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Development of a Single-Channel Direction Finding Algorithm

Nathan M. Harter

Abstract

A radio direction finding (DF) system uses a multiple-element antenna array coupled with 
one  or  more  receivers  to  estimate  the  direction-of-arrival  (DOA)  of  a  targeted  emitter  using 
characteristics of the signal received at each of the antennas in the array.  In general, DF systems can 
be classified both by the  number  of  receivers  employed  as  well  as  which characteristics  of  the 
received signal are used to produce the DOA estimate, such as the signal's amplitude, phase, or time 
of arrival.

This  work  centers  on  the  development  and  implementation  of  a  novel  single-channel 
direction finding system based on the differential phase of the target signal received by a uniform 
circular antenna array with a commutative switch.  The algorithm is called the PLL DF Method and 
differs  from  older  single-channel  DF  techniques  in  that  it  is  a  digital  algorithm  intended  for 
implementation on a software-defined radio (SDR) platform with a custom-designed antenna array 
and RF switching network.  It uses a bank of parallel software PLLs to estimate the phase of the 
signal received at each element of the multi-antenna array.  Theses estimated phase values are then 
fed to a specialized signal processing block that estimates the DOA of the received signal.

This thesis presents the details of the initial version of the PLL algorithm which was used to 
produce a proof-of-concept system with an eight-element circular array.  It then discusses various 
technical challenges uncovered in the initial implementation and presents numerous enhancements 
to the algorithm to overcome these challenges, such as a modification to the PLL model to offer 
increased estimator robustness in the presence of a frequency offset between the transmitter and 
receiver,  revisions  of  the  software  implementation  to  reduce  the  algorithm's  processing 
requirements, and the adaptation of the DF algorithm for use with a 16-element circular array.  The 
performance of the algorithm with these modifications under various conditions are simulated to 
investigate their impact on the DOA estimation process and the results of their implementation on 
an SDR are considered.
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Chapter 1 

Introduction

Radio  direction  finding  (DF)  systems  use  a  multiple-antenna  array  with  one  or  more 

receivers to produce an estimate of the bearing angle or geographical coordinates of an intercepted 

signal of interest (SOI).  The primary function of a DF system is to produce a direction-of-arrival 

(DOA).  DF systems have numerous applications from amateur use in HAM radio “foxhunting” 

contests to emergency service to military defense and intelligence operations.

These systems can be categorized into two main types, n-channel DF systems using typically 

one receiver channel per antenna, and single-channel DF systems which use a single receiver with a 

multiple-antenna array along with some form of switching among the elements or combining them 

to present the receiver with a single signal.  Single-channel DF systems offer obvious advantages 

over n-channel systems in terms of size, weight, power, and portability requirements but in general 

pay  for  these  advantages  with  reduced  processing  power,  accuracy,  and  robustness  in  adverse 

channel conditions.  The challenges inherent in developing a single-channel DF system are precisely 

what  make it  an attractive  field  of  study  as  the  utility  of  a  system that  can offer  performance 

characteristics that approach those of n-channel systems is undisputed.

This thesis is concerned with a specific single-channel DF algorithm known as the Phase 

Locked Loop Algorithm [1],[2],[3],[4].  It is the continuation of work started at MPRG by a previous 

student, John Keaveny, along with his advisor Dr. Michael Buehrer and fellow student Swaroop 

Venkatesh.  His work focused on the initial development, simulation, and implementation of the 

algorithm.  In short, the algorithm uses an 8 element circular array connected to a single-channel 

software defined radio (SDR) receiver through a digitally controlled 8-to-1 switching circuit that 

switches sequentially around the elements.  This time divided signal is then fed into a bank of eight 

parallel phase locked loops (PLLs) which then track the phase of the signal at each antenna.  This 

collected phase data is then differentiated and fed through a signal processing block to produce a 

single DOA estimate for one full array sweep (i.e. the time required to switch from the first antenna 
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element to the last).

This work extends the original algorithm development and implementation in a few ways. 

First, the initial implementation of the PLL model, while perfectly functional, was overly processor 

intensive.  In order to add further enhancements to the algorithm implementation it was necessary 

to produce a more efficient implementation of the PLL model.  Second, it was discovered during the 

initial implementation that a slight frequency offset occurs between the test signal generated by the 

transmitter and the receiver's local oscillator (LO).  Since the DOA estimations process of the PLL 

algorithm is based on the phase of the received SOI, this frequency offset can wreak havoc with the 

estimate if it is of significant magnitude.  This work provides a means of removing the frequency 

offset.

Third, a method for improving the error performance of the system was developed.  This 

consists of producing a quality metric to accompany each DOA estimate as well as filtering the 

output DOA estimates over time.  Finally, a method for scaling the algorithm to work with a 16 

element array was also considered.  This involved a new approach to dealing with the phase data 

generated by the PLLs as the original signal processing block would be computationally infeasible 

when the number of antenna elements is increased.

1.1 Project Equipment Description
1.1.1 Software Introduction

Practically  all  algorithm  development  was  performed  in  Matlab.   Matlab  provides  an 

excellent  environment  for  quick  evaluation  of  algorithms  through  its  combination  of  built  in 

functions and ease of development.  For implementation purposes, the majority of the code was 

simply translated from Matlab into C.  Only certain functions, such as the DFT implementation and 

switch control  were prototyped in C before integration into the larger  implementation.   The C 

program  was  compiled  using  TI  Code  Composer  Studio  and  downloaded  to  the  SDR  using 

proprietary software developed by DRS-SS.

1.1.2 Hardware Introduction
The SDR used in this project, as well as the funding, was provided by DRS Signal Solutions, 

Inc.  of  Gaithersburg,  MD.   This  work  is  part  of  the  Sunrise  University  project,  which  was 

established to fund implementation-based research at the graduate level at both Virginia Tech and 

Carnegie  Mellon  University.   The  radio  used  is  the  WJ-8629a  software-definable  surveillance 
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receiver.  The 8629a has a frequency range of 20MHz to 2.7GHz, 22 selectable IF bandwidths from 

200Hz to 1.23MHz, and 5 user-definable bandwidth slots. It also contains a floating point Texas 

Instruments C67 DSP capable of 1GFLOPS.  DRS-SS also furnished their proprietary software for 

program development and download as well as radio control.  As far as algorithm development is 

concerned, the actual specifications of the hardware used for implementation is unimportant as long 

as it conforms to certain basic assumptions, mainly that it provides a digital baseband version of the 

targeted RF signal relatively free of spurious signals generated by the receiver itself.

1.2 Thesis Description
Chapter 2 will provide a brief overview of direction finding techniques and will give a few 

examples of both single-channel and n-channel algorithms.  Chapter 3 continues the discussion of 

DF algorithms by describing in detail the PLL Algorithm for single-channel DF.  In Chapter 4, we 

will discuss the various enhancements to algorithm that encompass the bulk of the work.  These 

enhancements include modification of the PLL model used for both more efficient implementation 

and robustness in the presence of a  frequency shift on the signal of interest; modification of the 

curve-fitting  algorithm  to  reduce  computational  complexity  when  used  with  antenna  arrays 

consisting of a large number of elements; and the development of a quality metric to aid in the 

determination of estimation errors.

Chapter 5 presents  simulations of the PLL algorithm and its  enhancements discussed in 

Chapters 3 and 4.  The simulation results were generated using Matlab and focus on the statistical 

performance  of  the  algorithm in  an  AWGN channel  with  various  operating  parameters.   The 

chapter  will  also  investigate  the  operation  of  the  algorithm  with  a  moving  target  and  simple 

multipath channel model.  Chapter 6 will describe the implementation of the enhancements to the 

algorithm.  The chapter will  also present limited performance results of the algorithm operating 

under controlled laboratory conditions.

The  final  chapter  will  present  our  conclusions  on  the  work.   It  will  discuss  the  main 

contributions  of  this  work  to  the  PLL algorithm as  well  as  a  summary  of  the  implementation 

successes  and failures  and lessons learned during the research.   Finally,  it  will  describe possible 

future directions for research.
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Chapter 2 

Introduction to DF Concepts

When  one  searches  for  DF  literature,  they  will  most  likely  find  a  vast  assortment  of 

algorithms and corresponding systems.  However, much of this literature presupposes a familiarity 

on the part of the reader with fundamental knowledge of DF topics.  In this chapter we will briefly 

discuss some of the basic concepts encountered in practically any DF discussion as well as introduce 

a few well-known DF algorithms in order to illustrate the basic concepts.  Two of the algorithms 

discussed, the Watson-Watt and Doppler/Pseudo-Doppler methods, are single-channel techniques 

that .  The third algorithm, Correlative Vector DF, is an n-channel method based on simple delay-

and-sum beamforming.  The fourth and final algorithm discussed,  MUSIC, is a high-performance 

algorithm capable of operating in a multipath environment.  We will revisit this algorithm in Chapter 

7.

2.1 Direction Finding Fundamentals
2.1.1 Basic Assumptions

DF algorithms, apart from being classified by the number of receiver channels used, can also 

be classified by the manner in which they treat the signal received at an antenna array.  Central to 

this is the response of the antenna array over DOA (in azimuth and possibly elevation) as well as 

frequency.  Approaches can be categorized as amplitude-based, phase-based, or a combination of 

the two.  Amplitude-based systems compare the received amplitude among the various elements in 

the antenna array to locate a point in an plane about the array that the signal originates.  Phase-based 

systems determine DOA information from either the absolute or differential phase of the wavefront 

as it crosses the array.  Systems that use a combination of amplitude and phase information tend to 

be more complex but also result in higher performance.  Beamforming and superresolution systems 

fall into this category.

The  basic  antenna  array  can  be  envisioned  as  an  arbitrary  array  of  isotropic  antennas 

arranged about an arbitrarily defined origin point as in Figure 2.1.  For our purposes, we need to 
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make a few basic assumptions about the antenna array [5]:

● The difference in amplitude of a received SOI between antenna elements is negligible.

● There is a finite number of incident SOIs, each of which can be described by a plane 

wave.

● The SOIs are narrowband signals.

These assumptions  follow the basic requirements  for narrowband beamforming systems. 

The  first  point  essentially  means  that  the  antenna  array  is  small  relative  to  the  distance  of 

propagation such that any measured path loss from one antenna to another is insignificant.  This 

implies that the primary response of the antenna array to a signal is by modifying the phase of the 

signal.   The second point  allows  for  simplified  modeling of  the  antenna array  –  the  multipath 

environment  can  be  described  as  the  linear  sum  of  a  finite  number  of  signals.   Finally,  the 

narrowband  assumption  implies  that  the  phase  response  of  the  array  is  flat  across  the  signal's 

bandwidth.

2.1.2 The Received Signal Model
Referring  to  the  array  in  Figure  2.1 the  phase  difference  between  any  antenna  and  a 

reference point at the origin of the coordinate system is given as 

m=  xm cossin y msinsinzm cos  (2.1)

where β=2π/λ is called the phase propagation factor,   is the DOA in azimuth,   is the DOA in 

elevation, and the three-dimensional coordinates of the m-th antenna element are given as xm , ym , 

and z m .  In all analysis in this paper, the antenna arrays of interest are two-dimensional, meaning 
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Figure 2.1.  Example of an arbitrary antenna array for modeling purposes.



that the term relating to the  z-coordinate of the array can be ignored.  When modeling the signal 

received at the antenna element, the phase response of that element relative to a reference point 

along with the antenna's amplitude gain are seen as a complex scaling factor given by:

am  ,=g me− jm=gm e− j  xmcossin ym sinsin   (2.2)

where gm is the gain for the m-th antenna, and the complex baseband output of the m-th antenna is 

given by:

xm t =s tam ,=s t g m e− j  xm cos sin  ymsin sin   (2.3)

where s(t) is the SOI and xm t   is the signal at the output of the m-th antenna.  If we are concerned 

only with signals arriving on the same plane of the array then the elevation angle q is equal to 90°, 

resulting in:

xm t =s t gm e− j  xmcos ymsin  (2.4)

The collection of scaling factors into an Mx1 vector a is known as the array manifold vector 

or as the array steering vector in beamforming contexts:

a=[a0 , a1 , ⋯ a M−1 ,]T  (2.5)

The received signal at the output of the array can then be expressed in matrix notation as 

X=a st   (2.6)

This approach can be scaled up to construct a received signal that is the combination of multiple 

signals.  By creating a matrix S which represents the finite number of incident signals, D,  as its rows:

S t =[s0t ⋮
sD−1t ]  (2.7)

and a second MxD matrix A:

A=[ a0,0 ⋯ aD−1 ,D−1]  (2.8)

where a d ,d   is the array manifold vector for the d-th received signal, we can then express the 

received signal as:

X=ASN  (2.9)

where  X is essentially the linear combination of  D signals given by equation 6 and  N is a noise 

vector representing AWGN in the received signal path that is assumed to be independent for each 

antenna and receiver path.  This multiple signal model will  be revisited in Chapter 7 during the 

discussion of the PLL algorithm's performance in the presence of multipath.
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2.2 Classical DF Algorithms
2.2.1 Watson-Watt Algorithm

The Watson-Watt algorithm [6] is an old amplitude-based analog DF algorithm that can use 

either  two orthogonally  oriented loop or Adcock pair  antennas.   In an Adcock pair,  the vector 

difference of the voltage outputs from the two antennas is taken to provide a single output from the 

pair.   This  difference operation effectively  merges the circular  gain patterns of the two discrete 

antennas into a figure-8 pattern with maximum gain along the baseline of the pair and a null along 

the perpendicular to the baseline midpoint.  The perpendicular arrangement of two such pairs is 

shown in Figure 2.2 with the first pair antennas labeled AN and AS (for North and South antennas) 

and the second pair labeled AE and AW.  This same gain pattern can be achieved with the use of two 

crossed loop antennas as the typical  gain pattern for a loop antenna is a figure-8 with the gain 

pattern of the north-south pair shown as the solid gray line and the gain pattern of the east-west pair 

shown by the dashed black line.

In order to produce the DOA estimate, the voltage output from both antenna pairs (in the 

case of two Adcock pairs) is compared.  The two outputs can be expressed as:

V NS=V N−V S=e
j d

sin
−e

− j d

sin
= j 2sin d


sin  (2.10)

V EW=V E−V W=e
j d

cos
−e

− j  d

cos
= j 2sind


cos  (2.11)

where  d is  the  spacing  between antenna  elements.   Given a  sufficiently  small  antenna spacing, 

generally much less than half a wavelength at the frequency of the SOI, Equations (2.10) and (2.11) 

can be simplified to: 
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Figure 2.2.  Watson-Watt antenna array gain pattern.



V NS≈
2d

sin  (2.12)

V EW≈
2d


cos  (2.13)

The north-south pair can be treated as generating the y-axis voltage while the east-west pair creates 

the  x-axis voltage for the array's coordinate system. the arctangent of the quotient of the north-

south voltage, VNS, and east-west voltage, VEW, as:

=tan−1V NS

V EW   (2.14)

This operation essentially  uses the two voltage measurements to locate a point  in an abstracted 

plane, the angle of this point corresponding to the DOA of the received signal.

This approach can use either a two channel receiver,with each channel devoted to receiving 

the combined signal  from one of the Adcock pairs,  or a single  receiver channel that receives a 

multiplexed version of the signal.  These two options trade twice the receiver hardware in the former 

case for a more complicated antenna hardware in the latter.  One drawback to this system is that the 

gain  pattern of  each Adcock pair  is  symmetric  about  the  pair's  baseline,  meaning  that  a  signal 

arriving from one side of the pair is indistinguishable from a signal arriving from 180° away.  This 

can be remedied through the use of an antenna at the center of the array to provide a reference 

signal, or by treating the axis voltages as complex numbers and using a four quadrant arctangent 

function.

2.2.2 Doppler and Pseudo-Doppler Methods
The Doppler and derivative Pseudo-Doppler algorithms [8]  are single-channel algorithms 

that produce a DOA estimate based on the phase of the received signal.  Originally, the doppler 

method used a single antenna that moved about the circumference of a circle at a fixed angular 

velocity.  The pseudo-doppler method was developed using a multi-element circular array with a 

commutating  switch that  selects  the  antennas sequentially  around the circle  to  approximate  the 

circular motion of the doppler antenna.  This algorithm seeks to measure the doppler shift induced 

on the  received  signal  due  to either  the  rotation of  the  single  antenna  or  commutation  of  the 

switched antenna array.  The received signal is modeled as: 

r t=Acos[2 f o t2 r

cos  2 f r t ]  

(2.15)
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where  fr is  the  inverse  of  the  time  taken  to  sample  around  the  entire  antenna  array.   For  an 

illustrative example refer to Figure 2.3.  As we sample around the array at a fixed rate, the doppler 

shift imposed on the signal will be directly proportional to the rate of sampling around the array. 

When the sampling approaches the DOA of the SOI as well as 180° away (the paths labeled φ and 

φ+π) the measured Doppler shift will cross zero.  Furthermore, the measured doppler shift will be at 

a negative and positive maximum when the array is sampled at 90° and 270° from the true DOA, 

respectively (paths φ+π/2 and φ+3π/2 in the example figure).

Therefore, the DOA estimation function can consist of a simple FM demodulator consisting 

of a frequency discriminator followed by a zero crossing detector shown in Figure 2.4.  The phase of 

the signal at the output of the zero crossing detector will be directly proportional to the DOA.  One 

of the drawbacks to this system is decreased listen-through capability due to FM and AM artifacts in 

the signal due to the sampling.  Another drawback is the requirement that the speed of rotation or 

switching must be fast relative to any frequency modulation on the SOI as it can interfere with 
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Figure 2.4.  Pseudo-doppler system block diagram.

Figure 2.3.  Doppler method frequency shift example.



DOA estimation.

2.2.3 Correlative Vector DF
Correlative vector (CV) DF is one of the most commonly used DF methods of those based 

on  beamforming  algorithms  due  to  its  relative  simplicity.   It  differs  from  the  previous  two 

algorithms in that it  is an  n-channel algorithm and it uses both the phase and amplitude of the 

received signal.  With this approach, a database of array manifold vectors for the antenna array is 

generated for a set number or known DOA and frequency points, the distribution of which depends 

on how smooth the response is between points.  This database can either be generated theoretically 

or through empirical measurements, depending on how closely the actual antenna array response 

matches  the  theoretical  manifold.   One  of  the  main  strengths  of  this  algorithm  is  that  it  can 

accommodate any  imperfections in array construction or installation as long as they are reflected in 

the database.

This  algorithm  is  adapted  from  the  beamforming  algorithm  known  as  delay-and-sum 

beamforming.  Consider a generic beamforming system as shown in Figure 2.5, in which the output 

of each antenna from an M-element array is weighted by a complex number and then summed to 

produce a single output.  The vector of complex weights is known as the steering vector, and the 

method of generating the steering vector is the main characteristic of any beamforming algorithm. 

For delay-and-sum beamforming, the steering vector is simply chosen to be the complex conjugate 

of a single entry from the array manifold database for a desired look direction  φ.  Weighting the 

received signal by this steering vector will essentially coherently combine the phase-shifted signals 

from each antenna in the array if the received signal's DOA corresponds to the look direction.
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Figure 2.5.  General beamforming system.



When used as a DF algorithm, the DOA estimate is produced by correlating the measured 

array manifold with the each entry in the database at the operating frequency.  The DOA at which 

the measured manifold exhibits maximum correlation with the database is chosen as the estimated 

DOA.  Consider  the  block diagram of a  general  CV system in  Figure  2.6.   Given a measured 

manifold vector v, the correlation with each database vector can be expressed as:

r = v a T

v vT a a T 
 (2.16)

where a    is the manifold vector in the database corresponding to the measured magnitude and 

phase vector at DOA φ relative to some defined reference point on the array.  The collection of 

correlation values, r   , is known as the spatial spectrum.  From the beamforming point of view, 

the correlation process can be seen as varying the steering vector applied to the measured received 

signal manifold and measuring the output power.  Maximum output power will result  when the 

steering vector corresponding to the received signal's DOA is chosen.

