and each of these bands consisted of eight Fourier frequencies, that 

is m=8. Before settling for m= 8, the proposed procedure was tried for bandwidths of 

2, 3, 4, 5, 6, and 7. To save time this search for bandwidth did not involve all the 100 

data sets, only the first twenty-five data sets were used. This investigation revealed that 

for smaller bandwidths, especially m=2to5 the preliminary estimates were highly 

unstable, in fact some of the data sets gave meaningless estimate values like -400, 312, 
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500 and such other absurd numbers. And it was observed that as the bandwidth got 

closer to eight frequencies the preliminary estimates were stable. 

For this procedure we do not recommend a specific bandwidth of m=8. Rather the 

choice of the bandwidth will change from one set of series to another. A smart analyst 

will make the choice of the bandwidth depending on the amount of data available, nature 

of the series involved, the relationship between the series, and the nature of the partial 

coherence at each frequencies. In fact the reader familiar with time series literature will 

find that there are no formal and specific guidelines for choosing the bandwidth. 
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Chapter 6 

Conclusions And Topics For Further Research 

6.1 Concluding Remarks 

In the previous five chapters we discussed in details the theoretical aspects of the 

procedure. We also demonstrated the use of the procedure by means of two simulation 

studies. In the present chapter we try to summarize the results of our findings and discuss 

topics for future research. 

(i) 

(il) 

(iii) 

(iv) 

In this dissertation we have introduced a procedure for estimating the partial group 

delay parameter. This parameter is defined as the time lag between a group of 

series after adjusting for the effects of the common influencing series. The 

procedure is a two step procedure. In step I we find preliminary values for the 

partial group delay using the Zhang and Foutz [1989] method. In Step II we use 

transforming and modeling techniques to obtain estimates of the mean for the 

preliminary values. 

The estimates obtained using the procedure are uniformly minimum variance 

unbiased. Further we have also shown how to obtain 100(1—a)% confidence 

intervals for the estimated mean of the preliminary values. 

The procedure was demonstrated on data simulated using specific models. 

The results obtained using the proposed procedure were compared to the results 

obtained using the Zhang and Foutz [1989] method. The comparison showed that 
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the proposed procedure gave more meaningful results than the Zhang and Foutz 

[1989] method especially in the context of confidence interval estimates. 

6.2 Discussion Of Topics For Further Research 

We discuss in the present section some of the topics for further research. These topics 

were encountered while working on the present dissertation. Some of the topics listed 

would qualify as topics for dissertations. 

(i) 

(il) 

More work needs to be done on the choice of m the bandwidth, and the sample size 

N. At present there does not seem to be a formal procedure for choosing an 

appropriate bandwidth m. Typically the bandwidth is chosen as a compromise 

between resolution and stability of an estimator. By resolution we mean the ability 

of an estimator to distinguish fine structures of a spectrum, and by stability we 

mean an estimator having a small variance. 

A method for finding preliminary estimates for the partial group delay was 

discussed in the present dissertation. Alternate methods need to be investigated. 

These methods can be obtained by extending procedures which are available for the 

unadjusted group delay. One such idea is to find the preliminary estimates using 

the slope method as discussed in section 4.7 of chapter 4. In the following section 

we demonstrate the use of this method using some naturally occurring time series. 

To arrive at any concrete conclusions regarding the use of the slope method to find 

preliminary estimates simulation studies need to be conducted. 
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(iii) For the two simulation studies conducted we assumed a single influencing series 

(iv) 

(v) 

(vi) 

{2(t)}. In practice there could be more than one influencing series. For such a 

situation the present procedure with slight modifications (see section 4.5 of chapter 

4) can be used. To explore this scenario simulation studies could be conducted 

The models for the simulation studies of chapter 5 were such that the partial group 

delay was constant at each and every frequency. However, the partial group delay 

(t(X)) could be different at different frequencies (A). For instance the partial 

group delay could be a linear function of the frequencies (t(A) = tA). The use of 

the present procedure for such a situation could be demonstrated using simulation 

studies. 

The procedure proposed in the present work can be extended to other partial 

spectral parameters like partial spectral density, partial cross spectral density, 

partial phase, and partial coherence. 

Extending the procedure to estimating partial coherence would be an iterative 

procedure. The estimates of partial coherence tend to be highly biased if the partial 

group delay between the residual series is large. This in time series literature is 

termed as the 'coherency bias'. One way of reducing this bias would be to realign 

the series before estimating the partial coherence. Thus, the procedure would 

involve two steps, namely initial estimates for the partial group delay would be 

obtained, the series are realigned and estimates for partial coherence obtained. 

These new estimates of partial coherence would be used as weights for the cross 

correlation function to give new estimates for the partial group delay and hence 

new estimates of partial coherence. The process would thus be repeated iteratively 

until convergence is attained. 
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6.3 Application Of Slope Method To Vendor Data 

6.3.1 Introduction 

The Dow Jones Industrial Average, Standard and Poor's Average, New York Stock 

Exchange Index, Nasdaq composite index, and the American Stock Exchange Index are 

some of the leading economic indicators that measure the level of the economic activity. 

These indexes or indicators determine where the economy has been, where it is now, and 

where it is going in the future. To compute these indexes the stock and/or bond prices of a 

few important companies are taken into consideration. These prices are then averaged to 

give the value of the index. For instance, the Dow Jones Industrial Average is a 

composite of stocks and bonds of a total of 30 companies including Chrysler, Dupont, 

General Electric, General Foods, Proctor and Gamble, Exxon, Texaco, United Aircraft, 

and Woolworth. 

The aim of the present section is to briefly demonstrate the idea of using another method 

for finding the preliminary estimates for the partial group delay as suggested in point 

number (ii) of section 6.2. This method is referred as the slope method and for greater 

details the reader is referred to section 4.7 of chapter 4. Observing the results obtained 

we can only make a simple conclusion that the method holds some promise as being an 

additional method for finding preliminary estimates for the partial group delay. Since 

detailed simulation studies have not been conducted to test this procedure we refrain from 

drawing any concrete conclusions regarding the use of this procedure. 
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6.3.2 Spectral Analysis Of Vendor Data 

The example considered in the present section consists of three economic series and 

these are as follows : Standard and Poor's 500 index of stock market prices, U.S 

Department of Commerce's index of industrial production, and index of vendor 

performance. The latter two indexes along with 20 other indexes are published monthly 

in the magazine 'Survey Of Current business'. Vendor performance is percent of 

businesses reporting slower deliveries. The index for stock market prices, as the name 

suggests is a composite of 500 stocks. The index of industrial production, and vendor 

performance are composites of 12 series. These three series were chosen because they 

seem to change directions before the general level of the economic activity changes 

direction. Data and information regarding the three series were obtained from the text by 

Pankratz [1991, pages 232-233]. 

For the present example we will assume that the index for vendor performance is the 

common influencing factor for the index of industrial production, and the index of stock 

market prices. The reason for this is as follows : As the series for vendor performance 

increases, more businesses experience slower deliveries. This leads to an artificial 

increase in the levels of order and services. This in turn reflects higher future levels of 

sales and production which would eventually lead to higher profits on the part of the 

investors thereby increasing the stock prices. Also, as the index for stock prices increases 

the index for industrial production also increases. Therefore the question of interest is 

how soon are the changes in the index for stock prices reflected in the index for industrial 

production after removing the influence of the index for vendor performance from both 

series. 
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To estimate the partial group delay, data from January 1947 to August 1963 was 

considered for the above three series. Thus we had a total of 200 observations. The 

series for the index of industrial production, index of stock market prices, and vendor 

performance are plotted on the following pages respectively in figures [6.3.2.1], 

[6.3.2.Error! Bookmark not defined.], and [6.3.2.5]. The plots for the series of 

industrial production and stock market prices show an upward trend and the series for 

vendor performance shows some cyclical trends and is fairly stationary. To account for 

the upward trend and to make them stationary the series of industrial production and 

stock market prices were fitted with a straight line. 

