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ROSENBROCK-KRYLOV METHODS FOR LARGE SYSTEMS OF
DIFFERENTIAL EQUATIONS

PAUL TRANQUILLI †§ AND ADRIAN SANDU ‡§

Abstract. This paper develops a new class of Rosenbrock-type integrators based on a Krylov
space solution of the linear systems. The new family, called Rosenbrock-Krylov (Rosenbrock-K), is
well suited for solving large-scale systems of ODEs or semi-discrete PDEs. The time discretization
and the Krylov space approximation are treated as a single computational process, and the Krylov
space properties are an integral part of the new Rosenbrock-K order condition theory developed
herein. Consequently, Rosenbrock-K methods require a small number of basis vectors determined
solely by the temporal order of accuracy. The subspace size is independent of the ODE under
consideration, and there is no need to monitor the errors in linear system solutions at each stage.
Numerical results show favorable properties of Rosenbrock-K methods when compared to current
Rosenbrock and Rosenbrock-W schemes.

1. Introduction. This paper is concerned with the numerical solution of large
initial value problems of the form

(1.1)
dy

dt
= f(t, y) , t0 ≤ t ≤ tF , y(t0) = y0 ; y(t), f(t, y) ∈ RN .

Ordinary differential equations (ODEs) model the evolution of chemical kinetic sys-
tems, electronic circuits, or the motion of planets. Other physical systems, such as
dynamics of the atmosphere and oceans, or the behavior of materials, require the so-
lution of a system of partial differential equations (PDEs). A standard approach for
solving evolutionary PDEs is to discretize in space, reducing the problem to a large
system of ODEs which are then integrated forward in time.

The equations of interest in many simulations are driven by multiple physical pro-
cesses, e.g., associated with the simulation of fluid-structure interaction, sub-grid-scale
physics, or chemical reaction terms. These processes have different dynamical charac-
teristics, with some being slow (e.g., transport) and some fast (e.g., stiff chemistry).
In addition, multiple spatial and temporal scales are associated with non-uniform
meshes, with boundary layers, with fast waves, and with the structure of the system
(e.g., the existence of jet fans). The existence of fast and slow dynamics poses con-
siderable challenges to the solution of the semi-discrete PDEs (1.1) by explicit time
stepping methods. Specifically, due to the Courant-Friedrichs-Lewy (CFL) stability
condition, the largest allowable step sizes are bounded above by the shortest (fastest)
time scale in the system.

To avoid stability restrictions on the step size, implicit time integration methods
are becoming widely used in the simulation of large-scale evolutionary PDEs (1.1).
Implicit time stepping requires the solution of large nonlinear systems of equations,
coupling all variables in the model, at each time step. The associated computation
and communication costs constitute a major scalability bottleneck at best, and can
quickly become infeasible for large systems.

In this paper we examine, and extend, the Rosenbrock class of integration meth-
ods. These are linearly-implicit methods which enjoy the benefit of requiring a fixed
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number of linear solves, as opposed to non-linear solves in the case of implicit Runge-
Kutta methods. A general s-stage Rosenbrock method reads [13, Section IV.7]

yn+1 = yn +

s∑
i=1

bi ki ,(1.2a)

(IN×N − h γi,i An) · ki = h f

tn + αih, yn +

i−1∑
j=1

αi,j kj

(1.2b)

+hAn

i−1∑
j=1

γi,j kj + h2 γi ft(tn, yn) , i = 1, . . . , s .

Here yn ≈ y(tn) and yn+1 ≈ y(tn+1) are the numerical solutions computed by
the method, and h = tn+1 − tn is the current time step. The term ft = ∂f/∂t is the
partial time derivative of f evaluated at the beginning of the current time step. The
method coefficients αi,j , γi,j , and bi are chosen such as to ensure the desired accuracy
and stability properties. For convenience of notation one also defines

αi =

i−1∑
j=1

αi,j , γi =

i∑
j=1

γi,j , βi,j = αi,j + γi,j .

In classical Rosenbrock methods the matrix An = Jn ∈ RN×N , where

Jn = fy(tn, yn)

is the Jacobian of f evaluated at the beginning of the current time step. The vectors
ki are the intermediate stage values; each of them is computed by solving an N ×N
linear system. Typically all coefficients are chosen equal to each other, γi,i = γ
for i = 1, . . . , s, such that all stages share the same LU decomposition. The order
conditions of classical Rosenbrock methods rely on the assumptions that An is the
exact ODE Jacobian, and that each of the linear systems (1.2b) is solved exactly.

For many systems the exact Jacobian Jn can be both costly and difficult to obtain,
e.g., due to the size of the application and the use of complex spatial discretization
schemes. The class of Rosenbrock-W methods [13, Section IV.7] has been derived for
such situations. They have the same form (1.2), but the coefficients are selected such
that the overall discretization order is preserved for any matrix An, i.e., for arbitrary
approximations of the Jacobian [34]. The role of the matrix is to ensure numerical
stability, and its choice dictates the type and amount of implicitness used in (1.2).

Solving for the stage values ki (1.2b) is the most expensive part of the integrator.
For large-scale systems direct methods such as LU decomposition are not feasible,
and iterative Krylov based methods, such as GMRES [36, 44], have been considered
in the literature [46, 47, 45]. Krylov based methods use only Jacobian-vector products
and do not require storage, or even knowledge of, the full Jacobian.

The use of Krylov(-Newton) methods is a natural approach to speed up the solu-
tions of the linear/nonlinear systems of equations in implicit time integration [27, 28].
Such integration methods have been successfully employed in real-life applications
[11, 40, 8]. Krylov space solvers have been used in the implementation of implicit
Runge-Kutta [26, 7, 3], implicit linear multistep [22, 17, 8], and deferred correction
[24] methods. Software for solving stiff ODEs and DAEs with this approach include
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LSODKR [15], LSODPK [16], VODPK [17], and DASPK [5]. In addition, Krylov
space methods have been used for the exact integration of linear ODEs with source
terms [1], and to improve stability [2]. Krylov space techniques have been used to
accelerate convergence of deferred correction methods [23, 25].

Of particular interest in this work is the use of Krylov methods in the context
of Rosenbrock time integrators (1.2). Classical Rosenbrock integrators are poor ma-
trix free methods due to the explicit presence of the exact Jacobian matrix, and the
approximate nature of Krylov based methods. Rosenbrock-W methods are better
suited for coupling with Krylov based solvers. A family of matrix-free Rosenbrock
methods, named Krylov-ROW, has been proposed in the 1990’s [45, 38, 33, 35, 41].
The control of linear solution accuracy in each stage is discussed in [38], and pre-
conditioning in [39]. Order results for Krylov-ROW methods are studied in [45, 46].
A multiple Arnoldi process is proposed, where the Krylov space is enriched at each
stage, such that the information from previous stages is reused, and all the right hand
side vectors belong to the subspace. The order of the underlying Rosenbrock method
is preserved under modest requirements on the Krylov space size, and independent of
the dimension of the ODE system. The implementation of methods of order four is
done in the code ROWMAP [35], where the error estimation and step size selection
strategies are inherited from the underlying Rosenbrock method. The application of
Krylov-ROW methods to index-1 DAEs [47] reveals that the Krylov space dimension
needs to exceed the number of algebraic variables. Krylov-ROW methods are there-
fore attractive in the case where the number of algebraic constraints is small compared
to the number of differential equations; or, by extension, where the dimension of the
stiff subspace is small. Novati [32] presents a class of W-methods where the Jacobian
is approximated using quasi-Newton-like rank one updates, based on solution and
function values in previous time steps. Periodic restarts are needed for stability, as
the Jacobian approximation deteriorates with time. A related family of methods are
exponential integrators [18], which use matrix exponentials of the Jacobian as part
of the solution process, and evaluate matrix exponential times vector products via
Krylov space methods [21, 6, 42, 19, 20].

