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The stability of a secondary Tollmien-Schlichting wave, whose wavenumber and frequency are nearly one
half those of a fundamental Tollmien-Schlichting instability wave, is analyzed using the method of
multiple scales. Under these conditions, the fundamental wave acts as a parametric exciter for the
secondary wave. The results show that the amplitude of the fundamental wave must exceed a critical value
to trigger this parametric instability. This value is proportional to a detuning parameter which is the real
part of k — 2K, where k and K are the wavenumbers of the fundamental and its subharmonic,
respectively. For Blasius flow, the critical amplitude is approximately 29% of the mean flow, and hence
many other secondary instabilities take place before this parametric instability becomes significant. For
other flows where the detuning parameter is small, such as free-shear layer flows, the critical amplitude
can be small, thus the parametric instability might play a greater role.

I. INTRODUCTION

One of the major roads from laminar to turbulent
conditions in two-dimensional boundary-layer flows
starts with the linear amplification of selective two-
dimensional disturbances of the Tollmien-Schlichting
type. As these disturbances grow to appreciable mag-
nitudes, the flow deviates more and more from a basic
steady flow, and as a result, secondary instabilities
set in. Klebanoff et al.,l in their experimental study of
the three-dimensional nature of boundary-layer insta-
bility, observed secondary instabilities induced by the
nonlinear interaction between a two-dimensional funda-
mental wave and a three-dimensional secondary wave
at a position not very far from the linear region,
Kachanov ef al.? excited disturbances of known frequen-
cies on a flat plate using a vibrating ribbon and deter-
mined the spectrum of the disturbances at different
downstream locations., Their results show that the
higher harmonics and subharmonics of the fundamental
wave start to amplify faster than the fundamental wave
itself. These results were also confirmed in Ref. 3.

In his experiments on the natural transition from
laminar to turbulent flow in a two-dimensional separ-
ated shear layer, Sato' observed the strong presence
of the subharmonic of order one-half in addition to the
higher harmonics of the fundamental wave. Wille® ob-
served the development of subharmonic waves while
investigating circular and plane jets. Kelly6 analyzed
the interactions among disturbance waves in an inviscid
shear layer with a hyperbolic tangent velocity profile to
model the observed behavior of the subharmonic waves
in the free-shear layer experiments. He showed that
the appearance of the subharmonic in a shear layer is
due to a secondary linear instability associated with a
time-~dependent flow consisting of the superposition of
the basic flow and a finite-amplitude fundamental wave.
He concluded that the subharmonic wave not only ap-
pears in the disturbance spectrum of the flow, but that
it may also grow more than the fundamental wave when
the amplitude of the latter reaches a critical value.
Thus, the fundamental wave serves as a meansby which
further energy is transferred from the mean flow to the
subharmonic wave.
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The purpose of the present paper is to investigate
whether one of these secondary instabilities can explain
the appearance of the subharmonic wave on a flat plate.
The analysis takes into account the growth of the mean
boundary layer as well as the effects of viscosity in the
disturbance equations.

To analyze the secondary instability of order one-half
in a nonparallel boundary layer, we first need to deter-
mine the mean flow and the nonparallel growth of the
fundamental wave. The mean flow is given by the
Blasius solution

uzUO(Eix?y)) UZGIVO(EIx:y)’ p=P0; (1)

where « and » are the streamwise and transverse com-
ponents of the velocity and p is the pressure. Here, ¢
is a small dimensionless parameter that is a measure
of the nonparallelism of the flow. Using the method of
multiple scales,” we can approximate the nonparallel
linear Tollmien—Schlichting waves by®?

u=eA(elx)Ul(e1x,x)exp[ifk(elx)dx -iwt]+c.c., (2)
v =e4(elx)V,(e,x,y)exp[z'jk(e,x)dx —-iwt]+c.c., (3)

b =a4(e,x)P,(e,x,y)exp[z’fk(qx)dx —iwt]+c.c., (4)

where ¢ is a small dimensionless parameter that is the
order of the amplitude of the wave and

Fileix)NdA/dx) =€, f3legx) A, (5)

with f; and f; being known functions of the eigenvalue,
the eigenfunction and its adjoint, and the mean flow, In
all the numerical calculations presented in this paper,
€ is taken to be the initial amplitude of the fundamental
wave as a fraction of the mean flow.