Using the vendor performance series and the residual series for stock prices and industrial 

production, basic spectral analysis was performed using the procedure 'Proc Spectra’ from 

the software SAS. The intent of this was twofold, namely to investigate whether the data 

exhibited cycles of longer period or shorter period and to find the partial coherences at 

these dominant frequencies. In figures [6.3.2.7], [6.3.2.9], and [6.3.2.11] are plots of 

spectral densities for index of stock market prices, industrial production, and vendor 

performance. In figures [6.3.2.13], [6.3.2.15], and [6.3.2.17] are the plots of the squared 

coherency for each of the pairs of series, namely index of stock prices and industrial 

production; index of stock prices and vendor performance; and index of industrial 

production and vendor performance respectively. The plots of spectral density for each 

of the series indicates that the lower frequencies are the dominant frequencies. This 

implies that the cycles exhibited by the data has a longer period. The plots for the 

squared coherency also indicates that the three series exhibit a pairwise relationship. 
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6.3.3 Application Of The Slope Method 

Having obtained the preliminary information regarding the behavior of the three series, 

we then proceeded to apply the proposed procedure. The series for index of vendor 

performance, the residual series for the index of stock prices, and industrial production 

were used to find the preliminary estimates for the partial group delay. Unlike the 

method of chapter 5 for this example the preliminary estimates were formed by the 

method described in section 4.7, chapter 4. Recall that in this method for each of the 

series we obtain the Fourier transforms at Fourier frequencies, the smoothed periodogram 

ordinates, and the smoothed cross periodogram ordinates. The series for the index of 

stock prices and industrial production are then adjusted for the influence of the series for 

the index of vendor performance. For the adjusted (residual) processes we then obtain the 

estimated cross spectral density referred to in this work as the estimated partial cross 

spectral density. Next the estimated partial phase is obtained from the estimated partial 

cross spectral density and the estimated partial group delay is then obtained as the slope 

between consecutive estimated phases. 

For the vendor data a bandwidth of m=6 was selected, that is six Fourier transforms 

were used to find the smoothed periodogram and smoothed cross periodogram ordinates. 

Recall that the method of Zhang and Foutz [1989] to find preliminary estimates requires 

three bands, each containing m Fourier frequencies and the present method requires only 

one band containing m Fourier frequencies and thus is much more simplified than the 

method of Zhang and Foutz [1989]. Thus, at the end of Stage-I we had eight preliminary 

estimates for the partial group delay. 
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The preliminary estimates of stage-I were used in stage-II of the procedure, which is the 

modeling stage. No transformation was required for the preliminary estimates as a plot 

of the preliminary estimates versus their respective frequencies indicated a straight line 

relationship. In fact a linear regression of preliminary estimates on the respective 

frequencies indicated that a straight line fit was more than adequate (R’ = 0.95). Also a 

test of normality on the residuals indicated that the assumptions of normality and 

homogeneity of variances were not violated. In table 6.3.3.1 we have presented the 

partial group delay estimates in the column titled t and the 90% lower and the upper 

confidence limits in the next two columns for the proposed procedure. 

Table 6.3.3.1: 7 Using Proposed Method 
  

  

  

PROP 90% C.I 

N FREQ t LCL UCL 

1 0.2042 -8.4|  -13.491 -3.309 

2} 0.58119 -5.651 -9.778 -1.524 
  

3} 0.95819 -2.902 -6.235 0.431 
  

  

  

  

          
4 1.33518 -0.153 -3.007 2.701 

5 1.71217 2.595 -0.259 5.449 

6| 2.08916 5.344 2.011 8.677 

7| 2.46615 8.093 3.966 12.22 

8} = 2.84314 10.841 5.751 15.932       
On the following page is a plot of the partial group delay estimates and its 90% interval 

estimates at the respective frequencies obtained using the proposed procedure. We now 
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Figure 6.3.3.2 
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select a frequency of interest say 0.58119. At this frequency we can say that changes in 

the index of industrial production are reflected approximately five and a half months after 

changes in the index of stock market prices. 

In table 6.3.3.2 are presented the partial group delay estimates and 90% confidence 

intervals obtained using the Zhang and Foutz [1989] method. 

Table 6.3.3.2: 1 Using Zhang & Foutz [1989] Method 
  

ZHANG 90% C.I 

N FREQ t LCL UCL 
  

1 0.14137 115.688 17.418] 5924.614 
  

2 0.51836 65.955 22.929] 1733.517 
  

3} 0.89535 36.833 13.087} 1090.083 
  

4 1.27235 22.771 6.866} 1005.945 
  

5 1.64934 17.345 4.997} 881.986 
  

  

              
6 2.02633 16.773 5.235] 732.847 

7 2.40332 18.954 5.543] 920.293 

8 2.78031 20.946 2.891) 2773.175 
  

At frequency 0.51836 for the Zhang and Foutz [1989] procedure the stock market prices 

lead the index of industrial production by approximately 65 months. Observing the 

market trends it is elementary knowledge that changes in the index of stock market prices 

should have an immediate effect on the index of industrial production. In this context 

comparing the above two point estimates and their respective interval estimates the 

proposed method using the slope method to find preliminary estimates seems to give 
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reasonable estimates than the Zhang and Foutz [1989] method. Note that though the 

frequencies are not exactly the same they approximately are. 

At this point based on only this example we cannot conclude that the slope method is 

another alternative method for finding the preliminary estimates for partial group delay 

but merely remark that the method holds a great deal of promise. 
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Appendix 

A.1 Box-Cox Transformation 

The two most commonly used techniques for analysis of linear models are regression, and 

analysis of variance. The assumptions made by these techniques are as follows, 

i. Simplicity of the structure for the mean response, that is, E(y) should be linear 

ii. Error variance should be constant 

iii. Errors should be normally distributed and 

iv. Observations should be independent 

When one or more of the above conditions are not satisfied we are left with two choices, 

namely, transformation of the data, or inventing new techniques so that the data could be 

used as is. The first choice definitely seems an easier one. The analyst can then either 

transform the response variable, the regressor variable, or both of them. One such 

technique available for transforming the response variable is the Box-Cox transformation 

technique and is discussed in the following paragraph. 

The Box-Cox transformation technique simultaneously transforms the response variable 

as follows, 

  val 5 ifA+0 [A.1] 

In y ifA =0 

or, 
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A 

(y+A,y'-1 if 2, #0, y>-2y 
v= dy [A.2] 

In (y+A,) ifA, =0, y >-A, 

and modeling the transformed variable v as given by the following expression, 

V, = By +B,o,,+.....+B,@,, +8, 1=1,2,3..,n [A.3] 

Estimation of the B's and the A's is done simultaneously using maximum likelihood 

method. The €,'s in expression [A.3] are independently, and normally distributed random 

variables with common variance o*. The likelihood function for expression [A.3] is 

given as follows, 

' 

UB.2.0°)= seen} —e(v-o8) (v-op)}#3(h.y) TA 
where J(1,y) the Jacobian is given as follows, 

a y)=T any =" Vy>0 [A.5] 

and, 

JA.y)=T—=Ty, +4)  Vy>-A, [A.6] 

and it accounts for the change in scale. Hence to get a scaled likelihood function we 

standardize the v,'s and use them in expression [A.4]. The standardization of the v,'s is 

done as follows, 

Sint ifA #0 
Ally; 

z, = a [A.7] 
nie if2x=0 

Hy; 

or, 
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(Y; +h)" -1 

ATC; +h) 
Z.= In 1 [A.8] 

_in (ithe) if’, =0, A, >~-y 

II (y; +A, )" 

if, #0, A, >-y 

Note that the Jacobians are merely geometric means. Hence the maximum log likelihood 

function is given as follows 
' 

—-(z-«B) (z-o8) 
  

n n A 

In{L(B,2)} = ——In(2m) — = In(6?) — p A9 {L(B,4)} = —> in(2n) — = in(6*) oat [A9] 

where 6? is the maximum likelihood function of o? and for a fixed 2, 6? — SSresiduals 
n 

Hence maximizing the above expression with respect to A is equivalent to minimizing 

apart from constant terms the following expression, 

In{L(B,)} = ~ ins") [A.10] 

Thus, maximizing the log likelihood function with respect to A is the same as minimizing 

the sum of squares residuals. 

The above procedure for Box-Cox transformation can be summarized as follows : 

1. Select 4 on a grid say, [-n, n]. 

2. Transform the response variable y's to v's using either expression [A.1], or [A.2]. 

3. Divide each v by the Jacobian J(A,y) to obtain standardized variables z's as given by 

expression [A.7], or [A.8]. 

4. Fit a linear model to the z's and obtain the sum of squares residuals. 

5. Compare the current sum of squares residuals with the previous value and if the 

current value is less than the previous one then stop else goto the next step. 

6. Increment A and goto step 2. 

Appendix 113



  

A.2 Programming Code 

We include in this section programs written for demonstrating the procedure. Note that 

we have not included all the programs but the most important one so as to keep this 

section brief. 