In this paper we develop a new family of Rosenbrock-Krylov time stepping meth-
ods characterized by the lowest possible degree of implicitness that ensures stability.
The new algorithms are implicit in only the stiff subspace, which is captured by a
Krylov space. Moreover, they perform only scalable operations such as Jacobian-
vector products, and solve only small linear systems at each step. A naive imple-
mentation of a matrix free Rosenbrock-W method requires construction of a Krylov
subspace for each stage equation. The Rosenbrock-K methods proposed herein ex-
tend the framework of Rosenbrock-W methods, accounting for the Krylov subspace
approximation of the linear system when constructing the order conditions of the in-
tegrator. In this way we substantially reduce the number of required order conditions
for a given order, thereby reducing the number of necessary stages of the method.
The Rosenbrock-K methods require the construction of only a single Krylov subspace
for the solution of all stage values. The dimension of this subspace need only be as
large as the desired order of the method to ensure accuracy.

The new class of Rosenbrock-K methods differs from existing Rosenbrock schemes
in several important aspects. Rosenbrock-K methods use approximate Jacobians sim-
ilar to Rosenbrock-W family. The Jacobian approximations have to be based on a
Krylov subspace approach, similar to the Krylov-ROW family. The primary ben-
efit of Rosenbrock-K methods over Krylov-ROW stems from the integration of the
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Krylov space properties into the Rosenbrock-K order condition theory; this elegant
approach ensures the desired orders of accuracy with much smaller subspaces than
those required by the Krylov-ROW approach. More importantly, a single Krylov
space is used across all stages, and most operations are performed in this reduced
space. The implementation of Rosenbrock-K is thus much simpler, and considerably
more scalable, than the implementation of Krylov-ROW, where the subspace needs
to be extended at each subsequent stage.

The paper is laid out as follows: in Section 2 we present the framework of the
proposed class of methods as well as the Krylov subspace approximation of the Jaco-
bian used, in Section 3 we extend the theory of order trees for Rosenbrock-w methods
to our new Rosenbrock-Krylov methods as well as give details of how to construct
these trees and the method order conditions from them, in Section 4 we construct
two new Rosenbrock-Krylov integrators and outline a method for the solution of the
order conditions to derive specific method coefficients, and in Section 5 we present
some numerical results.

2. Formulation of Rosenbrock-Krylov methods. Rosenbrock-Krylov meth-
ods have the same form as Rosenbrock-W methods (1.2), but use a particular approx-
imation An of Jn. We start the presentation with the case of autonomous systems.

Specifically, let fn = f(yn) and consider the M -dimensional Krylov space

KM (Jn , fn) = span
{
fn, Jn fn, J2

n fn, . . . ,J
M−1
n fn

}
(2.1)

= span {v1, v2, . . . , vM} .

An orthogonal basis {vi}i=1,...,M for KM is constructed using a modified Arnoldi
process [44]. The Arnoldi iteration returns two valuable pieces of information: a
matrix Vn;M whose columns are the orthonormal basis vectors of KM , and an upper
Hessenberg matrix Hn;M , such that

(2.2) Vn;M = [v1, . . . vM ] ∈ RN×M ; Hn;M = VT
n;M Jn Vn;M ∈ RM×M .

The Rosenbrock-Krylov matrix An is the restriction of the full ODE Jacobian to
the Krylov space:

(2.3) An = Vn;M Hn;M VT
n;M = Vn;M VT

n;M Jn Vn;M VT
n;M .

To obtain the stage vector ki we decompose it in the component residing in KM , and
the component orthogonal to KM

(2.4) ki = Vn;M λi︸ ︷︷ ︸
∈KM

+ µi︸︷︷︸
∈K⊥M

,

where the new vectors λi and µi are defined by

λi = VT
n;M ki ∈ RM , µi =

(
IN×N −Vn;M VT

n;M

)
ki ∈ RN .

We consider also the projections of the function values in (1.2b) onto the Krylov space

Fi = f

yn +

i−1∑
j=1

αi,jkj

 , φi = VT
n;M Fi ∈ RM .
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To construct a Rosenbrock-K method the Jacobian approximation (2.3) and the
decomposition (2.4) are used in the stage formulation (1.2b) to obtain

(
IN×N − h γVn;M Hn;M VT

n;M

)
·(Vn;Mλi + µi) = hFi+hVn;M Hn;M VT

n;M

i−1∑
j=1

γi,j (Vn;Mλj + µj) .

Using the facts that VT
n;MVn;M = IM×M and VT

n;Mµi = 0 the equation can be
written as

µi + Vn;M (IM×M − h γHn;M ) λi = hFi + hVn;M Hn;M

i−1∑
j=1

γi,j λj .(2.5)

Multiplying both sides of (2.5) by VT
n;M leads to the following reduced stage equation

(2.6) (IM×M − hγHn;M )λi = hφi + hHn;M

i−1∑
j=1

γi,jλj .

Multiplying both sides of (2.5) by IN×N −Vn;MVT
n;M gives

(2.7) µi = h (Fi −Vn;M φi) .

The system (2.6) is of size M ×M , where M � N , and can be inverted through the
use of a direct method. The full stage values can now be recovered from (2.4), (2.6),
and (2.7) as

(2.8) ki = Vn;M λi + h (Fi −Vn;Mφi) .

We next consider the formulation of Rosenbrock-K methods for non-autonomous
problems (1.1). With the extended state and function

(2.9) ŷ(t) =

[
y(t)
t

]
∈ RN+1 , f̂(ŷ) =

[
f(t, y)

1

]
∈ RN+1 ,

the general ODE (1.1) can be formulated as autonomous system

(2.10)
dŷ

dt
= f̂(ŷ) , ŷ(t0) =

[
y
t0

]
, t0 ≤ t ≤ tF , ŷ(t) , f̂(ŷ) .

Non-autonomous Rosenbrock-K integrators are constructed using this technique. The
Jacobian of the extended right hand side function is

(2.11) Ĵ =

[
fy ft
0 0

]
.

An extended Krylov space KM (Ĵn , f̂n) is constructed using matrix-vector products
of the form

(2.12) Ĵn
[
ζT ξ

]T
=

[
Jn ζ + ft(tn, yn) ξ

0

]
, ζ ∈ RN , ξ ∈ R .

The extended (N +1)-dimensional Arnoldi iterations produce the matrices V̂n;M and
Hn;M such that

(2.13) V̂n;M =

[
Vn;M

wT

]
∈ R(N+1)×M , Vn;M ∈ RN×M , w ∈ RM ,
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and

Hn;M = V̂T
n;M Ĵn V̂n;M = VT

n;M Jn Vn;M + VT
n;M ft(tn, yn)wT ∈ RM×M .

This modified Arnoldi iteration proceeds as follows.

