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I. INTRODUCTION 

Tne purpose of this study iS to examine variances in 

the case of distributions obtained by truncating a siven 

distribution at various poinvs. In parvicular, the trun- 

cated distributions are restricted vo nested increasing 

intervals, and the question is posed whether the variances 

of these distributions are monotonically increasing. ‘The 

answer to this question is reievant to the use of condi- 

tional information for purposes of estimation and predic- 

tion. In order to clarify this point further, the follow-~ 

. ing example is give 

Consider a case for wnich the exrected output of a 

particular production process may be expressed as a funce- 

tion of some factors of production which represent realize~ 

tions or rendom variables. Suppose that itv further is 

known that variability of the product is associated with 

variability in the production factors, so that reduction He)
 

in the variability of the latter effectively reduces the 

variance of the output of the process and thus improves 

the quality of the product. 

* 

Now suppose that we may truncate the distribution



involving the factors of production in the sense that we 

permit only those values of the production factors which 

fall within certain specified intervals. If the variance 

of each production factor is monotonically increasing with 

nested increasing truncation intervals, then truncation of 

the distribution of the production factors may serve to 

reduce variability in the product. In addition to this, 

greater production homogeneity then could be achieved at 

the expense of further restrictions on the range of permis- 

sible outcomes of the production variables. 

It may occur to the reader that variances in the case 

of successive nested truncation intervals have the mono- 

tonic property. However, this is not necessarily the case, 

as will be illustrated by the following example, which ori- 

ginally was given by Bowen(1). 

Let us assume that the frequency function of X is 

approximated very closely by Pr(X=-1)=1/3, Pr(X=0)=1/3 and 

Pr(X=k)=1/3. Then E(X)=(k-1)/3 and var(X)=2(k7+k+1)/9. 

We now exclude X=-1 and have Pr(X'=0)=1/2 and Pr(X'=k)=1/2, 

where X' denotes the random variable having the truncated 

distribution. Therefore, it follows that E(X!)=k/2 and 

var(X')=k“/4, We see immediately that x2 /l>2(k24k41 )/9 for 

k>9 and, further, that the variance of X' may be made as 

much larger than the variance of X as we like. 

A somewhat more formal statement of the problem consi-
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Now let the domain of P(X) be successively truncated to 

the intervals I,, I, «.«., i,iwhere n is some finite 

number). We will require that I. be a subset, but not 

necessarily a proper subset, of I. for any j>ok. We define 

var({i,), for i=1,2, ..., m, as the variance of the random 

t fr
 

variable X when its cdcistribution is truncated to the 

val I;, and U. as the mean of this truncated distribution. 
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This notation is explained graphically by reference to 
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u Figure 1. Illustration showing a nested sequence of inter- 03
 

vals used ror truncetins a@ siven disvtrioution function. 

For vne Sake of Simplicity mn has been set equal to 

four in tne case illustrated in Figure i. However, this 

number of invervels is sufficient to give a complete illus- 

tration of the manner in which the end points of one inter- 

val might be chosen in relation to those of another. 

Notice that ft), Ci3 ¢IoCTI, Cio. 

As iliustrated by Figure 1, we use t.: convention that 

ZO is the domain of the density function £{X), so that 

lity density f
e
e
 var(I)) ts the Variance in the case of a probab
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for any truncated probability distribution, an extension 

of the interval of truncation chosen in such a way that 

it does not change the mean of the truncated distribution 

necessarily causes an increase in the variance of the trun- 

eated distribution; (ii) for certain other distributions 

which are differentiable over some known interval of trun- 

cation, if the distance between the right-hand end point 

of the interval and the mean is greater than the distance 

between the left-hand end point of the interval and the 

mean, the variance is monotonic for nested right-hand 

extensions of the interval of truncation regardless of the 

mean of the truncated distribution; and (iii) the variance 

is monotonic for nested left-hand extensions of the inter- 

val of truncation regardless of the location of the mean 

of the truncated distribution for certain other classes 

of distributions. However, there were certain other phases 

of the problem for which Bowen was unable to offer any type 

of proof of this interesting property of the variance, For 

instance, he was unable to prove monotonicity of variance 

for nested intervals in a sequence of truncations which 

traverses the mode of a unimodal distribution. Bowen indi- 

cated that some numerical work in this area might be most 

helpful. 

The contents of this thesis are an extension of
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Bowen's work concerning monotonicity of variance for nested 

intervals of truncation. The author seeks answers to ques- 

tions which have practical significance but for which no 

theory is presently available. A Monte Carlo procedure was 

devised for collecting evidence regarding these questions, 

and the collected evidence is presented. 