  

/* KHKKKKAKKAKHEKAKKKEKKEKEKKAKKRAEKKKKKKEKKKAKKEKEKEKEK EK KEE KK KE KEKE KE KEK KK EK */ 

/* Title : FFT.C */ 
/* Date Written : September 28, 1993 */ 

/* Date Modified : September 28, 1994 */ 

/* Author : Milan Mangeshkar */ 
/* This program does the following things : */ 
/* (1) Finds Fourier Transforms for the X,Y, and Z series */ 

/* (2) Finds the periodograms ordinates for the Z series */ 

/* (3) Finds the cross periodogram ordinates for X-Y, X-Z, & Z-Y */ 
/* We ke ee ek a a KK KKK KKK KK KK KK KK KK KOK KK KK Ke KK KK KK KKK KK KK KK KEK KK */ 

/* This program needs the foll. arguments: (1) # of Data points */ 

/* (2) # of simulations */ 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include "C:\USERS\MILAN\SOURCE\FFT.H" 

/* HASH DEFINES */ 

#define EPSILON 1.0e-10 

#define READMODE "r" 

#define WRITEMODE "w" 

#define IPFL_PFX "C:\USERS\\MILAN\\PARGD\\SIMDATA\\GDS5 12" 
#define OPFL_PFX "C:\USERS\\MILAN\\PARGD\\FFT\FFT" 
#define PRIFILENM "C:\USERS\\MILAN\\PARGD\\FFT\\FFT. PRI" 

/* FILEPOINTERS ARE */ 

FILE *fpOutFile; 
FILE *fpPriFile; 

void main (int argc, char **argv) 

{ 
short |sNumltems, sCtr = 0; 

long  INumDataPts;   
  

Appendix 114



  

  

char szIpFileName[255],szOpFileName[255]; 

if(argc—=3) 

{ 
INumDataPts = atol(argv[1]); 

sNumitems = atoi(argv[2]); 

if ((fpPriFile = fopen(PRIFILENM, WRITEMODE)) == NULL) 

{ 
printf("ERROR : COULD NOT OPEN FILE **FFT.PRI**\n"); 
exit(-1); 

j 

while (sCtr++ < sNumItems) 

{ 
sprintf(szIpFileName,"%s.%d", IPFL_PFX, sCtr); 
sprintf(szOpFileName,"%s.%d", OPFL_PFX, sCtr); 

printf("ITERATION #:%d, %s, %s\n",sCtr, szIpFileName, szOpFileName); 
fprintf(fpPriFile, FR RR RRR A TOE A RK EE EEE \ TN): 

fprintf(fpPriFile,"ITERATION #:%d, %s, %s\n",sCtr, szIpFileName, 
szOpFileName); 

Find_FFT(INumDataPts,szIpFileName, szOpFileName); 

} 
} 
else 

printf""INVALID ARGUMENTS GIVEN TO THE PROGRAM\n"); 

printf("**PROGRAM TO FIND FFT & PERIODOGRAMS COMPLETED SUCCESSFULLY 
***\n"); . 

fprintf(fpPriFile, "No of data pts = %ld\t", INumDataPts); 

fprintf(fpPriFile, "No of FFT's = %lf\n", floor(INumDataPts/2.0)); 

fclose(fpPriFile); 

} 

void Find_FFT(long INumDataPts,char *szIpFileName,char *szOpFileName) 

{ 
int 1, iLoopvar, nobs; 

static short sCallCt=0; 

long INumlItems, fft_Items; 

static double *XSeries, * YSeries, *ZSeries; 

static double *rWX, *rWY, *rWZ, *iWX, *iWY, *iWZ; 

static double *pgrmZZ; 
static double *rpgrmXY, *rpgrmXZ, *rpgrmZY, *ipgrmXY, *ipgrmXZ, *ipgrmZY; 

double taper; 

FILE *fpDatFile; 

/* OPEN THE DATA FILE */ 

if ((fpDatFile = fopen(szIpFileName, READMODE)) == NULL) 

{   
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printf("ERROR : COULD NOT OPEN FILE **FFT.IN**\n"); 

exit(-1); 

} 

if ((fpOutFile = fopen(szOpFileName, WRITEMODE)) == NULL) 

{ 
printf("ERROR : COULD NOT OPEN FILE **FFT.OUT**\n"); 

exit(-1); 

} 

INumItems = INumDataPts; 

fft_Items = floor(INumItems/2.0); 

/* KRKEKAKKEKKKKKEKKKKKEKKKKEKKE KES 

* MALLOC SPACE if Ist invocation * 
PES ESS SLES TEESE SELES EE SE SES EEE SF */ 

if (!sCalICt) 

sCallCt++; 

if ((XSeries = (double *)malloc(INumItems* sizeof(double)))==NULL) 

Print_Err(); 
if ((YSeries = (double *)malloc(INumItems*sizeof(double)))==NULL) 

Print_ErrQ); 

if ((ZSeries = (double *)malloc(INumItems*sizeof(double)))==NULL) 

Print_Err(Q); 

if ((rWX = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 
if (rWY = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 

if (WZ = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ; 

if (GWX = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 

if (AWY = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 
if (WZ = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 

if ((pgrmZZ = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 

if ((rpgrmXY = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ; 

if ((rpgrmXZ = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 
if ((rpgrmZY = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_Err(); 
if ((ipgrmXY = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 
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if ((ipgrmXZ = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 

if ((ipgrmZY = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ; 

} /* End of mallocing space */ 

/* READ THE X, Y, Z SERIES */ 

/* printf("*******PROGRAM EXECUTION BEGINS*******\n");*/ 

iLoopvar = 0; 

while((!(feof(fpDatFile))) && (iLoopvar++ < |NumItems)) 

fscanf(fpDatFile, "%d “lf %lf %lf\in", &nobs, XSeriest+iLoopvar-1, 
YSeries+iLoopvar-1, ZSeries+iLoopvar-1); 

if (iLoopvar != INumItems) 

{ 
printf("ERROR: INCORRECT DATA FILE OR COMMAND LINE ARGUMENT\n"); 

exit(-1); 

} 

/* ee RK KK KEKE KEK KKK EK 

* TAPER THE SERIES * 
RRKKKKKEKKKKKKEKEK KE */ 

taper = 0.0; 

for(i=0;i<5;i++) 

{ 
XSeries[i] = XSeries[i] * taper; 

YSeries[i] = YSeries[i] * taper; 

ZSeries[i] = ZSeries[i] * taper; 

XSeries[INumItems-1-i] = XSeries[INumItems-1-i] * taper; 
YSeries[INumItems-1-i] = YSeries[INumItems-1-i] * taper; 

ZSeries[INumItems-1-i] = ZSeries[INumItems-1-i] * taper; 

taper = taper + 0.2; 

/* KKK KEK KERR EK KE EE KEE KEK KEK KE KKK KE KEK KEK KEK KEK 

* GET THE FAST FOURIER TRANSFORMS FOR X Y AND Z* 
he ee ae oi oe aie a ea ake oe oe oie 2 a oR eo KK ok ao OK KK KKK */ 

fft(INumItems, fft_Items, XSeries, rWX, iWX); 

fft(INumItems, fft_Items, YSeries, rWY, iWY); 

fft(INumItems, fft_Items, ZSeries, rWZ, iWZ); 

/* eR eK oo KE OK KE KEK KE KKK KK KK KKK KK 

* GET THE PERIODOGRAMS FOR ZSERIES *     
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/* 

/* 

{ 

  
int 
double frequency, const_term; 

/* 

} /* END OF FIND_FFT ROUTINE */ 

void fft(long INumItems,long fft_Items,double *p, double *rW,double *iW) 

HK KKK KKK KKK KEK KKK ERK RE RKEKKEKKKKEKEKES */ 

prdgm(fft_Items, rWZ, iWZ, pgrmZZ); 

he oe oe ok oo oe KK KK KK EE KK KK KE KE KE 

* GET THE CROSS PERIODOGRAMS FOR X, Y AND Z* 
2 hee ee oe te he ee ee oe oe 2 eK KK oR Ko KK KK KOK */ 

crspgrm(fft_Items,rWX,rWY,iWX,iWY,rpermXY,ipgrmXY); 
crspgrm(fft_Items,rWX,rWZ,iWX,iWZ,rpgrm XZ, ipgrmXZ); 

crspgrm(fft_Items,rWZ,rWY,iWZ,iWY ,rpermZY,ipgrmZY); 

