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In this paper, we describe a highly efficient automatic test pattern generator for stuck-open (SOP) faults, called
SOPRANO, in CMOS combinational circuits. The key idea of SOPRANO is to convert a CMOS circuit into an
equivalent gate level circuit and SOP faults into the equivalent stuck-at faults. Then SOPRANO derives test
patterns for SOP faults using a gate level test pattern generator. Several techniques to reduce the test set size
are introduced in SOPRANO. Experimental results performed on eight benchmark circuits show that SOPRANO
achieves high SOP fault coverage and short processing time.
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I. INTRODUCTION

MOS technology has become a dominant tech-
nology in VLSI circuits. However, the testing

of CMOS circuits is complex and time consuming.
A major difficulty in testing CMOS circuits stems
from the inadequacy of the line stuck-at fault model.
Transistor stuck-open (SOP) faults, in which faulty
transistors are turned off permanently, are not
modeled properly in the line stuck-at fault model [1].
A combinational circuit under the presence of SOP
faults may behave as a sequential circuit. A sequence
of two test patterns is required to detect a SOP fault
[2-14].

Several researchers have proposed various meth-
ods of deriving test patterns for SOP faults [2-14].
These methods can be classified into three categories
depending on their approaches:

1. switch level test pattern derivation based on a
graph or a switch model of circuits [2-5];

2. gate level test pattern derivation based on an
equivalent gate level model of circuits [6-11];
and

*The research reported was supported in part by the National
Science Foundation under grant no. MIP-8809164.

3. derivation of stuck-at test patterns based on an
equivalent gate level model first and then or-
ganization of the sequence of stuck-at test pat-
terns to cover SOP faults [12-14].

Since a switch level model represents the behavior
of a CMOS circuit accurately, the first approach
achieves higher fault coverage than the other two
approaches (based on a gate level model). However
switch level test derivation algorithms are complex
and time consuming, hence they may not be practical
for large circuits. The last approach is simple and
effective, but limited to CMOS circuits consisting of
only primitive gates. For these reasons, we employed
the second approach in implementing an automatic
test pattern generator for SOP faults. We call the
system SOPRANO. In general, gate level test pat-
tern derivation algorithms are relatively simple when
compared to switch level test pattern derivation al-
gorithms. Moreover, they can use well established
test generation algorithms developed for line stuck-
at faults such as PODEM [15] and FAN [16].

In this paper, we consider only single SOP faults.
Detection of a SOP fault requires the application of
two test patterns in sequence [2-14]. The first pat-
tern, called T1, is used for the initialization of the
faulty gate output. The second pattern, called T2,
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detects the SOP fault. As explained later, T2 is, in
fact, a test pattern detecting the stuck-at fault cor-
responding to the SOP fault. The key idea of
SOPRANO is to convert a CMOS circuit under test
into an equivalent gate level circuit and SOP faults
into stuck-at faults. Then, SOPRANO derives a T2
pattern of a SOP fault using an efficient gate level
test pattern generation algorithm, FAN [16], and a
gate level fault simulator, a parallel pattern single
fault simulator. Once a T2 pattern is obtained, a T
pattern is obtained using fault free responses of the
circuit. After a (T, T2) pair of each SOP fault is
obtained, SOPRANO minimizes the overall test
length through operlapping T and T patterns.

Since SOPRANO does not consider gate delays,
some (T, T2) pairs obtained by SOPRANO could
be invalidated when gate delays are considered [10].
However, our experimental results show that only a
small portion of (T1, T2) pairs is invalidated. Cur-
rently, SOPRANO is limited to fully complementary
CMOS (FCMOS) gates.
The paper is organized as follows. In Section II,

the modeling technique for CMOS circuits and SOP
faults is described. In Section III, the procedure for
deriving SOP fault test patterns is described. Section
IV reports experimental results and observations. Fi-
nally, Section V summarizes this paper.
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FIGURE A FCMOS gate and Jain and Agrawal’s gate model.
a) A FCMOS gate; b) equivalent gate model.

II. CIRCUIT AND FAULT MODELING

In this Section, we describe the procedure to trans-
form a CMOS gate into its equivalent gate level cir-
cuit. Our modeling is not confined to FCMOS gates
with the dual structure, but, for clarity, we limit our
discussion to dual FCMOS gates for the time being.
Non-dual FCMOS gates are discussed later.