In this thesis, several tables are presented which 

provide evidence of the property of monotonic variance for 

nested increasing intervals of truncation in the case of 

univariate distributions. The Monte Carlo procedure is 

used to determine a table of standard deviations for the 

standard normal distribution with the same points of trun- 

cation reported by Clark(2). Clark's table is given intact, 

and it 1s used in comparison with the new table reported 

here as a check on the Monte Carlo procedure used in the 

present study. 

Distributions other than the standard normal distribu- 

tion are examined as well, namely, a Pearson U-shaped dis- 

tribution and a bimodal distribution consisting of a mixture 

of two Pearson distributions. Graphs of the U-shaped and 

bimodal distributions are given. 

A section is given in which dispersion for a bivariate 

case is examined in terms of the bivariate normal distribu- 

tion. An interesting trend among the covariance matrices
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II. MONTE CARLO PROCEDURES 

Two alternatives appeared to be available for evaluation 

of the required integrals. (refer again to p. 8). These two 

alternatives were numerical integration and Monte Carlo pro- 

cedures. The numerical integration would seem to be the more 

accurate of the two alternatives. On the other hand, it 

also requires much more computer time. For example, two 

computer runs were made using programs written for each of 

these procedures. The Monte Carlo procedure gave all of 

the output data in 27 minutes of computer time while the 

numerical integration procedure gave only 1/3 of the out- 

put data in 21 minutes of computer time. The decision was 

made to use the Monte Carlo procedure because it was by far 

the more practical of the two alternatives. The Monte Car- 

lo procedure used in this study utilized a large number of 

computer generated, pseudorandom numbers which may be taken 

to be a random sample from a specified truncated distribu-.. 

tion. From each sample is obtained a large sample estimate 

of the variance of the sampled truncated distribution. Then 

these estimates are examined for evidence of monotonic in-«
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creasing variance associated with nested increasing inter- 

vals of truncation. 

By using programs which generate pseudorandom numbers 

from a normal distribution and a predescribed Pearson dis- 

tribution available for the IBM 7040-1401 system at the 

Virginia Polytechnic Institute Computing Center, we may 

generate samples of sufficient size to give the desired 

accuracy. The sequence of numbers is generated one at a 

time by a completely predevised procedure which is, however, 

so devised that no significant departure from randomness 

may be detected by any reasonable statistical test. Numbers 

senerated in this manner are called pseudorandom numbers. 

Through the use of various computer programs, sequences of 

such numbers are transformed into pseudorandom numbers 

which have any one of several probability distributions, 

including the normal and Pearson family mentioned earlier. 

A discussion of the normal generator and how it works 

is given in an article by Marsaglia, MacLaren, and Bray(5). 

The normal generator produces pseudorandom numbers at the 

rate of 10,000-15,000 per second in the IBM 7040 and, 

according to Marsaglia, MacLaren, and Bray(5, p. 4). the 

method is 

",.e-completely accurate in the sense that 
in theory the procedure returns a random 
variable with exactly the required distri- 
bution,"
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To generate the random variables with the required 

Pearson type and mixture of Pearson type curves, a FORTRAN 

subroutine, which was first developed through the combined 

efforts of Cooper, Davis, and Dono(3) of the IBM Scientific 

Computational Department, is used. The subroutine was 

later adapted to FORTRAN IV by Donald Gale Thomas(7) for 

use on the IBM 7040 at the Virginia Polytechnic Institute 

Computing Center. The author refers the reader to Thomas! 

thesis for a detailed description of how the subroutine is 

used and for a complete FORTRAN source list and flow chart 

for the subroutine. The procedure generates up to 10,000 

pseudorandom numbers per second from the required Pearson 

distribution. This subroutine is very versatile in that 

one is able to generate pseudorandom numbers for any type 

of Pearson curve or mixture of Pearson curves that is 

desired. 

The standard normal, Pearson U-shaped and bimodal 

distributions are discussed in the following section. The 

normal generator is used in the standard normal case and 

Thomas'(€7) subroutine is used to generate pseudorandom 

numbers for the last two distributions. Ina later section 

a study of the bivariate normal distribution is presented. 

Again the univariate normal generator is used. A linear 

transformation on the univariate normal pseudorandom nun-= 

bers yields the bivariate normal variables used in this 

s tudy .
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IIIT. THE UNIVARIATE CASE 

Procedure 

In the case of the univariate distributions, a sample 

size of 6,000 was chosen. This number was chosen because 

it was found to be sufficiently large to provide accurate 

results as compared to Clark's table of exact values, to be 

discussed below, and it was not so large that it required 

unreasonable amounts of calculations and computer time. 

A sequential type of sampling procedure was used in the 

program as follows. Random numbers were generated and 6i<..- 

ther stored as part of the sample or discarded according to 

whether of not they were within the limits of truncation 

until the preassigned sample size was satisfied. Using the 

Same sample size to obtain all estimates suggests that the 

estimates are determined with approximately equal precision. 

