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I. INTRODUCTI

T™he purpose of This study is to exanine varlences in
the case of distributions obtained by Truncating a glven
distribution at various poin
cated distributions are restricted to nested increasing

intervals, and the question ether The variances

e
"O’
U
Q

.§

of these distributlions are monotonically increasing. The
answer to this question is relevant to the use of condi-
tional information focr purposes of estimation and predic-

tion. In order to clarify this point further, the follow-

tion of some factors of production wnich represent realiza-
tions of rendom variables. Suppose that it further is
known that varisbility of the product ls associated with
variability in the production factors, so that reduction

in the variability of the latter effectively reduces the
variance of the output of the process and thus improves

the quality of the product.

Now suppose that we may truncate the disiribution



involving the factors of production in the sense that we
permit only those values of the production factors which
fall within certain specified intervals. If the variance
of each production factor is monotonically 1increasing with
nested increasing truncation intervals, then truncation of
the distribution of the production factors may serve to
reduce variability in the product. In addition to this,
greater production homogeneity then could be achleved at
the expense of further restrictlons on the range of permis-
sible outcomes of the production variables.

It may occur to the reader that varlances in the case
of successive nested truncation intervals have the mono-
tonic property. However, this 1is not necessarily the case,
as will be illustrated by the following example, which ori-
ginally was given by Bowen(1l).

Let us assume that the frequency function of X is
'approximated very closely by Pr(X=-1)=1/3, Pr(X=0)=1/3 and
Pr(X=k)=1/3. Then E(X)=(k-1)/3 and var(X)=2(k%+k+1)/9.

We now exclude X=-1 and have Pr(X'=0)=1/2 and Pr(X'=k)=1/2,
where X' denotes the random variable héving the truncated
distribution. Therefore, it follows that E(X')=k/2 and
var(X'):kz/u. We see immediately that k2/4>2(k2+k+1)/9 for
k>»9 and, further, that the variance of X' may be made as
much larger than the variance of X as we like.

A somewhat more formal statement of the problem consi-
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dered here appesars to be in order. To this end, let £(X)
be some probabillity density function which is of interest
To and is specified by an experimerncer. Let the mesan of X

be dencted by UG and les the variznce of X be denoted vy

Is - - K3 PN o - & e Y- L 4 e 2
varho) where Iy is the domein of the density functlon,

(% ]
Y
Ugp= JXT ()&
-0
and
<9
Crvoge 2orya
var(Iy)= §(X~Ug) “r(x)ax.
-Cig

the intervals Ii’ Ios caey In{where n ls some finite
numver). We will require that I. be 2 subset, but not
necessarily a proper subset, of I, for any j>k. We define

var{i;), for i=1,2, ..., ©n, as the variance of the random

nter-

[ ead

variable X when its distribution is truncated to the

val Ij, and U, as the mean of This truncated distribution.

Then
Sxenyax
4
U= i -
Sr{xiax
;
and -

\
Co(x)ax
~
£



This notation is explained grapnically by reference to
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Pigure 1. Illusiration showling & nested sequence of inter-
vals used for Trunceting a glven distridbution function.

For tae sake of simpliclty un has been set equal to
four in the case illustrated in Figure 1. However, this
number of intervels is sufficlent to zlve a complete illus-

manner in which the one inter=-

tration of the
val might be chosen
Notice that IL:,CIB

As iliustrated
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I0 is the domalin of

var(Io) i3 the Variance

by Figure 1, we

end points of

in relation to those of another.
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the density function £{X), so that
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of literature on this problem is inciuded here.

A tzble in an article presented by Clark(2) gives
very clear numerical cvidence of the mcnotonlicity of vari-
ance in oné varticular case. He presents a table of stan-
dard deviatlions Tox The Truncated svandard no 1 distrivu-
tion, including nointe of truncaticn. It is fromx

this table that the auvthor has Tasnicned the tables for

scme necessary and su

monotonic, Bowen was able to prove, for instance, that (i)



11

for any truncated probability distribution, an extension

of the interval of truncation chosen in such a way that

it does not change the mean of the truncated distributlon
necessarily causes an increase in the variance of the trun-
cated distribution; (ii1) for certain other distributions
which are differentiable over some known interval of trun-
cation, if the distance between the right-hand end point

of the interval and the mean is greater than the distance
between the left-hand end point of the interval and the
mean, the varlance 1s monotonlc for nested right-hand
extensions of the interval of truncation regardless of the
mean of the truncated distribution; and (iil) the varilance
is monotonic for nested left-hand extensions of the inter-
val of truncation regardless of the location of the mean

of the truncated distribution for certain other classes

of distributions. However, there were certain other phases
of the problem for which Bowen was unable to offer any type
of proof of this interesting property of the variance, For
instance, he was unable to prove monotonicity of variance
for nested intervals in a sequence of truncations which
traverses the mode of a unimodal distribution. Bowen indi-
cated that some numerical work in this area might be most
helpful.