Figure 2.7 shows an example plot of a CV spatial spectrum (in red, dashed) for a 5-element 

circular array with a SOI DOA of 120°.  Inspection of this plot shows that there is one definite peak 

at  120°,  which  shows  that  the  received  manifold  vector  has  the  strongest  correlation  with  the 

database at that point.  We can see that the main lobe of this spectrum is wide.  If the azimuth 

points used in constructing the database are spaced too far apart to provide satisfactory results (e.g. 

10 degree spacing when desired resolution is less than 1 degree), it is also possible to interpolate the 

resulting spatial spectrum in order to find the “true” correlation peak.  Of course, processing time is 

traded for higher resolution when the spatial  spectrum is calculated at an increasing number of 
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Figure 2.6.  Correlative vector DF system block diagram.



points.

2.2.4 The MUSIC Algorithm for Superresolution DF
The MUSIC algorithm, first proposed in 1979 by R. O. Schmidt [11],[12], falls into a class of 

high  performance  DF  algorithms  call  superresolution,  as  the  algorithm  has  the  capability  of 

simultaneously determining the DOA of multiple signals with a resolution of less than one degree, 

depending  on  antenna  array  geometry.   This  algorithm  achieves  its  high  resolution  from  the 

exploitation of an input covariance matrix derived from the input data model.  The eigenvalues of 

this  covariance matrix are  determined and partitioned into two sets,  called the signal  and noise 

subspaces.  The signal subspace is comprised of a set of array manifold vectors that correspond to 

the signals received at the array.  The eigenvectors that form the noise subspace are completely 

orthogonal to the signal subspace.  If used as the steering vectors in a beamforming system, the 

noise  subspace  vectors  would effectively  destructively  combine the received signals  because  the 

noise vectors are orthogonal to the manifold of the received signals.

The  MUSIC algorithm,  a  block  diagram of  which  can  be  found  in  Figure  2.8,  can  be 

summarized in as follows [13]:

1. First,  K samples from each receiver channel must be collected to form MxK array  X.  For 

simulation purposes,  this  array  can be generated according to equation (2.9).   Next,  the 

covariance matrix R xx  must be estimated from the received data: 

12

Figure 2.7.  Example spatial spectra from the correlative vector and MUSIC DF algorithms with a single received  
signals at a DOA of 120°.



R xx=
1
K

XX H  (2.17)

2. Perform eigenvalue decomposition on Rxx :

R xxV=V   (2.18)

where  =diag {0,1, ,M−1}, 01M−1  are  the  eigenvalues  and 

V=[ q0 q1 qM−1 ]  are the corresponding eigenvectors of Rxx .

2. From the multiplicity k  of the smallest eigenvalue min , estimate the number of signals D :

D=M−k  (2.19)

3. Form the  noise  subspace  V n  from the  eigenvectors  corresponding  to  the  k  smallest 

eigenvalues.  Determine the MUSIC spatial spectrum:

PMUSIC =
a H  A

aH V nV n
H a 

 (2.20)

where a    is the manifold vector from the database corresponding to DOA  .

4. Find the D  largest peaks of  PMUSIC  .  These correspond to the DOA of the received 

SOI(s).

When comparing the MUSIC spatial spectrum to that of the CV it is illustrative to consider 

the equations used for spatial spectrum calculation.  Equations 2.16 and 2.20 are similar in that they 

both produce a correlation between some form of the received array manifold with a previously 

stored or measured manifold in the form of the database.  The main difference is that the MUSIC 

algorithm  is  an  inverted  measure  of  the  correlation  as  the  vectors  used  in  this  algorithm  are 

supposed to be orthogonal to the received signal, meaning that the correlation between the noise 

subspace is very nearly zero when correlated with the database at azimuth angle corresponding to 
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Figure 2.8.  MUSIC algorithm block diagram.



the DOA of the received signal.

An example spatial spectrum for the MUSIC algorithm is shown in Figure 2.7 for a single 

received signal with a DOA of 120° and a five element antenna array.  Compared to the CV spatial 

spectrum, the peak of the MUSIC spatial spectrum is obviously much narrower.  This allows for the 

much higher resolution of the  MUSIC algorithm – the wide peak of the CV spectrum can hide 

multiple signals arriving with a narrow angular spacing.  If the noise subspace vectors were used as 

the array weights in a beamforming system, the resulting spatial spectrum would be a mirror image 

of the MUSIC spatial spectrum along the vertical axis – a nearly flat response across azimuth angles 

with sharp nulls at the DOA of the received signal.

A second comparison of the two algorithm's spatial spectra can be found in Figure 2.9.  This 

is the result of an example simulation of two signals arriving at the array at angles of 120° and 200°, 

with a 3dB difference in the power of the first signal relative to the second.  The CV spectrum 

clearly shows a peak at 120° but the second peak at 200° is nearly indistinguishable from the other 

sidelobes present in the spectrum because the CV spectrum is sensitive to the amplitude of the 

received signals.  If one signal is significantly stronger than the other, the less powerful signal will 

essentially be hidden by the sidelobes of the spectrum.  The MUSIC spectrum on the other hand 

shows two clearly defined peaks.  This spatial  spectrum is not dependent on the received signal 

strength of the signals because the power of the received signals is not reflected in the eigenvectors 

used to form the signal subspace – the eigenvalues contain this information.
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Figure 2.9.  Example spatial spectra from the correlative vector and MUSIC DF algorithms with two received  
signals at DOAs of 120° and 200°.



Chapter 3 

The PLL Algorithm For Single Channel DF

The previous chapter presented some of the basic concepts of DF systems and presented a 

few examples of algorithms.  We will now move on to discuss the PLL Algorithm for single-channel 

DF, emphasizing at points where it draws from previously discussed algorithms.  This chapter will 

first work through the mathematical background and lay out the assumptions we make about the 

system.  This discussion will concern the basic version of the algorithm as originally developed for 

use with an 8-element array.  

3.1 Algorithm Overview
The basic  PLL DF system,  as  shown in  Figure  3.1,  consists  of  an  M-element  uniform 

circular  array  with  an  M-to-1  RF  switching  network  and  a  software  radio  platform.   Initial 

development of this algorithm assumed that it would be used with an existing 8-element array.  The 

receiver filters and downconverts the RF input to a complex baseband signal which is then fed into 

a bank of M parallel software PLLs which are used to track the phase of the signal present at each 

antenna.  After a single array sweep, i.e. the time it takes to switch around the array from the first to 
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last element, the final value of each PLL is stored in an Mx1 vector.  This vector of phase values is 

then processed to produce a single DOA estimate for the array sweep.

This algorithm is based on the phase modulation induced on the incident signal by switching 

by the RF switching.  The PLLs are used to measure the phase of the signal from each element in 

the array.  The steady-state response of the PLLs then forms the measured phase data used by the 

DOA estimator to produce its estimate.  A block diagram of the processing flow after the PLL is 

shown in Figure  3.2.  The vector of phase samples from the PLL output, one measured value for 

each antenna, is first differentiated to remove any constant phase offset on the data and to limit the 

data's amplitude.  It is then processed by a curve fit algorithm to remove any ambiguities on the PLL 

data related to data modulation on the received signal.  A DFT is then performed on the PLL data 

in  order to  extract  the  DOA information as  well  as  to  produce a  quality  metric  for  the DOA 

estimate to assess the amount of noise and distortion present on the data output from the curve fit 

algorithm.

3.2 Mathematical Development
3.2.1 Antenna Array Model and Expression for PLL Input

Consider a uniform circular array of M elements with spatial coordinates xm  and ym  given 

by

xm=r cos 2m
M 

ym=r sin 2m
M 

 (3.1)

with the reference point of the array being the center of the circle.  Working from the framework for 

describing the phase relationship between elements in an arbitrary antenna array as described in 

Chapter 2, we can simplify the array manifold given by equation 2.4 to

am =gm e
− j 2r


cos 2m

M
−  (3.2)

Furthermore, the signal present at the output of the m-th antenna can be given by
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xm t =s t e
− j 2r


cos 2m

M
−  (3.3)

where s  t   is the complex baseband envelope of the the incident SOI.  This envelope is  assumed 

to take the form

s t =m t e− jo  (3.4)

where m t   is the modulated data signal, either real or complex, and e− jo  is a phase shift on the 

signal resulting from an arbitrary propagation distance of the signal.  This phase shift is assumed to 

be constant across all elements of the antenna array, which is expected if the propagation distance is 

large compared to the radius of the array.  The resulting signal presented to the PLL corresponding 

subsequently takes the form

xm t =m t e
− j [ o

2r

cos 2m

M
−]  (3.5)

We can see from equation (3.5) that the phase of the signal received at the m-th antenna 

element is related to the DOA of the incident signal by a sine curve with an angular  frequency 

described given by the antenna element's angular displacement from the first antenna, amplitude 

given by the ratio of the array radius to signal wavelength, and phase given by the DOA itself, as:

m=o
2 r

cos 2m

M
−  (3.6)

This means that if the phase of the signal received at the array neglecting any data modulation on the 

signal itself is plotted versus the antenna index, one full period of a sine curve will result.  It is this 

relationship that the DOA estimator seeks to extract from the PLL data.  Figure 3.3 is an example 

plot of the PLL acquiring the phase of the received signal as the array is switching.  In this example, 

the received signal is not modulated and the antenna array switches from one element to the next 

every 64 samples, which can be observed in the phase discontinuities at every 64th sample.  The 

PLL's output value for the m-th antenna is taken as the final value of the PLL at the end of the data 

block corresponding to antenna m.  Plotting the M final PLL values against the antenna index will 

produce an estimate of equation (3.6).

If  the estimator is  able to recover the sine curve traced by the switching-induced phase 

modulation, then it is possible to determine the DOA by measuring the phase shift of that sinusoid. 

Of  course,  data  modulated  onto  the  signal  must  be  considered.   For  the  development  of  this 

algorithm, it was assumed that the modulation format would be BPSK, with the signal s  t   being 
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expressed as 

m t =Ae jn , n=0,1  (3.7)

where n represents the binary data symbols 0 or 1.  Substituting this into equation (3.5) gives

xm t =Ae
− j[o

2 r

cos 2m

M
−n]

, n=0,1  (3.8)

It is this data that will be fed into the software PLL for the m-th antenna.

3.2.2 Expression for PLL Output
The PLL is assumed to take the form of a carrier recovery loop for a BPSK signal.  This 

carrier recovery loop will have the effect of tracking the phase of the signal's carrier while removing 

the BPSK modulation.  One downside to this is that due to an arbitrary signal constellation rotation, 

the acquired phase can be shifted by  .  This is because the PLL will only track angles in the first 

and fourth quadrants.  With this in mind, we assume that the output of the PLL corresponding to 

the m-th antenna can be expressed as

m=o
2 r

cos2m

M
−n , n=0,1  (3.9)

If the data symbols and constant offset o  are known, we can compute the DOA using 

=cos−1 m−0
2 r /− 2m

M
 (3.10)

where m is the antenna index as used above.  Unfortunately this information is generally not known 
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a priori so an alternate approach needs to be devised.

Figure 3.4 illustrates this issue.  The line labeled “Expected PLL Output” is the theoretical 

output of the PLLs without a phase shift or modulation effects plotted against antenna index.  It is 

obviously a clean sinusoid.  The line labeled “Actual PLL Output w/ offset” is the actual output of 

the PLLs for an unmodulated signal with a constant phase offset.  This is still a sine curve, and 

evaluating equation (3.10) will still work as the constant phase shift appears simply as a DC offset on 

the data.  The problem becomes more complex when modulation is added.  The line labeled “Actual 

PLL Output w/ BPSK” is a plot of the PLL output data when the input signal is modulated.  Notice 

that it only contains values in in the range of −/2m/2  because as previously mentioned 

the PLL will only track phase values in the first and fourth quadrants.  We can see that when this 

data differs from the actual  PLL output without modulation the difference is exactly   .   This 

ambiguity will obviously hinder any simplistic attempts to determine the DOA.

Furthermore, the amplitude of the phase curve, given above in equation 25 as 2 r / , can 

take on values larger than  , which can cause problems with fitting the data to a sinusoid because 

due to the ±  on the data each element in the vector can have up to two additional possible true 

values to fit in the amplitude range.  The examples in Figure 3.4 used an array radius equal to /2 . 

Obviously, this assumption will only work for an antenna array operating at a single frequency.  DF 
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systems typically require an inter-element spacing of less than /2  in order to reduce any resulting 

ambiguities [8],[10].  For an 8 element circular array, this spacing will require an array radius of at 

most 0.65 , which will result in the phase curve having an amplitude of 1.25 .  This means that 

the phase tracked by the PLL will  be wrapped into the range  −m .   Consequently,  the 

curve  fit  algorithm  must  be  able  to  handle  phase  wrapping  on  the  PLL  data  in  addition  to 

ambiguities related to the modulation.

3.2.3 8-element Curve Fit Algorithm
We have thus far shown that the curve fit  algorithm will  need to deal with three major 

sources of phase ambiguity:  phase wrapping due to a constant offset in the received signal, phase 

wrapping due to the phase curve's amplitude, and phase ambiguities due to the received signal's 

modulation.  By recognizing that the first derivative of a sinusoid is another sinusoid, we are able to 

facilitate the process somewhat.  If we define the first difference of the PLL data as 

m=m−m−1  (3.11)

then the first difference of the PLL data can be expressed as

m=o
2r
 cos2m

M
−−o

2 r
 cos2m−1M

− (3.12)

m= 2 r

cos 2m

M
−−2 r


cos2m

M
−2

M
− (3.13)

m=−
4 r

sin M sin 2m

M
− 

M
  (3.14)

Note  that  differentiation  has  multiple  effects:   the  constant  phase  offset  o  is  eliminated,  the 

amplitude of the resulting sine curve has been scaled by 2sin /M  , and the DOA information is 

preserved as the phase offset of a sine curve.  For the 8-element array with an inter-element spacing 

of /2  and subsequently a radius of 0.65 , this will result in a sine curve with an amplitude of 

0.995 .This result does ignore modulation ambiguities on the PLL data.  If we take modulation 

into account while assuming that during the differentiation the resulting data points are limited to 

the region −m , we can express the resulting first difference data as

m=−
4r

sin M sin 2m

M
−

M
n , n=0,1  (3.15)
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The assumed limit of ±  on the first difference data is a valid assumption because the elimination 

of  the  DC component  of  the  data  means  that  the  resulting  curve  will  be  centered about  zero 

guaranteeing that the data will be less than    for element spacings of less than  /2 .   This is 

illustrated in Figure 3.5.  The “Expected 1st Diff. Data” represents the first difference of simulated 

PLL data without modulation.  Reliance on the first difference of the phase data means that we are 

not necessarily interested with the exact value of the phase modulation induced by switching but 

with the differential phase modulation on the received signal.

This relation forms the basis of the curve fit algorithm.  Given that each element of the first 

difference data vector can possibly be shifted from its expected value by  , this results in a total of 

28 possible  permutations  from  the  measured  first  difference  data,  which  are  called  the  given 

difference curves.  In order to pick the correct curve, these 256 possible curves are each compared 

to a database of theoretical first difference curves called the target difference curves.  The mean 

squared error is determined between each given and target difference curve, and the given difference 

curve with the smallest MSE relative to any of the target difference curves is chosen as the true first 

difference curve from the set.  The size of the set of target difference curves only needs to be large 

enough to provide a meaningful measure of MSE.  In practice, it was found that only 16 to 32 target 

curves are necessary to provide good estimates.  This operation is in a way similar to the correlation 
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Figure 3.5.  Example 1st difference data.



process  from the Correlative  Vector algorithm except that  the data  set  that  is  searched is  two-

dimensional instead of one-dimensional.

Figure  3.6a is an example plot of the measured MSE between all 256 permutations of a 

simulated first difference data set and a set of 32 target difference curves.  The index of the first 

difference permutation that produces the smallest MSE is chosen.  In order to demonstrate this 

concept better, Figure 3.6b plots the inverse of the data in Figure 3.6a.  In Figure 3.6b, we can see 

that there is a single large peak, corresponding to a MSE that is close to zero, and that every other 

inverted MSE value is small.

3.2.4 DOA Estimation
Once the true first difference curve is selected, the final step in the DOA estimation is to 

determine the phase of the sine curve described by the data.  This information can be retrieved by 

performing a DFT of the sequence.  Recognizing that the difference curve can be represented as
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Figure 3.6.  A.) left, MSE data from curve fit algorithm;  B.) right, inverse of MSE data from curve fit algorithm.



f [m ]=[ −4 r
 sin M sin − M 

−4 r
 sin M sin 2M − 

M


⋮

−
4 r
 sin  M sin 2−3M ]  (3.16)

the DFT of this vector can be evaluated as

F [k ]=∑
m=0

M−1

f [m]e− j2 mk /M  (3.17)

In the absence of noise, each bin of the DFT will be zero except for k=1 .  This is due to the fact 

that the data is still one full period of a sine wave.  Windowing of the sequence is unnecessary since 

the sine wave is sampled such that all of the energy of that sine wave will be contained in the second 

bin of the DFT and that the sidelobes of its  frequency transform will  not appear in the DFT. 

Therefore, for k=1 :

F [1]∝− M  j− M   (3.18)

and the DOA estimate can be found as the angle of that complex number minus a constant offset:

=∢F [1]−
2
 

M
 (3.19)
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Chapter 4 

Enhancements to the PLL Algorithm

The previous chapter described the basic PLL Algorithm in detail for use with an 8 element 

array.  In this chapter we will discuss the main improvements to the algorithm.  First, we will discuss 

two modifications to the PLL:  the change from a nonlinear to linear model, and the modification of 

the PLL for removal of a residual frequency component on the signal.  We will then move to discuss 

two methods for improving the DOA estimate error performance:  filtering the DOA estimates and 

defining a quality metric associated with the DOA estimates.  Finally, we will introduce a new curve 

fit algorithm use with a 16 element array.

4.1 Modifications to the PLL
To  preface  the  discussion  of  the  PLL  modifications,  the  general  PLL  model  and  its 

operation with antenna switching are considered.  This leads into the discussion of the change from 

a nonlinear to linear PLL and the modification for the removal of a frequency component.

4.1.1 The PLL Model
The PLL model used to estimate the phase of the received signal is that of a software Costas 

PLL with decision directed feedback.  The Costas PLL was originally proposed by J. P. Costas in 

1956 [14] as an optimal demodulator for amplitude modulated (AM) double sideband suppressed 

carrier (DSB-SC) systems and is shown in Figure 4.1.  In this PLL, the received RF signal s t ,
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Figure 4.1.  Block diagram of operation of Costas PLL for synchronous demodulation of DSB-SC signals.



s t=AC cos c t m t   (4.1)

is mixed with a quadrature oscillator produced by the PLL's voltage controlled oscillator (VCO) and 

both  output  signals  are  passed  through  lowpass  filters  in  order  to  remove  high  frequency 

components, resulting in

v I t =AC A0 cos em t / 2  (4.2)

vQ t =AC A0sin emt /2  (4.3)

where AC  is the amplitude of the received signal, A0  is the amplitude of the VCO, e  is the phase 

difference between the received signal's carrier and the VCO, and m t   is the modulating signal. 

When the phase error  e  in the system is small, the in-phase signal  v I t   is proportional to the 

modulating signal and is used as the demodulated output of the system whereas the quadrature 

signal vQ t   is practically zero.  The in-phase and quadrature signals are then multiplied, resulting 

the the product voltage v P t  ,

v P t =AC A0mt 2 sin 2e /8  (4.4)

which is subsequently passed through a lowpass filter in order to produce a control voltage for the 

VCO, v E t  , as

v E t =K sin 2e  (4.5)

which is a DC signal proportional to the sine of the phase error where K  is a constant related to 

the filter and VCO settings.  This error detector is known as a sinusoidal error detector, since the 

control signal to the VCO is sinusoidal function of the phase error.