Programs were written for further calculations involv- 

ing the pseudorandom numbers generated by the procedures 

referred to in the preceding section. The purpose of the 

different FORTRAN programs used in this section is, of course, 

to calculate the variance of a particular truncated univare- 

ijate distribution. Each program generates pseudorandom
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numbers from the required truncated distribution one at a 

time until the prescribed sample size has been achieved. 

Then the program calculates the required statistic and re- 

cords the data along with the truncation points associated 

with that particular truncated distribution. Although all 

of these programs followed the same logical pattern, each 

one had to be written separately because of the different 

input and output requirements of each particular type of 

distribution. Different methods of random number generation 

also caused program variation. A flow chart and FORTRAN 

source list of the program written for the Pearson U-shaped 

distribution is given in the Appendix. There are no flow 

Charts or source lists for either the standard normal or 

the bimodal case. They are not included because they are 

very similar in locic to the other programs. 

The estimator S“a ¥(x,-¥)2/(n-1) is used throughout, 

where n=6,000 as mentioned earlier. Since the type of dis- 

tribution to be sampled and consequently the mean for the 

distribution were known from the beginning of the experiment, 

one might wonder why the statistic EF (x,-U,)2/n (where Uy 

is the mean for the distribution being considered) was not 

used. I1t would seem that this estimator would give a slight- 

ly better estimate of the variance, However, we generally 

. do not know the means of the truncated distributions for the 

various points of truncation.
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The Standard Normal Distribution 

The purpose of this section is to justify the Monte 

Carlo procedures used throughout this thesis. Using an 

exact method of calculation, Clark(2) published a table of 

standard deviations of the truncated standard normal dis-~ 

tribution for various points of truncation. The purpose 

here is to compare with Clark's table a similar table ob- 

tained by the Monte Carlo procedure. 

Table 1 contains the standard deviations for the trun- 

cated normal case, which were calculated by the Monte Carlo 

procedure. Truncation points are arranged in the table 

such that they are increasing from left to right and from 

bottom to top. The left hand truncation points, denoted by 

"a", identify columns of the table, and the right hand trun- 

cation points, denoted by "b", identify rows. The standard 

deviation corresponding to a pair of truncation points is 

located at the intersection of the column(a) ‘and row(b) 

which describe the region of truncation. The range(+3 stan- 

dard deviations) and spacing(1/4 standard deviation) of the 

truncation points was chosen to be the same as those in 

Clark's table in order that the two tables might be compared. 

Table 2 contains the standard deviations, as reported 

by Clark(2), which are associated with the same truncation 

points listed in Table 1. As the reader can see by compar- 

ing the two tables, the corresponding entries in Table 1
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are very accurate in every case. In order that a comparison 

between the two tables may be made more easily, a table of 

. relative differences between each corresponding entry in 

Table 1 and Table 2 is given as Table 3. The entries for 

Table 3 were computed by subtracting a particular entry in 

Table 1 from the corresponding entry in Table 2 and dividing 

by the latter. To convert the entries of Table 3 to per 

cent, each one was multiplied by 100. The reader will no- 

tice that the magnitude of the relative difference between 

every corresponding entry in the two tables is less than 3%. 

One may see by observing Tables 1 and 2 that the trend 

of monotonicity of the standard deviation is apparent in 

each table. By moving up or to the left of any particular 

entry in either table, one observes an increase in the stan- 

dard deviation. Therefore, we conclude by the evidence 

presented that there is definitely monotonicity of variance 

in the truncated standard normal case. 

A Pearson U-shaped Distribution 

The next distribution to be studied is another of the 

Pearson family of curves. This particular curve is of the 

Pearson type I, subclass II classification. It is well 

known that the Pearson type and shape of each class of 

Pearson curve is determined by the values of 8, and 8, that 

are chosen, where 8 5=(3)?/(o)7, 8 =U) /Uo)*, and 4, is
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the rth central moment. For the particular values or B =0 

and 8 =1.75, the resulting Pearson type I curve is U-shaped 

and this curve will be studied in this section. 

The Ueshape of tne distribution in this section is a 

direct contrast to the bell shaped standard normal distri- 

bution. It was for this reason that the U-shaped curve of 

this section was chosen. Now that we have shown evidence 

of the monotonic property of the variance for the bell 

shaped standard normal distribution, we now will present 

evidence of the monotonic property for a contrasting U-shap- 

ed distribution. 

In order that the reader may be more familiar with the 

shape, range, and general outward features of the distribu- 

tion, a graph of the Pearson U-shaped curve is given in 

Figure 2. 