The contents of this thesis are an extension of
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Bowen's work concerning monotonicity of variance for nested
intervals of truncation. The author seeks answers to ques-
tions which have practical significance but for which no
theory 1s presently available. A Monte Carlo procedure was
devised for collecting evidence regarding these questions,
and the collected evidence 1s presented.

In this thesis, several tables are presented which
provide evidence of the property of monotonic variance for
nested increasing intervals of truncation in the case of
univariate distributions. The Monte Carlo procedure 1is
used to determine a table of standard deviations for the
standard normal distribution with the same points of trun-
cation reported by Clark(2). Clark's table is given intact,
and it 1s used in comparison with the new table reported
here as a check on the Monte Carlo procedure used in the
present study.

Distributions other than the standard normal distribu-
tion are examined as well, namely, a Pearson U-shaped dis-
tribution and a bimodal distribution consisting of a mixture
of two Pearson distributions. Graphs of the U-shaped and
bimodal distributions are given.

A sectlion is given'in which dispersion for a bivarilate
case 1s examined in terms of the bivarlate normal distribu-

tion. An interesting trend among the covariance matrices



(S

i

ClIl.

Tnev

i

nerted

Lo
ot o
TR T

a

in the

ed

Serv

-~
o

ht

is ¢

]

nroce-~-

o

2y
o
4
“
[©)

or-d
S
Y=
i

ed

-\ ~ o~ oy
vresent

3

ord

7]
[

3

Jd
(O]
0
=3
g
o)
[}

A2
(O]
5
a3

S5
)
[0

i

the

X

in

o

DrogTan

-~

te compute

the

v o -,
arices oO:

a -
i€ Vaill

e
(&

P BN
Ud

-

ts

low charx

[N Y
N C [oniiatiad
HESIN S L0 R

fsar=%es
o+ il

TLO;

in

esented

- o
/] CL

the body

x
dla

e dis-

Yagl
FeiN

s well s so

ion a

3&CT

1

P
4

2

cussion o



14

IT. VMONTE CARLO PROCEDURES

Two alternatives appeared to be avallable for evaluation
of the required integrals. (refer again to p. 8). These two
alternatives were numerical integration and Monte Carlo pro-
cedures. The numerical integration would seem to be the more
accurate of the two alternatives. On the other hand, it
also requires much more computer time. For example, two
computer runs were made using programs written for each of
these procedures. The Monte Carlo procedure gave all of
the output data in 27 minutes of computer time while the
numerical integration procedure gave only 1/3 of the out-
put data in 21 minutes of computer time. The decision was
made to use the Monte Carlo procedure because it was by far
the more practical of the two alternatives. The Monte Car-
lo procedure used in this study utilized a large number of
computer generated, pseudorandom numbers which may be taken
to be a random sample from a specified truncated distribu-.-
tion. From each sample is obtained a large sample estimate
of the variance of the sampled truncated distribution. Then

these estimates are examined for evidence of monotonic in-
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creasing variance associated with nested increasing inter-
vals of truncation.

By using programs which generate pseudorandom numbers
from a normal distribution and a pfedescribed Pearson dis-
tribution available for the IBM 7040-1401 system at the
Virginia Polytechnic Institute Computing Center, we may
generate samples of sufficient size to glve the deslired
accuracy. The sequence of numbers is generated one at a
time by a completely predevised procedure which 1is, however,
so devised that no significant departure from randomness
may be detected by any reasonable statistical test. Numbers
generated in this manner are called pseudorandom numbers.
Through the use of various computer programs, sequences of
such numbers are transformed into pseudorandom numbers
which have any one of several probability distributions,
including the normal and Pearson family mentloned earliler.

A discussion of the normal generator and how it works
is given in an article by Marsaglia, MacLaren, and Bray(5).
The normal generator produces pseudorandom numbers at the
rate of 10,000-15,000 per second in the IBM 7040 and,
according to Marsaglia, MacLaren, and Bray(5, p. 4). the
method is

",..completely accurate in the sense that
in theory the procedure returns a random

variable with exactly the required distri-
bution."
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To generate the random variables with the required
Pearson type and mixture of Pearson type curves, a FORTRAN
subroutine, which was first developed through the combined
efforts of Cooper, Davis, and Dono{(3) of the IBM Scientific
Computational Department, 1s used. The subroutine was
later adapted to FORTRAN IV by Donald Gale Thomas(?7) for
use on the IBM 7040 at the Virgilinia Polytechnic Institute
Computing Center. The author refers the reader to Thomas'!
thesls for a detailled description of how the subroutine is
used and for a complete FORTRAN source list and flow chart
for the subroutine. The procedure generates up to 10,000
pseudorandom numbers per second from the required Pearson
distribution. This subroutine is very versatile in that
one is able to generate pseudorandom numbers for any type
of Pearson curve or mixture of Pearson curves that is
desired.