In analyzing the generation of the subharmonic of or-
der one-half, we take into account the nonparallel ef-
fects that arise from the growth of the boundary layer,
which is characterized by ¢;, as well as the presence
of the fundamental wave, which is characterized by e.
When ¢; <<€, the effect of the boundary-layer growth is
negligible in comparison with the secondary instability.
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When ¢; >>¢, the effect of the secondary instability is
negligible in comparison with the effect of the boundary-
layer growth., When e =0(¢,), both effects are compar-
able and this is the case treated in this paper. How-
ever, since the algebra is quite involved for this gen-
eral case, we present the details of the analysis for

the case ¢; <<€ (i.e., parallel mean flow) and just state
the results in Sec. IV for the general case,

The formulation of the problem is given in Sec. II,
the solution for the problem of secondary instability is
given in Sec, III, the equations describing the general
problem are stated in Sec. IV, the computational pro-
cedure is described in Sec. V, and the numerical re-
sults are presented in Sec. VI.

1l. PROBLEM FORMULATION

We consider secondary instabilities of a two-dimen-
sional, steady, incompressible flow past a flat plate.
The equations describing the motion are the unsteady,
dimensionless Navier-Stokes equations

U v
— + — =
T =0 (6)
oU U U P 1 _,
_— = — == + =
a7 U VA T TRYY (7
2% &V oV cP1_,
— —_— 4 V— == - 7
ot +Uax Vay v RV Vs (8)
U=vV=0, aty=0, (9)
U-U,, asy~=, (10)
where

2 2
VZ=-a—f+—a—*z

ox A

Here, x and v are made dimensionless by using a ref-
erence length §,, the time is made dimensionless by
using 6,/U., the velocities are made dimensionless by
using the freestream velocity U., and the pressure is
made dimensionless by using pU%. The Reynolds num-
ber is defined as R = U.5,/v, where v is the fluid kine-
matic viscosity. In all the calculations presented in
this paper, 6, ={(vx/U.)!" so that R =(R )!%.

A. Basic state

As mentioned in the introduction, we present the de-
tails of the analysis for the case of a parallel mean
flow. We assume that each basic-flow quantity is the
sum of a mean-flow quantity and an unsteady disturb-
ance quantity made up from a Tollmien—Schlichting
wave; that is,

O(x,v, 1) = Uy(y) + eUy(v)explitkx —wh)] + c.c. + O(€") ,

(11)
V(x,v,t) =eVy(Wexplilkx —wt)] + c.c. + O(e}) (12)
B(x,y,0) =Py +ePy(y)expli(kx —wh)] + c.c. + O(e)

(13)

where U, and P, are the mean-flow quantities, € is the
amplitude of the Tollmien-Schlichting wave, and c.c.
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stands for the complex conjugate of the preceding
terms. The dimensionless angular frequency is repre-
sented by w and the real part of # is the wavenumber
whereas the imaginary part of # is the negative of the
growth rate. von Kerczek!® treated the case for which
Eqgs. (11)—(13) are independent of v,

Substituting Eqs. (11)—(13) into Egs. (6)—(8), sub-
tracting the mean-flow quantities, and linearizing the
resulting equations in the unsteady disturbance quanti-
ties, we obtain the following equations describing the
Tollmien-Schlichting wave:

LU,V ;R =DV +ikU; =0, (14)
Lo(Uy, Vy, Pysk,w)

2i( Uk =w)Uy + VD Uy +ikPy =R™YD* k)1, =0,

(15)

L4(Uy, Vi, Pk, w)

=i(Upk ~w)Vy +DPy =R YD* =)V, =0, (16)
Uy=V{=0, aty=0, (17
Uy,Vy{=0, asy—-=, (18)
where D =2/dv,
B. Stability analysis

To study the stability of the basic state, we super-

pose small unsteady disturbances on the basic-flow
quantities according to

Ulx,v, ) =00x,v,80) +alxy, 1), (19)

Vv, =Vix,v, ) +o(x,v, 1), (20)

P(x,v,0)=P(x,v,1)+plx,v,1), (21)

where U, V, and P represent the basic state given by
Egs. (11)=(13) and #, 7, and p are the time dependent
disturbances which are assumed to be small compared
with the basic-state quantities.