Table 4 gives the variances associated with different 

points of truncation in the Pearson U-shaped curve. The 

table is arranged as for the standard normal case given 

previously. The range on this U-shaped distribution was 

-1.67 to 41.67 approximately; therefore the truncation 

points all were restricted within this range. The distribu- 

tion has mean equal to zero and variance equal to one. ‘The 

spacing on the truncation points is 1/2 its standard devia- 

tion, which is somewhat larger than for the standard normal 

case. Therefore, the number of combinations of upper and
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lower truncation points and hence the number of entries in 

the table is reduced. However, every combination of the 

upper and lower truncation points is represented in the 

table, and the entries there definitely show conclusive 

evidence of the monotonic property of the variance of a 

truncated Pearson U-shaped distribution. 

Here, for the case of a U-shaped distribution which is 

in direct contrast with the bell Shaped normal curve, we 

again see evidence of monotonicity in the variance. The 

reader will notice that if one starts from a particular 

entry. in the bady of Table 4 and moves to the left or in an 

upward direction, the successive entries are monotonically 

increasing. This numerical evidence thus indicates that 

the variance is monotonically increasing for nested increas- 

ing intervals of truncation in this U-shaped distribution. 

A Bimodal Distribution 

In order that the evidence presented in this section 

might also include other than unimodal distributions, a 

distribution mixture of 50% Pearson type I with mean equal 

to zero and variance equal to one and 50% normal with mean 

equal to five and variance equal to one is presented. This 

yields a bimodal distribution with one mode at approximately 

one and another mode at approximately 5.3. The distribution 

mixture has mean equal to 2.5 and variance equal to 7.25.
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Figure 3 is a graph of this bimodal distribution. The spac- 

ing of 2.00 units between truncation points is used in this 

case. This particular spacing was chosen so that none of 

the points of truncation falls close to a mode. The trunca- 

tion points were chosen in this manner so that the property 

of monotonicity of the variance may be studied for nested 

intervals of truncation traversing a mode of the distribu- 

tion. This evidence complements the work done by Bowen(1) 

for this class of distributions. As mentioned earlier, 

Bowen was unable to prove that the variance was monotonic 

for nested intervals of truncation traversing a mode of a 

distribution, The evidence presented in Table 5 indicates 

monotonicity of the variance for nested intervals of trunca~ 

tion which traverse a mode. 

Table 5 contains the variances for the truncated bimod-= 

al distributions. Again monotonicity of the variance is 

evident. Notice that for regions of truncation traversing 

the modes of this distribution the monotonicity of the vari- 

ance is still suggested by the evidence given in Table 5, 

This numerical evidence is a good indication that the vari- 

ance is monotonic for nested intervals of truncation in the 

case of this univariate bimodal distribution.
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Figure 3. Graph of a bimodal distribution with mean equal 

to 2.5 and variance equal to 7.25 consisting of a mixture of 

50% Pearson type I distribution and 50% normal distribution. 
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IV. THE BIVARIATE CASE 

Procedure 

A study of the covariance matrices of a sequence of 

truncated bivariate normal distributions is reported in this 

section. The general logic and procedure of the study are 

Similar to those of the studies conducted in the univariate 

case. Again the normal generator available at the Virginia 

Polytechnic Institute Computing Center is used. After each 

pair of standard normal univariate variables has been gener~ 

ated, a transformation on the variables must be made so that 

each pair together in vector form may be considered as one 

bivariate normal observation vector with the required mean 

and covariance matrix. The following is a description of 

the transformation in matrix notation. 

Let| i] be a@ pair of generated standard normal random 

variables. Then x=[ 2] is distributed as Ny io . EY 

Now for any nonsingular linear transformation of the 

form T X=Z, it is known that Z has the bivariate normal 

distribution with mean T E(X) and covariance matrix equal 

to T Tt=V,say. For our present purposes it is convenient
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t t 
to let T= 1/12]. 

"4 22 

Because E(X)=0, it follows that E(Z)=T E(X)=0, a null 

vector, and thus Z is distributed as N,(0,E(Z Z')), where 

E(Z Z')=E(T X X' T')=T B(X X') prea} | geet T'. 

Then given a specific covariance matrix, V, we may solve 

for the elements of T and thus find the linear transforma- 

tion which yields the required distribution. It follows 

  

that 

tye Mie Vy 2)2/v29 
ba4=0 

£49214 o/-/ V22 

tooeW Von | 
where Vaa'Y12°% 20 are known and, since V is symmetric, 

Y217"12° 
Then we may solve for Z since T X=Z or, in matrix 

notation, 

“4a “tot )*]_ | 44 
0 t 22| |*2 22 

which gives 

2404 1% 44 2X 
and Zo=tooXo 

where 044 2b122bo0 are as described above. 

After these transformations have been made, we have a 

bivariate normal vector with the required mean and covari- 

ance structure,



32 

In the bivariate case, it seems reasonable that a 

much larger sample size should be used than in the univari- 

ate case. A sample size of 20,000 finally was selected 

for the bivariate normal case. A much larger sample would 

have been required to achieve the accuracy realized in the 

univariate case; however, this sample size was found to be 

sufficiently large to indicate behavior of the bivariate 

system as reported below. 