This  model  for  the  Costas  PLL  can  be  abstracted  for  implementation  in  software  and 

extended for the demodulation of PSK signals with the addition of decision directed feedback.  The 

block diagram for this PLL is shown in Figure  4.2.  This model assumes that the complex input 
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Figure 4.2.  Block diagram of software Costas PLL with decision directed feedback.



signal  x [n ]  has already been downconverted, filtered, and sampled by the SDR's RF front end. 

Initially, we assume that the PLL is at phase [n] .  The input signal x [n ]  is rotated, via complex 

multiplication, to form intermediate signal a [n] .

a [n ]=x [n ]⋅e− j [n]  (4.6)

This is analogous to the quadrature mixer and baseband filters of the original Costas PLL.  Complex 

signal a [n]  is then passed to the decision block that maps the intermediate signal to a demodulated 

PSK symbol d [n] .  For a BPSK signal, this decision is formulated as 

d [n]={ 1 j 0,ℜ{a[ n]}0
−1 j 0,ℜ{a [n ]}0  (4.7)

where ℜ{a [n]}  denotes the real part of a [n] .  After this step, both a [n]  and d [n]  are used to 

create the error signal e [n] , by evaluating:

e [n]=ℑ {a [n ]d * [n ]}  (4.8)

where d *[n]  is the complex conjugate of d [n]  and ℑ{⋯}  represents taking the imaginary part. 

Investigating further, we find that the argument of ℑ{⋯}  in equation (4.8) can be simplified as

a [n ]⋅d * [n]=∣a [n ]∣e j∢a [n]∣d [ n]∣e− j∢ s[n ]

=∣a [n]∣⋅∣d [n ]∣e j ∢a [n]−∢d [n]

=∣a [n]∣⋅∣d [n ]∣[cos ∢a [n]−∢d [n] j sin ∢a [n]−∢d [n] ]
 (4.9)

which after isolating the imaginary part results in 

26

Figure 4.3.  Example PLL acquisition with the presence of BPSK modulation.



e [n]=∣a [n ]∣⋅∣d [n]∣⋅sin ∢a [n]−∢d [n]  (4.10)

where we find that the error signal is therefore proportional to the sine of the phase difference 

between the received symbol  a [n]  and its demodulated counterpart  d [n] .  Note that the error 

signal  is  also  influenced  by  the  amplitude  of  the  received  signal,  which  means  that  unless  the 

received signal is hard-limited e [n]  will be affected by noise on both the amplitude and phase of 

the input signal.

This error formulation is where the term “decision-directed feedback” stems from – unlike 

the  original  Costas  PLL where the  error  signal  was  a  function of  the  phase error  between the 

received signal's carrier and the PLL's VCO, the error signal here is both a function of the phase 

error between the received signal and the PLL and the difference between the received signal's phase 

and the demodulated symbol, as follows.

e [n]∝sin ∢a [n]−∢d [n]∝sin ∢ x [n]−[n]−∢d [n]  (4.11)

Decision-directed feedback is also what induces the ±  ambiguities on phase tracked by the PLL. 

When used with any PSK signal, the ambiguity on the output signal will be related to the rotational 

symmetry of the signal constellation.  An example of PLL acquisition is shown in Figure 4.3 for a 

BPSK modulated signal.  The line labeled “True Carrier Phase” represents the phase of the received 

signal without modulation, and the dots labeled “Input Signal Phase” represent samples of the actual 

modulated signal's phase.  We can see that although the true signal's phase is at  2/3 , the PLL 

tracks to −/3  as the true carrier phase is in the second quadrant.  Moreover, if we wished to use 
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Figure 4.4.  Example PLL acquisition with varying loop filter gain.



this PLL to demodulate an AM signal, we would simply force the output of the decision block, 

d [n] ,  to be a constant 1, which would simply eliminate the presence of the decision feedback 

resulting in

e [n]∝sin ∢a[n ]−0 ∝sin ∢a [n] ∝sin ∢ x [n]− [n]  (4.12)

which is analogous to the VCO control signal given in equation (4.5) and is also a sinusoidal error 

detector.

After the error detector, the signal e[n] is passed through a first order IIR lowpass filter with 

the transfer function

H Loop[ z
−1]= 

1−z−1
, 1  (4.13)

where   is the update parameter for the filter.  It controls the filter's bandwidth and subsequently 

the  time  it  takes  to  acquire  the  signal.   This  filter  can  be  implemented  in  software  by  simply 

evaluating the difference equation: 

[n1]=⋅e [n ] [n]  (4.14)

Figure  4.4 provides an example of the PLL output phase when presented with an unmodulated 

signal with a phase of /2  for values of   between 2-2 and 2-5.  We can see that as the filter gain 

decreases, the PLL takes a longer time to acquire the signal.  Furthermore, we would expect that the 

variance  of  the  PLL output  would  decrease  with  filter  gain  as  the  loop filter's  bandwidth also 

decreases, thus reducing the noise power.

4.1.2 Parallel PLL Operation with Antenna Switching
One important consideration for the operation of the PLL is that the input to the PLL is 

discontinuous in time.  As stated in Chapter 3, the signals from each antenna in the array are routed 

through an RF switching network which acts as a multiplexer in time that presents the receiver with 

a single RF signal.  Fortunately, switching is completely under the DF system's control, so the dwell 

time on each antenna is known.  In order to preserve the parallel operation of the PLLs, the state of 

the m-th PLL is stored at the end of that antenna's dwell period and the stored state of the next PLL 

is retrieved to initialize the PLL for the next antenna's data.  This allows the PLL to track the phase 

of the received signal at each antenna over time – the PLLs do not have to reacquire at every array 

sweep, which allows for the selection of a PLL gain that results in an acquisition time that is long 

relative to each data block.
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Figure  4.5 is an example plot of the PLL acquisition acquiring and tracking with an input 

signal from an arbitrary 3-element antenna array over two successive array sweeps.  Consider the line 

labeled “PLL #1 Output,” which is the phase output of the first PLL over time.  We can see that 

during the first 64 samples, the PLL acquires the input signal phase, starting from its initial value of 

zero.  At the 64th sample, the value of the PLL is stored and the PLL is reinitialized for the second 

antenna's signal.  When the second data block from the first antenna arrives at sample 192, we can 

see that the value of the first PLL is then reloaded and the PLL is thus able to continue tracking the 

received signal's phase from its previous value instead of reacquiring the signal.

4.1.3 Nonlinear to Linear PLL
One drawback to the PLL model chosen is that although although it is conceptually simple, 

implementation in a real-time DF system can be problematic due to the number of mathematical 

operations required to update the PLL for each sample.  For example, the PLL's loop filter outputs a 

single real phase value.  In order to perform the initial phase rotation of the input signal, this phase 

value was converted to a complex value through through the CORDIC algorithm.  During initial 

implementation of the algorithm, it was found that the curve fit  algorithm requires a significant 

proportion of the processing and that in order to support sustained real-time DF estimation, the 

computational  overhead  related  to  PLL  operation  needed  to  be  reduced.   Therefore,  the  PLL 

needed  to  be  either  modified  or  replaced  with  a  more  efficient  model  to  satisfy  this  goal. 

Fortunately,  an  overlooked  aspect  of  the  target  implementation  platform  offered  an  attractive 
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Figure 4.5.  Example parallel PLL operation.



solution  –  every  complex  data  sample  was  available  in  both  rectangular  (I  and  Q)  and  polar 

(magnitude and phase) form.  This meant that instead of using a PLL model that heavily relied on 

complex multiplication and a sinusoidal error detector a simpler model could be used with linear 

error detectors that considered only the received signal's phase.

To this end, two error detectors were considered:  a sawtooth detector described by:

esaw [n]={e i n[n] , −2ei n[n]−
e i n [n] , −e i n [n]

e i n[n]− , ei n[n]2
 (4.15)

and a triangular error detector described by:

e tri [n]={−−e i n[ n] , −3/2e i n[n ]−/2
e i n[n] , −/2e i n[n ]/2

−e i n [n] , / 2e i n [n]3/2
 (4.16)

The  input-output  characteristics  for  these  two  error  detectors  along  with  the  sinusoidal  error 

detector are plotted in Figure 4.6.  Note that when the PLL's phase error is less than /8 , the three 

error detectors are nearly equivalent as the input-output relationaship of the sinusoidal detector is 

approximately linear when the absolute value of the phase error is less than /8 .  Figure 4.7 is a 

comparison of both the phase output and internal error signal (i.e. the signal presented to the loop 

filter) during the acquisition of an unmodulated input signal at a constant phase of 7/8  for a PLL 

with each of the three error detectors.
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Figure 4.6.  Sinusoidal and linear error detector characteristics.



Observe that the sawtooth PLL acquires the signal's phase faster than both the sinusoidal 

and triangular detectors.  This is due to the upper limit imposed on the error signal by the sinusoidal 

and triangular PLLs.  We can see from the plot of the error signals that initially e tri [0 ]  is equal to 

the input phase value of 7/8 .  Referring to the sawtooth characteristic in Figure 4.6, we can see 

that an initial PLL phase error will essentially pass through the detector unchanged whereas the 

triangular and sawtooth detectors will pass it as  /8  and  sin/8 , respectively.  Furthermore, 

observe that the acquisition of the triangular PLL starts out similar to the sinusoidal PLL but the 

accelerates slightly.  We can see that the triangular PLL's error signal is not bounded as tightly as that 

of the sinusoidal PLL and therefore can acquire signals slightly faster than the sinusoidal given the 

right conditions.

The revised model for the PLL with a linear error detector is shown in Figure  4.8.  The 

triangular error detector was chosen due to its similarity to the sinusoidal error detector.  In cases 

with excessive noise, the sawtooth error detector cause problems with acquisition and tracking due 

to its wider output range.  It is still included in the PLL model for practical reasons – it simplifies the 

implementation of the triangular error detector by limiting the input to the latter to ±  instead of 

the possible  ±2 .  In practice, the performance of the PLL with the triangular error detector is 

not substantially different from that of the acquisition and tracking capabilities.  The only noticeable 

difference is in the computational requirements.  Note also in the block diagram that the initial step 
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Figure 4.7.  Comparison of PLL acquisition (left) and internal error signals for Costas PLL with different error  
detectors.



in the PLL has changed to “Subtract   ” to reflect that the signal constellation rotation is now 

performed  using  polar  coordinates.   Likewise,  the  PSK  decision  block  now  produces  its 

demodulated  symbol  outputs  in  polar  form.   These  simple  changes  to  the  PLL  can  offer 

computational  performance  gains  by  removing  all  multiplication  operations  from  the  PLL,  a 

measurement of which will be presented in Chapter 6.

4.1.4 Frequency Offset Removal
One other hurdle encountered in the initial algorithm implementation was the presence of a 

residual frequency offset between the transmitter and receiver due to calibration differences between 

the LOs of the equipment.  This can cause two main problems when tracking the phase of the 

received signal.  First, if the magnitude of the frequency offset is large enough, in general greater 

than tens of Hertz dependent on sampling frequency, the drift in phase of the received signal during 
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Figure 4.8.  Linear Costas PLL block diagram.

Figure 4.9.  Example of phase at antenna array output with and without a 2kHz frequency offset.



one array sweep will skew the phase input to the PLL farther than can be adequately tracked by the 

PLL.  If the frequency offset is sufficiently small it will appear simply as a constant offset in the PLL 

data, which can easily be dealt with.  Second, the first order loop filter is in general insufficient to 

track a frequency shift due to the filter's poor ramp response.  Initially, this was overcome through 

the use of a frequency reference signal between the transmitter and receiver that allowed the receiver 

to lock its internal LOs to a 10MHz reference generated at the transmitter.  Unfortunately, this setup 

can not be expected in a real world situation so another solution needed to be devised.

We model the residual frequency offset on the signal as:

s t=m t e j 2 f t e jo  (4.17)

where  f  is the frequency offset between the carrier frequency and receiver LO.  The output of 

the m-th antenna is then:

xm t =Ae
− j[o2 f t 2r


cos 2m

M
−n]

, n=0,1  (4.18)

Likewise, the corresponding phase input to the m-th PLL is:  

mt =o2 f t2 r

cos 2m

M
−n , n=0,1  (4.19)

which is similar to the original expression for the phase input to the PLL with the addition of the 

time-dependent frequency term 2 f t .  Figure 4.9 provides an example of the received phase at 

the output of the antenna array for two signals:  one without a  frequency offset and one with a 
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Figure 4.10.  Example phase acquisition for a Costas PLL with 1st or 2nd order loop filter.



frequency offset of 500Hz, both with the same DOA.  The antenna array switches every 64 samples. 

Observe  that  in  the  signal  with  the  frequency offset,  the  discontinuity  at  the  point  of  antenna 

switching (i.e. Every 64th sample) is equal in magnitude the the corresponding discontinuities in the 

signal that does not contain a frequency offset.  This means that although the received phase is time-

varying, the differential phase shifts imposed on the signal by the antenna switching are preserved. 

Therefore, if we can remove the time varying component of the received signal's phase we should 

still be able to measure the differential phase shifts.

In order to remove the  frequency offset on a signal,  the first  order PLL loop filter can 

simply be replaced with a second order filter, which will  successfully track the  frequency offset. 

Figure 4.10 provides an example of the acquisition of an unmodulated received signal with a 2KHz 

frequency offset of two separate PLLs, one with a first order loop filter and the other with a second 

order filter.  It is obvious that the first order PLL can not track the  frequency offset whereas the 

second order PLL has no problem.  Unfortunately, substituting a second order filter in the PLL does 

not solve the entire problem.  The second order PLL will remove the frequency shift on the signal 

but it will also hide the constant phase information in which we are interested.

Therefore, a method must be devised which will allow for removal of the frequency offset 

without destroying the underlying phase relationship between the antennas.  The selected approach 

is to estimate the  frequency offset on the signal using the PLL output data from an entire array 

sweep  and  then   use  that  estimate  to  preprocess  the  received  data  before  PLL  processing  to 

accommodate the algorithm's original design, as shown in Figure  4.11.  Figure  4.12 illustrates the 

intended result of the frequency estimation process.  The line labeled “  f  Removal Vector” is a 

plot of the vector used to remove the frequency offset on the data given perfect knowledge of the 

frequency offset.   Note that it is continuous across the entire array sweep – this is necessary to 

preserve the phase discontinuities as the antenna array is switched.  When this vector is subtracted 
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Figure 4.11.  Frequency removal overview.



from the received signal's phase, we are left with the signal labeled “Rx Phase w/o   f ,” which 

contains the differential phase information in which we are interested.  Furthermore, a second order 

PLL is not needed to track the resulting signal's phase as there is no longer a frequency component.

The method for estimating the frequency offset can be summarized as follows:

1. Initially, use a second order filter in the PLL with a wide bandwidth.

2. Record PLL output for an entire array sweep.

3. Run offset estimator:

a) After allowing for PLL acquisition, differentiate the PLL output to determine slope of 

received signal phase.

b) Filter with moving average filter to determine average slope during entire array sweep.

c) At the end of the array sweep,  update  frequency offset  accumulation filter,  which is 

another moving average filter with a very narrow bandwidth.

4. Create frequency removal vector from current frequency offset estimate.

5. Repeat  steps  1-4  for  a  predetermined  number  of  array  sweeps  to  allow  for  frequency 

estimator acquisition.

6. After  frequency estimate  stabilizes,  use  a  first  order  filter  in  the  PLL  with  a  narrow 

bandwidth for more precise phase measurements.  Continue evaluating steps 1-4 for fine 

tuning of the frequency offset estimate.
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Figure 4.12.  Example PLL acquisition of signal with frequency offset removed given perfect knowledge of offset.



Figure  4.13 shows  the  detailed  block  diagram  of  the  frequency offset  estimator.   As 

discussed previously,  frequency offset on the received signal will appear as a constant slope to the 

received signal's phase.  In order to estimate that slope, we first differentiate the PLL's output after it 

has acquired the  frequency offset.  Since  frequency is the derivative of phase, differentiating the 

phase  will  return  a  value  proportional  to  the  frequency offset  present.   Specifically,  after 

differentiation we get:

m[n]− m[n−1]=2 f  t [n ]−t [n] =2 f t s  (4.20)

where t s  is the time between samples.  The first filter, labeled “Short Term Averaging LPF,” is an 

exponential weighted moving average filter, the purpose of which is to average the output of the 

differentiator during the entire array sweep.  Its transfer function is:

H  z−1=
1

1−1−1 z
−1  (4.21)

which can alternatively be expressed by the difference equation:

y [n]=1 x [n]1−1 y [n−1]=1  x [n]− y [n−1] y [n−1]  (4.22)

where 1  is the gain of the filter.  We can see that the updated state of this filter is a function of the 

difference between the filter's previous state and the input value,  x [n ]− y [n−1] .   The second 

filter, labeled “Long Term Accumulating LPF,” is another averaging lowpass filter with the transfer 

function:

H  z−1=
2

1−z−1
 (4.23)

and corresponding impulse response: 

y [n]=1 x [n] y [n−1]  (4.24)

where 2  is again the gain of this filter.  This filter takes a slightly different form that the short term 

averaging filter because its goal is to keep track of the  frequency offset during the entire time the 

system is running.  This means that the first filter is actually estimating the “leftover”  frequency 

36

Figure 4.13.  Detail frequency estimator block diagram.



component of the received data after it has been preprocessed to remove the estimated frequency 

offset and is providing the second filter with the difference between the frequency offset estimate 

and the leftover offset.  During steady state operation, this will allow for constant fine-tuning of the 

offset estimate to account for any possible long term drift in the  frequency of the received signal 

relative to the receiver's LOs.

Figure  4.14 plots  the  frequency offset  estimator's  output  error,  which  is  the  difference 

between the output of the long term lowpass filter and true frequency offset, plotted per array sweep 

for a total of 256 array sweeps and four different frequency offsets with an SNR of 10dB.  For the 

first 64 sweeps, the PLL is operated in second order mode to provide proper acquisition of the 

frequency component of the signal.  After the 64th iteration, the PLL is switched to the original first 

order mode for more reliable phase tracking.  Observe that after the 64th sample, the  frequency 

estimator stays within ±20Hz independent of the true magnitude magnitude of the frequency offset.

4.2 16 Element Curve Fit Algorithm
4.2.1 Motivation for a New Curve Fit Algorithm

Originally,  this  algorithm was  designed  to  be  used  with  an  existing  8-element  uniform 

circular array.  When it was decided to investigate the use of a 16-element uniform circular array 

with this DF algorithm to lay the groundwork for future research into multipath issues, we realized 

that the curve fit  algorithm used with the 8-element array does not scale nicely to 16 elements. 
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Figure 4.14.  Example plot of error in frequency offset estimate per array sweep index.



Therefore,  a  new algorithm was  designed  to  take  advantage  of  certain  properties  of  the  phase 

relationships between antennas when there are 16 elements in the array.

The original curve fit algorithm compared the set of 28 possible first difference curves from 

the 8 given data points against a target database of 16 to 32 theoretical curves by determining the 

mean squared error between each given and target difference curves.  When scaling this algorithm to 

work with a 16 element array, we first recognize that the possible number of permutations of the 

measured  first  difference  data  is  216,  or  65536.   This  represents  an exponential  increase  in  the 

number of calculations to be performed in order to select the true first difference curve.  In order to 

further explore the effect of increasing the number of antennas used in the system, we can estimate 

the number of additions and multiplications the system would need to perform to produce its MSE 

surface as

# of Additions=2M−12M N  (4.25)

# of Multiplcations=M12M N  (4.26)

Total # of operations=3M 2M N  (4.27)

where  M is the number of antennas and N is the number of curves in the target database.  From 

equation 4.27, we can compare the total operation count required for the two array configurations to 

find that the curve fit algorithm with 16 antennas requires 512 times as many operations, as derived 

below:

# of Operations, M=16
# of Operations, M =8

=
3⋅16⋅216⋅N
3⋅8⋅28⋅N

=
220

211
=29  (4.28)

Table 4.1 is a summary of the operation count for two values of both M and N.  We can see 

that that the total number of operations required to evaluate the algorithm with 16 antennas is three 

orders of magnitude higher than required with 8 antennas.  Furthermore, if we assume that each 

operation would require one clock cycle to perform, the 16-element version would take 512 times 
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Table 4.1.  Curve fit MSE operation count.