EGO IO IOI IGRI IO AO ICR EE & 

* WRITE THE PERIODOGRAM & CROSS PERIODOGRAMS ORDINATES TO * 

* AN OUTPUT FILE * 
BEIGE IOI III IOI RIOR / 

for (i=0; i<fft_Items; i++) 

fprintf(fpOutFile, 

"HA\%+8.Sf\t\t%o+8.Sfit\t%+8.Sftt%t8.S5fit\t%+8. Sfit\t%o+8. Sfit\t%+8.5fin", 

(i+1),pgrmZZ[i],rpgrmXY [i] ipgrmX Y[i],1pgrmXZ[i],ipgrmXZ[i], 
rpermZY [i], ipgrmZY[i]); 

PSST SEE LE LEE EE SEE SESE ES SS 

*CLOSE ALL THE FILES * 
RHEE KKKAEKEEKEAE KEK ER KEKE EK */ 

fclose(fpDatF ile); 
fclose(fpOutFile); 

tJ; 

for(j=0; j<fft_Items; j++) 

{ 
rW{[j] = 0.0; 
iW[j] = 0.0; 

for(t=0;t<INumItems; t++) 

{ 
frequency = (2.0*M_PI*(j+1)*(t+1))/INumltems; 

rW[j] += p[t] * cos(frequency); 
iW[j] += p[t] * sin(frequency); 

} 

const_term = 2.0*M_PI*]NumItems;   rW{[j] /= sqrt(const_term); 
  

118 Appendix



  

  

iW{j] /= sqrt(const_term); 

/* iW{j] =-iW{j]; */ 

} 

}/* END OF FFT ROUTINE */ 

void prdgm(long fft_Items,double *rW,double *iW,double *pgrmii) 

{ 
int 1; 

for(i=0; i<fft_Items; i++) 

pgrmii[i] = (rW[i] * rW[i}) + GWE] * iwi); 

} /* END OF PRDGM ROUTINE */ 

void crspgrm(long fft_Items,double *rW1,double *rW2,double *iW1,double *iW2, 

double *rpgrm12,double *ipgrm12) 

{ 
int i; 

for (i=0; i<fft_Items; 1++) 

{ 
rpgrm 12[i] = @W1 [i]*rW2[i}) + G@W1[i]*iw2[i)); 

ipgrm12[1] = GW1[i]*rW2[i]) - (°W1 [i] *1W2[i]); 

} 

} /*END OF CRSPGRM ROUTINE */ 

void Print_Err(void) 

{ 
printf("ERROR : CANNOT MALLOC SPACE **** \n"); 

printf("* ****** TERMINATING THE PROGRAM#******#\n"); 

exit(-1); 

} 

/* *eAKAKEK ERT) OF FFT.C FE A a EE / 
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/* 2 Ae he ke oie a a aie i Re ie oe eK oe he oe eK ee a a oe Ko ok ok ok a kK Ok */ 

/* Title : GDXS.C */ 
/* Date Written : September 28, 1993 */ 
/* Date Modified : September 28, 1994 */ 

/* Author : Milan Mangeshkar */ 
/* */ 
/* This program finds the Preliminary X's for the time delay */ 
/* 2 oe oe eo ok oe kK ok ok Kk kkk KKK RR KKK KKK KEKE KAR KR KEK KK KK KKK KA KEKE * / 

/* This program needs the foll. arguments : (1) # of Data points */ 
/* (2) Bandwidth */ 
/* (3) # of simulations */ 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h> 

#include "C:\USERS\MILAN\SOURCE\GDXS.H" 

/* HASH DEFINES */ 

#define EPSILON 1.0e-10 

#define READMODE "r" 

#define WRITEMODE "w" 

#define IPFL_PFX "C:\\USERS\\MILAN\\PARGD\\FFT\\FFT" 
#define OPFL_PFX "C:\USERS\\MILAN\\SIM2A V8\\XS\\GDXS" 

#define PRIFILENM "C:\USERS\\MILAN\\SIM2A V8\\XS\\GDXS.PRI" 

/* FILEPOINTERS ARE */ 

FILE *fpOutFile; 

FILE  *fpPriFile; 

void main (int argc, char **argv) 

{ 
short sNumltems, sCtr = 0; 

int ibandwidth; 

long INumDataPts; 

char szIpFileName[255],szOpFileName[255]; 

if(argc==4) 

{ 
INumDataPts = atol(argv[1]); /* # of data points */ 
ibandwidth = atoi(argv[2]); /* for bandwidth */ 

sNumItems = atoi(argv[3]); /* for # of simulations */ 

if ((fpPriFile = fopen(PRIFILENM, WRITEMODE)) == NULL) 

{ 
printf("ERROR : COULD NOT OPEN FILE **GDXS.PRI**\n"); 

exit(-1);   
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} 

while (sCtr++ < sNumItems) 

{ 
sprintf(szIpFileName,"%s.%d", IPFL_PFX, sCtr); 

sprintf(szOpFileName,"%s.%d", OPFL_PFX, sCtr); 

printf""ITERATION #:%d, “%s, Yos\n",sCtr, szIpFileName, szOpFileName); 
fprintf(fpPriFile, AR AR EE AR A RA AE RE ER HH \ 

fprintf(fpPriFile, "ITERATION #%d, %s “%s\n", sCtr, szIpFileName, szOpFileName); 
Find_Xs(!NumDataPts, ibandwidth,szIpFileName, szOpFileName); 

} 
} 
else 

printf("INVALID ARGUMENTS GIVEN TO THE PROGRAM\n"); 

printf("* PROGRAM TO FIND PRE. ESTIMATES COMPLETED SUCCESSFULLY *****\n"); 
fclose(fpPriFile); 

} 

void Find Xs(long INumDataPts,int midItems,char *szIpFileName,char *szOpFileName) 

{ 
int i, iLoopvar, nobs; 

int bw; 

static short sCallCt=0; 

float halfbw; 

long INumltems, fft_Items,mItems,nItems; 

static double *permZZ; 

static double *rpgrmXY, *rpgrmXZ, *rpgrmZY, *ipgrmXY, *ipgrmXZ, *ipgrmZY; 
static double *fZZ; 

static double *rfXY, *rfXZ, *rfZY, *ifXY, *ifXZ, *ifZY; 

static double *reXY, *igXY; 

double taper; 

FILE *fpDatFile; 

bw = 3*midItems; 

halfbw = bw/midItems; 

/* OPEN THE DATA FILE AND THE OUTPUT FILE*/ 

if ((fpDatFile = fopen(szIpFileName, READMODE)) == NULL) 

{ 
printf("ERROR : COULD NOT OPEN FILE **GDXS.IN**\n"); 
exit(-1); 

} 

if ((fpOutFile = fopen(szOpFileName, WRITEMODE)) == NULL) 

{ 
printf("ERROR : COULD NOT OPEN FILE **GDXS.OUT**\n"); 

exit(-1);   
  

Appendix 12]



  

  

INumItems = INumDataPts; 

fft_Items = floor(INumItems/2.0); 
mItems = floor(fft_Items/bw); 
nltems = midItems*mltems; 

/* KK KK KKK KKK KKK ER KKEKEKKEK ESE 

* MALLOC SPACE if Ist invocation * 
ae ae a a a ok oe eK kK EK KK KK KE KE KK KK */ 

if (!sCallCt) 

{ 
sCallCt++; 

if ((pgrmZZ = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 

if ((rpgrmXY = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 

if ((rpgrmXZ = (double *)malloc(fft_Items*sizeof(double)))==NULL) 
Print_Err(); 

if (TpgrmZY = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_Err(); 
if (ipgrmXY = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_ErrQ); 

if ((ipgrmXZ = (double *)malloc(fft_Items* sizeof(double)))==NULL) 

Print_ErrQ); 

if ((ipgrmZY = (double *)malloc(fft_Items*sizeof(double)))==NULL) 

Print_Err(); 

if ((fZZ = (double *)malloc(nItems*sizeof(double)))==NULL) 
Print_ErrQ); 

if (£XY = (double *)malloc(nItems* sizeof(double)))==NULL) 

Print_ErrQ); 
if ((rfXZ = (double *)malloc(nItems* sizeof(double)))==NULL) 

Print_Err(); 
if ((rfZY = (double *)malloc(nItems*sizeof(double)))==NULL) 

Print_Err(); 

if (ifXY = (double *)malloc(nItems*sizeof(double)))}==NULL) 

Print_ErrQ); 

if (ifXZ = (double *)malloc(nItems*sizeof(double)))==NULL) 

Print_Err(); 

if (GfZY = (double *)malloc(nItems*sizeof(double)))==NULL) 

Print_Err(); 

if ((rgXY = (double *)malloc(nItems* sizeof(double)))==NULL) 

Print_ErrQ); 

if (igXY = (double *)malloc(nItems*sizeof(double)))==NULL)   
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/* 

