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(ABSTRACT) 

A transformation between minimum dimension adjoint variables and redundant adjoint 

variables is derived in this dissertation. The transformation is then applied between the adjoint 

variables associated with Cartesian position and velocity vectors and a set of redundant adjoint 

variables associated with certain regularized variables (Schumacher variables). This 

transformation proves to be very beneficial when it is applied to minimum-fuel space rendezvous 

and intercept problems. It facilitates using attributes from the two systems simultaneously; a 

new necessary condition in Schumacher adjoints is derived in this dissertation, and this together 

with classical necessary conditions for fuel-optimal transfer (existing in the position and velocity 

space) leads to a numerical algorithm which seems to be quite robust in finding candidate 

optimal control solutions for space transfer problems.
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1.0 INTRODUCTION 

The problem of finding the sequence of propulsive burns of a space vehicle in order to 

transfer it from one orbit to another with the minimum amount of fuel expended, to either 

intercept the second orbit or to rendezvous with it, has been investigated for some time. In fact, 

Hohmann, after whom the so-called Hohmann transfer is named, published his results on 

optimum time-open circular orbit to circular orbit transfer in 192577. Much of the pioneering 

work in the search for optimal transfers between more general orbital configurations and related 

theory was accomplished by Lawden beginning in the 1950’s28:29;30_ 

Several authors have presented excellent histories of this endeavor to find minimum fuel 

trajectories. Edelbaum!!, for example, provides an interesting and very thorough review of the 

early history of fuel-optimal trajectory analysis. Many of the classical and interesting traits of 

fuel optimal rendezvous problems, especially for the open time case (no final time specified for 

the maneuvers), are found in papers by Edelbaum?! and by Gobetz and Doll!”. While not 

specifically a historical treatise, Marec®” presents a broad treatment of optimal space flight 

transfer, with historical references interwoven with the technical derivations. Vasudevan*! also 

presents a broad, as well as more recent, review of fuel-optimal space trajectory theory. Most 

relevant to the approach of this current dissertation are the works in the genre of 

Lawden2®:2930 Lion and Handelsmann*’, Glandorf!4")5, Prussing and colleagues, ’*41*42»4;54 

23,24 50,51,52 Jezewski, and Vasudevan and Lutze. 

The main feature these works have in common with the current research is the use of 

primer vector theory (the primer vector is the vector adjoint to velocity) and related notions for 

an impulsive approximation to the thrusting arcs environment. As far as the impulsive thrust 
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approximation, Robbins‘? discusses in depth the accuracy of such an approximation. In a 

simplified summary, as long as the thrusting arcs are short in duration as compared with the 

coasting arcs, then the approximation is good. As far as primer vector theory is concerned, the 

interesting feature of the papers listed above which are most related to this current work is that 

they use the primer vector from optimal control theory (associated with finite burn time 

thrusting histories) in an impulsive approximation environment. Essentially, the optimal 

control theory is applied to the finite burn case, then taken to the limit as the thrust magnitude 

becomes infinite over a zero time span while holding the total impulse fixed. 

The works of Prussing, Chiu, and Wellnitz use the theory of Lion and Handelsmann 

directly in order to update the coasting and thrusting histories of the transfer trajectory in an 

iterative process. That is, Lion and Handelsmann extended the primer vector theory of Lawden 

to be defined on non-optimal trajectories (as well as on optimal trajectories as Lawden defined 

it), then show, when the trajectory is non-optimal (based on necessary conditions on the primer 

vector), how the trajectories can be modified to reduce the amount of fuel required to do the 

transfer. 

Vasudevan and Lutze®°:>1:52 take a different approach to the same problem. They solve 

for candidate optimal solutions using a Quasi-Newton parameter optimization routine with 

projected constraints in order to find the lowest characteristic velocity (the total sum of the 

incremental velocities). The number of burns to use in order to accomplish the transfer is 

assumed a priori in this approach. Then, after the fact, primer vector theory is invoked to check 

that the correct number of burns was used. If the primer vector magnitude is ever greater than 

one on the transfer trajectory history, then an additional burn is assumed and the solution 

process is repeated. This process is continued until all necessary conditions, those of constrained 

parameter optimization theory and those of optimal control theory, are satisfied. 

INTRODUCTION 2



This current research project similarly investigates the application of optimal control 

theory on trajectories taken in the limit as the finite burn rocket thrusts approach instantaneous 

velocity changes, for both intercept and rendezvous problems. These instantaneous impulse 

trajectories are then converted to corresponding finite thrust trajectories. The solution process 

itself, however, is completely different from those mentioned above. The chief thing that is new 

in this project is that the adjoint variables corresponding to position and velocity elements of 

the space vehicle(s) are transformed to a redundant set of adjoint variables, in order to check 

necessary conditions of optimal control theory. These variables are adjoint to a set of 

regularized state variables whose general class is due to Burdet®, and whose specific 

definition/derivation is due to Schumacher*©*4”"48 (for convenience, these coordinates will be 

called “Schumacher coordinates” or “Schumacher variables” in this dissertation). 

This transformation of the adjoint variables to a set of redundant adjoint variables is 

the essential feature of the new algorithm proposed in this research. Just as certain problems in 

linear algebra and in calculus can be solved more readily in some transformed space (for 

example, integrating some function over the volume of a sphere in spherical coordinates versus 

in Cartesian coordinates), while being difficult at best in the original space, so also certain 

problems associated with the adjoint variables can be solved more readily in a transformed 

space. In particular, the adjoint variables associated with Schumacher coordinates have many 

nice features not found in those associated with Tf and V. 

One such feature is the fact that the Schumacher adjoint variables for the time open 

transfer problem are all simple harmonic oscillators in the change-in-true-anomaly independent 

variable, 7. Thus, calculating primer vector histories in order to check the classical necessary 

conditions is a very simple task in the transformed adjoint space. Indeed, they can be calculated 

readily on a hand-held calculator. Another important feature, to be brought out in chapter 4, is 
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that a new necessary condition for the time open case is derived from the Schumacher adjoint 

variables. This feature does not exist, at least not in recognizable form, in the adjoint variables 

of fF and V. 

It is important to point out, in this context of transformed adjoint variables, that this 

transformation, at least in some sense, is not directly tied to the transformation of the state 

variables. That is, for many purposes, the two sets of variables can be treated as independent. 

It is true that the state variables can be transformed first, then the adjoint variables can be 

computed through the derivatives of the Hamiltonian directly in the usual manner. However, 

nothing prevents the state calculations from being done in one set of variables (say, Cartesian 

position and velocity, or classical orbital elements, or canonical variables, or whatever variables 

happen to be convenient for the problem at hand), while the adjoint variables are transformed 

to another set (again convenient for the problem at hand). As one example, alluded to in the 

preceding paragraph, the state of the space vehicle could be handled in fF and V space, while the 

adjoint variables are transformed to those associated with Schumacher coordinates for 

propagation along the coasting arc, then transformed back so that the primer vector (the adjoint 

vector associated with velocity, ¥) can be aligned with the velocity vector change (AV). 

This idea of independently transforming state and adjoint variables is actually a natural 

one, in light of the canonical transformation theory of classical mechanics./°*27 In that theory, 

as well as in Hamiltonian theory, the generalized coordinates and the generalized momenta are 

treated as independent quantities. Then, lumping the concepts of various theories under one 

simplified idea, a transformation is sought which facilitates the solution process of the particular 

problem. Indeed, the problem becomes one of solving for a transformation! The extension of 

this to the theory of optimal control is natural because optimal control theory, and its notation, 

stem from Hamiltonian theory in classical mechanics. The state variables of the optimal control 
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problem are analogous to generalized coordinates of classical mechanics (indeed, they are often, 

though not always, generalized coordinates). Similarly, the adjoint variables are analogous to 

the generalized momenta. The integrand of an integral cost function corresponds to the 

Lagrangian. Finally, the Hamiltonian (sometimes called the pseudo-Hamiltonian) of optimal 

35 and control theory is analogous to the Hamiltonian of classical mechanics. Marec 

Komatsuzaki2’ discuss some applications of canonical transformation theory as applied to 

optimal control problems. 

This current project concentrates this idea of independent transformations of the state 

and adjoint variables on one particular transformation, that between Cartesian position and 

velocity and the redundant Schumacher coordinates. The equations for transformations between 

sets of adjoint variables will be developed more generally, then will be specifically applied to 

that one transformation. The relationship between the Schumacher adjoint variables and the 

primer vector will be derived. Then, from this applied theory, an algorithm for finding solutions 

to various instantaneous impulse intercept and rendezvous problems will be proposed. These 

will be supplemented with a conversion from instantaneous impulse burn solutions to finite 

thrust burn solutions, again with the adjoint transformation being an integral part of the 

conversion. 

This algorithm, as mentioned previously, is quite different in nature from previously 

existing algorithms. While all of the algorithms due to other researchers mentioned above in 

some form or another seek to minimize the characteristic velocity of the interceptor trajectory, 

the algorithm proposed in this work does not use the characteristic velocity at all. At the 

various burns, the change in velocity is used, with the aid of classical primer vector theory, to 

determine the adjoint variables on the impulsive burn trajectory. Then, these adjoint variables 

along with the state variables are used to check various necessary conditions (some old and some 
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new) of optimal control theory. The resulting iteration process terminates when all the 

necessary conditions are satisfied. The characteristic velocity is never used. 