Substituting Egs. (19)=(21) into Egs. (6)=(10), sub-
tracting the basic-state quantities, and linearizing the
resulting equations in the unsteady disturbance quanti-
ties, we obtain

ail or
-— + = 22
ox  Ov 0, (22)
i A0 a0 i b ;
.ai+U?7 +17_£ . 75_U+_§£__1_V2?_:0’
¢ cx ax oy vy ox

(23)
or a0 BV sor AV 9 1y
7+U——\'_+ e +V8y+vay _+5’\' PVI—O,

(24)
u=v=0, aty=0, (25)
#,0=0, asy—, (26)

Thus, the problem of secondary instability is reduced
to the analysis of the partial differential equations (22)-
(24) subject to the boundary conditions (25) and (26).
The coefficients in these equations are functions of x,
vy, and . If e<<1, the variations in x and ¢, which are
periodic, are small. When ¢=0, one of the solutions
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of Egs. (22)=(26) is a Tollmien-Schlichting wave of the
form B&(y)exp[i(Kx ~§2¢)] whose frequency and wave-
number are almost one half those of the fundamental,
In this case, B is a constant, When e #0, the presence
of the small coefficients, which are periodic in time
and streamwise position, leads among other things, to
a slow streamwise and time modulation of B. Thus, if
the basic wave varies on the scale xy=x and T(=¢, the
modulation takes place on the scales xy =¢x, x, =€x,...
and Ty =¢t, T, =€*t,... . Thus, one can use the method
of multiple scales’ and determine an approximate solu-
tion to Eqgs. (22)—-(26). We consider the problem of
spatial modulation only for which  is exactly one half
the fundamental frequency. Moreover, we determine a
first-order expansion only and hence need to determine
the modulation of the amplitude and the phase of the
subharmonic wave on the scale x;. Hence, we seek a
uniform expansion in the form

ft = g9, X1, ¥ 1) T ey (59, %y, v, 1) + O, (27)
T =1'0(x0’x! V5 t) +evy(xg,x,v,8) + 0(52) ’ (28)
b= Do(xg,%1,¥,8) Tepy(x, x1,¥,8) + O, (29)

where x; =¢x is a slow scale. Substituting Eqs. (27)-
(29) into Egs. (22)-(26), using Eqs. (11)=(13), and
equating coefficients of like powers of ¢, we obtain

Order ¢
- oy
My(ug,v0) = =2 + Dy =0, (30)
axO
Myluy, vy, 1)
du cu ap 1 22
- 220 29 , ZE) _ 2 (p? o =
5t " Unay, TOPU e TR a0,
(31)
3 3 1 3t
, ] ] -—(D?% = =
M (g, g, P0) = el U, T, +Dp, R 1] ol o, =0, (32)
Uy=1,=0, at y=0, (33)
Uy, g ~0, as y—oo, (34)
Ordevr €:
My(uy,vy) == 0uy/0xy (35)

ou . ) ou,
My(uy,0q,04) == UOa—Q - Uyexplikxy —iwt) + c.c.]a—il
Xy Xo

~ ikuy| Uyexplikx, —iwt) - c.c.]
~{Viexp(ikxy - twt) +c.c.]Du,
—vy[D Uyexplikxy —iwt) + c.c.]

Oy 2 Oy

—8x1 R 0xy0x,’ (36)

a 1
My(uy,vq,p4) =— Uo-a—z—Q —[Uexplikx, —iwf) +c.c.]-—U—Q
Xy ax,
—ikuy| V explikxy — iwt) —c.c.)
— [Vyexplikx, — iwt) +c.c.]Dv,

- volD V explikx, —iwt) +c.c.]

2 g

R Axgdxy ' (37)
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wm=v,=0, aty=0, (38)

,vy =0, asy—oo, (39)

HIl. SOLUTION
A. Basic-state solution

The solutions to Eqs. (14)—(18) can be expressed as

Uy=Afy(©), (40)
Vi=ALp0), (41)
Pr=AG3(»), (42)

where A is a constant and the ¢, (n=1,2,3) are the
eigenfunctions of the parallel problem given by the fol-
lowing equations:

£4(811,81238) =0, (43)
L2841, 812, L1433, 0) =0, (44)
L3841, 812, 84330, w) =0, (45)
£4=8y2=0, aty=0, (46)
11512~ 0, asyv—~, (47)