First, we briefly review the modeling procedure
given by Jain and Agrawal [8]. In this procedure, a
CMOS gate is described by three logic blocks, a
memory element (called a B-block) and two gate
level networks in which one represents the p-type
transistor network and the other the n-type transistor
network. Figure 1 shows a FCMOS gate and its
equivalent gate level circuit obtained from the above
method. A memory element is necessary to represent
the memory state of the CMOS gate output under
the presence of SOP faults. The introduction of a
memory element in the above method makes the test
pattern generation more complex.
Reddy, Agrawal and Jain further simplified the

above model as described below [9]. When a T2 test
pattern of a SOP fault is applied to the faulty gate,

the gate output floats and maintains the previous
output of the gate. Hence, if the gate output is prop-
erly initialized by a T pattern before the application
of a T2 pattern, the logic value of the gate output
under the application of the T2 pattern can be ob-
tained. The knowledge of the logic value of the gate
output enables us to eliminate the memory element.
Since the functions of a p-type transistor network
and an n-type transistor network of a FCMOS gate
are dual, only one part, either a p-type or an n-type,
transistor network is necessary to describe the func-
tion of the gate. In this paper, we employ this par-
ticular technique. The n-type network is used to de-
scribe an equivalent gate level circuit..An inverter is
necessary due to the pull down operation of the n-
type network. The n-type equivalent gate level circuit
for the CMOS gate in Figure 1 is shown in Figure 2.
For details of the modeling procedure, refer to [9].
Once an equivalent gate level circuit is con-

structed, the next problem is the representation of
SOP faults in the equivalent circuit. We discuss this
problem after giving a definition.

Definition [14]: A potentially equivalent fault of an
n-type transistor SOP fault of a CMOS gate is the
line stuck-at-0 (s-a-0) fault on the input line corre-
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FIGURE 2 A gate level model by Reddy et al.

sponding to the faulty transistor. Similarly, a poten-
tially equivalent fault of a p-type transistor SOP fault
is the stuck-at-1 (s-a-l) fault on the corresponding
input line.

In the above definition, we relate a SOP fault into a
stuck-at fault using the terminologypotentially equiv-
alent to avoid confusion with the well known fault
equivalence relation. Note that if an input of a
CMOS gate is s-a-0 (s-a-l), it is equivalent to the n-
type (p-type) transistor SOP fault connected to the
input line assuming that the faulty gate is properly
initialized. This implies that if a test pattern T: de-
tects a potentially equivalent stuck-at fault, it also
detects the corresponding SOP fault provided that
an initialization pattern T1 is applied prior to the
application of the test pattern. If the structure of a
CMOS gate is dual, there is always a corresponding
p-type transistor for an n-type transistor. Hence,
SOP faults on the p-type network are represented
by s-a-1 faults in the n-type equivalent network. For
example, potentially equivalent stuck-at faults of
SOP faults in the CMOS gate shown in Figure 1 are
given in Table I.

In the above, we explained a mapping procedure
of a SOP fault into a stuck-at fault. Next, we discuss
the reduction of the potentially equivalent stuck-at
fault set size. Two stuck-at faults are equivalent if
any test pattern detecting one also detects the other.
Similarly, two SOP faults are equivalent if any (T1,
T) pair detecting one fault also detects the other.
For two SOP faults in a CMOS gate, if T patterns
of the two gates are the same, then it can be easily

seen that T1 patterns are also the same. From the
above discussion, we have the following property.

Property: Two SOP faults in a CMOS gate are
equivalent if and only if the potentially equivalent
stuck-at faults are equivalent.