In this sense, the current algorithm for solving impulsive burn trajectories is more like 

the common numerical boundary value solution methods used for various optimal control 

problems than it is to the other impulsive burn solution algorithms mentioned above. In these 

boundary value solution methods, the boundary value problem in the state and adjoint 

differential equations resulting from the application of the Maximum Principle (and the 

associated transversality conditions on the adjoint variables) is solved by a shooting method. 

The initial and/or final state and adjoint variables are iterated upon until a trajectory is 

obtained which satisfies all the necessary conditions (namely, maximization of the Hamiltonian, 

transversality of the adjoint variables, and state boundary conditions) are satisfied. The 

resulting trajectory is termed an extremal (i.e., candidate optimum solution), since the necessary 

conditions are not sufficient conditions. If it is known that an optimal control exists, and if all 

the extremals can be determined, then the extremal control yielding the lowest cost is indeed the 

optimal control. More commonly, it cannot be determined for a certainty that all extremals are 

found, but the best extremals are considered optimal for engineering purposes until evidence to 

the contrary arises. 

The point is that the boundary value solution process does not directly seek to minimize 

the cost, but merely to satisfy the optimal control necessary conditions as applied to cost 

function and differential equations of the problem. As was just mentioned, this is also what is 

done for impulsive trajectories in this dissertation. It is of interest to note that optimal control 

numerical methods do exist which seek to directly minimize the cost through gradient descent 

methods in function spaces (see for example Kelley?®, and Chapter 7 of Bryson and Ho‘). These 

methods are called direct methods, while those which seek to satisfy the necessary conditions 
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without direct use of the cost function in the numerical process are called indirect methods. The 

boundary value shooting method variety of indirect methods, however, has attained much 

success in solving many optimal control problems. It is believed that the loosely analogous 

indirect techniques used in this research are similarly very competitive for finding impulsive 

thrust space transfer extremals. 

Furthermore, since the adjoint variables along the extremal are determined as an 

integral part of the solution process, the converged impulsive burn extremal, together with the 

state variables, can be fed as initial conditions into a finite burn multiple shooting algorithm of 

the genre just mentioned. This has proven to be very successful, with the resulting shooting 

method algorithm typically converging in just a few steps using these initial conditions. 
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2.0 ADJOINT VARIABLE TRANSFORMATIONS 

2.1 Introduction 

The heart of the findings of this project is the use of adjoint variable transformations to 

obtain some new information, some supplementary information, and some workload-reducing 

information about the optimal control problem at hand in order to facilitate finding solutions. 

More specifically, the transformations are from the adjoint variables associated with Cartesian 

position and velocity state variables (F and V) to a set of redundant adjoint variables associated 

with redundant, regularized Schumacher variables. 

As a first step toward developing the redundant adjoint variable transformation, the 

adjoint variable transformation to a non-redundant system will be derived. That is what is 

done in this chapter. 

2.2 General Square Adjoint Variable Transformations 
  

In what follows, it is tacitly assumed throughout that the form of the optimal control 

cost function is in the Mayer form; that is, the cost is merely a function of the state at the end 

time, so there is no integral cost functional. The reason for this assumption is that the 

definitions for the variational differential equations and the adjoint differential equations will be 

taken directly from the theory of differential equations; an integral cost requires a slight 

modification of the definition of the adjoint variables. (Indeed, the transformations described 
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are not limited to optimal trajectories, nor even to an optimal control problem statement; they 

are true for any set of differential equations that are in the class described.) At the end of the 

derivation of the transformation, it will then be shown how to modify the results when an 

integral cost occurs in a problem. 

Define two systems of equations, each with a different independent variable (t and s): 

x,(t) = f,( x,(t), u,(t) ) 2.2.1 

and 

X9'(s) = fo( x9(s), ua(s) ). 2.2.2 

The derivatives above are defined as ( ) 4 di ) and () cs a ). Also, x, € #7, x, € RK", 

u, € R™, and u, € K™, so that f,: Rx RMR" and f,: Kx RNR". It is assumed that 

(hy): ROxR 4 RExXK 2.2.3 

is a unique transformation from (x, ,t) to (x,, s), with 

Oh 2.2.4 det ( Ox, ) # 0 2. 

(at least not at any point of interest). In this, and in all that follows in this section, it is tacitly 

assumed that if t and s appear in related equations (as Eqs. 2.2.1 and 2.2.2), or in the same 

equation, then they are just transformed variations of one another at the same instant in time 

(or whatever the independent variable may be), unless stated otherwise. Next, consider a point 

X,(t) arbitrarily close to x,(t); that is, it is on a neighboring trajectory at the same time. Then, 
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(8) = x26) + FECA) + OCHO) ID 2.2.5 

(with s = y(x,(t),t)), where O(€) (read “order of €” — i.e., a function of higher order terms) is 

such that 

= 0. 2.2.6   

Oh (Note that in the term —— above, and throughout this dissertation, the convention used for 
Ox, 

partial derivatives with respect to vectors is to expand the gradient row-wise; that is, for 

Oh _[{ Oh Gh dh example, Ox, ax! ax? yh   h) The difference between the point and its neighbor (for 

both the x, space and the x, space) can also be written with the common 6 difference operator, 

so that Eq. 2.2.5 looks like 

6x,(s) = Snot) + O(|| 6x,(t) ||). 2.2.7 

Next, in order to see how the adjoint variables of one system are transformed to those of 

the other system, the variational equations of differential equations theory?! are needed. The 

variational differential equations for the two spaces, x, and x., are 

Of. 
n4(t) = ax, (4), 2.2.8 

and 

of 
ni (s) = Fx, 72(9)- 2.2.9 
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The variational equations are linearized versions of the original state variable differential 

equations. Their solutions, viz. the fundamental solution matrices, transfer hyperplanes tangent 

to the trajectory from time (or whatever the independent variable may be) t, to another time t, 

(see Pontryagin?” and Leitmann?? for detailed descriptions of the variational equations). The 

solutions for these variational differential equations can be written 

m(t) = ,(t, to) m;(to) 2.2.10 

and 

No(s) = (8,89) 79(89)- 2.2.11 

Now, Pontryagin®” shows that, using the variational equation solutions, 

X(t) = x,(t) + €n,(t) + O,(t,€) 2.2.12 

and 

X,(s) = xp(s) + €nQ(s) + O(s,€). 2.2.13 

That is, the variational equations are basically derivatives of the state with respect to a change 

in initial conditions. Here, O,(t,e) is a uniform function of t which is of order e, and 

analogously for O,(s,¢€). Subtracting x,(t) from both sides of Eq. 2.2.12, it can be written 

6x,(t) = e€n,(t) + O,(t,€). 2.2.14 

Similarly, from Eq. 2.2.13, 
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6x,(s) = €n,(s) + 0,(s,€). 2.2.15 

But, 6x,(s) is also equal to the right hand side of Eq. 2.2.7. Substituting the right hand side of 

Eq. 2.2.14 into 2.2.7, 

éxp(s) = gyrlem(t) + O(te)] + O(en,+Oy(b6). 2.2.16 

Equating the right hand sides of Eqs. 2.2.15 and 2.2.16, 

eng(s) + On{e.¢) = Blem(t) + O,(t.9] + (em +04(t6). 2.2.17 

There are three distinct “order of” functions in this equation, all of which have the property 

described in Eq. 2.2.6. That is, they are higher order terms in ¢, so that dividing through by e 

and letting «—0 will rid the equation of these terms. O,(t,¢) and O,(t,¢) have this property by 

O(en, +0; (t,€)) 
construction. It must yet be shown that —0 as «0. To this end, note that 

  

  

|] O(n, +0, (t,€)) |] || O(eny +O, (t,€)) |] |] ey +O (t,€)) || 9.9.18 
é€ —_ € oho 

[| ny +O, (t,€)) || 

|| O(en, +0, (t,€)) || € |] 7, [Il + l 0,(t,€)) || 2.9.19 

Il em +O, (ty) Il 

where the inequality holds through the triangle inequality of norms. Now, the limit of the 

product of two terms is the product of the limits of those terms. The left term on the right side 

of the inequality — 0, and the right term approaches || 1, ||. Hence, the limit of the right side 

Olen, +O; (t,€)) of the inequality is zero as €—0, sc that by the sandwich theorem . —0 as «0. 
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Consequently, dividing both sides of Eq. 2.2.17 by ¢, and taking the limit as e—0, 

  

Oh n(s) = ——n,(t). 2.2.20 (0) = Bn) 

Oh(x, (t 
Or, if it is understood that the notation Oxy more rigorously means dh(xy(t)) then this equation 

Ox, Ox, (t) 

can be written 

OXo 
No(s) = z— 7,(t). 2.2.21 6) = 5 ml) 

      

Thus, the transformation between the two sets of variational equations is effected by the pre- 

multiplication by the Jacobian of the transformation of the state variables. 

Substituting Eqs. 2.2.10 and 2.2.11 (the solutions of 7,(t) and 7,(s) in terms of 

transition matrices) into the previous equation will yield the transformation between the 

transition matrices of these variational equations. That is, 

OX. 
(8,89) 9(So) = Ox, ;(t, to) m (to). 2.2.22 

But, evaluating the variational transformation at ty gives 

  

—1 

(to) = (seats ACE 2.2.23 

so that substituting the right hand side of this for n,(tg) where it occurs on the right side of the 

equals sign in the previous equation, 
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-1 
Xo(s Oxo(s 

%,(s,89) 7o(Sp) = (528) ©,(t, ty) (Fes 1(Sp) - 2.2.24 

Since (89) is arbitrary in this equation (i.e., it must hold for all 79(s9) € RK"), then 

  

—I 

®.,(8,89) = fa) #,(t, tg) (ss) 2.2.25 

      

is the transformation from the first to the second transition matrix. This has the appearance of 

a similarity transformation, except that since the transformation matrix is time varying, the 

pre-multiplication matrix is evaluated at t (thinking of “s” as “s(t)”), while the post- 

multiplication matrix is evaluated at to. 