/* 

/* 

/* 

/* 

/*   

Print_Err(Q); 

} /* End of mallocing space */ 

2A ee he ake a ae a ke ie oie a ae oe ke ie a ie a ie 2 ie i i eo oe kK oe ok OK 

* READ THE PERIODOGRAM & CROSS PERIOGRAMS FROM THE INPUT FILE * 
FEI IG II IIO IOC GOGO IGG IGG IOI IO I IO IR ok / 

iLoopvar = 0; 

while((!(feof(fpDatFile))) && (iLoopvar++ < fft_Items)) 

fscanf(fpDatFile, "%d “lf “lf “If Ylf Ylf Yolf %lf\in", &nobs, 
pgrmZZ+iLoopvar-1,rpgrmX Y+iLoopvar-1,ipgrmX Y+iLoopvar-1, 

rpgrmXZ+iLoopvar-1,ipgrmXZ+iLoopvar-1,rpgrmZY+iLoopvar-1, 

ipgrmZY+iLoopvar- 1); 

if (iLoopvar != fft_Items) 

{ 
printf("ERROR: INCORRECT DATA FILE OR COMMAND LINE ARGUMENT\n"); 

exit(-1); 

} 

ae ke ok oe a oe a ok ao oe ko ook oe ko Kk KE KE KK KKK KE EK KEE 

* GET THE SMOOTHED SPECTRAL DENISTY FOR Z * 
KKK KAKEKKEK EEK KK EK KKK KKK REAR KEKE KARE EK EEE */ 

spectral_density(mltems,bw,halfow,midItems,pgrmZZ,fZZ); 

HK KKK KK EE KER KKK KEKE EEE KK KE KK RE KEKE KE KEE 

* GET THE SMOOTHED CROSS SPECTRAL DENISTIES * 
oe eK OK RE KK KEK KEK KEK KE KEK KEE */ 

cross_spect_density(mItems,bw,halfbw,midItems,rpgrmXY,ipgrmXY,rfXY,ifXY); 

cross_spect_density(mltems,bw, halfbw,midItems,rpgrmXZ, ipgrmXZ,rfXZ,ifXZ); 

cross_spect_density(mItems,bw,halfobw,midItems,rpgrmZY ,ipgrmZY ,rfZY ,ifZY); 

KKK EK KEK KER KEE ER KEE KEKE KK ERK KEKE KEE EKKEKEK EE KK 

* GET THE RESIDUAL CROSS SPECTRAL DENISTIES * 
KKKRKKEKAKKKAEKKKEKEREKEEKKEREEKEKKEKEKEEEE KEKE KE * / 

residual_spec_density(nItems,rfX Y rfXZ,rfZY ,fZZ,ifX Y ,ifXZ,ifZY rEXY,igXY); 

2h Rc kee ke ae aie ie ic oe ai ie ak oo ee ok oe oo ok KK KK KK EO 

* FIND TAUHAT THAT MAXIMIZES THE COVARIANCE * 
2 eo fe ie ae oe a co ee a oe oR a KK KK KK */ 

find tauhat([NumItems,mItems,bw,halfbw,midItems,rgXY, igXY); 

KKK KKK RK KEKE KKK KEK KEE 

*CLOSE ALL THE FILES * 
Oe oR RR OK KKK KKK KE KEE */ 
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fclose(fpDatFile); 

fclose(fpOutFile); 

} /* END OF MAIN ROUTINE */ 

void spectral _density(long mltems,int bw, float halfbw,int midItems,double *pgrm,double *fZZ) 

{ 
int i,j,k,l,element; 

for(i=0; i<mItems; i++) 
for (j=0; j<midItems; j++) 

{ 
1  =midlItems * i; 

element = 1+); 
fZZ[I+j] = 0.0; 
for(k=0; k<bw; k=k+midItems) 

fZZ[element] = fZZ{element] + pgrm[(bw*i)+j+k]; 
fZZ[element] = fZZ[element] / halfow; 

j 

}/* END OF SPECTRAL_DENSITY ROUTINE */ 

void cross_spect_density(long mltems, int bw, float halfbw,int midItems, double *rpgrm, double *ipgrm, 

double *rf12,double *if12) 

{ 
int ij,k,l,bw_mult_i, |_plus_j, element; 

for(i=0; i<mItems; i++) 

{ bw_mult_i= bw * i; 

for G=0; j<midItems; j++) 

{ 
1 = midItems * i; 

] plus _j = 1+); 
rf12[l_plus_j] = 0.0; 
if12[1_ plus j] = 0.0; 

for(k=0; k<bw; k=k+midItems) 

{ 
element = bw_mult_i+j+k; 

rf12[l_ plus_j] =rfl2[l_plus j] + rpgrm[element]; 

if12[1 plus _j] =if12[]_ plus j] + ipgrm[element]; 

} 
rf12[1_plus_j] =rf12[l_plus_j] / halfow; 
if12[1 plus_j] = if12[l plus j] / halfow; 

} 

} /* END OF CROSS _SPECT DENSITY */     
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void residual_spec_density(long nItems,double *rfXY, double *rfXZ, double *rfZY, double *fZZ,double 

*ifXY, double *ifXZ, double *ifZY, double *rgXY, double *igXY) 

{ 
int i; 

for(i=0; i<nItems; i++) 

{ 
rgXY[i] = r€XY[i] - ((rEXZ[i] *rfZY [i])-GEXZLA] *ifZy [iP /FZZ[A)), 
igXY[i] = ifX Y[i] - (((rfXZ[A] *ifZY [1])+GEXZ[i]* rfZY [1]) /FZZ[i]); 

} 

}/* END OF RESIDUAL_SPEC_DENSITY */ 

void find tauhat(long INumItems,long mltems,int bw,float halfbw, int midItems ,double *rgXY,double 

*igXY) 

{ 
int ij, max_flag, element; 

int iendnumber=200; 

double tau,tau2,taumax,qhat,qhatmax,wk,sumofwk; 

double A, B; 

static double *taulambda, *rP, *iP; 

static short sCallCt=0; 

if (tsCallCt) 

{ 
sCallCt++; 

if ((taulambda = (double *)malloc(midItems*sizeof(double)))==NULL) 

Print_ErrQ); 

if ((rP = (double *)malloc(midItems* sizeof(double)))==NULL) 

Print_ErrQ); 

if ((iP = (double *)malloc(midItems* sizeof(double)))==NULL) 

Print_ErrQ); 

fprintf(fpPriFile, " N\t WK\t\t TAU\t\t\t QHAT\n"); 

for(i=0; i<mItems; i++) 

{ 
tau = -INumItems; taumax= -[NumItems; 

qhatmax = -999999999_0; 

/* FIND THE MIDDLE FREQUENCY */ 

sumofwk=0.0; 

for(j=0; j<midItems; j++) 

sumofwk = sumofwk + (bw*i)+halfbw+j; 

sumofwk = sumofwk/midltems; 

wk = (2.0 * M_PI * sumofwk)/INumltems;   
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/* FIND THE MAXIMUM QHAT */ 

while(tau < INumItems) 

{ 
A=0.0; B=0.0; 

for(j=0; j<midItems; j++) 

{ 
taulambda[j] = 0.0; iP[j] = 0.0; 

taulambda[j] = (tau * 2.0 * M_PI * ((ow*i)+halfow+j))/INumItems 

rP[j] = 0.0; 

element = (midItems*i)+j; 

rP[j] = rgX Y[element]*cos(taulambda[j]) + 

igX Y[element]*sin(taulambdal[j]); 
iP[j] = igX Y[element]*cos(taulambdalj]) - 

rgX Y[element]*sin(taulambdal[j]); 

A =A + rP{jJ; 
B =B + iP[j]; 

} 

A = A/midItems; 

B = B/midltems; 

ghat = A*A + B*B; 

if(qghat >= qhatmax) 

{ 
qhatmax = ghat; 
taumax = tau; 

; 

tau = tau+ .1; 

} /* END OF WHILE ROUTINE */ 

if (taumax < 0) 

tau2 = taumax + INumItems; 

else 

tau2 = INumItems - taumax; 

if (abs(tau2) < abs(taumax)) 

taumax = tau2; 

fprintf(fpPriFile, "%o3d\t %+8.Sf\t %+8.3f\t\t %+8.3f\n", (i+1),wk,taumax,qhatmax); 

fprintf(fpOutFile, "%4d %+8.5f %+8.3f\n", (i+1),wk,taumax); 

} /* END OF i LOOP */ 

} /* END OF ROUTINE FIND_TAUHAT */ 

void Print_Err(void) 