N=16 N=32

M # of 
Additions # of Mults. Time Required @ 

160MHz (ms)
# of 

Additions # of Mults. Time Required @ 
160MHz (ms)

8 61.4e3 36.9e3 0.5886 122.9e3 73.7e3 1.177

16 32.5e6 17.8e6 314.5 65.0e6 35.7e6 629.1



longer  than  the  8  element  version,  as  predicted  by  equation  4.28.   To  put  these  values  into 

perspective, the algorithm as implemented takes 64 samples per antenna at a sample rate of 125ksps, 

resulting in a dwell time on any one antenna of 0.512ms and a total time of 4.096ms to sample 8 

antennas or 8.192ms to sample 16 antennas.  From this estimation, the curve fit algorithm for 8 

antennas with a target database of 16 curves would take approximately 0.5886ms, the computation 

of which can be easily distributed over one array sweep.  The same situation with 16 antennas would 

require 314.5ms, which is considerably greater than the sweep time.  This algorithm would take over 

38 array sweeps, and would drop the total number of DOA estimates produced per second to 3.2. 

Obviously, a new approach needs to be found.

One factor that must be taken into account when comparing the 8 and 16 element versions 

of the original MSE-based curve fit algorithm is the amplitude of the first difference curve.  Recall 

from equation 29 that the amplitude of the first difference curve takes the form 

∣ ∣max=
4 r
 sin M   (4.29)

We must also realize that the array radius is related to the spacing of the elements by  

r=x sin /2−/M 
sin 2/M 

 (4.30)

where  x is  the  inter-element  spacing.   The  maximum amplitudes  of  the  PLL  output  and  first 

difference curve for both the 8 and 16 element arrays are plotted in Figure 4.15.  We can see that for 

the same antenna spacing, the maximum amplitude of the first difference curve for the 8 and 16-

element arrays is nearly identical.  This means that with similar inter-element spacing, the differential 

phase between antenna elements will stay the same regardless of the number of antennas and that 

increasing the number of antennas while maintaining the same inter-element spacing merely has the 

effect of increasing the sampling frequency of the first difference curve.  With this in mind, we can 

conclude that the ambiguities related to modulation will not affect the data any differently than with 

the 8-element array for the same antenna spacing.

4.2.2 The 16-element Curve Fit Algorithm
The first step in designing the new algorithm was to consider the second difference of the 

PLL output data (or, the first difference of the first difference data), given as 

2 m= m− m−1  (4.31)

which is exactly the same form as the expression for the first difference (refer to equation 26).  By 
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substituting the expression for the first difference curve given in equation 29, we get:

2m=−
4 r
 sin M [sin 2m

M
− 

M
−sin 2m−1M

− 
M
]  (4.32)

2 m=−
4 r

sin M [sin 2m

M
− 

M
−sin 2m

M
−3

M
]  (4.33)

By using the trigonometric relation:

sin−sin =2sin −2 cos 2   (4.34)

we can further simplify equation 57 and express it as:

2 m=−
8 r

sin 2 M cos 2m

M
−2

M
−  (4.35)

As expected, the second difference curve again takes the form of one full period of a sinusoid the 

phase of which is a function of the DOA of the received signal.  From this derivation, we find that 

the maximum amplitude of the second difference curve is: 

∣2 ∣max=
8 r

sin2 M   (4.36)

This relation, along with the maximum amplitude for the first difference curves, is plotted in Figure 

4.16 as a function of inter-element spacing.  Even though the first difference curves measured from 

both the 8 and 16 element arrays are nearly identical, the higher effective sampling rate of the 16 

element difference curve translates into a much smaller amplitude for the second difference curve. 
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Figure 4.15.  PLL output and first difference curve amplitudes relative to antenna array inter-element spacing.



Moreover, the amplitude of the second difference curve with  M=16 is less than  0.4  for inter-

elements spacings of less than 0.5 .  This information is the basis for the new curve fit algorithm.

As  stated  previously,  every  measured  element  of  the  first  difference  data  vector  has  a 

possible ambiguity of ±  due to the acquisition of the PLL in BPSK modulation.  But for the 16 

element array, we know that the  m-th element of the first difference curve can be no more than 

0.4  away from the (m-1)-th element.  The new curve fit algorithm is as follows:

1. For the second through 16th elements in the first difference vector, calculate and store those 

values' possible replications at ±  and ±2 .

2. Starting with the first element of the measured first difference vector:

a) Measure the difference between it and the five possible values for the second element (

2 , 2± , and 2±2 ).  These are the temporary second difference values.

b) Take  the  first  difference  value  corresponding  to  the  smallest  temporary  second 

difference value and select it as the “true” measured first difference value.

3. Repeat step 2 for elements two through 15.

Figure  4.17 shows an example of this algorithm.  The black line labeled “  , Pre Curve 

Fit” represents the 16-element measured first difference data.  There are obvious discontinuities in 

this data, the first of which occurring between sample 2 and 3.  The values labeled “   Possible 

Values”, plotted in green, are the 4 extra possible values for the first difference data, determined in 

step  1  of  the  algorithm.   The  lines  labeled  “Valid    Range”  reflect  the  second  difference 
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Figure 4.16.  Plot of maximum amplitude of first and second difference curves relative to inter-element spacing.



tolerance of ±0.4  on the first difference data.  The first difference values that lie in this range 

will  satisfy the requirements for selection in step 2b of the algorithm, namely have the smallest 

associated second difference.  This algorithm is similar to tracing through a trellis, as in the Viterbi 

algorithm, measuring the minimum distance between between measured data points to determine 

the final difference curve.

To evaluate this algorithm, 150 additions and subtractions must be performed along with the 

sorting of 15 5-element  arrays to produce the final  first  difference curve.   This is  obviously an 

incredible reduction in the computational requirements of the DF algorithm overall.  This does not 

come without a price though – reliance on successive differentiation of the phase data will introduce 

an increasing amount of noise in the DOA estimates.  If we assume that the PLL output values are 

independent identically distributed random variables, each differentiation of the data will double the 

variance of the result.  This means that the first difference data will have a variance twice that of the 

PLL output values, and the second difference data will have a variance four times the PLL output. 

At moderate to high SNRs the resulting variance of the second difference data would still be rather 

small, but low SNR conditions can possibly hurt this curve fit algorithm more than the original 8-

element version.  We will explore the impact of this through simulation in chapter 5.
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Figure 4.17.  Example first difference data before and after processing by the 16-element curve fit algorithm.



4.3 DF System Error Performance Enhancements
4.3.1 Motivation

It is an unfortunate reality that any digital communication system will make errors, and great 

effort goes into the design of these systems to reduce the effect of these errors on overall system 

performance.  Consider Figure  4.18, which is a set of three scatter plots of the estimated DOA 

samples for the PLL algorithm with an 8 element array for a SNR values of 3dB.  These scatter plots 

are produced by simulating the DF algorithm to produce a number of DOA estimates for various 

true DOA values from 0º to 360º, and the error in each of these DOA estimates is plotted against 

the true DOA value.  For this plot, 256 estimates were produced for true DOA values that range 

from 0º to 357º in 3º increments.  In this example, we can see that there is a significant amount of 

DOA estimates with little error, indicated by the band of points about zero on the y-axis.  However 

there are numerous estimates with an error magnitude that is quite large.  From these bands of 

erroneous DOA estimates,  we find that under poor SNR conditions,  the PLL algorithm with 8 

elements is not only likely to make errors, but those errors will significantly deviate from the true 

value.  In this plot,  the majority of the erroneous estimates cause errors in excess of 90º or more in 

magnitude.  This raises two questions.  First, what can be done to decrease the influence of DOA 

estimates with significant error on the RMS error of the system, and second, is it possible to detect 

when the system has made such an error in order to flag that estimate as erroneous?
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Figure 4.18.  Example DOA Estimate Error Scatter plots for the 8 element PLL algorithm at 3dB SNR.



4.3.2 DOA Estimate Filtering
In order to enhance the RMS error performance of the DF system, a lowpass filter was 

added  to  the  output  of  the  DOA  estimator.   Any  lowpass  filter  would  suffice,  but  for 

implementation an exponential weighted moving average filter was chosen due to its simplicity and 

ease of implementation.  As stated previously, such a filter can be described by the transfer function 

H z−1 =


1−1− z−1  (4.37)

From a practical perspective, this filter is implemented by evaluating: 

OUT [n1]= [n ]1− OUT [n ]  (4.38)

This  has  the  effect  of  reducing  the  influence  on RMS error  measurements  of  DOA estimates 

produced with a large error magnitude because that error will effectively be scaled down by the value 

of   chosen.

4.3.3 DOA Estimate Quality Metric
Although filtering will help reduce the effects of large estimate error, it still does not help us 

make reasonable decisions about which estimate was actually “good.”  Consequently, a metric was 

developed that attempts to measure the integrity of the DOA estimation process.  Consider the final 

step in the DOA estimation process, in which the DFT of a data series is calculated.  For a DOA 

estimate in the absence of noise, this data series will describe one full period of a sine wave, but if 

there is a large amount of noise it is possible that the first difference data will be a noisy, distorted 

version of the true data.  Therefore, the DOA estimate quality metric was defined to measure the 

amount of noise and distortion present on the first difference data using the magnitude of a subset 

of the DFT bins of that data set:

Met [n ]=
∣F [1 ]∣

∑
m=3

M /2

∣F [m ]∣
 (4.39)

where F [1]  is the DFT bin used to produce the DOA estimate and the denominator is the sum of 

the rest of positive frequency portion of the DFT.  Since the data set in question is purely real, the 

negative  frequency portion  is  disregarded  as  it  is  a  mirror  image  of  the  positive  frequencies. 

Furthermore, the first DFT bin is also ignored as it only corresponds to a DC offset on the first 

difference data, which has no bearing on the DOA estimate in any case.

This metric calculation can be viewed in two ways – on one hand it is simply a simplified 

44



calculation of the SNR of the first difference data, and on the other hand it is also a measure of how 

closely the first difference data resembles a sinusoid.  Figure  4.19 depicts the first difference and 

DFT data used in the metric calculation for two different first different curves produced by the 16 

element curve fit algorithm.  The DFT plots were normalized by the magnitude of their largest bin 

for  comparison  purposes.   The  data  labeled  “Good    data”  show the  first  difference  and 

subsequent DFT data for a simulation that produced a DOA estimate with very low error (<1º).  We 

can see that in the DFT of this sequence, only the bin corresponding to  k=1  is of a significant 

magnitude, whereas the rest of the bins are negligibly small.  On the other hand, the data labeled 

“Bad   data” produced a DOA estimate with a very large error (>45º) for the same true DOA. 

When comparing the two data sets, it is obvious that the “bad” data barely resembles a sinusoid 

whereas the “good” data certainly does.  The DFT of the “bad” data contains significant energy in 

the entire frequency spectrum relative to the DFT of the “good” data, evidence of the distortion 

present in the first difference data.

These two examples produced metric values of approximately 200 and 4 for the “good” and 

“bad” data respectively.  From observing a large number of DOA estimates and their associated 

quality  metrics,  either  simulated  or  from  implementation,  a  metric  threshold,  T Met ,  can  be 

determined that will provide an indication of whether a DOA estimate can be considered “good” or 

not.  If a DOA estimates metric falls below this threshold then that estimate is simply ignored and 
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Figure 4.19.  Example 1st difference curves (left) and associated frequency transforms (right) to illustrate metric  
calculation.



will not be considered when calculated performance statistics.  We call this approach metric-assisted 

(MA) filtering.

4.3.4 Combined Lowpass and Metric-Assisted Filtering Approach
The final step in improving the performance of the DF system seems obvious – if lowpass 

or MA filtering the data provides an increase in error performance, why not combine them?  To 

accomplish this, we first form a decision based on the value of the quality metric and a set threshold 

for the metrics:

d Met [n]={1, Met [n ]T Met

0, Met [n ]T Met
 (4.40)

This threshold can either be a predetermined set value or modified by the operator on the fly to 

produce acceptable results.  With this decision, we can then decide to either evaluate the lowpass 

filter expression in equation (4.38) or let the previous filter value remain:

OUT [n1]={ [n]1− OUT [n] , d Met [n]=1
OUT [n] , d Met [n]=0

 (4.41)

This approach, which we will call MA-LP filtering, will provide the benefits of both the lowpass and 

MA filtering approaches – estimates deemed “bad” by the MA approach will be ignored while the 

error related to any “bad” estimates that cross the metric threshold will be reduced by the lowpass 

filter.  These various approaches along with error trends in the 8 and 16 element algorithms will be 

explored in the next chapter.
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Chapter 5 

Simulation Analysis of the PLL DF Algorithm

Presenting the details of any DF system undoubtedly leads to one question:  how well does it 

work?  This chapter  seeks to answer that question by presenting the results  of a simulated DF 

system built on the PLL algorithm in an AWGN channel.  The simulations were constructed to 

demonstrate the performance of the basic version of the algorithm while varying parameters such as 

array radius and PLL gain as  well  as the effect  of the frequency offset  estimation and estimate 

filtering enhancements presented in chapter 4.  This chapter also investigates the impact of motion 

and a basic two-ray multipath channel model on the DOA estimation process.

5.1 Simulation Overview
Simulation, data collection, and statistical processing of the PLL algorithm were carried out 

using a combination of scripts and functions in Matlab.  Except for generic operations such as the 

DFT and  AWGN generation,  custom  functions  were  written  to  model  the  antenna  array  and 

switched output signal,  Costas PLL, frequency offset estimation (if applicable),  and the curve fit 

algorithm.  A basic simulation setup is depicted in Figure  5.1.  A master simulation control script 

was used to determine runtime system parameters as well as to coordinate calls to the DF system 

simulation  function  and to  store  the  data  from numerous  repeated trials  of  the  DF algorithm. 

Typically, a single script would gather estimated DOA and associated quality metric data for a single 

version of the algorithm for a set of true DOAs ranging from 0º to 360º and a set of SNR values. 

The simulated data is then stored in a series of Matlab data files categorized by parameters such as 

number of antenna elements, 1st order PLL gain, antenna spacing, and frequency offset magnitude 
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Figure 5.1.  Overview of Matlab simulation setup.



for future numerical and graphical analysis.

While  any  number  of  statistics  pertaining  to  the  performance  of  the  system  can  be 

determined from the simulated data files, the most important value is the RMS error performance, 

defined for a single SNR value as:

ERMS=∑i=1

I

∑
j=1

J

 [ i , j ]−[ i ]2

I J

 (5.1)

where [i , j ]  is the j-th DOA estimate resulting from a simulation with true DOA [i ] , and I 

and J are the number of true and estimated DOAs, respectively, for a single SNR value.  The RMS 

error of the system is essentially a measure of the standard deviation of the DF algorithm.

When evaluating DF systems, one must determine an acceptable value for the RMS error of 

the  system.   This  value  is  somewhat  subjective  and depends on numerous  factors,  such as  the 

number of RF channels, installation type, and application.  For example, multi-channel military DF 

systems installed in a fixed location typically achieve RMS values of less than 1 degree while a mobile 

single-channel system is considered acceptable if it offers RMS error performance of 10°.  For the 

purposes of analysis, we will consider RMS error values of 10° for moderate SNR values adequate. 

We also will consider “moderate” SNR values to be in the range of 6dB to 12dB.  Most of the 

simulations  were  performed  with  SNR values  that  range  from 12dB down to  0db in  order  to 

investigate the system performance in low and moderate SNR conditions.

Heretofore the performance differences between the 8-element and 16-element versions of 

the PLL algorithm have not been mentioned.  For all simulations in this chapter, both versions of 

the algorithm were simulated under the exact same conditions so that while we are investigating the 

effect of varying parameters on the PLL algorithm in general we can simultaneously contrast the 

performance of the two versions.

5.2 Error Performance vs. PLL Gain
First we will consider the effect of varying the gain in the PLL's first order loop filter on 

both versions of the PLL algorithm.  To preface this discussion, we will also look at simulation 

results that measure the input-output relationship of the PLL with respect to received SNR as well 

as the variance of the first difference data relative to the PLL output.  After that we will proceed to 

the first real results of simulations designed to measure the RMS error performance of the PLL DF 
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algorithm.

5.2.1 PLL Output Statistics
In order to determine the variance of the PLL output for a signal received with AWGN, 

simulations were used instead of theoretical analysis.  This arises from the problem of determining 

the distribution of the phase of the received signal.  The phase of a complex Gaussian signal is 

essentially a function of the quotient of the real and imaginary parts of that signal.  This quotient is 

given  by  a  Cauchy  random variable,  the  mean  and  variance  of  which  are  undefined.   Further 

complicating this problem is the fact that the arctangent of this quotient is bounded – using a 4 

quadrant arctangent function with this quotient will yield an output bounded by  ± .   But our 

investigation does not necessarily require a rigorous mathematical expression for this distribution, a 

simulation experiment will suffice.  To this end, the PLL itself was simulated at each SNR and filter 

gain value by passing 2 parallel sequences of around 4 million complex input samples with a known 

expected phase in order to produce a reasonable estimate of the variance of the PLL output with an 

adequate  allowance  for  PLL acquisition.   Furthermore,  the  difference  between the  two parallel 

output sequences was taken to provide an estimate of the expected variance increase incurred by the 

differentiation of the PLL output data to produce the first difference curve.  If we assume that the 

outputs of two parallel PLLs are identical independently distributed random variables, at least with 

respect to variance, then the difference of those two outputs will have a variance equal to twice that 

of the PLL output.

Figure  5.2a is a plot of the standard deviation of the PLL output against the SNR of the 

received signal for the first-order Costas PLL with varying filter gain.  It is expected that as the PLL 

gain decreases,  the standard deviation of the  filter  output  will  decrease due to the  reduction in 

bandwidth and resulting power out of the filter.  We can see that as the filter gain is decreased, the 

standard deviation of the PLL output undergoes a corresponding decrease as expected.  Figure 5.2b 

is a plot of the mean error of the PLL output for each value of the filter gain.  We can see the mean 

is consistently close to zero for all values of SNR and filter gain.  This is to be expected, as the PLL 

loop filter is a lowpass filter that will effectively average the input signal.  Figure 5.3a is a plot of the 

standard deviation of the PLL output and the subsequent first difference data.  Figure 5.3b plots the 

variance of the first difference data normalized by the PLL output.  We see that these normalized 

values are consistently near the value 2, which is what we would expect as the result of the addition 
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Figure 5.2.  PLL Performance plots:  PLL output standard deviation vs. received SNR (a, left) and mean error of  
the PLL output (b, right).

Figure 5.3.  Further plots of simulated PLL performance:  PLL output and 1st difference standard deviation relative  
vs. received SNR (a, left) and 1st difference variance relative to PLL output variance vs. SNR (b, right).

Figure 5.4.  Simulated DOA estimate RMS error of the 8-element (a, left) and 16-element (b, right) versions of the  
PLL DF algorithm with varying PLL gain.



or  subtraction  of  two  independent  identically  distributed  random variables  will  have  twice  the 

variance.

5.2.2 Effect on RMS Error Performance
Figures  5.4a and 5.4b plot the DOA estimate RMS error in both versions of the PLL DF 

algorithm for with varying PLL filter gain and an inter-element spacing of 0.4 .  We can see that as 

the gain of the filter decreases, the RMS error of both DF systems decreases.  Also note that for all 

but the smallest values of   the 8-element algorithm outperforms the 16-element version.  This is 

contrary to what is typically expected of DF systems, that antenna arrays with more elements in 

general  offer  higher  performance  because  the  system has  more  information  about  the  received 

signal.  For this algorithm though, the curve-fit algorithm for the 16-element version is actually a 

drawback because the nature of its operation is more sensitive to noise because it relies on both the 

first and second difference of the PLL data.  As seen in the previous section the variance of the 

phase data will double with each successive differentiation, which means that the information used 

by the 16-element curve fit algorithm is subject to a higher noise level.