The standard normal, Pearson U=-shaped and bimodal
distributions are discussed in the following section. The
normal generator is used in the standard normal case and
Thomas'(7) subroutine is used to generate pseudorandom
numbers for the last two distributions. In a later section
a study of the bivariate normal distribution is presented.
Again the univariate normal geherator is used. A linear
transformation on the univariate normal pseudorandom numn-

bers yields the bivariate normal variables used in this

S tU.dy .
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III. THE UNIVARIATE CASE

Procedure

In the case of the univarlate distributions, a sample
size of 6,000 was chosen. This number was chosen because
it was found to be sufficiently large to provide accurate
results as compared to Clark's table of exact values, to be
discussed below, and it was not so large that it required
unreasonable amounts of calculations and computer time.

A sequential type of sampling procedure was used in the
program as follows. BRandom numbers were generated and el-.-
ther stored as part of the sample or discarded according to
whether of not they were within the limits of truncation
until the preassigned sample size was satisfled. Using the
same sample size to obtain all estimates suggests that the
estimates are determined with approximately equal precision.

Programs were written for further calculations involv-
ing the pseudorandom numbers generated by the procedures
referred to in the preceding section. The purpose of the
different FOBRTRAN programs used in this section is, of course,
to calculate the variance of a particular truncated univar-

iate distribution. Each program generates pseudorandom
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numbers from the required truncated distribution one at a
time until the prescribed sample size has been achieved.
Then the program calculates the required statistic and re-
cords the data along with the truncation points assoclated
wlth that particular truncated distribution. Although all
of these programs followed the same loglcal pattern, each
one had to be written separately because of the different
input and output requirements of each particular type of
distribution. Different methods of random number generation
also caused program variation. A flow chart and FORTRAN
source list of the program written for the Pearson U-shaped
distribution is given in the Appendix. There are no flow
charts or source lists for either the standard normal or
the bimodal case. They are not included because they are
very similar in loeic to the other programs.

The estimator S%= .flxi-f)z/(n-l) is used throughout,
where n=6,000 as mentio;:é earlier. Since the type of dis-
tribution to be sampled and consequently the mean for the
distribution were known from the beginning of the experiment,
one might wonder why the statistic é%(xi-Uo)z/n (where UO
is the mean for the distribution be;:; considered) was not
used. It would seem that this estimator would give a slight-
ly better estimate of the variance, However, we generally

. 4o not know the means of the truncated distributions for the

varlious points of truncation.
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The Standard Normal Distribution

The purpose of this section is to Justify the Monte
Carlo procedures used throughout this thesls., Using an
exact method of calculation, Clark(2) published a table of
standard deviations of the truncated standard normal dis=-
tribution for various points of truncation. The purpose
here is to compare with Clark's table a similar table ob-
tained by the Monte Carlo procedure.

Table 1 contains the standard deviations for the trun-
cated normal case, which were calculated by the Monte Carlo
procedure. Truncation polnts are arranged in the table
such that they are increasing from left to right and from
bottom to top. The left hand truncation points, denoted by
gt identify columns of the table, and the right hand trun-
cation points, denoted by "b", ldentlfy rows. The standard
deviation corresponding to a palilr of truncation polnts is
located at the lntersection of the column(a) ‘and row(b)
which describe the region of truncation. The range(+3 stan-
dard deviations) and spacing(l1/4 standard deviation) of the
truncation polnts was chosen to be the same as those in
Clark's table in order that the two tables might be compared.

Table 2 contains the standard deviations, as reported
by Clark(2), which are associated with the same truncation
poilnts llisted in Table 1. As the reader can see by compar-

ing the two tables, the corresponding entries in Table 1
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are very accurate 1in every case. In order that a comparison
between the two tables may be made more easily, a table of
. relative differences between each corresponding entry in
Table 1 and Table 2 1is given as Table 3, The entries for
Table 3 were computed by subtracting a particular entry in
Table 1 from the corresponding entry in Table 2 and dividing
by the latter. To convert the entries of Table 3 to per
cent, each one was multiplied by 100. The reader will no-
tice that the magnitude of the relative difference between
every corresponding entry in the two tables is less than 3%.
One may see By observing Tables 1 and 2 that the trend
of monotonicity of the standard deviation ls apparent in
each table. By moving uﬁ or to the left of any particular
entry 1ln elther table, one observes an increase in the stan-
dard deviation. Therefore, we conclude by the evlidence
presented that there 1is definitely monotonicity of wvariance

in the truncated standard normal case,

A Pearson U-=shaped Distribution

The next distribution to be studied is another of the
Pearson family of curves. This particular curve is of the
Pearson type I, subclass II classification. It is well
known that the Pearson type and shape of each class of

Pearson curve 1s determined by the values of 61 and 192 that
are chosen, where$1=¢(3)2/(/(2)3. 82=(/l4)/§/(2)2, and A, 1s
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the rth central moment. For the particular values of éﬁ:o
and62=1.75, the resulting Pearson type I curve is U~-shaped
and this curve will be studied in this section.