Next, turning to a discussion of how this transformation affects the adjoint variables, 

the adjoint differential equations for the two systems are 

T 
; of | 
\,(t) = (} dj (t) 2.2.26 

and 
T 

of. 
M4 (s) = (e2) A2(s) 5 2.2.27 

with solutions 

A(t) = W(t, ty) Ay(to) 2.2.28 

and 

Q(8) = W(s,89) A9(8p)- 2.2.29 
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V,(t, tg) and W,(s,s) are transition matrices for the adjoint variables. Now, a fact to be used 

subsequently is that any adjoint transition matrix W is related to the associated variational 

transition matrix ® by 

v= oT, 

(where 6-7 means (o1)7 (®7)1). To see this, note that 

AT(t)n(t) = (Vito) Mtg) Bltsto) nl to) 

= A" (to) WT (t,t) B(t,t) (to). 

But, 

A*(t) n(t) = Alto) n(to) 

because 

AMT 4 dT = -A\TAN + ATAD = 0 al 
(where “A” is shorthand for of ). So 

Ox 

AT (to) nto) = AT (to) W7 (tty) P(t,ty) n(ty)- 
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2.2.31 

2.2.32 

2.2.33 

2.2.34 

2.2.35 
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Since this equation must hold for all A(tg) and n(tg), a set of n independent A vectors and a 

another set of n independent » vectors can be used to build nonsingular matrices A and Y, 

respectively, so that applying this previous equation to the whole set yields 

AT (to) Y(to) = A? (to) ¥7(t,to) B(t,to) ¥(to). 

Pre-multiplying both sides by AT and post-multiplying by yt gives 

WT (t,tg) B(t,ts) = I 

for all t. Or, 

Wt,t>) = o7. 

Now, using this fact, first define 

A { 9xa(s) 

as (525) 
  

and 

A [ 9X29) 
Ao = (sea) 

for simplicity of notation. Also, let @, mean @,(t,t,), and similarly for ®,. 

2.2.36 

2.2.37 

2.2.38 

2.2.39 

2.2.40 

So applying 

fundamental linear algebra rules of multiplication, transposition, and inversion, the following 

steps result: 
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®, = AG, A)! 

oF = Atop at 

67 = Ato Tal 

Using Eq. 2.2.30 to relate the previous equation to the adjoint transition matrices, 

-T T 

For clarity, once again explicitly denoting the independent variables in each matrix gives 

  

  

Ox,(s) 7 OX5(Sp) 7 
W2(s,s9) = fq) W,(t, ty) (sz , 

      

to . 0x,(s) 
Pre-multiplying both sides b 2 plying y (F2   

T 

and post-multiplying both sides by (tg) gives 

  

T T 
Ox,(s ax.(s 

(S25) ¥o(S:8o) Ar(So) = Fi (ts to) (; ea) A2(Sp) - 
Xy 

T T 
ax.(s Ox,(s 
(G2) i,(s) = V(t, to) (ses) A4(SQ) . 
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2.2.41 

2.2.42 

2.2.43 

2.2.44 

2.2.45 

2.2.46 

2.2.47 
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Defining a new variable 

T 

A [{ 9x2(s) q(t) = (Fz A,(s), 2.2.48 

the previous equation can be written 

q(t) = W,(t, tg) a(tg). 2.2.49 

So, V,(t,tg) maps all q(t,) to q(t), so it is a transition matrix for the function q(t). That is, 

q(t) has the same transition matrix as \,(t); so, q(t) is clearly adjoint to n,(t), and thus is 

adjoint to x,(t). 

But, is q(t) = A,(t)? This, of course, depends what is meant by ,(t). It is clear by the 

development above that the variational variables n2(s) transform to ,(t); what is required is 

that the transformed adjoint vector q(t) have the same exact relationship to 7,(t) as A,(s) has to 

72(s). Recall from Eq. 2.2.33 that 

AP (s)no(s) = c¢ (a constant for all s). 2.2.50 

This is used, for example, in the development of the Maximum Principle as done by 

Leitmann?? ; since a set of n independent n vectors in the hyperplane tangent to the limiting 

surface of the optimal trajectory will remain in the tangent hyperplane at a later point in time 

as propagated by Eq. 2.2.10 or 2.2.11, a set of adjoint vectors orthogonal to the hyperplane will 

remain orthogonal to the hyperplane as propagated in time (i.e., My = 0 in that case). In 
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general, the transfer matrix of the variational equations transforms tangent hyperplanes to a 

given surface of motion (for whatever type of motion is desired, whether for optimal control, or 

whether considering some other variation in initial conditions of the state) to tangent 

hyperplanes at another time, since the variational equations are derivatives of the state with 

respect to changes in initial conditions®”. This means that the desire to have adjoint and 

variational equations in each space to have the same relationship to each other requires that if 

az (s)n2(s) =c, then in the transformed space AF (t)n,(t) =c (i.e., they have the same value of 

the constant value c). 

In this vein, consider a matrix A,(s) of n independent adjoint vectors, where these 

vectors are the columns of the matrix. Similarly, in the other system, denote the analogous 

matrix A,(t). Let matrices of n independent variational vectors in each system similarly be 

denoted H,(s) and H,(t). Finally, let the transformed set of vectors, q(t), be denoted Q(t). 

Then consider 

ATH, = C. 2.2.51 

C is a matrix of constant values resulting from the inner product of every adjoint vector with 

every variational vector; it is the matrix of “c” values of Eq. 2.2.50. Then, of course, 

Oxy \ (Ox, \ 2 
T 2 2 — AJ (22) (=) |e =C, 2.2.52 

since the term in brackets is equal to the identity matrix. Rearranging, this becomes 

T 

OX mn Oxy" H,=C 2.2.53 Ox, 2 Ox, 27 Je okte 
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But, by Eqs. 2.2.21 and 2.2.49 this is 

QTH, = C. 2.2.54 

So, this says that the transformed quantities, Q, indeed hold the unique relationship to H, as A, 

does to Hy. Hence, 

Q(t) = A,(t) 2.2.55 

as desired. So the transformation of the adjoint variables can be written without qualification 

as 

  
T 

A(t) = tq) A,(s) - 2.2.56 
      

As a result of the fact that this transformation uniquely preserves the orientation of the 

adjoint vectors to the variational vectors for the two spaces, any optimal control satisfying the 

the Maximum Principle necessary condition in one space (along with the appropriate optimal 

state and adjoint values), will satisfy it with respect to the transformed state and adjoint values. 

In the same way, if the transversality conditions are satisfied in one space, they will be satisfied 

in the other space (again, because the adjoint and variational vectors in one space maintain the 

same orientation to each other in the other space -- the matrix of constants C is the same in 

both systems). Not only that, but preservation of C in the transformation means that the 
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specific orientation of the adjoint vectors within the subspace of vectors which satisfy 

transversality will be the same in both systems. This means that a control and adjoint response 

synthesized from the Maximum Principle in one system will have the exact same behavior in the 

transformed system. For example, if only one choice of adjoint vectors, within the subspace of 

all vectors which satisfy transversality, will hit the desired final state in one class of optimal 

control problem, then the transformed adjoint vector will do the same. 

To confirm the specific property that transversality is maintained, consider the specific 

case where either the initial or final points (either of which is being considered) of the x, 

trajectory must lie on the intersection of p smooth surfaces, o,(x,) = 0; that is, O71: RB RP are 

C! functions (see Leitmann®? pages 115 and 140). Then, the surfaces in x. space can be 

determined by o,(x.) = 0 ,(x,(X)). Transversality requirements in either system consist of the 

requirement that 7 at that endpoint (either initial or final, whichever is being considered) must 

satisfy 

Gry — 0, 2.2.57 

and the requirement that \ there must be orthogonal to 7. (That is, A must be orthogonal to 

the (n—p)-dimension hyperplane that is tangent the the (n—p)-dimensional manifold defined by 

o -- see pp. 118-119 of Leitmann®? and p. 310 of Lee and Markus"!.) A orthogonal to n, 

Oc. AT =0, means that A must lie in the span of the rows of =-; i.e., 
Ox 

T 

A = (32) a, forsome ae RP. 2.2.58 

To evaluate these conditions, the following partial derivative is needed: 
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do, _ de, Ox, 

1 

_ 90; | Ox, 2.2.60 
Ox, |Ox,| ~ 

Hence, the condition 

0e4 
Ox, No 0 2.2.61 

becomes 

Ac, [Axo] 
7/1 |7*2 _ 2. 

But, the multiplication of the last two terms in this equation is just 7, by Eq. 2.2.21. This then 

implies that 

= 0. 2.2.63 

That is, 

The next question to be answered concerning transversality is, if A, is orthogonal to 7, 

will the transformed 4,(t) be orthogonal to 7,? To this end, consider 
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T iT 

OX 

Ox — jr 2 = am 2.2.66 

= 2 ny. 2.2.67 

So, A, will be orthogonal to 7, if A, is orthogonal to n,. This fact together with Eq. 2.2.64 

show that the adjoint variable transformation does indeed preserve transversality. 