When considering the general RMS error requirement for a single-channel DF system laid 

out  at  the  beginning  of  this  chapter,  we  can  conclude  that  the  8-element  algorithm  meets 

expectations when the PLL gain is lower than 2-3.  For the 16-element algorithm, a filter gain of less 

than 2-4 is  acceptable.   Therefore,  in the selection of filter  gain we must  weigh the benefits  of 

reduced estimate error variance with PLL acquisition time.  Later in this chapter we will see if the 

addition of DOA estimate filtering enhances system performance for larger values of the PLL filter 

gain.

5.3 Error Performance vs. Antenna Spacing
The second parameter considered for variation was that of the inter-element spacing in the 

antenna array relative to wavelength.  Initial implementation of the algorithm [1],[2],[3],[4] utilized a 

preexisting  8-element  array  that  was  originally  designed  for  operation  at  2GHz  [17].   At  this 

frequency,  the  elements  were  spaced  at  exactly  /2 ,  resulting  in  an  array  radius  of  0.65 . 

Unfortunately, the performance of the implemented system was considerably worse than that of the 

simulated system even even when the SNR was 20dB or more.  Recall from Figure  4.14 that the 

maximum amplitude of the first difference curves grows linearly with inter-element spacing.  As the 

spacing approaches /2 , the first difference amplitude approaches  .  During the differentiation 
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process, calculated first difference points are restricted to the region  −m  and for the 

curve fit algorithm we only consider that calculated point and only one other possible value, either 

  or − .  With any amount of noise in the system, it is highly likely that the calculated 

first difference point and its secondary value will both be in error if the true first difference value is 

close or equal to  .  Therefore, if neither of the calculated values for   are correct the curve fit 

algorithm  will  obviously  not  produce  a  correct  estimate  of  the  first  difference  curve.   Early 

simulations compensated for this by allowing for up to three separate values for each first difference 

point  whereas  the  implemented  version  of  the  algorithm  did  not  in  order  to  reduce  the 

computational load.  This was compensated for by reducing the frequency used for testing.  As the 

operating frequency is reduced, the wavelength of the signal increases and the corresponding inter-

element spacing and array radius increase because the physical dimensions of the array have not 

changed.  The final frequency used was 1.5707GHz because at that frequency the array radius is 

equal to /2 .  The corresponding inter-element spacing was therefore reduced to 0.38 .

Figures  5.5a and 5.5b show the simulated RMS error performance of both versions of the 

PLL algorithm for inter-element spacings that range from 0.35  to 0.65  with a PLL gain of 2-3 . 

For the 8-element version, performance obviously degrades as the spacing increases and that for 

spacings greater than  /2 , the system appears to be practically useless.  Moreover, a spacing of 

/2  definitely  appears  to  be  a  critical  point,  where  it  begins  to  cross  from  acceptable  to 

unacceptable  performance.   This  represents  a  model  of  the  initial  implementation's  operating 

conditions.  In contrast, the 16-element version experiences modest performance decreases as the 

spacing grows.

These performance differences result from the difference between the two versions' curve fit 

algorithms and their treatment of the first difference data.  As described in the preceding paragraph, 

the  8-element  curve-fit  algorithm  can  fail  when  the  amplitude  of  the  first  difference  curve 

approaches   .   Once  the  expected  amplitude  exceeds    it  is  guaranteed  that  the  curve  fit 

algorithm will  not produce meaningful  results.   This  can be compensated for by expanding the 

number of curves considered during the curve fit algorithm.  For example, we could consider the 

measured first difference point for each antenna and that point shifted by both    and  − . 

This would increase the number of candidate first difference curves from 28=256  to 38=6561 , 

which  represents  a  significant  increase  in  the  amount  of  time needed  to  evaluate  the  curve  fit 
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Figure 5.5.  Simulated RMS error performance of the 8-element (left) and 16-element (right) versions of the PLL 
DF algorithm with varying inter-element spacing.

Figure 5.6.  Example frequency offset estimate acquisition and tracking for various frequency offsets for a signal  
received with 10dB SNR.

Figure 5.7.  Example estimated DOA for PLL algorithm with frequency offset estimation during offset acquisition  
and tracking for various frequency offsets for a signal received with 10dB SNR.



algorithm.  The 16-element curve fit algorithm is not necessarily subject to these same constraints. 

While the first difference data for this version is bounded to within ± , the maximum amplitude 

of the second difference data does not approach    until  the inter-element spacing approaches 

0.65  at which point this version would be unable to resolve the  ±  ambiguities due to the 

BPSK modulation.

5.4 Error Performance vs. Frequency Offset
Similar to the discussion of system performance with respect to PLL filter gain, we will begin 

the discussion of system performance with the frequency offset estimator included by looking at the 

performance of the estimator itself.   This will  then flow into a discussion of the impact of this 

addition on DOA estimate error.

5.4.1 Frequency Offset Estimator Performance
Figures 5.6 and 5.7 provide examples of the frequency estimator output and DOA estimates 

for the DF system with frequency offset  values of  0Hz, 100Hz, 200Hz, and 500Hz during the 

acquisition and tracking phases of the estimator.  For these simulations, the estimator was allowed 

64 array sweeps for acquisition of the frequency offset.  This means that the PLL was operated with 

a second order loop filter for the first 64 array sweeps following initialization and then switched to a 

first order loop filter after this period.

We can see that during this acquisition phase, the error in the frequency estimator output 

approaches zero in each case, indicating that the alloted time period is sufficient.  Of course, if it is 

found that the estimator fails to converge during the given acquisition duration, either the allowed 

time can be increased to accommodate the estimator or the bandwidth of the second order filter can 

be increased to accelerate acquisition.  During the tracking phase of the estimator, the error in the 

frequency offset is kept to within ±20Hz, which is an acceptable deviation.  As stated in chapter 4, if 

the frequency offset on the received signal is small relative to the sampling frequency, it will appear 

as a constant shift across all of the phase values measured by the parallel PLLs.  Also, observe in 

Figure 5.7 that during the acquisition phase of the estimator, the DOA estimates produced by the 

system are often in error but once the estimator converges the estimates show very little error.  This 

gives us some measure of confidence that the estimator will not have a large affect the RMS error of 

the DOA estimates.

Figures 5.8a and 5.8b plot the variance and mean of the simulated frequency offset estimator 
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for frequency offset values of 0Hz, 100Hz, 200Hz, and 500Hz during after the initial acquisition 

period of the estimator.  These plots demonstrate that the error statistics of the estimator are not 

dependent on the actual magnitude of the frequency offset as they are reasonably consistent.  Much 

of the variation between individual traces stems from performing the simulation with limited input 

sample sizes.  It is expected that given a larger number of simulated received samples, the traces 

would  be  grouped  tighter.   Furthermore,  note  that  the  estimator  in  the  presence  of  no  offset 

reasonably matches the statistics of the estimators when a frequency offset is actually present.

5.4.2 Effect on RMS Error Performance
Figure  5.9a and  5.9b plot the RMS error of the PLL DF algorithm with frequency offset 

values of 100Hz, 200Hz, and 500Hz.  These values were chosen in order to determine whether or 

not the RMS error of the DF system is dependent on the magnitude of the frequency offset.  As we 

saw  in  the  previous  section,  the  mean  and  variance  of  frequency  estimator  is  apparently  not 

dependent on the magnitude of the offset.  For these simulations, the first order filter gain is 2-3 and 

the inter-element spacing is  0.4 .  In these plots, the trace labeled “Basic Version” refers to the 

performance of the system without the estimator included for the same array and PLL parameters 

and no frequency offset.  These two plots show that the addition of the frequency offset estimator 

incurs  some  performance  penalties  for  the  8-element  algorithm  but  not  for  the  16-element 

algorithm.   Upon  close  inspection,  we  note  that  with  the  frequency  estimator,  the  8-element 

algorithm actually seems to match the performance of the 16-element algorithm.  The residual offset 

left on the first difference data with the 8-element algorithm essentially has the same effect on the 

resulting DOA estimates that noise has on the first difference data with the 16-element algorithm. 

Furthermore,  the  16-element  curve  fit  algorithm  appears  to  perform  equally  well  whether  the 

estimator is included or not.  This is because the RMS error overhead resulting form the increased 

sensitivity  of  the  curve  fit  algorithm to noise  in  the  phase  estimates  from the PLL masks  any 

increase in the RMS error due to a residual frequency offset.

5.5 Effect of DOA Estimate Lowpass and Metric-Assisted Filtering
5.5.1 DOA Estimate Error Distributions

In  order  to  fully  understand the  operation  of  the  PLL DF algorithm it  is  necessary  to 

examine  the distribution of  the  DOA estimate  errors  in an attempt  to  discern  any patterns  or 

tendencies that the DOA estimation process exhibits.  These error patterns are the impetus for the 
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Figure 5.8.  Variance (left) and mean (right) of frequency offset estimator in simulation.

Figure 5.9.  Simulated RMS error performance of the 8-element (left) and 16-element (right) versions of the PLL 
DF algorithm for varying frequency offsets.

Figure 5.10.  Example DOA estimate error scatter plots for the 8-element PLL DF algorithm with an SNR of  
8dB (left), 5dB (center), and 3dB (right)  with no frequency offset.



development of the lowpass and MA filtering approaches, and began with the initial analysis of the 

8-element PLL algorithm at the start of this research.  Figure  5.10 contains three scatter plots of 

DOA estimate error samples for simulations run in an AWGN channel with received SNR values of 

8dB, 5dB, and 3dB.  To produce these plots, the error in DOA estimates for numerous simulation 

trials is plotted against the true DOA value.  This allows for the detection of any obvious bias in the 

DOA estimator.  In the scatter plot for the 8dB SNR case, we find that the majority of the DOA 

estimates carry very little error and that the few erroneous estimates have an error magnitude at or 

near 100°.  As the SNR is decreased in the remaining two cases, we notice that while the number of 

obviously erroneous estimates increases there is still a consistent cluster of DOA estimates with very 

little  error.   This  means  that  when  the  8-element  DF  algorithm  produces  an  incorrect  DOA 

estimate, that estimate will in general represent a large error magnitude of 85° or greater.  The 8-

element  algorithm appears  to  have  no  “middle-ground”  when  it  makes  a  mistake  –  the  DOA 

estimate is either fairly close to the true value or quite far off.  In other words, the performance of 

the DOA estimator does not degrade gracefully as SNR decreases.

Compare the 8-element scatter plots with those in Figure 5.11, which are similar scatter plots 

produced at the same SNR values for the 16-element DF algorithm.  We see that even at 8dB SNR, 

the 16-element algorithm produces DOA estimates that can be up to 50° off from the true value. 

And in a manner similar to the 8-element algorithm, as SNR decreases we find an increasing number 

of DOA estimates with larger error magnitudes.  This explains the overall higher RMS error curves 

for the 16-element algorithm displayed in Figure 5.4.  Even though as SNR decreases the 8-element 

algorithm has a tendency to produce DOA estimates with significantly large error magnitude, those 

large errors will have a lesser effect on the overall RMS error as the DOA estimates with small error 

magnitudes are consistently small and thus help to reduce the mean squared error.  Since the 16-

element algorithm even at moderate to high SNR values produces DOA estimates with a larger 

spread about zero error it has an effective RMS error overhead relative to the 8-element algorithm 

that  is  further  deteriorated  by  DOA  estimates  produced  with  large  error  magnitude  as  SNR 

decreases.

As described in chapter 4, the DOA quality metric was devised to help combat the error 

tendencies of the DF algorithms by using it to flag estimates as either “good” or “bad,” but in order 

to do this we need to determine a suitable threshold for the metric values.  Figures 5.12a and 5.12b 
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plot histograms of the quality metrics associated with the DOA estimates for a set of SNR values 

ranging from 12dB down to 0dB.  Note that the histograms were taken on the logarithm base-10 of 

the actual metric value so that their range is compressed.  We find that as SNR decreases for the 8-

element  algorithm,  the  general  shape  of  the  distribution  does  not  change  but  the  mean  value 

decreases from over 30 (1.5 in the plotted log scale) to less than 10 (1.0 in the plotted scale).  For the 

16-element array, we see that in general the observed metric values fall into one of two groups – 

those with magnitudes greater than 10 and those with magnitudes less than 10 – and that there is an 

obvious separation between these two groups.  As SNR decreases, the grouping with a magnitude 

greater than 10 shrinks.  Figure 5.13a and 5.13b show the distribution of the DOA quality metric for 

a single SNR of 4dB with the metrics grouped according to the actual  error magnitude in their 

associated DOA estimates.  We see that for the 8-element case there is significant overlap between 

the two distributions whereas for the 16-element algorithm the vast majority of the estimates with 

small error have a large metric value.  This shows that we can more easily set a metric threshold for 

the 16-element algorithm than the 8-element algorithm because the distribution of the metrics for 

the 16-element algorithm definitely fall into two easily separable categories.  Setting a threshold for 

the 8-element algorithm is not as easy for the 8-element algorithm because the distributions show no 

clear separation.

The difference between these two sets of histograms can be explained by considering the 

operation of both versions' respective curve fit methods.  The first difference curve selected by the 

8-element curve fit algorithm will still appear somewhat sinusoidal because it was the data set that 

most closely resembled a sinusoid.  Therefore, the DFT associated with the selected first difference 

curve will always contain some amount of energy in the bin used to produce the DOA estimate.  We 

see this in the histograms.  The overall variance in the metric values remains roughly the same as 

SNR is decreased while the overall noise and distortion level in the first difference curve, which 

affects the denominator of the metric calculation, will grow thus creating shifting the mean of the 

metric distribution lower.   Conversely,  the first difference data sets produced by the 16-element 

curve fit algorithm is less likely to resemble a sinusoid as noise level decreases because the distance 

measurements between first difference points, i.e. the second difference, will be more affected by 

received noise.  In fact, a data set resembling a line of zero slope  would be more likely picked than a 

sinusoid by this curve fit algorithm because the difference between successive data points would be 
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Figure 5.13.  Histograms of DOA estimate quality metrics showing distribution relative to DOA estimate error  
magnitude for a.) (left) the 8-element and b.) (right) 16-element versions of the PLL DF algorithm.

Figure 5.12.  Histograms of DOA estimate quality metrics showing distribution of the metric relative to SNR for a.)  
(left) the 8-element and b.) (right) 16-element versions of the PLL DF algorithm.

Figure 5.11.  Example DOA estimate error scatter plots for the 16-element PLL DF algorithm with an SNR of  
8dB (left), 5dB (center), and 3dB (right) with no frequency offset.



zero.

5.5.2 Effect of Filtering Approaches on RMS Error Performance
Figures 5.14a and 5.14b plot the RMS performance of both versions of the PLL algorithm 

for a system with a PLL gain of 2-3 and an inter-element spacing of  0.4 .  For MA and MA-LP 

filtering, the threshold for the metric was set to 10.  This threshold value was based on the metric 

distributions for the 16-element version of the algorithm and was used for the processing of the 

output for both versions.  The gain of the DOA estimate lowpass filter was 2-2.  The line labeled 

“Raw” denotes the RMS error in the system without filtering (compared to Figure 5.4) while LPF, 

MA, and MA-LPF denote the RMS error in the system with lowpass filtering, MA filtering, and MA-

LP filtering, respectively.

When comparing the effect of lowpass to MA filtering on RMS error measurements, we see 

that lowpass filtering has a greater effect on the 8 element algorithm than MA filtering because in 

many of the cases where the quality metric is above the set threshold for a DOA estimate with a 

large error magnitude.  Figures 5.15a and 5.15b offer a clue as to why this happens.  Figure 5.15a is a 

scatter plot of the DOA estimate error samples after metric filtering for the simulation with 3dB 

SNR.   The  points  labeled  “Rejected”  denote  DOA estimates  with  metrics  that  fell  below  the 

threshold of 10 while the points labeled “Accepted” denote samples processed either by the lowpass 

filter  or taken as-is  for  RMS error  calculation.   We see that  although a large number  of DOA 

estimates with large error magnitudes are thrown out, quite a few remain and are included in the 

RMS error calculation while a number of DOA estimates with very little error are thrown out as 
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Figure 5.14.  Simulated RMS error performance of the 8-element (left) and 16-element (right) versions of the PLL 
DF algorithm with DOA estimate filtering.



well.  This will hurt the RMS error measurement because not only do estimates remain that carry a 

significant amount of error but also because the distribution of error estimates will be diluted by a 

loss of estimates clustered about zero error.  Fortunately, the number of estimates remaining with 

little error is sufficient to maintain a low overall mean squared error and the system still achieves a 

lower overall RMS error than without any filtering.

Figure  5.15b is a histogram of the observed estimate error to accompany the scatter plot. 

The line labeled “Total” represents the error distribution before MA filtering, while the “Accepted” 

and “Rejected” lines represent the distributions of the accepted and rejected DOA estimates' error, 

respectively.  This confirms that although approximately 15% of the estimates rejected had error 

magnitudes  larger  than 20°,  the rest  of  the rejected estimates  could actually  have been used as 

“good” estimates as they fell within  ±10° of the true DOA.  Lowpass filtering outperforms MA 

filtering  simply  because  the overall  percentage of “bad” DOA estimates  is  small  relative to the 

overall estimate distribution so that by reducing their error contribution the overall mean squared 

error is reduced.  For this version, combining MA with lowpass filtering only reduces the RMS error 

slightly from the lowpass-only case in low SNR situations because it helps flag some of the bad 

estimates.

We find that that filtering approaches have a different effect on the 16-element version.  MA 

filtering offers a larger reduction in RMS error than lowpass filtering.  Figures 5.16a and 5.16b show 

the DOA estimate error scatter plot and distributions for the 16-element version with a SNR of 3dB 

(similar  to  Figure  5.15).   In  this  case  we  find  that  metric  does  fulfill  its  intended  goal  –  the 

overwhelming majority of rejected estimates were obviously in error while a relatively small number 

of “good” estimates were thrown away and a very minor amount of “bad” estimates were retained. 

This shows why MA filtering outperforms lowpass filtering for this version of the DF algorithm. 

The lowpass filter has to contend with DOA estimates that have a consistently large error variation 

while that variation is almost totally eliminated with the use of the quality metric.  As expected, MA-

LP filtering offers the greatest performance gains because the few “bad” estimates that remain are 

attenuated.

Overall we see that with the addition of the filtering approaches the 16-element algorithm 

performs better than the 8-element algorithm because it exceeds the 10° RMS error criterion down 

to very low SNR values by a larger margin.  Recall from section 5.1.2 that for the PLL filter gain 
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Figure 5.16.  DOA estimate error scatter plot (left) and associated error histogram (right) of DOA estimate error for  
16-element PLL DF algorithm after MA filtering with SNR=3dB.

Figure 5.15.  DOA estimate error scatter plot (left) and associated error histogram (right) of DOA estimate error for  
8-element PLL DF algorithm after MA filtering with SNR=3dB.

Figure 5.17.  Simulated RMS error performance with DOA estimate filtering of the 8-element (left) and 16-element  
(right) versions of the PLL DF algorithm with the addition of frequency offset removal and a 500Hz offset.



used in this system, the 16-element version did not meet the desired RMS error value for this PLL 

gain.   Of  course,  we also  find that  the  filtering  additions  to  the  8-element  algorithm definitely 

enhance  the  8-element  version and  also make  it  a  viable  DF algorithm according  to  the  same 

criterion.  This version almost met the RMS error target value before filtering.

Figures 5.17a and 5.17b present the simulated RMS error results for for both versions of the 

algorithm with DOA estimate filtering and frequency offset  removal.   The data labeled “Basic” 

refers to the unfiltered performance of the system without the presence of a frequency offset.  For 

the 8-element version, MA filtering reduces the system's RMS error to approximately the RMS error 

of the basic algorithm while lowpass filtering introduces a significant RMS error reduction and MA-

LP filtering performs the best of the three.  Compared to the filtered RMS error data in Figure 

5.13a,  we  see  that  the  addition  of  the  frequency  offset  estimator  still  incurs  some  RMS error 

penalties but the addition of estimate filtering does reduce them.  As discussed earlier, the frequency 

offset estimator has no major effect on the performance of the 16-element version, which is further 

confirmed in Figure  5.17b.  When compared to the results  in Figure  5.13b, there are no major 

differences between the effects of filtering on the 16-element system with or without the frequency 

offset estimator.