The U=shape of the distribution in this section is a
direct contrast to the bell shaped standard normal distri-
bution. It was for this reason that the U-shaped curve of
this section was chosen. Now that we have shown evidence
of the monotonic property of the variance for the bell
shaped standard normal distribution, we now will present
evidence of the monotonib property for a contrasting U«shap-
ed distribution.

In order that the reader may be more famliliar with the
shape, range, and general outward features of the distribu-
tion, a graph of the Pearson U-shaped curve is given in
FPigure 2.

Table 4 gives the variances associated with different
proints of truncation in the Pearson U-shaped curve. The
table is arranged as f9r the standard norﬁal case given
previously. The range on this U-shaped distribution was
-1.67 to +i.67 approximately; therefore the truncation
points all were restricted within this range. The distribu-
tion has mean equal to zero and variance equal to one. The
spacing on the truncation points is 1/2 its standard devia-
tion, which 1s somewhat larger than for the standard normal

case., Therefore, the number of combinations of upper and
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lower truncation points and hence the number of entries in
the table is reduced. However, every combination of the
upper and lower trunoa%ion points is represented in the
table, and the entries there definitely show conclusive
evidence of the monotonic property of the variance of a
truncated Pearson U-shaped‘distribution.

Here, for the case of a U~-shaped distribution which is
in direct contrast with the bell shaped normal curve, we
again see evlidence of monotonicity in the variance. The
reader will notice that if one starts from a particular
entry in the bady of Table 4 and moves to the left or in an
upward direction, the successive entries are monotonically
increasing. This numerical evidence thus indicates that
the variance is monotonically increasing for nested increas-

ing intervals of truncation in this U-shaped distribution.

A Bimodal Distribution

In order that the evidence presented in this section
might also include other than unimodal distributions, a
distribution mixture of 50% Pearson type I with mean equal
to zero and variance equal to one and 50% normal with mean
equal to five and varlance equal to one is presented. This
yields a bimodal distribution with one mode at approximately
one and another mode at approximately 5.3. The distribution

mixture has mean equal to 2.5 and variance equal to 7.25.
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Figure 3 is a graph of this bimodal distribution. The spac-
ing of 2.00 units between truncation points 1is used in this
case. This particular spacing was chosen so that none of
the points of truncation falls close to a mode. The trunca-
tion points were chosen in this manner so that the property
of monotonicity of the wvariance may be studied for nested
intervals of truncation traversing a mode of the distribu-
tion. This evidence complements the work done by Bowen(l)
for this class of distributions. As mentioned earlier,
Bowen was unable to prove that the variance was monotonic
for nested intervals of truncation traversing a mode of a
distribution. The evidence presented in Table 5 indicates
monotoniclity of the variance for nested intervals of trunca-
tion which traverse a mode,

Table 5 contains the variances for the truncated bimod-
al distributions. Again monotonicity of the variance is
evident. Notice that for regions of truncation traversing
the modes of this distribufion the monotonicity of the vari-
ance 1is still suggested by the evidence given in Table 5.
This numerical evidence 1s a good indication that the vari-
énce is monotonic for nested intervals of truncation in the

case of this univarlate bimodal distribution.
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IV. THE BIVARIATE CASE

Procedure

A study of the covariance matrices of a sequence of
truncated bivariate normal distributions isAreported in this
section. The general logic and procedure of the study are
similar to those of the studies conducted in the univariate
case. Again the normal generator avallable at the Virginia
Polytechnic Instifute Computing Center 1s used. After each
pair of standard normal univariate varlables has been gener-
ated, a transformation on the variables must be made so that
each palr together in vector form may be considered as one
bivariate normal observation vector with the required mean
and covariance matrix. The following is a description of
the transformation in matrix notation.

Let[}}%:] be a pair of generated standard normal random

_[*{]is distributed as N 0 10
variables. Then _}_(__@2] 2 l:o:' ' I'Q-ﬂ

Now for any nonsingular linear transformation of the
form T X=Z, it 1s known that Z has the bivariate normal
distribution with mean T E(X) and covariance matrix equal

to T T'=V,say. For our present purposes it is convenient
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t t
to let T= 1 124,
[6 tzzj.