For example, the line 2 s-a-0 fault and the line 3 s-
a-0 fault in Figure 2 are equivalent. Hence, the N2
SOP fault and the N3 SOP fault of a CMOS gate in
Figure 1 are equivalent. Note that the initializing
values of two SOP faults are the same (F 1 at the
faulty gate output). Using the above property, the
potentially equivalent fault set size can be reduced
by eliminating all the equivalent stuck-at faults. We
call the reduced potentially equivalent stuck-at fault
set of a CMOS gate the primary faults of the gate.
For example, a set of primary faults of the CMOS
gate shown in Figure 1 are {line 1 s-a-l, line 2 s-a-l,
line 3 s-a-l, line 1 s-a-0, line 2 s-a-0} in the equivalent
gate model shown in Figure 2. Since every SOP fault
is mapped into a corresponding stuck-at fault, a test
set detecting all the primary faults of a CMOS circuit
also detects all the SOP faults of the circuit, provided
that the faulty gate outputs are properly initialized
[141.
So far, we have confined our discussion to only

dual FCMOS gates. If a CMOS gate is not dual in
the structure, there are more than one corresponding
p-type transistors for an n-type transistor or vice
versa. If some p-type transistor SOP faults are not
mapped into potentially equivalent stuck-at faults in
an n-type equivalent circuit, both the p-type and n-
type networks are used to represent the faults in
SOPRANO. The use of both networks guarantees
the representation of all the SOP faults using poten-
tially equivalent stuck-at faults. However, only the
n-type network is used for fault free simulations.

III. TEST PATTERN GENERATOR FOR
SOP FAULTS

TABLE
A Mapping of SOP Faults to Stuck-at Faults

SOP fault,
P1 g’OP
P2’ SoP
P3 SOP
N1 SOP
N2 SOP
N3 SOP

Equivalent
Stuck-At Fault
line 1 s-a-1
line 2 s-a- 1
line 3 s-a-1
line 1 s-a-0
line 2 s-a-0
line 3 s-a-0

In this section, we describe the test pattern genera-
tion procedure employed in SOPRANO. Like other
gate level test pattern generators [17], SOPRANO
consists of three sessions: a random pattern testing
(RPT) session, a deterministic test pattern genera-
tion (DTPG) session and a test compaction session.
A parallel pattern single fault simulator (a parallel
version of the single fault propagation method pro-
posed by Harrel et al. [18]) is used for fault simu-
lations during the RPT session and the test compac-
tion session. A test pattern generator based on the
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FAN algorithm [16] is used to derive test patterns of
some primary faults in the DTPG session.
Suppose that a CMOS circuit under test and SOP

faults are described by the equivalent gate level cir-
cuit and the primary faults as described in Section
II. In the RPT session, a packet of 32 random pat-
terns is applied to the circuit each time and fault
simulated. If a test pattern tp detects a new primary
fault f;, which has not been detected by previous test
patterns, the test pattern tp is marked as a T2 pattern
of fi. The fault fi is marked as "T2 FOUND." Then
all the faults which can be initialized by the test pat-
tern tv are identified using fault free responses of the
circuit. If the test pattern tp is an initialization pattern
of a primary fault f, tp is marked as a T pattern of
f. The fault f. is marked as "T1 FOUND." A primary
fault which is marked as both "T FOUND" and "T2
FOUND" is eliminated from the fault list. The RTP
session terminates if either the fault list is empty or
consecutive two packets of random patterns (i.e., 64
random patterns) do not detect any new fault. Test
patterns of the remaining faults in the RPT session
are derived in the DTPG session. Once a T2 pattern
of a primary fault fi is derived by the FAN algorithm,
the rest of the procedure is identical to the one de-
scribed above. After (T, T2) pairs are obtained for
all the primary faults in the above two sessions, the
pairs are concatenated to achieve maximum over-
lapping of T1 patterns followed by T2 patterns. The
concatenated test sequence is fault simulated in both
forward and backward order for further reduction of
the length of the sequence, i.e., the number of test
patterns.
The SOPRANO procedure is divided into five

main steps as shown below. The first step transforms
a CMOS circuit under test into its equivalent circuit
and constructs a fault list containing all primary faults
of the circuit. The second step is the RPT session
and the third step is the DTPG session. In both steps,
a T pattern and a T2 pattern of each primary fault
are derived as explained above. If a fault is identified
as redundant in step 3, the fault is marked as
"REDUNDANT." Similarly, if the derivation of a
test pattern is unsuccessful due to excessive back-
trackings, the fault is marked as "ABORTED." In
the fourth step, a procedure is applied to reduce the
overall test sequence. Finally, the test sequence ob-
tained in Step 4 is compacted through both forward
and backward fault simulations. The procedure is
given below.

level circuit and set up a fault list, FL, con-
taining primary faults.