These  performance  gains  do not  come without  a  price  though.   Figure  5.18 shows the 

percentage of estimates discarded in the MA and MA-LP filtering processes for the both the 8-

element and 16-element versions of the algorithm without the inclusion of the frequency offset 

estimator.  This shows that although the system experiences some dramatic performance gains, the 

number of useful DOA estimates output over time is reduced.  For example, with 64 samples taken 

per antenna at a sampling rate of 125ksps, the total number of estimates produced per second by the 

8-element and 16-element versions is 244 and 122, respectively.  At an SNR of 3dB, the number of 

samples that pass through the two algorithms drops to 108 and 25 per second, respectively.  As SNR 

approaches 0dB, we see that less than 25% of the estimates produced by the 8-element algorithm are 

passed while less than 10% of the 16-element algorithm's estimates are allowed.  Of course, the 

viability of these theoretical rates is subjective and depends on application.  Generally speaking, this 

algorithm does provide attractive performance characteristics and can be considered a feasible basis 

for a DF system based on its performance in AWGN.  Also, remember that even if the MA filter 

does not consider the DOA estimates deemed “bad,” those estimates are still available at the output 
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of the system.  This allows the user to view all of the DOA estimates and use the entirety of the 

information produced by the estimator.

5.6 DOA Estimation on a Moving Target
One  question  that  arose  during  this  study  of  the  PLL  DF  algorithm  was  that  of  its 

performance  when  tracking  a  moving  target  because  any  change  in  position  of  the  target  will 

effectively change the manifold of the signal received by the DF antenna array.  According to the 

assumptions laid out in chapter 2, it is expected that any change in the DOA of the received signal 

will appear as a change in the phase of the received signal.  If these changes are relatively small the 

PLL  will  have  no  problem  in  tracking  them,  but  large  changes  may  prevent  succesful  DOA 

estimation.

Figures 5.19a and 5.19b show scatter plots of the estimated DOA and error associated with 

the  DOA estimates over time,  respectively,  for  a  target  that  is  moving with respect  to  the DF 

antenna array.  The SNR was 10dB and the received signal had a frequency offset of 250Hz.  The 

DF system sampled the received signal 64 times per antenna at a sampling frequency of 125kHz. 

The 16 element algorithm with frequency offset removal was used.  In the scatter plots, estimates 

labeled “Rejected” had associated quality metric values less than 10.  We can see from Figure 5.19b 

that the accepted DOA estimates fell within ±5° of the true DOA and that there is no noticeable lag 

between the DOA estimate and the true DOA.

To put this example in perspective, the actual velocity of the target and distance from the 

array must be considered.  When considering a moving target, it is obvious that the DOA is no 

longer static.  Therefore the received signal at the output of the m-th antenna can be expressed as: 

xm t =m t e
− j[o

2 r

cos 2m

M
−t ]  (5.2)

where t   is the time dependent DOA which for this example is described by:

t =
4

3
sin t   (5.3)

The rate of change in DOA over time for this target can be expressed as:


t
=

2

3
cos  t   (5.4)

Assuming that the target maintains a constant distance from the antenna array, the rate of change of 
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Figure 5.19.  Example plots of DOA estimation on a moving target in a 6dB AWGN channel with a frequency  
offset of 250Hz:  a.) (left) DOA estimates over time and b.) (right) DOA estimate error over time..

Figure 5.18.  Simulated rate of acceptance of DOA estimates using the DOA estimate quality metric for both 
versions of the PLL DF algorithm.

Figure 5.20.  Example output of frequency offset estimator for DF on the moving target from Figure 5.19 with a.)  
(left) 10dB SNR and b.) (right) 100dB SNR and a frequency offset of 250Hz.



the DOA over time can be related to the velocity of the target by:


t
= v

r
 

(5.5)

where  v is  the speed of the target  in meters  per second and  r is  the distance from the receive 

antenna.  For this example, the maximum velocity of the target is equal to  r2 /3 ,  which for a 

distance of 1 kilometer results in a target velocity of 3290 meters per second, just over 9.5 times the 

speed of sound.  From this result, it is obvious that this example is a fairly unrealistic simulation in 

terms of rate of change of DOA, yet the algorithm is still able to track the DOA.

Figure 5.20a shows the output of the frequency offset estimator from the example in Figure 

5.19.  The frequency offset on the signal was set to a constant 250Hz.  We see that after the initial 

half-second acquisition period the offset estimator tracks the frequency offset reasonably well but 

has noticeable deviations from the true value.  Figure  5.20b is the output of the frequency offset 

estimator for the same system and target setup with an SNR of 100dB, which effectively eliminates 

noise on the received signal.  We can see from this Figure that the output of the estimator oscillates 

about the true value of 250Hz and that the oscillations are kept with  ±5Hz of that value.  This 

oscillation is  due to the offset  estimator  tracking the change in DOA over  time as  part  of  the 

frequency offset on the signal, but the magnitude of that offset is fairly insignificant.

As stated previously, small frequency offsets have very little effect on the DF estimation 

process and Figure 5.6 showed that with an SNR of 10dB the estimator will vary ±10Hz from the 

true value of the signal anyway.  This example shows that when considering the change in DOA due 

to a moving target we should not expect the DOA estimation process to be negatively affected 

because the apparent frequency offset induced on the signal due to the rate of change of the DOA is 

negligible.  The frequency offset estimator does not hamper the ability of the DOA estimator to 

track the phase of the received signal because although it removes the short term frequency shifts 

related to the target's motion it does not stop the PLL from tracking the long term change in the 

manifold of the received signal.

5.7 DOA Estimation with a Two-Ray Multipath Model
Previous  work  on the  PLL algorithm [1],[2],[3],[4]  has  shown that  although  superior  in 

performance  to  other  single-channel  DF  algorithms,  specifically  the  Watson-Watt  and  pseudo-

doppler methods, in an AWGN channel the PLL algorithm's performance in fading channels leaves 
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much to be desired.  Here we will investigate the problems that arise when evaluating the PLL DF 

algorithm in a multipath channel that follows a simple two path model shown in Figure 5.21.  While 

this model is obviously quite simple and does not take fading into account, it does help illustrate 

some aspects  of  the  problem of  determining  the DOA of a  received signal  in the presence  of 

multipath.

Figure 5.22a is a scatter plot of the estimated DOA for the two-ray multipath model for a 

primary DOA of 0° and secondary DOA of 80° as the ratio of the power of the primary signal to 

the  power  of  the  secondary  signal  varies  from 20dB down to  -20dB.   Figure  5.22b  plots  the 

percentage of DOA estimates accepted using the quality metric as the power ratio of the two paths 

changes.  This plot shows that if one path is 10dB stronger than the other, the DF algorithm will 

reliably pick the angle of that path as the estimated DOA.  If the one path's power is within 1dB of 

the other path,  the DOA estimated by the algorithm indicates that the signal appears as if  it  is 

coming from directly between the two paths.

This is to be expected from the PLL.  When one signal is significantly stronger than the 

other, the PLL will track the strongest signal.  If one signal is the line-of-sight signal, it should be 

significantly stronger than the secondary signal because the other signal will have propagated over a 

longer  distance.   However,  if  the  secondary  signal  is  generated  by a  reflection  that  is  in  close 

proximity to the antenna array the two signals may be close in amplitude.  The remainder of the 

analysis work centered on any possible approaches that can be taken to improve the algorithm's 

performance in this case.

5.7.1 Derivation of Signal Representation for Two Signals with Equal Strength
In order to determine whether anything can be done to help mitigate multipath issues arising 

from the two-ray model, a representation of the signal received by the array must be determined. 

First, the two separate paths are modeled as two distinct waveforms impinging upon the array:
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Figure 5.21.  Two-ray multipath model.



r 1,mt =A1cos[c t2 r

cos2m

Na
−11]  (5.6)

r 2,m t  = A2 cos[c t2 r

cos2m

Na
−22]  (5.7)

where  1  and  2 are the DOAs and 1  and  2  are constant phase offsets of the primary and 

secondary paths, respectively.  The signal received at the antenna array is simply modeled as the sum 

of the two separate paths:

Rm t =r 1,m t r 2,m t =m cos c tm  (5.8)

where m  and m  are the resulting amplitude and phase of the signal received at the m-th antenna. 

It is these resultant amplitude and phase expressions that are of interest.  To solve for them the 

trigonometric identity:

cos  x cos  y = 2cos x y
2 cos x− y

2   (5.9)

is used where:

x=c t2 r

cos2m

M
−11  (5.10)

y = c t 2 r

cos2m

M
−22  (5.11)

The sum of these two terms can be expressed as:

 x y = 2c t12
2r
 [cos2m

M
−1cos2m

M
−2]  (5.12)

 x y = 2c t12
4 r
 cos 2m

M
−
12
2 cos2−12   (5.13)

while their difference can be reduced to:

 x− y = 1−2
2r
 [cos 2m

M
−1−cos2m

M
−2]  (5.14)

 x− y = 1−2−
4r
 sin2m

M
−
12
2 sin2−12   (5.15)

The amplitude, m , of the signal received at the m-th antenna, Rm , is then found to be:
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Figure 5.23.  Example plot of angle resolution for two-ray model with equal signal powers with true DOAs of 0° 
and 80°.

Figure 5.22.  PLL DF algorithm in a two-ray multipath environment showing a.) (left) scatter plot of DOA 
estimates and b.) (right) percentage of accepted DOA estimates vs. power ratio of the two unmodulated signals.

Figure 5.24.   PLL DF algorithm in a two-ray multipath environment showing a.) (left) scatter plot of DOA 
estimates and b.) (right) percentage of accepted DOA estimates vs. power ratio of the two modulated signals.



m = 2cos x− y
2 = 2cos[1−22 − 2 r

 sin 2m
M

−
12
2 sin2−12 ]  (5.16)

from the x− y   term because it is not a function carrier frequency c .  The phase, m , can be 

determined from the portions of the x y   term that are not a function of the carrier frequency:

m=
x y
2
−c t = 122  2 r

 cos2−12 cos2m
M

−
12
2   (5.17)

Therefore, in the absence of noise the estimate of the received phase at the output of the m-th PLL 

can be expressed as:

m= o
2r
 cos2−12 cos 2m

M
−
12
2   (5.18)

This differs from the expected phase as given in chapter 3 as: 

m=o
2 r

cos2m

M
−  (5.19)

in two main ways.  First, the amplitude of the sinusoid traced by the output of the collection of 

PLLs is modified by a function of the angular separation of the two paths, cos [2−1/2] , and 

second, the phase of the sinusoid is also a function of the angular separation of the two paths.  This 

means that the signal will appear to come from between the two paths when the amplitude of the 

two paths is equal.  If follows that the first difference curve is given by:

 i =−
4 r
 sin M cos2−12 cos 2m

M
− 

M
−
12
2   (5.20)

and the final DOA estimate produced by the DFT after the curve-fit algorithm is:

 =
12
2

 (5.21)

This shows that according to the model for the received signal, the first difference data generated 

from the output of the parallel PLLs will cause the DOA estimation block to estimate the DOA as 

the average of the two paths' DOAs and since the data is still sinusoidal the associated quality metric 

should still be able to determine whether the curve fit process was succesful.  However, the first 

difference curve does contain extra information that can possibly be used to resolve the angles of 

the two paths.

5.7.2 Resolution of Two Directions of Arrival for Equal Amplitude Case
From equation 5.20, we see that the maximum amplitude of the first difference curve is 
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given by:

∣ m∣=
4r
 sin M cos2−12   (5.22)

which is now a function of the DOAs of the two separate paths.  By defining a value A :

A=cos2−12 =maxm { m}−minm { m}

2 4r
 sin M   (5.23)

as a scaled measurement of the amplitude of the first  difference curve selected by the curve fit 

algorithm, the two paths' DOAs can be 

1= cos
−1 A  (5.24)

2= −cos
−1 A  (5.25)

Figure  5.23 plots an example scatter plot of the estimated DOA for the two-ray channel model 

along with the resolved DOAs of the two signals.  For this example, the two signals had true DOAs 

of 0° and 80°.  We see that when the estimate is accepted based on its quality metric, the two DOAs 

are successfully determined from the measured first difference data.  However, this process will be 

very  sensitive  to  noise  because  the  variance  of  the  first  difference  data  will  increase  as  SNR 

decreases.

5.7.3 Final Comments on Performance in Multipath Channels
The preceeding development does break down when modulation is included.  Figure  5.24 

represents a repeat of the simulation that generated the data for Figure  5.22 with the addition of 

BPSK modulation.  This shows that if the power of one signal is within 10dB of the other signal's 

power, the DF algorithm exhibits a definite tendency toward error.  But notice that although the 

number of obviously erroneous estimates increases,  the algorithm is still  capable of producing a 

decent proportion of correct estimates of the DOA of the stronger signal down to a power ratio of 

roughly 3dB.  This means that although the two-ray resolution will not work in general, if one path 

is at least twice as strong as any other reflections, the algorithm will still be able to determine the 

proper  DOA,  although  not  necessarily  in  a  reliable  manner.   Furthermore,  as  the  number  of 

multipath components grows, it will be ever more likely to make mistakes.

We can conclude that from this simple model, the algorithm in its current form can not be 

expected to offer robust performance in multipath channels.  Keep in mind that this investigation 
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did not consider most of the effects of small-scale fading, such as time-varying amplitude or phase 

of the channel, only the effect of the reception of two signals with a large angular separation and 

large-scale fading.  With small-scale fading, a time-varying amplitude on the received signal should 

not adversely affect the DOA estimation process as the PLL is designed such that it will be able to 

maintain a decent estimate of the received signal's phase even when the signal is experiencing a deep 

fade.   If  the angular  separation between paths is  small  such that the received signal  appears  to 

emanate from a single DOA, the system should perform as if  the SNR is temporarily degraded 

during the fading.  However, a time-varying channel phase will definitely prove problematic because 

if the phase of the channel varies quickly relative to the switching rate of the array.  If the channel 

phase is not relatively constant over the time it takes to perform one full array sweep, then the basic 

assumptions on the operation of the algorithm will be violated and the DOA estimation process will 

break down.
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Chapter 6 

Algorithm Implementation

The final part of this work was concerned with the proof-of-concept implementation of the 

additions to the PLL algorithm discussed in chapter 4.  Initial work on the algorithm [1],[2],[3],[4] 

yielded a working version of the basic PLL DF algorithm as presented in chapter 3.  This initial 

implementation provided the starting point for the implementation of the additions to the 8-element 

algorithm.   In this  chapter,  we present the implementation of the algorithm including both the 

hardware  and  software  platforms,  the  test  environment,  as  well  as  the  successes  and  failures 

encountered in the process.

6.1 Hardware Overview
6.1.1 WJ-8629a Software Defined Receiver

The WJ-8629a Software Definable Receiver, provided by DRS Signal Solutions, Inc., is a 

DSP based software radio with a frequency range of 20MHz to 2.7GHz, a maximum computational 

rate of nearly 1GFLOPS, and communication and data interfaces over both RS-232 and VXI.  For 

data processing, it provides either samples directly from the analog-to-digital converter or from the 

digital down-converter in both rectangular (I and Q) and polar (magnitude and phase) form along 

with frequency and automatic gain control (AGC) information.  There are 22 predefined IF filter 

bandwidths from 200Hz to 1.23MHz and 5 slots for user customization.  Along with its included set 

of demodulators and audio/video filters, it allows the user to develop custom algorithms in either C 

or  assembly  for its  TMS320C6701 DSP through the use of  the included Sunrise  DSP software 

developer's kit (SDK).

Figure  6.1 shows a block diagram of the processing flow in the WJ-8629a.  The RF input 
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Figure 6.1.  Overview of processing flow in the WJ-869a.



signal is first processed by the analog RF front end which performs the initial wideband filtering and 

downconversion  to  a  70MHz  IF  signal.   The  IF  signal  is  then  processed  by  the  digital 

downconverter (DDC), which digitizes the signal, filters it with a selectable narrowband filter, and 

converts the digitized signal to baseband.  The WJ-8629a offers 22 different IF bandwidths from 

200Hz to 1.23MHz with data sampling rates and block sizes varying accordingly.  It is possible for 

the user to create up to 5 custom IF filters with the Sunrise SDK.  The data output from the DDC is 

then available for block processing within the DSP.

Three separate software processing slots, labeled the demodulator, analyzer, and decoder, are 

available for the use of predefined or custom processing modules.  The WJ-8629a includes a set of 

common demodulation functions, such as AM, FM, CW, LSB, USB, ISB, and FSK, for use in the 

demodulator slot.  The analyzer and decoder both have the options for audio/video filters as well as 

an FSK decoder.   Each slot allows for up to 4 custom DSP algorithms to be downloaded and 

activated.   During  normal  operation,  the  digital  data  from  the  DDC  is  first  passed  to  the 

demodulator slot and processed by the selected demodulation function.  The data output from the 

demodulator is then passed to the analyzer, the output of which is in turn passed down to the 

decoder.  One or more of the slots can be bypassed at any one time, resulting in the data blocks 

simply being passed through the bypassed processing block without change.  The final output of the 

decoder block is then available as either analog or digital data through one of many interfaces, either 

as a stereo audio signal from the headphone jack, as a mono video output from a SMA connector, 

or as digital data through both the VXI bus and RS-232 port.

Receiver control is either performed locally by a PC controlling the VXI bus or remotely 

through  an RS-232 connection.   All  commands  and queries  to  the  radio,  such as  demodulator 

selection and tuned frequency, are sent using ASCII.  For example, to tune the radio to 94.7MHz 

the string “FRQ 94.7” is sent and to determine the tuned frequency of the radio the string “FRQ?” 

is sent, to which the radio responds with “FRQ 94.7”.  The WJ-8629a used in our implementation 

was installed in a VXI chassis with a National Instruments VXI PC as the bus controller.  Software 

supplied with the receiver allowed for control of the receiver through a GUI.  This GUI simplified 

the tasks of downloading our custom algorithms as well as recording data output from the DSP.

For our implementation, an IF bandwidth of 100kHz was selected which uses a sampling 

rate of 125kHz and a data block size of 64 samples per block.  The noise floor of the receiver at this 
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bandwidth  is  -110dBm.   This  bandwidth  was  selected  because  it  represented  a  good  trade  off 

between noise level and block size – the PLL with a filter gain of 2-3 is able to acquire the target 

phase  of  the  signal  completely  within  one  data  block  if  the  antenna  switch  has  a  temporary 

malfunction resulting in a loss of data for one or more array sweeps and the noise level on the 

received data allowed for low power transmission of the target signal.  As testing occurred for the 

most part in an indoor environment, low transmission power was desired to reduce the power of 

any possible multipath reflections.  The DF function was written in C and consisted of a single 

module that was downloaded to the demodulator slot in the receiver.  The analyzer and decoder 

slots were set to bypass mode as they were unused.

6.1.2 8-element Antenna Array
The  MPRG  antenna  array  [17],  shown  in  Figure  6.3,  is  a  uniform  circular  array  of  8 

monopole antennas with a diameter of approximately 19.5cm.  At 2.0GHz, this gives a radius of 

0.65  and inter-element spacing of /2 .  As discussed in chapter 5, this antenna spacing led to an 

unacceptable level of error in the initial implementation as it increases the amplitude of the first 

difference curve to a critical point beyond which the curve-fit algorithm can not successfully resolve 
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Figure 6.3: MPRG 8-element uniform circular array.

Figure 6.2.  8-element array switching Circuit.



the  ±  ambiguities  on  the  observed  first  difference  data.   Subsequently,  the  frequency  of 

operation was reduced to 1.5707GHz.  This reduced the radius of the array to /2 .  Conceptually 

this  frequency  was  chosen  because  the  target  signal  will  go through one  complete  period as  it 

propagates across the array.  The corresponding inter-element spacing for the array at this frequency 

is approximately 0.38 .

6.1.3 Antenna Switching Circuit
As this array was originally designed for use with a multi-channel receiver system, it did not 

have the necessary switching hardware to use with a single-channel receiver.  Therefore, a switch 

was developed to take the 8 RF outputs from the array and select one for routing to the receiver 

based on a control signal generated by the receiver. The antenna switching circuit developed, shown 

in Figure 6.2, consists of two main parts:  a set of RF switches suitable for the frequency range and 

number  of  antennas,  and  a  control  circuit  to  .   The  switches  selected  for  the  project  were  a 

combination  of  single-pole  four-throw  (SP4T)  and  single-pole  double-throw  (SPDT)  gallium-

arsenide  (GaAs)  switches  from  Mini  Circuits  (models  ZSWA-4-30DR  and  ZYSWA-2-50DR, 

respectively).   These  switches  were  selected  primarily  due  to  their  wide  frequency  range  (DC-

3.0GHz), fast switching times (45ns typical), high port isolation (32dB minimum at 2.0GHz), and 

TTL control.

The  switch  control  circuit,  a  block  diagram of  which  is  shown in  Figure  6.4,  primarily 

consists of a Texas Instruments ADS7805 16-bit analog-to-digital converter (ADC) for reception of 

the control signal and a Xilinx complex programmable logic device (CPLD) for ADC control and 
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Figure 6.4.  Switching circuit for the 8-element array.



switch  signal  processing.   The  design  was  a  joint  product  of  both  this  work  and  the  previous 

student's work.  The analog control signal output by the receiver, shown in Figure  6.5, essentially 

consisted of a “staircase” function in which each of the eight voltage levels corresponded to the 

desired antenna selected by the switching circuit.  This control signal is output at the receiver from 

the analog video output port,  which is an SMA connector.  It is generated in the DSP code by 

simply setting the output data array for an entire processing block to a single value.  

The ADC samples this signal at 100kHz under the control of the CPLD.  The CPLD then 

latches the ten most significant bits of the 16-bit output upon receiving the “Ready” signal from the 

ADC.  The CPLD then converts the measured voltage level to the proper combination of TTL 

signals to drive the switches.  The SPDT switch requires a single control signal to select between its 

two inputs while the SP4T switches used 4 control signals each.  As the output from only one SP4T 

would be selected by the SPDT at any instant in time, these switches shared control signals in order 

to reduce the complexity of the wiring.  These five switch control signals are latched and the latched 

outputs are then wired from the CPLD's interface pins through inverter ICs to the switch control 

ports.

6.1.4 Test System Setup
Testing of the DF system implementation took place primarily in the hardware design lab in 

the MPRG student office space located in Durham Hall.  Figure 6.6 is a block diagram of the basic 

test scenario.  These test scenarios were set up to approximate an AWGN channel.  To attempt this, 

the target signal was transmitted at a low enough power so that any multipath reflections would 

hopefully be weak compared to the primary signal but the primary signal would be received at a 

reasonably high SNR to provide a relatively “clean” received signal for algorithm verification.  In 

addition,  a  log-periodic  antenna was  used at  the  transmitter  to  direct  most  of  the  target  signal 

towards the DF antenna array and reduce the number of secondary reflected paths.  The transmitter 
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Figure 6.5.  Analog control signal for 8-element switching circuit.



and antenna array were usually separated by at least two to three meters so that the target signal 

appears to come from the far field of the array.

6.2 Implementation of 8-Element Algorithm Additions
Overall, the implementation of the various processing modules proved to be straightforward 

and did not represent a significant risk as the underlying hardware and software platforms for the 

basic 8-element algorithm were already shown to have worked.  Once the simulation blocks were 

working in Matlab, all that was needed was to convert the Matlab functions into C code and include 

them in the C source code for the DSP.  Of course, certain restrictions applied to the algorithm as 

implemented on the DSP that do not exist in the Matlab environment.  First, the majority of the C 

code was written using fixed-point variables instead of the double precision floating point variables 

used by default in Matlab, primarily to save processing time as fixed-point arithmetic in general takes 

fewer processing cycles to perform that floating point.  In fact, during the initial implementation of 

the  algorithm it  was  discovered that  although the DSP was designed to perform floating point 

operations the use of floating point math for the entire implementation exceeded the maximum 

number of processing cycles allowed per data block by a large margin.   The use of fixed point 

variables also required that special attention be paid to the operation of the filters in both the PLL as 

well as the frequency offset estimator.  Second, the implementation needs to coordinate the antenna 

switching with the PLL block processing.  There will be a delay between the output of the switching 

signal the reception of the corresponding antenna output due to, among other things, the receiver's 

operating system overhead and the time the signal takes to propagate through the various filters in 

the RF front end and digitization section.
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Figure 6.6.  DF system testing setup.



6.2.1 Linear PLL and Frequency Offset Estimator Implementation
As the nonlinear  to  linear  PLL transformation and the addition of  the  frequency offset 

estimator would require two major overhauls of the PLL operation, it was decided to completely 

replace  the  existing  PLL with  the  frequency  offset  estimation  version  from Matlab  simulation. 

Implementation was relatively straightforward and required only minor alterations to translate the 

Matlab code to C.  It was discovered during initial testing of this new PLL that the frequency offset 

estimation circuit would fail  to fully acquire the frequency offset,  leaving a considerable residual 

offset on the received data.  The cause of this was the first filter in the frequency offset estimation 

process.  Figure  6.7a shows the initial signal flow model used to implement the filter.  Remember 

that the difference equation describing the filter is given by:

y [n]=1 x [n]1−1 y [n−1]  (6.1)

In order to reduce the number of gain elements needed for the filter, it was instead implemented 

using: 

y [n]=1  x [n ]− y [n−1] y [n−1]  (6.2)

which is accomplished by presenting the filter with the difference between the current input and 

output (i.e. x [n ]− y [n−1] ) rather than the input x [n ] .  The gain parameter, 1 , selected for this 

filter was 2-5.

It turns out that with the phase quantization in the DDC this filter gain would essentially 

reduce the fixed-point input to zero if the residual frequency offset fell below 60Hz.  The phase 

values output from the DDC are 16-bit integers which means that =215−1=32767 .  Recall from 

the discussion of the estimator in chapter 4 that the estimator does not explicitly track the value of 

the frequency offset in Hertz, but the quantity 2 f t s , where  f  is measured in Hertz and ts is 

the  sampling  frequency  measured  in  seconds.   In  fixed  point  notation,  this  value  becomes 
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Figure 6.7.  Implementation model for lowpass filters in frequency offset estimator showing a.) (left) initial model and 
b.) (right) modified model..



216−2 f t s , and a frequency offset of 61Hz in turn is represented by the integer 32 (100000 

in binary).  To simplify the implementation, all filter gains were set as powers of 2 so that they could 

be implemented using right shifts instead of divisions.  Because of this, a frequency offset of 61Hz 

will  be  reduced  to  the  integer  1  by  this  filter.   Smaller  values  of  the  frequency  offset  will  be 

effectively ignored by the filter.

One solution to this problem would be to increase the filter gain so that it could track a 

much smaller residual offset but that would increase the variance of the estimator due to an increase 

in the effective noise power.  A quick return to elementary discrete time filter theory provided the 

answer – simply switch the places of the accumulator and gain element in the filter, as shown in 

Figure 6.7b.  This will result in an equivalent filter while simultaneously solving the problem as the 

accumulator will then be able to grow to a much larger value.  This accumulated value is then scaled 

by  the  filter  gain.   With  this  minor  modification,  the  frequency  offset  estimator  performed  its 

intended purpose extremely well.

Figures 6.8a and 6.8b show an example of the received phase and corresponding PLL output 

during the acquisition and tracking stages of the frequency offset estimator.  Each plot shows the 

output of the PLL for each antenna for two full array sweeps with 64 samples taken per antenna. 
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Figure 6.8.  Example plot of implementation of PLL output with ~560Hz frequency offset during a.) (left)  
frequency offset acquisition and b.) (right) frequency offset tracking phases.



We see in Figure 6.8a that initially the PLL has a slope nearing that of the received phase, although 

with a definite phase offset.  But after the first array sweep, the PLL outputs somewhat level off due 

to the offset estimator beginning to acquire the frequency offset.  Figure 6.8b, which is taken from 

the same recorded data approximately 60 array sweeps after the first plot, shows that the frequency 

offset estimate has stabilized as the phase tracked by each PLL is relatively constant across each data 

block.

Note that the phase tracked by the first PLL (during antenna index 0) starts out near zero at 

every array sweep.  Because the received signal has a time-varying phase, in the absence of perfect 

knowledge of the frequency offset the exact value of the phase of the signal at the start of each array 

sweep is unknown.  For a stationary target, it is assumed that the constant phase difference between 

elements will remain the same and this assumption must remain valid in order to facilitate parallel 

operation of the PLLs.  Otherwise, the PLL for each antenna would have to reacquire the signal's 

phase with each array sweep.  To compensate for this time-varying phase, the first phase sample 

from the first antenna is used as a constant offset for every other phase sample for the entire array 

sweep.  This ensures that the first PLL will always track near zero while every other PLL will track a 

constant phase value.
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Figure 6.9.  Example frequency offset estimator output from implementation for a received signal with a true frequency  
offset of approximately 560Hz.



Figure  6.9 shows the output of the frequency offset estimator from the same data set the 

example PLL plots were taken from.  We see that after approximately 35 array sweeps the estimator 

has acquired the frequency offset.  The “true” value of the frequency offset was estimated to be 

560Hz from recorded data received by a single antenna over a period of approximately 2 seconds 

and postprocessed in Matlab using a large FFT.  Note that the offset estimate moves in 2Hz steps – 

this is the smallest frequency offset that can be measured due to the system's phase quantization.

6.2.2 DOA Estimate Quality Metric Implementation
Implementation  of  the  DOA estimate  quality  metric  consisted  of  two steps.   First,  the 

method of DFT calculation needed to be addressed as only one frequency bin was calculated in the 

initial  implementation.   Second, a method needed to be devised to implement the actual  metric 

calculation as division is not supported by the WJ-8629a due to peculiarities in the compiler used. 

Specifically,  the  division and square  root functions offered by the TI FastRTS library were not 

supported on the receiver.  Since the metric calculation relied on determining the magnitude of a set 

of complex numbers another approach needed to be found.

In order to produce each DOA estimate,  the phase of one bin of the DFT of the first 

difference data needs to be determined.  The original algorithm implementation managed this by 

directly evaluating the DFT for the single frequency required.  In order to calculate the DOA quality 

metric,  the  algorithm  requires  half  of  the  frequency  spectrum  to  be  calculated.   In  order  to 

accomplish this, a few options were considered in addition to direct evaluation of the DFT, such as 

the Goertzel algorithm and other advanced FFT techniques, but in the end direct DFT evaluation 

was the method chosen because it was recognized that the data set in question consists of only 8 or 

16 elements.  While the Goertzel algorithm and decimation-FFT algorithms are shown to be more 

efficient than direct evaluation of the DFT, the processing cycle reductions offered by these options 

is  minimal when the actual  data series  is small.   For the 8-element  algorithm, determining four 

frequency bins instead of just one added a nearly trivial amount of processing time relative to the 

entire  algorithm implementation.   For  the  16-element  algorithm,  the  massive  reduction  in  the 

processing  requirements  of  the  curve  fit  algorithm  compensated  for  the  calculation  of  eight 

frequency bins.

Determining  the  magnitude  of  the  complex  numbers  representing  the  frequency  bins 

calculated by the DFT without  the availability  of  a  square root function at  first  glance appears 

82



daunting.  After searching for various numerical approximations to determine the magnitude of a 

complex  number,  such  as  a  polynomial  approximation of  a  square  root  function  or  successive 

approximation utilizing a binary search, a much simpler approximation was found [18] that simply 

estimates  the  magnitude  of  a  complex  number  by  using  a  linear  combination  of  the  real  and 

imaginary parts: 

∣X∣≃⋅max ∣I∣,∣Q∣⋅min∣I∣,∣Q∣  (6.3)

where I is the real part of the complex number X and Q is the imaginary part and   and   are 

coefficients which can be altered based on the desired error characteristics of the estimator.  This 

approximation works by essentially restricting the phase of the complex number to a region in which 

a linear combination of the two parts is a reasonable approximation of the magnitude.  First, taking 

the absolute value of the real and imaginary parts of X forces the phase of the complex value to the 

first quadrant.  Second, the max and min operations further restrict the phase of the number to be 

less than /4 .  Table 6.1 shows an abbreviated list of possible values for the coefficients   and   

and their associated error statistics.

Selection of the coefficients depends on the acceptable amount of error in the estimated 

magnitude.  As the quality metric denominator is the sum of 3 or more numbers produced by this 

approximation, the “Min. RMS w/ Avg.=0” version of the coefficients was selected for use in the 

algorithm.  To perform the final metric calculation, the numerator and denominator values were 

produced and the denominator value was scaled by the desired metric threshold.
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Table 6.1.  List of coefficients and associated error statistics for magnitude estimation function.

Name  
Error Characteristics

Average 
(linear) RMS (dB) Peak (dB)

Min. RMS Error 0.94754 0.39245 0.00055 -32.6 -25.6

Min. Peak Error 0.96043 0.39782 -0.01305 -31.4 -28.1

Min. RMS w/ Avg. = 0 0.94806 0.39270 0.0 -32.6 -25.7

1, Min. RMS Error 1.0 0.32326 -0.02087 -28.7 -23.8

1, Min. Peak Error 1.0 0.33598 -0.02561 -28.3 -25.1

1, 1/2 1.0 0.5 -0.08678 -20.7 -18.6

1, 1/4 1.0 0.25 0.00646 -27.6 -18.7

1, 3/8 1.0 0.375 -0.04016 -26.4 -23.4



6.2.3 Data Collection and Filtering Using a Matlab Graphical User Interface
Initially the DOA estimates were recorded using the debug interface to the DSP from the 

Sunrise SDK tools.  The memory location that held the estimated DOA variable was periodically 

probed for its value and written down.  Obviously, this process is very tedious and time-consuming 

and a more efficient approach could be found.  As all control of the receiver during development 

and testing took place using the VXI bus, the RS-232 port was free for other uses.  Therefore, that 

port could be used to output the DOA estimates as well as their associated quality metrics.  The 

approach taken was to:

1. Convert the floating-point DOA estimate to a string of ASCII characters in a fixed format 

with 3 digits before and 4 digits after the decimal point.

2. Output DOA estimate string followed by carriage return and line feed characters.

3. Output decision based on the calculated quality metric followed by carriage return and line 

feed characters.  The string “+1” is sent for a good estimate and “-0” for a bad estimate.

The receiver will output these values for every array sweep following system initialization. 

Since the DOA estimate and metric decision values are sent as plain text values instead of binary 

encoded, any terminal program can be used to display this data during system operation.  This also 

facilitated the development of a Matlab GUI to collect and display DOA estimate data in real time. 
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Figure 6.10.  Screen capture of Matlab data collection GUI.



A screen shot of the GUI is shown in Figure 6.10.  The underlying Matlab program opens the serial 

port on the host PC to listen for the receiver serial output, retrieves each DOA estimate value, and 

then calculates various statistics for a sliding window of estimates as well as filters the data.  The 

polar plot in the left of the GUI plots the current DOA estimate as well as the current mean DOA 

and filter output.  The plot in the lower right of the GUI plots a sliding window of the previous 300 

DOA estimates.  The GUI also allows the user to save the collected DOA estimates to a Matlab data 

file for future processing.

16 Element Array Construction

In order to test the implementation of the 16-element algorithm, a new antenna array was 

required as the 8-element array and switching circuit would obviously be insufficient.  Consequently 

the design of a new uniform circular array was undertaken based on the design of the 8-element 

array.

6.2.4 Array Materials and General Design.

The goal was to copy the manufacturing aspects of the 8-element array while simply scaling 

the size up to accommodate 16 antennas.  The intended inter-element spacing was  0.4 , which 

translates to an array radius of 1.03 .  At 2.0GHz, this would require an array diameter of 30.76cm 

(12.1in.) but the implementation is not necessarily tied to that specific frequency.  For convenience 

sake, the array diameter was set to 10in. (25.4cm), giving an inter-element spacing of  0.4  at an 

operating  frequency  of  2.422GHz,  which  is  well  within  operating  frequency  range  of  both  the 

receiver and RF switches.  Table  6.3 is a list of the major parts used in construction of the 16-

element array.

85

Table 6.2.  Parts list for major items involved in construction of 16-element array switching circuit.

Part Model # Manufacturer/Supplier Quantity Price
Spartan-2 FPGA Board B5-Spartan2e+ Burch Electronic Designs 1 $300

Flash PROM B5-FlashProm Burch Electronic Designs 1 $80

DIP Switches Add-on B5-DipSwitch Burch Electronic Designs 1 $20

SP4T Switch ZSWA-4-30DR Mini-Circuits 5 $120

Hex Inverter SN54AC04 Texas Instruments 4 Free

1' Phase Matched Cables - RF Products 20 $10

SMA Connectors - Mouser.com 16 $2.50



As this array will be digitally controlled, a Xilinx Spartan2 field programmable gate array 

(FPGA)  from Burch  Electronic  designs  was  chosen.   The  development  board  from BurchED 

provides access to all 230 I/O pins on the FPGA and contains its own voltage regulators and a 

programmable oscillator that can provide a stable clock signal from 1MHz to 100MHz.  A Flash 

PROM add-on board from BurchED was selected to load the FPGA program upon power-up. 

This is required because the circuitry in FPGAs is RAM-based and will lose its programming when it 

loses power.   An additional  add-on board containing 16 DIP switches was included to provide 

flexible input for the selection of multiple possible switching algorithms in the FPGA as well as for 

future expandability.

The SP4T RF switches from Mini-Circuits were the same switches used in the switching 

circuit for the 8-element array.  They require both +5V and -5V power supplies and 5V TTL signals 

for control.  The hex inverters are CMOS based inverters used to buffer the input and output pins 

on the FPGA in order to protect the FPGA from current spikes.  The inverters are also used to 

convert both the the digital control signals from the receiver as well as the control signals to the 

switches.  Both the receiver's digital outputs and the switch control signals operate at 5V while the 

FPGA operates at 3.3V.  The FPGA is technically capable of sinking and sourcing 5V logic signals, 

but the inverters were added as a failsafe measure.
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Figure 6.11.  Block Diagram of switching circuit for 16-element array.



The antennas and ground plane were made of the same materials as the 8-element array. 

The antennas were made from rigid brass tubing with a diameter of 1/16in. and sanded to a length 

of /4  and soldered to the end of the SMA panel mount receptacles.  The ground plane consisted 

of a piece of sheet metal to which the SMA receptacles were attached.

6.2.5 Switching Circuit Design
A block diagram of the new switching circuit design is shown in Figure 6.11.  Thanks to a 

special  modification by an engineer at  DRS-SS, the WJ-8629a used for this implementation also 

includes 3 digital output signals which can be set from the DSP code by simply setting bits in certain 

memory locations.  These digital outputs were routed to unused pins on one of the receiver's front-

panel connectors.  The original scheme for antenna control was to use one of the digital liines as a 

data  clock and the other  two lines as  parallel  data  streams that  would send the binary number 

corresponding to the desired antenna element two bits at a time.  Unfortunately,  timing for the 

signals proved difficult to consistently provide and the FPGA was unable to properly receive the 

data.

Consequently a simpler signaling scheme was devised and is shown in Figure 6.12.  One of 

the control lines is used as a “switch control” signal.  When the FPGA detects a short pulse on this 

line it simply switches to the next element counter-clockwise from its current position.  The second 

control line is used as a “reset control” signal.  Sent concurrently with the “switch control” signal, 

this signal tells the FPGA to reset to the first antenna in the array regardless of its current position. 

The third control line, called “auxiliary control” is unused but still sent to the FPGA to provide 

future expansion capabilities.  In the current implementation it simply mimics the “reset control” 

signal but is ignored by the FPGA.  The one drawback that this circuit has in relation to the 8-

element switching circuit is that it  is only possible  to easily select the first  antenna in the array 

instead of any arbitrary antenna.  For testing purposes, this was solved by the addition of the DIP 
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Figure 6.12.  Digital control signals for new switching circuit.



switches for use as manual control inputs.  

The RF switch network takes a two-tiered approach.  The first tier of 4 SP4T switches are 

connected directly to the antennas by a set of 16 phase-matched SMA cables.  The outputs of the 

four first tier switches are then connected to the inputs of the single second tier SP4t by another set 

of 4 phase-matched SMA cables.  The output of the second tier switch provides the ssingle RF 

output  for  the  array..   A total  of  8  digital  control  signals  are  routed from the FPGA through 

inverters to the SP4T switches.  The first tier switches all share the same 4 control signals.  As only 

one of the first tier switches can be selected by the second tier switch at a time, the state of the other 

three first tier switches is unimportant.

In  order  to  provide  backwards  compatibility  between the new switching  circuit  and the 

original 8-element antenna array as well as to facilitate array calibration, an expansion board for the 

FPGA containing  16  DIP  switches  was  used.   Table   summarizes  the  various  control  options 

available for the switching circuit.  The reset state is asynchronous and activated by the first switch 

(switch 0).  During reset, the FPGA ignores all other switch and signaling inputs and directs the RF 

switches  to select  the first  antenna.   The first  operational  state,  labeled in the  table  as  “Switch 

through 16,” switches sequentially through all 16 antennas based on the control signaling from the 

receiver.  The second operational state, labeled “Switch through 8,” switches sequentially through 
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Table 6.3.  Tabular description of manual switching circuit state control via DIP switches.

DIP Switch State (Logical)
0 1 2 3 4 5 6 7-15

Switching Circuit State

1 X X X X X X X Reset State (Non-Operational)

0 0 0 X X X X X Operational, Switch through 16

0 1 0 X X X X X Operational, Switch through 8 (even indexed)

0 X 1 0 0 0 0 X Static, Antenna 0 selected

0 X 1 1 0 0 0 X Static, Antenna 1 selected

0 X 1 0 1 0 0 X Static, Antenna 2 selected

•
•
•

0 X 1 1 0 1 1 X Static, Antenna 13 selected

0 X 1 0 1 1 1 X Static, Antenna 14 selected

0 X 1 1 1 1 1 X Static, Antenna 15 selected



the even-indexed switch ports to support the use of an 8-element array.  The “static” states allow for 

manual selection of the antenna elements based on the binary encoding of their antenna index using 

switches 3 through 6.

Figure  6.13 is  a  picture  of  the  assembled  switching  circuit.   The  entire  assembly  was 

mounted  on a 1/4”  Plexiglass  base.   Wiring for  the  RF switch  power  supply  lines  was  routed 

underneath the base.  The power supply for the inverters came from the FPGA board – in addition 

to a 3.3V regulator to power the FPGA, the development board also had a 5V regulator to supply 

any possible 5V peripherals.  The Flash PROM and JTAG programming boards also drew their 

power from the FPGA board.  The +5V and -5V power supply connections for the RF switches 

were provided by a desktop power supply in the MPRG lab.
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Figure 6.13.  Picture of the assembled 16-element switching circuit.



6.2.6 Antenna Array Calibration and Operation
After construction of the antenna array, the final two steps before algorithm testing were to 

first produce a calibration table to compensate for any phase differences between the different paths 

through the switching network and second to measure the propagation delay between the generation 

of the switch signal at the receiver and arrival of the desired antenna's data in the DSP.  Figure 6.14 

provides a block diagram of the phase calibration setup.  An RF signal at the desired freqeuncy 

offset is generated by and RF signal generator and passed through a 0° power splitter.  One output 

from the splitter is connected straight to an oscilloscope to be used as the reference signal.  The 

other output from the power splitter is then connected to each of the 16 RF ports on the switching 

circuit and the output of the switching circuit is connected to the second oscilloscope input.  The 

phase difference between the reference signal and switching circuit output is then recorded for each 

RF switch setting.  This set of 16 phase values is then used in the DF processing at the output of the 

PLL to remove  the constant  phase  shifts  on the received  signal  due  to the  separate  RF paths 
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Figure 6.14.  RF switching circuit phase calibration setup.

Figure 6.15.  Eye diagram of 16-element array output and corresponding PLL used to measure switch transition  
timing.



through the switching circuit.

The final step in array calibration was to measure the timing of the switching transitions.. 

Figure 6.15a is an eye diagram of the phase of the array output signal plotted against sample index 

for each processing block.  This plot shows that the RF switching transitions consistently occur 

during samples 26 through 28.  This is markedly different from the original 8-element array – the 

switch transitions for this array coincided with the beginning of each data block, which definitely 

simplified the implementation of the parallel PLLs.  For the new switching circuit, the PLL state will 

need to be loaded and stored near the  middle  of  each processing data  block instead of  at  the 

beginning and end of each block but that is of minor consequence.  Figure  6.15b shows the eye 

diagram of the parallel  PLL tracking plotted against  the sample index for each data block.   To 

account for the switching transitions during samples 26 through 28, the PLL state at sample 24 is 

stored  to  the  relevant  memory  slot  for  that  antenna  and the PLL for  the  next  antenna  is  not 

initialized until sample 31.  The 5 samples (index 25 through 30) containing the switching transitions 

are ignored.  To measure the delay between switching signal generation and arrival of the relevant 

antenna's data, the first antenna was disconnected from the RF switching circuit and the number of 

processing blocks between the generation of the reset control signal and arrival  of a data block 

consisting purely of noise was counted.  It turns out that it takes a total of 4 data blocks.

6.3 Implementation Performance
6.3.1 Processing Cycle Requirements

Figure  6.16 is a bar graph of the number of processing cycles used by each version of the 

algorithm  relative  to  the  maximum  available  cycles  for  the  IF  bandwidth  used.   With  an  IF 
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Figure 6.16.  Processing cycles required by various implementations of the PLL DF algorithm as a percentage of total  
available cycles.



bandwidth of 100kHz, each processing block has 20480 processing cycles available.  The DSP OS 

does introduce a slight overhead, approximately 1% of the total on average.  This OS overhead 

includes AGC operations as well as coordination and control of the RF and digitization portions of 

the receiver and memory management.  The “I&Q” version of the implementation represents the 

processing requirements of the algorithm as originally implemented using the nonlinear PLL and 

original 8-element array.  This version required 80% of the avaliable processing cycles on average 

and peaked at over 90% during the evaluation of the curve fit algorithm.  The “M&P” version of the 

algorithm with the 8-element array represents the requirements of the algorithm after the nonlinear 

PLL was  replaced  with  the  linear  PLL and the  original  8-element  array.   This  shows  that  the 

replacement of the PLL introduced a drastic reduction in the amount of time needed to evaluate the 

DF algorithm.  After the introduction of the frequency offset estimator, represented by the category 

“M&P w/ Freq. Rem.,” the addition required a modest increase in the average number of processing 

cycles required – from 15% to 28%.

When comparing the processing requirements of the 16-element algorithm to that of the 8-

element  algorithm,  the  measurements  show  that  the  requirements  for  both  algorithms  are 

comparable even though the 16-element curve fit algorithm should take less time to perform.  The 
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Figure 6.17.  Performance plot of the implementation of the 8-element PLL DF algorithm with frequency offset  
removal showing a.) (left) RMS error vs. SNR and b.) (right) simulated RMS error vs. SNR for comparison.



reason the two versions have similar requirements stems from the implementation of control signal 

generation for the 16-element array.  The generation of the digital control signaling is implemented 

in the DSP code by setting the necessary register bits  and then using a loop of “no-operation” 

commands to create a delay before clearing the register bits.  This delay loop runs longer than is 

necessary for the FPGA to detect the signaling pulses.   As it was expected that the 16-element 

algorithm  would  have  a  significant  amount  of  free  processing  cycles  to  accommodate  a  lax 

implementation.

6.3.2 Performance of the 8-element Algorithm with a Frequency Offset
Figure  6.17a is a plot of the measured RMS error plotted against  estimated SNR on the 

received signal for the 8-element PLL DF algorithm with the frequency offset estimator.  For this 

trial, the frequency offset was approximately 550Hz.  This plot shows that the implementation of 

the algorithm offers excellent performance, i.e. less than 10° RMS error, down to an SNR of 5dB. 

The addition of DOA estimate filtering further enhances this error performance.  Figure  6.18 is a 

scatter plot of the error in the recorded DOA estimate samples for each estimated SNR value.  We 

can see that the majority of the samples are clustered about zero error and that the width of the 

distribution of the samples increases as SNR decreases.
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Figure 6.18.  Scatter plot of error in estimated DOA samples from implementation of the 8-element algorithm.



When comparing these plots to the simulated performance of the 8-element algorithm in 

Figure 6.17b, we find that the implementation appears to perform better than the simulated system. 

This may not actually be the case.  The SNR for these DF trials was estimated using the signal 

strength reported by the receiver.  To determine the noise floor at the bandwidth used, the RF input 

was terminated and the reported signal strength was recorded.  Then during the trials, the reported 

signal strength during algorithm operation was recorded and the difference between this value and 

the measured noise floor was used as the estimated SNR.  This was only a rough estimate of the 

signal strength as the amplitude of the received data noticeably varied as the array switched.  The 

signal strength reported by the receiver was a long term average and essentially hid the fluctuations 

in the strength of the received signal from each antenna.

6.3.3 Performance of the 16-element Algorithm
Unfortunately, DF trials with the 16-element array ultimately were not as successful as with 

the 8-element array.  Irregularities in the array construction resulting from the irregular shape of the 

ground plane relative to the shape of the array as well as difficulties producing the actual antenna 

elements contributed to the received signal manifold deviating from the theoretical model enough to 

cause breakdowns in the curve fit algorithm.  Figures 6.19a and 6.19b plot the phase curves traced 
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Figure 6.19.  Plots of phase curves measured using the 16-element antenna array showing the a.) (left) PLL output  
and b.) (right) first difference curves for 64 consecutive array sweeps.



by the parallel PLL output and the first difference from implementation data and compare them to 

the theoretically expected curves.  This data was taken during the only successful trial of the 16-

element DF algorithm.  The true DOA was approximately 0° and the estimated SNR was over 

20dB.  We can see that although the PLL output data appears relatively close to the expected value, 

the first difference curve resulting from the PLL output data appears to differ significantly from the 

expected value, yet the curve fit algorithm is still successful in producing the correct data set.  As the 

SNR was a fairly large value, noise on the received signal should not have much of an effect on the 

phase estimates produced by the PLL.

Figures 6.20a and 6.20b plot the estimated DOA and associated quality metric data resulting 

from the phase data plotted in Figure 6.19.   The estimated DOA was consistent over the observed 

time  duration  and  the  quality  metrics  show  that  the  measured  first  difference  curve  produces 

acceptable results.  Unfortunately this was not repeatable.  Array imperfections as well as possible 

mutual coupling between elements distorted the estimated phase curves for other DOAs used in 

testing.  As the DOA of the target transmitter was changed, the deviations in the measured phases 

from the expected values were not constant or repeatable, and therefore they became impractical to 

easily take into account in the DSP software.  This means that the main contribution of the work on 
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Figure 6.20: Plots of data from the implementation of the 16-element algorithm showing a.) (left) Estimated DOA 
and b.) (left) associated quality metric magnitude over time for a true DOA of 0°.



the 16-element algorithm was the theoretical  development and the design of the new switching 

control circuit.
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Chapter 7 

Conclusion

This thesis has provided an overview of the development of a single-channel algorithm from 

the design of the initial basic version through its implementation on a software-defined receiver. 

This  final  chapter  will  first  summarize  the  main  contributions  of  this  work  to  the  algorithm's 

development.   Second,  technical  challenges  and  problems  faced  in  the  implementation  of  the 

algorithm will  be  discussed.   Lastly,  possible  future  directions for this  project  to follow will  be 

discussed.

7.1 Summary of Results
The basic  version  of  the  PLL DF algorithm as  presented  in  Chapter  3  is  primarily  an 

adaptation  of  classic  single-channel  DF concepts  for  use  with  digital  modulation  schemes  and 

implementation on a software defined receiver.  Past single-channel DF systems were designed to 

work  with  analog  modulated  signals  and  the  implementation  relied  heavily  on  custom  analog 

hardware.   This algorithm broke with that tradition by requiring a simple antenna array and RF 

hardware but powerful and flexible DSP hardware.

Chapter 4 discussed the main contributions of this work in the form of modifications to the 

PLL algorithm to overcome various challenges encountered in the initial  implementation of the 

algorithm.  First, the nonlinear Costas PLL used to estimate the phase of the signal received by each 

antenna element was changed to a linear Costas PLL.  This change did not introduce any apparent 

differences in the phase estimation process but was intended to reduce the computational burden 

imposed by the PLL on the DSP hardware.  The nonlinear PLL required numerous multiplications 

and calls to a CORDIC algorithm function in its processing loop.  The linear PLL eliminated those 

requirements by performing the exact same functions with simple addition and subtraction.  Second, 

a  modification  of  the  PLL  to  estimate  and  remove  a  frequency  offset  while  preserving  the 

differential phase relationships between the signals tracked by each PLL was introduced.  Third, a 

new curve fit algorithm was developed to allow the algorithm to operate with a 16-element antenna 
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array without requiring an exponential increase in computational complexity that would otherwise 

result from scaling up the original curve-fit algorithm which was designed for an 8-element array. 

Finally, a DOA estimate quality metric was established to aid in the filtering of erroneous DOA 

estimates produced by the DF system in low SNR conditions.

Chapter  5  presented  the  simulation  analysis  of  the  performance  of  the  algorithm in  an 

AWGN channel  with  the  various  algorithm  modifications.   Simulations  of  the  algorithm with 

varying PLL gain showed that as PLL gain decreases and the PLL loop filter consequently decreases 

the RMS error of the DOA estimates decreases due to reductions in the variance of the PLL phase 

output error.  The simulation of the frequency offset estimator showed that the introduction of the 

estimator introduces a noticeable increase in the RMS error for the 8-element algorithm but the 16-

element  algorithm's  performance  does  not  similarly  degrade  because  the  16-element  curve-fit 

algorithm already  introduces  an  inherent  error  overhead  due  to  the  sensitivity  of  the  curve-fit 

algorithm to noise in the phase estimates.  The inclusion of lowpass and MA filtering on the output 

DOA estimates does provide a considerable reduction in the RMS error of both the 8 and 16-

element algorithms.  Due to the nature of the two algorithm's respective curve-fit processes, it was 

found that lowpass filtering has a greater effect on the 8-element algorithm whereas MA filtering has 

the greatest effect on the 16-element algorithm.  In the end, both the 8 and 16-element PLL DF 

algorithms were found to have very good performance in an AWGN channel.

Chapter 6 presented the implementation of the DF algorithm on an SDR platform with a 

custom  design  8-element  uniform  circular  antenna  array  and  RF  switching  circuit.   The 

implementation of the modifications to the 8-element algorithm were described and the results were 

quite favorable.  The switch to a linear PLL provided a drastic reduction in processing requirements 

while the frequency offset estimator performed its intended purpose and the resulting RMS error 

reasonably conformed to expected values determined by simulation.  The implementation of the 16-

element  algorithm  required  both  a  new  antenna  array  and  switching  circuit.   A  new  FPGA-

controlled circuit was designed that accepted digital control signals from the SDR as well as manual 

controls  from  a  bank  of  switches.   Unfortunately,  numerous  imperfections  in  the  sizing  and 

construction of the antenna array prevented the 16-element algorithm from performing well.  As 

expected, the algorithm required less processing power than the 8-element algorithm to perform its 

computations  but  inconsistencies  in the  phase of  the  received signal  due to problems with the 
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manufacturing of antennas and possible mutual coupling between antenna elements did not allow 

the curve-fit algorithm to reliably converge to the expected first difference curve.  In the end, the 16-

element algorithm may prove to not be a viable path for future development due to the difficulties 

in manufacturing an antenna array with a large number of elements for use in the UHF band.  In 

fact, the antenna array is the most difficult part of the implementation of most DF systems due to 

the sensitivity of RF hardware to slight differences in manufacturing processes over time.

7.2 Future Work
As this DF system is primarily implemented in software as a DSP algorithm, the addition of 

future adaptations and modifications to the signal processing layer is limited only by the practical 

limitations  of  signal  processing techniques  and DSP hardware abilities.   Work on the PLL DF 

algorithm can extend it for use with different modulation schemes and to attempt to combat the 

problems arising from DOA estimation in fading channels.  As far as modulation is concerned, this 

algorithm was designed to work only with BPSK modulated or unmodulated target signals.  The 

curve-fit  algorithm in particular bases its operation on the assumption that BPSK modulation is 

present.  Higher order PSK modulation schemes as well as other digital modulation types such as 

QAM will present problems relating to the method of carrier recovery employed.  The Costas PLL 

used in this algorithm can be very easily modified to accommodate higher-order PSK modulation, 

but the  ambiguities on the estimated carrier phase  for each antenna will definitely increase the 

complexity  of  the  curve-fit  algorithm.   For  example,  the  estimated  carrier  phase  of  a  QPSK 

modulated signal can have ambiguity of n/4 , where n∈{0,1,2,3} .  This will lead to a dramatic 

increase in the permutations of the measured first difference data used to resolve the ambiguities by 

the MSE-comparison method for the 8-element algorithm.  It may turn out that the 16-element 

curve-fit  algorithm will  not  work as  the amplitude of the second difference of the PLL output 

approaches the amplitude of the phase ambiguities.  A generalized version of the algorithm that can 

handle many digital modulation schemes will represent an attractive option for a modern single-

channel DF system.  Furthermore, modifications to the algorithm that allow for an antenna array 

that differs from the theoretical model would definitely make it a general purpose tool.

Fading channels and other harsh RF environments also present numerous problems that 

may be insurmountable for a single-channel system.  Intelligent filtering and statistical modeling of 
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the received signal may provide innovative solutions to the problem but may also lead to dead-ends 

for the single-channel system..  One way in which this work can continue is by increasing the scope 

of the project to involve the design and implementation of existing multi-channel DF algorithms on 

SDR  platforms  with  reduced  channel  counts.   Initial  work  on  the  adaptation  of  the  MUSIC 

algorithm for use with a two-channel  receiver and multi-element antenna array [19] shows great 

promise.  The ability of the MUSIC algorithm to spatially resolve multiple received signals in fading 

channels is well known but has typically required a one-to-one receiver-to-antenna ratio as well as 

significant  processing  power.   An  efficient  implementation  of  the  algorithm with  a  small  two-

channel  receiver  that  can  approach  the  performance  of  the  full-blown  multi-channel  algorithm 

represents a significant leap forward in DF technology.

7.3 Final Thoughts
This thesis proved to be a valuable experience.  Not only was it theoretically challenging, but 

it  was  also  technically  challenging  in  that  it  required  the  inclusion  of  real-world  concerns  as 

implementation of the algorithm was the main goal.  Being involved with the project from basic 

algorithm design to the design of antenna switching hardware and implementation as a real system 

was  very  rewarding.   Often  times  research  work  can  seem  divorced  from  reality  in  that  the 

assumptions relied upon to investigate any problem may not always be valid and the violation of 

them can have serious implications for the viability of the work in a real implementation.  While 

closely related, industry and academia can ask very different questions of this work.  Whereas a 

professor might be more interested in the theoretical underpinnings of a DF system, an engineer in 

the field will always be concerned with how well it performs in practice.  This project attempted to 

satisfy  both and in that  attempt  was  an invaluable  learning experience not  only  because  of the 

successes but also because of the failures.  It was the perfect primer for a career as an engineer in the 

wireless industry.
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