Because E(X)=0, it follows that E(Z)=T E(X)=0, a null
vector, and thus Z is distributed as NZ(Q,E(g Z')), where
E(Z Z2')=E(T X X* T")=T (X X') T'=T[§ f] =T T°',

Then given a specific covariance matrix, V, we may solve
for the elements of T and thus find the linear transforma-

tion which ylields the required distribution. It follows

that
632~/ V11 - (v 202 vz
t21=0
t12=V12// V22
£22"V V22 |
where vll,vlz,vz2 are known and, since V is symmetric,
V217V12°
Then we may solve for Z since T X=Z or, in matrix
notation,
P11 Y2 [*1| %1
0 t22 X5 B Z5

which gives
21=011 %1 01 2%2
and 22=t22x2
where t11’t12’t22 are as desc;ibed above.
After these transformations have been made, we have a
bivariate normal vector with the required mean and covari-

ance structure.
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In the Dbivariate case, 1t seems reasonable that a
much larger sample size should be used than in the univari-
ate case, A sample size of 20,000 finally was selected
for the bivariate normal case, A much larger sample would
have been required to achieve the accuracy realized in the
univariate case; however, this sample size was found to be
sufficiently large to indicate behavior of the bivariate
system as reported below.

The estimator %Ei(z -zl)(zkj-Ek)/(n-l) for i,k=1,2
and where zi_ E{:zi ./n and z 2; z j/n, which is similar
to the estimator used in the univarlate case, 1s used to
get estimates of the elements of the covariance matrices.
For a description of the program used for this section, see
the flow chart and FORTRAN source list of the bivarlate
normal program in the Appendix of this thesis,

In Figure 4, different designs are given which show
the various ways in which the nested regions of truncation
in the bivariate case are expanded eventually to cover a
large portion under the bivariate normal surface. We will
require that the regions be nested rectangular regions with
sides parallel to the coordinate axes. These various
designs are given to enable one to visualize what area
under the bivariate normal surface in being considered when
reference 1is made to a certain number assoclated with one

of the rectangles in Figure 4. The numbering system for
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the rectangles has the following property:
The areas with larger numbers contain all areas with
. smaller numbers, each of which is rectangular in shape. As
an example, the area numbered as 4 is made up not only of
that area 1labeled 4 but also the areas numbered 3, 2, and 1.
Each region of truncation is expanded horizontally
along the z; axis by a length of 1/26{, where Giis the

standard deviation of z or it is expanded vertically

1!
along the z, axis by a length of 1/215, where (é is the
standard deviation of Z,, OT & combination of these. As in
the univariate normal case, the spacing on each variate 1Is

one-half its standard deviation.

The Bivariate Normal Distribution

The tables which follow contain the elements of the
covariance matrices of various truncated bivariate normal
distributions. Each set of elements contains the variances,

11 12’
bution. A number to the right of the set of elements will

v and v22, and the covariance,v of a truncated distri-

indicate which region of truncation 1s being considered.
Also, at the top of each table the particular design for
that table 1is identified.

If A and B are both 2x2 matrices (this clearly is the
case for the bivariate normal distribution), then A is said

to be "ordered" greater than B (denoted by A>B) if the
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diagonal elements of A-B and also the determinant of A-B
are greater than zero. An ordering of the matrices accord-
ing to the above definition will be given for each covar-
lance matrix assoclated with a gilven region of truncation
which contains another region, so that at a glance the
reader may determine how each matrix compares (in order) to
other matrices within any given table. Alternatively, we
could consider the order only of thne marginal variances of
the truncated bivariate normal distributions. Since the
evidence in the univariate normal case indicates that the
variance 1s monotonic for nested intervals of truncation,
we would expect the marginal variances in the bivariate
normal case to be monotonic if the bivariate distribution
were truncated only in one dimension. The evidence shows
further that the marginal variances (the diagonal elements
of the covariance matrix) were monotonic for nested regions
of truncation in the regpective variables, However, it
appears to be useful To conslider a stronger ordering in the
bivariate case in which not only the wvariances but also the
covariance are considered., Hence the ordering of positive
definite matrices as defined in the preceding paragraph,
which iIn turn implies that the marginal variances are mono=-
tonic for nested regions of truncation, but not conversely;
Table 6 gives the elements of the covariance matrices

for the case {=-.8 and Design 1 of Figure 4. Notice that



36

the line number in the table identifiles each matrix, and
this number corresponds to one of the areas described by
the appropriate design in Figure 4. The limits on the var-

iables z, and Zss which describe the region of truncation,

1
are given along with the ordering of the matrices., Tables
7 through 13 are tables of elements of the covariance ma-
tricés for different designs and correlation coefficients.
The covariance matrix for the bivarliate normal distri-

bution without truncation in the case of Tables 6 through

9 is

B 916 _.16
V=
-016 .2
which yields a coefficient of correlation equal to -.8.

The covariance matrix for the bivariate normal distribution

without truncation in the case of Tables 10 through 13 is
[16 .13
V=
+10 .2
which ylelds a coefficient of correlation equal to +.5.