> 
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printf("ERROR : CANNOT MALLOC SPACE **** \n"); 

printf("******* TERMINATING THE PROGRAM******\n"); 

exit(-1); 

} 
/* END OF GDXS.C PROGRAM       
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/* Oe A He eK eK eK KK KK KK KK EK KK OK KK Ko KK OE KKK KK ke KK * / 

/* Title : BOXCOX.C */ 
/* Date Written : JANUARY 15, 1993 */ 
/* Date Modified: NOVEMBER 5, 1994 */ 
/* Author : Milan Mangeshkar */ 

/* This program uses the preliminary X's and finds a transformation */ 
/* using BOXCOX technique such that the errors are distributed normally */ 
/* Note :If the # of data points exceed 100 then change the Xmat in */ 

/* POLYREGR.C routine appropriately */ 
[HR A ERK IK AO EK KK KO KK A KK / 

/* The arguments required by the program are: (1) order of the model */ 
/* (2) # of preliminary X's */ 
/* (3) # of simulations */ 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include "C:\USERS\MILAN\SOURCE\BOXCOX2.H" 

#define READMODE "r" 

#define WRITEMODE  _"w" 

#define EPSILON 1.0e-10 /* THIS IS FOR CHECKING WHETHER VALUE = 0 */ 

#define NMAX_NOS 50 /* THIS NOS IS FOR TAYLORS SERIES EXPANSION */ 

#define LAMBDA1START -1.0 

#define LAMBDAIEND 1.01 

#define IPFL_PFX "C:\\USERS\\MILAN\\SIM2A V8\\XS\\GDXS" 
#define OPFL_PFX "C:\\USERS\\MILAN\\SIM2A V8\\UN WTED\\ORDER2\\BCI" 
#define OUTFILENM ~— "C:\\USERS\\MILAN\\SIM2A V8\\UNWTED\\BOXCOX.OUT" 
#define ESTFILENM "C:\\USERS\\MILAN\\SIM2A V8\\UNWTED\EST.FIL" 

FILE *fpOutFile; 

FILE  *fpEstFile; 

void main(int argc, char ** argv) 

{ 
short | sNumltems, iOrder, sCtr = 0; 

long INumItems; 

char szIpFileName[255],szOpFileName[255]; 

if (argc==4) 

{ 
iOrder = atoi(argv[1]); 

INumltems = atol(argv[2]); 

sNumltems = atoi(argv[3]); 

if ((fpOutFile = fopen(OUTFILENM, WRITEMODE)) == NULL) 

{   
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} 
else 

printf("Error2 : Could not open BOXCOX.OUT file\n"); 

exit(-1); 

} 
if ((fpEstFile = fopen(ESTFILENM, WRITEMODE)) == NULL) 

{ 
printf("Error2 : Could not open ESTIMATE.OUT file\n"); 
exit(-1); 

} 
while (sCtr++ < sNumItems) 

{ 
sprintf(szIpFileName,"“%s.%d", IPFL_PFX, sCtr); 

sprintf(szOpFileName,"%s.%d", OPFL_PFX, sCtr); 

printf(‘"Iteration:%od, Ys, Y%s\n",sCtr, szIpFileName, szOpFileName); 
fprintf(fpOutFile,"*********## #4 ee EERE ERE E EEE \ DN): 

fprintf(fpOutFile,"Iteration:%od, %s, %s\n",sCtr, szIpFileName, szOpFileName); 

Find_Trans(sCtr,iOrder, INumItems, szIpFileName, szOpFileName); 

} 

printf("Invalid arguments\n"); 

printf("******* End of Boxcox Iteration Successfully ********\n"); 

fclose(fpOutFile); 

fclose(fpEstF ile); 

} 

void Find_Trans(short ctr,int iOrder, long INumItems, char *szIpFileName, char *szOpFileName) 

{ 

FILE *fpDatFile; 
FILE *fpOutFileClI; 
char sym, YesFlag; 

int i,v, iLoopvar,iNrows, iNcols,nobs,case_nos,NN, half_eles, lambdal inv; 

static double 

static double 

static short 

static double 

double 

*Xdat,* Wk,* Ydat,* Xbetahat, * zeta; 

*Predat, *Resdat; 

sCallCt=0; 

c2[70]; 

SSRes,theta,lbd,ubd, lambdal ,lambda2,zlbd,zubd; 

/* open the input and output data files */ 

if ((fpDatFile = fopen(szIpFileName, READMODE)) == NULL) 

{ 

} 

printf("Error! : Could not open INPUT file\n"); 

exit(-1); 

if ((fpOutFileCI = fopen(szOpFileName, WRITEMODE)) == NULL) 

{ 
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printf("Error2 : Could not open BCI file\n"); 
exit(-1); 

} 

if(iOrder > 4) 

{ 
printf("Error : Program cannot fit a poly. reg of order > 4\n"); 

exit(-1); 

} 

/* # of observations define the rows for Xmatrix and order of the polynomial 
to be fitted defines the columns for the Xmatrix */ 

iNrows = INumItems; 

iNcols = iOrder + 1 ; 

/* allocate space for the input data initially*/ 

if (!sCallCt) 
{ 

if((Xdat = (double *)malloc(INumItems*sizeof(double)))==NULL) 

Print_Err(Q); 

if(Wk = (double *)malloc(INumItems*sizeof(double)))==NULL) 

Print_ErrQ); 

/* This space is allocated for the transformed x-data */ 

if((Ydat = (double *)malloc(INumItems*sizeof(double)))==NULL) 

Print_Err(); 

/* This space is allocated for use in polynomial regression */ 

if((Xbetahat = (double *)malloc(INumItems*sizeof(double)))==NULL) 
Print_ErrQ); 

if((zeta = (double *)malloc(INumItems*sizeof(double)))==NULL) 

Print_ErrQ); 

if((Predat = (double *)malloc(INumItems*sizeof(double)))==NULL) 

Print_ErrQ); 
if((Resdat = (double *)malloc(INumItems*sizeof(double)))==NULL) 

Print_ErrQ; 

/* FORM THE 90*CHI-SQUARE VALUE TABLE */ 

Form_c2(c2); 

} /* END OF OUTERMOST IF STATEMENT */ 

/* read the input data */   
| iLoopvar = 0; 
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while((iLoopvar++ < INumItems)) 

fscanf(fpDatFile, "Yod %If %lf\in", &nobs, Wk+iLoopvar-1,Xdat+iLoopvar-1); 

if GLoopvar != (INumItems+1)) 

{ 
printf("Error : Incorrect data file or command line arguments\n"); 
exit(-1); 

} 

if((BoxCox(INumItems,iNrows,iNcols, Xdat, Wk, Xbetahat,zeta, Predat, Resdat, Ydat,&lambdal ,&la 

mbda2))!=0) 

{ 
printf("Error: In function BoxCox\n"); 
exit(-1); 

} 

YesFlag ="Y'; 

if (LAMBDAIEND-lambda1) <= EPSILON) 
YesFlag = 'N'; 

if (YesFlag = 'Y') 

if((PolyReg(iNrows,iNcols, Y dat, Wk, Xbetahat,zeta,Predat,Resdat,&SSRes)) != 0) 

{ 
printf("Error: In function PolyReg, TERMINATING THE PROGRAM\n"); 
exit(-1); 

} 

/* printf("COMPUTING THETA AND THE CONFIDENCE INTERVAL ........ \n\n");*/ 
/* v = degrees of freedom */ 

v = iNrows - iNcols; 

/* list the various case_nos */ 

if((lambdal > EPSILON) && (lambdal <1)) /* lambda! = .a */ 

case_nos = 1; 

else if (fabs(lambdal) <= EPSILON) /* lambdal = log */ 

case_nos = 2; 

else if((lambdal >= 1) || Jambdal <=-1)) /* lambdal =a or -a */ 

case_nos = 3; 

else if((lambdal < EPSILON) && (lambdal >-1)) /* lambdal = -.a */ 

case_nos = 4; 

else 

case_nos = 5; 

if(case_nos == 1) 
NN = ceil(1/lambda1); 

else _| 
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NN = NMAX_NOS; 

if((case_nos = 1) || (case_nos == 4)) 

lambdalinv = ceil(1/fabs(lambda])); 

fprintf(fpOutFile, “lambda2=%lf\tlambdal=“lf\tSSRES=%+1f\tD.F(v)=“%od\tcase=Yod 

NN=%d\n",lambda2,lambda1,SSRes, v,case_nos,NN); 

printf("lambda2=lf\t lambdal=%lfit SSRes=%8.3 fit 

NN=%d\n\n",lambda2,lambdal,SSRes,NN); 