So far, as was mentioned at the beginning of this section, it has been assumed that the 

cost function was only in Mayer form. Now consider the addition of a Lagrange form integral 
t 

cost functional, | L(x,(t), u(t))dt. If this is the case, augment the state to include one new 
t 0 

variable x? which is defined by 

x? = L(x,(t), u(t)), 2.2.68 

and 

x9(0) = 0, 2.2.69 

so that 

f(%,,u) = boat), us) 2.2.70 
f(x;(t), u(t)) 

is the augmented state velocity. The cost is now just xi(ty), so the problem is converted to 

Mayer form, meaning that the previous theory holds. The adjoint differential equation is now 
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~. oT T T 
A(t) = | ye) A(t) = oe) x(t) — gee 2.2.71 

This is the standard form of the adjoint differential equations for optimal control problems with 

integral cost terms. The transformation equation h(x,) needs to be augmented also. x, needs to 

modified in the same manner, so let x9(s) = x(t) (which in turn will mean that 

d ,o 1 qex2 = 7 L(X20%4), u), 2.2.72 

where y comes from Eq. 2.2.4, and 

x2(0) = 0). 2.2.73 

Therefore, 

~ x? 
h(z,) = he) . 2.2.74 

Xy 

M = 2.2.75 

and 

T 

A(t) = (2) d,(s). 2.2.76 

The Maximum Principle states that ° is a constant such that yo < 0, and similarly for do. 
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Eq. 2.2.76 shows that the transformation for the adjoint variables is not affected in form by the 

addition of the integral cost term (though the adjoint variables are affected, since ° times gL 
1 

is added to the differential equation for the adjoint variables -- see Eq. 2.2.71). 

e
a
n
 

2.3 Example 1 — Linear Transformations 
  

As a simple example illustrating the adjoint variable transformation, consider the 

following linear transformation of the state: 

x(t) = M x,(t). 2.3.1 

Then, of course, 

re —M 2.3.2 

so that 

A(t) = M7A,(t). 2.3.3 

If M is orthogonal (i.e, M-! = M7), then 

d(t) = MA, (t). 2.3.4 

A special case of an linear orthogonal transformation is a simple change of Cartesian 
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Tz(t 
coordinate systems. E.g., when the state x,(t) = ity 

1 

and and three components of velocity in an orbital mechanics problem, and the rotation from 

| is the three components of position 

the original system to a new system is effected by the orthogonal cosine matrix A, then 

A 0 
M = 2.3.5 

0 6A 

Eq. 2.3.4 then gives that 

F, = A *F, 2.3.6 

and 

Av, = A Ay, . 2.3.7 

That is, the adjoint variables just undergo the same vector rotation. Az is the primer vector of 

fuel optimal trajectory analysis in either system. It is a necessary condition for optimality that 

the thrust vector must point in the direction of the primer vector (with maximum thrust 

magnitude) whenever the magnitude of the primer vector is greater than one; whenever it is less 

than one, the rocket engine should have zero thrust. Since the thrust vector would also be 

rotated by the same A, T. = AT, , the transformed thrust vector still points in the direction of 

the transformed primer vector on an optimal trajectory; that is, the optimal thrust is still 

pointing in the same physical direction, as it of course must. 

2.4 Example 2 — Transformation to Polar Coordinates 

45 Vasudevan” investigated, in his Masters thesis, fuel-optimal rendezvous transfers in the 
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plane using polar coordinates. He developed an analog of the primer vector in those coordinates. 

The transformation equations from polar coordinates, [r 6 v h i, to Cartesian coordinates, 

[x y x y J’, are 

r cos@ 

r sin8 

ycos# — h sind 

h ysin@ + 7 cos 8. 

2.4.1 

v is the radial velocity and h is the angular momentum per unit mass. Consider x, to be the 

Cartesian system and x, to be the polar system. Then 

OX _ 

Ox, 

where 

and 

Then, using Eq. 2.2.56, 

  

cos 6 

sin 6 

2 

= sin 6 

cos 9 

A3 

-rsin@ 0 0 

rcos@ 0 0 

Ago sin 6 cos 6 

= —(Beos6 + vsin@) 22> T 

Ay = (—hsino + vcos6). 
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2.4.2 

2.4.3 

2.4.4 
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Ay = Ax cos? + Ay sin@ + A; 7 sind _ dy 7 cos 

    

9 = —-A,rsin? + Ay F cos é + r; Azo + Ay Ayo 

2.4.5 

Ay = r; cos@ + ry sin 0 

_ sin 0 cos 8 An = Ax r + Ay r 

The »n equation can also be written 

TAL = —r, sind + As cos@ . 2.4.6 

Ay 50 os 
The vector ) is the primer vector analog used by Vasudevan. (Actually, his is the 

r h 
negative of this vector since he used a minimum principle in deriving the optimal control 

necessary conditions, and a maximum principle is used in this dissertation.) It is equivalent to 

rotating a coordinate system from the (x,y) system to the local (radial, transverse) system in 

order to obtain the primer vector in that local system. 

2.5 Example 3 — Transformation to Classical Orbital Coordinates 

Consider next a transformation between Cartesian position and velocity vectors as the 

orbital state to a slight variation of the classical orbital elements: a (semi-major axis of the 

orbit), e (eccentricity), i (inclination), 2 (right ascension of the ascending node), w (argument of 
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peri-apsis), and M (mean anomaly at the current time). As developed here, the equations would 

only be valid for elliptical orbits. The transformation between the adjoint variables of these two 

systems will not be developed in detail, but will be briefly sketched. The main details will be 

shown, as well as the form of the solution. Specifically, it will be shown how the primer vector 

can be transformed into the classical element adjoint variables, and how the transformed primer 

vector could potentially be used in practice. 

The transformation from the classical elements to F and V is 

_ a(1—e?) . cos Y 

r= T+ecosy T(Q, 1, w) OD 

2.0.1 

<|
 

2 —siny pu(1l+e + 2ecosy) T(Q, i, w) | cosy 

a(1-e*) 0 

Here, T(Q, i, w) is transpose of the 3-1-3 rotation matrix from inertial coordinates to the local 

peri-focal coordinate system. Also, v is the true anomaly. It is a function of e and M through 

the well-known transformation to eccentric anomaly and thence to Kepler’s equation; so, vy = 

v(e, M). Calculating the partial derivatives of F and ¥ is a straightforward task. The 

derivatives with respect to ’a’ are immediate: 

F _T Aa z 2.5.2 

and 

OV _ OY 
Ba Da 2.5.3 
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Those derivatives with respect to e and M will have to take into account the places where these 

variables appear explicitly, plus through v(e, M). E.g., ¥ =T(e, v(e, M)), so 

or _ orl OF Ov 
de Ge| Ov de’ 2.5.4 

where ae means the derivative while holding vy constant. Notice also that cos 6 = 
Vy 

cos(6+2), and that tein 9 = sin(6+%), so that 

SQ iv) = T+, i, w), 2.5.5 

and similarly for the other two derivatives. 

Denote the representation of F and V in Cartesian coordinates by x., and the classical 

elements by x,. For convenience, define 

T 
Ox.(t) 

A(t) = (~2 2.5.6 
(t) (Fu 

and 

  

-T 
B(t) = (Fe) 2.5.7 

So, A(t) is the transpose of the matrix of partials described immediately above, and B(t) is the 

inverse of A(t). So, 
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A: 

4 = } = A(t) = A(t) A,. 2.5.8 

    | “M 
Since A(t) is a full matrix, the primer vector, Az, does not transform to a simple subset of the 

A, adjoint variables (such as was the case in the transformation between Cartesian and polar 

coordinates). 

In order to make use of this transformation as relates to the primer vector, the 

dynamics of the 4, must be determined. So, the dynamics of a, e, i, Q, w, and M must be 

determined. The derivatives of these elements in an inverse square gravity field subject to 

another force (such as rocket thrust in this case) can be written in Gauss’ form of Lagrange’s 

planetary equations as shown by Geyling and Westerman!? (p. 182). That is, 

  

. 3 . a(1—e”) | 
a = 2 8 |tpesiny +—;=—Tr 2.9.9 

la(1—e2) 
é= paw [Tpsiny + T7(cosE + cosv)| 2.5.10 

di _ ——1 Ty 1 cos(w+v) 2.9.11 
dt pa(1—e?) 
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Q = —1L__ Ty rsin(wt v) 2.5.12 
sini {pya(1—e?) 

2 
w = —Qcosi — a(l-e) Tp cosy —T 1+— sin 2.5.13 

pe a(1—e*) 

and 

M = n- 72 Tar — iNl~e? ~ N1—e? cosi. 2.5.14 

Tp, Ty, and Ty are the components of thrust in the radial, transverse, and normal directions, 

respectively. They are rotated from inertial space in a 3-1-3 rotation with Euler angles of Q, i, 

and (w+v), so they also are dependent on the orbital elements. Since the adjoint variable 

differential equations (cf. Eqs. 2.2.26 and 2.2.27) involve the partial derivatives of the right hand 

sides of Eqs. 2.5.9 — 2.5.14 with respect to a, e, ...., M, the adjoint variable differential 

equations on thrusting arcs of the trajectory would be very messy, to say the least. It is 

doubtless that they would be of much use on thrusting arcs. On, coasting arcs, however, where 

the thrust is zero, 

a - 0 2.5.15 

é = 0 2.5.16 

di _ di — 9 2.5.17 
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The resulting adjoint differential equations for coasting arcs are 

- _3 Xa = 3 5 On 

Ae = 0 

A, = 0 

Ag = 0 

Ay = 0 

Am =0 

Solving these, 

_3f , = 3 ut + Yao 
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2.5.18 

2.5.19 

2.5.20 

2.0.21 

2.5.22 

2.5.23 

2.9.24 

2.9.25 

2.5.26 

2.9.27 

33



Ao = constant 2.5.28 

A; = constant 2.5.29 

Ay = constant 2.5.30 

Ay = constant 2.5.31 

AM = constant. 2.5.32 

A,(t) is a linear function of time and the last five adjoint variables are constants. Since these 

expressions are so simple, they are ideal for propagating the adjoint variables along coasting arcs 

of transfer trajectories between burns. So, on coasting arcs between burns, the primer vector in 

Cartesian coordinates can be aligned with the Av! with magnitude of one at each end of the 

coasting arc; then, the primer vector can be transformed to A,,..., Ay in order to propagate 

the primer vector along the trajectory through these simple equations to test the necessary 

conditions required of the primer vector. 