To check the accuracy of the Monte Carlo procedure in
the bivariate normal case, two runs on the computer were
made in which the wvarlances and covariance, which make up
the elements of the covariance matrices given in the tables,

were calculated directly by a numerical integration proce-

dure. This procedure zlives exact results, but it is costly
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in computer time, as might be expected. For this reason
the numerical integration procedure was not used extensive-
1y in this study. However, it is worthwhile to note these
results and make comparisons between them and the results
obtained by the Monte Carlo procedure. Two such checks
were made for comparison with the Monte Carlo results. The
regions of fTruncation for the first and second checks, re-
spectively, are described by the followling limits on the

variables z1 and Zot

Check i1 Check #2

Each check was made with correlation coefficient equal to
-.8. The results by the numerical integration procedure

were as follows

Check Vi1 Vi2 Y
1 .00325295 -.00001387 .00520086
2 04966832 ~.00105016 - 04587998

The results for the same reglons of truncation obtained by

the Monte Carlo procedure were as follows:

Check v11 v, Voo
1 .00320280 -.00020397 .0051 5574
2 .04870672 -.01903192 .04330081

To help facilitate comparison of the results from the
two procedures, a listing of the absolute error between the -

two follows:
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Check v11 v12 v22
1 .00005015 .00019510 .00004512
2 . 00096160 .01798176 00357917

The absolute diffcrences in the results are not par-
ticularly small when comoared with the results attained in
the univariate normal case but, in order to achleve equiva=-
lent accuracy in the bivariate normal case, it seems logi-
cal to use a sample size which is on the order of the square
of the sample size used in the univariate normal case. The
resulting sample size of 36,000,000 would be unreasonably
large. In view of this fact, perhaps the accuracy of the
results is acceptable if we consider the limitation on the
sample size used., However, the sample size appears to have
been sufficiently large to reflect consistent trends in the
covariance matrices of the truncated distributions.

Now that some Justificatlion has been glven the proce-
dure used, we now will discuss the evidence given in the
tables, point out cerftaln trends, and draw conclusions from
the evidence presented. ‘

We see in this bivariate case that a successive nested
increase in the region of truncation does not necessarily
increase the order of the covariance matrix. In all of the
different tables presented, the regions of truncation are
nested increasing regions and, by observing the ordering of
the successive matiices, we see that an increase in the area

of the region of truncation sometimes does and sometimes
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does not cause the covariance matrix of the reglon after
expansion to be of greater order than that of the region
considered before expansion. Therefore, in contrast to
conclusions made in the uanivarlate case, no categorical
conclusions can be made in the bivariate normal case.
However, one important trend should be pointed out at this
time. If the reader will ﬁse the appropriate design for
the particular table being considered énd observe in what
manner the region of truncation is being expanded, it will
aid recognition of the following trend in the order of the
successive covariance matrices, If the region of trunca-
tion is expanded by extending the limits in one or both
directions on both variables z1 and Z, simultaneously, the
resulting covariance matrix in all cases is of greater
order than the covariance matrix of the region considered
previously. In other words, if one observes the design,
one will notice that if a "corner area" is added to the
region of truncation, as in Figure 5, then the covariance
matrix for area 2 (which, we recall, is made up of the
areas labeled 1 and 2) is of greater order than the covari-
ance matrix for area 1. This trend may be noted throughout
the tables given for the bivariate normal distribution.

In order that we may observe this trend, consider the
following specific cases in which Y"corner areas" are added

in expanding the limits of truncation. In particular,
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Figure 5. Example showing how a region of truncation may

be expanded by adding a '"corner areall,

consider Tables 9 and 13. Notice that these two tables
both refer to design M'andé?z—.8 and@ =+,5 for Table 9 and
Table 13, respectively. Design 4 is expanded in the manner
1llustrated by Figure 5. Observe that each successive line,
starting from the top of the table and moving down, cone-
tains a covariance matrix for successive "corner area'" ex-
pansions of the limits of truncation. Notice also that the
matrices represented in each successive line are of increas-
ing order when read from top to bottom. One may check the
order of two matrices (say line 1 and line 2) by comparing
the diagonal elements of the two matrices and observing the
sign of the determinant of the difference matrix (matrix 2
minus matrix 1). In this example, the diagonal elements of
matrix 2 are larger than those of matrix 1 and the determi-
nant of the difference matrix is greater than zero, which

can be verified By a few simple calculations. Thus, by the
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deflinition of ordering of matrices, matrix 2 is of greater
order than matrix 1. One may check any pailr of matrices in
Tables 9 and 13 by the procedure given above and verify

that the order of the matrices is increasing when the re-
gion of truncation is expanded by adding such "“corner areas'",

Other specific cases in which ""corner arcas" were
added appear in line 5 as compared to line 4 and line 4 as
compared to line 3 in Tables 7 and 11. Further examples
are line 2 as compared to line 1, line 4 as compared to
line 3, and line 6 as compared to line 5 in Tables 8 and 12.
All of these cases bear evidence that when a Y“corner area"
is used to expand the truncation limits, the covariance ma-
trix of the expanded region is of greater order than the
covariance matrix before expansion. Of course, all of these
remarks must be taken in the context of the increments by
which, in this study, any region is expanded in the direc-
tion of z, (1/2g1) and z, (1/265).