Algorithm 1 Modified Arnoldi iteration

β =
∥∥∥[fTn 1

]T∥∥∥ ; w1 = 1/β; v1 = fn/β .

for i = 1, . . . ,M do
ζ = Jn vi + ft(tn, yn)wi ; ξ = 0 ; τ = ‖ζ‖
for j = 1, . . . , i do

Hj,i = 〈ζ, vj〉+ ξ wj ; ζ = ζ −Hj,i vj ; ξ = ξ −Hj,i wj
end for
if
∥∥∥[ζT ξ

]T∥∥∥ /τ ≤ κ then

for j = 1, . . . , i do
ρ = 〈ζ, vj〉+ ξ wj ; ζ = ζ − ρ vj ; ξ = ξ − ρwj ; Hj,i = Hj,i + ρ

end for
end if
Hi+1,i =

∥∥∥[ζT ξ
]T∥∥∥; vi+1 = ζ/Hi+1,i; wi+1 = ξ/Hi+1,i;

end for

The non-autonomous Rosenbrock-K integrator is obtained by applying the au-
tonomous step (described above) to the extended system (2.10), and decoupling the
state and time variables. The procedure is summarized in Algorithm 2. The au-
tonomous version is obtained by letting w = 0.

Algorithm 2 One step of a non-autonomous Rosenbrock-K integrator

1: Compute Hn;M , Vn;M , and w (2.13) using the (N + 1)-dimensional Arnoldi pro-
cess.

2: for i = 1, . . . , s do . For each stage, in succession

Fi = f

tn + αih , yn +

i−1∑
j=1

αi,jkj


φi = VT

n;M Fi + w

λi = (IM×M − hγHn;M )
−1

hφi + hHn;M

i−1∑
j=1

γi,jλj


ki = Vn;M λi + h (Fi −Vn;M φi)

3: end for

4: yn+1 = yn +

s∑
i=1

biki

3. Order Conditions. The accuracy theory is based on matching the Taylor
series of the numerical solution and of the exact solution, up to some specified order.
Butcher-trees [12, Section IV.7] are a well accepted method of representing individ-
ual terms in the Taylor series expansions. The derivation of order conditions for
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Rosenbrock-K methods is an extension of the framework used to derive order con-
ditions for Rosenbrock-W methods. The existing theory for Rosenbrock-W methods
is based on the use of TW -trees, a subclass of P -trees [13, Section IV.7]. P -trees
themselves are an extension of the set T of Butcher-trees that allow for two different
colors of the nodes. We have the following definition [13, Section IV.7]:

TW =

{
P -trees: end vertices are meagre, and

fat vertices are singly branched

}
In the context of Rosenbrock-K and Rosenbrock-W methods, a meagre node repre-
sents an actual derivative of f coming from the first term on the right of equation
(1.2b), while a meagre node is an appearance of the approximate Jacobian An coming
from the second term on the right of equation (1.2b). Each tree represents a single
elementary differential in the Taylor series of either the exact or numerical solutions
of the ODE.

Figure 3.1 shows all TW-trees and Rosenbrock-W conditions for up to order
three [13, Section IV.7]. The correspondence between the TW -trees and elementary
differentials, and Rosenbrock-W order conditions, is summarized next:

• For the elementary differentials in Figure 3.1 superscripts represent compo-
nent indices, and subscripts represent indices of variables with respect to
which partial derivatives are taken. For example, fJ is the J-th component
of f , and fJKf

K =
∑
K ∂f

J/∂yK · fK .
• A meagre node represents a derivative of f .
• The order of the f derivative equals the number of children the meagre node

has.
• A fat node represents the appearance of the approximate Jacobian matrix,

An, in the elementary differential.
The correspondence between the TW -trees and Rosenbrock-W order conditions, is as
follows:

• For the order conditions in Figure 3.1 the summations apply to all repeated
indices in the expression.

• For Rosenbrock-W methods:
– an edge originating from meagre node j to another node k gives αj,k,
– an edge originating from fat node j to another node k gives γj,k.

• For classical Rosenbrock methods
– an edge connecting meagre node j, having multiple children, to a meagre

node k gives αj,k,
– an edge connecting meagre node j, having a single child, to a meagre

node k gives βj,k.
The exact solution is represented by trees containing only meagre nodes, since the

approximate Jacobian matrix never appears in its series expansion. For this reason
Rosenbrock-W methods have two sets of order conditions: those arising from trees
containing only meagre nodes, and those arising from trees containing at least one fat
node. Trees containing fat nodes do not correspond to any trees in the exact solution
and, as seen in Figure 3.1, the corresponding coefficients are set to zero [13].

In order to build the relevant trees for Rosenbrock-K methods we need to have a
closer look at the properties of the Jacobian approximation (2.3).

Lemma 3.1 (Property of the Rosenbrock-Krylov approximate Jacobian (2.3)).
For any 0 ≤ k ≤M − 1 it holds that

Ak
n fn = Jkn fn ,
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Fig. 3.1. TW-trees and Rosenbrock-W conditions up to order three [13, Section IV.7].

a
j

fJ
∑
bj = 1

b1
j

k

fJKf
K

∑
bjαj,k = 1/2

b2
j

k

AJKf
K

∑
bjγj,k = 0

c
j

kl

fJKLf
KfL

∑
bjαj,kαj,l = 1/3

d1
j

k

l

fJKf
K
L f

L
∑
bjαj,kαk,l = 1/6

d2
j

k

l

AJKf
K
L f

L
∑
bjγj,kαk,l = 0

d3
j

k

l

fJKAKLf
L

∑
bjαj,kγk,l = 0

d4
j

k

l

AJKAKLf
L

∑
bjγj,kγk,l = 0

where M = dim(KM ).
Proof. Recall that Vn;M VT

n;M is the orthogonal projector onto KM . If a vector
u is in the Krylov space KM , its orthogonal projection onto KM is the vector itself:

u ∈ KM ⇒ Vn;M VT
n;M u = u .

The proof of the Lemma is by finite induction. As the base case we have that

A0
n fn = J0

n fn = fn .

Next we assume that Ai−1
n fn = Ji−1n fn for some i ≤M−1 and will show that Ai

n fn =
Jin fn. By the definition of the approximate Jacobian (2.3) and our assumption it holds
that

Ai
n fn = An ·Ai−1

n fn = An · Ji−1n fn = Vn;M VT
n;M Jn Vn;M VT

n;M · Ji−1n fn .

Since M ≥ i we have that Ji−1n fn ∈ KM , and

Vn;M VT
n;M Ji−1n fn = Ji−1n fn ⇒ Ai

n fn = Vn;M VT
n;M Jn·Ji−1n fn = Vn;M VT

n;M Jinfn .

Since M ≥ i+ 1 we have that Jinfn ∈ KM and

Vn;M VT
n;M Jinfn = Jinfn ⇒ Ai

n fn = Jinfn .
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Lemma 3.2 (Property of elementary differentials using the approximation (2.3)).
When the Rosenbrock-Krylov matrix approximation (2.3) is used, all linear TW-trees
of order k ≤M correspond to a single elementary differential, regardless of the color
of their nodes.

Proof. In a linear tree each node has only one child. A linear TW-tree with a
fat root can be described by the sequence of its nodes, starting from the root. For
example, the structure of a linear tree where the first ν1 nodes from the root are fat,
followed by µ1 meagre nodes, etc. is described by the sequence (◦ν1 •µ1 · · · ◦νp •µp)
with µp > 1 (since the leaf is a meagre node).

Consider now a tree of order k = ν1 +µ1 + · · ·+ νp+µp ≤M . The corresponding
elementary differential has the form Aν1

n Jµ1
n . . .A

νp
n Jn

µp−1fn. Repeated applications
of Lemma 3.1 reveal that

Aν1
n Jµ1

n . . .Aνp
n Jn

µp−1fn︸ ︷︷ ︸
=A

µp−1
n fn

= Aν1
n Jµ1

n . . .Aνp+µp−1
n fn︸ ︷︷ ︸

=J
νp+µp−1
n fn

= · · · = Jn
k−1fn .