B. Zeroth-order solution

The solution of the zeroth-order problem given by
Eqs. (30)—(34) is taken in the form of a Tollmien—
Schlichting wave; that is,

1y = B(x1)8 2y (v Jexpli(Kxy - 28)] + c.c. , (48)
vy =B(xy)En(y)explilKxy - Q)]+ c.c. (49)
po=B(x)¢a3(v)exp[i(Kx, - Q)] +c.c., (50)

The amplitude B is still an undetermined function; it is
determined by imposing the solvability condition at the
next level of approximation. The quasi-parallel Orr-
Sommerfeld problem is

£4(831,822;K)=0, (51)
£9(821,822,823:K,8)=0, (52)
£3(821, 802, L0533 K,82) =0, (53)
Loy =083 =0, aty=0, (54)
£21,622-0, asy—~, (55)

C. First-order problem

Since the homogeneous parts of Egs. (35)—(39) are the
same as Egs. (30)—(34) and since the latter equations
have a nontrivial solution, the inhomogeneous equations
(35)—(39) have a solution if, and only if, a solvability
condition is satisfied. The inhomogeneous parts in Egs.
(35)—(39) contain terms proportional to exp|ikx, —wt],
expli(kxy - wt) —i(Kx, -], their complex conjugates,
and others. Secular terms will arise at this order
when 2 =~ 2K and w =~2§; that is, when a subharmonic
resonance exists. We consider the case of perfect time
resonance and introduce a detuning parameter o for the

spatial part according to
k=2K+eo, 0=0(1), (56)

w =28, (57)

A. H. Nayfeh and A. N. Bozatli 807



Using Egs. (56) and (57), we obtain

(kxy —wt) = (Kxg = 21) = (Kxy ~ Q) + (0x; = 28K %), (58)

where K; is the imaginary part of K and K is the com-
plex conjugate of K,

To determine B, we seek a particular solution for the
first-order problem in the form

= 2,(v;x,)explilEx, -2H] +c.c., {59)
vy =2,(v; xqJexp[i(K xp = 28)] + c.c. (60)
Py =25(v; xy)expli(Kxy —$24)] + c.c. (61)

Substituting Eqs. (40)-(42), Egs. (48)=(50), and Eqgs.
(56)~—(61) into Eqgs. (35)~(39) and equating the coeffici-
ents of exp|i(Kx, - )] on both sides, we obtain

L4(2y,20;K) =gy, (62)
£4(2y,29,29;K,02) =gy, (63)
L£4(24,29,24;K,0) =83, (64)
zy=2,=0, aty=0, (65)
21,29~0, asy—~o, (66)

where g4, &7, and g3 are defined in Appendix A.

To obtain the solvability condition, we multiply Eqgs.
(62)-(64) by £, £8, and &%, respectively, where the
¢*s are the solutions of the adjoint homogeneous prob-
lem, add the equations and integrate the resulting equa-
tion by parts from y =0 to y =<, The adjoint problem
corresponding to the eigenvalue K is

iKgdh ~Dt# =0, (67)
UK =) +ED Uy —DES —R™ WD =K H =0,

(68)

(UK -3 +iKLH —RYUD =K% =0, (69)

H=tx=0, aty=0, (70)

EHEH—~0, asy—-=, (71)
Then, the solvability condition can be expressed as

[ et + et ety =o. (72)

Substituting for g, g,, and g5 from Appendix A into
Eq. (72), we obtain the following differential equation

for the evolution of B

4B _ 5 ABexplioxy = 2K ;xq) ,
dxy  fy

(73)
where f; and f, are given in quadratures in terms of

&y &, R, and K and they are defined in Appendix B.

In terms of the original variable x, Eq. (73) can be re-
written as

dB_f,
e _Ef ABexpli(k - 2K )x}],

is the real part of K.

(74)

where K,

IV. EFFECT OF BOUNDARY-LAYER GROWTH

The analysis presented in the preceding section did
not account for the growth of the mean boundary layer.
If € >>€, the effect of the fundamental on the subharmon-
ic is negligible compared with the effect of the bound-
ary-layer growth, In this case, Eq. (74) is replaced by

a5 _ Lig

dx f (75)

where f; is defined in Appendix B. If ¢y =O(¢), carrying
out an analysis similar to that in the preceding two
sections yields

B —*eiiaB +e szBexp[zf kB -2K )dx|.

dx — (76)

We note that the algebra involved in deriving Eq. (76) is
much more involved than that needed to derive either
Eq. (74) or Eq. (75). One can easily verify that Eq. (76)
tends to Eq. (74) when e >»¢,; and it tends to Eq. (75) when
€< €4

It is convenient to introduce the transformation
a:Aexp(—fKidx), b—-—Bexp(—fKidx), (77

so that @ and b account for the quasi-parallel growth

S12 L 1 L
500

F= 60x10°

1 1
360 400 550 600

DETUNING PARAMETER, €0, (xl02)
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rates of the fundamental and its subharmonic. Then,
Eq. (76) can be rewritten as
db
=(g =2 L ~K)b +eiz-abexp(19) (178)
dx fi 1
where
1 1 I
650 700 750
REYNOLDS NUMBER , R
FIG. 1. Detuning parameter, €o, .
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ﬁ:eo,:Re(k -2K).

ax (79)

Since the variations of the real parts of k¥ and K with
streamwise position are very small, the variation of
0, with R is also very small as shown in Fig. 1.

Since K; (imaginary part of K) and a (amplitude of the
fundamental) are functions of the streamwise position,
we were unable to determine an exact solution for Eq.
(78). However, a qualitative description of the stabili-
ty characteristics can be obtained by analyzing the local
solutions of Eq. (78) presented in Sec. VI.

V. COMPUTATIONAL PROCEDURE

A. Solutions of the basic-state and the zeroth-order
problems

The procedure for the solutions of the basic state and
the zeroth-order problem, given by Eqs. (43)—-(47) and
Egs. (51)-(55), respectively, are the same; therefore,
we will explain the methodology only for the basic-state
problem.

Equations (43)—(47) can be expressed as a system of
first-order differential equations; that is,

dz/dy =Gz, (80)
where z is a 4%1 matrix with the elements
z29=L(¥), 22=Din(y), 23=81200), 2,=84500), (81)

and the elements of the 4X4 G matrix are given in Ap-
pendix C.

To determine starting solutions for the integration of
Egs. (80), we assume that Uy=1, DU, =0, and D*U,=0
at y =y, with y, being any value of y larger than the
boundary layer thickness. The matrix G then has con-
stant coefficients at y =y, and Egs. (80) have solutions
of the form

4
2, =9 ciexpln,y) for i=1,2,3,4, (82)
i=1

where the c;; are constants, the )’s are the solutions of
IG =21l=0, (83)
and 7 is the identity matrix. Equation (83) has the roots
A2 =2k, Ay =2[kF +i(k —w)R]VE. (84)

Two of these roots have positive real parts and make
the solution grow exponentially as y -« and must be
discarded according to the boundary conditions. This
leaves two linear independent solutions that decay ex-
ponentially with y.

The eigenvalues are not known a priori and must be
determined along with the eigenfunctions. For given
values of w and R, we guess a value for k, and integrate
the system of equations from y =y, to y =0. If the
guessed value of k£ does not satisfy the boundary condi-
tions at y =0, k is incremented by using a Newton-
Raphson scheme and the procedure is repeated until the
boundary conditions are satisfied. Integration is done
by using a technique developed by Scott and Watts.!!
This technique orthonormalizes the solution of the set

809 Phys. Fluids, Vol. 22, No. 5, May 1979

of equations whenever a loss of independence is detec-
ted.

B. Solution of the adjoint problem

The solution procedure is exactly the same as for the
solution of the basic-state problem. The coefficients of
the z matrix are

21=Eh), 2=DIH1), 23=tH0), z,=t70),
(85)

and the adjoint problem has the same eigenvalues as the
zeroth-order problem.

C. Solution of Eqs. (78) and (79)

The calculations are repeated at different x locations
to evaluate fy, f,, f3, 2, and K for a given frequency
along the x axis. A fourth-order fixed step size Runge-—
Kutta integration scheme is used to solve Eqs. (78) and
(79) to find the amplitude of the subharmonic mode for
different initial amplitudes of the fundamental mode.

Vi. NUMERICAL RESULTS AND CONCLUDING
REMARKS

Computations were performed for three different di-
mensionless frequencies of the subharmonic wave, F
=60x107% 52x107%, and 44x107%, by using different
values of €, where F =Q/R =*v/U% with & being the
dimensionless boundary-layer frequency and §2* being
the dimensional angular frequency of the subharmonic
wave. In all the numerical calculations presented here,
€ is taken to be the initial amplitude of the fundamental
wave as a fraction of the mean flow. For a growing
boundary layer, a is not a constant and it is calculated
by using Eqs. (5) and (77) subject to the normalized ini-
tial condition of unity. All calculations are started at a
location near the first neutral stability point of the fun-
damental wave and continued farther downstream well
into the unstable region of the subharmonic mode. The
variations of @ with R (i.e., streamwise position) are
shown in Fig, 2. We note from Fig. 1 that the detuning
parameter eo, is a weakly varying function of stream-
wise position. Nevertheless, it is calculated at each
streamwise position from the calculated values of k and
K. Then, 6 is calculated from Eq. (79). The function
b(x) is normalized to unity at the starting point.

As discussed in Sec. IV, we were unable to determine

a closed-form solution to Eq. (78); therefore, we nu-
merically integrated this equation. However, before
presenting these numerical results, we investigate the
quasi-stationary solutions of Eq. (78). To this end, we
neglect the nonparallel growth rate ¢, f3/f; and consider
K, fi/fi, ea, and €0, to be constant. Thus, we rewrite
Eq. (78) as

db/dx ==K b+ Abexp(ic,x +ip) , (86)
where
A=clfofi"la, ¢ =Im{log(f, /i )] (87)
It is convenient to introduce the transformation
b=(g,+ig;)exp|3i(o,x + §)] (88)

A. H. Nayfeh and A. N. Bozatli 809
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FIG, 2. Amplitude of the fundamental
mode at different frequencies.
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in Eq. (86), where g, and g; are real, Then, separating
real and imaginary parts yields

dg,/dx+ (K, =N)g, - 5¢0,9,=0, (89)

dg;/dx+(K; + M)g; +3€0,, =0, (90)
Equations (89) and (90) admit solutions of the form

gr=cyexp(Ax),g; = c,exp(Ax), (91)
where ¢; and ¢, are constants and

N=-K, + (A2 Jelo?) 7, (92)

Since —-K; is the linear spatial growth rate of the sub-
harmonic, Egs. (88), (91), and (92) show that the para-
metric resonance (i.e., effect of fundamental wave on
its subharmonic) is destabilizing when

A?> ol (93)
Using Eq. (87), we rewrite this condition as
ea>zelo, fi/fl. (94)

We note from Figs. 1 and 3 that, for a given frequency,
elo, | and Ify/f,| are almost constant functions of R,
Therefore, Eq. (94) defines, for each frequency, an

700 750

approximate critical value of the amplitude e¢a of the
fundamental wave to trigger the parametric resonance
instability, It follows from Figs. 1 and 2 and Eq. (94)
that the critical amplitude is approximately 29% of the
mean flow for these frequencies.

Figures 4, 5, and 6 show the results obtained from
the numerical integration of Eq. (78). They illustrate
the variation of »(x) with R and ¢, The solid curves are
for the case of no interaction between the fundamental
wave and its subharmonic. The point where the solid
curve has a minimum is the first neutral stability point
of the subharmonic mode.

Figure 4 shows that, when ea =0.02 or 0.04, the am-
plitude function b(x) for F=60x 10-° oscillates around
the solid curve (i.e., its value in the absence of interac-
tion). Calculating the local values of ¢ a from Fig. 2 and the
factthat ¢ a = (e a,)(a/a,), we seethat € a does not attain the
critical amplitude of 29% predicted by the quasi-stationary
solution for these initial amplitudes. However, whene a,
=0.06, it follows from Fig. 2 that € areaches the critical
value needed to trigger the parametric instability at R
=~ 590, This is verified in Fig. 4 which shows that b oscil -
lates around the solid curve ahead of R = 560 and increases

L

6 L
360 400 450 500 550 600

INTERACTION INTEGRAL , |f,/1,| (xi07)
I o
o ~n

B
@
r
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FIG, 3. Interaction integral,
If2/fyl.
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FIG, 4. Amplitude of the subharmonic mode
at F=60x107" for different initial ampli-
tudes of the fundamental mode.
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sharply downstream of R ~590.

When F =52x107% and eay=0.02, it follows from Fig.
2 that the critical value of ¢a is never reached and
hence, according to the quasi-stationary solution, b is
expected to oscillate around its noninteraction value.
This is verified by the numerical solution shown in Fig.

12 _— = 004
————— €: 002
€= 000

F=52.0%I10°

AMPLITUDE OF THE SUBHARMONIC MODE, b/b,

v

650 700

5. When ea, =0.04, Fig. 2 shows that ea reaches the
critical amplitude at R ~670. Hence, b is expected to
oscillate around its noninteraction value ahead of R

~ 670 and increase sharply downstream of R ~ 670,
Again, this conclusion is verified by the numerical so-
lution shown in Fig. 5. If ea; is increased further, the
critical amplitude will be reached at a farther upstream

FIG. 5. Amplitude of the subharmonic mode
at F=52x10"% for different initial ampli-
tudes of the fundamental mode.

02
0.0 | 1 1 [ | 1 1 >
400 450 500 550 600 650 700 750
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at F=44x10"® for different initial ampli-
tudes of the fundamental mode,
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location.

When F =44x10"%, Fig. 6 shows that b oscillates
around its noninteraction value if €ay=0.02, while it
increases sharply downstream of R ~ 685 if eay=0.04.
These numerical results corroborate the predictions of
the quasi-stationary solution because Fig. 2 shows that
€a does not reach the critical value if ea,=0.02, while
it reaches the critical value at R =685 if eqy=0.04.

The large amplitude 0.29 of the fundamental wave
needed to trigger the parametric instability in the
Blasius flow is a consequence of the large detuning pa-
rameter es, according to Eq. (94). For flows in which
€0, is small such as the free-shear layer flow,®!? the
critical amplitude will be small, and the parametric
instability will be triggered with smaller amplitudes of
the fundamental wave. We should note that many other
nonlinear effects take place before the parametric in-
stability is triggered in the flow over a flat plate, In
fact, the flow will become turbulent before ea reaches
the critical value for parametric instability. Thus, the
observed subharmonics in the experiments of Refs, 2
and 3 are not the consequence of the parametric insta-
bility discussed here. In the parametric instability
model, the amplitude of the subharmonic is infinitesi-
mal and hence it does not affect the fundamental wave.
Some preliminary calculations using a nonlinear inter-
action mode between a fundamental wave and its sub-
harmonic indicate that both waves can be greatly de-
stabilized if the initial amplitude of the subharmonic
wave is not infinitesimal, This would be possible if
the disturbance created by a vibrating ribbon contains
the fundamental frequency and its subharmonic. This
conclusion has been supported by recent experiments of
Saric and Reynolds.!?
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APPENDIX A
dB
£1 :"Egu ; (A1)
__ydB, _dB, 2K B
&r=— Uodx, 21 ~dx, Lt g dx, 2
- [ilk =KL yEoy +£12DTy
+DC“322]AEexp(i0x, —ZK;'XO) B (AZ)
o ydB, L BKAB o
83 == Udei g22 + R Xm C22 "[ Kgngzz + lk§12(~,21
+ 819D 8y +DEyrE0n ) ABexplioxy — 2K xy) . (A3)
APPENDIX B
fi :J; [~ Ea4tdf = (Ul oy + Sa)t 2 — Uplaak fs
+(2K/R)NEaakds + Et )y (B1)

fa Zf [i(k ~K)t Lot L12DEny +DENER)ER
0

+ [ =K &Ly + iRE 1980y 112Dy +DpEpltfdy
(B2)
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=3¢ L, oU
_ 221 e x % =28 220
fa—fo [85‘1 §21+522(Uo 2%, "’85(1 Za

0 0
+ V3D + ) + (U0 5+ VoDEy + ERD Vo)
1 1

2K (3t o
_GK (08 \ O,
R (aﬁ'ﬁ tht 0% §23>

2i dK

R a(gugfz +§22Cz’§)]dy ) (B3)

where ¥; =¢;x and ¢, =R"! expressing the slight nonpar-
allelism of the flow.

APPENDIX C
&1 =0, g.=1, g3=0, g=0, (Ccy
g =UUgk —w)R +k*, g5,=0,
€23 =R(AU,/3Y), @=ikR, (C2)
gy =-ik, gun=g33=83=0, (C3)
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&1 =0, gp=-1ik/R,

g43=—[i(U0k—W)+k2/R], g44:0. (C4)
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