When the region of truncation is expanded on three sides
(which includes a "corner area" extension), for example, in
line 3 as compared to line 2 of Tables 6 and 10 and line 4
as compared to line 3 in Tables 7 and 11, the matrices are
of increasing order. This result is anticipated in light of
the remarks in the preceding paragraph.

Areas for further work in the blvariate and multivari-

ate cases are almost unlimited. One could conduct a study
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similar to the one done here for other bivariate or multi-
variate distributions. The multivariate normal distribu-
tion might be a likely candidate. There is still much work
to be done in the bivarizie normal case. One might consid-
er other values of the correlation coefficient. Perhaps a
bivariate normal distribution with a smaller negative cor-

relation might shed soms new light on the subject.



V. SUKMARY

The univariate distributions studied in this thesis
are the standard normal distribution, a Pearson type I,
U~-shaped distribution (@1=O.O and @é=1‘75)’ and a bimodal
distribution given by mixing 50% Pecarson type I distribu-
tion (é%=.5 and @2=3.4) and 507 normal distribution with
mean equal to five and variance equal to one. We have seen
that there is a definite monotonic -trend in the varlances
of truncated distributions in the case of nested intervals
of truncation. The evidence is given in Table 1 for the
standard normal case, Table 4 for the case of the Pearson
U-shaped distribution, and Table 5 for the bimodal case.
The trend can be seen clearly by observing these tables.

As for the bivariate case, the property of monotonicity
of variance 1is not alwsys evident; however, specific cases
were found for which (depending on how the region of trun-
cation was expanded) evidence of the monotonic property is
suggested in the sense that the positive definite covariance
matrices are ordered. However, the evidence in Tables 6
through 13 indicates that the marginal variances are mono-
tonically increasing for nested increasing regions of trun-
cation in the respective variables regardless of the manner

in which the region of truncation is expanded.
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COMMON/VPIOO1 /NUMBR
READ(5,100)NUMBR
100 FORMAT(1X,I12)
10 FORMAT(2F5.2)
J=1
99 READ(5,10)B,4A
G=0.
SX2=0,
IF(A.GE.B) GO TO 99
COMMON/Z2/T0NM(100)
IF(J.NE.1) GO TO 2
CALL PURGE2(1,5)
GO TO 6
CALL PURGE2(2,5)
NSAMP=0
NSAMP=NSAMP+100
DO 4 J1=1,100
IF(TOM(J1).LT.A) GO TO 11
IF(TOM(J1).GT.B) GO TO 11
GO TO 3
11 TOoM(J1)=0,
NSAMP=NSANP-1
G=G+TOM(J1)
SX2=SX2+TON(J1 ) #%2
IF(NSAMP.GT.6000) GO TO 8
CALL PURGE2(2, 5)
GO TO 7
8 SV2=SX2-G##%2/FLOAT(NSAMP)
NSAMP1=NSAMP-1
SV=SV2/FLOAT(NSAMP1)
IF(J.NE.1) GO TO §
WRITE(6,20)
20 FORMAT(35H VAR SANMPLE SIZE A B)
9 WRITE(6,30) SV,NSAMP,A,B
30 FORMAT(2X,1HO,F7.4,4X,1I5,4X,F5.2,4%X,F5.2)
WRITE(6,110)NUMBR
110 FORMAT(1X,I12)
END FILE 6
IF(sv) 97,1,1
1 J=2
GO TO 99
97 STOP
END

N 0N

&W

FORTRAN SOURCE LIST FOR PEARSON TYPE I U-SHAPED DISTRIBUTION
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DIMENSION S$(2),Z(2,1),V11R(100),V12R(100),V22R(100)
COMMON/VPI002/RANDONM
READ( 5,100)RANDOMN
FORMAT(1X,I12)
READ(5,20)V11,V12,V22
FORMAT(3F7.4)

V21=V12
T11=SQRT(V11-V21%%2/V22)
T12=V21/SQRT(V22)
T21=0.

T22=SQRT(V22)

J=1
READ(5,10)A1,A2,B1,B2
GZ1=0.

GZ2=0.

85z1=0,

S8Z2=0,.

GZ1z2=0,

NI2=20000

NI2S1=NI2=-1
FORMAT(4F5,.2)

K=0

I=0

K=K+1

S({1)=RNOR(X)
S(2)=RNOR(X)
Z(2,L)=T22%S(2)
I7((z(2,L).,LT.B1).0R.(Z(2,L).GT.B2)) GO TO 3
GO TO 7

S(2)=RNOR(X)

GO TO 4 ‘
Z(1,L)=T11%S(1)+T12%3(

2)
IF((z(t,L).LT.A1).0R.(2Z(1,L).GT.A2)) GO TO 6
GO T0 5
S{1)=RNOR(X)

GO TC 7°
GZ1=GZ1=Z(1,L)

GZ2=GZ2=2Z(2,L)
GZ1Z2=GZ122+7Z(1,L}*z(2,L)

S8Z1=SSZ1+Z(1,L)*%2

S8Z2=887Z2+Z(2,L)*%2

IF(K.NE.NI2) GO TO 25
V11R(J)=(SSZ21-GZ1#%2/FLOAT(NI2) ) /FLOAT(NI2S1)
V12R(J)=(GZ122-GZ1*CGZ2/FLOAT(NI2) ) /FLOAT(NI2S1)
V22R(J)=(8822-GZ2%%2/FLOAT(NIZ2))/FLOAT(NI2S1)

FORTRAN SOURCE LIST FOR BIVARIATE NORMAL DISTRIBUTION
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IF{(J.NE.1) GO TO 9
WRITE(6,90)V1i1,Vi2,V22
90 FORMAT(21H COVARIANCE FATRIX IS,3F7.4,39H FOR 11,12,
1AND 22 ELEMENTS RESPECTFULLY)
WRITE(6,30)
30 FORMAT§62H Vi1 Vi2 V22 Al A2 Bl
1 B2
9 WRIT=(6,40)Vi1R(J),V12R(J),V22R(J),AL,A2,B1,B2
40 FORMAT(1HO,3F12.8,1X,F5.2,1X,F5.2,1X,F5.2,1X,F5.2)
R=V12R(J)/SQRT(V1LiR(J)*V22R(J))
R2=R%%*2
WRITE(6,80)R2,R
80 FORMAT(9H RSQUARE=,
IF(J.2Q.1) GO TO 13
DIAG1=V11R(J)=-V1i1R( )
DIAG2=V22R(J)-V22R(J-1)
DET=DIAG1%DIAG2-(Vi2R{J
IF(DIAG1.GT.0..AND.DIAG
WRITE (6, 50)
50 FORMAT(120H
1 DIAG1 DIAG2 DET VR2-VR1 IS NOT
1POS.DEF.)
. GO TO 15
12 WRITE(6,60)
60 FORMAT(116H
1 DIAG1 DIAG2 DET VR2~-VR1 IS
1POS.DEF.)
15 WRITE(6,70) DIAG1,DIAG2,DET
70 FORMAT(1H.,63X,3F12.8)
WRIT=(6,110)RANDONM
110 FORMAT(1X,I12)
END FILE 6
13 J=J+1
GO TO 11
END

F12.8,3H R=,F12.8)
J=1
J=-1
(J)=V1i2R(J=-1) )2

2.GT.0..AND.DET.GT.0.) GO TO 12

FORTRAN SOURCE LIST FCR ZIVARIATE NORMAL DISTRIBUTION, CONT'D



VARIANCES OF SOME TRUNCATED DISTRIBUTIONS
FOR VARIOUS POINTS OF TRUNCATION
by

George Carlton Hayles

ABSTRACT

The purpose of this study 1s to examine varlances 1n
the case of distributions obtained by truncating a glven
distribution at various points. 1In particular, the trun-
cated distributions are restricted to nested increasing
intervals, and the question is posed whether the varlances
of these distributions are monotonically increasing. The
answer to this question 1s relevant to the use of condi-
tional information for purposes of estimation and prediction.

Several tables are presented in the thesls which pro-
vide evidence of the property of monotonic variance for
nested increasing intervals of truncation in the case of
univariate distributions, The Monte Carlo procedure 1is
used to determine a table of standard deviations for the
standard normal distribution with the same points of trun-
cation reported by Clark(2). Clark's table is given intact,
and it 1s used in comparison with the new table reported

here as a check on the Monte Carlo procedure used in the

present study.



Distributions other than the standard normal distribu-
tion are examined as well, namely, a Pearson U-shaped dis=-
tribution and a bimodal distribution consisting of a mix-
ture of two Pearson distributions. Graphs of the U-shaped
and bimodal distributions are given.

A section is given in which dispersion for a bivarlate
case is examined in terms of the bivariate normal distribu-
tion. An interesting trend among the covariance matrices
is observed in the data reported in that section.

A separate computer program for each type of distribu-
tion was written and used to calculate the varlances of the
truncated distributions. FORTRAN programs and flow charts
are presented in the Appendix. Explanation of the tables
and procedures used to calculate the entries in the body of
each table are given in each section as well as some dis-

cussion of the results presented.