The estimator Fe (25 jBy)(25-%)/ Cnt) for i,k=1,2 

and where Z4= 2245/7 and Zy= Zc 3/M which is similar 

to the estimator used in the univariate case, is used to 

get estimates of the elements of the covariance matrices. 

For a description of the program used for this section, see 

the flow chart and FORTRAN source list of the bivariate 

normal program in the Appendix of this thesis. 

In Figure 4, different designs are given which show 

the various ways in which the nested regions of truncation 

in the bivariate case are expanded eventually to cover a 

large portion under the bivariate normal surface. We will 

require that the regions be nested rectangular regions with 

sides parallel to the coordinate axes. These various 

designs are given to enable one to visualize what area 

under the bivariate normal surface in being considered when 

reference is made to a certain number associated with one 

of the rectangles in Figure 4. The numbering system for
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the rectangles has the following property: 

The areas with larger numbers contain all areas with 

smaller numbers, each of which is rectangular in shape. As 

an example, the area numbered as 4 is made up not only of 

that area labeled 4 but also the areas numbered 3, 2, and 1. 

Each region of truncation is expanded horizontally 

along the Z, axis by a length of 1/20, where Gis the 

Standard deviation of z or it is expanded vertically 1’ 

along the z, axis by a length of 1/2), where £5 is the 

standard deviation of Zo, OF a combination of these. As in 

the univariate normal case, the spacing on each variate is 

one-half its standard deviation. 

The Bivariate Normal Distribution 

The tables which follow contain the elements of the 

covariance matrices of various truncated bivariate normal 

distributions. Each set of elements contains the variances, 

of a truncated distri- 
1i 12’ 

bution. A number to the right of the set of elements will 

Vv and Voo» and the covariance,v 

indicate which region of truncation is being considered. 

Also, at the top of each table the particular design for 

that table is identified. 

If A and B are both 2x2 matrices (this clearly is the 

case for the bivariate normal distribution), then A is said 

to be "ordered" greater than B (denoted by A>B) if the
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diagonal elements of A-B and also the determinant of A-=-B 

are greater than zero. An ordering of the matrices accord= 

ing to the above definition will be given for each covar- 

jance matrix associated with a given region of truncation 

which contains another region, so that at a glance the 

reader may determine how each matrix compares (in order) to 

other matrices within any given table. Alternatively, we 

could consider the order only of the marginal variances of 

the truncated bivariate normal distributions. Since the 

evidence in the univariate normal case indicates that the 

variance is monotonic for nested intervals of truncation, 

we would expect the marginal variances in the bivariate 

normal case to be monotonic if the bivariate distribution 

were truncated only in one dimension. The evidence shows 

further that the marginal variances (the diagonal elements 

of the covariance matrix) were monotonic for nested regions 

of truncation in the respective variables. However, it 

appears to be useful to consider a stronger ordering in the 

bivariate case in which not only the variances but also the 

covariance are considered. Hence the ordering of positive 

definite matrices as defined in the preceding paragraph, 

which in turn implies that the marginal variances are mono- 

tonic for nested regions of truncation, but not conversely. 

Table 6 gives the elements of the covariance matrices 

for the case P=-.8 and Design 1 of Figure 4, Notice that
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the line number in the tabdle identifies each matrix, and 

this number corresponds to one of the areas described by 

the appropriate design in Figure 4. The limits on the var- 

jables z, and Zos which deseribe the region of truncation, 
1 

are given along with the ordering of the matrices. Tables 

7 through 13 are tables of elements of the covariance ma- 

trices for different designs and correlation coefficients. 

The covariance matrix for the bivariate normal distri-~ 

bution without truncation in the case of Tables 6 through 

9 is 

f .16 -.16] 
V= 

~.16 0c 

which yields a coefficient of correlation equal to -.8. 

The covariance matrix for the bivariate normal distribution 

without truncation in the case of Tables 10 through 13 is 

an 
V= 

o10 .2 

which yields a coefficient of correlation equal to +.5. 

To check the accuracy of the Monte Carlo procedure in 

the bivariate normal case, two runs on the computer were 

made in which the variances and covariance, which make up 

the elements of the covariance matrices given in the tables, 

were calculated directly by a numerical integration proce- 

dure. This procedure sives exact results, but it is costly
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in computer time, as might be expected. For this reason 

the numerical integration procedure was not used extensive-~- 

ly in this study. However, it is wortvhwnile to note these 

results and make compaztisors between tnem and the results 

obtained by the Monte Carlo procedure. Two such cnecks 

were made for comparison with the Monte Carlo results. The 

regions of truncation for the first and second checks, re- 

spectively, are described by the following limits on the 

variables 24 and Zn? 