/* computing theta */ 

half_eles = ceil(iNrows/2.0); 

for(i=0; i<iNrows; i++) 

{ 

if((Compute_theta(NN,case_nos,v,lambdal,lambdal inv, Xbetahat[i],zeta[i],SSRes, &theta)) != 0) 

{ 
printf("Error: In function Compute_theta_%d,TERMINATING THE 

PROGRAM\n", case_nos); 

exit(-1); 

} 

if((Compute_CI(NN,case_nos,v,lambda1 ,lambdalinv,c2,Xbetahat[i], zeta[i], 
SSRes, &lbd, &ubd))!=0) 

    
{ 

printf("Error: In function Compute_CI,TERMINATING THE 

PROGRAM\n"); 

exit(-1); 

$ 

theta = (theta-lambda2); 

Ibd =(lbd -lambdaz2); 

ubd =(ubd -lambda2); 

fprintf(fpOutFileCI, "%3d %8.6f % 8.3f % 8.3f % 8.3f % 8.3fin", 

(i+ 1), Wk[i],Xdat[i],theta,lbd,ubd); 

if(i==half_eles) 

{ 
fprintf(fpEstFile, "%3d\t% 3.2f\t%8.6f\t% 8.3f\t% 8.3f\t% 8.3f\t% 

8.3f\n", 

ctr,lambdal, Wk[i], Xdat[i],theta, lbd, ubd); 

} 

} /* end of the for loop */ 

} 
| else 
| { fprintf(fpEstFile, "%3d\n",ctr); 
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printf("lambdal = %+If discard data set #%3d\n",LAMBDAIEND, ctr); 

fclose(fpDatF ile); 
fclose(fpOutFileCI); 

} /* end of main */ 

int BoxCox(long INumItems, int iNrows, int iNcols, double *Xdat, double *Wk,double *Xbetahat, 

double *zeta,double *Predat,double *Resdat,double *Ydat, double 

*lambdalconv,double *lambda2conv) 

{ 

int i,j,.k,convflag1,convflag2; 

double log _gmean,gmean,SSRes,SSResprev,SSResprev2, diff; 
double lambda! ,lambda1 prev,lambda2,lambda2prev; 

double small_nos,lambda2end; 

static double *Vdat; 

static short sCallCt = 0; 

if ('sCallCt) 

{ 
sCallCt++; 

if((Vdat = (double *)malloc(INumItems*sizeof(double))) == NULL) 

Print_ErrQ); 

} 

convflag1 = 1; 

SSResprev2 = 9999999999990; 

/*FIND THE SMALLEST NEGATIVE NUMBER*/ 

small nos = 0.0; 

for(i=0; i<INumItems; i++) 

  
{ 

if((Xdat[i] < 0.0) && (Xdat[i] < small_nos)) 

small_nos = Xdat[i]; 

} 

if (small_nos < 0.0) 

lambda2 = -small_nos + 0.5; 

lambda2end = lambda2 + 0.5; 

} 
else 

{ 
lambda2 = 0.0; 

lambda2end = 0.01; 

} 
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while((convflag1 == 1)&&(lambda2 < lambda2end)) 

{ 
SSResprev = 9999999999990; 

/* find the geometric mean of the data */ 

log _gmean = 0.0; gmean = 0.0; 

for(i=0; i<INumItems; i++) 

if (fabs(Xdat[i])> EPSILON) 
log_gmean = log _gmean + log(Xdat[i]+lambdaz2); 

log _gmean = log_gmean/INumItems; 
gmean =exp(log gmean); 

convflag2 = 1; 

lambdal =LAMBDAISTART; 

while((convflag2 == 1) && (lambdal < LAMBDAIEND)) 

{ 
/* transform Xdat to Ydat = ((Xdat+lambda2)**lambdal-1)/lambdal */ 

/* compute Vdat = ydat / exp((lambdal-1.0)*log(gmean)) */ 

if (fabs(lambdal) <= EPSILON) /* i.e when lambda! is zero */ 

{ 
for(i=0; i<INumItems; i++) 

{ 
if (fabs(Xdat[i]) <= EPSILON) 

Vdat[i] = 0.0; 

else 

Vdat[i] = log(Xdat[i]+lambda2) * gmean; 

} 
} 
else /* i.e when lambda! is other than 0 */ 

{ 
for(i=0; i<INumItems; i++) 

{ 
if (fabs(Xdat[i]) <= EPSILON) 

Vdat[i] = 0.0; 

else 

Vdat[i] = (pow((Xdat[i]+lambda2), lambdal) - 1.0) / 

(lambda! * pow(gmean,(lambda!-1.0))); 

} 
} 

if((PolyReg(iNrows,iNcols, Vdat, Wk, Xbetahat,zeta,Predat,Resdat,&SSRes)) != 

0)   { 
printf("Error: In function PolyReg\n”); 

exit(-1); 
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} 

if(SSRes <= SSResprev) 

{ 
SSResprev = SSRes; 

lambdal prev = lambdal; 

} 
else 

convflag2 = 0; 

lambdal = lambdal + .1; 

} /* end of inner while loop */ 

if (SSResprev <= SSResprev2) 

{ 
SSResprev2 = SSResprev; 
*lambdal conv = lambda! prev; 
*lambda2conv = lambda?2; 

} 
else 

convflag1 = 0; 

lambda2 = lambda2+.10; 

} /* END OF THE OUTER WHILE LOOP */ 

if((-0.1 < *lambdalconv) && (*lambdalconv < 0.1)) 

*lambdal conv = 0.0; 

if (fabs(*lambdal conv) <= EPSILON) /* i.e when lambdal = 0 */ 

{ 

else 

Appendix 

for(i=0; i<INumItems; i++) 

{ 
if (fabs(Xdat[i] <= EPSILON)) 

Ydat[i] = Xdat[i]; 

else 

Ydat[i] = log(Xdat[i] + *lambda2conv); 

} 

for(i=0; i<INumItems; i++) 

{ 
if (fabs(Xdat[i] <= EPSILON)) 

Ydat[i] = Xdat[i]; 

else 
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Ydat[i] = (pow((Xdat[i]+ *lambda2conv), *lambdalconv) - 1.0) / 

*lambdalconv; 

} 

return(0); 

} 

}/* end of BoxCox fuction */ 

int Compute_theta(int NN,int case_nos,int v,double lambda] ,int lambdal inv, 

double Xbetahat,double zeta,double SSRes,double *theta) 

{ 

int j; 

double Exp_Value, constterm; 

*theta = 1.0; 

for(j=1; j<(NN+1); j++) 
{ 

switch (case_nos) 

{ 
case 1 : Find Const_1(j,lambdalinv,&constterm); /* for lambdal=.a */ 

break; 

case 2 : Find_Const_2(j,&constterm); /* for lambdal=0 */ 

break; 

case 3 : Find_Const_3(j,lambdal,&constterm); /* for lambdal=a or -a */ 
break; . 

case 4 : Find _Const_4(j,lambdalinv,&constterm); /* for lambdal=-.a */ 
break; 

default : printf("Incorrect case_nos=“od\n",case_nos); 
break; 

} /* end of switch */ 

/* compute E[(Ydat)**j] */ 

Exp_ Value = 0.0; 
if((Compute_Tn(j,v,Xbetahat,zeta,SSRes,&Exp_ Value))!=0) 

{ 
printf("Error: In function Compute_Tn\n"); 

exit(-1); 

} 

*theta = *theta + constterm * Exp Value; 

/* end of for loop */ 

return(0);   
| }/* end of compute_theta routine */ 
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void Find_Const_1(int j,int lambdalinv,double *constterm) 

{ 
int diff; 

double factlambdal, factj, factdiff; 

/* this routine is for lambda = .a */ 

factorial(lambdalinv, &factlambda]); 

diff = lambdalinv - j; 

factorial(j, &factj); 

factorial(diff, &factdiff); 

*constterm = factlambdal / ( factj * factdiff * pow(lambdalinv,j) ); 

}/* end of Find_Const_1! routine */ 

void Find_Const_2(int j,double *constterm) 

{ 

/* this routine is for lambda = log */ 

double factj; 

factorial(j, &factj); 

*constterm = 1/factj; 

}/* end of Compute_theta_2 routine */ 

void Find_Const_3(int j,double lambdal, double *constterm) 

{ 
int k; 

double factj, prodct; 

/* this routine is for lambdal = -a or a */ 

factorial, &factj); 

prodct = 1.0; 

for(k=1; k<(Gj+1); k++) 

prodct = prodct * (1 - ((k-1)*lambda1)); 