In order to facilitate doing this, partition the matrix of Eq. 2.5.7 as 

B,, B B 
B=/ 2 BP]. 1 2.5.33 

Boy Boo Bo 

where B,,, etc., are all 3x3 submatrices, and B, and B, are 3x6 submatrices. Furthermore, 

let subscript “o” refer to the initial time on this coasting arc (ty), and let subscript “f” refer to 

the final time on this coasting arc (ts). Then, 
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Avo = Bao 

and 

Avy = Bas 

  
5 

    

  

2.5.34 

2.9.39 

where a = as These two equations can be rearranged to solve for the adjoints associated 
a 

with the classical elements from the two primer vectors at the ends of the coasting arcs. 

Defining the 3 x 6 matrix 
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2.0.37 
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Then, as a function of time, 

dap +a Aggt 

A(t) = i , 2.5.38 

    
and 

AZ(t) = B,(t) A,(t) 2.5.39 

will propagate the primer vector along the coasting arc. 

It is not certain that this method of propagating the primer vector would gain any 

advantage over current methods. It is shown as an example merely to demonstrate one type of 

analysis which can be done using the transformations of adjoint variables. In the next chapter it 

will be shown that when the primer vector is transformed into redundant Schumacher adjoint 

variables, the propagation of the primer vector is greatly simplified; also, the form of the 

equations leads to a new check for optimality not found in the variables adjoint to ¥F and V. 

There is, however, another possible application of the transformation to the adjoint 

variables associated with classical elements which may be worth pursuing. The form of the 

elements themselves, a, e, ... , M, lends itself naturally to a boundary condition for a class of 

orbital transfers which yield simple transversality conditions in A, ... , Ayg- Suppose it is 

desired to transfer from one elliptical orbit to another, but it is irrelevant both at what point in 
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the original orbit the maneuver commences, and at what point in the final orbit the injection 

occurs. That is, the problem is not one of rendezvous, but one of injecting into an orbit at 

whatever point requires the least amount of fuel. The resulting boundary conditions are that a, 

e, i, 2, and w are specified for both trajectories, but M is free for both trajectories. The 

resulting transversality conditions require that AM = 0 at the beginning and at the end of the 

maneuver (while the other adjoint variables are free). Thus, the state boundary conditions and 

adjoint transversality requirements are very simple in this system. This is in contrast with 

terminal constraints which are moving boundaries in fT, V space, and with their resulting messy 

transversality conditions for 4; and A;. 

When considering numerically solving state and adjoint differential equations for finite 

thrust optimal control problems, however, the simple form of the fr, V differential equations on 

thrusting arcs (as contrasted with Lagrange’s planetary equations, Eqs. 2.5.9 - 2.5.14) makes 

that system more desirable. So, the transversality conditions can be specified in the classical 

adjoint variables, then transformed to 4; and A; to be propagated along the trajectory through 

a numerical differential equations solver. As stated above, this is the whole reason for using 

adjoint transformations: to take advantage of salient features in any given system, and 

transform to another system when solutions or parts of solutions are easier in that other system. 

The basic form for the resulting numerical problem is: 

1) set a, e, i, 22, and w to the desired values, and Am = 0, at the beginning 

of the trajectory; 

2) guess values for A,,..., 4,,, M, at the beginning of the trajectory, and for 

ty (unless ty, the total time of flight, is already specified); 

3) transform the state and adjoint variables to T, V space at the starting 

point; 

4) numerically solve the state and adjoint differential equations propagating 
them to time ty (using the thrust control mandated by the Maximum 
Principle); 
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5) at the endpoint, transform back to classical element space to check that 
the differences between a,..., w, and Ayq and their requisite values are 

zero (and that the Hamiltonian is zero -- unless ty is specified, in which 
case the Hamiltonian is free); 

6) if they are not close enough to zero, update the guessed values in step two 
(typically using a quasi-Newton method and/or a multiple shooting 
method), and repeat steps three through six until convergence is reached. 
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3.0 REDUNDANT ADJOINT VARIABLE TRANSFORMATIONS 

3.1 Introduction 

The previous chapter contains the derivation of the transformation between two sets of 

adjoint variables associated with two sets of state variables which share a common dimension 

(i.e., a “square” transformation). In this chapter, the transformation of adjoint variables 

associated with a transformation from one state, usually of minimum dimension, to another of 

higher dimension, called a redundant state, will be derived. A common example of a redundant 

state is the set of Euler parameters used in rotational dynamics of a solid body?>. In orbital 

mechanics, several authors have studied the theory of redundant orbital elements”. Stiefel 

and Scheifele4? have even shown the theoretical and practical relationships between Euler 

parameters and redundant orbital variables. These redundant variables are usually developed 

from the context of regularizing the variables; that is, regularized variables are those where 

singularities of the variables have been eliminated (“regular” is another word for “analytic” used 

in complex analysis to mean the derivative of the function contains no singularities in the 

domain). This, of course, is also why Euler parameters are so frequently used; they rid the 

singularities inherent in the calculations of the Euler angle rates (e.g., the 3-1-3 Euler angles 

mentioned above have a singularity when :=0). 

The regularized variables concentrated on in this dissertation are of a class of variables 

which are attributed to Burdet®; the derivation of the specific variables is due to 

46,47 These variables have various nice features, and many of them, particularly Schumacher 

those associated with derivatives with respect to the elements, have been used already in the 

homotopy approach to optimal space transfer developed by Vasudevan®” and by Vasudevan and 
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Lutze. The adjoint variables associated with these Schumacher variables also have some 

attributes not found in other adjoint variables, which also benefit the optimal control solution 

process. So, it is desirable to be able to transform between Cartesian position and velocity 

adjoint variables and the adjoint Schumacher variables. This chapter develops the theory of 

such redundant adjoint transformations. 

Whenever a minimum dimension state is transformed to a redundant one, additional 

constants of the motion arise, which are equal in number to the difference between the 

dimension of the redundant set and the dimension of the minimal set. For example, with the 

four Euler parameters (8), 8,, 82, G3), which replace three Euler angles (e.g., w, 9, and ¢ of 

the 3-2-1 transformation from inertial to body fixed coordinates), the additional constant is 

62+ B24 924+ 62=1. 3.2.1 

That is, the trajectory lies on a three dimensional manifold (a hyper-sphere) in the four 

dimensional space, ®4 (see Stiefel and Scheifele*?). To visualize this, consider that one angle 6 

can be replaced by the redundant pair y,=cos@ and y.=sin8, with y+ y= 1; the resulting 

trajectory lies on a one-dimensional curve, commonly called a circle, in a two dimensional space 

(the 7,-72 plane). Similarly, two angles can be replaced with three functions of sines and 

cosines of the angles; the resulting trajectories will lie on a two-dimensional surface (a sphere) in 

the three dimensional space. 

In some sense this Eq. 3.2.1 can be thought of as a constraint, since initial values of the 
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6, can be given which do not satisfy Eq. 3.2.1; then this equation will remain not satisfied as a 

function of time, and the dynamics of the motion will be incorrect. However, once Eq. 3.2.1 is 

satisfied, it will automatically remain satisfied without having to try to keep it on the 

constraint. In fact, the transformation from Euler Angles to Euler Parameters automatically 

satisfies the constraint. If one is to call it a constraint, it should be thought of as an 

autonomous constraint, since no external effort is required to keep the values of the variables on 

the constraint. It is probably more proper to consider this equation as a constant of the motion. 

If the state of a system is redundant, then the resulting adjoint variables will also be 

redundant. They also will have constants of the motion (as will be shown in the next section). 

86, and also Bryson, Denham and Dreyfus* have shown that when the motion Pontryagin, et a 

in an optimal control problem is constrained to lie on a subspace of the full dimension of the 

state, a redundancy exists in the adjoint variables. That is, there is some arbitrariness in the 

choice of the adjoint variables. They use this fact to develop conventions for values of the 

adjoint variables upon entering and leaving the constraints -- each set of authors has different, 

equivalent conventions. For the purposes of autonomous constraints associated with redundant 

coordinates, the mathematical theory still applies to help understand the redundancy inherent in 

the adjoint variables. 

The arbitrariness of the adjoint variables, when the motion of the state lies on a vector 

of constraint equations g(x) = const., g(x):R"—R™ and \ © RK", can be described by the fact 

that if A satisfies the adjoint equation, transversality, and is such that the Hamiltonian is 

maximized, etc., then so does \ described by the following for any vector vy € R™: 

T 

i= s+ (3) V. 3.2.2 
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T 

This is the case because (5) is normal to the hyperplane tangent to the surface described by 

g(x), and the derivative of x, x=f(x,u), must lie in the hyperplane tangent to that surface. 