Consequently, any linear TW-tree of order k ≤ M has the same differential as the
linear tree with only meagre nodes (•k).

An important consequence of Lemma 3.2 is that if a linear TW sub-tree with
k ≤M nodes has a fat root, the corresponding differential is the same as for the linear
tree with only meagre nodes (•k). This observation allows us to essentially “recolor”
linear TW sub-trees with a fat root (i.e., group them in classes of equivalence). This
leads to the following.

Definition 3.3 (TK-trees).

TK = {TW -trees: no linear sub-tree has a fat root} ;

TK(k) = {TW -trees: no linear sub-tree of order

smaller than or equal to k has a fat root} .

For t ∈ TK let ρ(t) define the number of vertices. We denote by t = •[t1, . . . , tm] a
TK-tree tree with a meagre root linking the subtrees t1, . . . , tm, and by t = ◦[t1] a TK-
tree with a fat root to which the subtree t1 is connected. A special case is the single
node tree •[ ]. The elementary differentials associated with TK-trees are the same
as those of TW-trees, [13, Definition 7.5]. The TK-tree coefficients are constructed
recursively as follows.

Definition 3.4 (Coefficients of TK-trees). For t ∈ TK

φj(t) =



1 if t = •[ ]∑
k1,...,km

αj,km φk1(t1) . . . φkm(tm) if t = •[t1, . . . , tm], m ≥ 2∑
k

βj,k φk(t1) if t = •[t1]∑
k

γj,k φk(t1) if t = ◦[t1]

3.1. Rosenbrock-K methods of type 1. Definition 3.5. A Rosenbrock-K
method of type 1 is given by Algorithm 2 and uses an underlying Krylov subspace given
by (2.1).

Theorem 3.6 (Order conditions for Rosenbrock-K methods). A Rosenbrock-K
method of type 1 has order p iff the underlying Krylov space (2.1) has dimension
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M ≥ p, and the following order conditions hold:∑
j

bj φj(t) =
1

γ(t)
∀ t ∈ T with ρ(t) ≤ p ,(3.1a)

∑
j

bj φj(t) = 0 ∀ t ∈ TK\T with ρ(t) ≤ p .(3.1b)

Here ρ(t) is the number of vertices of the tree t, and γ(t) is the “product of ρ(t) and
all orders of the trees which appear, if the roots, one after another, are removed from
t” [12, Section II.2].

Proof. The proof follows from our discussion and from the order conditions of
Rosenbrock-W methods [13, Theorem 7.7].

Theorem 3.7 (Order conditions for Rosenbrock-K methods with smaller Krylov
space). A Rosenbrock-K method of type 1 with an underlying Krylov space (2.1) of
dimension M < p has order p iff condition (3.1a) holds, and, in addition:∑

j

bj φj(t) = 0 ∀ t ∈ TK(M)\T with ρ(t) ≤ p .(3.1c)

Proof. Follows immediately from Theorem 3.6.
Remark 1. The number of required order conditions for Rosenbrock-K methods is

substantially smaller than the number of order conditions for Rosenbrock-W methods.
Figure 3.1 reveals that all TW-trees up to order three containing a fat root are

linear, and so every tree containing a fat node can be recolored to contain only meagre
nodes. Thus the order conditions for Rosenbrock-K methods are the same as those
for classical Rosenbrock methods for up to order three (while Rosenbrock-W methods
need four additional conditions). Figure 3.1 shows the TK-trees and order conditions
for up to order four; Rosenbrock-K methods require only a single extra order condition
for order four (while Rosenbrock-W methods require seventeen additional conditions).
Finally, Figure 3.1 shows the four additional TK-trees and Rosenbrock-K conditions
needed for order five.

3.2. Rosenbrock-K methods of type 2.

Definition 3.8. A Rosenbrock-K method of type 2 is given by Algorithm 2
and uses an enriched underlying Krylov subspace, where additional basis vectors are
added to those in (2.1). The additional basis vectors are chosen such that different
elementary differentials associated with trees in TK\T are equal to those of similar
trees in T . Consequently, the order conditions of a type 2 Rosenbrock-K method are
the same as those of classical Rosenbrock methods.

For example, consider the tree g2 in Table 3.1. The corresponding term in the
Taylor series of the solution is An ·fy,y(fn, fn) . The application of the second deriva-
tive tensor fy,y to a pair of function values results in the vector

(3.2) ukg2 = (fy,y(fn, fn))
k

=

N∑
`,m=1

∂2fk

∂y` ∂ym

∣∣∣∣
y=yn

f `(yn) fm(yn) , k = 1, . . . , N .

To obtain a type 2 Rosenbrock-K method of order four the Krylov space (2.1) is
extended as follows:

KM+2(Jn , fn) = span
{
fn, Jn fn, . . . ,J

M−1
n fn , ug2 ,Jn ug2

}
(3.3)

= span {v1, v2, . . . , vM+2} .
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Fig. 3.2. TK-trees and Rosenbrock-Krylov conditions up to order four.

a
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∑
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bjβj,k = 1/2

c
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∑
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j

k

l

fJKf
K
L f

L
∑
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e
j

k
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m

fJKLMf
KfLfM

∑
bjαj,kαj,lαjm = 1/4

f
j

k

l

m

fJKMf
K
L f

LfM
∑
bjαj,kβk,lαj,m = 1/8

g1
j

k

l m

fJKf
K
LMf

LfM
∑
bjαj,kαk,mαk,l = 1/12

g2
j

k

l m

AJKf
K
LMf

LfM
∑
bjγj,kαk,mαk,l = 0

h
j

k

l

m

fJKf
K
L f

L
Mf

M
∑
bjβj,kβk,lβl,m = 1/24

The Jacobian approximation is An = Vn;M Hn;M VT
n;M where Vn;M ∈ RN×(M+2),

and Hn;M = VT
n;M Jn Vn;M ∈ R(M+2)×(M+2) is no longer upper Hessenberg.

The construction (3.3) ensures that the elementary differential of the tree g2 ∈
TW\T coincides with the elementary differential of a regular Butcher tree:

An fy,y(fn, fn) = An ug2 = Vn;M VT
n;M Jn Vn;M VT

n;M ug2︸ ︷︷ ︸
=ug2

= Vn;M VT
n;M Jn ug2 = Jn ug2 = Jn fy,y(fn, fn) .

We have the following interesting consequences.
Remark 2. Any classical Rosenbrock method of order four (or higher) becomes a

type 2 Rosenbrock-K method of order four when the Jacobian approximation (2.3) uses
a six-dimensional extended Krylov space (more exactly, when the underlying Krylov
space is (3.3) with M ≥ 4).
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Fig. 3.3. Additional TK-trees and Rosenbrock-Krylov conditions for order five.
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∑
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K
LP f

L
Mf
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∑
γj,kαk,pαk,lαl,m = 0

j

k

l

mp

AJKf
K
L f

L
MP f

P fM
∑
γj,kαk,lαl,mαl,p = 0

j

k

l

mp

AJKAKLf
L
MP f

P fM
∑
γj,kγk,lαl,mαl,p = 0

j

k

l

mp

fJKAKLf
L
MP f

P fM
∑
αj,kγk,lαl,mαl,p = 0

Remark 3. General Rosenbrock-K methods of any order can be obtained by
combining the type 2 and type 1 approaches. Specifically, some of the trees in TK\T
are recolored (to obtain the similar trees in T ) by extending the underlying Krylov
space, i.e., by using a type 2 approach. The elementary differentials corresponding to
the remaining trees in TK\T are then cancelled by imposing additional type 1 order
conditions.

3.3. Implementation aspects. The cost of Rosenbrock-K integration for large-
scale systems is dominated by the cost of building the Krylov space at each step. The
Arnoldi iteration requires M Jacobian-vector products, as well as vector operations
totaling O(M2N) operations during orthogonalization [36]. Both Jacobian-vector
products and vector operations can be efficiently parallelized.

Jacobian-vector can be obtained in several ways. Most straightforwardly the
entire Jacobian matrix can be constructed and then a Jacobian-vector product can
be calculated in the usual way. This process is expensive both in terms of storage and
computation.

An alternative is to implement a routine that computes directly Jacobian-vector
products without building the Jacobian matrix. Such a routine can be obtained
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through forward-mode automatic differentiation [10] and its cost is similar to the
ODE function computations. Large distributed applications rely on an infrastructure
which partitions the solution vector yn across nodes. The computation of the ODE
function fn is done in parallel. Data exchange of data among subdomains is needed in
order to fulfill grid dependencies. Exact Jacobian-vector products Jn · u are obtained
by linearizing the ODE function fn in the direction u. Therefore Jacobian-vector
operations can be computed element by element, inherit the parallel structure of the
ODE function calculation (e.g., parallelism obtained by domain decomposition), and
can be implemented very efficiently using the same parallel software infrastructure.
The same data partitioning can be used for both the solution yn and the vector u.
Note that successive Arnoldi iterations act on the distributed vectors u without any
need for global communication (only local communication of the boundary elements
is needed at each iteration).

Jacobian-vector products can also be approximated by finite differences of the
form [28]

(3.4) Jn u ≈
f(tn, yn + δ u)− f(tn, yn)

δ
.

The increment δ is related to machine precision. Equation (3.4) is sometimes referred
to as a “matrix-free” approximation. For example, “Jacobian-free Newton-Krylov”
methods [28] employ the approximation (3.4) within linear Krylov space solvers in
the context of Newton iterations for nonlinear systems. Clearly the finite difference
approximation (3.4) uses the same data partitioning for yn and u, and inherits the
parallel performance of the ODE function calculation.

Finite differences can also be used to approximate higher order derivatives. For
example, the second derivative term (3.2) can approximated by finite differences of
Jacobian-vector products, as follows:

fy,y(u, u) ≈ fy(tn, yn + δ u) · u− Jn · u
δ

,

and where each Jacobian-vector product can also be approximated,

3.4. Errors due to finite difference approximations. An analysis of matrix-
free Newton-Krylov methods is provided in [4, Theorem 2.3]. Assume that the Arnoldi
process with the exact Jacobian-vector products produces Hn;M , Vn;M , while the

Arnoldi process using finite difference approximations (3.4) produces H̃n;M and Ṽn;M .
The errors in the finite difference approximations (3.4) during each Arnoldi iteration
are

ei =
f(tn, yn + δi ṽi)− f(tn, yn)

δi
− Jn · ṽi, i = 1, . . . ,M − 1 .

Collect these error vectors, together with e0 = 0 (the error in computing ṽ1 =
fn/‖fn‖), in the matrix

E = [e0, e1, . . . , eM−1] ∈ RN×M .

According to [4, Theorem 2.3], the matrices H̃n;M and Ṽn;M can be obtained by an
application of the exact Arnoldi process (i.e., with exact Jacobian-vector products) to
obtain a basis of the modified space

KM
(
J̃n, fn

)
with J̃n := Jn + E ṼT

n;M .
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According to Lemma 3.1, the matrix approximation Ãn = Ṽn;MH̃n;MṼT
n;M has the

following property for any 0 ≤ k ≤M − 1

Ãk
n fn = J̃kn fn

=
(
Jn + E ṼT

n;M

)k
fn

= Jkn fn +

k−1∑
i=0

(
k
i

)
Jin (E ṼT

n;M )k−i fn

= Jkn fn +O(‖E‖) ,

where for the last equality we have made the assumption that the Jacobian powers
are uniformly bounded.

When exact Jacobian-vector products are used no additional type 1 Rosenbrock-K
order conditions are imposed for trees in TW\TK. Similarly, when higher derivatives
are computed exactly no additional order conditions are needed for type 2 methods.
When finite difference approximations are used, however, the elementary differentials
of trees in TW\TK appear in the expansion of the numerical solution with nonzero
coefficients of size O(‖E‖), i.e., of the size of the absolute errors incurred in the finite
difference approximations. If the finite difference approximations are not sufficiently
accurate the order of the Rosenbrock-K methods may be lost.

For example, consider the tree d2 ∈ TW\TK in Figure 3.1. When finite differ-
ences are used, it contributes the following O

(
‖E‖h2

)
term to the local error

(3.5) h2

 s∑
j=1

bjγj,k

 (E ṽ1) ‖fn‖ .

In order to ensure that the Rosenbrock-K method preserves its order p, a sufficient
condition is that the finite difference errors are bounded by

‖E‖ ≤ C hp−1 .

Without assuming the uniform boundedness of the Jacobian a sufficient condition
is ‖Jin (E ṼT

n;M )k−i‖ ≤ C hp−1, i = 0, . . . , k − 1. When the exact Jacobian-vector
products are unavailable, and when the finite difference approximations cannot be
computed this accurately, it may be advantageous to choose Rosenbrock-K methods
whose coefficients satisfy the full set of Rosenbrock-W conditions.

4. Construction of Rosenbrock-K methods of order four. We now con-
struct practical type 1 Rosenbrock-K methods of order four. We consider the case
with γi,i = γ for all i, and denote

βi =

i∑
j=1

βi,j = αi + γi , β′i =

i−1∑
j=1

βi,j .

We examine numerically the linear stability properties of the resulting methods when
using the exact Jacobian so that An = Jn. Rosenbrock-K methods share the same
stability function with classical Rosenbrock methods

(4.1) R(z) = 1 + zbT (Is×s − zβ)
−1

1 ,

where 1 ∈ Rs is a vector of ones.
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4.1. ROK4a: a four stages, fourth order, L-stable Rosenbrock-K method.
We start with constructing a four stages, fourth order Rosenbrock-K method. The
order conditions are as follows:
(4.2)

(a) b1 + b2 + b3 + b4 = 1

(b) b2β
′
2 + b3β

′
3 + b4β

′
4 = 1

2 − γ = p21(γ)

(c) b2α
2
2 + b3α

2
3 + b4α

2
4 = 1

3

(d) b3(β3,2β
′
2) + b4(β4,2β

′
2 + β4,3β

′
3) = 1

6 − γ + γ2 = p3,2(γ)

(e) b2α
3
2 + b3α

3
3 + b4α

3
4 = 1

4

(f) b3α3α3,2β
′
2 + b4α4(α4,2β

′
2 + α4,3β3) = 1

8 −
1
3γ = p4,2(γ)

(g1) b3α3,2α
2
2 + b4(α4,2α

2
2 + α4,3α

2
3) = 1

12

(g2) b3γ3,2α
2
2 + b4(γ4,2α

2
2 + γ4,3α

2
3) = − 1

3γ

(h) b4β4,3β3,2β
′
2 = 1

24 −
1
2γ + 3

2γ
2 − γ3 = p4,4(γ)

To solve (4.2) we follow the solution process outlined in [13, Section IV.7]. First we
choose γ = 0.572816062482135 so that R(∞) = 0, where R(z) is the stability function
of the method. We then treat equations (4.2.a), (4.2.c), and (4.2.e) separately, as a
linear system in bi’s. We make the arbitrary choices

b3 = 0, α2 =
1

2
, α3 = 1, α4 = 1 ,

and the solve the system  1 1 1
0 α2

2 α2
4

0 α3
2 α3

4

 b1
b2
b4

 =

 1
1
3
1
4


to obtain b1, b2, and b4.

In order to allow for the existence of an embedded method of order three we require
that the third order conditions are not satisfied uniquely. The following equation
guarantees that by setting the determinant of the system of third order conditions to
zero:

(4.3) (β′2α
2
4 − β′4α2)β3,2 β

′
2 = (β′2α

2
3 − β′3α2

2)

3∑
j=2

β4,jβ
′
j .

We now take β4,3 as a free parameter and compute β3,2β
′
2 from (4.2.h) and

(β4,2β
′
2 + β4,3β

′
3) from (4.2.d). Inserting these expressions into (4.3) yields a rela-

tion between β′2, β′3, β′4. Eliminating (b4β4,2 +b3β3,2) from (4.2.d), and from {(4.2.g1)
+ (4.2.g2)}, yields a second relation. A third relation is obtained from (4.2.b), and
this leads to the following system for β′2, β′3, β′4: α2

4
p4,4
b4β4,3

− α2
3
p3,2
b4

α2
2
p3,2
b4

−α2
2
p4,4
b4β4,3

b2 b3 b4
b4β4,3α

2
3 − p4,3 −b4β4,3α2

2 0

 β′2
β′3
β′4

 =

 0
p2,1
−α2

2p3,2

 .
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γ = 0.572816062482135
α2,1 = 1 γ2,1 = -1.91153192976055097824
α3,1 = 0.10845300169319391758 γ3,1 = 0.32881824061153522156
α3,2 = 0.39154699830680608241 γ3,2 = 0.0
α4,1 = 0.43453047756004477624 γ4,1 = 0.03303644239795811290
α4,2 = 0.14484349252001492541 γ4,2 = -0.24375152376108235312
α4,3 = -0.07937397008005970166 γ4,3 = -0.17062602991994029834

b1 = 0.16666666666666666667 b̂1 = 0.50269322573684235345

b2 = 0.16666666666666666667 b̂2 = 0.27867551969005856226

b3 = 0.0 b̂3 = 0.21863125457309908428

b4 = 0.66666666666666666667 b̂4 = 0.0
Table 4.1

Coefficients of ROK4a, a fourth order, L-stable, type 1 Rosenbrock-K method.

Here we make the arbitrary choice

β43 = −1

4

and compute β3,2 and β4,2 from

β3,2 =
p4,4

b4β4,3β′2
, β4,2 =

p3,2 − b4β4,3β′3
b4β′2

.

Next we impose directly equations (4.2.f), (4.2.g1), and (4.2.g2) along with the defi-
nition of βi,j :

b3α3,2β
′
2 + b4(α4,2β

′
2 + α4,3β3) = p4,2

b3α3,2α
2
2 + b4(α4,2α

2
2 + α4,3α

2
3) = 1

12
b3γ3,2α

2
2 + b4(γ4,2α

2
2 + γ4,3α

2
3) = − 1

3γ
γ3,2 + α3,2 = β3,2
γ4,2 + α4,2 = β4,2
γ4,3 + α4,3 = β4,3

Finally αi,1 and βi,1 follow immediately from the definition of αi and β′i respectively.
The coefficient values for this method, named ROK4a, are given in Table 4.1.

The choice of γ ensures that for the main method R(∞) = 0. The embedded

method has R̂(∞) = −0.55 Figure 4.1 shows the stability function values for both
the main and embedded methods along the imaginary axis. We see that the absolute
function values are below one, which implies that the main Rok4a method is L-stable,
and the embedded method is strongly A-stable (i.e., |R̂(∞)| < 1).

It is important to note that the stability results presented here apply to the
case where a full Jacobian is used, and does not account for the impact of Krylov
approximation. The impact of the Krylov approximation on the stability will be the
subject of future work.

Exact stability requirements when making use of the Krylov approximation of the
Jacobian are as yet undetermined, though a result by Wensch in [47] gives reason to
believe that the size of the Krylov subspace must be as large as the number of stiff
variables in the underlying problem.
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γ = 0.31
α2,1 = 1.0 γ2,1 = -22.824608269858540
α3,1 = 0.530633333333333 γ3,1 = -69.343635255712726
α3,2 = -0.030633333333333 γ3,2 = -0.030633333333333
α4,1 = 0.894444444444444 γ4,1 = 404.7106882480958
α4,2 = 0.055555555555556 γ4,2 = 0.055555555555556
α4,3 = 0.05 γ4,3 = 0.05
α5,1 = 0.738333333333333 γ5,1 = -0.571666666666667
α5,2 = -0.121666666666667 γ5,2 = -0.121666666666667
α5,3 = 0.333333333333333 γ5,3 = 0.333333333333333
α5,4 = 0.05 γ5,4 = 0.05
α6,1 = -0.096929102825711 γ6,1 = 0.263595769492377
α6,2 = -0.121666666666667 γ6,2 = -0.121666666666667
α6,3 = 1.045582889789120 γ6,3 = -0.378916223122453
α6,4 = 0.173012879703258 γ6,4 = -0.073012879703258
α6,5 = 0.0 γ6,5 = 0

b1 = 0.166666666666667 b̂1 = 0.166666666666667

b2 = -0.243333333333333 b̂2 = -0.243333333333333

b3 = 0.666666666666667 b̂3 = 0.666666666666667

b4 = 0.100000000000000 b̂4 = 0.1

b5 = 0.0 b̂5 = 0.31

b6 = 0.31 b̂6 = 0.0
Table 4.2

Coefficients of ROK4b, a fourth order, stiffly accurate, type 1 Rosenbrock-K method.

4.2. ROK4b: a six stages, fourth order stiffly accurate Rosenbrock-K
method. Stiff accuracy is a desirable property when solving very stiff systems or
index-1 differential algebraic equations. A stiffly accurate Rosenbrock method [13,
Section IV.4] is characterized by the property

bi = βs,i , i = 1, . . . , s .

We have derived a six-stage, stiffly accurate, fourth-order Rosenbrock-K method,
named ROK4b. For brevity we do not show here the order conditions, nor we present
the solution method. The coefficients have been obtained through a process similar
to that outlined in Section 4.3. The Rok4b method coefficients are shown in Table
4.2. ROK4b has the additional benefit of both the main and embedded methods are
L-stable. Figure 4.1 shows the stability functions of the main and embedded methods
of Rok4b evaluated along the imaginary axis.

4.3. ROK4p: a five stages, fourth order, parabolic Rosenbrock-K method.
Due to their low stage order Rosenbrock methods can be marred by order reduction
when solving initial value problems arising from the semi-discretization of PDEs. The
following set of additional conditions guarantees the full order of convergence for
Rosenbrock methods applied to semi-discrete parabolic PDEs [31, 32]:

(4.4) bT βj
(
2β21− α2

)
= 0 for p− 2 ≤ j ≤ s− 1 and p ≥ 3 .

Here b = (bi)i=1,...,s, α = (αi)i=1,...,s,, β = (βi)i=1,...,s, p is the order of the method,
and s is the number of stages. Multiplications are understood component-wise. We
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will call a Rosenbrock method parabolic if it satisfies (4.4).
The order conditions for a five-stage, fourth-order, parabolic Rosenbrock-K are:

(4.5)

(a) b1 + b2 + b3 + b4 + b5 = 1

(b) b2β
′
2 + b3β

′
3 + b4β

′
4 + b5β

′
5 = p2,1(γ)

(c) b2α
2
2 + b3α

2
3 + b4α

2
4 + b5α

2
5 = 1

3

(d) b3β3,2β
′
2 + b4(β4,2β

′
2 + β4,3β

′
3)

+ b5(β5,2β
′
2 + β5,3β

′
3 + β5,4β

′
4) = p3,2(γ)

(e) b2α
3
2 + b3α

3
3 + b4α

3
4 + b5α

3
5 = 1

4

(f) b3α3α3,2β
′
2 + b4α4(α4,2β

′
2 + α4,3β

′
3)

+ b5α5(α5,2β
′
2 + α5,3β

′
3 + α5,4β

′
4) = p4,2(γ)

(g1) b3α3,2α
2
2 + b4(α4,2α

2
2 + α4,3α

2
3)

+ b5(α5,2α
2
2 + α5,3α

2
3 + α5,4α

2
4) = 1

12

(g2) b3γ3,2α
2
2 + b4(γ4,2α

2
2 + γ4,3α

2
3)

+ b5(γ5,2α
2
2 + γ5,3α

2
3 + γ5,4α

2
4) = − 1

3γ

(h) b4β4,3β3,2β
′
2 + b5(β5,3β3,2β

′
2 + β5,4β4,2β

′
2 + β5,4β4,3β

′
3 = p4,4(γ)

(i) 2b5β5,4β4,3β3,2β
′
2 − b4β4,3β3,2α2

2 − b5β5,3β3,2α2
2

− b5β5,4β4,2α2
2 − b5β5,4β4,3α2

3 = π1(γ)

(j) b5β5,4β4,3β3,2α
2
2 = π2(γ)

(k) 0 = π3(γ)

where the polynomials pi,j(γ) are defined in (4.2), and

π1(γ) = 2γp4,3 − 8γp4,4(γ) +
1

3
γ2 − 12γ2p3,2(γ)− 8γ3p2,1(γ)− 2γ4 ,

π2(γ) = 3γπ1(γ)− 3γ2p4,3(γ) + 20γ2p4,4(γ)− 1

3
γ3 + 20γ3p3,2(γ)

+ 10γ4p2,1(γ) + 2γ5 ,

π3(γ) = −4γπ2(γ) + 6γ2π1(γ)− 4γ3p4,3(γ) + 40γ3p4,4(γ)− 1

3
γ4

+ 30γ4p3,2(γ) + 12γ5p2,1(γ) + 2γ6 .

The approach to solve the system of equations (4.5) is similar to that used for (4.2).
A sequence of linear systems is constructed, and for each system arbitrary choices are
made for the values of some parameters. A numerical genetic optimization algorithm
is employed to select free parameter values which lead to method coefficients of ac-
ceptable magnitudes. The coefficients of the resulting method, named ROK4p, are
given in Table 4.3.

The choice of γ ensures that for the main method R(∞) = 0. The embedded

method has R̂(∞) = 0.24. Figure 4.1 shows the stability function values for both
the main and embedded methods along the imaginary axis. We see that the absolute
function values are below one, which implies that the main Rok4p method is L-stable,
and the embedded method is strongly A-stable.
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γ = 0.572816062482135
α2,1 = 0.757900000000000 γ2,1 = -0.757900000000000
α3,1 = 0.170400000000000 γ3,1 = -0.295086678808293
α3,2 = 0.821100000000000 γ3,2 = 0.178900000000000
α4,1 = 1.196218621274069 γ4,1 = -1.836333117783808
α4,2 = 0.297700000000000 γ4,2 = -0.247700000000000
α4,3 = -1.433618621274069 γ4,3 = 1.681409044712106
α5,1 = -0.010650410785863 γ5,1 = -0.197089800872483
α5,2 = 0.142100000000000 γ5,2 = -0.684644029868020
α5,3 = -0.129349589214137 γ5,3 = 0.166330242942910
α5,4 = 0.392800000000000 γ5,4 = 0.000000000000000

b1 = 0.056000000000000 b̂1 = -0.186875355621256

b2 = 0.116601238130482 b̂2 = -0.250433793031115

b3 = 0.160300000000000 b̂3 = 0.326360736478684

b4 = -0.031109354304222 b̂4 = 0.110948412173687

b5 = 0.698208116173739 b̂5 = 1.000000000000000
Table 4.3

Coefficients of ROK4p, a fourth order, parabolic, type 1 Rosenbrock-K method.
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Fig. 4.1. Stability functions for the main and embedded methods of Rok4a, Rok4p, and Rok4b.

5. Numerical Results. Here we present some results from numerical experi-
ments verifying the properties of the methods discussed above, as well as comparing
performance of Rosenbrock-Krylov methods with several standard classical Rosen-
brock and Rosenbrock-W methods. Rang3 is a third order Rosenbrock-W method
[34], Rodas4 is a fourth order, stiffly accurate classical Rosenbrock method [13, Sec-
tion IV.10], and Ros4 is a fourth order, L-stable, classical Rosenbrock method [13,
Section IV.10].

5.1. Lorenz 96. The nonlinear test is carried out with the Lorenz-96 model [30].
This chaotic model has N = 40 states, periodic boundary conditions, and is described
by the following equations:

dyj
dt

= −yj−1 (yj−2 − yj+1)− yj + F , j = 1, . . . , N ,(5.1)

y−1 = yN−1 , y0 = yN , yN+1 = y1 .
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The forcing term is F = 8.0, with t ∈ [0, 0.3].
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Fig. 5.1. Precision diagram for Lorenz 96, showing convergence order of methods using a full
Jacobian.

Rang3 Ros4 Rodas4 Rok4a Rok4p Rok4b
M = N 2.99 4.01 3.99 4.01 3.99 3.99
M = 4 2.99 3.03 3.05 4.01 3.98 3.99

Table 5.1
Convergence Rates on Lorenz 96.

Table 5.1 shows the convergence orders of all methods applied to the Lorenz-96
system, using both the full Jacobian as well as a four dimensional Krylov approxima-
tion of the Jacobian. Figure 5.1 verifies numerically the theoretical order results for
all methods using the full Jacobian.

Recall that all methods satisfying the classical Rosenbrock order conditions are
also Rosenbrock-K methods of at least order three. Table 5.1 shows this property,
where the third order method Rang3 maintains its order and both fourth order
methods, Ros4 and Rodas4, reduce to third order while using the approximate
Jacobian.

5.2. Dissipative Burger’s equation. We apply the newly derived methods to
an ODE system coming from a semi-discretization of a partial differential equation
using the method of lines. The dissipative Burger’s equation is a one-dimensional
PDE described by

(5.2)
du

dt
+

d

dx

(
1

2
u2
)

= ε
d2u

dx2
, x ∈ [0, 10], t ∈ [0, 0.5], ε = .001 ,

with homogeneous boundary conditions, and initial condition

u(x, t = 0) =
1

6
sin2

(
1

5
πx

) (
1− x2

)
, ε = .001 .
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Fig. 5.2. Precision diagram showing the convergence order of Rok4a, Rang3, and Rodas4
using the full and Krylov approximated Jacobian.

The spatial discretization is a Nodal Discontinuous Galerkin method using equispaced
fourth-order elements, making use of the code base provided for [14].

Figures 5.3 and 5.4 show a performance comparison of the newly proposed meth-
ods with both Ros4 and Rodas4. The figures show that for problems of even modest
size, Rosenbrock-Krylov methods have comparable efficiency with previously existing
methods. The increase in relative efficiency between Rosenbrock-K methods and the
classical Rosenbrock methods as the problem size increases is a good indicator that
Rosenbrock-K methods are likely to be much more efficient than full space methods
as problem size increases, and the benefits of solving a reduced system become more
pronounced.

5.3. CBM-IV. Here we give some results for ROK methods applied to a stiff
system of ODEs coming from a KPP MATLAB implementation of the CBM-IV model
[9]. This problem is based on the Carbon Bond Mechanism IV (CBM-IV), consisting
of 32 chemical species involved in 70 thermal and 11 photolytic reactions [37].

While CBM-IV is a perfect example of a problem for which Rosenbrock-K methods
are a poor choice, due to its small size and relatively large number of stiff variables,
it does allow us to illustrate numerically the relationship between stability and choice
of Krylov basis size. Figure 5.5 shows the number of timesteps, normalized to a full
space solution of the respective method, required to obtain a reasonable solution in a
single day simulation of the CBM-IV model. The number of timesteps required for a
full space solution are given in Table 5.2.

Rok4a Rok4p Rok4b
1301 10270 261

Table 5.2
Number of required timesteps in a full space solution with tolerances of 10−2.

We see from this figure that for small Krylov basis sizes, Rosenbrock-K methods
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Fig. 5.3. Precision diagram for Burger’s equation using 10 fourth order elements.
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Fig. 5.4. Precision diagram for Burger’s equation using 400 fourth order elements.

are unstable. However, as the size of the Krylov space nears the size of the full space
the behavior of the Rosenbrock-K methods approaches that of the full space method.
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5.4. Shallow water equations. We examine the relative performance of the
methods on the shallow water equations [29].

∂

∂t
h+

∂

∂x
(uh) +

∂

∂y
(vh) = 0(5.3a)

∂

∂t
(uh) +

∂

∂x

(
u2h+

1

2
gh2
)

+
∂

∂y
(uvh) = 0(5.3b)

∂

∂t
(vh) +

∂

∂x
(uvh) +

∂

∂y

(
v2h+

1

2
gh2
)

= 0,(5.3c)

with reflective boundary conditions, where u(x, y, t), v(x, y, t) are the flow velocity
components and h(x, y, t) is the fluid height. After spatial discretization using centered
finite differences on a 32 × 32 grid the system (5.3) is brought to the standard ODE
form (1.1) with

y = [u v h]
T ∈ RN , fy(t, y) = J ∈ RN×N , N = 3072.

For all experiments we report only the time discretization errors, calculated against a
reference solution computed by MATLAB’s ODE15s solver with absolute and relative
tolerances set to 10−12.

Figure 5.7 gives an efficiency comparison of the Rosenbrock-K and classical Rosen-
brock methods, all methods make use of a sparse Jacobian matrix. This problem
illustrates the scalability of the Rosenbrock-K methods, when the stiff subspace of
the problem is kept relatively small. Here there are 3072 state variables, but the
Rosenbrock-K methods require only eight basis vectors for stability, and so the cost
of computing the Krylov space and solving the small system is much smaller than
solving the linear system in the full space.

Table 5.3 shows the convergence rates of the three Rok methods applied with a
constant timestep to solve the shallow water problem. We consider the exact Jacobian
implementation as well as reduced space approximations of the Jacobian. We compute



24

Rok4a Rok4p Rok4b
Fullspace 3.85 3.87 3.94

Exact Jacobian 3.86 3.88 3.94
Finite-difference 3.86 3.88 3.94

Low accuracy finite-difference 1.99 0.99 2.01
Table 5.3

Convergence rates for shallow water equations.

the Krylov space approximations using exact Jacobian-vector products and using finite
difference approximations. In order to assess the impact of the finite difference errors
we consider both an accurate implementation of the Jacobian-vector products, where
the increment δ in (3.4) is carefully chosen, as well as an inaccurate implementation
where a large, fixed value of δ is used.
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Fig. 5.6. Precision diagram for different methods on the shallow water equations problem.
The lower order convergence rates are due to the low accuracy finite-difference approximation of
Jacobian-vector products.

To verify the results presented in section 3.4 we perform a convergence study for
the three Rok methods using a low accuracy finite-difference approximation of the
Jacobian-vector products applied to the shallow water equations. Results are pre-
sented in Figure 5.6, The three curves show a distinct change in slope. When the
finite-difference error is small compared to the timestep the methods have a conver-
gence orders 3.4–3.7. When the finite-difference error becomes large compared to the
timestep Rok4a and Rok4b show second-order and Rok4p shows only first-order.
The difference in order when the finite-difference approximation is poor can be ex-
plained as follows. Rok4a and Rok4b satisfy the second-order W condition of Figure
3.1 and have the error term (3.5) equal nonzero, while Rok4p does not satisfy this
additional condition. Rosenbrock-W methods are preferred when finite-differences are
the only option for obtaining Jacobian-vector products, and these products cannot be
obtained accurately.

With the small basis size requirements in mind we explore in Figure 5.8 the
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Fig. 5.7. Precision diagram for the shallow water equations.

relative difference in cost, measured by the number of right hand side evaluations,
between an explicit Runge-Kutta method and matrix-free Rosenbrock-K methods.
Figure 5.8 shows the number of function evaluations on the x-axis and the Error of
the resulting solution on the y-axis. The number of function evaluations for Rok4a
includes those required to compute the matrix-free Jacobian-vector products in the
Arnoldi iteration. For the shallow water equations we see that Rosenbrock-K methods
perform well against the explicit Runge-Kutta method, when low accuracy is desired
and the CFL condition begins to constrain the explicit method.
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Fig. 5.8. Comparison of ROKa and ERK4 on the shallow water equations.



26

6. Conclusions and future work. In this work we have developed a new class
of Rosenbrock like integrators, along with a corresponding order condition theory. We
consider the ODE integrator and linear solver as a single computational process to
develop methods with the least possible amount of implicitness.

The Rosenbrock-K order conditions remove the requirement for accurate solution
of the linear systems which constrain the use of approximate methods in classical
Rosenbrock integrators. For accuracy of the integration process, the size of the Krylov
approximation of the Jacobian need be only as large as the desired order of the method.
Stability considerations give stricter requirements on the size of the Krylov basis used,
though the exact nature of these requirements is not yet entirely understood and will
be the focus of future work. Some numerical investigation, and a result by Wensch
[47], give reason to believe that the required size of the Krylov subspace is related to
the number of stiff variables in the underlying problem.

The Rosenbrock-K methods developed here have many favorable properties over
similar integrators. Rosenbrock-K methods have substantially fewer order conditions
than Rosenbrock-W methods, requiring only a single extra order condition for order
four methods as opposed to four extra conditions for order three methods in the
case of Rosenbrock-W. The reduced number of order conditions allows for methods
of higher order, we have given conditions up to order five, or for methods with fewer
stages. Further, the structure of Rosenbrock-K methods allows for the computation
of a single Krylov subspace at each timestep without the requirement of enriching this
space for each internal stage, as is the case for Krylov-ROW methods.

The efficiency of Rosenbrock-K integrators applied to a specific problem is de-
pendent on the stability requirements, and therefore on the stiffness of the underlying
problem. We have illustrated this in [43] with the help of a chemical kinetic test prob-
lem. For this reason Rosenbrock-K methods are best suited to very large problems
in which there is a relatively small number of stiff variables. However, Rosenbrock-K
methods are expected to perform at least as well as Krylov-ROW methods in all cases.
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