Check j44 Check #2 
-00¢z,<.20 ~.40<¢z, <.60 

Each check was made with correlation coefficient equal to 

-.8, The results by the numerical integration procedure 

were as follows 

Check V44 Vi2 Vo0 
1 00325295 ~ 00001387 00520086 
2 04966832 ~ 00105016 04687998 

The results for the same regions of truncation obtained by 

the Monte Carlo procedure were as follows: 

Check Va4 Vio Voo 

1 . 00320280 -.00020897 200515574 
2 04870672 -.01903192 04330081 

To help facilitate comparison of the results from the 

two procedures, a listing of the absolute error between the . 

two follows:
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Check Vi4 V4 0 Voo 

1 ~00005015 200019510 00004512 
2 ~00096160 01798176 ~00357917 

The absolute diffcrences in the results are not PDar- 

ticularly small when comoared with tne results attained in 

the univariate normal case but, in order to achieve equiva- 

lent accuracy in the bivariate normal case, it seems logi- 

cal to use a sample size which is on the order of the square 

of the sample size used in the univariate normal case. The 

resulting sample size of 36,000,000 would be unreasonably 

large. In view of this fact, pernaps the accuracy of the 

results is acceptable if we consider the limitation on the 

sample size used. However, the sample size appears to have 

been sufficiently large to reflect consistent trends in the 

covariance matrices of the truncated distributions. 

Now that some justification has been given the proce- 

dure used, we now will discuss the evidence given in the 

tables, point out certain trends, and draw conclusions from 

the evidence presented. | 

We see in this bivariate case that a successive nested 

increase in the region of truncation does not necessarily 

increase the order of the covariance matrix. In all of the 

different tables presented, the regions of truncation are 

nested increasing regions and, by observing the ordering of 

the successive matrices, we see that an increase in the area 

of the region of truncation sometimes does and sometimes
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does not cause the covariance matrix of the region after 

expansion to be of greater order vhan that of the region 

considered before expansion. Therefore, in contrast to 

conclusions made in the univariate case, no categorical 

conclusions can be made in the bivariate normal case. 

However, one important trend should be pointed out at this 

time. If the reader will use the appropriate design for 

the particular table being considered and observe in what 

manner the region of truncation is being expanded, it will 

aid recognition of the following trend in the order of the 

succesSive covariance matrices. If the region of trunca- 

tion is expanded by extending the Limits in one or both 

directions on both variables 24 and Zo Simultaneously, the 

resulting covariance matrix in all cases is of greater 

order than the covariance matrix of the region considered 

previously. In other words, if one observes the design, 

one will notice that if a "corner area" is added to the 

region of truncation, as in Figure 5, then the covariance 

matrix for area 2 (which, we recall, is made up of the 

areas labeled 1 and 2) is of sreater order than the covari- 

ance matrix for area 1. This trend may be noted throughout 

the tables given for the bivariate normal distribution. 

in order that we may observe this trend, consider the 

following specific cases in which "corner areas" are added 

in expanding the limits of truncation. In particular,
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Figure 5. Example showing how a region of truncation may 

pe expanded by adding a "corner area", 

_ consider Tables 9 and 13. Notice that these two tables 

both refer to design Land} =-.8 and? =+.5 for Table 9 and 

Table 13, respectively. Design 4 is expanded in the manner 

illustrated by Figure 5. Observe that each successive line, 

starting from the top of the table and moving down, con- 

tains a covariance matrix for successive "corner area" ex- 

pansions of the limits of truncation. Notice also that the 

matrices represented in each successive line are of increas-= 

ing order when read from top to bottom. One may check the 

order of two matrices (say line 1 and line 2) by comparing 

the diagonal elements of the two matrices and observing the 

Sign of the determinant of the difference matrix (matrix 2 

minus matrix 1). In this example, the diagonal elements of 

matrix 2 are larger than those of matrix 1 and the determi- 

nant of the difference matrix is greater than zero, which 

can be verified by a few simple calculations. Thus, by the
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definition of ordering of matrices, matrix 2 is of greater 

order than matrix 1. One may check any pair of matrices in 

Tables 9 and 13 by the procedure given above and verify 

that the order of the matrices is increasing when the re- 

gion of truncation is expanded by adding such "corner areas", 

Other specific cases in which "corner areas" were 

added appear in line 5 as compared to line 4 and line 4 as 

compared to line 3 in Tables 7 and ii. Further examples 

are line 2 as compared to line 1, line 4 as compared to 

line 3, and line 6 as compared to line 5 in Tables 8 and 12. 

All of these cases bear evidence that when a "corner area" 

is used to expand the truncation limits, the covariance ma- 

trix of the expanded region is of greater order than the 

covariance matrix before expansion. Of course, all of these 

remarks must be taken in the context of the increments by 

which, in this study, any region is expanded in the direc- 

tion of z, (1/2g; ) and Z5 (1/20,). 