Hence, FB f(x, u) = 0 so that AT £(x,u) = AT f(x, u); in other words, the maximum principle is the 

a T 

same for either adjoint vector. If x had some component in the span of (35) (i.e., it did 

not lie entirely in the hyperplane), then the trajectory would immediately depart from the 

constraint. In the case of constrained optimization, a control u(t) must be chosen which forces x 

to remain in the hyperplane tangent to g(x); in the case of redundant variables, x=f(x, u) 

automatically remains in the hyperplane tangent to g(x) for alf controls u(t). 

A test for true redundancy can be obtained by taking the derivative of g(x) with respect 

to time: 

&(x(t)) = FE) (4) = Pe) e(x(),u(t)) 3.2.3 

If it is identically zero, g(x(t)) = 0, then the constraint is truly autonomous; i.e., g(x) is a set of 

m constants of the motion. Except for the trivial case, Eq. 3.2.3 is identically zero if and only if 

f(x,u) is orthogonal to all vectors in the span of 28. i.e., it lies in the hyperplane tangent to 

g(x). 

If it is desired, for whatever reason, to bring any redundant adjoint variable X(t), at 

some time t, into the hyperplane tangent to g(x), this can be accomplished through 

T 

_ Og\ {dg\\5 A= i- (38) 52) X, 3.2.4 

if the rows are orthonormal. (This is just the matrix form of 
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T T 
~ mM | > [ Og. Og. T { 98; &; 

A=A - y X (38) (3) ) 3.2.5 

=1 

If the rows are not orthonormal, then replace og in the above by a m Xn orthonormal matrix 
Ox 

Og whose rows are a basis for the span of the rows of ax (obtained through the Gramm-—Schmidt 

orthogonalization procedure, or, more practically numerically, through the QR factorization of 

the transpose of 8), These facts will be used in the subsequent section to help build a 

transformation to redundant adjoint variables from a minimum dimensional set. 

3.3 The Transformation of Redundant Adjoint Vectors 

Consider a state transformation to a minimum dimension state x,(t)€ R" from a 

redundant state x,(s) € R" (with the possibility of change of independent variables st); r> n 

and m&r—n. Let X,(t) = h(x,(t)), h(x.):R7R", effect the transformation, and let oxy have 

maximal rank. Furthermore, let g(x.):R"—-R™ be a set of m independent functions of x, 

defining the redundancy of the x,(t) equations, with the columns of [2] not in the 

Oh 
T 

spa 5 ; also, they are constants of the motion, or autonomous constraints, so that 
OX 

&(xa(t)) = 0. 

Now, augment the state x,(t) to one of dimension r, 

X,(t) 
x(t) & | — |. 3.3.1 

& 

The trajectory of the augmented state, then, lies on an n-dimensional manifold of the r- 

dimensional space, just as the redundant state x,; the difference is that g = constant in this 
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space is just a hyperplane since it is a linear variety. This augmentation of the state requires 

h(x.) to be augmented also: 

. h(x.) 
h(x.) = sown |. 3.3.2 

8(X2) 

The adjoint variables associated with the augmented state are now 

dx, (0) 
A(t) = | -—--- |. 3.3.3 

Ag 

Before proceeding with the definition of the transformation between the adjoint 

variables of dy (t) and 4,(s), it must be made clear that augmenting the state and adjoint 

variables in the “1” system in this manner in no way changes the optimal control solution in 

that system. The new Hamiltonian in that system is 

H(A, x = AT Ff Me 3.3.4 ( yy X15 u) —~ “1 (Xu) + g& “ 

Since g = 0 when the constraints are properly satisfied, the value of the Hamiltonian is 

unchanged as long as 4,(t) behaves the same in the augmented system. To guarantee that the 

autonomous constraints are properly satisfied, augment the initial and/or terminal constraints: 

d= |- |, 3.3.5 

where g* is the requisite constant value. This, of course, only needs to be done in theory, 

because in practice this would automatically take place. Next, notice that 
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iT .i (age) i - se dg . 3.3.6 ony’ 
A= |e Ox, 

But, 

Og _ Ox, =0 3.3.7 

when g=g"*, so \,(t) is unchanged in the augmented space. These facts say that the same 

optimal control u*(t) will satisfy the maximum principle in both systems -- the optimal control 

solution is unchanged. 

Now, the transformation of the adjoint variables of the previous section applies directly 

because dx (t) and A.(s) both are of dimension “r”. So, 

  

A,(s) = (38) 509 3.3.8 

But this is also 

d,(s) = [2] Fal i,(t). 3.3.9 

Or, 

d,(s) = a] ae + Ea 3.3.10 
      

The second term of the sum on the right hand side of this equation is a vector orthogonal to the 

REDUNDANT ADJOINT VARIABLE TRANSFORMATIONS 45



tangent hyperplane of g(x.). It is comparable to the second term in the sum on the right hand 

side of Eq. 3.2.2, the equation defining the arbitrariness of the redundant adjoint vector. Recall, 

in conjunction with this, that Ag is the m—vector adjoint to the constraints g. 

Inverting the matrix in Eq. 3.3.8 effects the transformation in the other direction: 

_\ oT 

i,(t) = ( d,(s), 3.3.11 

or, 

  

y(t -\ 7 
MO | (#4) A,(s)- 3.3.12 

OX, 

      

Thus, the transformation not only gives the desired unique A(t), but also what the particular 

Ag is for the given redundant A,(s). As stated in Section 3.2, it does not matter what the value 

of Ag is in Eqs. 3.3.10 and 3.3.12 as regards the Maximum Principle, since the inner product of 

Og the state velocity vector, f,(x2(s),u(s)) with =— is zero for all controls u(s). 
OX, 

3.4 Transformation to Schumacher Variables 

In this section, the redundant adjoint transformation equations developed above will be 

applied to the Schumacher variables. The Schumacher variables are 

X(N) = |, 3.4.1 
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and they are defined to be: 

  

u= 7H! 3.4.2 

f = uf; 3.4.3 

1 O a -i= — aT 3.4.4 

po Hh xe: 3.4.5 

h = |hj; 3.4.6 

where, 

h=TxV; 3.4.7 

i = A, 3.4.8 

and 7, the new independent variable, is the change in true anomaly from the current true 

anomaly (7 =v—vp, andj =v = hy. These are solutions to the following linear and regular 
r 

differential equations under spherical gravity and no thrust or perturbing functions: 
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3.4.9 rf’ 4+? = 0 

and 

uv't+u= 2 3.4.10 

(They are obviously linear, and they are regular because the variable “r” no longer occurs in the 

denominator of the differential equation as it does in 

3.4.11 

the governing differential equation in Cartesian coordinates.) 

The transformation to x,(t) is through the following equations (which define h(x,)): 

3.4.12 1]
 II 

c
|
r
p
 

we
 

3.4.13 v = h(ufr’ —-u’f). 

The constants of the motion for the Schumacher variables are also needed to make up the rest of 

the transformation equation h(x). As constructed, f is always a unit vector, so that one 

constant is 

g(x.) = 4i7@ a2. 3.4.14 

Similarly, 7’ is also a unit vector, since h is a unit vector, and h and ? are orthogonal, so the 

cross product of them results is a unit vector. So, another constant of Schumacher variables is 

REDUNDANT ADJOINT VARIABLE TRANSFORMATIONS 48



Ty = 3.4.15 1 « 1 
&2(Xz) = 3 r! 3 ° 

Finally, # and f/ are orthogonal by construction, so the final constant of Schumacher variables is 

B(x) = f7F = 0 3.4.16 

Putting it all together, 

Lili 

g(x) = | 42/7 %" 3.4.17 

p77! 

It will be shown in the next chapter, when the differential equation for x,(7) is given for all 

trajectories (including thrusting trajectories), that g(x.) = 0 for all thrust vectors (and, for that 

matter, for all forces of any type). 

Next, adjoining h(x.) and g(x.) to make h(x), 

3.4.18 

    
h(x) Now, the partial OX, is straightforward, so, using the transformation Eq. 3.3.8,   
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where 

  

r,(n) = A i,(t), 

dT —hu'l 

= hi? 

0 hul 

0 —hit 

0 (uf’—u'f)? 

m=
g>
 

“I” in this matrix denotes the 3 x 3 identity matrix. Recall that 

and 

I>
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3.4.19 

  
3.4.20 

3.4.21 

50



The determinant of the matrix A is 

h2 
det(A) = —45, 3.4.22 

u 

which means that A is not singular except when r = i = 0 (ie., trajectories through the center 

of attraction), or when h = 0 (rectilinear motion, for which the Shumacher variables do not 
iT 

exist). Notice that the last three rows times A, is indeed ae Ag - 
2 

For effecting transformations the other direction, the inverse of A is needed. Using 

straightforward Gaussian elimination yields 

    

u(l—f#7)  —-u?# Bis Bigs h(ué+u’?’) 

z! 

0 0 Bo3 Boa T 

AT= a u 0 0 —h 3.4.23 

0 0 g/T u’ —h 

0 0 #7 u 0 

L J 
where 

Big = u(I — tt? — #7) — ui’ ?7, 3.4.24 

By = —uu/é — (u2+u)i’, 3.4.25 

Bog = (I-ii7-#7'7), 3.4.26 
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and 

Boy = —pL(ui+u'?’). 3.4.27 

Since Ag is the last three rows of A“! times ,(n), 

aT r A; + udAy — ha, 

he = 7d. + wr —haA, |. 3.4.28 

«T r’ A. ud z/ + u’     
In order to make this transformation useful in terms of necessary conditions for fuel- 

optimal transfer, the primer vector is needed in the Schumacher adjoint variables. It is 

important to be able to transform both directions. Consider first, however, the transformation 

from Schumacher variables to Cartesian variables. This way, it can be seen which of the 

Schumacher variables correspond to the primer vector; that is, it will be seen what variables are 

mapped into the primer vector. Considering A ! of Eq. 3.4.23, by inspection of the second row, 

whose product by 4, is the primer vector, Az, it is evident that the primer vector is a function 

only of Aw ; AY , and »n , since the other terms are multiplied by zero. Similarly, by inspection 

of A, Eq. 3.4.19, it is clear that these three are functions only of A; (and the portion that lies 

orthogonal to the surface g(x,)). Hence, in some sense at least, r-1 , AY , and sn correspond to 

the primer vector in Schumacher coordinates. 

To make this concrete, multiply the third row of A by A, to obtain 

Ay = bury + fAgy + FrAgo. 3.4.29 
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Of course, if Ag = 0, this reduces to 

r-1 = hud;; 3.4.30 

or, since hu = v7, the transverse component of velocity, this is 

r-1 = VT Ay . 3.4.31 

Similarly, multiplying the fourth row of A by 4, , 

Ayo= chit ay. 3.4.32 

The fifth row times A, is 

A, = (ui’—ul#)™ AQ. 3.4.33 

Transforming the other direction, using A7!, returns that 

A> = 
al 

7 (i — 8? — ##7)d,, - py (ut t+ ul )A + Tp. 3.4.34 1 
hu 

The term in parenthesis of the first term on the right hand side of this equation is a matrix 

which rids the vector it multiplies of its components in the f and in the f’ directions, leaving 

only the projection of the vector in the h direction. Hence, the equation can be rewritten 

REDUNDANT ADJOINT VARIABLE TRANSFORMATIONS 53



rT. ye 

ll = Gah (ut + ul), + EA 3.4.35 yvo= hu hu uw * Wh: a 

Noting that ¢, ?’, and h form a local orthogonal basis (describing a radial, transverse, out-of- 

plane coordinate system), rewrite this equation as 

A, (hA, — ud ,) h?d., 
h u 7’ x — _ ws f 

  

For convenience, denote the specific representation of the primer vector in this local basis using 

Schumacher adjoints by §. That is, 

3.4.37 

      
And, 

Ay = TS(n), 3.4.38 < 

for 

7 & | ; :! fi 3.4.39 
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where f, f’, and h are represented in any desired coordinates. 

In the next chapter, it will be shown that this local primer vector, 5, indeed satisfies the 

Maximum Principle in the x,, A, system. Then, the simple solutions of the Schumacher adjoint 

differential equations on coasting arcs will be given, so that these adjoint variables can be 

manipulated in this space. The functional form of the differential equation in this transformed 

space will be shown to give a new necessary condition for time open transfer problems. Also, 

other tests of optimality related to the derivative of the primer vector will be given in terms of 

the transformed adjoint space. 

When finite thrust trajectories are computed using the methods to be derived in Chapter 

10, the transformation from Schumacher adjoints to 4; will also be needed. Multiplying the 

first row of A? by A, gives, after simplifications analogous to those done above for A; , 

Ag = u(hdA,—u/Ay—udy)é + [uae - Mi f)+hu’d, —(u? +0), F 
o 3.4.40 

+ (wAPh+uAvh)h. 

Before proceeding to the next chapter, to discuss the optimal control problem in 

Schumacher space, one last detail must be taken care of. In that chapter time, t, will be 

appended to the state in both Cartesian coordinates and in Schumacher coordinates. This way, 

the class of transfer problems where maximum time is specified can be handled in the 

Schumacher coordinates, for otherwise time is not in the problem at all since the independent 

variable is the change in true anomaly, 7. Therefore, it must be shown what happens to the 

transformation when t is appended to both systems. Let 
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x¥ = 3.4.41 
t 

and 

xX 

xf =] ? 3.4.42 
t 

and 

h(x 
h¥(x#) = (%2) 3.4.43 

t 

Then, 

dh(x,) 

ab*(xF) _ | Ox, ° 3.4.44 
Ox¥ 0 1 

In view of adjoint transformation equation, Eq. 3.3.8, the off-diagonal zero vectors of this 

matrix makes the transformation of the adjoint to time, A, , separable from the rest of the 

adjoint variables. So, the A, is the same in both spaces (due to the “1” in the lower right 

diagonal), and the transformation of the rest of the adjoint variables is unchanged. Thus, this 

addition of t and A, to the problem can be ignored except where needed, and then these 

variables are the same in both systems. Thus, in the next chapter and following, when t and 4, 

are discussed, specific reference to whether these are in Cartesian or in Schumacher coordinates 

will not in general be made. 

As was just mentioned, 4, was added to the problem because it is needed for the 

Schumacher adjoints for the time specified problem, so it is not really required in the Cartesian 
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adjoints except as it relates to the transformation. What, then, is 4; in Cartesian adjoints? 

Consider the usual Hamiltonian in Cartesian space 

H = v4 f(-5H + ‘). 3.4.45 

Now, since time does not explicitly appear in H, H is a constant whose value is zero for time 

open problems, or a nonzero constant otherwise. Next, consider the augmented Hamiltonian 

H*® = H+idxt = H+. 3.4.46 

In the augmented space the seventh variable is x7 = t, so that now the time specified problem 

becomes a problem of specifying xz (i.e., X7(t ¢) = ty); and the independent variable time is 

always free. Hence, Ht = 0 always. In turn, this says that 

4 = —H 3.4.47 

from Eq. 3.4.45. That is, A, is just the negative of the usual Hamiltonian. This is why it is 

often loosely said that the Hamiltonian is adjoint to the independent variable. This relationship 

between 4, and the Hamiltonian will be exploited to help understand the numerical solutions of 

finite thrust trajectories in Chapters 9 and 10. 

REDUNDANT ADJOINT VARIABLE TRANSFORMATIONS 57



4.1 Introduction 

Once the adjoint variables 4; and A; are transformed to Schumacher adjoint variables, 

the dynamics of these variables is needed in order to propagate them in time (or in n). In this 

chapter, the differential equations for the Schumacher adjoint variables are given for any general 

thrusting or coasting arc (analytic solutions for coasting arcs will be derived in the next 

chapter). Then, the Maximum Principle is investigated in this space in order to verify that the 

transformed primer vector, S(7), derived in the previous chapter, does indeed satisfy the 

Maximum Principle in Schumacher variables (as the primer vector does in Cartesian position 

and velocity space). Finally, it will be shown how transversality requirements on the adjoint 

variables affect the Schumacher adjoint variables. 

4.2 The Optimal Control Problem Statement 
  

The state for the Schumacher coordinates, with time, t, appended to the basic set of 

nine redundant variables for the case when maximum time for the orbital transfer is specified, 

is: 

xX = 4.2.1 
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6 Schumacher derived the equations of motion in these coordinates in his doctoral dissertation? 

These equations can be used directly, with the specific thrust vector (thrust per unit mass) in 

local coordinates (i.e., with the basis vectors f, #’, and h=ix?' ); 

taking the place of the perturbing force. Also, the derivative of time with respect to 7 is: 

dt _ 1 Thus, the equations of motion under spherical gravity and thrust only are: 
dn hu2 

4.2.3 

    
The optimal control problem to be addressed here is to minimize the integral of the Euclidean 

norm of the thrust over the time of flight: 
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min | |T | dt, 4.2.4 
0 

with the restriction |T| < T Since dt = dt ay = aan, this integral is, in the new 
u maz dn 

independent variable n, 

Ww 

ne VT 

min | s{T| dn. 4.2.5 
o h 

Tl. ; 
So, ro is the transformed Lagrange-form cost function. 

u 

The Hamiltonian for this system is 

r 
= T3 a pb T,u + Tou’ 

H =(A; 3 i’) + Ay u! + (Acs 5 (-? + nye) + AY (-u + i? _ sa ) 

T 4% +A,|T 4 o| Db 2 na? ha? 4.2.6 + A, 

The adjoint variables A. and r-1 are vectors having three elements each, while the rest of the 

adjoint variables are scalars. The scalar constant Ay < 0 according to the Maximum Principle; 

for normal problems (Ag # 0), Ag can be taken to equal -1, since the set of adjoint variables 

can be scaled accordingly. Ag = —1 will be assumed in what follows. The differential equations 

dA T 
for the adjoint variables are, for a general state x, dn = (34) . Hence, 

d _ Ts; Py —r\. = Aw + a3 Oy x fF) 
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dye = Ay Pata! t dh B) +2 $A, + et + A401 TI) 

d _ T3 
dn! = —A. _- pal x tr) 

4.2.7 

d _ T, 
dru’ = Au + pas 34, , 

dnh ~ Bea! ~~ he A +33, Tag (Aer » h) + tia rah + h-u a(t + Ag | T |) 

d _ dy = 0 

The ten state differential equations together with the ten adjoint differential equations form a 

total system of twenty differential equations. When solving for finite thrust burn solutions, this 

system must be solved as a boundary value problem with the boundary conditions consisting of 

state boundary conditions and transversality requirements on the adjoint variables. The thrust 

control vector history is determined by the Maximum Principle. When the upper bound on the 

thrust, T is relaxed in order to allow instantaneous impulse thrust, the solutions of Eqs. 
maz ? 

4.2.7 for the case when T, = T, = T; = 0 are needed, in order to propagate the adjoint variables 

on the coasting arcs. They are very simple differential equations in that case: simple harmonic 

oscillators. So the solutions are simple functions of sines and cosines of the independent variable 

4.3 The Maximum Principle 

A necessary condition for a given thrust history and resultant trajectory to be optimal is 
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the Maximum Principle, namely, on the optimal trajectory the Hamiltonian must be maximized 

almost everywhere on 7 € (0, n4] by the optimal thrust (where ”almost everywhere” means 

44 __ see p. 310 of Lee and Markus*! for a description of the except on a set of measure zero 

Maximum Principle). Furthermore, Ay is a non-positive constant; assuming the particular 

problem at hand is a normal problem (i.e., Aj # 0), the adjoint variables can be scaled such that 

Ao = —1. In order to analyze this Maximum Principle for these coordinates, recall that the 

primer vector in the local system, transformed from the Cartesian F and V adjoint variables, is 

  

- _ 

—A 

h 

_ hA, — u’A 
S$ =| —h — ul 4.3.1 

(Vcr 3 h) 

i hu     
Notice that in the Hamiltonian, Eq. 4.2.6, the three elements of this vector are factors of the 

three elements of T! in the Hamiltonian, so that 

Lye Al |T | H, = —,(§ ,T) —- —1 4.3.2 
0 = hut he 

is the Hamiltonian less the parts which contain no thrust terms (with 44 = —1). Hence, finding 

the thrust which maximizes Hy at any point on the optimal trajectory will yield the same thrust 

as maximizing H. Furthermore, the divisor, hu2, common to both terms of Hy, is always non- 

negative, so that, with H, = hu? Ho ; 
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_ max H, 4.3.3 
IT Il €(0,T axl 

is the same condition as maximizing the Hamiltonian. H, can also be written 

H, = ((S,é) - 1) |TI, 4.3.4 

where é is the direction of thrust. If S <1 at any point on the trajectory, where S = |S], then 

the factor in parentheses will be negative for all é directions of thrust, making H, <0. In that 

case T! = 0, yielding H, = 0, is the optimal thrust for this point on the trajectory. On the 

S 
mar Ss? 

5 other hand, if S > 1 the optimal thrust is TT because é = S will maximize the factor 

in parentheses and T,,,, is the maximum value of |T|. If S=0 on any finite duration of of 

the independent variable 7, the thrust control is singular; singular trajectories will not be 

discussed here. Recapitulating, the optimal thrust is 

3, S> 1 
pl . 4.3.5 

0 , S <1 

Since S is the primer vector magnitude, this is the same necessary condition as when the optimal 

control necessary condition is investigated in F, ¥ coordinates. 

4.4 Transversality 

For rendezvous problems, where the position and velocity vectors are defined at the 

beginning and the end of the transfer orbit, the transversality requirements on the corresponding 

adjoint variables do not give any specific information on the initial and final values of these 
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adjoint variables. These values must be determined by the requirement of making the trajectory 

meet the proper endpoint values. 

If an intercept is desired instead of a rendezvous, then only the position vector, fF, is 

specified at both endpoints. The velocity vector, V, is unspecified at the terminal point, so 

transversality dictates that the corresponding adjoint vector, the primer vector, must be zero 

there. In this case, the boundary conditions corresponding to the final value of V is replaced by 

the boundary condition A;=0. Since S= TT, from Eq. 3.4.36, this means that S = 0. 

Inspecting the components of S, Eq. 4.3.1, this in turn means that ret = AW = An = 0 at the 

termination of the transfer trajectory. Furthermore, in view of the requirement that S = 0, the 

condition on the thrust control, Eq. 4.3.5, implies that a fuel optimal intercept will never thrust 

at the endpoint of the trajectory. 

For problems where final time is not specified, the transversality condition on A, 

requires it to be zero at both ends of the trajectory. Since its derivative with respect to 7 is 

zero, it is constant along the whole trajectory, namely, 4, =0. In this case, t and 4, can be 

dropped from the problem (with, of course, factors of 4, being dropped), since they have no 

affect on the other state and adjoint variables. On the other hand, if final time is specified, then 

the proper constant value of 4, must be determined along with the other initial adjoint variables 

to make the trajectory match the endpoints jn the prescribed time. 

One final note is in order concerning transversality requirements. Since 7 is the 

independent variable for Shumacher coordinates, if 7 7 18 not specified, then the constant value of 

the Hamiltonian must be zero, H=90. Hence, the proper value of nN Must be determined in 

order to make H=0. 
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5.0 VERIFICATION OF IMPULSIVE THRUST TRAJECTORIES — TIME OPEN 

5.1 Introduction 

One way to obtain approximate solutions to the optimal control problems defined 

previously is to use an impulsive approximation to each thrusting arc, allowing a change in 

velocity over zero time at each “burn”, then solve a parameter optimization problem yielding 

optimal velocity changes and coasting angles. The primer vector theory derived by Lawden, and 

also by Lion and Handelsmann, can be used to verify if impulsive burn trajectories found by this 

scheme, or by any other scheme, actually satisfy the necessary conditions obtained from the 

Maximum Principle. The main two conditions are: | ;| <1 , which in turn implies that 

dp ‘a= 0 (where p = | Az|) at times of interior burns, or |S| <1, on an optimal trajectory; and 

immediately after the first burn following an initial coast, or immediately before the last burn 

preceding a final coast. 

The second condition is the same as S’ = 0, where S a |S|. This can be proven by the 

following arguments. First, let R& Tr (where T , from Eq. 3.4.39, transforms vectors in the 

local radial, transverse, normal coordinate system to the inertial coordinate system in which Tf 

and V are defined). Then 

and 

So = RA, + RAL. 5.1.2 

Now, 
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R' =| -i |, 5.1.3 

0 

so that 

S’ = R’RTS + RX 5.1.4 

0 1 O 

=| -1 0 0 |S + RX 5.1.5 

0 0 0 

So 
_ 1 ° = | -S:| + [aRy. 5.1.6 

0 

Then solving this for Ay gives 

So 

Ay = hu?RT/S’ — | —S, |]. 5.1.7 

0 

Using these equations in the equation for p gives rise to the following sequence of equalities 

whenever p # 0: 
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p = D 

._ 1,Ty 

S 

hu? (pTaT pT| a < 

0 

S 

hwaTppTlaw < 
= “55 RR S -_ -S, 

0 

Se 
h 2 _ _ 

= ag-stis’ - | -S, 

0 

  

I! a
 

c 
nw 

aed
 

Hence, if p = 0 and p £0, then S’ = 0. 

5.1.8 

5.1.9 

5.1.10 

5.1.11 

5.1.12 

5.1.13 

5.1.14 

5.1.15 

These conditions will be used in this chapter in the transformed Shumacher adjoint 
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space, for the time open transfer problem, to see what advantage is gained with those variables. 

The first advantage has already been stated in the previous chapter: propagating the primer 

vector on coasting arcs in Schumacher adjoint variables is much simpler than in Cartesian 

adjoint variables. The second advantage is that, due to the interrelationship of the adjoint 

variables comprising the transformed primer vector, 5, a new necessary condition for the time 

open problem results. The “time specified” problem will be addressed in the next chapter. 

5.2 State and Adjoint Variable Solutions on Coasting Arcs 
  

On coasting arcs, i.e. portions of the trajectory where thrust is zero, the differential 

equations for the Schumacher coordinates become 

rf 4+?=0 

uw +uss 5.2.1 

h’=0 

Hence, ?, f’, u, and u’ are simple harmonic oscillators, and h is a constant. Therefore, 

i(n) = fgcosn + f4 sinn 

i/(n) = ~fpsinn + i cosy 

VERIFICATION OF IMPULSIVE THRUST TRAJECTORIES — TIME OPEN 68



u(n) = 2 + (ug - “)eosn + ug sinn 5.2.2 

u’(n) = -(g - sing + ug cos7 

h = constant . 

Similarly, the adjoint variables corresponding to ?, f’, u, u’, as well as h, are also simple 

harmonic oscillators on coasting arcs when , = 0 (i.e., when final time is not specified). The 

differential equations, in this case, are 

d7, _ dy, __ d? _ 
d 9 r’ _- dnt = X-1 => ane i + r-1 _ 0 5.2.3 

° d) —-) WN tr yH dy? uw dj u “uv! => Gnu’ y= 9 

d 24 2 =r, =—A > Ss 5rA,4+ 4, =A... dy h ~ 43 “ul nh “h™ “ho 
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These have solution 

A2(7) = Azgcosn + A-/,8inn 

A-(7) = -A;)sinn + A -196087 

Ay(n) = Ayocosn + A fosinn 5.2.4 

An) = ~Ayosinn + A %o0087 

2p Qu . 
A, (7) = a3 Ayo (cosy - 1) + ng Wo sing + Apo: 

The simple form of these equations facilitate computing the local primer vector, S(n), on 

coasting arcs between impulsive burns, in order to check if the trajectory satisfies the Maximum 

Principle necessary condition. 

5.3 Computation of the Local Primer Vector Between Burns 

Since the limiting thrust becomes just a change in vector velocity, Av! the Maximum 

Principle states that the local primer vector, S(7), must be collinear and co-directional with this 

Av! at each burn. Furthermore, the primer magnitude must equal one (S = 1) at each Av! as 

— ol 
shown by Lawden, and by Lion and Handelsmann. