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PLOT RESPONSE SURFACE METHODOLOGY EXPERIMENTS 

Li Liang 

(Abstract) 

 
In many industrial experiments, completely randomized designs (CRDs) are impractical due 

to restrictions on randomization, or the existence of one or more hard-to-change factors. 

Under these situations, split-plot experiments are more realistic. The two separate 

randomizations in split-plot experiments lead to different error structure from in CRDs, and 

hence this affects not only response modeling but also the choice of design. In this 

dissertation, two graphical tools, three-dimensional variance dispersion graphs (3-D VDGs) 

and fractions of design space (FDS) plots are adapted for split-plot designs (SPDs). They are 

used for examining and comparing different variations of central composite designs (CCDs) 

with standard, V- and G-optimal factorial levels. The graphical tools are shown to be 

informative for evaluating and developing strategies for improving the prediction 

performance of SPDs. The overall cost of a SPD involves two types of experiment units, 

and often each individual whole plot is more expensive than individual subplot and 

measurement. Therefore, considering only the total number of observations is likely not the 

best way to reflect the cost of split-plot experiments. In this dissertation, cost formulation 

involving the weighted sum of the number of whole plots and the total number of 

observations is discussed and the three cost adjusted optimality criteria are proposed. The 

effects of considering different cost scenarios on the choice of design are shown in two 

examples. Often in practice it is difficult for the experimenter to select only one aspect to 

find the optimal design. A realistic strategy is to select a design with good balance for 

multiple estimation and prediction criteria. Variations of the CCDs with the best cost-

adjusted performance for estimation and prediction are studied for the combination of D-, 

G- and V-optimality criteria and each individual criterion.  
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Chapter 1 Introduction 
 

Split-plot designs are often used in agriculture experiments due to restrictions of 

randomizations or existence of one or more hard-to-change factors. In practice, it is not 

unusual that the experiment is run in the way that the observations with same levels are 

not reset and leads to an actual split-plot design (SPD) rather than the designed 

completely randomized experiment. Recently, the importance of split-plot experiments in 

industrial applications is gaining more recognition. The research in this dissertation 

explores different aspects of split-plot designs for first and second order models. In 

Chapters 2 and 3, two graphical tools called three-dimensional variance dispersion graphs 

(VDG) and fractions of design space (FDS) plots are adapted for split-plot designs to 

summarize the prediction variance distribution throughout the entire design space, and in 

the whole plot and subplot spaces, respectively. A few examples belonging to two types 

of central composite designs (CCDs) are provided to show how to construct the plots and 

extract meaningful information for comparisons from them. With the aid of 3-D VDGs 

and FDS plots, strategies for improving the designs are developed. V- and G-efficiency 

can be improved by moving the factorial design points of the CCDs to different locations 

in the design spaces. The plots are also used to illustrate how the optimization strategies 

alter the prediction variance distribution. So far previous research has focused on the 

quality of estimation and prediction scaled by the total number of runs, which means that 

designs with more observations are penalized more. For SPDs, the cost of the experiment 

comes from both the number of whole plots and the number of subplots. In Chapter 4, the 

cost of split-plot designs combined with the estimation and prediction performances are 

considered for the evaluation of SPDs. Different scenarios for the whole plot and subplot 

cost ratios are discussed in this chapter and the cost adjusted estimation and prediction 

variance measures are presented. Then two examples are studied for first and second 

order models respectively to show the impact of different cost and variance scenarios in 

the choice of split-plot designs. Different variations of central composite designs are 

explored in this chapter and the desirable structures are found. Combining the strategies 

of optimizing CCDs from Chapters 2-4, that is, optimizing the factorial levels and 

optimizing the structure of whole plots and the settings of subplot levels within whole 
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plots, we study the best CCD for each individual criterion. Recommended D-, G- and V-

efficient designs as well as designs which best balance a combination of the three criteria 

are presented. The robustness of the best designs selected from our study to the variance 

component ratio is also explored. The studies and results can provide helpful information 

for practitioners to choose split-plot designs.  

 

 

1.1 Split-Plot Designs 

 

Complete randomization in many industrial and agricultural experiments is frequently 

impractical due to constraints in time and/or cost or existence of one or more hard-to-

change factors. In these situations, restrictions on randomization lead to split-plot designs 

(SPD), allowing certain factor levels to be randomly applied to the whole plot units and 

remaining factor levels randomly to the subplot units. Separate random errors in whole 

plot units and in subplot units are due to the two randomizations in the experiment. The 

resulting compound symmetric error structure affects not only estimation and inference, 

but also the choice of design. 

 

1.1.1 Split-Plot Designs in Industry 

 

In many industrial experiments we may prefer to not completely randomize the order of 

the runs. In these cases, the experiments often involve two categories of factors: those 

factors with hard or costly to change levels and those factors whose levels are relatively 

easy to change. When hard-to-change factors exist, it is in the practitioner’s best interest 

to keep the number of times the levels of these factors are changed relatively small for the 

economy and easy management of the experiments. As a result, a reasonable experiment 

is to run multiple combinations of the easy-to-change factors at each setting of the hard-

to-change (HTC) factors. Such a strategy results in a split-plot design (SPD) and is 

frequently more realistic than complete randomization of the combinations of the factors, 

which results in a completely randomized design (CRD).   
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Consider an example of a split-plot design in food industry. The goal of the experiment is 

to look for the best recipe of a cake mix. Several factors are thought to affect taste (y). 

Three factors are involved in the ingredients: flour, shortening and egg powder. Two 

other factors include oven temperature and cooking time. In experimentation, adjusting 

the temperature of the oven generally take considerable time, and cooking batches of the 

cake mixtures at one cooking time is more efficient. Complete randomization of each 

combination of the five factors is impractical. Since several distinct batches of cake batter 

(involving different levels of flour, shortening, and egg powder) can be quickly created, 

but changing oven temperature and baking time involve a great deal of time, the food 

scientist would like to fix the oven temperature and bake all compositions of the cakes at 

a particular temperature for a set period of time. In the experiment, the oven temperature 

and baking time (hard-to-change) are the whole plot factors, and the floor, shortening and 

the cake mix (easy-to-change) are the subplot factors. Other examples of split-plot 

designs are given in Hinkelmann and Kempthorne (1994), Montgomery (2001), 

Letsinger, Myers and Lentner (1996), Bisgaard (2000) and Kowalski and Vining (2001).  

 

In industry, a great deal of attention is given to determining the optimal arrangement of 

treatment combinations (combinations of factor levels) in an experiment. In the 

determination of the best arrangement of treatment combinations, it is often assumed that 

the run order of treatment combinations will be completely randomized during 

experimentation. However, when hard to change factors are present, the run order is 

sometimes not completely randomized. For instance, a factorial experiment is intended to 

conduct to study the effect of the furnace temperature, the density of the nickel powder 

and the amount of binder for a sintering process of the nickel battery plates. Suppose each 

factor has three levels. The 27 runs are randomly ordered. However, in production, the 

data is often collected as follows: for any two consecutive observations where furnace 

temperature is at the same level, the furnace temperature is not reset. By not re-setting 

furnace temperature, the run order is not completely randomized. Consequently, this 

experiment is a split-plot experiment with furnace temperature serving as the hard-to-

change factor. In this design, consecutive observations with the same temperature are 

actually in a same whole plot. Treating the experiment as a CRD would lead to incorrect 
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analysis of the response model. Ganju and Lucas (1999) discussed the detecting of the 

randomization restrictions and provide several recommendations for designing the 

experiment in a manner beneficial to both the running of the experiment and the analysis 

of the data.   

 

In split-plot experiments, the experimental units (EUs) for the hard-to-change factors are 

often called “whole plots” and the experimental units for the easy-to-change factors are 

called “subplots”. The levels of hard-to-change factors are randomly applied to the whole 

plot units. Within each whole plot, the levels of easy-to-change factors are randomly 

assigned to subplot units. The two separate randomizations lead to an error structure in 

which observations within the same whole plot are not independent but are rather equally 

correlated due to being observed within the same whole plot. Observations from different 

whole plots, however, are assumed to be independent. The resulting error structure of 

observations within the same whole plot is a compound symmetric structure. This error 

structure must be accounted for not only when conducting inferences but also when 

determining the optimal design.  

 

Because the subplot factors are replicated more often than the whole plot factors, split-

plot experiments typically provide more information about the subplot factors. In addition 

there may be more natural variability associated with the whole plot factors. Hence the 

comparisons among the levels of the subplot factors have higher precision than those of 

the whole plot factors. Consequently, if the SPD is analyzed incorrectly as a CRD, whole 

plot effects might be incorrectly deemed significant. The subplot effects, on the other 

hand, might be incorrectly deemed insignificant. In the following section, the proper 

model and analysis for the SPDs are discussed.  

 

1.1.2 Model and Analysis 

 

The classic representation of split-plot experiments has its origin in agricultural 

experiments where the goals are generally to determine if significant differences exist 

among the levels of various treatments. For instance, consider a replicated factorial 
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experiment conducted with a split-plot scheme with one whole plot variable (A) and one 

subplot variable (B). Each of the a levels of the whole plot factor is replicated ra times 

and each of the b levels of the subplot variable occurs once within each whole plot.   

Consequently, there are a total of ra* a whole plots, each containing b subplots, for a total 

of N= ra a b runs. In this split-plot experiment, the following model is appropriate 

( )
W

ijkl i j j ij k jk ijky r eµ α β αβ ε= + + + + + + : 1, ,i r= a, 1, ,j a= ,and 1, ,k b=  

where y is the response, µ  is the global mean, ( )i jr  denotes the whole plot replicate effect, 

iα  is the whole plot effect, jβ  is the subplot effect, ijαβ  is the interaction of the whole 

plot factor and the subplot factor, W
ije  denotes the experimental error from the whole 

plots, assumed to be i.i.d 2(0, )N δσ  with 2
δσ  denoting the variability among the whole 

plot units, and ijkε  denoting the subplot error assumed to be i.i.d. 2(0, )eN σ  with 2
eσ  

representing the variability among subplot units. It is also assumed that W
ije  and ijkε  are 

independent. For more details see Kempthorne (1952) or Hinkelmann and Kempthorne 

(1994). 

 

If the combinations of subplot factors selected are the same within every whole plot, the 

SPD is “Crossed”. Otherwise, it is “Non-Crossed”. Crossed SPDs are simple to 

implement and easy to analyze since the ordinary least square (OLS) estimates are 

equivalent to the generalized least square (GLS) estimates. The factorial design in the 

split-plot scheme is an example of this type SPD. In practice, there are often restrictions 

in the number of the subplots that can be run within a given whole plot. As a result, the 

crossed SPD might not be practical when the number of subplot factors is large. The SPD 

is “Balanced” if there is the same number of subplots within each whole plot. The 

example above is both crossed and balanced. The fractional factorial design in split-plot 

scheme is another example of balanced SPD. If designed properly, this type of design can 

be highly efficient and very appealing from a practical perspective. Vining, Kowalski, 

and Montgomery (2004) proposed general conditions for response surface designs such 

that the OLS=GLS and provided examples of balanced SPDs that satisfy the condition. 

Examples of these types of designs include the modified CCDs and modified BBDs. If 
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each whole plot factor level has only one whole plot in the design, it is known as a 

restricted SPD (RSPD). In the replicated factorial SPD with one whole plot variable and 

one subplot variable described above, the design would have been a RSPD had there been 

no replication. Another example of a RSPD is the standard CCD in the split-plot scheme 

where all the observations with same whole plot levels are put in one whole plot. For 

instance, a standard CCD with one whole plot variable is a restricted SPD if it has only 

five whole plots corresponding to the five levels α± , 1±  and 0. The standard and 

modified CCDs will be discussed in detail in this research. Goos and Vandebroek (2004) 

discussed the efficiency of RSPD and indicated that with high probability there are more 

efficient designs for parameter estimation between the CRD and RSPD.  

 

The corresponding ANOVA analysis of the model above is shown in Table 1.1.  When 

analyzing the split-plot experiment, the proper error term should be used for testing of 

parameter estimates. This ANOVA approach is straightforward, but for the non-balanced 

data or data with a large number of missing values, it has proven to be inefficient. In 

addition, the variance component estimates could be negative in the ANOVA analysis. 

 

Table 1.1: ANOVA for split-plot designs. 

Source d.f. E(MS) 

Replicates ra-1  

Whole plot factor A a-1 
2 2 2 /( 1)a j

j
b r b aδ εσ σ α+ + −∑  

Whole plot error (ra-1)(a-1) 2 2bδ εσ σ+  

Subplot factor B b-1 
2 2 /( 1)a k

k
r a bεσ β+ −∑  

Interaction A× B (a-1)(b-1) 
2 2

,
[( 1)( 1)]a jk

j k
r a bεσ αβ+ − −∑  

Subplot error (ra -1)a(b-1) 2
εσ  

Total  ra ab-1  

 

In industrial experiments, the response is often a function of continuous factors 

and the goal is to develop a prediction model relating the response to the factors. Thus, 

unlike classical split-plot experiments where treatment comparisons were the focus, 
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interest is in developing a regression model. The resulting prediction model is known as a 

response surface model. In this research a mixed model is employed for modeling the 

split-plot experiment. When the experiment is run as a split-plot design with a whole 

plots, the following linear mixed model can be written to explain the variation in the N× 1 

response vector, y, 

= + +y Xβ Zu ε , 

where y is the vector of N observations, β  is the 1p×  vector of fixed effect model 

parameters including the intercept, X  is the design matrix containing both whole plot 

and subplot effects expanded to model form; u =(u1,u2,…,ua)’ is the vector of random 

effects corresponding to the a  whole plots with the ui assumed to be i.i.d. 2(0, )N δσ  with 

2
δσ  denoting the variability among whole plots. Z  is the N× a incidence matrix of ones 

and zeroes where the ijth entry is 1 if the jth observation (j=1,…,N) belongs to the ith 

whole plot (i=1,…,a). If observations are sorted by whole plots, we obtain 

Z =
1

{ , , }
an ndiagonal 1 1 , where 

in1  is an 1in ×  column of one’s and in  is the number of 

subplots within the thi  whole plot and 
1

a

i
i

n N
=

=∑ ; ε = ( )1 2, ,..., Nε ε ε  is the vector of 

residual errors where the jε  are assumed to be i.i.d. ( )2N 0, εσ  where 2
εσ  denotes the 

variability among subplot units. It is also assumed that u  and ε  are independent. 

Together, the forms of X and Z influence the quality of parameter estimation and model 

prediction.  

 

To help illustrate notation, consider a replicated 23  factorial experiment conducted as a 

split-plot design with one whole plot variable and one subplot variable. All levels of the 

subplot variable are run within each level of the whole plot variable, and each level of the 

whole plot variable is replicated twice, yielding a total of six whole plots. Within each 

whole plot the three levels of subplot variable are randomly assigned to three subplots, 

giving a total of 18 subplots. The 18×6 incidence matrix Z  and 6×1 vector of random 

effects u  are defined as follows, 
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3

3

3

3

3

3

1 0 0 0 0 0
1 0 0 0 0 0

11 0 0 0 0 0
10 1 0 0 0 0

10 1 0 0 0 0
10 1 0 0 0 0

1
10 0 0 0 0 1

0 0 0 0 0 1
0 0 0 0 0 1

 
 
 
   
   
   
   

= =   
   
   
       
 
 
 
 

Z
 and 

1

2

3

4

5

6

u
u
u
u
u
u

 
 
 
 

=  
 
 
  
 

u . 

 

From the model, the observations have mean Xβ  and covariance matrix ∑ , where 

2 2 2T T
N Ndδ ε εσ σ σ  ∑ = + = + ZZ I ZZ I  where 2 2= /d δ εσ σ  and denotes the ratio of 

whole plot variance to subplot variance. It is referred as the “variance component ratio” 

since it represents the relative strength of variations introduced by whole plot units in the 

experiment. Assuming that we have sorted observations by whole plots, i.e., =Z  

1
{ , , }

an nDiagonal 1 1 , we can conveniently write the covariance matrix in block-diagonal 

form as,  

1 0

0 a

∑ 
 ∑ =  
 ∑ 

, 

where the i in n×  matrix i∑  is given by 

 

2 2 2

2 2 2
i

ε δ δ

δ ε δ

σ σ σ

σ σ σ

 +
 ∑ =  
 + 

  

and denotes the variances and covariances of observations within the ith whole plot. In the 

example above, i∑  is a 3×3 matrix since there are 3 subplots within each whole plot. 

Note that the variance of an individual observation is the sum of the subplot and whole 

plot error variances, 2 2+ε δσ σ . It is easy to show that the larger the variance component 

ratio is, the more strongly the observations within the whole plot are correlated to each 

other. 
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There are several approaches available to estimate the variance components and the 

coefficients of the fixed effect in the mixed model. These approaches include ANOVA, 

Henderson I, II, III methods (adaptation of ANOVA for unbalanced data), maximum 

likelihood (ML), restricted or residual ML (REML), Bayesian inference, etc. Searle 

(1992) provides detailed discussions of the advantages and disadvantages of these 

methods. Among them, REML is a modern approach and proven to work efficiently for 

unbalanced data cases. For balanced data, the REML estimates are identical to the 

standard ANOVA estimates if the latter estimates are positive. REML is the default 

method used in the SAS procedure PROC MIXED.  

 

After the variance components are estimated, the linear mixed model equation (LMME) 

can be used for estimating the vector of fixed effects, β , and for predicting the random 

term, u . The estimated vector of model coefficients, β̂ , obtained by this algorithm is the 

best linear unbiased estimates (BLUE) of β , is identical to the generalized least square 

estimates (GLS) of β , and is the maximum likelihood estimate (MLE) of β  under 

normality. We will refer to this estimate as the generalized least squares (GLS) estimate 

given by the expression 1 1 1ˆ [ ]T T− − −= ∑ ∑β X X X y . The covariance matrix of the 

estimated model coefficients is  
1 1ˆ( ) [ ]TVar − −= ∑β X X .     

Even if the OLS estimates are equivalent to the GLS estimates, as they are for some 

SPDs, the covariance matrices of the estimates are not equivalent. Consequently, when 

conducting inferences, it is important to apply the correct variances. When the design is 

completely randomized, the variance of the parameter estimates is ( ) ( ) 1' 2ˆ =Var σ
−

X Xβ . 

Comparing the expressions for the estimated model coefficients for split-plot designs and 

CRDs is important as it lends insight into the greater complexity associated with optimal 

design strategies for split-plot designs vs. for CRD. For example, if one wishes to obtain 

the optimal design in terms of ability to estimate model parameters, the optimal CRD 

depends only on the settings of the levels of the terms in X. The optimal split-plot design 
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in terms of parameter estimation will depend on the structure of X, the variance ratio, d, 

the number of whole plots, a, the dimensionality of each of the i∑ ’s (determined by the 

number of subplots within each of the whole plots), and the arrangement of subplot levels 

within whole plots.  

  

Since the goal of designed experiments is often to gain a better understanding of the 

underlying relationship between the factors and the response, good prediction throughout 

the design space is important. Since the error structure in split-plot designs is different 

than that of completely randomized designs, the prediction variance expression differs 

from that of the CRD. The predicted value of the mean response at any location 0x  is 

given by 

    ( ) 1' ' ' '
0 0 0

ˆˆ  =  = 
−

y x x X X X y−1 −1β ∑ ∑ ,    

where 0x  is the point of interest in the design space expanded to model form. The 

prediction variance for split-plot designs is then given by 

    ( ) ( ) 1' '
0 0 0ˆ  = Var

−
y x X X x−1∑ .    

When the design is completely randomized, the prediction variance is ( ) 12 ' '
0 0σ

−
x X X x . 

For a CRD, 2
εσ∑ = I  and the optimal designs for prediction depend only on the settings 

of the factor levels in X. For split-plot designs, however, the variances of the model 

coefficient estimates as well as the variances of predicted values are not only a function 

of the settings of the factors in X but also the unknown variance components and the 

structure of ∑ . 

 

Often the variances of model coefficients and predictions are divided by the variance to 

get a unitless evaluation for the estimation and prediction qualities. For CRD, the scale is 

the variance of observations, 2σ . For split-plot design, however, there are two error 

terms because of the two independent randomizations and thus two variances. In the same 

principle, the variance of observation, 2 2+ε δσ σ , is used to scale the estimation or 

prediction variance for split-plot design and thus allows the evaluation of the quality of 
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the SPD is independent of the variations of the experiment units and only determined by 

the setting of factor levels in X and the whole plot structure in Z , and the variance 

component ratio. The covariance matrix of model coefficient after scaled is  

( ) 11 1'
' ' 1 1

2 2 2 2 ( )
δ ε δ εσ σ σ σ

−− −
− −

   = =   + +  

X X
X X X R X

−1∑ ∑ , 

where R denotes the correlation matrix of the observations, and has block diagonal form 

for observations sorted by whole plots,  

1 0

0 a

 
 =  
  

R
R

R
, 

where each i in n×  matrix iR  is given by 
1 (1 )

(1 ) 1
i

d d

d d

+ 
 =  
 + 

R . The prediction 

variance scaled by variance is given by ( ) 1' ' 1
0 0

−−x X R X x  for split-plot designs.  

 

From the scale-free variance equations, we can learn that the quality of a split-plot design 

is strongly related to the variance component ratio, d, rather than the two individual 

variance components. A split-plot design may have different characteristics for quality of 

estimation and prediction for different d values. Therefore d is a critical factor in 

selecting split-plot designs. In practice, d value is often assumed known and the split-plot 

experiments are designed based on the particular d value. While we almost always do not 

know the exact value of variance component ratio at the design of experiments stage, a 

range of plausible values for d can be obtained from preliminary estimates from a pilot 

study or guessed based on previous knowledge. Bisgaard and Steinberg (1997) stated that 

for many applications the whole plot variance is usually larger than subplot variance in 

prototype experiments. Letsinger et al. (1996) studied a split-plot experiment in chemical 

industry with d=1.04. Vining, Kowalski and Montegomery (2004) estimated the variance 

terms using pure error and obtain the variance ratio 5.65. Webb, Lucas and Borkowski 

(2002) described an experiment with variance ratio 6.92 in a computer component 

manufacturing company. Kowalski, Cornell and Vining (2002) studied a mixture 
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experiment with process variables where the estimated variance ratio was 0.82. In this 

dissertation, specific values of d=0 (CRD), 1 and 10 are often considered in more details, 

representing the situations that the whole plot variance can’t be distinguished from 

subplot variance from complete randomization, the whole plot variance is the same as 

and ten times than the subplot variance, respectively.  

 

1.1.3 Optimal Split-Plot Designs 

 

Many efficient designs have been developed for the CRDs, such as factorials and 

fractional factorials in first order models and the central composite designs (CCD) [Box 

&Wilson, 1951] and Box–Behnken designs (BBD) [Box & Behnken, 1960] for second 

order models. Due to the influence of the error structure, these highly efficient CRDs are 

not necessarily as efficient when the design has a split-plot randomization scheme.  

 

Huang, Chen and Voelkel (1998) and Bingham and Sitter (1999) explore minimum-

aberration (MA) two-level fractional factorial split-plot designs. Kowalski (2002) 

constructed 24-run SPDs using semifolding, which sacrifices some partial resolution of 

the whole plot factors to improve the partial resolution at the subplot levels, to get the 

desirable overall resolution. These designs are useful for screening experiments. 

 

In SPDs, after the significant factors are selected from a set of variables, an experimental 

design for a second-order model becomes necessary for response modeling and the 

optimization. Some strategies for selecting optimal or high efficient SPDs in second-

order model have been developed by Davison (1995), Ju & Lucas (2002) and Goos and 

Vandebroek (2001, 2004). These studies focused on the estimation properties of whole 

plot and subplot factors and the efficiency of the SPD. The criterion utilized to compare 

designs is the D-optimality criterion. They concluded that even if cost is not an issue, the 

split-plot design can be shown more efficient than the CRDs under some scenarios, 

especially for experiments with relatively large whole plot variability. Practitioners are 

often interested in using the final model for prediction as well. In this research, the 

prediction capability evaluation of SPDs for the second order model is the main focus.  
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Joiner & Campbell (1976) incorporate the different costs of changing factor levels and 

generate good run sequences considering a time effect. However, they consider the 

experiments as CRDs. In fact the experiments studied should have been considered under 

split-plot error structures. Similarly, if considering the different costs of whole plots and 

subplots, split-plot designs become superior to the CRDs. Bisgaard (2000) discusses the 

cost of split-plot experiment in the category of balanced SPD, but doesn’t incorporate the 

cost into the quality evaluation of split-plot designs. In this research, more general cost 

scenarios are incorporated into the estimation and prediction evaluation of SPDs, and the 

influences of the different scenarios of error structures on the efficiency of the split-plot 

design are explored. 

 

 

1.2 Design Optimality Criteria 

 

Design optimality criteria characterized by some of the letters of the alphabet are often 

called alphabetical optimality criteria. Kiefer and Wolfowitz (1959) were among the first 

authors to develop these optimality criteria. These criteria are single number criteria 

where each measure intends to capture a different perspective of the ‘goodness’ of a 

design. Box and Hunter (1957), Box and Draper (1974, 1987), and Myers and 

Montgomery (page 304, 2002) discuss some of these properties for comparing designs.  

 

1.2.1 D-optimality 

 

Historically, the most popular design criterion has been the D-optimality criterion, which 

focuses on the estimation variance of model parameters through the moment matrix, 

defined as '( ) /D N=M X X  for a CRD. Here, 'X X  is the information matrix of the 

parameter estimates and N denotes the total number of runs in the design and is used as a 

penalty for larger designs. The inverse of the moment matrix contains the variances and 

covariances of the estimated model parameters, scaled by the 2/N σ . For SPD, the 

moment matrix is ' 1( ) /D N−=M X R X . This criterion is important if the goal of the 
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experimental design is to choose the settings of the design points to achieve good 

estimation properties in the moment matrix. 

 

D-optimality tries to maximize the determinant of the moment matrix, thus a D-optimal 

design is the design D∗  with ( *) ( )DD Max D∈Ω=M M , where Ω  is the space of all 

possible designs. Under the assumptions of independent normal errors with constant 

variance for a completely randomized design, the determinant of 'X X  is inversely 

proportional to the square of the volume of the confidence region for the regression 

coefficients, which reflects how well the coefficients are estimated. Hence the larger the 

determinant of 'X X  is, the better the estimates of the model parameters are. For the first 

order or first order with interaction model, two-level orthogonal designs with levels at 1±  

extremes are D-optimal designs. Quite often, however, for second order models, there is 

no known D-optimal design.  

 

The D-efficiency of a design D is defined as 1/( ( ) ( *) ) p
effD D D= M M , where ( *)DM  

is the determinant of the moment matrix of the D-optimal design and p is the number of 

parameters in the model. The exponent, 1/p, accounts for the p parameter estimates being 

assessed. Myers and Montgomery (2002) discuss some highly efficient response surface 

designs in the completely randomized setting such as the CCD and BBD. These designs 

are not necessarily highly efficient designs when implemented under split-plot 

randomization scheme. We explore in the following chapters how the efficiencies change 

when these popularly used response surfaces designs are run as SPDs.  

 

1.2.2 G-optimality 

 

In industrial situations, the aim of the practitioner is often to predict the response for a 

particular combination of the regressors or factors. Consequently, good prediction 

performance at various locations in the design space or in the entire design space can be 

important for assessing the choice of design. Box and Hunter (1957) defined the scaled 

prediction variance function (SPV) to examine how precise the estimated response is at 
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any particular location in the design space. A good design should have as small and stable 

SPV values throughout the entire region as possible.  

 

The SPV for a completely randomized design is defined as 2
0 0 0ˆ( ) ( ( )) /NVar yν σ=x x  

' 1( )TN −= 0 0x X X x  for a standard linear model, where 0x  is the point of interest in the 

design space expanded to the model form, 0 0ˆ ( )y x  is the estimated mean response at the 

location 0x  used to predict the new observation 0y , and 2σ  is the variance of the 

observations. For a split-plot design, 0( )ν x  is calculated by ' 1 1( )TN − −
0 0x X R X x . The 

prediction variance is multiplied by the total number of runs of the design, N, to penalize 

larger designs and give a “per observation” evaluation of prediction performance. In 

addition, it is divided by the observation variability to be scale-free. We can see that the 

SPV values are determined by the design matrix X , the correlation matrix R , the 

location in the design space 0x  and the design size N. Actually the SPV is merely a 

quadratic form function of the inverse of the moment matrix. For example, for a 

completely randomized 22 factorial design in first order model with levels 1± , its 

moment matrix is ' / N I=X X , thus [ ] [ ] 2 2
0 10 20 10 20 10 20( ) 1 1 1Tx x I x x x xν = = + +x . 

 

G-optimality seeks to minimize the maximum SPV throughout the entire design region, 

i.e. a design D∗  that satisfies 
0 0min [ ( )]D Rmax ν∈Ω ∈x x , where R is the region of interest, is 

a G-optimal design. Intuitively, G-optimality tries to protect the experimenter against the 

worst-case scenario being too undesirable. An interesting and important result is that the 

lower bound for the maximum SPV for a completely randomized design is p, the number 

of parameters in the model, which represents the case with equal SPV values at any 

location in the design space (Myers and Montgomery, 2002). Consequently, G-efficiency 

can be defined as 
0 0max ( )eff RG p ν∈= x x . For example, for the CRD factorial design 

mentioned above, p=3, if the design has a cuboidal region, 0max ( )Dν x =3 thus the G-

efficiency of this design is 1, hence the design is G-optimal. But for SPDs, the theoretical 

lower bound is not known, but it will no longer be p because of the complicated error 

structure and the role of variance component ratio.  
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1.2.3 V–optimality 

 

Another design optimality criterion that addresses prediction variance is V (or Q or IV) -

optimality. It studies the average SPV over the entire design region and thus requires 

integration over the whole region to determine its value. Although its computation is the 

most difficult, V-optimality is frequently used in terms of measuring an important 

characteristic, the overall performance of prediction, of the design. A V-optimal design is 

the one that minimizes the average SPV and 0 0
1( ) min ( )D

R

V D d
K

ν∗
∈Ω= ∫ x x , where K is 

the volume of the region of interest. For example, for a 22 factorial design with levels 

scaled between [-1,1] for each factor in a cuboidal region, K=22=4. The V-efficiency of 

design D is defined as 0 0
1( *) ( )eff D

R

V V D d
K

ν= ∫ x x , where ( *)V D  is the average SPV 

for the V-optimal design. Myers and Montgomery (2002) indicate that the two-level first 

order orthogonal designs with levels set at the 1±  extremes are also V-optimal design for 

completely randomized experiments. 

 

Among the criteria discussed above, the D-optimality is most commonly used in 

computer-generated design since the calculations are simple. G-optimality is becoming 

somewhat more common in some statistical software packages. However, we should be 

aware that V-optimality is also an important and reasonable tool for choosing 

experimental design, especially in the situation that prediction performance is an 

important priority.     

 

1.2.4 The Role of the Total Number of Runs, N, in Optimality Criteria 

 

In order to fairly compare designs with different number of runs, for the three criteria we 

discussed so far, the scaled estimation and prediction variance are often evaluated. By 

dividing by the total number of design points, N, for the moment matrix or multiplying by 

N for the prediction variance, larger designs are penalized. This “per observation” 

evaluation is done based on the reasonable assumption that in most industrial settings 



 17

there is some cost involved in performing additional runs. For CRD, the cost of 

experiment can be thought to be proportional to the total number of design points used. 

This is not necessarily true for many split-plot experiments, however. Split-plot 

experiment involves two randomizations and thus two types of experiment units, and thus 

the cost of the SPD likely is a function of the cost related to the whole plots and subplots. 

The cost could also be related to the cost or time involved in changing the levels of the 

whole plot and subplot variables. In real life split-plot experiments, one might have to 

face different scenarios. For the situation that the cost of subplots is of main concern, the 

“per observation” evaluation is reasonable. However, one more common situation is that 

each individual whole plot is much more expensive than individual subplot. For instance, 

it may be very time-consuming to reset the levels of the whole plot variables like the 

speed of the product line or the temperature of the furnace. Therefore, a flexible cost 

based criteria should allow for different cost scenarios to be incorporated. In Chapter 4, 

details of various cost scenarios and their impacts on the choice of best split-plot design 

are discussed. In cases where little cost is associated with additional runs, the cost of 

experiment is not of primary concern and the practitioner may want to compare the 

absolute estimation or prediction variance among designs with different number of runs. 

In such cases, the un-scaled evaluation [scaling by 2 21 ( )δ εσ σ+  is still done but when 

design size is not an issue, we may not wish to scale by N.] can be used.  

 

1.2.5 Desirability Function for Combining Multiple Criteria 

 

Each criterion discussed so far has focused on one aspect of the design’s quality. Good 

design for one aspect might not yield a good design based on another criterion. 

Consequently, the practitioner might be in a dilemma of which aspect is the most 

important for the experiment. A natural and reasonable solution of that is to select the 

design having good (which might not be optimal) properties for each criterion and 

balanced performances for multiple criteria.  

 

Derrinnger and Suich (1980) and Myers and Montgomery (2002, pp. 247-258) discuss 

the application of desirability function for exploring the optimum conditions for multiple 
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responses. Derrinnger and Suich (1980) developed a useful optimization procedure, using 

a desirability function to combine several objectives. The desirability function could be 

one-sided or two-sided depending on whether the response want to be maximized (or 

minimized) or be assigned a target value. If one of the responses is to be maximized, the 

desirability function is given by 

ˆ( )
( )

s

i i
i

i i

y Adesirability
B A

 −=  − 
,  ˆi i iA y B≤ ≤ , 

where the ˆiy  is the one of the responses of interest, Ai and Bi define the acceptable range 

for the individual response. Hence when the response value increases, the condition is 

more desirable for this response. The power s, a positive value, represents how quickly 

the desirability will increase with respect to the changes in response value ˆiy  and should 

be specified by the user according to the reality. If the desirability of the product would 

be greatly increased if the response value is considerably larger than the lower bound Bi, 

large value of s should be used. On the other hand, a small s value should be specified if 

the response value slightly above the lower bound is very desirable. Therefore, we can 

see that the desirability function has values ranging from 0 to 1. For the values outside 

the acceptable range, the desirability would be zero and the product is considered 

unacceptable. The two-sided desirability function is applied if we want the objective of 

optimization is as close as to the target value. It is defined as  

ˆ( ) ˆ,      
( )

ˆ( ) ˆ,      
( )

s

i i
i i i

i i
i t

i i
i i i

i i

y A A y B
B A

desirability
y C B y C
B C

 − ≤ ≤ − = 
  − ≤ ≤  − 

, 

where Ai and Ci define the acceptable range for the response, and Bi is the target, i.e., the 

most desirable value. By specifying values of power s and t, the desirability function 

allows the practitioner to incorporate the subject knowledge about the role of the 

response in the total desirability of the product. If the goal of the product improvement 

involves multiple responses, the desirability functions of all responses are combined to 

get a single number. Usually the geometric mean of the desirability values for the k 

responses, 1/
1 2( ) k

kD d d d= × × × , is applied to obtain the overall assessment of the 
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desirability of the combined responses and D turns our to be the objective function of 

optimization. Still, D values ranges from 0 to 1. If one response value is unacceptable, the 

corresponding desirability will be zero and same zero value for D, then the overall 

assessment will fail to accept the condition. This is a merit of geometric mean and also 

the reason it is commonly used. Heredia-Langner, Montgomery, Carlyle and Borror 

(2004) apply desirability functions to find model-robust optimal designs. In their paper, 

the design has a desirability value based on an alphabetic optimality criterion for each 

model and the geometric mean of the values for all the models concerned is used as the 

overall evaluation of each design.  

 

In the dissertation, we considered three efficiencies, i.e., D-efficiency for evaluating the 

quality of estimation, as well as V- and G-efficiencies for prediction. We found that the 

split-plot design may be desirable for having low average prediction variance, but it may 

have larger maximum prediction variance. Therefore, in practice, the situation may exist 

that the preferred design is one with the best balance between the three criteria. In 

Chapter 5, we will study the overall performance based on a combination of the three 

efficiencies for several variations of the central composite designs.  

 

 

1.3 Graphical Tools 

 

In the above discussions, design comparison was based on using single number 

optimality criteria to compare competing designs. Though easy to compute, we should be 

aware of their disadvantages. The decision of a best design is typically more complicated 

than can be summarized by a single number. For instance, when the practitioner is 

interested in predicting and wants to learn more about prediction variance distribution, 

i.e., if the prediction variance is stable in the entire design region, or where are the 

regions with best and worst prediction precision, graphical tools are very helpful for 

exploring the prediction properties of competing designs. We will discuss several 

commonly used graphical tools in the following section. 
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1.3.1 Variance Dispersion Graphs (VDG)  

 

Giovannitti-Jensen and Myers (1989) proposed the variance dispersion graph (VDG) to 

evaluate prediction variance properties of response surface designs. It displays the 

distribution of scaled prediction variance (SPV) throughout a multidimensional region on 

two-dimensional graphs. When the practitioners’ interest is in predicting the response 

over the experimental region of interest, VDGs have proven to be extremely useful and 

more informative for comparing designs than single-number optimality criteria such as 

G- or V-optimality.  

 

The VDG was developed first for CRDs with a spherical design space. Assuming a 

design with a spherical region and a given standard linear models, three curves are 

displayed in the VDG, i.e., maximum, average and minimum scaled prediction variances. 

They are plotted against the spheres radius from zero up to the outer radius of the sphere 

covering the region of interest, to evaluate the prediction capacity. For example, the 

maximum SPV is defined as max [ ( )]
rU v∈x x , where 2 2{ : }r i

i

U x r= =∑x  denoting the 

spherical sub-region with radii r and maximum SPV values are found on this sub-region. 

The maximum curve provides where is the worst case thus the weakest area in the design 

space and how large is the maximum value. The average SPV is defined as 

( )
r

r
avg U

V dψ ν= ∫ x x , where 1

rU
dψ − = ∫ x  is the measure of area in the sphere with radii r, 

average values are found by integrating the SPVs over this sphere. The average curve 

helps us learn how stable the SPV distribution is at various distances from the center of 

the design space. The minimum SPV is min [ ( )]
rU v∈x x . These graphs are informative and 

useful in terms of comparing designs on a fixed design space. Examples of the VDGs can 

be found in Myers et al. (1992), Vining (1993), Borkowski (1995), Trinca and Gilmour 

(1998), and Borror, Montgomery, and Myers (2002). 

 

Some designs involve cuboidal design spaces rather than spherical ones. In the paper by 

Myers et al. (1992), the maximum, average and minimum prediction variances are still 

plotted over spherical radius, but only the sections of the spheres inside the cuboidal 
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region are assessed. VDGs in this approach show “bumps” over the sphere radius 

partially falling outside the cuboidal region of interest. Rozum and Myers (1991) rectified 

this by evaluating the maximum, average and minimum prediction variances over 

shrunken cubes with radius from zero up to one, which corresponds to the edge of the 

design space. Interpretation of the plots is the same as for spherical region. Moreover, 

Trinca and Gilmour (1998) used VDGs for comparing blocked response surface designs 

for both types of regions. 

 

Piepel and Anderson (1992), and Piepel, Anderson, and Redgate (1993a, b) developed 

and demonstrated VDGs for response surface designs with polyhedral region and 

irregular-shaped regions, specifically mixture experiments with constraints. Using a 

shrunken region approach, they plot the variances along constant shrinkage values of the 

original design polyhedron or the constrained region. The shrunken regions begin at the 

boundaries of the original design space and shrink to the overall centroid of the region. 

Vining, Cornell, and Myers (1993) also develop the VDGs for mixture designs. In their 

approach they plot the prediction variances along the Cox directions, which are rays 

passing through the centroid of the constrained region and the vertices of the 

unconstrained simplex.  

 

1.3.2 Three-Dimensional VDG (3-D VDG) 

 

Goldfarb, Borror, Montgomery and Anderson-Cook (2004) developed three-dimensional 

VDGs to evaluate prediction variance of mixture-process experiments. The conventional 

two-dimensional VDGs consider only a summary of the combined spaces. For mixture 

experiments with process variables, the design spaces can be thought of as combinations 

of two sub spaces. In their work, distribution of prediction variance in the mixture and 

process spaces are evaluated separately to allow better understanding of the prediction 

performance of designs in different areas of the design space. In addition, by keeping one 

shrinkage factor (mixture or process shrinkage factor) at a constant value, one can 

examine the prediction variance distribution in the other space. 
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In Goldfarb et al (2004), the authors plot the shrinkage factor for the mixture space along 

the x-axis, the shrinkage factor for the process space along the y-axis, and the prediction 

variance surface along the z-axis. The shrinkage factor is equivalent to a radius when the 

process space is spherical, or represents shrunken cubes when the process space is 

cuboidal. For the mixture space, the shrunken regions have the same shape as the entire 

mixture space. The Shrinkage values of 0 to 1 represent the overall centroid and the edge 

of the corresponding sub design space, respectively. To calculate the scaled prediction 

variance, a large number of shrinkage points are uniformly sampled along the shrunken 

spheres/cubes, and maximum, average SPV are calculated over these points. The number 

of points sampled is chosen to be proportional to the area of each shrinkage region. The 

3-D VDGs for mixture-process design can be viewed either as surface or contour plots. 

These plots are excellent tools to aid in selecting the designs, augmenting addition 

designs points, or selecting appropriate fractions of experiments when full mixture-

process design has an unmanageably large number of runs.  

 

1.3.3 Quantile Dispersion Graph (QDG) 

 
The quantile dispersion graph (QDG) was introduced by Khuri, Kim and Um (1996). 

This method uses quantiles of the scaled prediction variance to describe the distribution 

of SPV in the entire design region. These plots display the quantiles of the SPV including 

the minimum and the maximum values within the shrunken regions. Khuri, Harrison and 

Cornell (1999) use the QDGs to examine the mixture experiments with constrained 

regions. QDG plots provide an overall picture and detail information of the SPV 

distribution throughout the constrained region, and the minimum and maximum values as 

well. However, there are frequently too many plots if we want to explore different 

shrinkage values. They are hard to construct and interpret, which lead to some practical 

difficulties. 

  

1.3.4 Fractional Design Space (FDS) 

 
Fractional design space plots were proposed by Zahran, Anderson-Cook and Myers 

(2003) to complement the variance dispersion graphs. The FDS plots display the fraction 
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of the design space where the SPV is less than or equal to any SPV value. These plots 

provide additional information on the distribution of SPV throughout the design space. It 

summarizes the SPV distribution without providing direct information about the specific 

location of particular SPV values, but manages to summarize the distribution with a 

single line. 

 

FDS plot can be constructed by sampling a large number, say n, uniformly from locations 

throughout the design space. No matter what shapes of design space are considered, this 

uniformly sampling method could be employed. Then all the corresponding SPV values 

obtained are ordered and plotted against the quantiles (any value from 0 to 1). Hence in 

the FDS Plot, the maximum and minimum SPV over the entire region are conveniently 

displayed. If we plot a horizontal line with value p and 2p, where p is the number of 

parameters in the model and represents the theoretical 100% and 50% G-efficiency for 

the completely randomized design, we can learn about the G-efficiency of this design. 

More of the fraction of the design space for SPV which is close to the minimum, the 

better the design will be. Moreover, the flatter the line, the more stable the SPV 

distribution for the design will be.  

 

Goldfarb, Anderson-Cook, Borror and Montgomery (2004) modify FDS Plots for mixture 

and mixture-process experiments with irregular regions. They plotted global FDS curve 

and sliced FDS curves for SPV values in the mixture space at constant shrinkage factors 

for process variables. In this way, the experimenter is able to see which of the two spaces 

contributes more to changes in the SPV. 
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Chapter 2 Three-Dimensional Variance 
Dispersion Graphs (3-D VDGs) 

 

 
Abstract 

 

Complete randomization in many industrial and agricultural experiments is frequently 

impractical due to constraints in time, cost or existence of one or more hard-to-change 

factors. In these situations, restrictions on randomization lead to split-plot designs (SPD), 

allowing certain factor levels to be randomly applied to the whole plot units and 

remaining factor levels randomly to the subplot units. Separate random errors in whole 

plot units and in subplot units are due to the two randomizations in the experiment. The 

resulting compound symmetric error structure affects not only estimation and inference, 

but also the choice of design. In this paper, we first consider looking at the prediction 

properties of split-plot designs, expanding the comparison between designs beyond just 

looking at parameter estimation properties, and we present the 3-dimensional variance 

dispersion graphs (3-D VDGs) as a tool for evaluating the prediction capability of split-

plot designs and for developing design strategies. A popular design for second-order 

models is the central composite design (CCD). By studying the distribution of the scaled 

prediction variance (SPV) in the 3-D VDGs, we demonstrate that the G- and V-

efficiencies of standard CCDs can be improved upon by changing the factorial levels of 

the CCD.  

 

 

2.1 Split-Plot Designs 

 

Many industrial experiments involve two types of factors, some with levels hard or costly 

to change and others with levels that are relatively easy to change. Typical examples of 

hard-to-change factors include humidity, pressure and temperature. When hard-to-change 

factors exist, it is in the practitioner’s best interest to minimize the number of times the 
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levels of these factors are changed. A common strategy is to run all combinations of the 

easy-to-change factors for a given setting of the hard-to-change factors. Such a strategy 

results in a split-plot design (SPD) and is more economically realistic than complete 

randomization of factor level combinations resulting in a completely randomized design 

(CRD).   

 

In split-plot experiments, the levels of hard-to-change factors are randomly applied to the 

whole plot units. Within each whole plot, the levels of easy-to-change factors are 

randomly assigned to subplot units. The separate randomizations lead to a compound 

symmetric error structure of observations within the same whole plot, which must be 

accounted for not only when conducting inferences but also when determining an optimal 

design. Many efficient designs have been developed for the CRD, such as factorials and 

fractional factorials for first order models and the central composite designs (CCD) (Box 

and Wilson 1951) and Box–Behnken designs (BBD) (Box and Behnken 1960) for second 

order models. These highly efficient CRDs are not necessarily as efficient when the 

design has a split-plot structure. Huang, Chen and Voelkel (1998) and Bingham and 

Sitter (1999) explore minimum-aberration (MA) two-level fractional factorial split-plot 

designs, which are useful for screening experiments. Some strategies for selecting SPDs 

for second-order models have been developed by Davison (1995) and Goos and 

Vandebroek (2004). These studies focused on the estimation properties of SPDs. 

Practitioners are often interested in using the final model for prediction as well, especially 

when a second order model is being considered. Therefore, the prediction variance 

capability of split-plot designs is an important consideration and is the focus of this 

paper. 

 

 

2.2 Model and Analysis 

 

The two separate randomizations in split-plot designs result in correlated observations 

within each whole plot and independent observations from different whole plots. An 
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appropriate model for reflecting the error structure of a split-plot design is the linear 

mixed model 

= + +y Xβ Zu ε , 

where y is the vector of N observations, β  is the 1p×  vector of fixed effect model 

parameters including the intercept, X  is the design matrix expanded to model form; 

u =(u1,u2,…,ua)’ is the vector of random effects corresponding to the a  whole plots with 

the ui assumed to be i.i.d. 2(0, )N δσ  with 2
δσ  denoting the variability among whole 

plots. Assuming that observations are sorted by whole plots, the N a×  incidence matrix 

Z is given by 
1

{ , , }
an ndiagonal 1 1 , where 

in1  is an 1in ×  column of one’s and in  is the 

number of subplots within the thi  whole plot and 
1

a

i
i

n N
=

=∑ ; ε = ( )'
1 2, ,..., Nε ε ε  is the 

vector of residual errors where the jε  are assumed to be i.i.d. ( )2N 0, εσ  where 2
εσ  

denotes the variability among subplot units. It is also assumed that u  and ε  are 

independent. Together, the forms of X and Z influence the quality of parameter 

estimation and the quality of model prediction. 

 

The observations of a split-plot design have mean Xβ  and covariance matrix ∑ , where 

2 ' 2 2 '
n ndδ ε εσ σ σ  ∑ = + = + ZZ I ZZ I  where 2 2= /d δ εσ σ  denotes the ratio of whole 

plot error variance to subplot error variance. In this manuscript, we refer to d as the 

“variance component ratio” since it represents the relative strength of variations 

introduced by whole plot units in the experiment. Assuming observations sorted by whole 

plots allows one to conveniently write the covariance matrix in block diagonal form as 

    
1

 = 

a

∑ 
 ∑  
 ∑ 

0

0
      

where each ni × ni matrix i∑  is given by 

    

2 2 2

2 2 2

+
 = 

+
i

ε δ δ

δ ε δ

σ σ σ

σ σ σ

 
 ∑  
  

.    
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Note that the variance of an individual observation is the sum of the subplot and whole 

plot error variances, 2 2+ε δσ σ . A popular method for estimating the variance components 

is restricted maximum likelihood (REML). It is easy to show that the larger the variance 

component ratio is, the more strongly the observations within the whole plot are 

correlated to each other.  

 

The vector of fixed effects parameters, β , is estimated via generalized least squares, 

yielding 

     ( ) 1' 1 ' 1ˆ  = β ∑ ∑
−− −X X X y .     

The covariance matrix of the estimated model coefficients is given by 

    ( ) ( ) 1' 1ˆVar β ∑
−−= X X .     

When the design is completely randomized, ( ) ( ) 12 'ˆ =Var σ
−

X Xβ . The predicted value of 

the mean response at any location 0x  is given by 

    ( ) 1' ' ' '
0 0 0

ˆˆ  =  = 
−

y x x X X X y−1 −1β ∑ ∑ , 

where 0x  is the point of interest in the design space expanded to model form. In the 

CRD, the prediction variance is given by 

      ( ) ( ) 12 ' '
0 0ˆ  = Var σ

−
y x X X x , 

whereas for split-plot designs, it is given by 

( ) ( ) 1' '
0 0 0ˆ  = Var

−
y x X X x−1∑ . 

Comparing the expressions for estimation and prediction variance for split-plot designs 

and CRDs is important as it lends insight into the greater complexity associated with 

optimal design strategies for split-plot designs vs. the CRDs. For example, if one wishes 

to obtain the optimal design in terms of ability to estimate the mean response, the optimal 

CRD depends only on the settings of the levels of the variables in X and the residual error 

variance. The optimal split-plot design in terms of prediction variance will depend on the 

structure of X, the variance ratio, d, the number of whole plots, a, and the dimensionality 
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of each of the j∑  (determined by the number of subplots within each whole plot), and 

subplot levels arrangements in whole plots.  

 

 

2.3 Alphabetic Optimality Criteria for Comparing Competing Designs 

 

Strategies for choosing an optimal design depend on the goal of the researcher. For 

instance, if the desire is to have quality model parameter estimates, a popular strategy is 

to find a design with high D-efficiency. The D-efficiency criterion is defined in terms of 

the scaled moment matrix of the parameter estimates. Goos and Vandebroek (2004) 

discuss strategies for obtaining D-optimal split-plot designs. If interest is in finding a 

design with precise prediction, G- and V- efficiencies of the design are popular choices 

for comparing competing designs. Although a great deal of attention in the literature has 

been given to studying the G- and V- efficiencies of CRDs, very little attention has been 

devoted to studying the G- and V- efficiencies of SPDs. It is the study of G- and V- 

efficiencies of SPDs that is the focus of this paper. 

 
G- and V- criteria are based on the scaled prediction variance where the scaling is done to 

make the G- and V-efficiencies unitless as well as to penalize larger designs. As 

mentioned earlier, the expression for the prediction variance in CRDs is given by 

( ) ( ) 12 ' '
0 0ˆ  = Var σ

−
y x X X x   

where the scaling is 2 Nσ  (observation error variance divided by the design size). The 

scaled prediction variance (SPV) for the CRD is then given by 

    
( ) ( ) 10 ' '

0 02

ˆ
 = 

NVar
SPV N

σ
−   =

y x
x X X x . 

The scaling of the prediction variance for split-plot designs can be done in a similar 

fashion by scaling by 2 2( ) Nδ εσ σ+  (the observation error variance divided by the design 

size). The SPV for the split-plot design is then given by 
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( )

( )

11
0 ' '

0 02 2 2 2

1' ' 1
0 0

ˆ
 = =

            = 

NVar
SPV N

N

δ ε δ εσ σ σ σ

−−

−−

          + +  

y x
x X X x

x X R X x

Σ

 

where R denotes the correlation matrix of the N×1 vector of responses. 

 

The scaling of the prediction variance by N provides a “per observation” value of the 

prediction variance. This is done because in most industrial settings, there is some cost 

involved in performing additional runs. In cases in which little cost is associated with 

additional runs, the practitioner may be interested in the relative absolute prediction 

variance among designs with different number of runs. In such cases, the un-scaled 

prediction variance [scaling by 2 21 ( )δ εσ σ+  is still done but when design size is not an 

issue, we may not wish to scale by N]. The cost of split-plot experiments includes not 

only the cost of subplots/measurements, but also the cost of whole plots. Under some 

situations, whole plots may be more expensive than the subplot and measurement, which 

should be incorporated into the evaluation when taking the cost into account. Bisgaard 

(2000) discussed cost of the balanced split-plot experiments. Detailed work about cost 

penalized estimation and prediction evaluation for split-plot designs can be found in 

Liang, Anderson-Cook and Robinson (2005). In this paper, we assume that the 

experimental cost is only a function of the number of subplots, i.e., the number of 

observations, and use N to adjust for unequal sized split-plot designs. 

 

Choosing the best design in terms of prediction variance involves selecting the design 

with the minimum average SPV (the V-optimal design) or the minimum maximum SPV 

(the G-optimal design) over the entire design space. Anbari and Lucas (1994) used the 

lower bound of the maximum scaled prediction variance for CRD, i.e., p, the number of 

model parameters, to evaluate G-efficiency of split-plot designs and claimed some super-

efficient designs. Apparently p is not a reasonable lower bound for split-plot designs 

because the two errors and the different values of variance component ratio play role in 

the G-efficiency. It should be pointed out that the actual bounds for the G- and V-

efficiencies for SPDs needs further investigation, and here we focus more on relative 
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efficiencies for comparisons between competing designs. It should also be pointed out 

that G- and V-criteria produce a single number with which to compare designs. In this 

manuscript we advocate the use of graphical techniques for comparing designs in which 

we consider the distribution of the average or maximum SPV over the entire design 

region. The single-number criteria values, in and of themselves, do not offer the 

practitioner a strategy for improving an existing design in terms of G- and V-efficiency. 

By providing a visual representation of the SPV (maximum or average) over the entire 

design region, it is possible to develop strategies for improving the existing designs. 

 

 

2.4 Variance Dispersion Graphs (VDGs) 

 

Giovannitti-Jensen and Myers (1989) proposed the Variance Dispersion Graph (VDG) to 

evaluate prediction properties of response surface designs. These two-dimensional plots 

show the patterns of scaled prediction variance (SPV) for a given model throughout the 

design space. When the practitioners’ interest is in the quality of response predictions 

over the experimental region of interest, VDGs have proven to be extremely useful and 

more informative for comparing designs than single-number optimality criteria such as 

D-, V- or G-efficiency values. In standard VDGs for spherical design regions, maximum, 

average and minimum prediction variances curves are plotted versus radii from zero to 

the outer radius of the sphere. Previously, only completely randomized experiments have 

been considered. Examples of the VDGs can be found in Myers, Vining, Giovannitti-

Jensen and Myers (1992), Vining (1993), Borkowski (1995), Trinca and Gilmour (1998), 

and Borror, Montgomery and Myers (2002). Goldfarb, Borror, Montgomery and 

Anderson-Cook (2003) developed 3-dimensional VDGs to evaluate prediction 

performance of mixture-process experiments. They evaluated mixture and process 

components of the design space separately to allow better understanding of the relative 

performance of designs in different regions of the design space.  
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2.5 Three-Dimensional VDGs (3-D VDGs) for Split-Plot Designs 

 

Split-plot experiments essentially involve a design in the subplot factors overlaid on top 

of a design in the whole plot factors. Similar to mixture process experiments where the 

design space consists of two components (mixture and process), SPDs also involve two 

components (subplot and whole plot). Consequently, for evaluating SPDs, it is 

informative to examine the quality of the design in both the subplot space and whole plot 

space. In this section, we introduce the 3-dimensional VDG (3-D VDG) as a tool for 

examining the prediction variance properties over the entire split-plot design space as 

well as for any sub region.  

 

A standard VDG applied to a split-plot design uses the x-axis corresponding to the single 

shrinkage factor of the entire design space and the prediction variance distribution is 

displayed along the y-axis. However, the influence of the variance components upon the 

prediction variance distribution for a split-plot design is likely to make it no longer 

symmetric in the whole plot and subplot spaces. For instance, for a standard CCD in the 

split-plot structure with one whole plot variable, w, and one subplot variable, x, the 

conventional VDG of maximum SPV and the proposed 3-dimensional VDG are provided 

in Figure 2.1 for a variance component ratio of d=10. In the 3-D VDG of maximum SPV, 

we observe that the maximum SPV differs widely at different locations in the whole plot 

space, w, but is somewhat uniform in the subplot space, x. In the traditional VDG, 

however, since only the maximum values in the circle 2 2 2w x r+ =  are plotted at each 

value of radius r, one does not have the ability to decipher how the prediction variance 

changes over the whole plot and subplot spaces separately, and thus some interesting 

characteristics of the design are lost. Observing the difference between the whole plot 

space and the subplot space is helpful for understanding the quality of model prediction 

in the design space and any sub region. Moreover, it can be utilized to illustrate the 

important role of the variance component ratio on the performance of split-plot designs 

and is a helpful tool for devising strategies to improve the existing design. The 

conventional VDGs, however, are not capable of displaying such detailed information.  
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Figure 2.1 Conventional VDG (left) and 3-D VDG (right). 

 
Although not the focus of this paper, the 3-D VDG also has application in robust 

parameter design (RPD). RPD experiments are often implemented with a split-plot 

randomization scheme due to the economy of experimentation or restrictions on 

randomization. In these situations, whole plot variables are often environmental factors 

that are hard or costly to change and subplot variables are control/design factors whose 

levels are relatively easy to change. In RPD, the desire is to find levels of the control 

factors that result in relatively flat profiles of the SPV as one moves along the whole plot 

space, which indicates that the process can be made robust to fluctuations in the levels of 

the environmental factors. 3-D VDGs allow the practitioner to study changes of the SPV 

values along the whole plot direction. The plots also enable the practitioner to visualize 

the distribution of prediction variance along the subplot space at specific locations in the 

whole plot space.  

 

The 3-D VDGs plot the SPV as a function of ordered pairs of two shrinkage factors (w,x); 

one for the whole plot space (w) and the other for the subplot space (x). Shrinkage factors 

are used to indicate the shrunken design spaces and can be thought of as multipliers of the 

original design space. If the whole plot or subplot space is spherical, the shrinkage factor 

is the radius of the shrunken sphere; if the whole plot or subplot space is cuboidal, the 

shrinkage factor is the distance from overall center to the square face of shrunken cube. A 

shrinkage value of one would represent points on the edge of the whole plot or subplot 

space and a value of zero would indicate the center of the given design space. A 

shrinkage value of 0.5 would denote points that are half way between the center and the 

original outline of the given space. Figure 2.2 shows two examples of shrunken regions. 



 33

 
Figure 2.2 Cutaway view of shrunken spherical (left) and cuboidal (right) regions for 
shrinkage values of 0, 0.5 and 1. 
 

In 3-D VDGs, the shrinkage factor for the whole plot space is plotted along the w-axis, 

the shrinkage factor for the subplot space along the x-axis, and the scaled prediction 

variance surface along the vertical axis. When several designs are compared, all designs 

are assumed to have the same design region of interest. Based on this assumption, all the 

designs are scaled to have shrinkage levels from 0 to 1. For instance in a spherical design 

region, the outermost design points are on the sphere with radius one. The coding of the 

variables will, however, be given in standard form. 

 
Figure 2.3 The spherical space for a central composite design with one whole plot variable 
and two subplot variables. 

 

For cuboidal regions, the size of the subplot space is the same for any given whole plot 

level combination. For spherical regions, the size of the subplot space is different at 

different levels of the whole plot factors, and thus a restriction should be imposed on the 

combined whole plot and subplot shrinkage levels (w, x). Figure 2.3 illustrates a spherical 

design space for a central composite design. It has one whole plot variable, w, and two 
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subplot variables, x1 and x2. The 15 design points are indicated by dots in the plot. All the 

design points, with the exception of the center runs, are the same distance from the 

center, thus the design has a spherical design region. In the 3-D VDG for this example, 

the whole plot space is the one-dimensional space indicated by w, and the subplot space 

is the two-dimensional spherical region summarized by x, i.e., 2 2 2
1 2x x x+ = . The subplot 

spaces are observed having different volumes at different whole plot levels. Due to the 

constraint 2 2 2
1 2 1w x x+ + ≤  on the combinations of factor levels, a constraint 2 2 1w x+ ≤  

determines the edge of the combined design space. For example, the three locations on 

the edge of design region in 3-D VDGs are indicated by the pairs (w=1/ 3 , x= 2 / 3 ), 

(w=0, x=1) and (w=1, x=0) corresponding to the design points at whole plot and subplot 

factorial levels, the points at whole plot center and subplot axial levels, and the points at 

whole plot axial levels and subplot center, respectively. This adaptation is different from 

the Goldfarb et al. (2003) plots where all of the mixture-process spaces consisted of the 

same mixture space crossed with same process space.  

 

To characterize the variation over the shrunken regions we can look at the maximum or 

the average scaled prediction variance (SPV). The maximum would allow us to see the 

worst prediction variance for each shrinkages combination and could be used to examine 

the G-efficiency of the design where the goal is to minimize the maximum prediction 

variance. The average SPV provides information that can be used for the V (or IV or Q) 

type criterion which seeks to minimize the average prediction variance over the entire 

region. The shapes of the prediction variance surfaces show the behavior of the prediction 

variance as we move throughout the whole plot and subplot spaces. The minimum 

variance, the third summary traditionally included in VDGs, is not considered here for 

the sake of simplicity in the graphical presentation and because it is typically of least 

importance. 

 

In the 3-D VDGs, the average and maximum SPV are calculated at each specific 

combination of w and x. The constraint, 2 2 1w x+ = , for the overall spherical design 

region is incorporated into the surface and contour plots automatically. The outer edge of 
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the contour plots is the projection of the surface edge into the w-x plane and indicates the 

edge of the design space. By fixing a value on the x-axis and moving along the w-axis, 

one can observe the effect that whole plot level changes have on the scaled prediction 

variance. Similarly we can understand the effect of level changes in the subplot space on 

SPV by moving along the x-axis at constant w-values. In industrial split-plot experiments, 

the variation introduced by whole plots is usually larger than the variation in subplots. 

Hence d values larger than one are primarily considered in the paper. The 3-D VDGs 

provide a visualization of changes in the distribution of the SPV for various values of 

variance component ratio, d, and therefore provide a helpful means of choosing good 

split-plot designs under a variety of practical settings. In the following sections, two types 

of central composite designs (CCD) with split-plot error structures are studied for 

illustrating the utility of 3-D VDGs for evaluating competing designs and for developing 

strategies for design improvement.  

 

 

2.6 Example 1 

 

The first example illustrated is a standard CCD with split-plot structure with one whole 

plot factor and two subplot factors. The design listed in Table 2.1 is a restricted split-plot 

design (Letsinger, Myers and Lentner 1996; Goos and Vandebroek 2004), where each 

whole plot level is contained in only one whole plot. This is a popular implementation of 

the central composite design when split-plot randomization is present. We assume a full 

second order model with the fixed effects modeled as  
2 2 2

1 2 0 1 2 1 3 2 12 1 13 2 23 1 2 11 22 1 33 2( , , )f w x x w x x wx wx x x w x xβ β β β β β β β β β= + + + + + + + + + . 

 
Figures 2.4 and 2.5 display the 3-D VDGs for the maximum and average SPV, 

respectively, when d=0, 1 and 10. The maximum and average SPV are very similar 

throughout the design space, indicating how little variability there is in the prediction at 

any given location in the combined whole plot and subplot spaces. When d=0, the design 

is a CRD. In this case, the subplot and whole plot errors are indistinguishable. The design 

is almost rotatable under this situation since the exact axial levels for a rotatable design 
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are at 4 4 8 1.682F± = ± = ± , where F is the number of factorial runs (Myers and 

Montgomery 2002, pp. 309). The rotatability manifests itself in circular curves centered 

in the middle of the design space. The smallest prediction variance occurs near the 

factorial points with shrinkage value 1/ 3 577.0≈ .  

 

Table 2.1 Example 1: Standard CCD with one whole plot variable, w, and two subplot 
factors, x1 and x2. It has three center runs, axial levels of whole plot and subplot variables 
are 3α± = ± ≈ ± 1.732. 

Location in w-x 
plane in 3-D VDGs Whole 

plot w1 x1 x2 
No. of runs per 

whole plot 
w x 

1 -1 1±  1±  4 
2 1 1±  1±  4 1/ 3  2 / 3  

3 1.732 0 0 1 
4 -1.732 0 0 1 1 0 

0 ± 1.732 0 2 
0 0 ± 1.732 2 0 1 5 
0 0 0 3 0 0 

 

The plots indicate that the relative size of whole plot error variance to subplot error 

variance (d) plays an important role in the distributions of the average and maximum 

SPV. When 0d ≠ , the SPV distribution is no longer symmetric in the whole plot and 

subplot spaces. As d increases, the maximum and average SPV distributions become flat 

along the subplot direction (x), inferring that the location in the subplot space makes 

relatively little difference in the magnitude of the SPV. Consequently, predictions are 

considered to be stable along the subplot space. For large values of d, we also observe 

that the contours of the surface plots are nearly vertical, indicating that most changes of 

the maximum and average SPVs are along the whole plot space. The SPV values are 

smallest close to the factorial points in the whole plot space regardless of the position of 

the point in the subplot space. The SPV increases when moving towards the axial points 

or the center along the whole plot (w) direction. The maximum SPV occurs at the edge of 

whole plot space when 0d ≠ . 
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(a) 

 
(b) 

Figure 2.4 3-D VDGs of maximum SPV for the standard CCD in example 1, for d=0 
(left), 1 (middle) and 10 (right). (a) Surface plots. (b) Contour plots. 
 

 
(a) 

 
(b) 

Figure 2.5 3-D VDGs of average SPV for the standard CCD in example 1, for d=0 (left), 
1 (middle) and 10 (right). (a) Surface plots. (b) Contour plots. 
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For SPDs, the information for estimation of subplot terms (including subplot variables 

and interactions of whole plot and subplot variables) mainly comes from the contrasts of 

the subplot levels within each whole plot, and thus comparably precise estimates of 

subplot terms can be obtained as d increase. On the other hand, as d increases, whole plot 

terms are estimated less precisely. For large values of d, the subplot error variance 

contributes less to the SPV than the whole plot error variance. This is manifested in 

relatively smaller changes in the subplot contribution, which leads to stable SPV values 

along the subplot space but steep slopes along the whole plot space.  

 

From the distributions of the maximum and average SPV, insight for improving the 

design can be obtained. For this design, the strategy for improving the prediction variance 

is to move design points such that the maximum or average prediction variance within the 

design region is lowered according to the practitioner’s interest. The usual way of 

adjusting locations of design points is to adjust the axial levels for whole plot and subplot 

factors. If you fix the axial levels and adjust the factorial levels, this can be made 

equivalent (through recoding) to fixing the factorial levels and adjusting the axial levels. 

There are computational advantages by fixing the axial levels since the same sized region 

is obtained throughout. Symmetric factorial levels for each type of variables are assumed 

in the optimization. 

 

Davison (1995) investigated the D- and V-efficiencies of the standard CCD with a split-

plot error structure for the second order model. She showed that the standard CCD could 

be modified to better accommodate the bi-randomization scheme. In her work, V-optimal 

factorial values were obtained for different d values using the Nelder-Mead simplex 

algorithm. Since the 3-D VDGs provide information regarding the SPV distribution in the 

whole plot and subplot spaces separately, they are helpful for developing the optimization 

strategy of moving design points. It is also helpful for understanding how the design is 

improved and the price the optimal CCDs for one criterion has to pay in terms of another 

criterion.  
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2.6.1 V-optimal CCDs 

 

When striving for a V-efficient design, one attempts to find a design with small average 

prediction variance over the entire design region. As seen from the 3-D VDGs in Figure 

2.5 for the standard CCD, there are relatively high peaks’ for the SPV at the center of the 

whole plot space. By moving design points toward the center of the whole plot space, it 

may be possible to improve prediction there. The locations of design points in the subplot 

space do not appear to affect the prediction variance as much as the locations in the 

whole plot space do. Table 2.2 lists optimal factorial levels, f1, for the whole plot 

variable and, f2, for the subplot variables for a range of possible values of d. In 

MATHEMATICA, the average values are calculated by integrating the scaled prediction 

variance over the entire spherical region. Then the optimal levels with the minimum 

average value can be obtained analytically. A constraint of 2 2
1 22 3f f+ ≤  is implemented 

for the whole plot and subplot factorial levels in order to keep all the design points inside 

the spherical region. Table 2.2 also provides relative efficiency values for evaluating the 

improvement obtained by using the optimal factorial levels instead of the standard levels 

1± . Note the 1±  levels are common in practice but are not necessarily the most efficient 

levels for the factorial points. We define the relative efficiency as the ratio of the average 

scaled prediction variance of the CCD with optimal factorial levels to the average SPV of 

the standard CCD. Values less than one indicate improved V-efficiency. As d increases, 

the factorial points shift further away from the standard levels and yield increasingly 

efficient designs compared to the standard CCD. For instance, if the variance ratio is 10, 

the best factorial levels should be 0.51±  for the whole plot variable and 1.17±  for the 

subplot variables, which means the whole plot factorial points are moved much closer to 

the center of the whole plot space and the subplot factorial points are extended outwards. 

The average scaled prediction variance is reduced substantially by 15% by using the 

optimal levels (relative efficiency is 0.858 at d=10). The V-optimal levels here are 

virtually identical to those values proposed by Davison (1995). 
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Table 2.2: V-optimal factorial levels for example 1, f1 is the V-optimal whole plot 
factorial level, and f2 is the V-optimal subplot factorial level. 

d f1 f2 Relative Efficiency 
0 1 1 1.0 
1 0.78 1.09 0.965 
10 0.51 1.17 0.858 
50 0.34 1.20 0.816 

 
The plots in Figure 2.6 reveal more information about how the optimization works. The 

contour plots in (b) indicate that the prediction variances at the center are reduced and the 

surfaces flatten since the whole plot factorial points are moved to the center. Figure 2.6(a) 

compares the average SPV for the V-optimal CCD to the average SPV of the standard 

CCD. The bottom surfaces at the center correspond to the V-optimal CCDs. The two 

surfaces cross at between 0.5 and 0.75 in the whole plot space (w), indicating that the 

trade-off in the improvement at center is an increase in the SPV values at the edge of the 

design space. Since the increase in SPV at the edge of the design space is offset by SPV 

decreasing at the broad center area, the average scaled prediction variance over the entire 

region is lowered. Also note that the maximum SPV for the V-optimal CCD is slightly 

larger than the maximum SPV for the design with standard levels. 

 
(a) 

 
(b) 

Figure 2.6 3-D VDGs of average SPV for the standard and V-optimal CCD in example 1, 
for d=1 (left) and 10 (right). (a) Surface plots of average SPV for the standard and V-
optimal CCD. The two surfaces cross each other and the V-optimal CCD has smaller 
values at the center. (b) Contour plots of average SPV for the V-optimal CCD. 
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2.6.2 Robustness of the V-optimal CCDs to Changes of the Optimal Factorial Levels 

 

Often the V-optimal CCDs may involve factor levels that are not practical to 

accommodate in production. As a result, one may be interested in the robustness of the 

design performance to near-optimal levels that might be more practical. This is especially 

true for the whole plot factors, whose levels are often hard to change. For instance, the 

designed optimal oven temperature may be 347.2 degrees. But due to practical constraints 

in setting the oven temperature, it may only be possible to adjust the temperature to 350 

degrees. The desire is for the experiment to still be highly V-efficient even with slight 

alterations to the optimal factorial levels.  

 

The average prediction variance for designs with factorial levels f1 and f2, different from 

the optimal levels, is studied for d=1 and 10 via Figure 2.7. The contour levels represent 

the relative V-efficiency – the ratio of the average SPV for designs with factorial levels f1 

and f2 to the standard CCD with levels 1± . The upper curve on the edge of the contour 

lines represents the constraint 2 2
1 22 3f f+ ≤ . Point (1,1) corresponds to the standard 

design and hence has a relative efficiency value equal to one. The dot on the edge of the 

shaded region indicates the optimal factorial levels. For instance, if d=1 (left plot), the 

optimal levels are f1=0.78, f2=1.09, and the corresponding relative V-efficiency is 0.965, 

the minimum relative efficiency for the optimization. The graph shows that designs with 

factorial levels within a wide range around the optimal levels are at least better than the 

standard CCD (i.e., relative efficiencies < 1).  

 

For d=10, the optimal factorial levels are (f1=0.51, f2=1.17) and the minimum relative V-

efficiency is 0.858 (Table 2.2). Suppose, for instance, the exact optimal factorial levels 

cannot be obtained and one can only operate at f1=0.5 and f2=1.1. In the right hand plot, 

this location is in the darker shaded region around the optimal levels, implying that the 

average scaled prediction variance of the design with (f1=0.5, f2=1.1) is at least 10% 

lower than the standard CCD. We can therefore conclude that the V-efficiency for the V-

optimal CCD is robust to modest changes in the factorial levels about the optimal levels 
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and that highly V-efficient designs can be obtained by using the levels close to instead of 

exact optimal factorial levels. 

 
Figure 2.7 Contour plot of relative V-efficiency for the CCD with different whole plot 
(f1) and subplot factorial (f2) levels for d=1 (left) and 10 (right). “•”: optimal factorial 
levels. 

 
2.6.3 Robustness of the V-optimal CCDs to Changes in the Variance Component 

Ratio 

 
Thus far, we have assumed known values of the variance component ratio, d. If it is 

possible to conduct pilot experiments, d may be estimated. Another option would be to 

guess the value of d based on the researcher’s knowledge or based on field experiences. 

At times however, a pilot study is not feasible or the guess is far from the actual value of 

d. Consequently, it is important to study the robustness of the efficient designs to changes 

in d. One would expect that the optimal CCD for the guessed level of d would be less 

efficient than the optimal CCD for the actual value of d. In this section we examine the 

impact of misspecifying the value of d on the V-efficiency.  

 
Figure 2.8 provides the framework for a study of robustness of the relative V-efficiency 

with respect to a misspecified variance component ratio. In Figure 2.8, the dashed curve 

denotes relative V-efficiencies for designs with specific factorial levels that are optimal 

only for an assumed d value (d=1 or 10), and the solid curve represents designs with 

actual optimal factorial levels for values of d ranging from 0.5 to 5 in (a) and 2 to 50 in 

(b). The relative efficiency denoted by the y-axis is defined as the ratio of average SPV of 



 43

the designs represented by the solid or dashed lines to the average SPV of the standard 

CCD. Lower values of relative efficiency indicate better designs. In Figure 2.8(a), the 

two curves meet at d=1, which implies that the whole plot factorial levels 0.78 and 

subplot factorial level 1.09 are optimal when the whole plot error variance is equal to the 

subplot error variance. At other values of d, if the design has factorial levels of f1=0.78 

and f2=1.09, the design will be less efficient than the actual optimal CCDs which are 

represented by the solid curve. As d varies between 0.5 and 2, the efficiency reductions 

are negligible. 

 
(a)       (b) 

Figure 2.8 Comparison of V-efficiencies for the design with optimal factorial levels based 
on the guessed d values to those for exactly V-optimal CCDs. 
 

In Figure 2.8(b) similar results are observed. If the whole plot error variance is guessed to 

be roughly 10 times that of the subplot error variance, the optimal factorial levels are 

f1=0.51 and f2=1.17. It is possible that the actual variance ratio is between 5 and 30, 

values that are far from the guessed value. However, Figure 2.8(b) indicates that the 

efficiency of the design selected based on the guessed value of d is quite close to that of 

the optimal CCDs. Therefore, the improved V-efficient CCD has good V-efficiency even 

when there is an inaccurate guess or estimated value of d.  

 
In summary, if one wishes to focus on optimizing the average SPV using V-efficiency, as 

d increases, the strategy for the CCD is to shift the whole plot factorial levels to the 

center of the design space. If he/she cannot run the exact optimal levels, then the V-

efficiency of the improved CCD is quite robust to small changes in the optimal factorial 

levels. If the initial estimate of d is not accurate, the V-efficient CCD will still perform 
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close to optimal for a wide range of d values around the initial guess. It should be noted 

that the improvement in the overall average SPV comes with the price of exhibiting 

slightly higher maximum SPV (i.e. lower G-efficiency). Strategies for obtaining G-

optimal CCDs are discussed in the next section. 

 

2.6.4 G-optimal CCDs 

 
Frequently, the practitioner is interested in keeping the worst prediction over the design 

region under control. In these situations, G-efficiency is a popular tool for comparing 

competing designs. Not only is the value of the maximum SPV important but it is also 

important to assess the location of the maximum SPV in the design space. In terms of 

protecting worst scenario, the 3-D VDGs can be quite informative tools for comparing 

and improving candidate designs. Since G-efficiency focuses on the area in the design 

region with the worst prediction (maximum SPV), while V-efficiency considers the 

overall performance of the SPV over the entire region, there are different strategies 

involved for obtaining G-efficient designs than there are for obtaining V-efficient designs.  

 
(a) 

 
(b) 

Figure 2.9 3-D VDGs of maximum SPV for the standard and G-optimal CCD in example 
1, for d=1 (left) and 10 (right). (a) Surface plots of maximum SPV for the standard and 
G-optimal CCD. The two surfaces cross each other and the G-optimal CCD has larger 
values at the center. (b) Contour plots of maximum SPV for the G-optimal CCD. 
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We consider again the CCD. The G-optimal factorial levels for several values of d are 

listed in Table 2.3. The relative efficiency is the ratio of the maximum SPV of the G-

optimal CCD to the maximum SPV of the standard CCD. Relative efficiency values less 

than one imply better designs than the standard CCD. The G-optimal factorial levels 

indicate a different strategy for design improvement than what was incorporated in 

finding V-optimal split-plot CCDs.  The strategy then for obtaining a G-optimal CCD, is 

to move the whole plot factorial levels away from the center and then to move the subplot 

factorial levels towards the center.  

 
Table 2.3 G-optimal factorial levels for example 1, h1 is the G-optimal whole plot 
factorial level, and h2 is the G-optimal subplot factorial level. 

d h1 h2 Relative Efficiency 
0 1 1 1.0 
1 1.13 0.92 0.927 
10 1.22 0.80 0.897 
50 1.25 0.75 0.884 

 

Note that the G-optimal CCD improves the area with the maximum SPV by sacrificing 

the SPV at the center of the design space. The contours in Figure 2.9(b) show that the 

area with the maximum SPV for the G-optimal CCD is at the edge of the subplot space 

and center of the whole plot space. Comparing the location of the maximum SPV for the 

G-efficient CCD (seen in the contours of Figure 2.9) to the standard CCD (pictured in the 

contours of Figure 2.4) the locations of maximum SPV have shifted from (w=1, x=0) for 

the standard CCD to (w=0, x=1) for the G-optimal CCD. From Figure 2.9(a), we can 

observe that in the broad center area of the whole plot space the SPV values for the G-

optimal CCDs are larger than those for the standard CCD. The implication is that the G-

optimal CCDs have a larger average SPV and thus less V-efficient than the standard 

CCD. Utilizing plots of the distributions of the maximum and average SPV, the 

practitioner can discover the reasons why improving the design based on one criterion 

may lead to a sacrifice in the efficiency based on another criterion. The practitioner is 

now afforded the ability of developing a strategy of perhaps choosing a design that 

balances G- and V-efficiency values.  
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2.7 Example 2  

 

In this example, we consider a standard CCD with two whole plot factors, w1 and w2, and 

two subplot factors, x1 and x2, for a full second order model (design points are listed in 

Table 2.4). The axial levels of all variables are 2α = ± , yielding a rotatable CCD when 

the run order is completely randomized. The design region is spherical.  

 
Table 2.4 Example 2: standard CCD with two whole plot and two subplot factors. Its 
axial levels are 2±  and 3 center runs. 

Whole plot w1 w 2 x1 x2 No. of runs per whole plot 
1 -1 -1 1±  1±  4 
2 -1 1 1±  1±  4 
3 1 -1 1±  1±  4 
4 1 1 1±  1±  4 
5 2 0 0 0 1 
6 -2 0 0 0 1 
7 0 2 0 0 1 
8 0 -2 0 0 1 

0 0 2±  0 2 
0 0 0 2±  2 9 
0 0 0 0 3 

 

The maximum and average SPVs are displayed via the 3-D VDGs for d=0, 1 and 10 in 

Figure 2.10. Analytical calculations show large differences between the maximum and 

average SPVs at the edge of the whole plot space and thus large dispersion among the 

predictions variances in this area. Similar to Example 1, we observe that as d increases 

from 0, the distribution of the maximum and average SPV values is no longer symmetric 

in the whole plot and subplot spaces. For large values of d, the maximum and average 

SPV becomes quite stable in the subplot space (x), as evidenced by the nearly vertical 

contours in the right-most figures of 2.10(b) and (c). In the whole plot space, the 

maximum and average SPV increase rapidly at the edge, while from the center to the 

factorial levels of the whole plot space, the maximum and average SPV values are stable.  
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(a) 

 
(b)  

 
(c)  

Figure 2.10 3-D VDGs for the standard CCD in example 2 for d=0 (left), 1 (middle) and 
10 (right). (a) Surface plots of maximum and average SPV. (b) Contour plots of 
maximum SPV. (c) Contour plots of average SPV. 
 

Compared to the design in Example 1 (one whole plot and two subplot variables), this 

design has a larger proportion of the region with smaller average and maximum SPV 

values. The V- and G-optimal factorial levels for this design are provided in Table 2.5. 

The strategy for improving the V- and G-efficiency of this design remains the same as in 

Example 1: for V-optimality, the whole plot factorial levels move in and subplot 

factorials move out, while the G-optimal whole plot factorial levels move outward and 

the G-optimal subplot levels move closer to the center. However, note that the V-optimal 

levels change little from the standard levels 1± . Consequently, the V-efficiencies do not 

represent a significant improvement, inferring that the standard CCD for this case has 
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nearly optimal factorial levels. We do however note that the G-efficiency of this CCD 

with standard factorial levels can be improved substantially. Note also that the 

improvements in G-efficiency are much more substantial in this example than in the first 

example. For instance, when d=10, the G-optimal factorial levels are 1.21 for whole plot 

variables and 0.73 for subplot variables, yielding a relative efficiency of 0.602, which 

says that the maximum scaled prediction variance of the G-optimal CCD is almost 60% 

of that for the standard CCD, while in Example 1 the maximum SPV of the G-optimal 

CCD is 90% of that for the standard CCD and the optimal factorial levels for whole plot 

and subplot factors are 1.22 and 0.80, respectively. 

 
Table 2.5 V- and G-optimal factorial levels for example 2, f1 and f2 are V-optimal whole 
plot and subplot factorial levels, respectively, and h1 and h2 for the G-optimal levels. 

V-optimal G-optimal d f1 f2 Relative efficiency h1 h2 Relative efficiency 
0 1 1 1 1 1 1 
1 1 1 1 1.13 0.85 0.735 
10 0.97 1.02 0.997 1.21 0.73 0.602 
50 0.97 1.02 0.997 1.23 0.69 0.574 

 

The plots in Figure 2.11 illustrate the differences in the distributions of the maximum 

SPV for the standard and G-optimal CCDs. The G-optimal CCDs have much lower SPV 

values at the edge of whole plot space. Also, the plots indicate a change in the location of 

the maximum SPV. The maximum values shown in Figure 2.11(b) occur at the edge of 

subplot space and the center of whole plot space (w=0, x=1) for the G-optimal CCDs. In 

the standard CCD, the maximum SPV occurs at the edge of whole plot space and the 

center of subplot space (w=1, x=0). Finally, we note that the G-optimal CCDs have much 

lower maximum SPVs than the standard CCD.   

 

In summary, for the two whole plot variable and two subplot variables case, if the 

practitioner chooses to focus on overall prediction performance with V-optimality, the 

factorial levels for the standard CCD are nearly optimal. If however, one focus on 

protecting the worst prediction over the entire region (G-optimality), substantial 

improvements can be made by altering the design. 
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(a) 

 
(b) 

Figure 2.11 Surface plots of maximum SPV for the standard and G-optimal CCDs in 
example 2, for d=1 (left) and 10 (right). (a) Surface plots for the standard and G-optimal 
CCD. The two surfaces cross each other and the G-optimal CCD has larger values at the 
center. (b) Contour plots of maximum SPV for the G-optimal CCD. 
 

 

2.8 Example 3 

 

In split-plot experiments the major cost of a design is typically associated with changing 

the levels of whole plot variables. When a standard CCD is run within a split-plot 

randomization scheme as in the previous two examples, there is only one subplot within 

each of the axial level whole plots. Consequently, the standard CCD is not as efficient in 

terms of the additional cost of the whole plot units. In addition, the standard CCD has no 

replicates for the whole plot levels, making the whole plot pure error variance non-

estimable. Vining, Kowalski and Montgomery (2004) [henceforth referred to as VKM] 

recommend that the practitioner consider a restriction on the minimum and maximum 

number of subplots within each whole plot in order to better utilize the available 
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experimental resources. They propose a modified CCD in which each whole plot contains 

the same number of subplots. When every whole plot contains an equal number of 

subplots, the design is said balanced. In addition, VKM only consider CCDs in which the 

ordinary least squares (OLS) estimates are equivalent to the generalized least squares 

(GLS) estimates. In this section we compare the modified CCD of VKM to the standard 

CCD when there are one whole plot variable and two subplot variables. The modified 

CCD is given in Table 2.6. We again assume a full second order model. Compared to the 

standard CCD, the modified CCD is a balanced SPD, where the balance is achieved by 

augmenting the whole plot axial levels with replicated center runs at the subplot levels as 

well as splitting the w=0 whole plot into separate whole plots for the subplot axial points 

and the subplot center runs. The standard CCD and modified CCD can be compared by 

observing Tables 2.1 and 2.6.  

 
Table 2.6 Example 3: modified CCD with one whole plot variable and two subplot 
variables, axial level 3α± = ± ≈ ±1.732. 

Whole plot w x1 x2 No. of runs per whole plot 
1 -1 1±  1±  4 
2 1 1±  1±  4 
3 1.732 0 0 4 
4 -1.732 0 0 4 

0 ± 1.732 0 2 5 0 0 ± 1.732 2 
6 0 0 0 4 

 

The surface and contour plots of the maximum SPV for the modified CCD are provided 

in Figure 2.12. The plots of the average SPV are not provided due to the small differences 

between the maximum and the average SPVs across the design region. The 3-D VDGs 

allow the user to study the prediction performance across the design region as the 

variance ratio (d) changes from 0 (the CRD setting) to larger values. When d=0, the 

contours are not circular about the design center, indicating a loss of rotatability for the 

modified CCD. The worst SPV of 15.4 occurs at the center of whole plot space and the 

edge of subplot space (w=0, x=1).  
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(a) 

 
(b) 

Figure 2.12 3-D VDGs of maximum SPV for the modified CCD in example 3, for d=0 
(left), 1 (middle) and 10 (right). (a) Surface plots. (b) Contour plots. 
 

Similar to the standard CCD with split-plot structure, changes in d play an important role 

in the distribution of the SPV for the modified CCD. For split-plot structures (i.e., d >0), 

the location with the worst prediction variance is at the centroid of entire spherical region 

(w=x=0). The distribution of the maximum SPVs along the subplot and whole plot spaces 

is nearly symmetric. As d increases, the maximum SPV values at the design center 

become greater than the values on the other region of the design space. Consequently, as 

d increases, the broad center area represents the locations with less precise prediction.  

This is generally not a desirable characteristic since the practitioner often expects to have 

better prediction performance at the center of the design space. The surface plots for the 

comparison of the standard CCD and the modified CCD are provided in Figure 2.13. The 

modified CCD, in terms of the maximum and average SPV, is less desirable than the 

standard CCD throughout most of the design region. As pointed out, this is especially 

true near the center of the design space and when the whole plot units account for a large 

proportion of the variability of observations (which results in larger values of d). This is 

due in part to the subplot quadratic terms being estimated exclusively with the whole plot 

error variance for modified CCD. Although the modified CCD of VKM has one more 



 52

whole plot than the standard CCD, its structure is less efficient than the restricted split-

plot structure for CCD, thus the prediction performance of the modified CCD is less 

desirable than the standard CCD. More than the single number criteria, like G- and V-

efficiencies, the 3-D VDGs provide the practitioner with a more complete comparison of 

the two adaptations of CCD in split-plot structure in terms of prediction variance. 

 

 
Figure 2.13 Surface plots of maximum SPV for the modified and the standard CCD with 
one whole plot variable and two subplot variables, for d=0 (left), 1 (middle) and 10 
(right). The modified CCD has larger values in almost entire region. 
 

 

2.9 Conclusions 

 

Although a great deal of attention in the literature has been given to studying the 

prediction variance properties of CRDs, very little attention has been devoted to studying 

the prediction variance properties of SPDs. In terms of alphabetic optimality criteria, 

previous research involving strategies for determining optimal split-plot designs has 

focused mainly on parameter estimation (D-efficiency). Little work has been done 

regarding developing strategies for choosing split-plot designs on the basis of prediction 

variance properties (G- and V-efficiency). Although single number criteria such as the 

maximum SPV or average SPV are useful in comparing designs, graphical displays of the 

distribution of the maximum and average SPV over the entire design region provide a 

more complete comparison of designs. In this paper, we present the three-dimensional 

variance dispersion graphs (3-D VDGs) as a method of comparing the distributions of the 

maximum and average SPV for competing designs. Combining the contour and surface 

plots, we can examine the distribution of prediction variance throughout the entire design 

space as well as for the whole plot and subplot spaces individually. 3-D VDGs provide a 
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simple visual way for better understanding the prediction performance of split-plot 

designs in design space, especially when one is interested in the strengths and weaknesses 

for a candidate design in a specific area of the design space.  

 

Using 3-D VDGs, we have demonstrated that it is possible to improve existing designs in 

terms of their prediction variance properties. In the examples provided, we have 

demonstrated that the 3-D VDGs offer the development of intuitive strategies for 

improving the prediction variance properties of the popularly used CCD. We have also 

demonstrated that our G- and V-optimal CCDs are quite robust to changes in the optimal 

factorial levels as well as to misspecifications of the variance component ratio.  

 

Although all the examples illustrated in this paper involve the spherical design space, the 

same methodology of construction and interpretation can easily be applied to cuboidal 

regions and constrained design spaces. When the design region is cuboidal, shrunken 

cubes are considered and no constraint is imposed on the combinations of the whole plot 

and subplot shrinkage factors. When the design space is a constrained region, the 

shrunken regions are located on a sub-region of the full simplex, and suitable constraints 

might be considered for combinations of the shrinkage factors. In addition, other 

functions of the prediction variance can easily be plotted using the 3-D VDGs. Other 

examples of cost-based optimality criteria based on G- and V-efficiencies are given in 

Liang et al (2005). This flexibility can make the use of 3-D VDGs adaptable to a broad 

range of optimization problems. 
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Chapter 3 Fraction of Design Space (FDS) Plots 
 
 

Abstract 

 

In industrial experiments, restrictions on the execution of the experimental runs or 

existence of one or more hard-to-change factors often lead to split-plot experiments, 

where there are two types of experimental units and two independent randomizations. The 

resulting compound symmetric error structure and the setting of whole plots play 

important role in the performance of split-plot experiments. When the practitioner is 

interested in predicting the response, a response surface design for a second order model 

such as a central composite design (CCD) is often applied. The prediction variance of 

these designs under split-plot structure can be of interest. In this paper, fraction of design 

space (FDS) plots are adapted to split-plot designs. In addition to the global curve 

exploring the entire design space, sliced curves at various whole plot levels are presented 

to study prediction performance for sub regions in the design space. The different sizes of 

the constrained sub regions are accounted for by the proportional size of the sliced curves. 

The construction and use of the FDS plots are demonstrated through two examples of the 

standard CCD in split-plot schemes. The roles of the two types of variables in the 

prediction variance under different values of variance component ratio are also discussed. 

 

 

3.1 Introduction 

 

Many industrial experiments involve two types of factors, some with levels that are hard 

or costly to change and others with levels that are relatively easy to change. When hard-

to-change factors exist, the experimenter may want to reduce the number of times the 

levels of these factors are changed. A common strategy is to run all combinations of the 

easy-to-change factors for a given setting of the hard-to-change factors. Such a strategy 

results in a split-plot design (SPD) and is frequently more realistic than complete 

randomization of the desired factor level combinations, which results in a completely 
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randomized design (CRD). In split-plot experiments, there are two types of experimental 

units – whole plots and subplots, and the levels of hard-to-change factors are randomly 

applied to the whole plot units. Within each whole plot, the levels of easy-to-change 

factors are randomly assigned to subplot units. The separate randomizations lead to the 

correlated observations within the same whole plot and thus a compound symmetric error 

structure, which must be accounted for not only when conducting inferences but also 

when determining an optimal design. Examples of split-plot designs are given in 

Letsinger, Myers and Lentner (1996) and Kowalski and Vining (2001). 

 

When the experiment is run as a split-plot design with a whole plots, the following linear 

mixed model can be written to explain the variation in the N× 1 response vector, y, 

y  X   Zu  = + +β ε . 

Regarding notation, β  is the p× 1 vector of fixed effect model parameters including the 

intercept, X is the N× p fixed effects design matrix; Z is an N× a incidence matrix of ones 

and zeroes where the jith entry is 1 if the jth observation (j=1,…,N) belongs to the ith 

whole plot (i=1,…,a); u  is an a× 1 vector of random effects for whole plot units where 

the elements are assumed i.i.d ( )2N 0, δσ  with 2
δσ  denoting the variability among whole 

plots; ε  is the N× 1 vector of residual errors where the elements are assumed i.i.d 

( )2N 0, εσ and 2
εσ  denotes the variation among subplot units. It is also assumed that 

 and δ ε  are independent.  

 

The covariance matrix of the responses in a split-plot design is  

( ) 2 2 2 'Var  =  = '  +  =  + N Ndδ ε εσ σ σ   y ZZ I ZZ I∑     

where NI  is an N× N identity matrix and 2 2=d δ εσ σ  represents the variance component 

ratio. For simplicity of presentation, we will assume that the observations are sorted by 

the whole plots, implying 
1

 = { , , }
an ndiagonalZ 1 1 , where 

in1  is an 1in ×  vector of one’s 

and in  is the size of the ith whole plot. Assuming the diagonal form of Z  allows one to 

conveniently write the covariance matrix as 
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1

 = 

a

∑ 
 ∑  
 ∑ 

0

0
      

where each ni × ni matrix i∑  is given by 

    

2 2 2

2 2 2

+
 = 

+
i

ε δ δ

δ ε δ

σ σ σ

σ σ σ

 
 ∑  
  

    

and i∑  denotes the covariance matrix of responses for the ith whole plot. Note that the 

variance of an individual observation is the sum of the subplot and whole plot error 

variances, 2 2+ε δσ σ . A popular method for estimating the variance components is 

restricted maximum likelihood (REML).  

 

The vector of fixed effects parameters, β , is estimated via generalized least squares, 

yielding  

( ) 1' 1 ' 1ˆ  = β ∑ ∑
−− −X X X y . 

The covariance matrix of the estimated model coefficients is given by 

    ( ) ( ) 1' 1ˆVar β ∑
−−= X X . 

The predicted mean response at any location 0x  is given by 

( ) '
0 0

ˆˆ x xy = β , 

where 0x is the point of interest in the design space expanded to model form. The 

prediction variance at 0x  is given by 

( ) 1' ' 1
0 0 0ˆVar y x x X X x

−−   = ∑    . 

When the design is completely randomized, 2Iσ∑ =  and the optimal design depends 

only on the settings of the factor levels in X. In considering optimal split-plot designs, the 

situation becomes more complex than it is for CRDs due to the complexities introduced 

by the more general form of ∑ . For instance, if one is interested in the best split-plot 

design in terms of model prediction, the prediction is not only a function of the settings of 
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the factors in X but is also a function of the number of whole plots, the variance 

component ratio, d, the dimensionality of each of the j∑  (determined by the number of 

subplots within each whole plot), and the arrangement of subplot levels within whole 

plots.  

 

Often when considering prediction variance as an objective function for determining an 

optimal design, the prediction variance is scaled by the variance of observational error to 

make the quantity scale free and by the design size in order to penalize larger designs. 

Similar to the scaled prediction variance (SPV) calculation equation for CRDs (Myers 

and Montgomery, 2002), the scaled prediction variance for split-plot designs is obtained 

by multiplying the prediction variance by the total number of runs, N, and then dividing 

by the observational error variance ( 2 2
δ εσ σ+ ). Thus for SPDs we have  

SPV ' ' 1 1 2 2
0 0{ } ( )N ε δσ σx X X x− −= ∑ + ' ' 1 1

0 0[ ]N − −= x X R X x , 

where 1{ , , }adiagonal=R R R  with Ri  denoting the correlation matrix of observations 

within whole plot i.  

 

The correlation matrix, R, is a function of the unknown variance component ratio, d. The 

performance of a SPD in terms of prediction variance is strongly related to the value of 

the variance component ratio, d. This range of d values is based primarily on d values that 

have been reported in the literature for industrial split-plot experiments. Bisgaard and 

Steinberg (1997) stated that the whole plot variance is usually larger than subplot 

variance in prototype experiments. Letsinger et al. (1996) studied a split-plot experiment 

in chemical industry with 2 2/δ εσ σ = 1.04. Vining, Kowalski and Montgomery (2004) 

estimated the variance terms using pure error and reported a variance ratio 5.65. Webb, 

Lucas and Borkowski (2002) described an experiment with a variance ratio of 6.92 in a 

computer component manufacturing experiment. Kowalski, Cornell and Vining (2002) 

studied a mixture experiment with process variables where the estimated variance ratio 

was 0.82. In this chapter, we consider d values of 0 (CRD), 1 and 10, representing 

situations in which the whole plot is not distinguished from subplot, the whole plot error 

variance is the same and ten times that of the subplot error variance, respectively. 
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Graphical tools 

 

Alphabetical criteria, like D-, G-, or V-optimality criteria, are often employed when 

evaluating designs, however, the decision of a best design is typically more complicated 

than can be completely summarized by a single number. For instance, if the practitioner 

is interested in prediction, the V-criterion, for example, yields information concerning the 

average prediction variance over the design region but single value is incapable of 

providing information regarding whether or not the prediction variance is stable in the 

entire design region or which regions exhibit best and worst prediction precision. In these 

situations, graphical tools are more informative for the exploration of properties of 

competing designs and allow for more detailed understanding of prediction performance 

throughout the design region. Variance dispersion graphs (VDGs) and fraction of design 

space (FDS) plots are two popularly used graphical tools for comparing designs. VDGs 

were proposed by Giovannitti-Jensen and Myers (1989) for CRDs with spherical design 

region. In the plots, minimum, maximum and average SPV values are plotted versus the 

radius of the shrunken spheres. VDGs have been extended to designs with cuboidal and 

irregularly constrained design regions via the use of shrinkage factors, i.e., multipliers of 

the original edges of the design space. The shrinkage factors range from 0 to 1, with 0 

indicating the design center and 1 representing the outer perimeter of the given space (see 

Khuri, Harrison and Cornell 1999 regarding the use of shrinkage factors). Liang, 

Anderson-Cook, Robinson and Myers (2004) utilize the shrinkage concept for the 

creation of three-dimensional variance dispersion graphs (3-D VDGs) for studying the 

distribution of prediction variance in a split-plot design space. In 3-D VDGs, the average 

or maximum SPV values are plotted versus combined shrinkage values for whole plot 

and subplot spaces. This allows the practitioner to examine the prediction variance in the 

whole plot and subplot spaces separately. 3-D VDGs have been shown to be useful for 

evaluating and comparing prediction performance of split-plot designs. 

 

Another tool for studying the distribution of prediction variance across the design space 

is the fraction of design space (FDS) plot. The fraction of design space (FDS) plot was 

introduced by Zahran, Anderson-Cook and Myers (2003) as a complement to VDGs. 
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While VDGs are informative in terms of the distribution of the SPV in the design space, 

FDS plots present the cumulative distribution function of all of the SPV values from the 

entire space, showing clearly the minimum, maximum and quantiles of the SPV 

distribution. In the FDS plot, SPV values are plotted versus the fraction of the design 

space that has SPV values at or below a given value. Goldfarb, Anderson-Cook, Borror 

and Montgomery (2004) developed FDS plots for mixture and mixture-process 

experiments with irregular regions. Since mixture-process experiments typically involve 

different characteristics of the SPV over the mixture and process spaces, Goldfarb et al. 

demonstrated that sliced FDS plots can be constructed to allow for more detailed views of 

the different sub-spaces. 

 

 

3.2 FDS Plots for Split-Plot Designs 

 

In considering FDS plots for split-plot designs, one can conceptualize a global plot for 

the entire design region or sliced plots for the whole plot or subplot spaces individually. 

Depending on the interest of the practitioner (global or regional), the plot is constructed 

by sampling the design space. To construct an FDS plot which characterizes the global 

behavior of the SPV over the entire design space, a large number of points, say n, are 

uniformly randomly sampled from the design space. SPV values are then calculated at 

each point in the sample via the equation ' ' 1 1
0 0[ ]N − −x X R X x  where 0x  is a given location 

in the design space. The obtained SPV values are then ordered and plotted against the 

quantiles (1/n, 2/n,…,1). In the resulting curve, the minimum and maximum SPV values 

are displayed at FDS=0 and 1, respectively. The slope of the curve indicates how quickly 

the SPV reaches its maximum value in the design space. A desirable characteristic of a 

design is that its SPV values are minimized. In terms of the FDS plot, this characteristic 

manifests itself in an FDS curve that has small SPV values with a relatively flat slope, 

inferring a stable SPV distribution. Using global FDS plots to compare designs, curves 

with lower values and flatter slopes denote better designs.  

 



 60

Since split-plot designs involve two sub spaces, namely the whole plot space and subplot 

space, it is not unreasonable to expect the SPV values to change according to different 

patterns as we move around in the whole plot or subplot spaces. One reason for the 

existence of different patterns in the whole plot and subplot spaces is the impact of the 

variance component ratio, d.  As d increases (i.e. whole plot error variance increases in 

relative importance in terms of observational error variance), whole plot factor terms are 

estimated less precisely. This manifests itself in different slopes of prediction variance 

profiles along the whole plot and subplot spaces. Therefore, when comparing designs, it 

may be informative to examine the difference in SPV profiles within the whole plot and 

subplot spaces. Sliced FDS curves can be constructed to examine the SPV distribution 

within the subplot space at any specified whole plot shrinkage level. To construct these 

plots, points are uniformly sampled throughout the subplot space with the whole plot 

factor fixed at a given level. Alternately, if one were interested in profiles in the whole 

plot space for a given subplot level, sampling could take place with points selected 

uniformly throughout the whole plot space for the given subplot level.  

 

In producing sliced FDS plots it is important to keep in mind the restriction of the 

spherical nature of the overall design space. For example, consider an experiment with 

one whole plot factor, w, and two subplot factors, x1 and x2. For a cuboidal region, 

regardless of the shrinkage value of w selected for the whole plot factor, the valid subplot 

space remains a square region with 10 1x≤ ≤  and 20 1x≤ ≤ . If a spherical region with 

radius one is of interest and the whole plot shrinkage factor is specified at a value w, the 

valid subplot space is the circle with 2 2 2
1 20 1x x w≤ + ≤ −  due to the constraint 

2 2 2
1 2 1w x x+ + ≤  in the spherical design region. Therefore, at different whole plot levels, 

the subplot spaces have different sized sub regions in the design space. In order to reflect 

the proper area explored by the slices, the range of FDS values on the x-axis are shown to 

be proportional to the volume of the studied subplot space for the sliced curve at any 

specified whole plot shrinkage level. To do this we divide it by a standard volume to 

display how large the subspaces are relative to each other. The maximum volume of the 

subplot space among all the whole plot levels is used as the standardizing volume for 
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sliced subplot spaces. Using this principle for a cuboidal region, the proportional size of 

all of the subplot spaces and the length of corresponding slice curves are one. However, 

for spherical regions, the sizes of the subplot spaces at different whole plot levels may not 

be the same. The maximum subplot space occurs at w=0 with the corresponding subplot 

space as the circle 2 2
1 2 1x x+ ≤  and thus the standardizing subplot space volume is π . 

After standardizing (dividing by π ), the lengths of all of the sliced FDS curves are 

different for the various whole plot levels. To aid in understanding the principle of 

different sliced curves at different whole plot levels, consider the information in Table 

3.1 and the corresponding design space plotted in Figure 3.1, which shows the design 

space of a central composite design for one whole plot factor, w, and two subplot factors, 

x1 and x2 (settings provided in Table 3.2). 

 

 

Figure 3.1 Spherical space for a design with one whole plot and two subplot variables. 
 

The axial levels for the three factors are 3  and thus the design has a spherical design 

region. All shrinkage levels displayed in Table 3.1 are scaled such than the outermost 

design points are on the sphere with radius 1. The subplot space is largest at the center of 

whole plot space, hence the resulting sliced FDS curve at w=0 will extend to FDS=1. The 

smallest slice is at w= ± 1 representing the axial points at the edge of whole plot space. 

The corresponding subplot space is only a single point and hence the resulting FDS 

curves at w= ± 1 will be displayed as a dot. The shrinkage values w 1/ 3= ±  correspond 
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to locations with the factorial levels in the whole plot space. The subplot spaces at these 

locations have proportional volume 2/3, thus the resulting FDS curve will extend to 2/3. 

 

Table 3.1 The proportional sizes of the sliced FDS curves at different whole plot 
shrinkage values for a design with spherical region as in Figure 3.1. 

Whole plot 
shrinkage 
value (w) 

Location in 
the whole 
plot space 

Possible values 
subplot shrinkage 

values (x1, x2) 

Region in 
Figure 3.1 

Volume 
of the 
disk 

Proportional 
size of the 

curve 
0 center 2 2

1 2 1x x+ ≤  disk 1 π  1 
1/ 3±  factorial 2 2

1 2 2 / 3x x+ ≤  disk 2 2 / 3π  2/3 
1±  axial 1 20, 0x x= =  disk 3 0 0 

 

Sliced FDS curves can be used to examine the SPV distribution in the subplot or whole 

plot spaces, depending on the interests of the practitioner. If interest lies in the behavior 

of the SPV throughout the subplot space, a flat FDS slice would indicate that SPV values 

are relatively stable in the subplot space at the given whole plot shrinkage level. From 

slices at different whole plot levels, one can observe the regions with good or poor 

prediction in both the whole plot and subplot spaces. The top slice (associated with 

largest SPV values) corresponds to the whole plot region with maximum SPV. This 

information can aid the practitioner who wishes to improve the design by augmenting 

with additional design points since the slices can help the practitioner focus on regions 

where attention should be focused. The slice plots can also be used to judge which of the 

two spaces, whole plot space or subplot space, contributes more to changes in the SPV 

values. If the slices at different whole plot levels are flat and far apart, the whole plot 

space has a larger effect on the SPV distribution. If the slices have rapidly increasing 

slopes and are close to each other and to the global FDS curve, the location in the subplot 

space has a larger effect on the SPV values, which also means that the SPV is relatively 

stable in the whole plot spaces and robust to the changes of the whole plot levels. If the 

slices are somewhere between horizontal and steeply sloped, then both whole plot and 

subplot spaces contribute to changes in the SPV values. Therefore, from the relative 

positions of the slices, information about the SPV distribution in the whole plot space can 

be provided.  
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It is important to note that FDS plots are not meant to compete with 3-D VDGs when 

evaluating split-plot designs but are to be viewed as an additional tool for making 

informative comparisons. In the following sections, two examples involving a split-plot 

CCD are studied to illustrate the utility of global and sliced FDS plots. We also seek to 

illustrate how the FDS plots and 3-D VDGs can be used together for obtaining a better 

understanding of prediction variance properties of SPDs.  

 

 

3.3 Example 1 

 

This example considers a central composite design (CCD) in a split-plot setting with one 

whole plot factor, w, and two subplot factors, x1 and x2. A spherical design region is 

assumed and the following full second order model in the fixed effects is studied  
2 2 2

1 2 0 1 2 1 3 2 12 1 13 2 23 1 2 11 22 1 33 2( , , )f w x x w x x wx wx x x w x xβ β β β β β β β β β= + + + + + + + + + . 

The factor combinations are listed in Table 3.2. Note that each whole plot level is 

contained in only one whole plot in this design. It is a popular set-up for the central 

composite design run in a split-plot setting. 

 

Table 3.2 Standard CCD with one whole plot variable and two subplot variables. It has 
axial level = 3 1.732± ≈ ± . The levels in the table are given in the standard form. 

Whole plot w x1 x2 No. of runs in the whole plot 
1 1 1±  1±  4 
2 -1 1±  1±  4 
3 1.732 0 0 1 
4 -1.732 0 0 1 

0 ± 1.732 0 2 
0 0 ± 1.732 2 5 
0 0 0 3 

 

The global FDS curves for the standard CCD and four sliced curves for the subplot space 

at specified whole plot shrinkage values are presented in Figure 3.2 for different values of 

the variance ratio, d=0, 1 and 10. The SPV distribution across the subplot space is plotted 

for each of the four whole plot shrinkage values, w=0, ± 0.29, ± 0.58 and ± 1. These 

slices display the SPV distribution across the subplot space at the center, between the 
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center and the factorial levels, the factorial levels, and the axial levels in the whole plot 

space, respectively. The four corresponding lengths of the curves are 1, 0.92, 0.67 and 0 

to reflect the volume of each sub region being examined.  

  
The minimum and maximum scaled prediction variance in the design space and the 

distribution profile can be read from the global FDS curves. For instance, when d=10, the 

minimum SPV value of 6.2 is observed at FDS=0. The maximum value of 14.3 is 

observed at FDS=1. Note that the maximum SPV is related to the design’s G-efficiency. 

For the standard CCD with d=0, corresponding to a CRD, the global FDS curve has a 

diagonal slope, implying that the SPV increases gradually across the design region. As d 

increases, the global curves have relatively flat slopes in more than 95% of the design 

space, and then increase rapidly in a tiny portion of the design space. This implies that the 

proportion of the design region with small SPV values increases as d increase.  

 

 

 
 

Figure 3.2 Global and sliced FDS plots for the standard CCD with one whole plot 
variable and two subplot variables.  
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For d=0, the slices are dispersed on both sides of the global FDS curve. All of the slices 

except for the dot at w= ± 1 originate from the minimum SPV and all slices have similar 

slopes, implying the balanced contributions to the SPV values from the whole plot and 

subplot spaces, which matches the characteristics of a rotatable design where all sub 

spaces contribute equally to the SPV. Note that for a completely randomized design, the 

exact axial levels for a rotatable CCD are 4 4 8 1.682F± = ± = ± , where F is the number 

of factorial runs (see Myers and Montgomery 2002, pp. 309). As d increases, i.e., the 

proportion of the whole plot error variance in the observational error variance increases, 

the SPV distribution loses its symmetry, which is visualized by the flatter slices and 

larger differences displayed between the slices at different whole plot levels. When value 

of d is quite large, for instance, d=10, the slices are flat and parallel to each other, 

implying that the whole plot space contributes most to the changes in the SPV values 

whereas the SPV values are relatively stable across the subplot space. 

 

In the plot for d=10, the smallest SPV values are associated with the slice corresponding 

to w= ± 0.58, revealing that the most precise prediction in the subplot space occur at the 

whole plot factorial levels. As one moves away from the whole plot factorial levels 

towards the center of the whole plot space from w= ± 0.58 to w=0 or towards the edge of 

the whole plot space at w= ± 1, the SPV values increase. The SPV value for the dot at 

w= ± 1 is same as the maximum SPV from the global curve, implying the worst case in 

the entire space is the edge of whole plot space. In summary, the SPV distribution across 

the whole plot space is a W-shaped surface with the lowest values near w=0.58 and w=-

0.58. The SPV values at the center of the whole plot space are lower than they are at the 

edge of the whole plot space. 

 

Liang et al. (2004) studied this design using 3-D VDGs. Figure 3.3 displays the surface 

plots for maximum SPV for a variety of d values. The w-axis represents the whole plot 

shrinkage level, the x-axis represents the summarized subplot shrinkage level with 

2 2
1 2x x x= + , the vertical axis represents the maximum SPV value for the sub region 

with the given whole plot and subplot shrinkage levels w and x. Note that this plot only 
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focuses on maximum SPV for each combination of w and x, while the FDS plot provides 

information regarding the distribution of actual SPV values. From the 3-D VDGs we can 

see the near-rotatable SPV distribution for d=0, since along quarter circles of fixed radii 

on the 3-D VDG, the maximum SPV values are nearly constant. For large values of d, the 

maximum SPV experiences large changes along the whole plot space but for fixed levels 

of w, the surface is relatively flat across the x-axis. 

 

 
Figure 3.3 3-D VDG surface plots for maximum SPV of standard CCD with one whole 
plot variable and two subplot variables. 

 
Liang et al (2004) use the 3-D VDGs to show that the design can be improved in terms of 

both V- (minimize the average SPV value) and G-efficiency (minimize the maximum 

SPV value) by altering the factorial levels. This approach is different to the usual method 

of changing the axial levels α . In their approach, the axial levels are fixed to keep the 

design within the same region. Since the distribution of the SPV values in the whole plot 

and subplot spaces is different, the factorial levels for the whole plot and subplot factors 

are moved in opposite directions when making the design more efficient. The V-optimal 

values of the whole plot and subplot factorial levels, f1 and f2, and G-optimal factorial 

levels, h1 and h2, for a variety of variance component ratios are listed in Table 3.3. More 

details are available in Liang et al. (2004). 

 

 Table 3.3 Optimal factorial levels in terms of G- and V-efficiency. 

V-optimal G-optimal d f1 f2 Relative efficiency h1 h2 Relative efficiency 
0 1 1 1 1 1 1 
1 0.78 1.09 0.965 1.13 0.92 0.927 

10 0.51 1.17 0.858 1.22 0.8 0.897 
50 0.34 1.20 0.816 1.25 0.75 0.884 
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Utilizing the FDS plots, we can make informative comparisons between the CCDs with 

the standard, G-optimal and V-optimal factorial levels. Comparisons among the designs 

are first made utilizing global FDS plots. The global FDS plots for d=1 and 10 are 

presented in Figure 3.4 and display similar pattern of SPV distribution. As we can see 

from Figure 3.2, for most of the design space, the standard CCD has much smaller SPV 

values than its maximum SPV. The maximum SPV for the standard CCD (indicated by 

the symbol “.” at FDS=1) is less than that of V-optimal CCD and is larger than the 

maximum SPV for the G-optimal CCD. The plots for the V-optimal CCD (dashed curve) 

have flatter slopes (implying a more stable SPV distribution) than the other two designs 

for approximately 90% of the design region. However, the tradeoff in using the V-optimal 

CCD is that it has a higher maximum value and if one is interested in predictions at the 

edge of the design space, the V-optimal CCD may not be the most desirable design. 

Alternatively, the G-optimal CCD (dashed-dot curve) has smaller maximum values 

(indicated by the symbol “+”) than the standard and V-optimal CCDs but larger SPV 

values than the other two designs in almost the entire region. Thus, in achieving the 

smallest maximum SPV, the G-optimal CCD sacrifices precision in more than 95% of the 

design region. Note that traditionally SPDs have been compared using single number 

alphabetic optimality criteria. This example illustrates the fact that a single number 

criterion such as G- or V- criteria, while informative, does not reveal the behavior of the 

SPVs throughout the design region. Although the 3-D VDGs reveal the behavior of 

functions of the SPVs throughout the design region, they are not designed to allow one to 

quantify the proportion of the design region exhibiting certain behaviors.   

 

 
Figure 3.4 Global FDS plots for the CCDs with the standard, G- and V-optimal factorial 
levels. 
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By studying the sliced FDS curves for the G- and V-optimal CCDs (shown in Figure 3.5), 

detailed differences in the SPV distributions between the three designs can be observed. 

For the V-optimal CCD (represented in the top two plots of Figure 3.5), the three curves 

at w=0, ± 0.29 and ± 0.58 have flat slopes and the values are close to the minimum SPV 

in the global curve. Moreover, the dot (w= ± 1) corresponds to the maximum SPV for the 

entire design region, since this dot has the same SPV as indicated by the symbol “*” at 

FDS=1 in Figure 3.4. The FDS slices indicate that when optimizing in terms of V-

efficiency, the SPV is quite stable at the center and in the middle of whole plot space but 

goes up quickly when moving towards the edge, which implies a U-shaped SPV 

distribution in whole plot space. The SPV distribution in the whole plot space for the G-

optimal CCD has a similar W-shape to that observed in the standard CCD in Figure 3.2. 

However, the slices at w=0 (dash-dot line) and w= 1±  have comparably large SPV values, 

showing that G-optimization forces a large sacrifice in prediction performance at the 

center of whole plot space. Therefore, for the V-optimal CCD, the SPV distribution in the 

whole plot space has two nearly equal peak values at the center and the edge. 

 

 

 
 

Figure 3.5 Global and slice FDS plots for G- and V-optimal CCDs. 
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3.4 Example 2 

 

The second example considers a standard CCD with two whole plot factors, w1 and w2, 

and two subplot factors, x1 and x2, for a full second order model. The set up of the design 

is provided in Table 3.4. In this section, the global and slice FDS plots combined with 3-

D VDGs are employed to study the design’s prediction variance properties. 

 
Table 3.4 Standard CCD with two whole plot and two subplot factors. 

Whole plot w1 w 2 x1 x2 No. of runs per whole plot 
1 -1 -1 1±  1±  4 
2 -1 1 1±  1±  4 
3 1 -1 1±  1±  4 
4 1 1 1±  1±  4 
5 2 0 0 0 1 
6 -2 0 0 0 1 
7 0 2 0 0 1 
8 0 -2 0 0 1 

0 0 2±  0 2 
0 0 0 2±  2 9 
0 0 0 0 3 

 

Figure 3.6 displays the global and sliced FDS curves for various variance component 

ratios (d=0, 1 and 10). Note that since this design has two whole plot variables, the slices 

of the subplot space are constructed at constant whole plot level combinations. Since the 

design region is now a 4-dimensional hypersphere, the restriction on the subplot space for 

each combination of 1w  and 2w  corresponds to 2 2 2 2
1 2 1 21 ( )x x w w+ ≤ − + . In the plots, four 

whole plot shrinkage value combinations 1w = 2w =0, 1w = w2 = ± 0.5, 1w = ± 1 and 2w =0, 

and 2 2
1 2 1w w+ =  are specified. The shrinkage value at 1w = 2w =0 is taken at the center of 

the whole plot space and corresponds to the largest subplot space slice. The FDS profile 

here extends to FDS=1. The slice at 1w = w2= ± 0.5 corresponds to the slice of the subplot 

space taken at the factorial levels of the whole plot space, i.e., a circle of 2 2
1 2x x+ =  

2 21 (0.5 0.5 ) 0.5− + = . Standardizing it by the maximum volume of the subplot spaces, 

i.e., π , the FDS line extends to FDS=0.5. The whole plot level combination 2 2
1 2 1w w+ =  
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corresponds to the locations (the circle) at the edge of the whole plot space. Note that the 

whole plot combinations of 1w = ± 1 and 2w =0 represent special points on the circle 

denoting the axial points in the 1w  direction in the whole plot space. For these two 

combinations of the whole plot factor levels the corresponding subplot levels are zero, 

i.e., 1 20, 0x x= = . Hence the slice for 1w = ± 1 and 2w =0 is displayed as a dot at FDS=0. 

Note that the longer profile associated with 2 2
1 2 1w w+ =  indicates that a larger sub region 

than what is associated with the sub region corresponding to 1w = ± 1 and 2w =0.  

 

 

 
 

Figure 3.6 Global and sliced FDS plots for standard CCD with two whole plot variables. 
 

For d=0 (CRD), the global curve has a relatively diagonal slope, implying that the SPVs 

are not stable across the entire design region. As d increases, the global FDS curves 

display a relatively stable SPV distribution (global curves are flat) for more than 85% of 

the design space and then the SPV values increase rapidly to the maximum. Note that this 

increase only occurs in a small portion of the design region. The 3-D VDGs associated 

with the distributions of the average and maximum SPV are displayed in Figure 3.7. 
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Depending on the location in the design space, each shrinkage factor combination (w,x) 

corresponds to a different volume of the sub region. For example, for any point (w,x) in 

the 3-D VDGs, the corresponding subplot space is determined by 2 2 2
1 2x x x+ =  and the 

whole plot space is 2 2 2
1 2w w w+ = . As the values of (w,x) become larger, the associated 

sub region also becomes larger. However, since 3-D VDGs provide the same emphasis to 

each combination of (w,x), the differences in volumes are difficult to visualize using the 

3-D VDGs alone. Hence for estimation of V-efficiency, the practitioner must mentally 

rescale the 3-D VDG plots to focus more on larger values of the (w,x), which are the 

outer regions of the design space. It is commonly these outer regions where poorer 

prediction can occur and which comprise a large proportion of the total design space. The 

FDS plots eliminate the need for this mental re-scaling by automatically weighting the 

volumes and displaying the different volumes of the sub space via differing lengths of the 

FDS profiles.  

 

 
Figure 3.7 3-D VDG surface plots for maximum and average SPV of standard CCD with 
two whole plot variables for d=0 (left), 1 (middle) and 10 (right). 

 

From the slopes and actual values of the FDS slices in Figure 3.6, the distribution of the 

SPV in the subplot and whole plot spaces can be examined. For d=0 (CRD), the slices are 

spread on both sides of the global curve and have relatively steep slopes, implying that 

both the whole plot and subplot variable locations contribute to changes in SPV values. 

As d increases, the SPV distribution is stable from the center out to the factorial levels in 

the whole plot space. This is indicated by the relatively flat slices at 1w = 2w =0 and 1w = 

2w = ± 0.5. The SPV values increase as we move towards the edge of the whole plot 

space. Large changes in the SPV values at the edge of the whole plot space are observed 

with the steepest slope occurring at the slice taken at 2 2
1 2 1w w+ = . This implies that the 
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SPV values are different at locations at the edge of the design space, and thus rotatability 

is lost for the split-plot scheme. In these plots, at FDS=0, the global curve is under the 

slice curves, showing that the subplot spaces at the chosen whole plot level combinations 

do not contain the global minimum.  

 

This example illustrates that the FDS plots provide prediction variance evaluation by 

providing the user with an idea of the proportion of the design space experiencing a 

particular behavior. Another graphical technique for comparing split-plot designs is the 3-

D VDGs. Although the 3-D VDGs are informative in their own right, they are not 

designed to reflect the size of the design space. As a result, FDS plots provide a useful 

complement to the 3-D VDGs, especially as the dimensions of the split-plot design space 

increases.  

 

 

3.5 Conclusions 

 

In this chapter, we have proposed the use of FDS plots for evaluating split-plot designs. 

We have demonstrated that FDS plots can be a useful tool for evaluating split-plot 

designs and they are especially useful when combined with the information from 3-D 

VDGs. FDS plots help visualize information about the entire range of SPV values across 

the design space and are easy to interpret, allowing a more complete evaluation and 

comparison of competing split-plot designs than simply comparisons of designs in terms 

of single-number G- or V-efficiencies. Since the FDS plots treat each location in the 

design space with same weight, the outer portion of the design space have more influence 

on the FDS curves because they represent a large proportion of the total region. This is 

extremely helpful to better understand the design’s average prediction variance. The 3-D 

VDGs visually tend to underestimate the influence of SPVs at the edge of design space 

on the V-efficiency. Therefore, the FDS plots are more sensible for assessing V-efficiency 

than 3-D VDGs do. When FDS plots are used in conjunction with the 3-D VDGs, the 

plots provide the ability to make an overall evaluation of prediction performance.  
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For split-plot designs, the sliced FDS curves are extremely helpful for examining the 

distribution of the SPV in the whole plot and subplot spaces separately. The FDS slices 

also allow for better understanding of the influence of the split-plot error structure 

through the variance component ratio, d, on the choice of design. Since the characteristics 

of SPV distribution in the whole plot and subplot spaces can be read from the slices, the 

slice curves provide information about which of the two spaces contributes more to the 

changes of the SPV values. This can help the user who may wish to optimize or augment 

the design in the most efficient manner.  

 

In this chapter, when scaling the split-plot design by the design size, the inherent 

assumption is that the cost of the experiment is only a function of the number of subplots. 

This assumption may or may not be valid, depending on the particular experiment. Often 

the whole plots are more expensive than the subplots and measurements in industrial 

split-plot experiments. Therefore, for split-plot designs, it may be more appropriate to 

scale the split-plot design according to the relative costs associated with whole plots and 

subplots. Liang, Anderson-Cook and Robinson (2005) present cost penalized prediction 

variance for considering different cost scenarios for split-plot designs. Incorporating a 

different cost scenario into the graphical tools is straightforward and can be done by 

replacing the SPV by the cost adjusted prediction variance on the vertical axis in the FDS 

plots.  

 

For split-plot designs with cuboidal regions, the subplot spaces at different whole plot 

levels all have the same volume. Hence all the FDS profiles would have the same length. 

Otherwise the mechanism to generate the FDS curves and the interpretations of the plots 

remains the same as those discussed in this chapter for spherical regions.  
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Chapter 4 Cost Penalized Evaluations for SPDs 

 
 

Abstract 

 

Comparisons between different designs have traditionally focused on balancing the 

quality of estimation and prediction with the overall size of the design. For split-plot 

designs with two levels of randomization, the total number of observations likely does 

not accurately summarize the true cost of the experiment, since different costs are likely 

associated with setting up the whole plot and subplot levels. In this paper, we present 

several flexible measures for design assessment based on D-, G- and V-optimality criteria 

that take into account potentially different cost scenarios for the split-plot designs. The 

new measures are illustrated with two examples: a 23 factorial experiment for first-order 

model, where all possible designs are considered, and selective designs for a three-factor 

second order model.  

 

 

4.1 Introduction 
 
The use of response surface methods generally begins with a process or system involving 

a response y that depends on a set of k controllable input variables (factors) x1, x2,…,xk. 

To assess the effects of these factors on the response, an experiment is conducted in 

which the levels of the factors are varied and changes in the response are noted. The size 

of the experimental design (number of distinct level combinations of the factors as well 

as number of runs) depends on the complexity of the model the user wishes to fit. 

Limited resources due to time and/or cost constraints are inherent to most experiments, 

and hence, the user typically approaches experimentation with a desire to minimize the 

number of experimental trials while still being able to adequately estimate the underlying 

model.  
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There are many different ways to assess a design’s capability to estimate the underlying 

model. For instance, one can focus on the quality of parameter estimates (often quantified 

by the D-criterion) or the precision of model predictions such as with the minimization of 

average prediction variance (V, Q or IV-criteria) or minimization of the worst prediction 

variance (G-criterion). The use of these ‘alphabetic optimality’ criteria for comparing 

competing designs is well documented (see Myers and Montgomery 2002, pp. 390-402). 

 

Embedded in the calculation of each of the alphabetic optimality criteria is the 

information matrix of the estimated model parameters. The information matrix is based 

on the error structure and the error structure is a function of how one randomizes the run 

order of the experimental trials. Frequently, experiments are designed assuming a 

completely random run order. However, if the levels of one or more factors’ are difficult 

and/or costly to change, the practitioner is not as inclined to run the experiment using a 

completely randomized run order. Instead, the practitioner may select a run order 

involving fewer changes of the hard-to-change factor. The resulting experiment generally 

involves two separate randomizations: one for the run order of the levels of the hard-to-

change factors and one within each level combination of the hard-to-change factors 

where the run order of all possible combinations of the easy-to-change variables is 

randomized. When there are separate randomizations for hard-to-change factors and 

easy-to-change factors, the error structure is that of a split-plot design. Letsinger, Myers, 

and Lentner (1996), Ganju and Lucas (1999), and Ju and Lucas (2002) describe split-plot 

designs resulting from factor levels on consecutive runs of an experiment not being reset. 

 

Although the selected experimental design may have nice statistical properties for 

complete randomization, if the design is run as a split-plot, the design’s statistical 

properties may not be well understood and hence are unlikely to be optimal. Ganju and 

Lucas (1999) point out that split-plot designs chosen by random run order are not as 

appealing as those chosen by a good design strategy. Design strategies for split-plot 

randomization have received considerable attention in the literature of late. Huang, Chen 

and Voelkel (1998) and Bingham and Sitter (1999) derive minimum aberration two-level 

fractional factorial designs for screening experiments. Anbari and Lucas (1994) 
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considered the G-optimality criterion for several competing split-plot designs. Goos and 

Vandebroek (2001 and 2004) proposed exchange algorithms for constructing D-optimal 

split-plot designs. Liang, Anderson-Cook, Robinson, and Myers (2004, 2005) considered 

graphical techniques for assessing competing split-plot designs over the design region in 

terms of G- and V-efficiency. Bisgaard (2000), noting that the benefits of running a split-

plot design are the savings obtained by reducing the number of whole plot setups, 

formulated cost functions indicating the relative costs of performing each of the subplot 

tests to the cost of setting up the individual whole plot tests.  

 

With the exception of Bisgaard (2000), optimal strategies for split-plot designs, in large 

part, have been focused on objective criteria that reflect the statistical properties of the 

design (D-criterion involves quality of parameter estimates, while G- and V-optimality 

criteria involve quality of prediction). The fact that the split-plot error structure is a result 

of hard-to-change factors often implies that there is greater cost/time involved in 

changing the levels of the whole plot factors than there is in changing the levels of the 

subplot factors. As a result, the practitioner may desire to use design selection criteria that 

not only reflect the statistical properties of the design but also the cost of the experiment. 

For instance, suppose we have three factors, one hard-to-change (w) and two easy-to-

change (x1 and x2) variables, each at two levels run as a full factorial design. Consider the 

three competing designs in Table 4.1 with 2, 4 and 8 whole plots, respectively. The 

numbers in the columns for each design specify which whole plot will contain that 

combination of factor levels. For any design that has more than one observation per 

whole plot, the level of w remains unchanged within a whole plot, making it possible to 

collect these observations without changing whole plot levels. Goos and Vandebroek 

(2004) state that Design 2 is the best possible eight run split-plot design for estimating the 

pure linear model in terms of D-efficiency. The authors go on to state that when there is 

more variation among whole plots than there is among subplots, Design 1 is always more 

D-efficient than Design 3, the completely randomized design.  

 

Although Design 2 may be the best possible 8 run split-plot design in terms of D-

efficiency, a consideration of ‘cost’ in terms of ease of experimentation, time, etc., may 
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suggest other alternatives. For instance, suppose the only appreciable cost in 

experimentation is due to changes in the hard-to-change factor. If this is the case, Design 

1 is twice as appealing as Design 2 (in terms of cost since Design 1 requires two set-ups 

for the levels of w and Design 2 requires four) and four times more appealing than Design 

3 (in terms of cost since Design 3 involves eight set-ups). Clearly there is a trade-off 

between “good statistical properties” and “cost of experimentation”. Although alphabetic 

optimality criteria are useful in determining split-plot designs, these criteria do not reflect 

the different costs that are likely associated with hard-to-change and easy-to-change 

factors. 

 
Table 4.1 Eight runs factorial design in split-plot structure. The columns for Design 1, 2 
and 3 indicate the index of the whole plot, and corresponding w level represents the 
whole plot level. 

w x1 x2 Design 1 Design 2 Design 3
-1 -1 -1 1 1 1
-1 -1 +1 1 2 2
-1 +1 -1 1 2 3
-1 +1 +1 1 1 4
+1 -1 -1 2 3 5
+1 -1 +1 2 4 6
+1 +1 -1 2 4 7
+1 +1 +1 2 3 8

 

Dompere (2004) states “there are two important sides to any decision…the two sides are 

simply the costs that may be incurred in order to receive the benefits that may be 

associated with a particular decision.” Relating this to split-plot experimentation, a design 

that may have nice statistical properties in terms of the estimated model may not be 

appealing from a cost perspective. In the split-plot setting, we often need to find the right 

balance of designs with good statistical properties and are within the experimenter’s 

budget. 

 

In this manuscript, we propose cost adjusted D-, G-, and V-optimality criteria for split-

plot designs. We adjust the D-, G-, and V-optimality criteria for cost, where the 

expressions for cost are similar to that of Bisgaard (2000) with adjustments made to allow 

for unequal whole plot size. With the cost adjusted optimality criteria, the user is 
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presented with single objective functions that simultaneously account for the desired 

statistical property (efficient parameter estimation or model prediction) and cost of 

experimentation. Utilizing the new objective functions, we demonstrate strategies for 

choosing optimal split-plot designs and then illustrate these ideas with two examples. In 

the next section we discuss the cost formulations and then we develop the appropriate 

cost adjusted D-, G-, and V-expressions for split-plot designs. Finally, two examples are 

provided which demonstrate the trade-off between ‘good statistical properties’ and ‘cost 

reduction’. 

 

 

4.2 Cost Formulations 

 

In practice, if a completely randomized experiment is run, it is generally the case that 

changing the levels of a factor is uniformly difficult across all factors. As a result, the 

cost or time associated with the experiment is related only to the number of experimental 

units (EUs). In split-plot experiments, there are generally two types of EUs – whole plots 

and subplots. In industrial experimentation, whole plot factors are those factors whose 

levels are hard/costly to change and subplot factors are those factors whose levels are 

relatively easy to change. Thus, in considering the cost of running an industrial split-plot 

experiment, the total cost is a function of both the cost associated with whole plot units as 

well as the cost associated with subplot units. Similar to Bisgaard (2000), we write the 

cost of a split-plot experiment as  

     WP SPC C a C N= +     (4.1) 

where C denotes the total cost of the experiment, a denotes the number of whole plot 

units, N is the total number of subplot units, and WPC  and SPC  are the costs associated 

with the individual whole plot and subplot, respectively. Note that the cost incurred by 

measurement is considered a part of cost of subplot. 

 

In practice, it may be difficult for the practitioner to ascertain the exact costs associated 

with whole plots or subplots, i.e. precise values for WPC  and SPC , but it may be more 
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feasible to specify the relative cost of these quantities, i.e. SP WPr C C= . Hence, the cost 

of the experiment is proportional to a rN+ , i.e.  

C a rN∝ + .      (4.2) 

Writing the cost in this manner allows flexibility for specifying the relative costs of the 

two cost components without having to specify their exact values. Generally speaking, 

WPC  is greater than SPC  due to the more time/effort involved with changing levels of the 

whole plot factors. As WPC  increases relative to SPC , r approaches zero. On the other 

hand, if obtaining the measurement of the response for each observation is expensive, 

then SPC  may be larger compared to WPC  and r will increase. When WPC = SPC , r = 1. 

 

It is noteworthy that the completely randomized design (CRD) can be thought as a special 

case of a split-plot design where each observation can be treated as a separate whole plot. 

In CRDs the number of whole plots and subplots are equal and the total cost of the 

experiment is given by 

    ( ) ( )1WP SP WPC C C N C r N= + = + .   (4.3) 

The expression in (4.3) is proportional then to the standard penalty of N commonly used 

for the D-, G-, and V-optimality criteria in completely randomized experiments. In the 

next section, we review the general model for split-plot designs and present some cost 

adjusted alphabetic optimality criteria (D-, G-, and V-) for split-plot designs that utilize 

the expressions for cost discussed above. 

 

 

4.3 The Split-Plot Model and Cost Adjusted D-, G-, and V-optimality Criteria 

 

When the experiment is run as a split-plot design with a whole plots, the following linear 

mixed model can be written to explain the variation in the N× 1 response vector, y, 

     εδβ      ++= ZXy .     

Regarding notation, X is the N× p design matrix expanded to model form for p 

parameters including the intercept; Z is an N× a classification matrix of ones and zeroes 

where the jith entry is 1 if the jth observation (j=1,…,N) belongs to the ith whole plot 
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(i=1,…,a); δ  is an a× 1 vector of whole plot random effects where the elements are 

assumed i.i.d ( )2N 0, δσ  with 2
δσ  denoting the variability among whole plots; ε  is the 

N× 1 vector of residual errors where the elements are assumed i.i.d ( )2N 0, εσ and 2
εσ  

denotes the variation among subplots. It is also assumed that and δ ε  are independent.  

 

The covariance matrix of the responses in a split-plot design is  

( ) 2 ' 2 2 'Var  =  =  +  =  + N Ndδ ε εσ σ σ   y ZZ I ZZ I∑     

where NI  is an N× N identity matrix and 2 2=d δ εσ σ  represents the variance component 

ratio. For simplicity of presentation, we will assume that observations are sorted by the 

whole plots, implying 
1

 = { , , }
an ndiagonalZ 1 1 , where 

in1  is an 1in ×  vector of one’s 

and in  is the size of the ith whole plot. Assuming the diagonal form of Z  allows one to 

conveniently write the covariance matrix as 

    
1

 = 

a

∑ 
 ∑  
 ∑ 

0

0
      

where each ni × ni matrix i∑  is given by 

    

2 2 2

2 2 2

+
 = 

+
i

ε δ δ

δ ε δ

σ σ σ

σ σ σ

 
 ∑  
  

    

and i∑  denotes the covariance matrix of responses for the ith whole plot. Note that the 

variance of an individual observation is the sum of the subplot and whole plot error 

variances, 2 2+ε δσ σ . A popular method for estimating the variance components is 

restricted maximum likelihood (REML).  

 

The vector of fixed effects parameters, β , is estimated via generalized least squares, 

yielding 

     ( ) 1' 1 ' 1ˆ  = β ∑ ∑
−− −X X X y .     

The covariance matrix of the estimated model coefficients is given by 
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    ( ) ( ) 1' 1ˆVar β ∑
−−= X X .     

When the design is completely randomized, ( ) ( ) 12 'ˆ =Var σ
−

X Xβ . Comparing the 

expressions for the estimated model coefficients for split-plot designs and CRDs is 

important as it lends insight into the greater complexity associated with optimal design 

strategies for split-plot designs vs. for CRDs. For example, if one wishes to obtain the 

optimal design in terms of ability to estimate model parameters, the optimal CRD 

depends only on the settings of the levels of the terms in X. The optimal split-plot design, 

in terms of parameter estimation, will depend on the structure of X, the variance ratio, d, 

the number of whole plots, a, the dimensionality of each of the j∑  (determined by the 

number of subplots within each whole plot), and the arrangement of subplot levels within 

whole plots.  

 

Cost Adjusted D-optimality Criterion 

 
Strategies for choosing an optimal design depend on the goal of the researcher. If the 

desire is to have quality model parameter estimates, one strategy is to find a design with 

high D-efficiency. The D-criterion is defined in terms of the scaled moment matrix. For 

CRDs, the scaled moment matrix is ' = NM X X , i.e., the estimation variance scaled by 

2 Nσ . Note that scaling by 2σ , the variance of the observation, causes M  to be unitless 

and the scaling by 1 N  causes M to be reflective of design size. Since the cost of a CRD 

is determined by the design size, the scaling by 1 N  is essentially a scaling for cost. The 

D-optimal design is then the design that maximizes the determinant of M, that is, 
' = pNM X X , where p denotes the number of model parameters.  

 

The moment matrix for split-plot designs is 'X X−1∑ . Scaling the information matrix in a 

similar fashion to the scaling in the CRDs, we can define the scaled moment matrix for 

split-plot designs as 
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( )( )2 2 '

 = 
cost

δ εσ σ −1∑+ X X
M . 

Note that ( )( )
1

2 2 ' ' ' 1
2 2 ( )δ ε
δ ε

σ σ
σ σ

−
−

   + = =   +  
X X X X X R X−1 ∑
∑ , where R denotes the 

observational correlation matrix. Rewriting M we have 

     
( )' 1

 = 
cost

−X R X
M     

Since R is the correlation matrix, M is unitless as desired. Since the cost of a split-plot 

experiment is not as simple as the design size, N, we must adjust by an expression for 

cost that allows for potentially different costs associated with whole plots and subplots. A 

natural divisor is the expression for cost provided in (4.2), yielding 

( )' 1= ( )a rN− +M X R X . The cost adjusted D-efficiency is then defined as 

( )
( )

1/

1/

p

eff p

D

D
D

Max D
∈

=
M

M
Ω

, 

where ( )DM  is the scaled moment matrix for split-plot design D, Ω  denotes the space of 

all possible split-plot designs for the given model, and p denotes the number of fixed 

effect model parameters. Since the upper bound for the determinant is generally 

unknown, we can consider relative performance for two or more designs by looking at 

the cost adjusted D-criteria,  
1 p' 1

1 p =D
a rN

−

=
+

X R X
M .   (4.4) 

The cost adjusted D-value for a given split-plot design will be calculated using equation 

(4.4). Note that if the expression in (4.4) is not divided by a rN+ , the D-value is only 

indicative of the quality of the design in terms of its precision in estimating the fixed 

effect model parameters.  

 

Cost Adjusted G- and V-optimality Criteria 

 
The predicted value of the mean response at any location 0x  for a SPD is given by 
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    ( ) 1' ' ' '
0 0 0

ˆˆ  =  = 
−

y x x X X X y−1 −1β ∑ ∑ , 

where 0x  is the point of interest in the design space expanded to model form. The 

prediction variance is then given by 

    ( ) ( ) 1' '
0 0 0ˆ  = Var

−
y x X X x−1∑ .    

If interest is in finding a design with precise estimates of the mean, the G- and V-

efficiencies of the design are popular choices for evaluating competing designs. As with 

D-efficiency, the desire is to work with a scale free quantity that provides a penalty for 

design cost. In the CRD, the prediction variance is given by 

      ( ) ( ) 12 ' '
0 0 0ˆ  = Var σ

−
y x X X x   

and the usual scaling is 2 Nσ  (variance of observations divided by the design size or 

cost). The scaled prediction variance for the CRD is then given by 

    
( ) ( ) 10 ' '

0 02

ˆ
 = 

NVar
SPV N

σ
−   =

y x
x X X x . 

The scaling of the prediction variance for split-plot designs can be done in a similar 

fashion by scaling by 2 2( ) ( )a rNδ εσ σ+ +  (observational error variance divided by the 

design cost). The cost penalized prediction variance (CPPV) for the split-plot design is 

then given by 

( ) ( ) ( )

( ) ( )

11
0 ' '

0 02 2 2 2

1' ' 1
0 0

ˆ+
 = = +

            = +

a rN Var
CPPV a rN

a rN

δ ε δ εσ σ σ σ

−−

−−

          + +  

y x
x X X x

x X R X x

Σ

. (4.5) 

  
By minimizing the average or maximum CPPV over the entire design region, one can 

obtain the best balance between quality and cost in terms of V- or G-efficiency. Anbari 

and Lucas (1994) used the lower bound of the maximum scaled prediction variance for 

the CRD, i.e., p, the number of model parameters, to evaluate the G-efficiency of split-

plot designs and claimed some super-efficient designs. The number of parameters, p, is 

not a reasonable lower bound for split-plot designs due to the more complicated error 

structure of the model and the role that the variance component ratio plays in the 
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computation of the G-efficiency. It should be pointed out that the actual bounds for the 

D-, G-, and V-efficiencies for SPDs needs further investigation, and here we focus more 

on relative efficiencies for comparisons between competing designs. 

 

In the following sections we examine first and second order model SPDs utilizing the 

cost adjusted D-, G-, and V-criteria developed above. For simplicity of presentation, we 

discuss experiments with three factors – one whole plot variable, w, and two subplot 

variables, x1 and x2. The next section involves a study of a first order design in which the 

candidate set of design points is the 8 runs of a 23 factorial design. All possible sequences 

of run orders are permuted and the corresponding split-plot designs are constructed. By 

evaluating the estimation and prediction properties of these designs with and without cost 

penalization, we demonstrate that the selected design is influenced by not only the split-

plot error structure but also the relative costs between whole plots and subplots. The best 

design in terms of a joint consideration of cost and quality is often different from the 

optimal design when only quality is considered. As might be expected, designs with a 

smaller number of whole plots are preferred as the whole plots become more expensive. 

In the following section, five variations of the central composite design (CCD) are 

studied for the second order model. The study shows that under different scenarios, the 

cost adjusted evaluations penalize the designs with larger numbers of whole plots 

proportional to the relative cost of the whole plots to subplots. We also provide some 

design strategies for second order split-plot designs. 

 

 

4.4 Factorial 23 Split-Plot Designs for a First Order Model 
  

In this section, we consider an example with 8 design points for a first-order model with 

fixed effects modeled as 1 2 0 1 2 1 3 2( , , )f w x x w x xβ β β β= + + + . We will assume that w is a 

hard-to-change factor and that x1 and x2 are easy to change. In this section we will 

evaluate all possible split-plot designs involving the 8 runs of a 23 factorial experiment in 

terms of their cost adjusted D-, G- and V-efficiencies for different combinations of the 

cost ratio, r, and the variance component ratio, d. To study all possible split-plot designs 
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in this setting, we will first consider all of the 8! = 40,320 run orders.  To construct the 

SPD for a given run order we assume that consecutive runs with the same whole plot 

level are not reset and are consequently part of the same whole plot. Due to the easy-to-

change nature of the subplot levels, the subplot levels within each whole plot are always 

assumed being reset. The D-, G- and V-criteria (both cost adjusted and unadjusted) will 

then be computed for each design under different combinations of the cost ratio (r) and 

variance component ratio (d). The unadjusted D-, G- and V-criteria provide an indication 

of the design’s ability to provide precise parameter estimates and predictions, 

respectively. The cost penalized D-, G- and V-criteria provide an indication of these 

properties when its expense is taken into account. It should be noted that Joiner and 

Campbell (1976) considered the importance of run order in 23 designs when levels of one 

factor are not reset but did not consider a split-plot error structure in their comparisons of 

designs.   

 

As will be demonstrated later, design performance is strongly related to the value of the 

variance component ratio, d In this manuscript, we consider d values of 0.5, 1 and 10, 

representing situations in which the whole plot error variance is half, the same and ten 

times that of the subplot error variance, respectively. This range of d values is based 

primarily on values of d which have been reported in the literature for industrial split-plot 

experiments. Bisgaard and Steinberg (1997) stated that the whole plot variance is usually 

larger than subplot variance in prototype experiments. Letsinger et al. (1996) studied a 

split-plot experiment in chemical industry with 2 2/δ εσ σ = 1.04. Vining, Kowalski and 

Montgomery (2004) estimated the variance terms using pure error and reported a 

variance ratio 5.65. Webb, Lucas and Borkowski (2002) described an experiment with a 

variance ratio of 6.92 in a computer component manufacturing experiment. Kowalski, 

Cornell and Vining (2002) studied a mixture experiment with process variables where the 

estimated variance ratio was 0.82. Very little, work has been done in terms of considering 

costs in industrial split-plot experiments. In this manuscript, we consider cost ratios of 

r=0 (experimental costs depend only on the whole plots), 0.5 (one whole plot is twice as 

expensive as one subplot), and 1 (each subplot cost equally to that of each whole plot).  
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Of the 40,320 possible run orders involving the 8 runs of a 23 factorial design, there are 

31 distinct split-plot designs in terms of their information matrices. Examples of the 31 

distinct split-plot designs are provided in Table 4.2. Run orders resulting in equivalent 

split-plot designs (in terms of isomorphism) are those satisfying one of the following 

rules: 

1. Run orders only differ in the fact that all whole plot levels are switched (i.e. 

changed from +1 to -1 or vice versa) 

2. Run orders whose subplot levels remain the same but the order of the whole plots 

switches. 

3. Run orders whose whole plot levels are the same but the subplot levels are 

switched from +1 to -1 and -1 to +1. 

4. Run orders whose whole plot levels are the same but the subplot combinations 

within each whole plot are permuted. 

 

To illustrate the equivalence rules above, consider design 2 in Table 4.2 with three whole 

plots composed of two, four and two subplots respectively. Assume that the run order 

sequence (1,2,3,4,5,6,7,8) corresponds to the following eight runs (w, x1, x2)= (-1,-1,-1), 

(-1,-1,1), (-1,1,-1), (-1,1,1), (1,-1,-1), (1,-1,1), (1,1,-1) and (1,1,1). Design 2 in Table 4.2 

is then conducted with the following sequencing: (1,4), (5,6,7,8), and (2,3). Rule 1 above 

implies for example that the design with sequencing (5,8), (1,2,3,4), and (6,7) is 

equivalent to Design 2. Rule 2 implies that the design with sequencing (2,3), (5,6,7,8) and 

(1,4) is equivalent to Design 2. Rule 3 implies that a design with sequencing (4,1), 

(8,7,6,5), and (3,2) is equivalent to Design 2. Rule 4 implies that designs that differ only 

in permutations of the subplot combinations within the whole plots are equivalent. As an 

example, a design with sequencing (4,1), (6,5,8,7) and (3,2) is equivalent to Design 2.  

 

Table 4.2 31 distinct designs. Each combination (w, x1, x2) represents a design point and 
indicates the levels of the three factors at this point, a is the number of whole plots, ID is 
the identification of the design in the list. The units in the same cell of the table are within 
the same whole plot.  

ID a Whole plots       

1 2 

(-1, -1, -1) 
(-1, -1, 1) 
(-1, 1, -1)  
(-1, 1, 1) 

(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 
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2 3 (-1, -1, -1) 
(-1, 1, 1) 

(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, -1)      

3 3 (-1, -1, -1) 
(-1, -1, 1) 

(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, 1, -1) 
(-1, 1, 1)      

4 3 (-1, -1, -1) 

(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

     

5 4 (-1, -1, -1) 
(-1, -1, 1) 

(1, -1, -1) 
(1, -1, 1) 

(-1, 1, -1) 
(-1, 1, 1) 

(1, 1, -1) 
(1, 1, 1)     

6 4 (-1, -1, -1) 
(-1, -1, 1) 

(1, -1, -1) 
(1, 1, -1) 

(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, 1)     

7 4 (-1, -1, -1) (1, -1, -1) 
(1, -1, 1) 

(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

(1, 1, -1) 
(1, 1, 1)     

8 4 (-1, -1, -1) (1, 1, 1) 
(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 

    

9 4 (-1, -1, -1) (1, -1, -1) 
(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

    

10 4 (-1, -1, -1) (1, -1, 1) 
(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, -1) 
(1, 1, -1) 
(1, 1, 1) 

    

11 4 (-1, -1, -1)  
(-1, 1, -1) 

(1, -1, -1) 
(1, 1, 1) 

(-1, -1, 1)  
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, -1)     

12 4 (-1, -1, -1) (1, -1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, -1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, -1)     

13 4 (-1, -1, -1)  
(-1, 1, 1) 

(1, -1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, -1) 

(1, -1, 1) 
(1, 1, -1)     

14 5 (-1, -1, -1) (1, -1, -1) 
(1, -1, 1) (-1, -1, 1) (1, 1, -1) 

(1, 1, 1) 
(-1, 1, -1) 
(-1, 1, 1)    

15 5 (-1, -1, -1) (1, -1, -1) 
(1, -1, 1) (-1, 1, -1) (1, 1, -1) 

(1, 1, 1) 
(-1, -1, 1) 
(-1, 1, 1)    

16 5 (-1, -1, -1) (1, -1, 1) (-1, 1, -1) 
(1, -1, -1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, 1)    

17 5 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, 1, -1) 
(-1, 1, 1)    

18 5 (-1, -1, -1) (1, -1, -1) 
(1, -1, 1) (-1, 1, 1) (1, 1, -1) 

(1, 1, 1) 
(-1, -1, 1) 
(-1, 1, -1)    

19 5 (-1, -1, -1) (1, -1, -1) (-1, 1, 1) 
(1, -1, 1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, -1)    

20 5 (-1, -1, -1) (1, -1, 1) (-1, 1, 1) 
(1, -1, -1) 
(1, 1, -1) 
(1, 1, 1) 

(-1, -1, 1) 
(-1, 1, -1)    

21 5 (-1, -1, -1) (1, -1, -1) 
(1, 1, 1) (-1, -1, 1) (1, -1, 1) 

(1, 1, -1) 
(-1, 1, -1) 
(-1, 1, 1)    

22 5 (-1, -1, -1) (1, -1, -1) 
(1, 1, 1) (-1, 1, 1) (1, -1, 1) 

(1, 1, -1) 
(-1, -1, 1) 
(-1, 1, -1)    

23 6 (-1, -1, -1) (1, -1, 1) (-1, 1, -1) (1, 1, 1) (-1, -1, 1) 
(-1, 1, 1) 

(1, -1, -1) 
(1, 1, -1)   

24 6 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, -1, 1) (-1, 1, -1) 
(-1, 1, 1) 

(1, 1, -1) 
(1, 1, 1)   

25 6 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, 1, -1) (-1, 1, -1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, 1)   

26 6 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, 1, 1) (-1, 1, -1) 
(-1, 1, 1) 

(1, -1, 1) 
(1, 1, -1)   

27 6 (-1, -1, -1) (1, -1, -1) (-1, 1, 1) (1, 1, 1) (-1, -1, 1) 
(-1, 1, -1) 

(1, -1, 1) 
(1, 1, -1)   

28 6 (-1, -1, -1) (1, -1, 1) (-1, 1, 1) (1, 1, -1) (-1, -1, 1) 
(-1, 1, -1) 

(1, -1, -1) 
(1, 1, 1)   

29 7 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, -1, 1) (-1, 1, -1) (1, 1, -1) 
(1, 1, 1) (-1, 1, 1)  

30 7 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, 1, 1) (-1, 1, -1) (1, -1, 1) 
(1, 1, -1) (-1, 1, 1)  

31 8 (-1, -1, -1) (1, -1, -1) (-1, -1, 1) (1, -1, 1) (-1, 1, -1) (1, 1, -1) (-1, 1, 1) (1, 1, 1) 
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As previously mentioned, two SPDs are distinct if their information matrices are 

different. Clearly the information matrices of two SPDs involving different numbers of 

whole plots will be distinct since the structure of the covariance matrix, Σ , depends on 

the number of whole plots. To illustrate two distinct SPDs which have the same number 

of whole plots, we will focus on designs 2 and 3 in Table 4.2. Although both designs are 

equally appealing from a cost perspective (C = 8r+3 in both cases), they are not equally 

appealing in terms of their information matrices. Note for design 2 that both linear main 

effects in x1 and x2 can be estimated within each of the three whole plots (i.e. contrasts 

exist for both x1 and x2 within each whole plot). In design 3, however, contrasts for x1 

only exists within whole plot 2 whereas contrasts for x2 exist within all three whole plots. 

There is thus less information regarding the linear main effect for x1 in design 3 than 

there is in design 2.  

 

For purposes of our discussion, we will refer to the class of designs which are equivalent 

to design 2 as ‘pattern A’ and to the class of designs which are equivalent to design 3 as 

‘pattern B’. Pattern A designs are more efficient for estimation and prediction than 

pattern B designs. To further illustrate the comparison between pattern A and pattern B 

designs, their respective information matrices are provided below when the variance ratio 

is d=1 (i.e. equal whole plot and subplot error variances):  

( ) ' 1I A −= X R X = 

2.13 0.53 0 0
0.53 2.13 0 0

0 0 8 0
0 0 0 8

 
 
 
 
 
 

  

and 

   ( ) ' 1I B −= X R X = 

2.13 0.53 0 0
0.53 2.13 0 0

0 0 5.33 0
0 0 0 8

 
 
 
 
 
 

 

where X is the 8×4 design matrix given by [ ]= , , ,1 2X 1 w x x  and 1 is the column of ones, 

w is the vector of whole plot levels, and x1 and x2 denote the vector of subplot levels. The 

determinant of I(A) is 273.07 and the determinant of I(B)=182.04. Note from the 

information matrices above, the designs are equivalent in terms of their information for 



 89

the whole plot main effect and the effect of x2 but pattern B SPDs have less information 

for estimating x1 than pattern A SPDs.  

 

Comparing 23 SPDs in terms of D-efficiencies 

 

We begin our study and comparisons of 23 SPDs in terms of their ability to precisely 

estimate model parameters as indicated by their D-criteria. Throughout our discussion, a 

first order model is assumed. When cost is not an issue, designs can be evaluated by the 

unadjusted D-criteria ( )1/' 1. . 
p

i e −X R X . The best 5 designs in terms of their unadjusted 

D-efficiencies are provided in Table 4.3 for various values of the variance component 

ratio, d. It is interesting to note that the best two designs in terms of their D-efficiencies 

remain the same as d changes from 0.5 to 10.  

 

Interestingly, the D-optimal 23 SPD (design 13 in Table 4.2) involves 4 whole plots, each 

containing 2 subplots. Note that this is not the completely randomized design (CRD) 

(design 31 in Table 4.2), implying that often split-plot designs are more efficient than 

completely randomized designs when hard-to-change factors exist. Goos and Vandebroek 

(2004) provided similar conclusions regarding the superiority of the split-plot scheme 

over the CRDs when cost is not a consideration. Also note that the D-optimal 23 SPD is 

similar to the ‘pattern A’ designs discussed earlier in that contrasts for the subplot main 

effects occur within each whole plot.  

  

Table 4.3 The best 5 designs with the best quality for D-efficiency, i.e., the 5 highest 
values of 1/ 4' 1−X R X . Higher value indicates more information for the parameters and thus 
more precise estimates. a is the number of whole plots and ID represents the index of the 
design in Table 4.2. The sequence of whole plot sizes are listed in (n1,n2,…,na), where ni 
is the number of subplot within the ith whole plot of the design, for i=1,…,a. 

 a ID Whole plot 
sizes  a ID Whole 

plot sizes  a ID Whole 
plot sizes 

4 13 2,2,2,2 4 13 2,2,2,2 4 13 2,2,2,2 
5 22 2,2,1,2,1 5 22 2,2,1,2,1 5 22 2,2,1,2,1 
6 28 1,1,2,2,1,1 6 28 1,1,2,2,1,1 4 12 1,2,3,2 
6 27 1,1,2,2,1,1 6 27 1,1,1,1,2,2 6 28 1,1,2,2,1,1

d=0.5 

7 30 1,1,1,1,1,2,1 

d=1 

5 21 2,2,1,2,1 

d=10 

5 21 2,2,1,2,1 
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It is important to note that the comparisons thus far in terms of the D-criterion have been 

made assuming that cost is not an issue. Using the cost adjusted D-criterion, the best 5 

designs are reported in Table 4.4. Note that using the cost adjusted D-criterion results in a 

different set of five optimal designs. As with the set of five optimal designs in terms of 

the unadjusted D-criterion, this set remains similar for different values of the variance 

component ratio. This implies that even if the guess of the variance component ratio, d, is 

not precise, the best design for the guessed value of d may still be optimal or highly 

efficient. For instance, if the guess is d=1 and the actual value is d=3, the selected design 

based on d=1 may still be optimal or at least highly D-efficient. This is good news for the 

practitioner who often must select a design with little idea of the true value of d.  

 

Table 4.4 The best 5 designs with the best cost adjusted estimation precision (calculated 
by equation (4.4)). The larger value indicates higher cost penalized D-efficiency and thus 
more desirable. 

 a ID Whole 
plot sizes  a ID Whole 

plot sizes  a ID Whole 
plot sizes 

2 1 4,4 2 1 4,4 2 1 4,4 
3 2 2,4,2 3 2 2,4,2 3 2 2,4,2 
3 4 1,4,3 3 4 1,4,3 3 4 1,4,3 
3 3 2,4,2 3 3 2,4,2 4 13 2,2,2,2 

r=0 
d=0.5 

4 13 2,2,2,2 

r=0 
d=1 

4 13 2,2,2,2 

r=0 
d=10 

3 3 2,4,2 
2 1 4,4 2 1 4,4 4 13 2,2,2,2 
3 2 2,4,2 3 2 2,4,2 3 2 2,4,2 
4 13 2,2,2,2 4 13 2,2,2,2 2 1 4,4 
3 4 1,4,3 3 4 1,4,3 4 12 1,2,3,2 

r=0.5 
d=0.5 

3 3 2,4,2 

r=0.5 
d=1 

4 12 1,2,3,2 

r=0.5 
d=10 

3 4 1,4,3 
4 13 2,2,2,2 4 13 2,2,2,2 4 13 2,2,2,2 
3 2 2,4,2 3 2 2,4,2 3 2 2,4,2 
2 1 4,4 4 12 1,2,3,2 4 12 1,2,3,2 
4 12 1,2,3,2 2 1 4,4 5 22 1,2,2,2,1 

r=1 
d=0.5 

3 4 1,4,3 

r=1 
d=1 

5 22 1,2,2,2,1 

r=1 
d=10 

2 1 4,4 
 

Note that when the only appreciable experimental cost involves the cost of whole plots 

(r=0), the design with 2 whole plots is optimal and designs with small number of whole 

plots are preferred in terms of the cost adjusted D-criterion. The design with only two 

whole plots, however, has the unappealing property of non-estimability of whole plot 

error. This presents problems in the analysis in terms of variance component estimation 
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and is thus not a desirable design in practice. If each individual whole plot is equally 

expensive as each subplot (r=1), designs with moderate numbers of whole plots are 

preferred. The balanced design with 4 whole plots (optimal in terms of the unadjusted D-

criterion) is best and design 2 from Table 4.2 consisting of 3 whole plots turn out to be 

second best. In summary, when cost is of concern, the most desirable SPDs are those with 

smaller numbers of whole plots than when cost is not a consideration.  

 

Comparing 23 SPDs in terms of V- and G-efficiencies 

 

The study of 23 SPDs in terms of parameter estimation when cost is not a consideration is 

thoroughly discussed by Goos and Vandebroek (2001, 2004). Often of interest to 

practitioners when choosing optimal designs is the ability of the design to precisely 

estimate the mean response. Very little work has been done in conjunction with choosing 

optimal SPDs in terms of their predictive capabilities. We now consider V- and G-

efficiencies for the 31 possible 23 SPDs. Assuming a cuboidal region, the average 

prediction variance is calculated by 
1 1 1

1 21 1 1

1 (  or ) 
8

PV CPPV dwdx dx
− − −∫ ∫ ∫  

where PV denotes the prediction variance unadjusted for cost and CPPV denotes the cost 

adjusted prediction variance. The maximum prediction variance is obtained via a search 

of prediction variances over the design region {(w, x1, x2): -1 ≤ w ≤ 1, -1 ≤  x1 ≤ 1 and -1 ≤  

x2 ≤ 1}. Similar to our discussions involving the D-criterion, we first present optimal 

designs when cost is not a consideration. The 5 designs with the smallest average and 

maximum prediction variance are listed in Table 4.5 for various values of the variance 

component ratio.  

 

SPDs with large number of whole plots (more than 6 in this example) are highly V-

efficient, while highly G-efficient SPDs often include designs with smaller or moderate 

numbers of whole plots. When the variability among whole plots accounts for a small or 

medium proportion of the observational variance (d=0.5 or 1), the CRD is the most V-

efficient design and exhibits the second highest G-efficiency. When the whole plot error 
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variance dominates the observational variance (d=10), the CRD is still highly V- and G-

efficient. This observation is different to what was observed for the CRD in terms of D-

efficiency where SPDs were often superior to the CRD. 

 

Table 4.5 The best 5 designs in terms of average and maximum prediction variance. 
Smaller value indicates better performance in terms of V- and G-efficiency. 

Average prediction variance (V) Maximum prediction variance (G)  a ID Whole plot sizes a ID Whole plot sizes 
8 31 1,1,1,1,1,1,1,1 6 28 1,1,1,1,2,2 
7 30 1,1,1,1,1,2,1 8 31 1,1,1,1,1,1,1,1 
6 28 1,1,1,1,2,2 4 13 2,2,2,2 
6 27 1,1,1,1,2,2 4 11 2,2,2,2 

d=0.5 

7 29 1,1,1,1,1,1,2 5 21 1,2,1,2,2 
8 31 1,1,1,1,1,1,1,1 6 28 1,1,1,1,2,2 
7 30 1,1,1,1,1,2,1 8 31 1,1,1,1,1,1,1,1 
6 28 1,1,1,1,2,2 4 13 2,2,2,2 
6 27 1,1,1,1,2,2 4 11 2,2,2,2 

d=1 

7 29 1,1,1,1,1,1,2 5 21 1,2,1,2,2 
6 28 1,1,1,1,2,2 6 28 1,1,1,1,2,2 
7 30 1,1,1,1,1,2,1 6 25 1,1,1,1,2,2 
6 25 1,1,1,1,2,2 8 31 1,1,1,1,1,1,1,1 
6 26 1,1,1,1,2,2 4 13 2,2,2,2 

d=10 

8 31 1,1,1,1,1,1,1,1 4 11 2,2,2,2 
 

Tables 4.6 and 4.7 present the five best designs for average and maximum CPPV. Recall 

that the CPPV adjusts the prediction variance according to the cost of experimentation. 

For the most part, the set of optimal designs remains consistent across the values of the 

variance component ratio, d. This is true for all of the comparisons discussed thus far. 

Comparing the results in Table 4.5 with those in Tables 4.6 and 4.7, we note that when 

cost is a consideration, the best designs tend to involve fewer numbers of whole plots 

than when cost is not an issue. As r approaches 0 (whole plots are increasingly more 

expensive than subplots), the best designs tend to involve fewer whole plots than in 

situations when r > 0.   

 

Comparing Table 4.4 with Tables 4.6 and 4.7, we notice that the optimal cost adjusted D-

efficient designs tend to have fewer whole plots than the optimal cost adjusted V- and G-

efficient designs. It is interesting to note that some designs consistently exhibited good D-
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, V-, and G-efficiencies. Design 13 from Table 4.2 exhibits good D-, V-, and G-

efficiencies regardless of whether one adjusts for costs. Designs 1 and 2 from Table 4.2 

possess good D-, V-, and G-efficiencies when cost is an issue but their V- and G-

efficiencies were less impressive as the cost of whole plot approached that of the subplot.  

 

Table 4.6 The best 5 designs in terms of average CPPV. Smaller value indicates better 
design and higher cost adjusted V-efficiency. 

 a ID Whole plot 
sizes  a ID Whole 

plot sizes  a ID Whole plot 
sizes 

2 1 4,4 2 1 4,4 2 1 4,4
3 2 2,4,2 3 2 2,4,2 4 13 2,2,2,2
3 3 2,4,2 3 3 2,4,2 4 11 2,2,2,2
3 4 1,4,3 4 13 2,2,2,2 4 12 1,2,3,2

r=0 
d=0.5  

4 13 2,2,2,2 

r=0 
d=1 

3 4 1,4,3

r=0 
d=10 

4 6 2,2,2,2
4 13 2,2,2,2 4 13 2,2,2,2 6 28 1,1,1,2,2,1
4 11 2,2,2,2 4 11 2,2,2,2 6 25 1,1,1,1,2,2
2 1 4,4 4 12 1,2,3,2 6 26 1,1,1,1,2,2
3 2 2,4,2 5 22 1,2,1,2,2 5 22 1,2,1,2,2

r=0.5 
d=0.5  

4 12 1,2,3,2 

r=0.5 
d=1 

4 6 2,2,2,2

r=0.5 
d=10 

5 21 1,2,1,2,2
4 13 2,2,2,2 4 13 2,2,2,2 6 28 1,1,1,2,2,1
4 11 2,2,2,2 5 22 1,2,1,2,2 6 25 1,2,1,2,2
5 22 1,2,1,2,2 6 28 1,1,1,1,2,2 6 26 1,2,1,2,2
4 12 1,2,3,2 4 11 2,2,2,2 7 30 1,1,1,1,1,1,2

r=1 
d=0.5 

5 21 1,2,1,2,2 

r=1 
d=1 

5 21 1,2,1,2,2

r=1 
d=10 

5 22 1,2,1,2,2
 

In comparing Tables 4.3 and 4.5 (comparisons unadjusted for cost) to the results in 

Tables 4.4, 4.6, and 4.7 (cost adjusted comparisons), it is clear that taking the relative 

cost of the whole plots and subplots into consideration makes an important difference 

when evaluating SPDs. Frequently in industrial settings, the cost of the whole plots 

dominates the experimental cost. In these cases, split-plot designs with fewer numbers of 

whole plots can have the best overall cost penalized quality. However, other necessary 

properties, like the ability to estimate variance components, should also be considered. 

When cost and quality are both important, split-plot designs with a moderate number of 

whole plots are usually preferred. The best designs perform well for a wide range of d 

values, indicating that these designs are somewhat robust to initial guesses of the variance 

component ratio. 
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Table 4.7 The best 5 designs in terms of maximum CPPV. Smaller value indicates better 
design and higher cost adjusted G-efficiency. 

 a ID Whole 
plot sizes  a ID Whole 

plot sizes  a ID Whole 
plot sizes 

2 1 4,4 2 1 4,4 2 1 4,4
4 13 2,2,2,2 4 13 2,2,2,2 4 13 2,2,2,2
3 2 2,4,2 4 11 2,2,2,2 4 11 2,2,2,2
3 3 2,4,2 4 6 2,2,2,2 4 6 2,2,2,2

r=0 
d=0.5  

3 4 1,4,3 

r=0 
d=1 

3 2 2,4,2

r=0 
d=10 

4 10 1,1,3,3
2 1 4,4 4 13 2,2,2,2 6 28 1,1,1,1,2,2
4 13 2,2,2,2 4 11 2,2,2,2 4 13 2,2,2,2
4 11 2,2,2,2 4 6 2,2,2,2 4 11 2,2,2,2
4 6 2,2,2,2 2 1 4,4 4 6 2,2,2,2

r=0.5 
d=0.5  

3 2 2,4,2 

r=0.5 
d=1 

6 28 1,1,1,1,2,2

r=0.5 
d=10 

6 25 1,1,1,1,2,2
4 13 2,2,2,2 4 13 2,2,2,2 6 28 1,1,1,1,2,2
4 11 2,2,2,2 4 11 2,2,2,2 4 13 2,2,2,2
4 6 2,2,2,2 6 28 1,1,1,1,2,2 6 25 1,1,1,1,2,2
2 1 4,4 4 6 2,2,2,2 4 11 2,2,2,2

r=1 
d=0.5 

6 28 1,1,1,1,2,2 

r=1 
d=1 

5 21 1,2,1,2,2

r=1 
d=10 

4 6 2,2,2,2

 

Discussions 

 
If the design to be run were selected at random from the 40,320 possible experiments as 

sometimes occurs in industry (this was noted by Gunju and Lucas, 1999), it is helpful to 

have some indication of how likely we are to get a design with a reasonable efficiency. 

For this simple example with only a manageable number of run combinations, it is 

possible to obtain the relative frequency of the 31 distinct designs by sampling. To obtain 

a better design, a large number of designs can be sampled from the design space by 

randomly generating sequences of run orders. The final design selected should be the best 

from among those sampled. 

 
A sampling approach outlined by Joiner and Campbell (1976) involves altering the 

probability of changing the whole plot and subplot levels in consecutive runs. The 

sampling strategy proceeds as follows: the level of each factor is generated at random and 

independently of other factors with the only restriction being that the sampling of the 

eight runs is performed without replacement. Between runs, the decision of whether to 

change the factor level or not is determined by draw from a Bernoulli distribution with a 

fixed probability of changing level, Pw for whole plot factors and Px for subplot factors. 
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Different factors may have different probabilities of changing levels depending on the 

difficulty associated with changing levels in practice. 

 
We explore the chance to get the best or highly efficient designs by examining the 

efficiency and frequency profile of the distinct designs in the design space. Simulation 

shows approximately equal chances of getting efficient designs from permutation of the 

full set of possible designs or from sampling with Pw=Px=0.5 for all variables and the 

results are displayed in Figure 4.1. In the plots, relative efficiency (RE) is plotted on the 

x-axis, indicating how close the design is to the most efficient design among the 31 

designs in terms of the D-, V- and G-efficiency with and without the cost adjustment. The 

y-axis represents the cumulative frequency for getting the designs that are at least as 

efficient as the design with RE=x. For instance, if a point (x=0.9, y=0.5) is on the curve, 

then the chance of obtaining a design that is at least 90% efficient is 50%. If the sampling 

technique is applied and there are m generated designs in the sample, then 50% of the m 

designs are among the top 10% in terms of efficiency, implying that sampling works well 

for searching good designs. In Figure 4.1, the top plots represent the evaluation not taking 

the cost of experiment into consideration, the middle plots correspond to the situation that 

the cost of whole plot dominates the experiment cost (r=0), and the bottom plots for the 

situations that whole plot is even expensive as subplot (r=1). The two variance ratios, 

d=1 and 10 are on the left and right sides, respectively. 

 
The plots reveal that sampling is extremely effective in finding a design with high V-

efficiency, for instance, we have 20%-80% chance of obtaining a design that is at least 

90% V-efficient, except for the situation in which d=1 and r=0. In terms of D- and G-

efficiency, it is less likely that sampling will yield a highly efficient design. The chance 

of finding the highly efficient designs by sampling is substantially lower when whole 

plots are extremely expensive (r=0), which indicate that the inadvertent split-plot designs 

are not desirable under some conditions. However, if the desirable properties of superior 

split-plot designs are known (such as a smaller number of whole plots for expensive cost 

ratio situations), we may improve the chance to get highly efficient design by adjusting 

the probability of level changes for each factor. For instance, from the quality and cost 

summary of the designs in Table 4.7 we know that a design with a small number of whole 
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plots is desirable when r=0. Therefore, by reducing the probability of changing whole 

plot levels appropriately, i.e., Pw=0.1 or 0.2, the chance of obtaining more efficient 

designs would be enhanced. However, this technique is based on the knowledge of the 

desirable characteristics of optimal designs The more knowledge we have about the 

characteristics of good designs, the more efficient the sampling can be. When the number 

of factors increases or the model considered becomes more complex, doing an exhaustive 

search of all possible designs rapidly becomes impractical. Hence, starting with several 

sensible designs based on good design of experiment principles may be a more realistic 

starting point. 

 

 

 
 

Figure 4.1 Accumulated frequency of getting highly efficient design for D-, G- and V-
optimality under different combinations of cost ratio and variance component ratio. 
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4.5 Cost Adjusted Evaluations of Central Composite Designs with a Second 
Order Model 

 

Second order models are important models in response surface methodology. Designs 

such as the central composite design (CCD) and the Box-Behnken design (BBD) are 

popular in practice and are known to be highly efficient in the CRD setting. The 

statistical properties of these designs in the split-plot randomizations scheme are not well 

understood. As we have observed for the 23 designs, the variance component ratio and the 

structure of the covariance matrix Σ  play important roles in design performance. Also, as 

mentioned earlier, in split-plot experimentation, cost is frequently an issue and should be 

considered when determining an appropriate design. Letsinger, Myers, and Lentner 

(1996) compared popularly used response surface designs, such as the CCD, the BBD, 

the small composite design and full 3-level factorial designs in terms of D- and V-

efficiencies (unadjusted for cost) for split-plot randomizations scheme. The CCD 

consistently performs better than the other designs for various values of d in terms of 

both estimation and average prediction performance in the design region. In this section, 

we compare variations of the central composite designs in terms of both unadjusted and 

cost adjusted D-, G-, and V-criteria and demonstrate strategies for selecting split-plot 

designs. We consider an experiment with one whole plot variable and two subplot 

variables and assume the following full second order model in the fixed effects 
2 2 2

1 2 0 1 2 1 3 2 12 1 13 2 23 1 2 11 22 1 33 2( , , )f w x x w x x wx wx x x w x xβ β β β β β β β β β= + + + + + + + + + . 

 

The standard CCD run with a split-plot randomization scheme is provided in Table 4.8 

and in our discussion, this version of the CCD will be referred to as ‘standard’ as well as 

‘D1’. The standard CCD has been commonly referred to as a restricted split-plot design 

(RSPD), meaning that there is only one whole plot for each whole plot combination in the 

design [see Letsinger et al (1996) and Goos and Vandebroek (2001)]. Since the statistical 

properties of the CCD within a split-plot structure have not been well understood, the 

formulation in Table 4.8 has been a common choice for the split-plot CCD in practice. 

Note that there is no replication for the whole plot levels, implying that the whole plot 

pure error is non-estimable for this design. In addition, the design is quite unbalanced, 
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where a “balanced” SPD is one in which all whole plots contain the same number of 

subplots.  For the standard CCD, there is only one subplot within each axial level whole 

plot while there are 4 plus the number of center runs number of subplots within the whole 

plot corresponding to the center level of the whole plot variable (w=0). Assuming that the 

predominant cost in split-plot experimentation is due to changes in the whole plot levels, 

the standard CCD is inefficient in using the whole plots from a cost perspective. 

 
Table 4.8 D1 - standard CCD with one whole plot variable, w, and two subplot variables, 
x1 and x2. The axial levels for all variables are 3α± = ± ≈ ± 1.732, total number of runs is 
16 (N=16), it has 5 whole plots (a=5) and the whole plot sizes are (4,4,1,1,6). 

Whole plot w x1 x2 No. of Runs per whole plot 
1 -1 1±  1±  4 
2 1 1±  1±  4 
3 1.732 0 0 1 
4 -1.732 0 0 1 

0 ± 1.732 0 2 
0 0 ± 1.732 2 5 
0 0 0 2 

 

Vining, Kowalski and Montgomery (2004) [henceforth referred to as VKM] recommend 

imposing minimum and maximum whole plot size restrictions. They propose a modified 

CCD (given in Table 4.9 and referred to as D2 in this manuscript), which satisfies the 

analysis condition that the generalized least square (GLS) estimates of the fixed effect 

parameters are equal to the ordinary least square (OLS) estimates. VKM assume that the 

only appreciable cost in SPDs is due to the changes in the whole plot levels (r=0). Under 

this assumption, they postulate that D2 is a desirable design. VKM point out that D2 is 

appealing in that, if adding more whole plot center runs with subplot centers, it allows for 

the estimation of pure whole plot error variance due to the replications of the subplot 

center runs within the whole plot centers (replicated WPs 6 here). VKM also point out 

that D2 is balanced and balance is attractive in the eyes of the practitioner due to ease of 

experimentation. VKM do not however, report on the quality of estimation and prediction 

of D2. Liang, Anderson-Cook, Robinson and Myers (2004) used graphical tools to study 

and compare D2 with D1 in terms of scaled prediction variance (SPV), and showed that 

D2 performs poorly compared to D1.  
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We also consider some other variations of the CCDs that may also be of interest. By 

adjusting the number of whole plots, the subplot levels for the runs within whole plots 

and the total number of observations, some alternate designs are obtained which may 

represent sensible variations of the CCDs. Design D3 in Table 4.10 has the same number 

of runs as D1 but with one more whole plot. In D3, the six whole plot center runs are split 

into two whole plots in such a way as to improve estimation for the whole plot and 

subplot terms. This is expected to bring benefit when the subplot cost account for a 

medium or a huge part of the cost of the experiment and the total number of runs is 

important, since this design has an additional whole plot but is still close to the minimal 

number of observations. Note that this design, like D1, is not a balanced SPD and could 

be viewed as less practical from a cost perspective when the whole plots are expensive 

due to only having one subplot within whole plots 3 and 4. 

 

Table 4.9 D2 - Modified CCD by VKM. Its total number of runs is 24, 6 whole plots and 
the whole plot sizes are (4,4,4,4,4,4) – balanced design. 

Whole plot w x1 x2 No. of runs per whole plot 
1 -1 1±  1±  4 
2 1 1±  1±  4 
3 1.732 0 0 4 
4 -1.732 0 0 4 

0 ± 1.732 0 2 5 0 0 ± 1.732 2 
6 0 0 0 4 

 

Since center runs improve the precision of estimating quadratic effects, design D4 in 

Table 4.11 modifies D3 by augmenting each whole plot with an additional subplot center 

run. When experimental cost is primarily a function of the number of whole plots, this 

design is expected to obtain better performance since it only involves five whole plots 

versus the six whole plots in D2 and D3.  

 

D5 in Table 4.12 is obtained by adding one subplot center run to each whole plot of D2 

and some of the extra observations are removed to control the total size of the design. It 

has the same size of observations and same number of whole plots as D2, but as we will 

observe, this design performs much better than the modified CCD (D2). 
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Table 4.10 D3 – same number of observations as D1, but there is one more whole plot; 
total number of runs is 16, 6 whole plots and the whole plot sizes are (4,4,1,1,3,3). 

Whole plot w x1 x2 No. Runs per whole plot 
1 -1 1±  1±  4 
2 1 1±  1±  4 
3 1.732 0 0 1 
4 -1.732 0 0 1 

0 ± 1.732 0 2 5 0 0 0 1 
0 0 ± 1.732 2 6 0 0 0 1 

 
Table 4.11 D4 - N=22, 5 whole plots and the whole plot sizes are (5,5,3,3,6). 

Whole plot w x1 x2 No. Runs per whole plot 
1±  1±  4 1 -1 

0 0 1 
1±  1±  4 2 1 

0 0 1 
3 1.732 0 0 3 
4 -1.732 0 0 3 

± 1.732 0 2 
0 ± 1.732 2 5 0 
0 0 2 

 
Table 4.12 D5 - N=24, 6 whole plots and the whole plot sizes are (5,5,3,3,5,3). 

Whole plot w x1 x2 No. Runs per whole plot 
1±  1±  4 1 -1 

0 0 1 
1±  1±  4 2 1 

0 0 1 
3 1.732 0 0 3 
4 -1.732 0 0 3 

± 1.732 0 2 
0 ± 1.732 2 5 0 
0 0 1 

6 0 0 0 3 
 

Comparisons among the five designs will involve different combinations of the variance 

component ratio (d=0.5, 1 and 10) and the cost ratio (r =0, 0.5 and 1). Since the five 

CCDs considered involve different numbers of total observations, we will compare the 

designs based on cost adjusted D-, G-, and V-criteria where the adjustment is based 

different r values and solely on the design size, N. The cost penalization by N is the same 

adjustment as that popularly used for CRDs where design cost is based solely on the 
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number of runs. It is an indicative of situations in which the subplot/measurement cost is 

the only appreciable experimental cost in SPDs. The comparisons of the five designs in 

terms of their cost adjusted D-, G-, and V-criteria are presented in Table 4.13.  

 

The best and second best designs are given in “bold” fonts and identified by “*” and “+”, 

respectively. When the cost is only a function of the number of whole plots (r=0), D4 is 

consistently the best or second best design in terms of both estimation and prediction for 

all values of the variance ratio considered. This result is intuitive since this design has the 

least number of whole plots. It appears that augmenting subplot center runs in the whole 

plots of the CCDs is a useful strategy when the cost of experimentation is due solely to 

whole plot costs. Note that this is intuitive since subplots are relatively cheap to run.  

When d has a large value, implying large whole plot variability, more whole plots are 

required to obtain acceptable estimation precision for whole plot terms, and therefore D5 

has best average prediction performance. Interestingly, the standard CCD (D1) performs 

very well in terms of D-efficiency for all variance ratios and for all cost ratios. D3 and D1 

are the two best designs in terms of G- and V-efficiencies when N is used to penalize the 

design. The modified CCD (D2) is consistently worse than the other designs in terms of 

D-, G-, and V-criteria for all variance component ratios and cost ratios considered. Finally 

we note that for these two cost scenarios highly V-efficient SPDs have more whole plots 

than the highly D- and G-efficient SPDs, a conclusion which is consistent with those 

from example 1 where a first order model was considered.  

 
Table 4.13 The cost penalized D-, G- and V-efficiency of the five variations of CCDs, 
which are cost adjusted D-efficiency, maximum and average cost penalized prediction 
variance (CPPV), calculated from equation (4.4) and (4.5), for different combinations of 
d and r value, including the extreme case of penalization by the total number of runs, N. 
The best design and second best designs are in “Bold” fonts.  

Cost penalization  Design r = 0 r = 0.1 r = 0.5 r = 1 N 
d=0.5 

CPD D1 (4,4,1,1,6) 0.51+ 0.384+ 0.195* 0.121* 0.158* 
 D2 (4,4,4,4,4,4) 0.47 0.334 0.156 0.093 0.117 
 D3 (4,4,1,1,3,3) 0.42 0.327 0.178 0.113+ 0.156+ 
 D4 (5,5,3,3,6) 0.582* 0.404* 0.182+ 0.108 0.132 
 D5 (5,5,3,3,5,3) 0.502 0.358 0.167 0.100 0.125 
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Average D1 (4,4,1,1,6) 2.3 3.04 5.98+ 9.661+ 7.36+ 
CPPV D2 (4,4,4,4,4,4) 2.218 3.11 6.65 11.089 8.872 

 D3 (4,4,1,1,3,3) 2.531 3.21 5.91* 9.28* 6.749* 
 D4 (5,5,3,3,6) 1.966* 2.83+ 6.29 10.617 8.65 
 D5 (5,5,3,3,5,3) 2.004+ 2.805* 6.012 10.020 8.016 

Maximum D1 (4,4,1,1,6) 3.737 4.933 9.716* 15.695* 11.958+ 
CPPV D2 (4,4,4,4,4,4) 3.649 5.108 10.946 18.244 14.595 

 D3 (4,4,1,1,3,3) 4.433 5.615 10.343 16.253+ 11.820* 
 D4 (5,5,3,3,6) 3.047* 4.388* 9.751+ 16.454 13.407 
 D5 (5,5,3,3,5,3) 3.458+ 4.841+ 10.373 17.289 13.831 

d=1 
CPD D1 (4,4,1,1,6) 0.598+ 0.453+ 0.23* 0.142* 0.187* 

 D2 (4,4,4,4,4,4) 0.507 0.362 0.169 0.102 0.127 
 D3 (4,4,1,1,3,3) 0.482 0.381 0.207 0.132+ 0.181+ 
 D4 (5,5,3,3,6) 0.666* 0.463* 0.208+ 0.123 0.151 
 D5 (5,5,3,3,5,3) 0.571 0.408 0.190 0.114 0.143 

Average D1 (4,4,1,1,6) 2.331 3.077 6.062+ 9.792+ 7.459+ 
CPPV D2 (4,4,4,4,4,4) 2.351 3.291 7.053 11.755 9.404 

 D3 (4,4,1,1,3,3) 2.455 3.11 5.728* 9.002* 6.547* 
 D4 (5,5,3,3,6) 2.065+ 2.973+ 6.607 11.148 9.086 
 D5 (5,5,3,3,5,3) 2.028* 2.840* 6.085 10.141 8.113 

Maximum D1 (4,4,1,1,6) 3.915 5.168 10.180+ 16.445+ 12.529+ 
CPPV D2 (4,4,4,4,4,4) 3.75 5.25 11.25 18.75 15 

 D3 (4,4,1,1,3,3) 4.645 5.883 10.838 17.031 12.386* 
 D4 (5,5,3,3,6) 2.980* 4.291* 9.535* 16.091* 13.111 
 D5 (5,5,3,3,5,3) 3.310+ 4.634+ 9.930 16.550 13.240 

d=10 
CPD D1 (4,4,1,1,6) 1.854+ 1.405* 0.713* 0.442* 0.579* 

 D2 (4,4,4,4,4,4) 1.203 0.859 0.401 0.241 0.301 
 D3 (4,4,1,1,3,3) 1.455 1.149 0.623+ 0.397+ 0.546+ 
 D4 (5,5,3,3,6) 1.956* 1.358+ 0.611 0.362 0.445 
 D5 (5,5,3,3,5,3) 1.656 1.183 0.552 0.331 0.414 

Average D1 (4,4,1,1,6) 2.356 3.109 6.124+ 9.893+ 7.539+ 
CPPV D2 (4,4,4,4,4,4) 2.677 3.748 8.072 13.387 10.708 

 D3 (4,4,1,1,3,3) 2.149+ 2.722* 5.013* 7.878* 5.731* 
 D4 (5,5,3,3,6) 2.303 3.316 7.368 12.434 10.133 
 D5 (5,5,3,3,5,3) 2.058* 2.881+ 6.173 10.289 8.231 

Maximum D1 (4,4,1,1,6) 4.193+ 5.535* 10.901* 17.610* 13.417+ 
CPPV D2 (4,4,4,4,4,4) 5.591 7.827 16.773 27.955 22.364 

 D3 (4,4,1,1,3,3) 4.982 6.311 11.626+ 18.269+ 13.286* 
 D4 (5,5,3,3,6) 3.972* 5.720+ 12.710 21.448 17.476 
 D5 (5,5,3,3,5,3) 4.723 6.612 14.168 23.614 18.891 

*: best designs; +: second best designs. 
 

In practice, more realistic situations are frequently between the above two extreme 

scenarios of r=0 and scaled prediction variance (N is used), that is, both the cost of whole 
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plots and cost of subplot have to be considered. For these situations, we focus on design 

comparisons involving the columns associated with r = 0.1, 0.5 and 1 in Table 4.13.  

When r=1 or 0.5, the standard CCD is the best in terms of D- and G-efficiency, and it has 

the second best average prediction (V-efficiency). D3 is the most V-efficient design and is 

second best in terms of D- and G-efficiency. Note that both designs (D1 and D3) involve 

the least total number of runs (N=16), making them more competitive when the total size 

of design is important. D3 has one more whole plot than D1. For the comparisons done 

here, V-efficient CCDs have more whole plots than the D- and G-efficient CCDs. This is 

consistent with the conclusions of example 1 for the first-order model.  

 

In D3, the additional center runs in the axial levels whole plots help with the estimation 

of quadratic terms. Splitting the whole plot at w=0 for D1 into two whole plots for D3 

does not substantially compromise the estimation of the subplot quadratic terms, 

however, it does improve the estimation of the whole plot quadratics. On the other hand, 

although the modified CCD (D2) has good properties from an analysis standpoint, the 

quality of estimation and prediction is poor, because the subplot axial points are assigned 

separately from subplot center runs and hence the estimation of subplot quadratics is with 

whole plot error.  

 

More detailed comparisons of the CCDa can be made by considering the distributions of 

prediction variance across the design region for each design.  Liang et al. (2004, 2005) 

proposed the use of three-dimensional variance dispersion graphs (3-D VDGs) and 

fraction of design space (FDS) plots for comparing SPDs. These graphical tools show the 

locations with best or worst prediction over the entire design region as well as for any 

particular sub region (where sub region implies whole plot region only or subplot region 

only). In Figure 4.2, the global FDS plots for the five designs are displayed. See Zahran, 

Anderson-Cook and Myers (2003) for more details on FDS plots. The horizontal “FDS” 

axis represents the fraction of the design space with cost adjusted prediction variance less 

or equal to the given CPPV value from the vertical axis. The maximum prediction 

variance is displayed by the CPPV-value at FDS=1 and the average of the values on the 

curve shows the average prediction variance over the entire region, and thus the values of 
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G- and V-efficiency summarized in Table 4.13 can be read from the plots. When d=1 and 

r=0, D5 is the best design and this is manifested in the FDS curve having the smallest 

values and a flatter slope. As the whole plot variance increases relative to the subplot 

variance, D5 is still the most desirable design, thus demonstrating that the choice of the 

best design is robust to changes in the values of the variance component ratio. Note that 

D3 with the 6 whole plots and 16 observations performs much better when d increases 

from 1 to 10.  This is due to the fact that larger numbers of whole plots improves the 

performance of SPDs when the proportion of whole plot error variance in the systematic 

variation increases. This design is superior to the other designs for situations when 

subplot is equally expensive as whole plot, r=1. Note also that the superiority of D3 over 

the others is robust to changes in the value of d. 

 

 
 

Figure 4.2 FDS plots for the five candidate designs under different scenarios of cost ratio 
and variance component ratio. 
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In Figure 4.3, 3-D VDGs are plotted for the average CPPV for the two best designs (D3 

and D5) under different cost and variance ratio values. See Liang, et al, (2004, 2005) for 

more details on these plots. In the plots, “w” indicates the distance of the location from 

the center in the whole plot space, and “x” represents the location in the subplot space. 

The vertical axis denotes the average cost adjusted prediction variance at a location in the 

combined space (w,x). The plots show a common characteristic of the prediction variance 

distribution for desirable designs in terms of V-efficiency. Namely, the prediction 

variance is stable and relatively small for the broad center area of the design space and 

prediction deteriorates for a small portion at the edge of the whole plot space. These plots 

can be helpful in understanding the advantages and weaknesses of the designs in terms of 

their prediction capabilities.  

 

    
Figure 4.3 Surface plots of average CPPV for D3 and D5 at different scenarios. 

 
From comparisons of the five designs one can learn that under different weighting 

conditions of cost and quality, the best design differs significantly. When the whole plots 

are extremely expensive, one may minimize the number of whole plots and then seek to 

achieve the best performance by assigning as many subplots as possible within each 

whole plot. When the subplot/measurement are comparably expensive to the whole plot, 

the design with fewer runs is desirable. When the subplot/measurement cost dominates 

the experimental cost, the prediction variance scaled by the design size (N) is appropriate 

for evaluating SPDs.  In this case, smaller sized designs are desirable. 

 

In addition, the example provides helpful information for the practitioner when choosing 

a split-plot design for a second order model. The standard CCD has good performance 
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when cost is incorporated, providing support for extending this type of response surface 

design from the CRD setting to the SPD setting. Moreover, if whole plot size is limited, 

for instance, the maximal number of subplots accommodated in the whole plot can not 

exceed six in practice, then running all combinations of subplot factors within each whole 

plot is not feasible. Thus we might have incomplete subplot levels within whole plots. 

The intuition would lead to the most balanced setting in the whole plots, such as the 

modified CCD does. However, this example shows that exact balanced or symmetric 

setting of the subplot levels may be less efficient. For instance, it may be better to assign 

the subplot center runs with axial or factorial levels in the same whole plot rather than 

separating the axial points and center runs.  

 

 

4.6 Conclusions 

 

For different problems or under different conditions of the experiment in real life, the 

experimenter may want to focus on different combinations of performance and cost for 

assessing split-plot experiments. Incorporating the split-plot structure and cost scenarios 

into the evaluation of split-plot design is helpful to better understand their effect on the 

overall desirability of the design. The proposed cost penalized D-efficiency, average and 

maximum cost penalized prediction variance (cost adjusted V- and G-efficiencies), 

including a special case of the scaled prediction variance, provide strategies for the 

practitioners rather than choosing the designs arbitrarily based on the available resources. 

Different r ratios require the experimenter to evaluate the relative costs of the whole plot 

and subplot units, as measured in time, effort or money to change the levels of two types 

of experimental variables and for measuring the observations. This should be based on 

the understanding of the practical conditions for running the experiments. From our 

comparisons of different designs, we learn that the standard scaled prediction variance 

evaluation commonly used for completely randomized design only makes sense under 

some special cases for split-plot design, and thus the generalization of SPV from CRD to 

SPD should be done carefully. 
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Although constraints on time or cost may suggest to the practitioner to use as small size 

of design as possible, other desirable properties, such as the ability to estimate the whole 

plot and subplot error terms, and adequate precision for estimating the whole plot factor 

effects should also be taken into account.  

 

In industrial experiments, an important problem for the practitioner is to select a response 

surface design with a desirable structure when there are restrictions on randomization. 

This study shows that adapting central composite designs in a variety of ways can help 

improve performance for different cost and variance ratio scenarios. Some desirable 

strategies for assigning subplot levels within whole plots are also provided, which argue 

against the intuition that a balanced design is always preferable. However, there may be 

some benefits during analysis. 

 

While the estimation of cost ratio can be obtained from understanding of the conditions 

for a given split-plot experiment, the variance component ratio is probably not as easy to 

estimate, if a pilot study or previous data are not available. However, the study in the two 

examples implies that the choice of a highly efficient design is frequently quite robust to 

the change of variance component ratio value. If the guessed or estimated d value is 

slightly different from the obtained value once the experiment has been run, the chosen 

design frequently remains highly efficient. This robustness means that good performance 

is likely even when the split-plot design is selected based on limited information about 

the variance component ratio.  

 

Finally, this new approach to flexibly balancing quality and cost will hopefully provide 

practitioners with more realistic mechanisms for selecting a design that is most 

appropriate to their requirements. 
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Chapter 5 Evaluation for Multiple Criteria 
 

5.1 Introduction 

 

In Chapter 4, we have studied several variations of central composite designs (CCDs) 

with one whole plot and two subplot variables when taking the cost of the experiment 

into consideration. We learned that when the whole plots are expensive, a design with 

fewer whole plots is more desirable. When the subplots and measurements are costly, the 

restricted SPD CCD (D1) is the best in terms of estimation and minimizing the maximum 

prediction variance. This is due to the fact that D1 involves a small total number of runs. 

To lower average prediction variance over the entire design region, more whole plots are 

required. Therefore, D5 and D3 are the best designs with the lowest average CPPV under 

the situations that whole plots are expensive (r values close to 0) and the cost of subplot 

and measurement is comparable to cost of whole plot (r=1), respectively.  

 

In Chapter 2, 3-D VDGs are used to formulate optimization strategies involving the 

factorial levels of a restricted SPD CCD. The G- and V-optimal levels are obtained 

analytically and we demonstrated that significant improvements can be realized by 

optimizing the factorial levels. The directions of the factorial level changes for G- and V-

optimization are opposite, inferring that the optimal factorial levels for one criterion 

result in worse performance in terms of another criterion. It also means that the efficiency 

of one aspect is sacrificed to improve the performance in another aspect and a design 

cannot be improved for all optimality criteria simultaneously by changing the factorial 

levels. When good performance across several criteria is most important, the practitioner 

might have to consider the balance between the different criteria to avoid making the 

difficult decision of choosing just one particular criterion. The goal of high efficiency for 

all criteria of interest may be a more desirable choice. D-efficiency for estimation and V- 

and G-efficiency for prediction are the optimality criteria most commonly used in the 

literature, and in this chapter we evaluate split-plot designs using these criteria, which are 

treated with equal importance. In the following sections, we study the comprehensive 
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performance of the restricted SPD CCD (RSPD CCD), D3 and D4 with standard, D-, G- 

and V-optimal factorial levels.  

 

When the practitioner seeks to find a design that exhibits good estimability of model 

parameters as well as quality of prediction, it may be of interest to evaluate a design in 

terms of a combined measure of the D-, G- and V-efficiencies. In general, the overall 

performance should be a function of the combined efficiencies for the multiple criteria. 

Derrinnger and Suich (1980) and Myers and Montgomery (2002, pp. 247-258) use 

desirability function for searching the optimum conditions for multiple responses. The 

desirability is a power function of the response and thus it ranges from 0 to 1 with 

different changing rate with respect to the response value. By specifying the power 

parameter in the desirability function for each response, the subject knowledge about the 

role of each response in the total desirability of the product is incorporated into the 

assessment of the multiple responses. Heredia-Langner, Montgomery, Carlyle and Borror 

(2004) apply desirability function approach to study model-robust designs. A desirability 

value is assigned to the design for each model and use the geometric mean of the values 

for all the models considered as the overall evaluation of design’s model robustness. In 

this chapter, we want to assess the design based on the three criteria. Each criterion has 

already been in the range of (0,1), so the function combining the three efficiencies can be 

used as the objective function to assess the overall performance of a SPD and to compare 

between different designs. The geometric mean is one of them. It is desirable for that, if 

the value is unacceptable for any of the multiple criteria, the overall performance is 

unacceptable. Another option is to use arithmetic mean, which put the same weight to 

each criterion and penalize the poor design less than the geometric means does. The 

weighted average also could be used to allocate different weights to the multiple criteria 

to reflect the situation that one of the criteria could be more important than another. In 

this chapter, we consider the case that the three efficiencies are equally important. If one 

of the efficiencies is more important than the others for a particular experiment, the 

weighted arithmetic mean or weighted geometric mean can be employed to incorporate 

the importance of each criterion in the whole desirability of the designs. The arithmetic 

mean and geometric means are compared in the following section and we demonstrate 
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that the two assessing approaches provide similar comparison results. Therefore, the 

product is chosen as the overall assessment for remaining comparisons. 

  

Another related question concerns the performance of CCDs with standard factorial 

levels to CCDs with optimal factorial levels. Recall from Chapter 4 that we determined 

the best CCDs (namely D3 and D4) based on particular scenarios for the cost and 

variance component ratios. In this section, we determine the optimal factorial levels for 

these designs in terms of D-, G- and V-efficiency, and discuss the degree of improvement 

that can be obtained for these designs using the optimal factorial levels. As mentioned 

previously, the practitioner may wish to know how these designs perform across all 

criteria combined. As a result, we study the designs from Chapter 4 in terms of their 

combined performances. 

 

This study also compares between the different designs, say the restricted SPD CCD 

(D1), D3 and D4 with standard and optimal levels, for balance between multiple criteria 

and for each individual criterion. The cost scenarios are taken into consideration for 

comparing variations of the CCDs for individual and multiple criteria. All the designs 

have three variables: one whole plot variable, w, and two subplot variables, x1 and x2, and 

the second order model is considered. 

 

 

5.2 Optimizing Factorial Levels for the Restricted SPD CCD (D1) and Overall 

Performance Based on Multiple Criteria  

 

The restricted SPD CCD is a common way to run the central composite design for split-

plot experiments (refer Table 4.1 for details of the set up of the design). The 3-D VDG 

and FDS plots (in Figures 2.4, 2.5 and 3.2) display the characteristics of its prediction 

performance. We note the following observations: the prediction variance is stable in the 

subplot space but varies more along the whole plot space; close to the center of the whole 

plot space there is a relatively large prediction variance, and the worst prediction occurs 

at the edge of the whole plot space. In Chapter 2, V- and G-optimal levels are listed. 
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Here, an exhaustive search for the optimal whole plot and subplot factorial levels, f1 and 

f2, determines the D-optimal levels, which are summarized in Table 5.1 along with the 

previously noted V- and G-optimal levels. Note that here the restricted SPD CCD with 

the standard factorial levels f1=f2= ± 1 are used as a basis for comparison to evaluate the 

optimization. The relative D-efficiency is defined as the ratio of the D-efficiency of the 

optimal design to that of the RSPD CCD, and the relative V- and G-efficiencies are the 

ratios of the V- and G-efficiencies for the restricted SPD CCD with standard levels to 

those of the CCDs with the optimal levels. As a result, values larger than 1 indicates an 

improvement in efficiency upon using the optimal factorial levels. Note the resulting 

gains in efficiency hold for all cost scenarios, because the total number of runs and the 

whole plots sizes do not change for different factorial levels. For D-optimization, we can 

see that the D-optimal levels are close to the standard factorial levels. The D-efficiencies 

increase less than 5%, which shows that estimations of the parameters do not improve 

significantly.  

 

Table 5.1 D-, G- and V-optimal factorial levels for the RSPD CCD with one whole plot 
variable and two subplot variables. Under the columns of D-, G- and V-optimal, f1 and f2 
are the optimal factorial levels in terms of D-, G- and V-efficiency respectively, and the 
relative efficiency is compared to the RSPD CCD with standard levels, and larger values 
indicate more improvements by using the optimal factorial levels. 

D-optimal V-optimal G-optimal d f1 f2 RE f1 f2 RE f1 f2 RE 
0 0.9998 1.001 1.001 1 1 1 1 1 1 
1 0.924 1.036 1.004 0.78 1.09 1.036 1.13 0.92 1.079 

10 0.906 1.044 1.007 0.51 1.17 1.166 1.22 0.80 1.115 
 

When we wish to consider balancing multiple criteria, for instance, D-, G- and V-

optimality simultaneously, the arithmetic mean and geometric mean are two of popularly 

used functions to find the design with the best balance between different criteria. Here we 

consider the three criteria are equally important, and thus the average (arithmetic mean) 

and product are utilized (the product is equivalent to geometric mean because of the fixed 

number of criteria considered and for simplicity of calculation). We found that for these 

and all remaining comparisons in this chapter, whether the average or product are 

utilized, the design ranking remains unchanged, so the product of efficiencies is used as 
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the overall efficiency for the three criteria in the remaining work. Table 5.2 provides the 

overall efficiencies for variance component ratios of d=1 and d=10, where the 

efficiencies are all relative efficiency to the RSPD CCD (D1) with standard levels. Larger 

values indicate better performance. 

 

From Table 5.2, we note that there are negligible differences between the average and 

product. The D-optimal D1 is not only better than the standard D1 in terms of D-

efficiency but it is also better in terms of V-efficiency. The V- or G-optimal D1, however, 

has lower efficiencies than the standard D1 for all the optimality criteria other than itself. 

When all three efficiencies are combined, the standard RSPD CCD (D1) is the best for a 

small variance ratio, d=1, and second best for a large variance ratio, d=10. The D-optimal 

CCD is also a good choice. However, as noted above, the D-optimal levels are close to 

the standard levels ± 1. 

 

Table 5.2 Performance of the standard and optimal RSPD CCDs in terms of D-, G- and 
V-efficiency and their overall performance for multiple criteria. 

  Standard D-optimal V-optimal G-optimal 
D-eff 1 1.004 0.992 0.964 
V-eff 1 1.021 1.036 0.949 
G-eff 1 0.963 0.909 1.076 

Average 1 0.996 0.979 0.996 
d =1 

Product 1 0.986 0.934 0.983 
D-eff 1 1.007 0.903 0.864 
V-eff 1 1.053 1.164 0.849 
G-eff 1 0.966 0.876 1.113 

Average 1 1.009 0.981 0.942 
d =10 

Product 1 1.024 0.920 0.817 
 

Based on the information shown in Table 5.2, the standard and D-optimal designs are the 

two designs with the best overall performance for the three optimality criteria. In 

practice, the exact value of the variance component ratio, d, is often unknown and in 

these cases, the RSPD CCD with the standard factorial levels may be a better choice for 

practitioners since the D-optimal design requires that the user finds the optimal f1 and f2 

values and these values are based on the anticipated variance ratio. 
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5.3 Optimizing Factorial Levels for D3 and Overall Performance for Multiple Criteria 

 

Recall from Chapter 4, the design D3 is obtained by adapting the RSPD CCD by splitting 

the whole plot at w=0 into two equal-sized whole plots (see Table 4.10 for a complete 

description of the design). The total number of runs of the design remains the same but 

the number of whole plots increases. When the subplot and measurement cost is 

comparable to the whole plot cost, the RSPD CCD and D3 are desirable choices. Because 

the good performance of average prediction variance requires more whole plots, D3 is 

better than the RSPD CCD in terms of V-efficiency, while the RSPD CCD is better than 

D3 for estimation and maximum prediction variance. 

 

The cost penalized prediction variance distribution of D3 is displayed in Figure 4.3(a) for 

the case of r=1 and d=10. The pattern of the CPPV distribution is consistent for different 

scenarios of cost ratio, since the number of whole plots and total number of observations 

remains constant for different cost ratios. We observe that the CPPV is stable in the broad 

center region and increases rapidly in a small portion of region at the edge of the whole 

plot space. To lower the average prediction variance, small values in most of the region is 

desirable, and thus D3 might have a prediction variance distribution close to the optimal 

setting. On the other hand, to improve the G-efficiency, only the location with the worst 

prediction, i.e., the edge of the whole plot space, is of interest. By moving the factorial 

points, the prediction variance at this location can be easily lowered. Meanwhile, the 

prediction variance in the center might be somewhat sacrificed. The D-, G- and V-optimal 

factorial levels for D3 are listed in Table 5.3. The relative efficiencies are defined as the 

ratio of the efficiency values for D3 with standard levels ± 1 to the efficiency values 

associated with the optimized D3.  

 

Table 5.3 D-, G- and V-optimal factorial levels for D3, which has sixteen design points 
and six whole plots, the setting of whole plot sizes are (4,4,1,1,3,3). 

D-optimal V-optimal G-optimal d f1 f2 RE f1 f2 RE f1 f2 RE 
0 1 1.001 1.001 1 1 1 1 1 1
1 0.944 1.027 1.002 0.91 1.04 1.005 1.15 0.85 1.107
10 0.928 1.035 1.004 0.64 1.14 1.046 1.45 0.66 1.334
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Although the V-optimal factorial levels change considerably for different variance ratios, 

the relative V-efficiency does not improve significantly, implying that the design’s 

average prediction variance distribution does not change much. As a result, one can 

conclude that the V-efficiency of D3 is robust to the factorial level changes, and the 

design D3 with standard levels has efficiency close to the V-optimal D3. The shift in the 

factorial levels locations for G-optimization is opposite to that for V-optimization, and 

substantial improvement is possible for this criterion. For instance, when d=10, the 

maximum prediction variance drops more than 30% by moving the whole plot factorial 

levels outwards and moving the subplot factorial points into the center. We also note that 

the standard levels are close to the D-optimal factorial levels and only a small increase in 

D-efficiency is possible. Therefore, when the G-efficiency is of primary interest, the G-

optimal D3 should be chosen. But if D- and V-efficiencies are of interest, D3 with 

standard levels is quite efficient, which should provide more confidence for the 

practitioner to choose the standard factorial levels for the design D3 when information 

about the variance ratio is not available. 

 
Table 5.4 Performance of the standard and optimal D3’s in terms of D-, G- and V-
efficiency and their overall performance for multiple criteria. 

  Standard D-optimal V-optimal G-optimal 
D-eff 1 1.002 1.001 0.904 
V-eff 1 1.004 1.005 0.942 
G-eff 1 0.970 0.952 1.107 

d =1 

Product 1 0.976 0.957 0.943 
D-eff 1 1.004 0.954 0.792 
V-eff 1 1.016 1.046 0.850 
G-eff 1 0.971 0.892 1.334 

d =10 

Product 1 0.991 0.890 0.898 
 

The performances of D3 with different factorial levels are studied in Table 5.4. The 

relative efficiencies are compared to the D3 with the standard factorial levels, f1=f2= ± 1 

and a larger value indicates better performance. From the table, it is observed that the V- 

and G-optimal design have much worse performances for the criteria other than itself, 

especially for large variance ratios. This implies that when focusing on a single criterion, 

one may obtain a design that performs poorly in terms of other criterion. A natural 



 115

consequence of this is that the V- and G-optimal D3s perform poorly in terms of the 

combination of all three criteria. D3 with the standard levels ± 1, however, is uniformly 

the best design when considering multiple criteria simultaneously regardless of the 

relative size of whole plot variability to the subplot variance. 

 

 

5.4 Optimizing Factorial Levels for D4 and Overall Performance for Multiple Criteria 

 

When whole plots are extremely expensive, the cost ratio, r, can be close to 0. Under this 

cost scenario, the practitioner would like not only to limit the number of whole plots, but 

also to have good quality of estimation and prediction by augmenting more designs 

points in the available whole plots. D4 is appealing for this case, because it has the least 

number of whole plots for CCDs with one whole plot variable and one subplot center run 

is augmented in each factorial level whole plot compared to D1 (D4 has 5 whole plots 

and 22 design points, the setting of whole plot sizes is (5,5,3,3,6), please refer to Table 

4.11 for details of the factor levels setting). 

 

In this section, we first use the 3-D VDG to study the prediction variance distribution 

over the spherical design space when variance structure changes. Since the cost penalized 

prediction variance is independent of the cost scenarios, we consider the prediction 

variance without any scaling for the design size, N or cost of the design. Note that the 

distribution pattern of the prediction variance is the same for any cost scenarios. Figure 

5.1 display the maximum prediction variance when d=0 (CRD), 1 and 10. For a large 

variance ratio (d=10), the pattern for design D4 is similar to RSPD CCD (D1) with large 

changes in prediction variance across the whole plot space but small changes across the 

subplot space. As a result, we will observe that strategies for improving the maximum or 

average prediction variance for D4 will involve moves in the whole plot factorial levels 

of greater magnitude than moves in the subplot factorial levels.  
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Figure 5.1 Surface plot of maximum prediction variance for D4 with standard factorial 
levels when d=0 (CRD) (left), d=1 (middle) and d=10 (right). 
 
The D-, G- and V-optimal levels for this design are provided in Table 5.5. V-optimization 

moves the whole plot factorial points towards the center and subplot factorial points 

outwards. The changes of factorial levels are substantial and V-efficiency is improved by 

more than 10% for large d values (d=10). The G-optimal designs reduce the maximum 

prediction variance to some extent and the movement of the factorial levels for 

optimizing the G-criterion is observed to be in the opposite direction to the movement for 

V-optimization only for d=10. For small d values, the whole plot factorial points are 

moved towards the center. Figure 5.1 illustrates the reason of different patterns of G-

optimization from the 3-D VDGs. For d=0 and 1, the location with the worst prediction is 

the edge of subplot space at the center of whole plot space, while for d=10 the maximum 

prediction variance is at the edge of whole plot space and center of subplot space. Due to 

adding the subplot center runs in some of the whole plots, the location being optimized 

changes for different d values, and therefore optimization strategies in terms of the G-

criterion show no consistent pattern across the various d values. The D-optimal factorial 

levels are similar (around 0.86 for whole plot variable and 1.06 for subplot variables) for 

different variance component ratios, which implies the D-optimal D4 is quite robust to 

the variance ratios. Note, however, the D-efficiency is not substantially improved using 

the D-optimal factorial levels.  

 
Table 5.5 D-, G- and V-optimal factorial levels for D4, which has 22 design points and 
five whole plots, the setting of whole plot sizes are (5,5,3,3,6). 

D-optimal V-optimal G-optimal d f1 f2 RE f1 f2 RE f1 f2 RE 
0 0.875 1.057 1.010 0.865 1.06 1.021 0.93 1.03 1.026 
1 0.856 1.065 1.014 0.716 1.115 1.080 0.95 1.02 1.052 
10 0.852 1.067 1.015 0.49 1.17 1.182 1.21 0.87 1.100 
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The overall qualities for D4 with standard and optimal levels are summarized in Table 

5.6. The D-optimal D4 is uniformly best for different variance component ratios. For 

small values of variance ratio (d=1), D4 with standard factorial levels is worse and its 

overall efficiency is almost 10% lower than the D-optimal D4. For d=10, the standard D4 

is the second best. In a summary, D4 with the D-optimal factorial levels has the best 

quality for the three criteria. In addition, the D-optimal factorial levels are robust to 

changes in variance ratio. Therefore, practitioners can choose D-optimal levels at 

(f1=0.86, f2=1.06) for various values of variance component ratio. 

 

Table 5.6 Performance of the standard and optimal D4’s in terms of D-, G- and V-
efficiency and their overall performance for multiple criteria. 

  Standard D-optimal V-optimal G-optimal 
D-eff 1 1.015 1.001 1.003 
V-eff 1 1.059 1.080 1.022 
G-eff 1 1.017 0.978 1.051 

d =1 

Product 1 1.093 1.057 1.078 
D-eff 1 1.016 0.923 0.921 
V-eff 1 1.085 1.182 0.853 
G-eff 1 0.952 0.880 1.100 

d =10 

Product 1 1.018 0.995 0.958 
 

From the study of the three variations of CCDs, that is, the restricted SPD CCD (D1), D3 

and D4, the D-optimal designs are desirable choices when the three optimality criteria are 

concerned. Hence, we may conjecture that the D-optimal SPD usually has the optimal or 

highly efficient performance. Goos and Vandebroek (2004) study D-optimal SPDs but 

did not consider their performances for other optimality criteria, such as V- and G-

efficiency.  Because of the historical focus on estimation and the intensive computational 

demands, the V- and G-optimal SPDs have been explored less frequently in the literature. 

So these results may allow for the expansion of Goos and Vandebroek’s work of the D-

optimal SPDs to more general situations, and is good news for practitioners to exploit 

available optimal designs in the literature. 
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5.5 Comparison of Variations of CCDs for Individual and Multiple Criteria When 

Considering Different Cost Scenarios 

 

In Chapter 4, the relative performances of the variations of the CCDs were evaluated and 

we obtained the best structure for the CCDs by selecting the number of whole plots, the 

sizes of whole plots and the subplot factor levels settings within whole plots, under 

different scenarios of variance component ratio and cost ratio. In the above sections, the 

optimal factorial levels within each type of the split-plot structure of CCD are studied for 

individual optimality criterion. Then for the various ways of setting the factorial levels, 

their overall performances for the three criteria are evaluated. In practice, we would like 

to consider the structure of the CCD and the optimal factorial levels simultaneously in 

order to obtain highly efficient designs. In this section, the overall performances are first 

studied for the three types of CCD structures. Next, we discuss their performance for 

each individual optimality criterion. 

 

Since D1, D3 and D4 with the standard and D-optimal factorial levels are the best designs 

obtained from Section 5.2-5.4 with best overall performances (refer to Table 5.2, 5.4 and 

5.6 or details), they are compared in Table 5.7 to explore the effect of structures of the 

CCD and optimizing the factorial levels. All of the relative efficiencies are calculated 

compared to RSPD CCD (D1) with the standard factorial settings. For these comparisons, 

because of the different numbers of whole plots and observations, the particular cost 

scenarios do influence the relative performance of the designs.  Three cost scenarios are 

considered:  

• When no cost is taken into consideration, only the quality of estimation and 

prediction are of interest;  

• r=0 represents that the whole plots are extremely expensive;  

• r=1 represents the situation that adding one subplot has equal cost to adding a 

whole plot in the split-plot experiment.  

The r values between 0 and 1 may be close to the scenarios commonly encountered in 

practice, so we use the two extreme values of this range to show the influence of the cost 

scenario on choice of design for multiple criteria. The designs D1, D3 and D4 with the 
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standard and D-optimal levels are compared under the different scenarios of cost ratios 

and variance component ratios (d=1 and 10). 

 

Table 5.7 Performance of the designs D1, D3 and D4 with the standard and D-optimal 
factorial levels are compared in terms of individual and multiple criteria.  

   D1 
Std.

D1 
D-opt

D3 
Std. 

D3 
D-opt

D4 
Std. 

D4  
D-opt 

D-eff 1 1.004 0.968 0.970 1.115 1.131 

V-eff 1 1.021 1.140 1.145 1.129 1.196 

G-eff 1 0.963 1.011 0.981 1.315 1.338 
d =1 

Product 1 0.986 1.116 1.090 1.656 1.810 
D-eff 1 1.007 0.942 0.945 1.055 1.071 

V-eff 1 1.053 1.316 1.337 1.023 1.110 

G-eff 1 0.966 1.010 0.981 1.056 1.005 

No cost 

d =10 

Product 1 1.024 1.251 1.239 1.139 1.195 
D-eff 1 1.003 0.806 0.808 1.114 1.131 

V-eff 1 1.021 0.950 0.954 1.130 1.196 

G-eff 1 0.963 0.843 0.817 1.315 1.338 
d =1 

Product 1 0.986 0.646 0.630 1.655 1.809 
D-eff 1 1.007 0.785 0.788 1.055 1.071 

V-eff 1 1.053 1.097 1.114 1.023 1.111 

G-eff 1 0.966 0.842 0.818 1.056 1.005 

r=0 

d =10 

Product 1 1.025 0.724 0.717 1.139 1.196 
D-eff 1 1.004 0.924 0.926 0.867 0.880 

V-eff 1 1.021 1.088 1.092 0.878 0.930 

G-eff 1 0.963 0.965 0.936 1.022 1.040 
d =1 

Product 1 0.986 0.971 0.947 0.779 0.851 
D-eff 1 1.006 0.899 0.902 0.820 0.833 

V-eff 1 1.053 1.256 1.276 0.796 0.864 

G-eff 1 0.966 0.964 0.937 0.821 0.782 

r=1 

d =10 

Product 1 1.024 1.088 1.078 0.536 0.562 
 

If the quality of the split-plot design is the most important and the cost of the experiment 

is not an issue, the strategy of selecting the best design depends on the variance ratio as 

well. When the variability of the subplots accounts for a half of the observation variance 

(d=1), the D-optimal D4 is the best design, showing that the additional total observations 

have paid off; if the whole plot variance is relatively large (d=10), more whole plots are 

required to precisely estimate whole plot terms, and D3 is best, even it has much less 

design points. Note that adding one more whole plot is more helpful than adding the six 

extra observations under this situation. If the cost of whole plots dominates the cost of 
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experiment (r=0), the D-optimal D4 is best regardless of the variance ratio values, 

inferring that in D4 augmenting more subplots while keeping the least number of whole 

plots is an effective strategy. Since the whole plots are so expensive, adding one whole 

plot to D1 (the RSPD CCD with 5 whole plots) would penalize the design by 20%, so D3 

is not appealing when r=0. If the cost of an additional whole plot and a new observation 

are equal (r=1), designs with less total number of runs are more desirable, but the choice 

of the best design also depends on the variance ratio. If d=1, D1 with the standard levels 

is best; if d=10, D3 with the standard levels is the best. We can interpret this as the 

following: when the whole plots account for large proportion of the variations in the 

observations, more whole plots are required to have better estimation for whole plot 

terms, hence resulting in greater efficiency. Under the scenario that adding one whole 

plot cost as much as adding one observation, we would like to increase the number of 

whole plots to obtain better performance.  

 
In a summary, when the multiple criteria are our objective, the structure of the CCD has 

the greatest influence on performance. In other words, the number of whole plots and 

subplots within the whole plots should be carefully chosen based on the cost scenario of 

the split-plot experiment and the value of variance component ratio. Optimizing the 

factorial levels is not as important as the structure of CCD if balance between multiple 

criteria is of interest. 

 
Often the practitioner knows his/her main objective of the design, for instance, one 

desires a design to insure that the worst maximum prediction variance is minimized, or 

desires most of the design region have good prediction. In situations where a specific 

interest is stated, individual criterion should be considered. We have considered several 

types of CCD structures along with the corresponding optimal factorial levels for each 

structure. We have compared these versions of the CCDs and have examined whether the 

standard factorial levels result in efficiencies that are close to the optimal for the given 

individual criterion. The summaries of the comparisons are presented in Table 5.8. The 

cost of the design plays an important role in selecting the structure of the CCDs. Hence 

choosing the best CCD structure has the first priority for selecting the best CCD with 

efficient factorial levels. Moreover, optimizing factorial levels can be very beneficial 
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when individual criterion is concerned. For D-criterion, the discussions in Section 5.2-5.4 

show that designs with standard levels have D-efficiencies that are close to D-optimal for 

a wide range of variance component ratio values. When the value of variance ratio cannot 

be obtained precisely, the standard D1 or D4 structures are good choices. Regarding the 

V-criterion, when there is relatively large whole plot error variance or comparative 

subplot cost to whole plot, the V-optimal D3 structure is best. In Section 5.2 it was 

pointed out that D3 structure with standard factorial levels is very close to the V-optimal 

D3, implying that for this situation, the standard D3 would be a good choice, since it is 

robust to the variance component ratio. G-efficiency considers only the location with the 

maximum prediction variance rather than average evaluation of all terms or all locations 

as D- or V-efficiency does. As a result, when choosing a design on the basis of its G-

criterion, it is important to realize that optimizing the factorial levels helps to control the 

worst prediction, but doing so would compromise the prediction variances in the rest of 

the design region. 

 
Table 5.8 Best design and its factorial levels for individual criterion. The D-, G- or V-
optimal design represents the design of the given structure with the D-, G- or V-optimal 
factorial levels. 

 D-criterion V-criterion G-criterion 
No 
cost D-optimal (standard) D4 V-optimal D4 for d=1 

V-optimal (standard) D3 for d=10 G-optimal D4

r=0 D-optimal (standard) D4 V-optimal D4 G-optimal D4
r=1 D-optimal (standard) D1 V-optimal (standard) D3 G-optimal D1

 

 
5.6 Conclusions 

 
Thus far, most work in the literature studying the split-plot designs is based on one single 

criterion, such as, one of the D-, G- and V-optimality criteria. One disadvantage of a 

single criterion is that the best design found based on one aspect of design properties 

often is not highly efficient for another aspect. This forces the practitioner to choose the 

most important property of the experiment of interest, which is often a difficult task. In 

practice, the practitioner would like to select a design with balance between different 

criteria, that is, the one highly efficient for all aspects.  
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In this chapter the comprehensive performance of each variation of central composite 

designs with different optimized factorial levels are examined. It is found that the CCDs 

with standard or D-optimal factorial levels perform best for the combined three criteria. 

The D-optimal CCDs adjust the standard levels moderately and thus keep good balance 

between D-, G- and V-efficiency. The V-/G-optimal CCDs makes a huge adjustment for 

optimizing the average/maximum prediction variance, but have lowered G-/V-efficiency 

on the other hand. The CCD with standard factorial levels is uniformly highly efficient 

for each CCD structure, and its good performance is robust to the change of variance 

component ratio. When the precise estimate or previous knowledge of variance ratio 

cannot be obtained, the CCDs with standard factorial levels are best and safest choice.  

 

When taking the cost of experiment into consideration, we found that the most important 

aspect in choice of design is to select the correct structures of CCD according to the cost 

scenario, such as the structure of whole plots and the settings of subplot levels within 

whole plots. This is the principle regardless of whether single criterion or multiple criteria 

are interested. If a single criterion is the objective of design, based on the correct CCD 

structure, optimizing the factorial levels can make the design better, especially for the G-

optimality criterion. If the overall performance of D-, G- and V-efficiency is of interest, 

first the CCDs with correct whole plot structure should be selected. For the best CCD 

structure in the specific cost scenario, the standard factorial levels are shown with the 

best overall performance and its superiority is robust to the variance ratio. Optimizing the 

factorial levels does not help much.  

 
Therefore, the purpose of the split-plot experiment is very important to the choice of 

design. A conservative but useful strategy in practice is to select the design based on the 

balance for different criteria. Based on the overall performance of multiple criteria, the 

selected SPD is shown often highly efficient for many aspects of design properties. 

However, if the practitioner knows which particular aspect is the most important, chances 

are the design can be improved more in terms of the given criterion. For instance, for G-

efficiency, by optimizing the factorial levels the design selected is doing much better.  
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Chapter 6 Summary and Future Work 
 

In this dissertation, split-plot designs (SPDs) for first and second order models are 

explored. First, the graphical tools of three-dimensional variance dispersion graphs (3-D 

VDGs) and fraction of design space (FDS) plots are adapted for split-plot designs. They 

are shown to be informative tools for examining the prediction variance distribution for 

split-plot designs. With the aid of the 3-D VDGs and FDS plots, strategies are developed 

to improve the standard central composite designs (CCDs) in a spherical region for D-, V- 

and G-optimality by optimizing factorial levels in the whole plot and subplot spaces, 

respectively.  

 

Second, the cost of split-plot experiment is taken into consideration for evaluating the 

performance of split-plot designs. A flexible approach for incorporating cost structure for 

different scenarios that might be encountered in industrial experimentation is discussed. 

Then the cost penalized estimation and prediction optimality criteria are presented. The 

impact of different cost and variance ratio scenarios on the choice of preferred design is 

illustrated with the two examples, a factorial experiment with 8 runs for first-order model 

and several variations of central composite designs for second order model. Strategies to 

obtain highly efficient designs are discussed and some recommendations that might be 

applicable in practice are made. It is also found that a number of different designs are 

selected based on different optimality criteria. Therefore, it is not uncommon in practice 

that one selects a best design based on the overall performance of multiple criteria. The 

variations of CCD structures and optimizing the factorial levels are combined together to 

study the performance for each criterion and the comprehensive performance for D-, G- 

and V-efficiencies in Chapter 5.  

 

In many industrial experiments, there are restrictions of randomization, or exist the 

factors with levels hard or costly to change and the other factors with levels relatively 

easy to change. In these cases the split-plot experiments are realistic choices from 

efficiency and economy perspectives. It sometimes happens in industrial experiments that 
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completely randomized designs are actually conducted as split-plot experiments. The 

proper analysis and choice of design are important. In addition, the three important 

design optimality criteria, D-, G- and V-efficiency, are reviewed. Among them, the D-

optimality is the alphabetical criterion primarily considered in the literature for optimal 

split-plot designs. Typically, the evaluation of the designs’ prediction capability is more 

complicated than a single number criterion can accommodate. Graphical tools for design 

assessment are presented to complement the optimality criteria. The work on optimal and 

high efficient SPDs for first-order model and second-order model are also discussed 

briefly.  

 

In Chapters 2 and 3, new adaptations of three-dimensional variance dispersion graphs (3-

D VDGs) and fractions of design space (FDS) plots are proposed for split-plot designs. 

The 3-D VDGs display the distribution of scaled prediction variance (SPV) for the entire 

design space by separating the region into whole plot and subplot spaces, respectively. 

The minimum and maximum SPV values and the locations where they occur are also 

displayed in the 3-D VDGs. For V-efficiency, the 3-D VDGs often underestimate the 

influence of the edge area, which represents a substantial proportion of the total design 

space and also often has large prediction variance. The global FDS plots provide the 

overall summary of prediction variances throughout the entire design space. It is easy to 

read the maximum SPV (associated with the G-efficiency) and minimum SPV value at 

FDS=1 and 0 from the curve, respectively, as well as estimate an approximate average 

SPV (V-efficiency) from the slope and values of the curve. The FDS plots treat each 

location in the design space equally, which is helpful for evaluating the V-efficiency. 

Hence the FDS plots provide complementary information to the 3-D VDGs. Moreover, 

the sliced FDS curves are obtained by examining the SPV distribution in the subplot 

space while holding the whole plot shrinkage factors at constant values. From the slope 

of each slice, the SPV distribution in the subplot space at a specified whole plot level can 

be described. From the relative positions of the slices at different whole plot levels, we 

can examine the effect of each type of variables on SPV values and learn the SPV 

distribution in the whole plot space. The slices provide useful supplementary information 
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to the single global FDS curve. By combining the 3-D VDGs and FDS plots, the 

prediction performance of the design can be visualized.  

 

The new graphical tools are used to examine the scaled prediction variance for two types 

of central composite designs, the restricted SPD CCDs and the modified CCD proposed 

by Vining, Kowalski and Montgomery (2004). Beyond single number efficiencies, the 

different distributions of SPV for the two designs are illustrated and the comparisons of 

their strength and weakness in prediction quality are aided by the graphical tools. Using 

3-D VDGs, we demonstrated that it is possible to improve existing designs in terms of 

their prediction variance properties. From the 3-D VDGs, we learn which areas of the 

design space are most important for each of the criterion concerned. Based on the G- and 

V-criteria, different optimal designs are obtained, which implies that a single strategy 

does not work universally. We have also demonstrated that the obtained G- and V-

optimal CCDs are quite robust to small changes in the optimal factorial levels as well as 

to the misspecifications of the variance component ratio. In addition to the SPV, other 

functions of the prediction variance, for instance the cost adjusted prediction variance, 

can easily be plotted using the 3D VDGs and FDS plots. This flexibility makes the use of 

graphical tools adaptable to a broad range of optimization problems  

 

In industrial settings, the experiments often involve hard-to-change (HTC) factors, and 

often the relative costs of changing level for this type of factors or of the experimental 

units can vary considerably based on the nature of the application. A practitioner would 

likely to take the actual total cost of the split-plot experiment into consideration for 

evaluating the design. Different cost scenarios are discussed in Chapter 4, and the cost 

adjusted D-, G- and V-efficiencies are proposed to allow practitioners to assess the split-

plot experiments combining the performance and the cost based on available resources. 

The cost is proportional to a linear function of the number of whole plots and the total 

number of design points, with different cost scenarios being made possible by altering the 

cost ratio. We also include two special cases where cost is not an issue and whole plot 

costs nothing additional.  
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A three factor factorial experiment with 8 runs for the assumed first-order model, as well 

as five variations of the three factors CCDs for a second order model are studied in 

Chapter 4 to explore the effect of cost scenarios on the selection of split-plot designs. 

When the cost of individual whole plot is much more than pooled cost of subplot and 

measurement, designs with a smaller number of whole plots are preferred. These designs 

should exploit the resource of whole plots as much as possible by augmenting more 

observations within each whole plot. If subplot and measurement are expensive, the total 

number of design points should be kept moderate in exchange for increasing the number 

of whole plots. The arrangement of subplot levels within whole plots can be very 

influential to the overall performance of the designs. The restricted SPD CCD is shown to 

be a good choice under this scenario. Moreover, some desirable strategies for assigning 

subplot levels within whole plots are provided, which argue against the intuition that a 

balanced design is always preferable.  

 

To utilize the cost adjusted criteria in practice, an estimate of the cost ratio can be 

obtained based on understanding of the conditions for running a given split-plot 

experiment. However, if a pilot study or previous data are not available and the 

experimenter has limited information about the whole plot and subplot error variances, 

the variance component ratio is probably not as easy to estimate as the cost ratio. The 

study in the two examples shows that the choice of a highly efficient design is often quite 

robust to changes in the variance ratio values. If the guessed or estimated d value is 

slightly different from the actual value, the selected split-plot design based on the guessed 

value remains highly efficient. Therefore, the cost adjusted performances flexibly 

consider a balance between quality and cost, and will hopefully provide practitioners with 

more realistic mechanisms for selecting a SPD that is most appropriate to their situations. 

 

Thus far, most work in the literature has studied split-plot design based on one single 

criterion, such as, one of the D-, G- and V-optimality criteria. One disadvantage of a 

single criterion is that the best design found based on one criterion could have poor 

performance for another criterion. For instance, in Chapter 2 and 3, we found that the V-

optimal RSPD CCD improves average prediction variance by sacrificing its G-efficiency. 
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Therefore, determining the purpose of a particular experiment is very important before 

deciding one particular design. A simple alternative that offers a reasonable solution in 

practice is that the practitioner can select a design that is highly efficient for all aspects 

and with the best balance between multiple criteria. In Chapter 5, the geometric means of 

D-, G- and V-efficiency are employed to examine the overall performance of the different 

variations of CCDs with different factorial levels. The CCD with standard factorial levels 

is shown optimal or having high efficiency in terms of the comprehensive performance. 

The superior performances of standard factorial levels over the V- and G-optimal factorial 

levels for combined multiple criteria is robust to the changes of variance component ratio, 

which assure that the CCD with standard factorial levels is a safe and good choice, when 

the practitioner is not able to obtain the precise estimate of variance component ratio or 

does not have much knowledge about its range.  

 

If the cost of experiment is also an issue the experimenter wants to consider, the most 

important aspect in choice of design is to select the appropriate structures of CCDs based 

on the cost scenario of the experiment. The structure of CCDs includes the number and 

sizes of the whole plots, as well as the settings of subplot levels within whole plots. 

Regardless of whether a single criterion or multiple criteria are of interest, designing the 

structure of CCD according to the cost and variance ratio scenario should be the first step. 

Next, for a single criterion, optimizing the factorial levels does help improve the 

efficiency of the design with best structure, especially for the G-optimality. If the overall 

performance for a combination of D-, G- and V-efficiency is of interest, the standard 

factorial levels are shown to have the best balance between the three efficiencies and 

optimizing the factorial levels does not yield substantial improvement. It is shown that 

the CCDs selected based on the multiple criteria are often highly efficient for each of the 

individual criterion. However, if a particular aspect is known most important, a design 

selected based on this criterion can be better because that the factorial levels can be 

adjusted to be more efficient.  
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Future Work 

 

As discussed in Chapter 1, assessing split-plot designs is much more complicated than 

assessing completely randomized designs. Many factors, such as the factor combinations 

in the design matrix X  and the structure of whole plots, and the way assigning the 

subplot levels within whole plots, all affect the performance of SPDs. Moreover, the 

value of variance component ratio plays an important role in the design properties and 

choice of optimal SPD. Incorporating a realistic summary of the relative costs for the 

whole plots and subplots can alter the choice of the most desirable design.  

 

In this dissertation, some highly efficient designs have been identified, however an 

exhaustive search of optimal split-plot designs for the vast array of scenarios has not been 

performed. In particular, split-plot design optimization for the second order model case is 

considerably more complicated than for the first order model. Occasionally there may be 

constraints on the shape of the design region. Therefore, designing split-plot experiments 

can be an extremely large-scale combinatorial problem. A computer-generated design is 

often the solution for this type of problems. Heuristic optimization methods have been 

used as the alternatives to classical methods in computer-generated designs because they 

do not need a closed form mathematical formulation, they can deal with non-continuous 

space, and they approach a best solution quickly by avoiding being trapped at locally 

optimal solutions. 

 

Among the various heuristic optimization methods, genetic algorithms (GA) are one of 

the emerging methods used for designing of experiments. See related work in Park, 

Robinson, Montgomery and Borror (2005) and Heredia-Langner et al. (2004). The GA is 

based on the principle of natural evolution. It simulates the natural selection mechanism 

in the biologic system to guide search of the solutions. A population of candidates should 

be provided first, and then the individuals in this population strive for survival. The GAs 

seek to breed the solutions via processes analog to the natural biological procedures, such 

as cloning and crossover (mating). In the GAs, a fitness measure or evaluation function 

on which to judge the goodness of the designs is flexible and user-specified. It is often an 
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optimality criterion, such as D-, G- or V-efficiency, or a desirability function that 

combines one or more of these measures. For each individual in the population, the 

designs are evaluated and selected for next generation based on the fitness measure. This 

procedure is repeated iteratively until no improvement in the solution for several 

consecutive generations. The GA is a computationally intensive optimization approach 

and provides an efficient algorithm for the exchange of information between the designs. 

Combined with other heuristic optimization methods, they can provide more exploration 

ability and more efficiency in finding a best solution. Drain, Carlyle, Montgomery, 

Borror and Anderson-Cook (2004) use genetic algorithm simulated annealing (GASA) 

method for evaluating prediction error variance and slope estimation variance for designs 

with noise factors. It is shown that the GASA adopts the advantages of GA and simulated 

annealing and thus provides a significant improvement in computational efficiency and 

more exploitation ability. 

 

Using GA to find optimal split-plot designs for the second order model case under 

various cost and variance ratio scenarios, will allow better understanding of the tradeoffs 

between quality and cost. Goos and Vandebroek (2001, 2004) use exchange algorithm to 

search D-optimal SPDs for cuboidal region. However, optimal SPDs for prediction have 

not been studied in literatures. In the future, GAs will be used to find the optimal SPDs 

for G- and V-efficiencies first. Differences would be expected between the G-/V- and the 

D-optimal SPDs. We also want to find the optimal split-plot design for spherical design 

regions. Second, the cost scenarios will be incorporated into the optimal SPDs searching. 

In this case, there may be several natural mechanisms for specifying the cost based 

constraint on the total size of the design. We may wish to restrict the total number of 

design points, the total number of whole plots, or the total cost of the split-plot 

experiments. Each of these constraints will require different methods for generating 

offspring from the parents within the GA. Finally, the SPD with best balance for D-, G- 

and V-efficiency can be explored using GA.  

 

Some other desirable properties could also be incorporated into the selection of an 

optimal design. For instance, we may want the design to be able to estimate the whole 
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plot error while keeping the number of whole plots as small as possible. Another 

consideration may be to limit the whole plot sizes because of some physical constraints 

on maximum number of subplot units that can be accommodated within the whole plot 

units. After the GA generates highly efficient designs, the above properties can be 

considered to help selecting the best one from the candidate designs obtained.  
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