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ABSTRACT 
 

 Using data from the frequency disturbance recorders (FDRs) that comprise 
the nation-wide frequency monitoring network known as FNET, disturbances in 
the eastern interconnected system (EI) have been monitored and recorded over the 
past several years.  Analysis of this and other data by a wide variety of research 
scientists and engineers has rendered the idea that frequency disturbances from 
generator trips, transmission line trips, load trips, and other events, travel with 
finite speed as electromechanical waves throughout any power system (in this 
case the EI).  Using FNET data as a tool, it is possible to measure and output the 
arrival times of these disturbance waves with a time resolution of 100 ms.   
 
 To observe with certainty the arrival time of the frequency disturbance 
waves, field data collected by the FDRs must first be conditioned in a robust 
manner.  The current method that uses the moving mean of raw FDR data is 
analyzed and two computationally efficient robust methods are suggested in this 
report.  These new methods that rely on robust statistics are more resistant to the 
effect of outliers contained within the raw FDR data.  Furthermore, like the 
moving mean, these methods smooth the raw data without removing the general 
trend. 
 
 Having recorded and conditioned the FDR data, three conventional 
triangulation techniques taken from the field of seismology are proposed and 
analyzed.  This study reconfirms the fact that the EI is not a medium of 
continuous elasticity though which the frequency perturbations travel but rather a 
discontinuous patchwork of varying elasticities.  Within this report, nine generator 
trip events are analyzed and the aforementioned triangulation methods are 
applied.  The advantages and disadvantages of each method are discussed. To 
conclude, axioms of future research are proposed and delineated. 
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Acronyms and Symbols 

 

EI:  Eastern (United States) Interconnected System 

FNET:  United States Frequency Monitoring Network 

FDR:  Frequency Disturbance Recorder 

PMU:  Phasor Measurement Unit 

GPS:  Global Positioning System 

NERC1:  North American Electric Reliability Council 

ECAR:  East Central Area Reliability Coordination Agreement 

SERC:  Southeastern Electric Reliability Council 

MAIN:  Mid-America Interconnected Network 

FRCC:  Florida Reliability Coordinating Council 

GUI:  Graphical User Interface 

LS:  Least-Squares 

ML:  Maximum Likelihood 

MAD:  Median Absolute Deviation

                                                 
1 http://www.nerc.com 
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Chapter 1  
Introduction 

1.1 Scope 

The purpose of this thesis is to take a first step in the direction of 

developing a reliable and comprehensive method of triangulating the 

approximate, yet accurate, location of disturbances that affect power system 

frequency.  The stage for this study is set in the Eastern United States 

Interconnected System (EI).  Within the EI there are ten Frequency Disturbance 

Recorders (FDRs) from which data is drawn to drive the analysis contained within 

this report.  Since utmost importance is placed upon producing results that can be 

practically implemented with computational efficiency, no simulated data has 

been introduced into this study.  Hence the results conveyed in this report are 

relevant for immediate implementation.  Information from nine generator trip 

events with known generator locations provides the data that drives this study. 

A first effort is made to properly condition the frequency data from the 

nine events under study.  The noisy nature of the data received from the FDRs 

demands intermediate steps between observation, calculation, and triangulation.  

Using robust methods, steps are taken to estimate the true value of frequency at 

each FDR location during generator trips and, consequentially, other frequency 

perturbing events. 

The prevailing effort in this study, however, is the mathematical 

triangulation of the generator trip locations solely from frequency data observed 

by the ten relevant FDRs in the EI.  Concepts taken from both mathematics and 

seismology are used in an attempt to compose a solution that deals with the vastly 

dynamic and heterogeneous nature of the EI.  Methods suited for solving both 

linear and non-linear sets of equations are used for the purpose of triangulation.  

 1



The prevention of catastrophic power system failures relies on the timely 

triangulation of events such as generator trips [1]. 

1.2 Electromechanical Wave Propagation 

Scientists and engineers have noted that frequency perturbations 

apparently travel as electromechanical waves [2-4].  From the inception of a 

disturbance with nebulous location (herein categorized as either a generator trip, 

load trip, or transmission line trip of any mentionable magnitude), there begins a 

progression, in this case within the EI, of phase angle disturbances that travel with 

finite speed.  Having been studied with great acuity, this distribution of phase 

angle disturbances in time and space can be viewed as a wave front of varying 

frequency perturbations that progresses outward from its point of origin [5, 6] .  

The mechanics and details of how this wave travels have also been studied at 

great length and it has been suggested that there exist at least three elements that 

dictate speed of its progression.  These are surrounding mesh network impedance, 

rotational inertia of nearby machines, and location of disturbance [2, 7].  Others 

have modeled the behavior of these frequency perturbation waves as traveling 

through a medium of constant elasticity or a continuum [8-10].  In the effort to 

triangulate the origin of a generator trip, we are acutely interested in how this 

frequency perturbation wave travels.  If we can measure and record the 

progression of this wave in much the same manner as seismologists track the 

progression of earthquakes, then it is hoped that we can triangulate the hypocenter 

of our electrical disturbance in the vein of how a seismologist would triangulate 

the hypocenter of an earthquake [11].   
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1.3 The Role of FNET 

Since the creation of the phasor measurement unit (PMU), the FDR, and 

the associated FNET, many have remarked upon the importance and use of such 

global positioning system (GPS) time-synchronized devices [2, 12-16].  As 

mentioned earlier, we are not basing this study on the constrained world of 

computer aided simulations.  Rather, we are basing our calculations on data 

recorded by ten FDRs each of which are a part of FNET.  The following figure 

shows the placement of the FDRs used in this study.  Each unit location is marked 

with a blue dot.  It is, however, important to note that not all FDRs currently in 

operation are listed.  Only the units that provided data for the nine generator trip 

cases used in this study are presented. 

 

Figure 1-1:  Location of FDRs used in this study. 
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 There has been a significant push recently to use PMU and FDR data for 

the purpose of predictive control for frequency stability [17].  Conversely, the 

FDRs that compose FNET will be used in the opposite manner for this study.  We 

will use these units for the purpose of triangulation after a contingency.  It is 

hoped that excerpts from this study will be helpful in the eventual release of an 

automatic, fast-acting, post-mortem, event triangulation utility.  To that end, 

FNET will provide the infrastructure for the estimator we wish to build.  Although 

the location estimation effort is quite different from the familiar area of power 

system state estimation, there are a few common principles that are used in both.  

The number of units, unit location, and conditioning of unit data are important 

factors to both areas [18-21].  As the development and furtherance of FNET is yet 

a growing science, the placement of FDRs throughout the EI is sparse and 

spotted.  Furthermore, there is also no control within our domain over the power 

system events that serve as the base cases for this study.  Hence this first effort is 

made with the knowledge that our information is scarce in the hope that at least a 

foundation can be laid in the area of power system event triangulation.   

With our set of ten FDRs, we have observed nine events.  Each event, 

however, was not observed by every FDR in our set of ten.  Rather, each of these 

nine events was measured only with a subset of our ten FDR units.  These events 

that serve as base cases are important in the development of a triangulation 

algorithm because they give us insight about the behavior of the EI in an event.  

Furthermore, for each base case we have confirmation on general location and 

approximate trip amount [22-24].  These base cases do not provide us, however, 

with information on the exact tripping times of the generators in question.  The 

following figure shows the locations of the base cases that have been used for this 

study in relation to the FDR units.  Base cases are plotted with squares and the 

FDRs are also plotted as blue dots. 
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Figure 1-2:  Location of base cases used in this study. 

 

 The following tables list pertinent information about both the FDR units 

and the base cases used in this study. 
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Table 1-1:  FDR unit location data. 

Unit 
Number 

1          2 3 4 6 7 9 11 17 20

Unit Name NY          UMR ARI VT ABB MISS UFL Calvin Tulane TVA1

NERC 
Region2 

NPCC           MAIN/SERC SERC ECAR/SERC SERC SERC FRCC ECAR SERC SERC

Latitude3 42.8018          37.9487 38.8210 37.2327 35.8220 33.4567 29.6742 42.9613 30.0658 35.1313

Longitude3 -73.9281         -91.7658 -77.0862 -80.4284 -78.6587 -88.8222 -82.3363 -85.6557 -89.9313 -84.8750

 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
2 As determined by http://www.nerc.com 
3 As determined by the U.S. Gazetteer, http://www.census.gov/cgi-bin/gazetteer  
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Table 1-2:  Base case location data. 

                                                 

         

 

Case 
Number 1 2 3 4 5 6 7 8 9

Date 8/4/2004      9/19/2004 11/23/2004 1/26/2005 2/11/2005 3/21/2005 4/2/2005 4/22/2005 4/29/2005

Plant 
Name 

Davis 
Besse Watts Bar Browns 

Ferry East Bend Browns 
Ferry Cumberland Eastlake  Zimmer Votgle-

Wilson 
Nearest 
Town 

Oak 
Harbor 

Spring 
City Athens Rabbit 

Hash Athens Cumberland 
City Eastlake  Moscow Waynesboro

State Ohio        Tennessee Alabama Kentucky Alabama Tennessee Ohio Ohio Georgia

NERC 
Region4 ECAR         SERC SERC ECAR SERC SERC ECAR ECAR SERC

Latitude5 41.5116º        35.6874º 34.7860º 30.0324º 34.7860º 36.3822º 41.6596º 38.8603º 33.0900º 

Longitude5 -83.1467º        -84.8641º -86.9599º -84.7414º -86.9599º -87.6440º -81.4306º -84.2285º -8201.36º 

FDR Set {2,3,4,6, 
7,9} 

{1,2,3,4, 
6,7} 

{2,3,4,6, 
7,11} 

{2,3,4,6, 
7,11} 

{2,3,4,6, 
7,9,11} 

{2,3,4,6,7, 
9,11,17,20} 

{2,3,4,6,7, 
9,11,17,20}

{2,3,4,6,7, 
9,11,20} 

{2,3,4,6,7, 
9,11,17,20} 

4 As determined by http://www.nerc.com 
5 As determined by the U.S. Gazetteer, http://www.census.gov/cgi-bin/gazetteer 
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 The base case events in the above table are observed by looking for 

departures from 60 Hz (or nominal frequency) in the frequency data supplied by 

the available and relevant FDR units.  A trigger device has already been 

developed that looks for a 5 mHz departure from nominal frequency over a period 

of 4 s or longer [2, 23].  Once an event has been detected and triggered, the actual 

electromechanical wave front is visible in the time-staggered frequency decline 

observed by the FDRs.  However, the drop in frequency is not detected by every 

unit at the same time.  There is a definite delay.  This idea leads to the proposal of 

this thesis:  There exists a method or methods that can use the delay between the 

inception of an observable event and the detection thereof solely by frequency 

examination to triangulate with reasonable accuracy the location of the inciting 

event.  The following cartoon graphically explains the above stated. 

 

 

Figure 1-3:  A cartoon of an example frequency event. 
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 The above figure represents an imaginary event detected by two FDR 

units.  The unit associated with the data plotted in blue was the first to observe the 

event at time T1.  The second unit (data in red) observed this event at time T2.  

The detection times (T1 and T2) are determined in the following manner:  First, a 

confidence threshold, ε, is determined.  This threshold has been fixed at 0.0025 

Hz.  This is justified by both legacy and the idea that 0.0025 Hz is half of the 

event detection threshold of 0.005 Hz (from above) [2, 23].  In this event, nominal 

frequency just happens to be 60 Hz.  However, the field measurements rarely 

render nominal frequency exactly at 60 Hz.  Therefore the second step is to 

form , the frequency at which we shall note the event detection time for 

each unit.  This quantity can be defined as: 

thresholdf

fthreshold = fNominal - ε 

Finally, the detection times are documented as the time when the measured 

frequency data crosses the line determined by . thresholdf

 This thesis presents another, more scientifically consistent method of 

determining the disturbance wave front arrival times at the end of Chapter 2.  This 

method is not based on the selection of an arbitrary threshold. 

1.4 Organization of the Study 

Chapter 2 describes the data conditioning that makes the steps in Section 

1.3 possible.  Since the data delivered by the FDR units is not as smooth as the 

ideal data in the cartoon of the previous section, the data must undergo a 

conditioning process as later described.  Section 2.1 describes in particular terms 

the problems that exist with FDR data.  Section 2.2 covers the current method of 

dealing with the noisy nature of FDR data and explains why this method is not 

sufficient.  Section 2.3 submits two robust methods taken from the area of 

statistics that de-noise the FDR data and remove unwanted outliers.  Lastly in 
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Chapter 2, Section 2.4 summarizes the main points of robust outlier detection and 

removal while also displaying the graphical user interface (GUI) that has been 

developed expressly for the purpose of smoothing data collected from FDRs. 

 Chapter 3 discusses a linear technique conventionally used for the purpose 

of seismic hypocenter triangulation.  In Section 3.1, principles from elementary 

seismic location theory are delineated.  The solution (or best approximation) of 

the linear triangulation equation set proposed in Section 3.1 is discussed in terms 

of the least-squares problem in Section 3.2.  Section 3.3 sequentially adds 

constraints as determined by the detection times associated with each FDR.  This 

process shows why a linear solution method alone is prone to failure.  Finally, the 

results of Chapter 3 are discussed in Section 3.4. 

 Chapter 4 discusses the solution of non-linear sets of distance equations 

and the minimization of constraint equations using the Newton’s and gradient 

search methods, respectively.  The results of these processes are plotted and 

discussed in Sections 4.1 and 4.2.  Lastly in Chapter 4, Section 4.3 summarizes 

the contributions of non-linear theory to triangulation of power system events. 

 Chapter 5 concludes the thesis with a summary of findings from the 

research into triangulation thus far.  Finally, a proposal for future research is 

submitted in the last part of Chapter 5. 
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Chapter 2  
Data Conditioning and Curve Fitting 

2.1 The Nature of FDR Data 

In order to use data collected from FNET, one must first understand its 

nature.  The data is by nature riddled with noise and outliers.  We do not consider 

these noisy FNET data to be mistake-ridden, but rather we consider these data to 

be error-ridden.  If indeed the data were mistake-ridden, then we could make 

improvements by simply eliminating the source of mistakes and no statistical 

treatment would be necessary.  However, according to the latest science available 

to the FNET research group, we consider this data to be mistake free.  The 

frequency data, is perhaps error-ridden, meaning that in the data recorded by each 

FDR, there are measurements that depart from the true value of the frequency 

[25].  What is the source of the error that renders the FDR measurements so 

noisy?  Aside from the inescapable experimental errors that arise from the ever-

present although minuscule measurement error, each FDR is prone to measuring 

noise from the utility’s distribution network.  A key benefit of FNET is that it 

relies upon FDRs that are, in general, installed to take measurements of frequency 

at the distribution level.  Furthermore, these units are not in any manner protected 

or buffered from other devices also connected to the distribution network that may 

cause disturbances in voltage signals or otherwise degrade local power quality.  

Many have researched and explained the power quality problems that appear at 

the distribution level [26-29].  Although the FDRs read and measure the small 

disturbances at the distribution level, we do not wish to consider these relatively 

minute disturbances, that are not a true reflection of power system frequency, 

when analyzing large scale power system contingencies [12].  These local 

disturbances become to us as noise with possible outliers.  The following figure is 
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a prime example of a set of problematic data recorded by an older FDR running a 

previous, now updated and replaced, firmware version. 

 

Possible 
Outliers 

Noisy and 
Hard-to-
Read Data 

Figure 2-1:  Problematic FDR data with signal quality issues highlighted. 

 From the above figure, it is obvious that the frequency waveform as 

measured at the distribution level is quite noisy and hard to read.  The next 

sections discuss a few techniques used to estimate the true value of the frequency.  

These techniques draw ideas from the realms of conventional and robust statistics 

to deal with noisy data [24, 30-33].  An effort is made to keep the complexity of 

data conditioning to a minimum for the purpose of computational efficiency. 

2.2 The Currently Used Data Smoothing Technique 

The current method used by the FNET research group to estimate the true 

value of the frequency, , measured by each individual FDR is the “moving 

average” or “moving mean” [23].  The moving mean is defined as follows [34]:  

tf
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given a sequence , an n-moving mean is another sequence { }N
iif 1= { } 1

1
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Although the actual true value of the frequency  only exists in theory.  This 

approach estimates  and we write this value as .  The moving mean is actually 

a moving least squares estimator that minimizes the following objective function: 

tf
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It is important to note that the least squares (LS) estimator is the maximum (ML) 

likelihood, or optimal, estimator of normally distributed data [35].  Normal, or 

Gaussian, distributed data has a probability density function of the form [36-38]: 

2
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And can be viewed pictorially as: 

 
Figure 2-2:  The Gaussian distribution. 
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The following figure shows the raw data,  and the estimate of the true value 

using the moving mean, . 

f

tf̂

 

Figure 2-3:  Raw FDR data plotted with moving mean. 

The above figure shows both the raw FDR data plotted in blue and the 

moving mean plotted in red.  A window size of 30 ( 30=n ) has been selected for 

the computation of the moving mean.  From this figure the smoothing capabilities 

of the moving mean are evident and, at first glance, this method looks an excellent 

estimator of true value of the frequency.  However, let us introduce a disturbance, 

not unlike one that might result from an actual scenario, and examine the moving 

mean closer.  In the next figure, the actual data has been perturbed by adding 

eight data points at 59.9 Hz near one another.  It is clearly visible, that the moving 

mean is not robust against these outliers because the mean is also perturbed.  The 

mean is perturbed because we are breaking from Gaussianity by adding outliers 
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that are common to real data.  As can be seen from figure 2-2, the Gaussian 

distribution has relatively thin tails and such outliers as added are not 

accommodated by the tails in the distribution.  Therefore the LS estimator which 

is optimal at the Gaussian distribution will break down when non-Gaussian data is 

introduced. 

 

Artificially 
Perturbed 

Data

Figure 2-4:  Raw perturbed data plotted with moving mean. 

 In the figure above, the data plotted in blue is the raw data and the data 

plotted in red is the moving mean with a window size of 30.  Such a disturbance 

that lasts less than 2s is not uncommon at the distribution level [26].  We seek an 

estimator of that is robust against such common occurrences of outliers.  We 

turn from classical statistics to robust statistics for the solution [30, 31]. 

tf
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2.3 Two Robust and Computationally Efficient 

Techniques 

The goal of this section is to present two techniques that are 

computationally efficient but also robust against outliers with the nature of those 

presented in the previous section.  These two techniques are the moving median 

and polynomial curve-fit with outlier rejection. 

2.3.1 The Moving Median 

We define the moving median in much the same way as the moving mean.  

The concept of a moving window each encompassing 30 elements remains the 

same but the mean is replaced with the median.  In closed form, the moving 

median is defined:  given a sequence{ }N
iif 1= , an n-moving median is another 

sequence { } 1
1

+−

=

nN
iif defined from by taking the median as [34, 36, 39]: if

],,,[ 11 −++= niiii fffmedianf L  

The estimation of the true value of the frequency can then be defined as: 

{ } 1
1

ˆ +−

=≡
nN

iit ff  

The moving median is the ML estimator of the Laplacian or Double-Exponential 

distribution which minimizes the  norm given by [35]: 1L

∑
=

=
n

i
it ff

1

)(φ  

And the probability density function of the Laplacian distribution is given by [35-

38]: 

a
bx

e
a

xf
−

−
=

2
1)(  

The following figure presents the Laplacian distribution pictorially.  Notice that 

the Laplacian distribution has thicker tails than those of the Gaussian distribution. 
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Figure 2-5:  The Laplacian Distribution 

The following figure shows a sample of perturbed FDR data plotted along 

with both the moving mean and the moving median.  The raw data is plotted in 

blue, the moving mean in red, and the moving median in green.  From this figure 

the robustness of the moving median becomes evident as the moving median is 

not at all perturbed by the simulated disturbance.  The thicker tails in the 

Laplacian distribution allow for the greater possibility of outliers and thus the 

moving median does not break down when outliers are present.   The “ride-

through” capability of the median is quite desirable for our application, thus we 

shall consider the moving median as a viable computationally efficient 

replacement of the moving mean.  Nonetheless, over the few-second period of the 

following figure, the moving median still does not seem smooth enough. Hence, 

we turn to the world of curve fitting. 
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Artificially 
Perturbed 

Data

Figure 2-6:  Raw perturbed data with moving mean and moving median. 

2.3.2 Curve Fitting with Outlier Rejection 

Having examined the moving mean and the moving median and yet 

desiring even more data smoothing capabilities in the estimation of the true value 

of the frequency, we resort to curve fitting.  In the next section, for the purpose of 

determining the wave front arrival times, we shall also desire a smooth wave form 

in order to evaluate the derivative.  For consistency, the FDR data that is to be 

fitted is placed in a ~10-20s window.  We desire the point at which the 

electromechanical wave was noticed to be placed near the center of this window.  

This step places a relatively flat section of data on either side of the disturbance in 

question.  The figure below explains this step graphically. 
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Event 
Detection

Flat Area

Flat Area

Figure 2-7:  Sample FDR data recording generator trip. 

Before we begin the curve fitting process, it is important to identify and 

reject any outliers that might be contained within the sample of original data.  The 

following steps are used in the outlier rejection process and are taken from the 

field of robust statistics [32, 33, 40]. 

1. The sample to be fit is broken down into sub-samples of window size n.  

This method of outlier detection is highly sensitive to the size of the sub-

sample windows and thus after due experimentation we choose a window 

size of 30 ( ). 30=n

The following steps are repeated for each of the sub-samples created in Step 1. 

2. The median is evaluated as follows: 

[ ]nmedian zzzmedianz ,,,ˆ 21 L=  

3. The median-absolute-deviation or MAD is calculated as: 

medianin zzmedianbMAD ˆ4826.1 −××=  for ni ,,2,1 L=  
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4. The bias factor, bn, of Step 3 is calculated as: 

8.0−
=

n
nbn  

5. Standardized residuals are formed from the median and MAD of the sub-

sample in the following manner: 

MAD
zz

r mediani
si

ˆ−
=  

6. The elements associated with residuals with a value larger than 2.57 are 

classified and discarded as outliers. 

The following figure shows a set of frequency data with outliers having been 

identified using the previous steps (outliers identified with red asterisks). 

 

Figure 2-8:  Sample FDR data with outliers identified. 

 Having chosen the sample of data to be fitted and having detected the 

outliers, we can now proceed with fitting the data with a polynomial curve.    

Since the current FDRs record the frequency every 0.1 s, ten seconds worth of 
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data amounts to 100 samples.  By experimentation we can observe that, with the 

nature of our data and with 100 samples, a desirable close but smooth fit can be 

obtained by a seventh order polynomial.  This equation describes in closed form 

what we desire: 

01
2

2
3

3
4

4
5

5
6

6
7

7 αααααααα +++++++= tttttttf t  

However for the sake of versatility, we generalize: 

01
2

2 αααα ++++= tttf m
mt L  

We use the following method to calculate the coefficients to be used in the curve 

fitting.  These ideas come from classical curve fitting and matrix theory [35, 39, 

41-43]. 

1. We first define the matrix expression that accommodates each sample 

within the sample set of n where n = 100 with a polynomial of order m as 

follows: 

αHF =  

2. ,,HF  and α  are defined as: 
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3. The matrices from Step 2 are altered such that any elements that were 

identified as outliers along with the associated time values are not 

included. 

4. In all likelihood, the matrices from Step 2 form an over-constrained 

system.  Therefore, in general, there will be no exact solution for the 

α−coefficients.  The pseudo-inverse can be used, however, to fit the data 
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with the proper coefficients in the least squares sense.  By definition, the 

pseudo-inverse is the solution operator for the minimum-norm least 

squares problem [44].  Hence we form the pseudo-inverse, †H , of H : 

( ) tt HHHH 1† −
=  

5. We can then use the pseudo-inverse to solve for the α−coefficients: 

FH †=α  

6. Finally, we use these coefficients to plot the mth, in our case seventh, order 

polynomial. 

The following figure displays the raw data plotted along with both the moving 

median and the seventh order polynomial fit.  The raw data is plotted in blue, the 

moving median in green, and the fitted curve in red. 

 

Figure 2-9:  Raw FDR data plotted with moving median and fitted curve. 
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2.4 Summary 

The data conditioning discussed in this chapter is beneficial because it 

gives us a non-relativistic method with which to determine the actual arrival time 

of the frequency disturbance waves.  We depart from the classically used method 

described in Section 1.3 because it sets an arbitrary threshold by which every 

frequency waveform is analyzed.  This old method might work if we could be 

assured that every frequency disturbance wave, as measured by the FDRs, has the 

same magnitude of perturbation and the same waveform shape.  This ideal is 

however foolish to assume.  The following figure gives an illustration of why this 

is so.  The static threshold is represented by the dotted line and three imaginary 

frequency waveforms are plotted.  There is no accommodation for waveform 

shape or magnitude with a static threshold.  If, as in the case below, one or a few 

waveforms is shaped differently from the prevailing majority, the arrival time for 

the unusual waveforms might be assessed incorrectly without an objective arrival 

time detection algorithm. 
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Figure 2-10:  Disturbance wave detection error with static threshold.   

Yet another problem with the static threshold method of determining the 

arrival time of frequency disturbance wave fronts is the fact that several 

thresholds must be determined in order to classify the event properly.  What if, for 

instance, the contingency was load rejection as opposed to a loss of generation?  

An upper threshold would be necessary in this case.  To avoid this problem along 

with the others, let us define the frequency perturbation arrival/measurement time 

as the moment when the frequency waveform is changing the most (i.e., the 

maximum value of the magnitude of the slope).  The red stars in the above graph 

represent these moments.  This new wave front detection method is yet another 

reason to use the curve fitting method instead of the moving median.  Referring 

back to figure 2-9, we examine the magnitude of the derivative for both the 

moving median and the fitted curve.  The moving median derivative is plotted in 

red and the fitted curve derivative in blue.  The derivative of the moving median 
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is quite jumpy compared to the derivative of the fitted curve.  Ignoring the 

derivative at the boundary, there is a definite maximum in the magnitude of the 

derivative of the fitted curve.  The maximum value of the magnitude of the 

derivative of the moving median could be much more difficult to assess.  This 

problem is made evident for this case (and in general) by the spikes visible in the 

following figure.   
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Figure 2-11:  Magnitude of frequency derivative of moving median and fitted curve (see 

figure 2-9). 

 Figure 2-12 shows where the old static threshold method and the new 

slope-based method identify the official measurement time of the 

electromechanical wave.  Since at this juncture, the new slope based wave front 

detection algorithm is not designed for use in fast-action closed loop control, the 

slight time delay, ∆t, is irrelevant. 
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Static Threshold 
Method 

∆t 

Slope Based 
Method

Figure 2-12:  Detection times for static threshold and slope-based methods (see figure 2-8). 

As a part of the work done in the accomplishment of this thesis, a GUI 

was developed expressly for the purpose of fitting FDR data.  The figures below 

show the GUI with data plotted for each first base case.  Notice that the placement 

of red triangles plotted on each curve represents the set wave front detection time 

for that particular curve.  Table 2-1 shows all pertinent base case information 

including the recorded wave front detection times. 
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Figure 2-13:  FDR data conditioning GUI developed for FNET (Base Case 1). 
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Figure 2-14:  FDR data conditioning GUI developed for FNET (Base Case 2). 

 
Figure 2-15:  FDR data conditioning GUI developed for FNET (Base Case 3). 
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Figure 2-16:  FDR data conditioning GUI developed for FNET (Base Case 4). 

 
Figure 2-17:  FDR data conditioning GUI developed for FNET (Base Case 5). 
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Figure 2-18:  FDR data conditioning GUI developed for FNET (Base Case 6). 

 
Figure 2-19:  FDR data conditioning GUI developed for FNET (Base Case 7). 
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Figure 2-20:  FDR data conditioning GUI developed for FNET (Base Case 8). 

 
Figure 2-21:  FDR data conditioning GUI developed for FNET (Base Case 9).
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Table 2-1:  Base case perturbation wave form arrival data (Cases 1-3). 

CASE: 1   2 3
DATE: 4-Aug-2004   19-Sep-2004 23-Nov-2004
Plant Name: Davis Besse Watts Bar Browns Ferry 
Nearest 
Town: Oak Harbor Spring City Athens 

State: OH   TN AL
NERC 
Region: ECAR   SERC SERC

 ↓Latitude↓ ↓Longitude↓ ↓Latitude↓ ↓Longitude↓ ↓Latitude↓ ↓Longitude↓
Coordinates: 41.512º     -83.147º 35.687º -84.864º 34.786º -86.960º 
↓ Unit ↓ ↓Detection Time ↓ ↓Detection Time ↓ ↓Detection Time ↓ 

FDR1 --   3.56.00.0 --
FDR2 9.23.09.8   3.55.58.8 11.01.14.8
FDR3 9.23.09.9   3.56.00.2 11.01.15.9
FDR4 9.23.08.3   3.55.59.0 11.01.15.1
FDR6 9.23.12.4   3.56.00.1 11.01.15.5
FDR7 9.23.11.4   3.55.59.0 11.01.14.8
FDR9 9.23.11.8   -- --
FDR11 --   -- 11.01.15.0
FDR17 --   -- --
FDR20 --   -- --

 
 
 
 
 

 32



Table 2-2:  Base case perturbation wave form arrival data (Cases 4-6). 

CASE: 4   5 6
DATE: 26-Jan-2005   11-Feb-2005 21-Mar-2005
Plant Name: East Bend Browns Ferry Cumberland 
Nearest 
Town: Rabbit Hash Athens Cumberland City 

State: KY   AL TN
NERC 
Region: ECAR   SERC SERC

  ↓Latitude↓ ↓Longitude↓ ↓Latitude↓ ↓Longitude↓ ↓Latitude↓ ↓Longitude↓
Coordinates: 39.032º     -84.741º 34.786º -86.956º 36.382º -87.644º 
↓ Unit ↓ ↓Detection Time ↓ ↓Detection Time ↓ ↓Detection Time ↓ 

FDR1 --   -- --
FDR2 13.31.22.6   17.29.33.2 11.24.40.2
FDR3 13.31.23.8   17.29.34.3 11.24.41.3
FDR4 13.31.23.5   17.29.33.5 11.24.40.5
FDR6 13.31.24.0   17.29.35.3 11.24.41.1
FDR7 13.31.23.2   17.29.34.8 11.24.40.4
FDR9 --   17.29.34.0 11.24.41.0
FDR11 13.31.22.4   17.29.33.8 11.24.41.1
FDR17 --   -- 11.24.41.1
FDR20 --   -- 11.24.41.0
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Table 2-3:  Base case perturbation wave form arrival data (Cases 7-9). 

CASE: 7   8 9
DATE: 2-Apr-2005   22-Apr-2005 29-Apr-2005
Plant Name: Eastlake   Zimmer Votgle-Wilson
Nearest 
Town: Eastlake   Moscow Waynesboro

State: OH   OH GA
NERC 
Region: ECAR   ECAR SERC

  ↓Latitude↓ ↓Longitude↓ ↓Latitude↓ ↓Longitude↓ ↓Latitude↓ ↓Longitude↓
Coordinates: 41.660º     -81.431º 38.860º -84.228º 33.090º -82.014º 
↓ Unit ↓ ↓Detection Time ↓ ↓Detection Time ↓ ↓Detection Time ↓ 

FDR1  -- --  --  
FDR2 16.24.55.2   7.18.51.5 20.53.49.3
FDR3 16.24.55.5   7.18.51.4 20.53.49.5
FDR4 16.24.54.7   7.18.51.1 20.53.49.2
FDR6 16.24.56.8   7.18.53.2 20.53.51.1
FDR7 16.24.56.1   7.18.52.4 20.53.50.6
FDR9 16.24.56.4   7.18.53.2 20.53.51.7
FDR11 16.24.55.3   7.18.51.6 20.53.49.5
FDR17 16.24.56.3    -- 20.53.51.6
FDR20 16.24.56.0   7.18.52.9 20.53.51.0
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Chapter 3  
Linear Triangulation Methods 

3.1 The Limited Contributions from Seismology 

Let us begin work on the triangulation problem by restating the thesis of 

this report: There exists a possibility of using the delay between the inception of 

an observable event within the electric utility grid of the EI and the detection 

thereof solely by frequency examination to triangulate with reasonable accuracy 

the location of the inciting event.  As a first effort, we turn to seismology for 

inspiration in possible solution methods for our problem.  This step is taken 

because of two common areas between the problem of power system event 

location and earthquake triangulation: (1) The seismograph is used as a tool to 

measure disturbances (perturbations on and under the Earth’s crust) just as our 

FDRs measure disturbances, and (2) these seismic perturbations travel with finite 

speed through diverse strata in the Earth’s composition [11, 45-50].  In the study 

of seismology, however, we encounter many areas in which the paradigm 

between our perception of the utility grid and the spherical globe breakdown.  

First, the triangulation of the hypocenter of earthquakes is a much more mature 

science than is the triangulation of the hypocenter of utility grid disturbances.  

Today, there are nearly 3,000 seismic observatories around the globe producing 

hundreds of thousands of seismographs annually [49, 51, 52].  Each of these 

stations has at least one or more seismic measurement devices, and in the 

measurement of seismological disturbances, several families and types of 

waveforms are captured [11, 45-50].  The following figure shows the data 

measured at only one of the several University of Utah Seismograph Stations. 
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Figure 3-1:  Example of seismograph readings taken at a single observatory station [53]. 

 Conversely, we are constrained to measuring only one such signal and that 

is the aforementioned electromechanical wave that manifests itself in the form of 

a frequency waveform.  In the world of seismology, much can be discovered 

about the hypocenter of an earthquake by analyzing certain established 

relationships between the various observed waves in the seismograph.  There is 
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no such analog in our case if we constrain ourselves (as we have) to frequency 

(and the related angle) waveforms alone. 

Thus far we have noticed and agreed upon the fact that the EI grid is a grid 

of heterogeneous time-varying elasticity.  This is also the case with the 

construction of the Earth  [11, 45-50].  Again, however, the study of seismology is 

thousands of years old.  The Chinese have been recording earthquakes with a 

variety of methods since 1800 BC and measurements more constructive to 

contemporary science have been recorded since around AD 1750 [49].  A long 

legacy of measurements, trial, and error has lead to a fairly complex model of the 

Earth’s structure.  Thus, velocity models have for many years existed in the form 

of the notorious Jeffreys-Bullen travel time table (see figure 3-2) which is 

associated with the path of seismic waves (see figure 3-3) [11, 49, 54]. 

Seismology is also very much a three-dimensional (3-D) problem.  Many 

ideas in seismology are related to 3-D torsions, stresses, deformations, et cetera.  

Not only are seismologists concerned with the latitude and longitude of an 

earthquake, but they also look for the depth of the disturbance below the surface 

of the Earth [11, 45-50].  We, however, have one less dimension with which to be 

concerned. 

At this juncture, there seem to be few established relationships between 

advanced seismology and electrical engineering.  However, some of the simpler 

seismological techniques might be of use.  When a Cartesian coordinate system is 

available, the Pythagorean relation is used in seismology for small seismographic 

networks [49]: 

( ) ( ) ( ) ( )22222
hihihihi ttVzzyyxx −=−+−+−  
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Figure 3-2:  Jeffreys-Bullen travel-time curves [54]. 
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Figure 3-3:  Jeffreys-Bullen plot of wave paths [54]. 

 In the Pythagorean relation above, xi is the latitude coordinate of the ith 

station, yi is the longitude coordinate of the ith station, zi is the altitude coordinate 

of the ith station, xh is the latitude coordinate of the hypocenter, yh is the longitude 

coordinate of the hypocenter, zh is the altitude coordinate of the hypocenter, V is 

the velocity of the medium, ti is the disturbance measurement time of the ith 

station, and th is the time of origin at the hypocenter.  From the data given in the 

previous chapters, we have enough data to formulate a method of solving this 

relation.  Accurate results are not guaranteed as, at this point, no relationship 

between the field of seismology and utility grid event location has been proven.  

To find a solution to the Pythagorean relation, let us first attempt to find set of 
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equations linear in terms of hypocentral variables xh, yh , and th (eliminating the 

altitude component zh). 

3.2 The Least-Squares Approach 

Before beginning the solution process, MATLAB’s Mapping Toolbox was 

used to convert the 3-D spherical Greenwich latitude and longitude coordinates to 

two-dimensional (2-D) Cartesian coordinates.  After the solution methods herein 

have been implemented, the reverse coordinate transformation process was used 

to change the 2-D coordinates back to 3-D coordinates [55]. 

Since we have several, say n, FDR unit locations, we can form a system of 

Pythagorean relationships in the following manner: 
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 It is worth noting at this point that we seek a linear system in terms of the 

hypocentral coordinates such that the least-squares (LS) method of solving an 

over-constrained system of equations can be used.  In general, our system of 

equations will be over-constrained.  By subtracting successive pairs of station 

equations, a linear equation in terms of the hypocentral coordinates is produced: 

( ) ( ) ( ) ( )[ ]222
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iiiiiihiihiihii yxyxttVtttVyyyxxx −−++−=−−−+− ++++++  

The above equation is linear in terms of our three hypocentral coordinates 

and the LS method can be applied.  To accomplish this, we first form the 

following system of equations while collapsing the right-hand side into a constant 

Ci: 
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represented in matrix form as: 

xHC =  

with matrix variables defined as: 
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The hypocentral coordinates can then be solved for via the LS method using the 

pseudo-inverse as discussed previously in Section 2.3.2 [11, 44-46]: 

( ) tt HHHH 1† −
=  

yielding the final solution: 

CHx †=  

The main problem with using this method of finding the hypocentral 

coordinates is that we must assume that the frequency disturbance waves are 

traveling in a continuum at a constant velocity in each direction.  Furthermore, we 

must also assume a scalar velocity before solving.  At this point we have no 

velocity model for the travel of these frequency perturbation waves so we must 

make several guesses, solve using each guess, and evaluate the results.  The 

following figures show the results of the LS method, plotted with red asterisks, 

using velocities that vary from 100 mi/s to 1000 mi/s.  We chose this range 

because in the past we have measured disturbances traveling between 350 mi/s 

and 660 mi/s and we wish to accommodate a wide range of possible disturbance 
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travel speeds [2, 23].  In the following figures, the closest solution location is 

enlarged and pointed out with an arrow.  Again, here the base case being 

triangulated is plotted with a square and the FDR locations are shown using blue 

dots. 

 

Figure 3-4:  Linear triangulation of base case 1. 
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Figure 3-5:  Linear triangulation of base case 2. 

 
Figure 3-6:  Linear triangulation of base case 3. 
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Figure 3-7:  Linear triangulation of base case 4. 

 
Figure 3-8:  Linear triangulation of base case 5. 
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Figure 3-9:  Linear triangulation of base case 6. 

 

Figure 3-10:  Linear triangulation of base case 7. 
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Figure 3-11:  Linear triangulation of base case 8. 

 
Figure 3-12:  Linear triangulation of base case 9. 
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 The following table shows the distances between the actual location of 

each base case and the loci of solutions from the linear LS triangulation method.  

Shortest distances are highlighted in red. 

Table 3-1:  Numerical results for linear triangulation method. 

Solution Distances from Base Case (mi): Continuum 

Speed 

(mi/s): 
1 2 3 4 5 6 7 8 9 

100 171 789 118 779 154 95 435 113 276 
150 151 786 120 735 157 96 433 107 287 
200 126 781 123 674 162 98 430 99 302 
250 105 776 126 596 168 100 425 89 323 
300 103 769 130 505 175 103 420 77 349 
350 136 761 136 400 184 106 414 66 381 
400 199 752 142 287 195 110 408 57 420 
450 282 742 150 176 206 114 400 57 466 
500 382 731 159 129 219 119 392 67 518 
550 498 718 169 223 233 124 383 88 578 
600 631 705 181 376 249 130 373 115 645 
650 782 691 195 549 266 136 363 148 720 
700 954 675 209 735 285 143 352 185 804 
750 1151 659 225 933 304 150 341 226 896 
800 1381 642 243 1141 325 158 330 270 998 
850 1656 625 262 1360 348 166 320 318 1110
900 2001 607 282 1589 372 175 309 370 1233
950 2499 588 304 1828 397 184 300 425 1369
1000 3350 570 327 2078 423 194 292 484 1520

 

 47



 As can be seen from the above figures and table, there exist a few 

problems with the LS method of triangulating the disturbance origin.  At least 

four possible reasons exist for these discrepancies: 

• Too few FDR output points for each second 

• Lack of sufficient measurement units 

• The heterogeneous nature of the EI grid 

• The time- and condition-varying nature of the EI grid 

• Lack of event progression repeatability due to system topology changes 

Each FDR samples the frequency at 10 samples per second.  If frequency 

perturbations actually travel between 100 mi/s and 1000 mi/s in the EI, then errors 

could be between 10 mi and 100 mi.  Furthermore, these error estimates can be 

multiplied by each additional degree of freedom that is added into the system.  

Another obvious problem is the lack of sufficient measurement units available. 

There are vast spaces in the above maps where there is very little indication of 

frequency.  The solution of this over-constrained linear system of equations 

cannot account in any manner for the heterogeneous nature of the EI grid in the 

LS sense.  And finally, if base case three and five are examined using the data 

listed in tables 2-1 and 2-2, one shall quickly notice a lack of consistency between 

the timing of the two cases although they were located in the same plant.  In the 

following figure we see a plot of the assumed continuum velocity versus the 

distance calculated between the LS solution and the true location for each of the 

nine base cases in this study.  From this figure and the above table, it is easy to 

see that there exists no common continuum speed that can be assumed in the 

honing of a LS solution. 
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Figure 3-13:  Plot of LS error versus assumed continuum speed. 

3.3 Problems with the Over-Constrained System 

Consider the figure below.  If each dot represents an FDR location and the 

number of each dot represents the order in which a disturbance was detected, then 

one might consider using the following triangulation method:  If a circle of 

increasing radius is drawn around each of n points and is enlarged until there 

exists a neighborhood of at least n intersections in an arbitrarily small area with 

the following constraint: 

nrrr ≤≤≤ L21  

where ri is associated with the ith measurement unit and all measurement units are 

numbered in ascending order according to disturbance detection time, then we can 

assert that the disturbance hypocenter is located within the neighborhood that 

satisfies these constraints. 
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Hypocentral 
Neigborhood 

Figure 3-14:  Cartoon of hypocenter triangulation by increasing radii. 

 In an effort to find the hypocenter using the above method, we use 

MATLAB to search for points within the solution space (the area in and around 

the EI).  This search is accomplished by breaking the entire solution space into a 

grid of candidate points consisting of coordinates with a latitude and longitude.  

From each candidate point, radii are constructed to each of the base case 

locations.  If the radii constraint from above is satisfied, then the point is 

considered a part of the hypocenter loci, else the point is disregarded.  This 

method is iterated until every candidate point in the grid has been tested.  See the 

following flow chart. 
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Figure 3-15:  Flow chart for algorithm to find hypocentral loci. 
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  The following figures show the hypocentral loci for each base case with a 

varying number of constraints added.  After about four radial constraints are 

added, in most cases there exists no point within the solution space that satisfies 

the radii constraints.  In the following figures, brighter shades of red represent the 

loci of points that meet a higher number of constraints on the solution space.  

Logically, loci that satisfy n + 1 constraints will also be in the solution set for n 

constraints.  For each patch of red, the numbers of satisfying constraints are listed.  

As is evident from the following plots, there seems to be a problem in dealing 

with our over-constrained system in a linear manner. 

 
Figure 3-16:  Hypocentral loci that meet constraints of base case 1. 
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Figure 3-17:  Hypocentral loci that meet constraints of base case 2. 

 
Figure 3-18:  Hypocentral loci that meet constraints of base case 3. 
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Figure 3-19:  Hypocentral loci that meet constraints of base case 4. 

 
Figure 3-20:  Hypocentral loci that meet constraints of base case 5. 
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Figure 3-21:  Hypocentral loci that meet constraints of base case 6. 

 
Figure 3-22:  Hypocentral loci that meet constraints of base case 7. 
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Figure 3-23:  Hypocentral loci that meet constraints of base case 8. 

 
Figure 3-24:  Hypocentral loci that meet constraints of base case 9. 
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3.4 Summary 

In this chapter we have attempted the triangulation of disturbance location 

via the search for a LS solution to a set of over-constrained linear equations.  

While in some base cases there existed a solution associated with an assumed 

continuum velocity, not all of the base cases enjoyed satisfactory results.  Even 

for the base cases that enjoyed a close solution based on an assumed continuum 

velocity, from figure 3-13 and table 3-1 we note that there was no consistency for 

assumed continuum velocities that minimized the distance between the LS 

solution and the actual location.  In the previous section we empirically proved 

that methods based on the idea of increasing radii will also not work for our 

problem or at least have not worked in the past as determined by the base cases in 

this study.  In many cases the system is over-constrained and a solution does not 

exist within our solution space.  We now turn to two methods of solving non-

linear sets of equations to further study the problem of power system event 

location. 
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Chapter 4  
Non-Linear Triangulation Methods 
 

We begin this chapter by reexamining the Pythagorean relation in a 

different light.  To refresh, we write the relation as follows: 

( ) ( ) ( ) ( )22222
hihihihi ttVzzyyxx −=−+−+−  

From this relation a linear set of equations was formed and then, using the 

pseudo-inverse, we found the LS solution.  In this chapter we also start with the 

Pythagorean relation, in like manner as unto Chapter 3 ignoring the altitude 

parameters, and seek to find an alternate solution to this nonlinear algebraic 

equation: 

( ) ( ) ( )2222
hihihi ttVyyxx −=−+−  

Written in broader terms as: 

( ) yf =φ  

Where: 
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Such that: 

( ) ( ) ( ) 222222 2 ihhihihi tVtttVyyxx =−−−+−  

4.1 Solutions to Non-Linear Systems of Equations 

Newton’s method and the closely related Newton-Raphson iterative 

method of solving nonlinear systems of equations are common to the study of 

power systems.  The following is a short overview of the Newton’s method [56, 

57]: 
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We first place our equations in the form: 

( ) 0=− yf φ  

Introducing the invertible square matrixnn × J , we add φJ  to both sides and re-

arrange: 

( )φφφ fyJJ −+=  

The following is obtained after multiplying both sides by 1−J : 

( )[ ]φφφ fyJ −+= −1  

In the above equation, the updated φ  is on the left side and is calculated from the 

previous φ  on the right side.  The process is iterative which actually leads to 

writing the above equation as: 

( ) ( ) ( ) ( )[ ]{ }ifyiJii φφφ −+=+ −11  

The matrix J  is the Jacobian as defined by: 
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A method similar to Newton’s method can be implemented using the fsolve 

command in MATLAB’s Optimization Toolbox [55].  This method has been used 

for the triangulation of contingency location for each of the nine base cases.  In 

each case, the initial guess used for 
0

φ was created as follows: 
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where x, y, and t, are the latitude, longitude, and arrival time parameters 

associated with each of the k base cases that measured the disturbance 

respectively.  In general, when using such iterative techniques for the solution of 

nonlinear sets for equations, it is imperative to understand that the more variables 

that exist to be solved for, the closer the initial guess needs to be to the actual 

solution.  This reason is why, again, we assuming a continuum by using the same 

velocity parameter, V, for each equation.  As in Chapter 3, we shall solve each set 

of equations for a continuum velocity value varying from 100 mi/s to 1000 mi/s 

by increments of 50 mi/s. 

 The following figures show the hypocentral solution set using the above 

nonlinear solution method where each element of the solution set is plotted with a 

green triangle.  The closest solution location is enlarged and pointed out with an 

arrow.  Again, the base case being triangulated is plotted with a square and the 

FDR locations are shown using blue dots. 
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100 mi/s 

Figure 4-1:  Newton triangulation of base case 1. 

 
Figure 4-2:  Newton triangulation of base case 2. 
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Figure 4-3:  Newton triangulation of base case 3. 

 

100 mi/s 

Figure 4-4:  Newton triangulation of base case 4. 
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Figure 4-5:  Newton triangulation of base case 5. 

 
Figure 4-6:  Newton triangulation of base case 6 (enlarged for clarity). 
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Figure 4-7:  Newton triangulation of base case 7. 

 

100 mi/s 

Figure 4-8:  Newton triangulation of base case 8 (enlarged for clarity). 
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Figure 4-9:  Newton triangulation of base case 9. 

The following table shows the distances between the actual location of each base 

case and the loci of solutions from the linear LS triangulation method.  Shortest 

distances are highlighted in red.  The following figure is a plot of the data shown 

in the table below.  It can be seen that, again, there is no common continuum 

velocity that can be assumed since there is no common velocity value that 

minimizes every curve. 
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Table 4-1:  Numerical results for Newton triangulation method. 

Solution Distances from Base Case (mi): Continuum 

Speed 

(mi/s): 
1 2 3 4 5 6 7 8 9 

100 129 30 184 40 208 146 346 18 416 
150 202 31 171 61 214 137 320 24 473 
200 291 52 158 119 215 129 305 21 469 
250 304 68 147 194 211 123 304 50 373 
300 266 75 139 294 204 118 315 258 188 
350 216 71 134 452 209 114 340 214 241 
400 202 60 132 645 209 112 378 184 294 
450 243 58 134 532 209 112 411 161 390 
500 313 94 139 327 209 114 419 134 507 
550 394 105 144 198 209 118 419 107 613 
600 475 101 150 138 210 123 415 122 709 
650 556 90 155 134 214 129 404 177 799 
700 634 68 163 160 232 137 389 243 886 
750 708 18 297 236 283 145 372 307 971 
800 779 57 293 335 346 153 361 369 1054 
850 846 129 288 228 409 161 359 428 1138 
900 909 194 287 267 535 170 367 484 1221 
950 969 252 288 303 617 179 381 538 1305 
1000 1025 305 295 335 685 190 402 589 1390 
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Figure 4-10:  Plot of Newton error versus assumed continuum speed. 

4.2 The Gradient Search Method 

Thus far, the main factor that seems to be inhibiting progress is the 

inability to accurately and consistently determine a mean continuum velocity.  

This method, therefore, does not require any assessment or approximation of the 

velocity of the electromechanical wave front.  The consequence, however, is that 

the event occurrence time is not calculated. 

The method used here is based upon minimizing the distance between the 

purported event location and each FDR.  This method, however, would lead to the 

same solution for each case where the observation set of FDRs is the same.  

Therefore, the constraint first mentioned in Section 3.3 is again applied to the 

minimization process as follows: 

nrrr ≤≤≤ L21  
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where ri is associated with the ith measurement unit and all measurement units are 

numbered in ascending order according to disturbance detection time.  The 

following is the objective function that we wish to minimize: 

( ) ∑
=

=
n

i
ihh ryx

1

2,φ  

Where ri is defined as: 

( ) ( )22
hihii yyxxr −+−=  

Again, the variable conventions are consistent with the rest of this report.  Our 

objective function, φ, can be minimized via finding the steepest descent using the 

gradient search method [55, 58].  The basics of the gradient search method can be 

seen in the following steps.  First the gradient of the objective function is 

calculated: 
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The gradient is negated to find the steepest descent, multiplied by a scalar, α, and 

then added to the initial guess to find an updated guess as follows: 
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The process is iterated until convergence is found.  The command for 

minimization using gradient search in MATLAB (with the Optimization toolbox) 

is fmincon.  The trouble with this method, however, is that it is very sensitive to 

the order in which the FDRs measured the disturbance.  Hence, the process is 

repeated several times depending on how many FDRs measured the disturbance.  

If n FDRs measured the disturbance, then the process is repeated n-2 times with 
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the above distance constraints added incrementally beginning with three 

constraints determined according to which FDRs first measured the disturbance.  

The flowchart below illustrates this process further. 

 

 

Figure 4-11:  Flow chart of algorithm to find hypocentral coordinates using gradient search. 

 The following figures show the results of this triangulation method.  Each 

green diamond represents a minimization with number of constraints, NC.  The 
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closest results are noted with red and the number of constraints active during that 

particular calculation. 

 
Figure 4-12:  Gradient Search triangulation of base case 1. 
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Figure 4-13:  Gradient Search triangulation of base case 2. 

 
Figure 4-14:  Gradient Search triangulation of base case 3. 
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Figure 4-15:  Gradient Search triangulation of base case 4. 

 
Figure 4-16:  Gradient Search triangulation of base case 5. 

 72



 
Figure 4-17:  Gradient Search triangulation of base case 6. 

 
Figure 4-18:  Gradient Search triangulation of base case 7. 
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Figure 4-19:  Gradient Search triangulation of base case 8. 

 
Figure 4-20:  Gradient Search triangulation of base case 9. 
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 The following table shows the distance from the true solution versus the 

number of constrains placed upon the minimization for each of the nine base 

cases.  The constraints below, n, refer to the ascending order of the first n radii 

associated with the first n units to measure the disturbance under study.  This 

table, along with the following figure shows us that in general, the (constrained) 

gradient search method seems to work best with fewer than five constraints.  In 

five of the nine cases, the solution error was minimized with three constraints.  

This notion might be promising for the future of FNET as the number of FDRs 

increases and the resolution of the solution space increases. 

 

 
 
 
Table 4-2:  Numerical results for Gradient Search triangulation method. 

Solution Distances from Base Case (mi): Active 

Constraints: 1 2 3 4 5 6 7 8 9 

3 257 309 245 171 56 107 510 85 360 
4 72 309 246 137 56 834 510 516 172 
5 72 1009 246 97 56 834 689 225 178 
6 353 678 246 492 322 134 689 216 202 
7 -- -- -- -- 322 134 689 216 202 
8 -- -- -- -- -- 134 428 216 202 
9 -- -- -- -- -- 134 428 -- 202 
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Figure 4-21:  Gradient Search error versus number of active constraints. 

 The above plot shows pictorially that, in general, the gradient search 

method more accurately triangulates the location of the frequency disturbance 

with fewer constraints. 

4.3 Summary 

This chapter opened by attempting to find a better solution to the 

triangulation problem by solving an over-constrained set of nonlinear equations as 

defined by the Pythagorean relation from Chapter 3.  In most cases the results 

were better but there is yet work to be done to achieve a satisfactory triangulation 

method.  Unlike the LS approach taken in Chapter 3, Newton’s method generally 

gave better results when the assumed continuum velocity, V, was less than 450 

mi/s.  In some cases, with an assumed V, Newton’s method produced results 

within 20 miles of the actual hypocenter.  The problem still exists, however, of 

needing to know which V to specify.  Other than the general need for V to be less 
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than 450 mi/s, there is little indication of a value that would work universally for 

all possible cases. 

To avoid the need of specifying V, we turned to the gradient search 

method and eliminated the element of solving for time all together.  The gradient 

search method was used to minimize the sum of the distances (squared) from the 

candidate hypocenter to each valid FDR.  Knowing that this method would 

always give the same answer in all situations with the same set of valid FDRs, we 

placed an increasing number of constraints on the method such that the distance 

from the FDR that first measured the disturbance to the candidate location would 

be less than the distance from the FDR that measured the disturbance second, and 

so fourth.  We learned empirically that this method produced best results when the 

number of constraints was between three and five.  Under such constraints, we 

were able to triangulate the disturbance with an error less than 60 miles.  

However, like the LS method of Chapter 3, when this triangulation method 

guessed incorrectly, it did so with huge error.  Such volatility is extremely 

undesirable and problematic.  Nevertheless, this method might show some 

promise when the number of FDRs in the field is increased. 

Chapter 5  
Conclusions and Future Work 

The thesis opened with a suggestion for the treatment of FDR data.  We 

concluded that the nature of our data made the moving median more suitable for 

data conditioning purposes than the moving mean due to the robustness of the 

median against data outliers.  We then improved upon the moving median with 

the goal of further smoothing the FNET data such that the point of maximum 

slope could be clearly and easily determined.  To accomplish this smoothing, we 

used the LS method as a means of fitting a seventh order polynomial to a small 
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window of our data.  We also used the median and MAD as an aid in rejecting 

outliers. 

The second part of this thesis attempted to use a conventional triangulation 

method based upon the Pythagorean relation to triangulate the origin of generator 

trips within the EI using FNET data captured by FDRs.  Data collected from nine 

previous generator trips and ten FDRs were analyzed and the performance of the 

triangulation method presented. 

5.1 Conclusions 

The data conditioning portion of the thesis was quite conclusive.  The 

moving median should henceforth replace the moving mean as used to smooth 

FDR data.  Furthermore, a GUI was developed and is now in use that aids in the 

conditioning, viewing, and analysis of FNET data. 

  The second part of this thesis highlighted areas were future work is 

needed in the area of power system generator trip triangulation. The following 

figure presents the performance of each of the three triangulation methods set 

fourth in Chapters 3 and 4.  The average distance between all of the nine base 

cases from the actual hypocenter and the solved location are plotted for varying 

values of assumed continuum velocity, V. 
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Figure 5-1:  Performance of triangulation methods. 

 The above figure shows us several things about the triangulation methods 

discussed within this thesis.  Looking at the vertical axis, we notice that the 

average distance between the true location and the solved location is at a 

minimum around 280 miles for the LS method, 180 miles for Newton’s method, 

and 230 miles for the gradient search method.  In short, the precision of these 

methods leaves much to be desired.  From the data tables in the previous chapters, 

we see that the accuracy is also rather low.  From the above figure we can see the 

how the behavior of the LS and Newton’s methods depends on the assumed V 

(bottom axis).  The LS and Newton’s methods seem to lose precision very quickly 

after V exceeds approximately 600 mi/s.  Nevertheless, the precision of the LS 

method seems optimal for an assumed V within the velocity window previously 

assumed to be the range of velocities for power system disturbances within the EI 

(~350-650 mi/s) [2, 23].  The precision and accuracy of the gradient search 

method (associated with top axis) seem the lowest at this juncture.  From our 
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limited study with only a few FDRs, there is no noticeable trend associated with 

the number of active constraints and the precision of the triangulation algorithm. 

 The vast and heterogeneous nature of the EI likely plays a major role in 

the imprecision of these triangulation methods.  With the entire expanse of the EI 

as a backdrop, the triangulation methods within this report base their results on 

but a small understanding of the grid via the measurements of only ten FDRs 

spaced hundreds of miles apart.  These uncertainties are unsettling in an 

environment where even modest uncertainty can seriously affect results in a 

negative way.  To improve the precision of the triangulation, at a minimum, the 

following must occur: 

• More FDRs must be placed. 

• New units must increase data output rate. 

A larger number of FDRs will increase our knowledge about the propagation of 

frequency perturbation.  At the time of this study, the base case information was 

sparse and the FDRs that experienced the base cases were few.  Furthermore, as 

stated in Chapter 3, the sampling time of 0.1 s is too slow for the precision we 

seek.  From the results in this study, it seems possible that in 0.1 s a frequency 

disturbance wave could travel upwards of 100 miles.   

 

5.2 Future Work 
 

 There are five main areas where I feel future research is necessary in the 

area of power system event triangulation.  They are as follows: 

• A large number of base cases should be simulated, possibly using 

simulation software such as PSS/E, in order to derive as accurate a 

velocity model of the EI as possible.  Simulation may be key in forming a 

velocity model of the EI because, in such a closed environment, the 
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inception time of any simulated event is both controlled and known.  For 

the existing base cases, there is no information about the actual inception 

time of the inciting generator trip.  To create a velocity model, the time of 

the event must be known, and it must be known with high accuracy.  

Hence, to complement simulation data, it is necessary to seek timing data 

from PMUs near base case events as they occur. 

• Conventional mathematics based on the Pythagorean relation as contained 

herein may not be the best way to approach this problem anymore.  Such 

methods are very rigid and deterministic and thus cannot robustly deal 

with the errors that are common in FNET data.  Perhaps techniques taken 

from neural and fuzzy theory would be beneficial in creating a system that 

could learn from previous patterns and suggests new solutions.  Further 

research in neural networks suggested. 

• Obviously, the topology of the EI is in some way associated with the 

propagation of frequency disturbance waves.  A triangulation method that 

in some manner takes into account the model of the EI would be ideal.  

Before the controllability or the observability of the EI can be assessed, 

the sheer size of the state-space model requires some form of model 

reduction.  To aid in such an effort, perhaps the Virginia Tech 

supercomputer, System X, would be of use. 

• A re-examination of continuum modeling of power systems is also 

suggested.  In this research, however, the calculation of the discriminant 

would use FNET data.  The discriminant, which aids in the determination 

of velocity and timing of electromechanical waves is defined as [6, 9, 10, 

59]: 
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 Where p is defined as follows: 
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To calculate p, an FDR has been placed arbitrarily close to the unit at 

Virginia Tech in an effort to calculate the above derivative.  The 

calculation of the discriminant at different point throughout the grid could  

be beneficial to the efforts of forming a velocity model. 

• Finally, a study of the tools currently used in range finding might also 

prove helpful.  Several other technologies such as SONAR and RADAR 

use range finding regularly.  A specific area study in the area of range 

finding called passive ranging seems helpful since this area has been 

developed for signals arriving from objects with nebulous signal emission 

time[60-63].
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Appendix I 
MATLAB Scripts for Data Conditioning and 
Curve Fitting 
 
The following MATLAB 7 (R14SP1) code is for the data conditioning GUI 
developed for FNET: 
 
 
function varargout = CurveGUI(varargin) 
warning('off','MATLAB:nearlySingularMatrix'); 
% CURVEGUI M-file for CurveGUI.fig 
%      CURVEGUI, by itself, creates a new CURVEGUI or raises the 
existing 
%      singleton*. 
% 
%      H = CURVEGUI returns the handle to a new CURVEGUI or the 
handle to 
%      the existing singleton*. 
% 
%      CURVEGUI('CALLBACK',hObject,eventData,handles,...) calls 
the local 
%      function named CALLBACK in CURVEGUI.M with the given input 
arguments. 
% 
%      CURVEGUI('Property','Value',...) creates a new CURVEGUI or 
raises the 
%      existing singleton*.  Starting from the left, property 
value pairs are 
%      applied to the GUI before CurveGUI_OpeningFunction gets 
called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to CurveGUI_OpeningFcn via 
varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI 
allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Copyright 2002-2003 The MathWorks, Inc. 
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% Edit the above text to modify the response to help CurveGUI 
  
% Last Modified by GUIDE v2.5 30-Jun-2005 14:18:01 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @CurveGUI_OpeningFcn, ... 
                   'gui_OutputFcn',  @CurveGUI_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before CurveGUI is made visible. 
function CurveGUI_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to CurveGUI (see VARARGIN) 
  
% Choose default command line output for CurveGUI 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes CurveGUI wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
disp('Loading requested FDR data.  Please Wait...'); 
disp('NOTE: This GUI is primarily designed to examine data on 
short intervals (less than 10 minutes).'); 
global FDR_STRUCT 
FDR_STRUCT = load(varargin{1},'FDR*'); 
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pack 
disp('Files loaded.  Check for error messages or warnings.'); 
set([handles.uipanel2 handles.uipanel3 handles.uipanel4 
handles.uipanel9],... 
    'Visible','off'); 
set([handles.checkbox1 handles.checkbox2 handles.checkbox3... 
    handles.checkbox4 handles.checkbox5 
handles.checkbox6],'Value',1); 
set(hObject,'ToolBar','figure'); 
set(hObject,'Name','FNET Frequency Data Curve Fitting Utility'); 
global rawhdls fithdls fithdlsm dispcurve outhdls linhdls texhdls 
medhdls avghdls 
outhdls = []; 
rawhdls = []; 
fithdls = []; 
fithdlsm = []; 
linhdls = []; 
texhdls = []; 
medhdls = []; 
avghdls = []; 
dispcurve = []; 
  
% --- Outputs from this function are returned to the command 
line. 
function varargout = CurveGUI_OutputFcn(hObject, eventdata, 
handles)  
% varargout  cell array for returning output args (see 
VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu1 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item 
from popupmenu1 
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% --- Executes during object creation, after setting all 
properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on selection change in popupmenu2. 
function popupmenu2_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu2 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item 
from popupmenu2 
  
  
% --- Executes during object creation, after setting all 
properties. 
function popupmenu2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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% --- Executes on selection change in popupmenu3. 
function popupmenu3_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu3 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item 
from popupmenu3 
  
  
% --- Executes during object creation, after setting all 
properties. 
function popupmenu3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on selection change in popupmenu5. 
function popupmenu5_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu5 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item 
from popupmenu5 
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% --- Executes during object creation, after setting all 
properties. 
function popupmenu5_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on selection change in popupmenu6. 
function popupmenu6_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu6 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item 
from popupmenu6 
  
  
% --- Executes during object creation, after setting all 
properties. 
function popupmenu6_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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% --- Executes on selection change in popupmenu7. 
function popupmenu7_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu7 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item 
from popupmenu7 
  
  
% --- Executes during object creation, after setting all 
properties. 
function popupmenu7_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu8. 
function popupmenu8_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu8 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item 
from popupmenu8 
  
% --- Executes during object creation, after setting all 
properties. 
function popupmenu8_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
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% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu9. 
function popupmenu9_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu9 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item 
from popupmenu9 
  
% --- Executes during object creation, after setting all 
properties. 
function popupmenu9_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set([handles.popupmenu1 handles.popupmenu2 handles.popupmenu3... 
    handles.popupmenu5 handles.popupmenu6 handles.popupmenu7... 
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    handles.popupmenu8 handles.popupmenu9 
handles.pushbutton1]  ,...
    'Enable','Off'); 
set([handles.uipanel2 handles.uipanel3 handles.uipanel4 
handles.uipanel9],..  .
    'Visible','on'); 
set(handles.popupmenu13,'Value',9) 
global Time 
str1 = get(handles.popupmenu1,'String'); 
idx1 = get(handles.popupmenu1,'Value'); 
Time.start.hour = str2double(str1{idx1})  ;
str2 = get(handles.popupmenu3,'String'); 
idx2 = get(handles.popupmenu3,'Value'); 
Time.start.min = str2double(str2{idx2}); 
str3 = get(handles.popupmenu6,'String'); 
idx3 = get(handles.popupmenu6,'Value'); 
str4 = get(handles.popupmenu8,'String')  ;
idx4 = get(handles.popupmenu8,'Value'); 
Time.start.sec = str2double([str3{idx3} '.' str4{idx4}]); 
Time.start.str = [str1{idx1} ':' str2{idx2} ':' str3{idx3} '.' 
str4{idx4}]; 
clear str1 idx1 str2 idx2 str3 idx3 str4 idx4 
str1 = get(handles.popupmenu2,'String')  ;
idx1 = get(handles.popupmenu2,'Value'); 
Time.end.hour = str2double(str1{idx1}); 
str2 = get(handles.popupmenu5,'String')  ;
idx2 = get(handles.popupmenu5,'Value'); 
Time.end.min = str2double(str2{idx2}); 
str3 = get(handles.popupmenu7,'String'); 
idx3 = get(handles.popupmenu7,'Value'); 
str4 = get(handles.popupmenu9,'String'); 
idx4 = get(handles.popupmenu9,'Value'); 
Time.end.sec = str2double([str3{idx3} '.' str4{idx4}]); 
Time.end.str = [str1{idx1} ':' str2{idx2} ':' str3{idx3} '.' 
str4{idx4}]; 
global FDR_STRUCT 
s = fieldnames(FDR_STRUCT); 
set(handles.popupmenu10,'String',s); 
clear str1 str2 str3 str4 idx1 idx2 idx3 idx4 
  
% --- Executes on selection change in popupmenu10. 
function popupmenu10_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu10 
contents as cell array 
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%        contents{get(hObject,'Value')} returns selected item 
from popupmenu10 
  
  
% --- Executes during object creation, after setting all 
properties. 
function popupmenu10_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global FDR_STRUCT Time dispcurve ldata 
%Get unit number to plot 
str = get(handles.popupmenu10,'String'); 
idx = get(handles.popupmenu10,'Value'); 
fdrstr = str{idx}; 
clear str 
if isempty(find(dispcurve == idx)) 
    dispcurve(length(dispcurve)+1)=idx; clear idx 
    FDR = getfield(FDR_STRUCT,fdrstr); 
    startidx = find(FDR.date(:,4)==Time.start.hour & 
FDR.date(:,5)==... 
        Time.start.min & FDR.date(:,6)==Time.start.sec); 
    if isempty(startidx) 
        beep 
        disp('The starting time you entered is not recorded in 
this unit''s data set.'); 
        return 
    else 
        fprintf('Starting index: %d \n',startidx); 
    end 
    endidx = find(FDR.date(:,4)==Time.end.hour & 
FDR.date(:,5)==... 
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        Time.end.min & FDR.date(:,6)==Time.end.sec); 
    if isempty(endidx) 
        beep 
        disp('The ending time you entered is not recorded in this 
unit''s data set.'); 
        return 
    else 
        fprintf('Ending index: %d \n',endidx); 
    end 
    if startidx>endidx 
        delete(gcf); 
        beep 
        display('Program closed because of the following error: 
contingency start time larger than contingency end time.'); 
        return 
    end 
    %Get polynomial fit order 
    str = get(handles.popupmenu11,'String'); 
    idx = get(handles.popupmenu11,'Value'); 
    o = str2double(str{idx}); 
    %Get outlier rejection window size 
    str = get(handles.popupmenu12,'String'); 
    idx = get(handles.popupmenu12,'Value'); 
    w = str2double(str{idx}); 
    %Get outlier recjection threshold 
    str = get(handles.popupmenu13,'String')  ;
    idx = get(handles.popupmenu13,'Value'); 
    th = str2double(str{idx});  
    clear str idx 
    %Fit and plot data 
    set(gcf,'Name',['Data for ' num2str(FDR.date(1,2)) '/' ... 
        num2str(FDR.date(1,3)) '/' num2str(FDR.date(1,1))]); 
    global rawhdls fithdls fithdlsm outhdls medhdls avghdls 
texhdls 
    color = [rand, rand, rand]; 
    hold on; 
    Y = FDR.freq(startidx:endidx); 
    ldata = length(Y); 
    rejidx = []; 
    q = floor(w/2); 
    Ym(1:q) = Y(1:q); 
    Ya(1:q) = Y(1:q); 
    for i=q+1:ldata-w+q 
        Ym(i) = median(Y(i-q:i+q)); 
        Ya(i) = mean(Y(i-q:i+q)); 
    end 
    Ym(ldata-w+q+1:ldata)=Y(ldata-w+q+1:ldata); 
    Ya(ldata-w+q+1:ldata)=Y(ldata-w+q+1:ldata); 
      

 97



    
medhdls(length(medhdls)+1)=plot(handles.axes1,1:length(Ym),Ym,... 
        'Color',color,'linestyle','--'); 
    if ~get(handles.checkbox4,'Value') 
        set(medhdls(:),'Visible','off'); 
    end 
    setappdata(medhdls(end),'unit',fdrstr); 
    clear Ym 
    
avghdls(length(avghdls)+1)=plot(handles.axes1,1:length(Ya),Ya,... 
        'Color',color,'linestyle','-.'  );
    if ~get(handles.checkbox5,'Value') 
        set(avghdls(:),'Visible','off'); 
    end 
    setappdata(avghdls(end),'unit',fdrstr); 
    clear Ya 
    for i=1:ldata-w+1 
        Yt = Y(i:i+w-1); 
        medYt = median(Y); 
        bm = w/(w-0.8); 
        MAD = 1.4826*bm*median(abs(Yt-medYt)); 
        r = abs(Yt-medYt)/MAD; 
        for ii=1:w 
            if r(ii)>th 
                outhdls(length(outhdls)+1) = 
plot(handles.axes1,... 
                    ii+i-1,Y(ii+i-1),'r*'); 
                if ~get(handles.checkbox3,'Value') 
                    set(outhdls(:),'Visible','off'); 
                end 
                setappdata(outhdls(end),'unit',fdrstr); 
                rejidx(length(rejidx)+1)=ii+i-1; 
            end 
        end 
    end 
    Y=Y'; 
    l = length(Y); 
    lsidx = 1; 
    for i=1:l 
        if isempty(find(rejidx==i)) 
            for ii=1:(o+1) 
                H(lsidx,ii) = i^(o-ii+1); 
            end 
            lsidx = lsidx + 1; 
        end 
    end 
    Yraw = Y; 
    Y(rejidx)=[]; 
    Hinv = (H'*H)^-1*H'; 
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    XLS = Hinv*Y; 
    
rawhdls(length(rawhdls)+1)=plot(handles.axes1,1:length(Yraw),Yraw
,... 
        'Color',color,'linestyle',':')  ;
    if ~get(handles.checkbox1,'Value') 
        set(rawhdls(:),'Visible','off'); 
    end 
    setappdata(rawhdls(end),'unit',fdrstr); 
    for i=1:ldata 
        y(i)=0; 
        for ii=1:(o+1) 
            y(i)=y(i)+XLS(ii)*i^(o-ii+1); 
       nd  e
    end 
    plotdata(:,1) = 1:length(y); 
    plotdata(:,2) = y; 
    derpd = tder(plotdata); 
    [c,i] = max(abs(derpd(11:end-10,2))); 
    
fithdlsm(length(fithdlsm)+1)=plot(handles.axes1,i+10,plotdata(i+1
0,2),'r^'); 
    
fithdls(length(fithdls)+1)=plot(handles.axes1,plotdata(:,1),... 
        plotdata(:,2),'Color', color,'linestyle','-'); 
    texhdls(length(texhdls)+1)=text((length(texhdls)+5),y(1),... 
        
Time.start.str,'Color',color,'Rotation',90,'VerticalAlignment',..
. 
        
'top','Margin',2,'FontWeight','bold','BackgroundColor','r'); 
    texhdls(length(texhdls)+1)=text(length(y)-length(texhdls),... 
        y(length(y)),Time.end.str,'Color',color,'Rotation',90,... 
        
'VerticalAlignment','bottom','Margin',2,'FontWeight','bold',... 
        'BackgroundColor','r'); 
    if ~get(handles.checkbox2,'Value') 
        set(fithdls(:),'Visible','off'); 
        set(fithdlsm(:),'Visible','off'); 
    end 
    if ~get(handles.checkbox6,'Value') 
        set(texhdls(:),'Visible','off'); 
    end 
    setappdata(fithdls(end),'unit',fdrstr); 
    axis tight 
    str = get(handles.popupmenu10,'String'); 
    clear fdrstr 
    for i=1:length(dispcurve) 
        idx = dispcurve(i); 
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        fdrstr{i} = str{idx}; 
    end 
    legend(fithdls,fdrstr); 
    clear str idx 
    clear y Y rejidx ldata XLS lsidx Hinv r Yt medYt color FDR bm 
MAD fdrstr 
else 
    beep 
    disp('The data for this unit has already been plotted.'); 
end 
  
  
% --- Executes on button press in checkbox1. 
function checkbox1_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global rawhdls 
if ~isempty(rawhdls) 
    if get(hObject,'Value') 
        set(rawhdls,'Visible','On'); 
    else 
        set(rawhdls,'Visible','Off'); 
   nd  e
end 
  
% --- Executes on button press in checkbox2. 
function checkbox2_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global fithdls fithdlsm 
if ~isempty(fithdls) 
    if get(hObject,'Value') 
        set(fithdls,'Visible','On'); 
        set(fithdlsm,'Visible','On'); 
    else 
        set(fithdls,'Visible','Off'); 
        set(fithdlsm,'Visible','Off'); 
   nd  e
end 
  
% --- Executes on button press in checkbox3. 
function checkbox3_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
global outhdls 
if ~isempty(outhdls) 
    if get(hObject,'Value') 
        set(outhdls,'Visible','On'); 
    else 
        set(outhdls,'Visible','Off'); 
   nd  e
end 
  
% --- Executes on selection change in popupmenu11. 
function popupmenu11_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu11 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item 
from popupmenu11 
  
% --- Executes during object creation, after setting all 
properties. 
function popupmenu11_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu12. 
function popupmenu12_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu12 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu12 
contents as cell array 
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%        contents{get(hObject,'Value')} returns selected item 
from popupmenu12 
  
% --- Executes during object creation, after setting all 
properties. 
function popupmenu12_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu12 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on selection change in popupmenu13. 
function popupmenu13_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu13 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popupmenu13 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item 
from popupmenu13 
  
% --- Executes during object creation, after setting all 
properties. 
function popupmenu13_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu13 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on 
Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of 
edit1 as a double 
  
% --- Executes during object creation, after setting all 
properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    empty - handles not created until after all 
CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global linhdls ldata 
try 
    val = str2double(get(handles.edit1,'String')); 
    if isnumeric(val) 
        
linhdls(length(linhdls)+1)=plot(handles.axes1,1:ldata,ones(1,ldat
a)*val,'r-'); 
    else 
        set(handles.edit1,'String',''); 
    end 
catch 
    disp('No reference data.  No line drawn.'); 
end 
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% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global dispcurve linhdls rawhdls fithdls fithdlsm outhdls texhdls 
medhdls avghdls 
set(texhdls,'Visible','off'); 
delete(texhdls); 
set(linhdls,'Visible','off'); 
delete(linhdls); 
set(rawhdls,'Visible','off'); 
delete(rawhdls); 
set(fithdls,'Visible','off'); 
delete(fithdls); 
set(fithdlsm,'Visible','off'); 
delete(fithdlsm); 
set(outhdls,'Visible','off'); 
delete(outhdls); 
set(medhdls,'Visible','off'); 
delete(medhdls); 
set(avghdls,'Visible','off'); 
delete(avghdls); 
legend('off'); 
outhdls = []; 
rawhdls = []; 
fithdls = []; 
fithdlsm = []; 
linhdls = []; 
medhdls = []; 
avghdls = []; 
texhdls = []; 
dispcurve = []; 
  
% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set([handles.uipanel2 handles.uipanel3 handles.uipanel4... 
    handles.uipanel9],'Visible','off'); 
set([handles.popupmenu1 handles.popupmenu2 handles.popupmenu3..  .
    handles.popupmenu5 handles.popupmenu6 handles.popupmenu7... 
    handles.popupmenu8 handles.popupmenu9 
handles.pushbutton1],... 
    'Enable','on'); 
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% --- Executes on button press in checkbox4. 
function checkbox4_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global medhdls 
if ~isempty(medhdls) 
    if get(hObject,'Value') 
        set(medhdls,'Visible','On'); 
    else 
        set(medhdls,'Visible','Off'); 
    end 
end 
  
% --- Executes on button press in checkbox5. 
function checkbox5_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global avghdls 
if ~isempty(avghdls) 
    if get(hObject,'Value') 
        set(avghdls,'Visible','On'); 
    else 
        set(avghdls,'Visible','Off'); 
    end 
end 
  
% --- Executes on button press in checkbox6. 
function checkbox6_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global texhdls 
if ~isempty(texhdls) 
    if get(hObject,'Value') 
        set(texhdls,'Visible','On'); 
    else 
        set(texhdls,'Visible','Off'); 
   nd  e
end 
  
% --- Executes on button press in checkbox7. 
function checkbox7_Callback(hObject, eventdata, handles) 
% hObject    handle to checkbox7 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
if get(hObject,'Value') 
    grid on 
    grid minor 
else 
    grid off 
end 
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Appendix II 
MATLAB Scripts for Event Location 
The following MATLAB 7 (R14SP1) code is for the triangulation algorithm 
developed for FNET: 
 

AII.1 Least-Squares Method: 
 
% --- Executes on button press in triangulate. 
function triangulate_Callback(hObject, eventdata, handles) 
% hObject    handle to triangulate (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global FREQ currentbc bcnumunits vu testvel TRIHANDLE 
TEST_RESULTS 
curunit = FREQ.Unit.Unit; 
vu.num = []; 
vu.lat = []; 
vu.lon = []; 
vu.del = []; 
for idx = 1:length(curunit) 
    if ~isempty(curunit(idx).UnitDelay) 
        vu.num(length(vu.num)+1) = curunit(idx).UnitNumber; 
        vu.lat(length(vu.lat)+1) = curunit(idx).UnitLat; 
        vu.lon(length(vu.lon)+1) = curunit(idx).UnitLon; 
        vu.del(length(vu.del)+1) = curunit(idx).UnitDelay; 
    end 
end 
[x,y] = grn2eqa([24 50],[-105 -66]); 
lb = [min(x); min(y)]; 
ub = [max(x); max(y)]; 
testidx = 1; 
for vidx = 100:50:1000 
    testvel = vidx*FREQ.vel.convm2e; 
    for idx = 1:length(vu.num) 
        if idx == length(vu.num) 
            nidx = 1; 
        else 
            nidx = idx+1; 
        end 
        [xi,yi] = grn2eqa(vu.lat(idx),vu.lon(idx)); 
        [xni,yni] = grn2eqa(vu.lat(nidx),vu.lon(nidx)); 
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        C(idx) = 0.5*((testvel^2)*(vu.del(idx)^2-
vu.del(nidx)^2)+xni^2+yni^2-xi^2-yi^2); 
        H(idx,1) = xni-xi; 
        H(idx,2) = yni-yi; 
        H(idx,3) = -testvel^2*(vu.del(nidx)-vu.del(idx)); 
    end 
    XLS = (H'*H)^-1*H'*C'; 
    [lat,lon] = eqa2grn(XLS(1),XLS(2)); 
    TRIHANDLE(length(TRIHANDLE)+1) = plotm(lat,lon,'r*'); 
    drawnow 
    TEST_RESULTS(testidx,1) = vidx  ;
    TEST_RESULTS(testidx,2) = lat; 
    TEST_RESULTS(testidx,3) = lon; 
    testidx = testidx+1; 
end 

 

AII.2 Newton Method: 
 
% --- Executes on button press in triangulate. 
function triangulate_Callback(hObject, eventdata, handles) 
% hObject    handle to triangulate (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global FREQ vu TRIHANDLE MASTER testvel TEST_RESULTS 
set(hObject, 'String','Please Wait...','ForegroundColor','r'); 
set([handles.basecase handles.newunit],'Enable','off'); 
curunit = FREQ.Unit.Unit; 
vu.num = []; 
vu.lat = []; 
vu.lon = []; 
vu.del = []; 
for idx = 1:length(curunit) 
    if ~isempty(curunit(idx).UnitDelay) 
        vu.num(length(vu.num)+1) = curunit(idx).UnitNumber; 
        vu.lat(length(vu.lat)+1) = curunit(idx).UnitLat; 
        vu.lon(length(vu.lon)+1) = curunit(idx).UnitLon; 
        vu.del(length(vu.del)+1) = curunit(idx).UnitDelay; 
    end 
end 
[x,y] = grn2eqa([24 50],[-105 -66]); 
testidx = 1; 
for vidx = 100:50:1000 
    testvel = vidx*FREQ.vel.convm2e; 
    x0 = [min([FREQ.Unit.Unit(:).UnitDelay]); mean(x(:)); 
mean(y(:))]; 
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    options=optimset('Display','iter');     % Option to display 
output 
    X = fsolve(@trifun,x0,options);         % Call optimizer 
    [lat,lon] = eqa2grn(X(2),X(3)); 
    if (lat<50)&(lat>24)&(lon<-66)&(lon>-105) 
        TRIHANDLE(length(TRIHANDLE)+1) = 
plotm(lat,lon,'gv','linewidth',2); 
        drawnow 
    end 
    TEST_RESULTS(testidx,1) = vidx; 
    TEST_RESULTS(testidx,2) = lat; 
    TEST_RESULTS(testidx,3) = lon; 
    testidx = testidx+1; 
end 
set(hObject, 'String','Triangulate','ForegroundColor','g'); 
%Function to construct target equation = sum(ri^2) 
function trif = trifun(X) 
global FREQ vu testvel 
for idx = 1:length(vu.num) 
    [x(idx),y(idx)] = grn2eqa(vu.lat(idx),vu.lon(idx)); 
    trif(idx) = (x(idx)-X(2))^2+(y(idx)-X(3))^2-
testvel^2*(vu.del(idx)-X(1))^2; 
end 
trif = trif'; 

 

AII.3 Gradient Search Method: 
 
% --- Executes on button press in triangulate. 
function triangulate_Callback(hObject, eventdata, handles) 
% hObject    handle to triangulate (see GCBO) 
% eventdata  reserved - to be defined in a future version of 
MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global FREQ vu TRIHANDLE MASTER testvel TEST_RESULTS 
set(hObject, 'String','Please Wait...','ForegroundColor','r'); 
set([handles.basecase handles.newunit ],'Enable','off'); 
curunit = FREQ.Unit.Unit; 
vu.num = []; 
vu.lat = []; 
vu.lon = []; 
vu.del = []; 
for idx = 1:length(curunit) 
    if ~isempty(curunit(idx).UnitDelay) 
        vu.num(length(vu.num)+1) = curunit(idx).UnitNumber; 
        vu.lat(length(vu.lat)+1) = curunit(idx).UnitLat; 
        vu.lon(length(vu.lon)+1) = curunit(idx).UnitLon; 
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        vu.del(length(vu.del)+1) = curunit(idx).UnitDelay; 
   nd  e
end 
[x,y] = grn2eqa([24 50],[-105 -66]); 
lb = [min(x); min(y)]; 
ub = [max(x); max(y)]; 
x0 = [mean(x(:)); mean(y(:))]; 
[b,IX] = sort(vu.del); 
vulen = length(vu.num); 
testidx = 1; 
for n = 3:vulen 
    outtemp = vu; 
    vu.del = vu.del(IX(1:n)); 
    vu.num = vu.num(IX(1:n)); 
    vu.lat = vu.lat(IX(1:n)); 
    vu.lon = vu.lon(IX(1:n));     
    X = fmincon(@distfun,x0,[],[],[],[],lb,ub,@dnonlcon); 
    [lat,lon] = eqa2grn(X(1),X(2)); 
    TRIHANDLE(length(TRIHANDLE)+1) = 
plotm(lat,lon,'gd','linewidth',2); 
    drawnow; 
    TEST_RESULTS(testidx,1) = n; 
    TEST_RESULTS(testidx,2) = lat; 
    TEST_RESULTS(testidx,3) = lon; 
    testidx = testidx+1; 
    vu = outtemp; 
end 
drawnow; 
set(hObject, 'String','Triangulate','ForegroundColor','g'); 
set([handles.basecase handles.newunit ],'Enable','on'); 
 
%Minimization Function 
function dfun = distfun(X) 
global vu 
dfun = 0; 
for idx = 1:length(vu.num) 
    [x,y] = grn2eqa(vu.lat(idx),vu.lon(idx)); 
    dfun = dfun + (x-X(1))^2 + (y-X(2))^2; 
end 
 %Non-linear constraint function 
function [c,ceq] = dnonlcon(X) 
global vu  
for idx = 1:length(vu.num)-1 
    [x1,y1] = grn2eqa(vu.lat(idx),vu.lon(idx)); 
    [x2,y2] = grn2eqa(vu.lat(idx+1),vu.lon(idx+1)); 
    c(idx) = (x1-X(1))^2+(y1-X(2))^2-(x2-X(1))^2-(y2-X(2))^2; 
end 
ceq = []; 
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