When the region of truncation is expanded on three sides 

(which includes a “corner area" extension), for example, in 

line 3 as compared to line 2 of Tables 6 and 10 and line 4 

as compared to line 3 in Tables 7 and 11, the matrices are 

of increasing order. This result is anticipated in light of 

the remarks in the preceding paragraph. 

Areas for further work in the bivariate and multivari- 

ate cases are almost unlimited. One could conduct a study
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Similar to the one done here for other bivariate or multi- 

variate distributions. The multivariate normal distribu- 

tion might be a likely candidete. There is still much work 

to be done in the bivariave normal case. One might consid= 

er other values of the correlation coefficient. Perhaps a 

bivariate normal distribution with a smaller negative cor- 

relation might shed some new light on the subject.



Ve. SUMMARY 

The univariate distributions studied in tnis thesis 

are the standard normal distribution, a Pearson type I, 

U-shaped distribution (B,=0.0 and (.=1.75), and a bimodal 

distribution given by mixing 50% Pearson type I distribu- 

tion (Q=-5 and B=3.4) and 50% normal distribution with 

mean equal to five and variance equal to one. We have seen 

that there is a definite monotonic trend in the variances 

of truncated distributions in the case of nested intervals 

of truncation. The evidence is given in Table i for the 

standard normal case, Table 4 for the case of the Pearson 

U-shaped distribution, and Table 5 for the bimodal case. 

The trend can be seen clearly by observing these tables. 

As for the bivariate case, the property of monotonicity 

of variance is not always evident; however, specific cases 

were found for which (depending on how the region of trun- 

cation was expanded) evidence of the monotonic property is 

suggested in the sense that the positive definite covariance 

matrices are ordered. However, the evidence in Tables 6 

through 13 indicates that the marginal variances are mono- 

tonically increasing for nested increasing rezions of trun- 

cation in the respective variables regardless of the manner 

in which the region of truncation is expanded.
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COMMON/VPI001 /NUMBR 
READ( 5,100)NUMBR 

100 FORMAT(1X,1I1i2) 
10 FORMAT(2F5.2) 

J=1 
99 READ(5,10)B,A 

G=0. 
SX2=0 ° 

IF(A.GE.B) GO TO 99 
COMMON/Z2/TOM(100) 
IF(J.NE.1) GO TO 2 
CALL PURGE2(1,5) 
GO TO 6 
CALL PURGE2(2,5) 
NSAMP=0 
NSAMP=NSAMP+1 00 
DO 4 J1=1,100 
IF(TOM(J1).LT.A) GO TO 11 
IF(TOM(J1).GT.B) GO TO 11 
GO TO 3 

11 TOM(J1)=0. 
NSAMP=NSAMP=1 
G=G+TOM(J1) 
SX2=SX2+TOM(J1 )**2 
IF(NSAMP.GT.6000) GO TO 8 
CALL PURGE2(2,5) 
GO TO 7 

8 SV2=SX2-G#*2/FLOAT(NSAMP) 
NSAMPL=NSAMP-1 
SV=SV2/FLOAT(NSAMP1 ) 
IF(J.NE.1) GO TO 9 
WRITE (6,20) 

20 FORMAT( 35H VAR SAMPLE SIZE A B) 
9 WRITE(6,30) SV,NSAMP,A,B 

30 FORMAT(2X,1HO,F7.4,4X,15,4X,F5.2,4X,F5.2) 
WRITE (6,110)NUMBR 

110 FORMAT(1X,1I1i2) 
END FILE 6 
IF(SV) 97,1,1 

1 J=2 
GO TO 99 

97 STOP 
END 

N
I
 
O
N
D
O
 

E
W
 

FORTRAN SOURCE LIST FOR PEARSON TYPE I U-SHAPED DISTRIBUTION
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DIMENSION S(2),Z(2,1),V11R(100) ,V12R(100) ,V22R(100) 
COMMON/VPI002/RANDOM 
READ(5,100)RANDOM 
FORMAT(1X,112) 
READ(5,20)V11,V12,V22 
FORMAT (3F7.4) 
V21=V12 
TL1=SQRT(V11-V21**2/V22) 
T12=V21/SQRT(V22) 
T21=0. 
T22=SQRT(V22) 
J=1 
READ(5,10)A1,A2,B1,B2 
GZi=0. 
GZ2=0. 
SSZ1=0. 

GZ1Z2=0. 
NI2=20000 
NI2ZSt=NI2=1 
FORMAT(4F5.2) 
K=0 

L=0 

K=K+1 
S(1)=RNOR(X) 

S(2)=RNOR(X) 
27(2,L)=T22*S (2) 
IF((Z(2,L).LT.B1).0R.(Z(2,L).GT.B2)) GO To 3 
GO TO 7 
S(2)=RNOR(X) 
GO TO 4 | 
Z(1,L)=T11*S(1)+T12*5 (2) 
IF((Z(1,L).LT.A1).08.(Z(1,L).GT.A2)) GO TO 6 
GO TC 5 
S({1)=RNOR(X) 

GO TO 7 
GZ1=GZ1=Z(1,L) 
GZ2=GZ2=Z(2,L) 
GZ1Z2=6Z12Z2+2(1,L}*2Z(2,L) 
SSZ1=SSZ14+Z(1,L)**2 
SSZ2=S8Z2+Z(2,L)**2 
IF(K.NE.NI2) GO TO 25 
V11R(J)=(SSZ1-GZ1**2/FLOAT(NI2))/FLOAT(NI2S1 ) 
Vi2R(J)=(GZ1Z2-GZ1*GZ2/FLOAT(NI2) )/FLOAT(NI2S1 ) 
V22R(J)=(SSZ2-GZ2**2/FLOAT(NI2Z))/FLOAT(NI2S1 ) 

FORTRAN SOURCE LIST FOR BIVARIATE NORMAL DISTRIBUTION
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IF(J.NE.1) GO TO 9 
WRITE (6,90)V11,V1i2,V22 

90 FORMAT(21H COVARIANCE MATRIX IS,3F7.4,39H FOR 11,12, 
LAND 22 ELEMENTS RESPECTFULLY) 
WRITE (6, 30) 

30 PORKAT( 02H Vil Vi2 V22 Al A2 Bi 
1 B2 

9 WRITE(6,40)Vi1R(J) ,Vi2R(J),V22R(J5),AL,42,B1,B2 
40 FORMAT(1HO, 3F12.8,1X%,F5.2,1%,F5.2,1%,F5.2,1X,F5.2) 

R=V12R(J)/SQRT(VILE( J) *V22R(5)) 
R2=R*¥*2 
WRITE (6,80)B82,R 

80 FORMAT(9H RSQUART=,F12.8,3H R=,F1i2.8) 
IF(J.EQ.1) GO TO 13 

( DIAG1I=V11R(J)-Viib(J- 
DIAG2=V22R(J)-V22R(7 
DET=DIAGi*DIAG2~(Vi2 
IF(DIAG1.GT.O..AND.D 
WRITE (6,50) 

S50 FORMAT(120H 
1 DIAG1 DIAG2 DET VER2-VR1 IS NoT 
1POS.DEF.) 

. GO T6415 
12 WRITE(6,60) 
60 FORMAT(116H 

1 DIAG1 DIAG2 DET VR2=-VR1i IS 
1POS.DEF.) 

15 WRITE(6,70) DIAG1L,DIAG2,DET 
70 FORMAT(1H. ,63X, 3F12.8) 

WRITE (6,110)RANDOM 
110 FORMAT(1X,112) 

END FILE 6 
13 J=J+1 

GO TO 11 
END 

R 
L 

~Vi2R(J-1))**2 

1) 
1) 
(J) 
AG2.GT.0..AND.DET.GT.0.) GO TO 12 

FORTRAN SOURCE LIST FCR SIVARIATE NORMAL DISTRIBUTION, CONT'D



VARIANCES OF SOME TRUNCATED DISTRIBUTIONS 

FOR VARIOUS POINTS OF TRUNCATION 

by 

George Carlton Hayles 

ABSTRACT 

The purpose of this study is to examine variances in 

the case of distributions obtained by truncating a given 

distribution at various points. In particular, the trun- 

cated distributions are restricted to nested increasing 

intervals, and the question is posed whether the variances 

of these distributions are monotonically increasing. The 

answer to this question is relevant to the use of condi- 

tional information for purposes of estimation and prediction. 

Several tables are presented in the thesis which pro- 

vide evidence of the property of monotonic variance for 

nested increasing intervals of truncation in the case of 

univariate distributions. The Monte Carlo procedure is 

used to determine a table of standard deviations for the 

standard normal distribution with the same points of trun- 

cation reported by Clark(2). Clark's table is given intact, 

and it is used in comparison with the new table reported 

here as a check on the Monte Carlo procedure used in the 

present study.



Distributions other than the standard normal distribu- 

tion are examined as well, namely, a Pearson U-shaped dis- 

tribution and a bimodal distribution consisting of a mix- 

ture of two Pearson distributions. Graphs of the U-shaped 

and bimodal distributions are given. 

A section is given in which dispersion for a bivariate 

case is examined in terms of the bivariate normal distribu- 

tion. An interesting trend among the covariance matrices 

is observed in the data reported in that section. 

A separate computer program for each type of distribu- 

tion was written and used to calculate the variances of the 

truncated distributions. FORTRAN programs and flow charts 

are presented in the Appendix. Explanation of the tables 

and procedures used to calculate the entries in the body of 

each table are given in each section as well as some dis-~ 

cussion of the results presented.