*constterm = prodct / factj; 

}/* end of Compute_theta_3 routine */   void Find_Const_4(int j,int lambdalinv,double *constterm) 

L 
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int k; 
double factj,num; 

/* this routine is for lambdal = -.a */ 

factorial(j, &factj); 

num = 1.0; 

for(k=1; k<j+1; k++) 

num = num * (lambdalinv+k-1); 

*constterm = num / (factj * pow(lambdal inv,j)); 

}/* end of Compute_theta_4 routine */ 

int Compute_Tn(int nn,int v,double Xbetahat,double zeta,double SSRes,double *Exp_ Value) 

{ 
int rem, k, diff, n; 

double wv; 

long double num, deno; 

double _fact2n , fact2k, factdiff, gmvvl, gmvv2; 

*Exp_ Value = 0.0; 

n = floor(nn/2); 

vv = v/2.0; 

gamma_func(vv, &gmvv1); 

if(nn == (2*n+1)) ~‘/* implies n is odd */ 

{ 
factorial((2*n+1), &fact2n); 

for(k=0; k<n+1; k++) 

{ 
diff =n -k; 

factorial((2*k+1), &fact2k); 

factorial(diff, &factdiff); 

vv = (v/2.0) + diff; 

gamma_func(vv, &gmvv2); 

num = fact2n * pow(Xbetahat,(2*k+1)) * 

pow((SSRes*(1-zeta)),diff) * gmvv1; 

deno = fact2k * factdiff * pow(4,diff) * gmvv2; 

*Exp_ Value = *Exp Value + num / deno; 

}/* end of for loop */ 

} /* end of odd routine */ 

else /* nis even number */ 
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{ 
factorial((2*n), &fact2n); 

for(k=0; k<n+1; k++) 

{ 
diff =n -k; 

factorial((2*k), &fact2k); 
factorial(diff, &factdiff); 

vv = (v/2.0) + diff; 

gamma_func(vv, &gmvv2); 

num = fact2n * pow(Xbetahat,(2*k)) * 

pow((SSRes*(1-zeta)), diff) * gmvv1; 

deno = fact2k * factdiff * pow(4,diff) * gmvv2; 

*Exp Value = *Exp Value + (num / deno); 

}/* end of for loop */ 

} /* end of else */ 

return(0); 

} /* end of Compute_Tn routine */ 

int Compute_ClI(int NN, int case_nos,int v,double lambda] ,int lambdalinv,double *c2, 

double Xbetahat, double zeta,double SSRes,double *lbd, double *ubd) 

{ 
int i,j; 

double cl,sigsq, product, mu, thetahat; 

*ubd = 0.0; *lbd = 0.0; 

/* cl =2.71; 10% chi-square value for 1 d.f */ 

cl = 5.0239; /* 025% chi-square value for 1 d.f */ 

for(i=0; 1<30; 1++) 

{ 
sigsq = 0.0; 

sigsq = (SSRes / c2[v-1]) * (+1) / 30.0); 

for(= 0; j<30; j++) 
{ 

product = 0.0; mu = 0.0; 

product = zeta * cl * sigsq ; 

mu = Xbetahat - sqrt(product)+2.0*sqrt(product)*((j+1)/30.0); 
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if((Compute_Thetahat(NN,case_nos,lambdal ,lambdal inv,mu,sigsq,&thetahat))!=0) 

{ 
printf("Error: In function Compute_Thetahat\n"); 

exit(-1); 

} 

if(G==0) && (j==0)) 

{ 
*ubd = thetahat; 

*lbd = thetahat; 

if(thetahat > *ubd) 

*ubd = thetahat; 

if(thetahat < *lbd) 

*lbd = thetahat; 

} 
} 

return(0); 

} /* end of compute_CI routine */ 

int Compute_Thetahat(int NN, int case_nos,double lambda] ,int lambdal inv, 

double mu,double sigsq, double *thetahat) 

{ . 
int J; 
double constterm; 

static double *Exp Value; 

static short sCallCt =0; 

if (!sCallCt) 

{ 
sCallCtt++; 

if((Exp_ Value = (double *)malloc(NN*sizeof(double)))==NULL) 

Print_ErrQ); 

} 

for(j=0; j<NN; j++) 
Exp_Value[j] = 0.0; 

if((Compute_Exp(NN, mu, sigsq,Exp_Value))!=0) 

{ 
printf("Error: In function Compute_Exp\n"); 

exit(-1); 

} 

*thetahat = 1.0; 
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forG=1; J<(NN+1); j+4) 
{ 

switch (case_nos) 

{ 
case 1: Find Const_1(j,lambdalinv,&constterm);/*for lambdal=.a */ 

break; 

case 2: Find Const_2(j,&constterm); /*for 

lambdal=0 */ 

break; 

case 3: Find Const_3(j,lambdal,&constterm); /*for lambdal=a or -a */ 
break; 

case 4: Find Const_4(j,lambdalinv,&constterm);/*for lambdal=-.a */ 
break; 

default: printf("Incorrect case=“%d\n", case_nos); 

break; 

} /* end of switch */ 

*thetahat = *thetahat + (Exp_Value[j-1] * constterm); 

} 
return(0); 

}/* end of Compute_thetahat */ 

int Compute _Exp(int NN,double mu, double sigsq,double *Exp_ Value) 

{ 
int i; 

Exp_Value[0] = mu; 

if(NN > 1) 
Exp_Value[1] = mu * mu + sigsq; 

if(NN > 2) 

{ 
for(i=2; i<NN; i++) 

Exp_Value[i] = sigsq * i * Exp_Value[i-2] + mu * Exp_Value[i-1]; 

} 
return(0); 

} /* end of Compute_Exp routine */ 

void factorial(int n, double *factn) 

{ 
int i; 

*factn = 1.0; 

if(n > 1) 

{   for(i=1; i<n+1; i++) 

*factn = *factn * i; 
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} 

} /* end of factorial routine */ 

void gamma _func(double vv, double *gmvv) 

{ 
int i, n; 

double sum; 

if(vv == 0.5) 

*omvv = 2.0*0.8862269; /* gamma of half is sqrt of pi */ 

else 

{ 
n = ceil(vv); 

if (vv =n) 

{ 
*gmvv = 1.0; 
if(vv > 1.0) 

{ 
for(i=1; i<n; i++) 

* =* * 7. gmvv = *gmvwv * 1; 

} 
} 
else 

{ 
*omvv = 2.0 * 0.8862269; 

for(i=1; i<n; i++) 

*omvv = *gmvv * (i-0.5); 

1/* end of Ist else */ 

}/* end of gamma_func */ 

void Form_c2(double *c2) 

{ 

/* THESE ARE THE .975% CONFIDENCE COEFFICIENTS */ 

c2[0] = 0.0010; c2[1] = 0.0506; c2[2] = 0.2158; c2[3] = 0.4844; 
c2[4] = 0.8312; c2[5] = 1.2373; c2[6] = 1.6899; c2[7] = 2.1797; 
c2[8] = 2.7004; c2[9] = 3.2470; c2[10] = 3.8157; c2[11] = 4.4038; 
c2[12] = 5.0087; c2[13] = 5.6287; c2[14] = 6.2621; c2[15] = 6.9077; 
¢2[16] = 7.5642; c2[17] = 8.2307; c2[18] = 8.9065; c2[19] = 9.5908; 
¢2[20] = 10.2829; c2[21] = 10.9823; c2[22] = 11.6886; c2[23] = 12.4012; 
c2[24] = 13.1197; c2[25] = 13.8439; c2[26] = 14.5734; c2[27] = 15.3079; 
¢2[28] = 16.0471; c2[29] = 16.7908; c2[30] = 17.5387; c2[31] = 18.2908; 
¢2[32] = 19.0467; c2[33] = 19.8063; c2[34] = 20.5694; c2[35] = 21.3359; 
¢2[36] = 22.1056; c2[37] = 22.8785; c2[38] = 23.6543; c2[39] = 24.4330; 
¢2[40] = 25.2145; c2[41] = 25.9987; c2[42] = 26.7854; c2[43] = 27.5746; 
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c2[44] = 28.3662; c2[45] = 29.1600; c2[46] = 29.9562; ¢2[47] = 30.7545; 
¢2[48] = 31.5549; c2[49] = 32.3574; 

} /*END OF FUNCTION FORM _C2 */ 

void Print_Err(void) 

{ 
printf("malloc returned error\n"); 
exit(-1); 

/* END OF BOXCOX.C PROGRAM */   
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