Step 2: {RPT session}
If all faults are detected, GOTO step 4.
If consecutive two packets of random pat-
terns do not detect any new fault, GOTO
step 3.
Generate a packet of random patterns and
perform a fault simulation.
FOR each fault f in FL DO
FOR each test pattern tp in the packet DO

If tp detects fi, mark tp as a T2 of fi.
END FOR

END FOR
FOR each fault f) in FL DO
FOR each test pattern tp in the packet DO

If tp initializes fi, mark tp as a T of fi.
END FOR
Eliminate fi if both T and T2 are found.

END FOR
GOTO Step 2.

Step 3: {DTPG session.}
If all faults are considered, GOTO Step 4.
Select a fault fi from FL.
Generate a test pattern for the fault.
IF a test tp is derived THEN

If unspecified inputs exist in tp, assign ran-
dom patterns to the unspecified inputs.
Apply tp to the circuit and perform a fault
simulation.
FOR each fault fi in FL DO

If tp detects fi, mark tp as a T2 pattern
off .

END FOR
FOR each fault f in FL DO

If tp initializes fk, mark tp as a T pattern
of
Eliminate fk if both T1 and T are found.

END FOR
ELSE IF fi is identified as redundant,
Mark fi as REDUNDANT.

ELSE
Mark fi as ABORTED.

END IF
GOTO step 3.

Step 4: {This step arranges the test patterns to min-
imize the overall test set size.}

Step 5: {This step compacts the test sequence de-
rived in step 4 through forward and back-
ward simulations.}

PROCEDURE SOPRANO END SOPRANO

Step 1: {Initialization}
Transform the given circuit into the gate

In Step 3 of the above procedure, we selected a fault
at a check point (i.e., a primary input or a fanout
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branch) first, if possible. Otherwise, a fault is se-
lected arbitrarily. It should be noted that the fault
free responses of the circuit (which are necessary to
determine initialization patterns of SOP faults in Step
2 and Step 3)’are obtained during the fault simula-
tions. In the following, we explain Step 4 and Step
5 in detail.

Step 4. Minimization of The Test Sequence

Once two test patterns for each fault are derived,
the overall test sequence is minimized in this step.
Let us denote each distinct test pattern as tl, t2,
t and each test pattern pair as s, s2,... Sm. Each
s represents an ordered pair (Ti, ti) where ti is an
initialization pattern and t a test pattern. Our aim is
to find a minimal length test sequence S where S
contains each test sequence si as a subsequence. This
problem is an instance of the problem of finding a
minimal length superstring (where the length of each
substring is two) [19]. The linear time algorithm pro-
posed by Gallant et al. is employed in SOPRANO
[19]. The algorithm guarantees to find a minimal
length test sequence for the given test patterns. The
time complexity is linear with respect to the number
of two pattern tests. Recently, Chakravarty and Ravi
presented a similar method of compacting test se-
quences in [20].

In the following, we will illustrate the algorithm
using an example. Let us suppose that ten pairs of
two pattern tests, (t, /2), (tl, ts), (t2, t3), (t2, t), (t3,
t4), (t4, t2), (ts, t6), (t6, tl), (t7, ts), (t8, t7), are derived.
A directed graph model of these test patterns is
shown in Figure 3. Each node denotes a test pattern.
A directed edge from a node t to a node ti denotes
a test pair (ti, ti). In the given graph, the traversing
starts at the node t since it is the only node which
has more outgoing edges (2) than incoming edges
(1). Suppose that we traversed edges following the
path (t, t2, ts, t6, t, ts). The traversing is stopped at
the node t5 since it has no more outgoing edges. The

FIGURE 3 Graph model of two pattern tests.

path traversed is deleted from the graph G and added
to the test sequence S. The remain.ing paths (t2, t3,
t4, t2) and (t7, t8, tv), form cycles. Pick a node t2 and
traverse the cycle (t2, t3, t4, t2). Since the cycle has a
common node t2 with S, insert it to the test sequence
S without duplicating the intersecting node t2. Then
S becomes (t, t2, t3, t4, t2, ts, t6, tl, ts). Since there is
no common node between the cycle (t7, ts, t7) and S,
the cycle is added at the end of S. The final test
sequence S is (t, t2, t3, t4, t2, ts, t6, tl, ts, t7, ts, t7).
The above minimization procedure is formally de-

scribed in the following. The first step of the algo-
rithm is to construct a directed graph from the given
test patterns. In the second step, a test sequence S
is constructed by traversing the directed graph.

PROCEDURE TEST_SEQUENCE_MINIMIZA-
TION

Step 1:

Step 2:

Construct a direct graph G with the given
test patterns.
Test sequence S be initialized to be empty.
FOR each node v in G, compute the num-
bers of the outgoing edges and the incoming
edges.
WHILE there exists a node v in G in which
the number of the outgoing edges is larger
than that of the incoming edges DO

Traverse edges as far as possible starting
from v.
Delete the edges from G and add them
into S.

END WHILE
{The remaining edges form cycles.}
WHILE there exist a node v in G DO

Traverse a cycle C starting from v and
delete it from G.
IF C intersects with S THEN

Insert C after an intersecting node of S
without duplicating the intersecting
node.

ELSE
Add C at the end of S.

END IF
END WHILE

END TEST_SEQUENCE_MINIMIZATION

Step 5: Compaction of The Test Sequence

In this step, SOPRANO compacts the test sequence
by applying the test patterns in the forward and back-
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test
sequence

faults

TABLE II
Compaction of a Test Sequence

(a) Forward Simulation

tO tl t2 t3 t4, t5

X X

t6 t7 t8 t9

X X X

test
sequence

faults

TABLE II
Compaction of a Test Sequence

(b) Backward Simulation

t8 tg, t4 t5

X X X

tO tl t2

X

ward order. In the following, we illustrate the pro-
cedure using an example. Suppose that a test se-
quence of ten patterns (to, t, t2, t3, t4,
is obtained in Step 4 of SOPRANO. It should be
noted that a pattern may be identical to t as shown
in the example of Step 4. Then SOPRANO applies
the test sequence in the given (forward) order and
performs fault simulations. Through the fault simu-
lations, SOPRANO checks if each test pattern de-
tects at least one new fault. Suppose that only five
test patterns marked with "X" detect one or more
new faults as shown in Table II-(a). Since a test pat-
tern ti could be an initialization pattern of ti+ 1, ti can
be eliminated only if and ti+ do not detect any new
fault. For example, t3 and t6 are eliminated from the
test sequence, but to, t4 and t7 are not. The remaining
test sequence is divided into three subsequences, (to,
t, t2), (/4, ts) and (t7, t8, t9) such that the first test
patterns of the subsequences (i.e., to, t4 and tT) do
not detect any new fault, but serve as initialization
patterns. The subsequences are applied in the back-
ward order as shown in Table II-(b). Similarly, test
patterns ts and t2 are eliminated from the test se-
quence. The final test sequence after the two simu-
lations is {t7, t8, t9,.t4, to, tl). The above procedure is
formally described in the following.

PROCEDURE TEST_COMPACTION

Step 1: {Forward Simulation}
Apply the given test patterns in the forward
order and perform fault simulations.
Discard the test patterns which serve as nei-
ther initialization patterns nor test patterns.

Step 2: {Backward Simulation}
Divide the obtained test sequence into sub-
sequences such that the first pattern of each

subsequence serves as only an initialization
pattern.
Apply the subsequences in the backward or-
der and perform fault simulations.
Discard the test patterns which serve as nei-
ther initialization patterns nor test patterns.

END TEST_COMPACTION

As a conclusion of this section, we note the dif-
ferences between automatic test pattern generators
(ATPGs) for stuck-at faults and SOPRANO, an
ATPG for SOP faults. SOPRANO requires the iden-
tification of initialization patterns in Step 2 and Step
3 and the organization of test patterns in Step 4,
which are unnecessary for an ATPG for stuck-at
faults. In Step 5, SOPRANO requires both forward
and backward fault simulations for test compaction,
while an ATPG for stuck-at faults requires only back-
ward fault simulation.

IV. EXPERIMENTAL RESULTS

SOPRANO has been implemented using approxi-
mately 5000 lines of C language code. It currently
runs on SUN 386i workstations. As explained in the
previous section, SOPRANO derives test patterns
using a gate level test pattern generator and a gate
level fault simulator in which zero gate delays are
implicitly assumed. When gate delays are consid-
ered, some initialization patterns may fail to set the
intended values at the faulty gate outputs [10]. As a
result, the following T2 patterns fail to detect in-
.tended faults, which otherwise would be detected.
To measure the effective fault coverage under non-
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1
inverter 1
buffer 2
NAND/NOR
AND/OR

TABLE III
Gate Delay Assignment

number of inputs
4 ..I >_ 5

4 5
5 6

zero gate delays, we implemented a SOP fault sim-
ulator in which gate delays are considered [21]. The
transport delay model is employed in the simulator.
The delay values used in the simulator are shown in
Table III.
To measure the performance of SOPRANO, we

used eight benchmark circuits presented in ISCAS85
[22]. We assume that the circuits are composed of
only primitive FCMOS gates (i.e., AND, OR,
NAND, NOR and inverter) and buffers. Buffers are
assumed to be composed of a series of two inverters.
The backtracking limit of the deterministic test pat-
tern generator is set to ten. Experimental results are
given in Table IV. The results are the average of ten
experiments with different initial random seeds. The
fault coverage is compared with that of Cox and
Rajski presented in [7]. In Cox and Rajski’s method,
(T, T2) pairs of test patterns are generated randomly
and T and T2 patterns of a pair differ in only one
bit position. (Cox and Rajski’s results are chosen for
comparison, since, to our knowledge, they are the
only experiments performed on benchmark circuits
which are available in the open literature). In the
table, the column headings fc and fc_d are the SOP

fault coverages assuming zero gate delays and
modeled gate delays, respectively. The CPU time is
measured on a SUN 386i workstation.
From Table IV, the average SOP fault coverage

of SOPRANO is 97.90% under zero gate delays and
94.57% under the modeled gate delays. The corre-
sponding SOP fault coverage of Cox and Rajski’s
method is 85.91% and 79.27%, respectively. Except
for the smallest benchmark circuit (C880), the SOP
fault coverage of SOPRANO is much higher than
that of Cox and Rajski’s method. CPU times of
SOPRANO for all the circuits except the largest one
are less than about one minute. (The CPU times for
Cox and Rajski’s experiments are not available in
[7].) The reduction of SOP fault coverage of
SOPRANO (by 3.3%) under gate delays is due to
the invalidation of initialization patterns. The switch
level test pattern generation considering delays could
increase the fault coverage. However, the switch
level test generation is very time consuming.
Another observation to be noted is that the av-

erage number of test patterns of SOPRANO is re-
duced by 50.8% on the average through the forward
and backward simulations in Step 5. However it in-

name

C880
C1355
C1908
C2670
C3540
C5315
C6288
C7552
average

no. of
SOP faults

1112
1610
2378
3269
4608
6693
7216
9656

TABLE IV
Experimental Results of SOPRANO

SOPRANO
CPU time fe fc_d

(sees)

’5.0 ’]00.00’ 98.97’
12.8 98.38 92.17
19.1 99.52 92.12
54.5 94.25 92.70
73.0 95.27 93.20
29.5 99.09 94.95
68.8 99.04 94.82

267.9 97.68 93.47
97.90 94.05’4568 "l’ 66.

* This is the fault coverage of robust test patterns.
** Experiments did not run to completion.

Cox & Rajski
fc re_d*

(%)
99.59
92.86
89.42
61.32
89.04
83.10
97.87
70.81
85.1

(
99.59
85.90
87.29
59.04
84.11
82.43
67.32
68.46**
79.27
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TABLE V
Comparison with an ATPG for Stuck-At Faults and SOPRANO

name no. of no. of
faults tests

SAT SOP SAT SOP
C880 942 1112 66 202
C1355 1574 1610 83 337
C1908 1879 2378 127 401
C2670 2747 3269 126 397
C3540 3428 4608 174 703
C5315 5350 "6693 "141 609
c6288 ’7744 7216 37 253
C7552 7550 9656 239 793

fault abortS, redmadt CPU
coverage faults faults time

SAT SOP SAT SOP SAT soP’sAT SOP
100.00 98.97 0 0 0 0 3.4 5.0
98.87 92.17 9 18 8 8 9.8 12.8
99.49 92.12 2 4 7 7 11.6 19.1
95’.74 92.70 31 69 ’86 119 41.3 54.5
96.00 93.20 0 2 137 216 33.3 73.0
98.90 94.95 0 1 59 60 17.2 29.5
99.56 94.82 0 18 34 51 33.8 68.8
98.25 93.47 60 129 71 95 184.8 267.9

curred the increase of processing time. The average
CPU time spent for the simulations is 27.4% of the
total CPU time.

Since SOPRANO considers equivalent gate level
circuits and potentially equivalent stuck-at faults
(rather than switch level CMOS circuits and SOP
faults), it is interesting to compare the performance
of SOPRANO with that of an ATPG for stuck-at
faults. We implemented an ATPG for stuck-at faults,
called SAT-ATPG, for comparison. SAT-ATPG uses
the same FAN algorithm and the same parallel pat-
tern single fault simulator used in SOPRANO. Ex-
perimental results of SOPRANO and SAT-ATPG
are compared in Table V. For both experiments, the
backtracking limit’ is set to ten. The results are again
the average of ten experiments. The CPU time is
measured on a SUN 386i workstation. The column
headings of the table are self-explanatory.
From Table V, the average size of test patterns of

SOPRANO is 461 and that of SAT-ATPG is 124.
The average size of the SOP fault test set is about
3.7 times larger than that of the stuck-at test set. The
average CPU time of SOPRANO is 66.3 seconds and
that of SAT-ATPG is 41.9 seconds. SOPRANO
takes about 58% more CPU time on the average than
SAT-ATPG. The larger test set size and both the
forward and backward simulations for the test com-
paction are the main reasons for the longer CPU
times of SOPRANO. The average fault coverage
(considering gate delays) of ,SOPRANO is 94.57%
and that of SAT-ATPG is 98.35%. The lower SOP
fault coverage for SOPRANO is due to the invali-
dation of some initialization patterns. Notice that the
fault coverage of SAT-ATPG is the stuck-at fault
coverage, not the SOP fault coverage. When we di-
rectly apply the test patterns derived by SAT-ATPG
to detect SOP faults, the SOP fault coverage is much
lower than the stuck-at fault coverage. For example,

only 85.78% of SOP faults ar detected by stuck-at
test sets for C3540 (while 93.20% of SOP faults are
detected by SOPRANO). Hence, SOPRANO
achieves much higher SOP fault coverage than SAT-
ATPG. A detailed analysis on the SOP fault cov-
erage of stuck-at test sets is available in [14]. It is
interesting to note that the number of aborted and
redundant faults for SOPRANO is always larger than
that of SAT-ATPG. The reason for the larger re-
dundant and aborted faults for SOPRANO is due to
larger number of non-equivalent SOP faults. (Con-
versely, more redundant and aborted faults are col-
lapsed into equivalent faults in SAT-ATPG). Finally,
C7552 has many redundant and hard-to-detect faults.
Hence, SOPRANO as well as SAT-ATPG perform
many backtrackings to derive test patterns or identify
the redundant faults. This explains long CPU times
of SOPRANO and SAT-ATPG.

V. SUMMARY

In this paper, we described an automatic test pattern
generator, SOPRANO, for stuck-open (SOP) faults
in CMOS combinational circuits. The essential idea
of SOPRANO is to convert a CMOS circuit and SOP
faults into an equivalent gate level circuit and equiv-
alent stuck-at faults, respectively. Then SOPRANO
derives test patterns using a gate level test pattern
generator and a gate level fault simulator. Several
heuristics are also introduced in SOPRANO to re-
duce test set size. The experimental results on the
eight benchmark circuits show that SOPRANO
achieves high SOP fault coverage and short process-
ing time. The average SOP fault coverage is 97.90%
assuming zero gate delays and 94.57% considering
gate delays. When compared to an ATPG for stuck-
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at faults, the average CPU time of SOPRANO is
only 58% longer and the average test set size 3.7
times larger.
As explained in Section II, SOPRANO currently

deals with CMOS circuits consisting of only FCMOS
gates. CMOS circuits with pass transistors cannot
be modelled into a gate level circuit directly. A fu-
ture research area is to expand the capability of
SOPRANO to include general CMOS combinational
circuits which may include pass transistor logic.
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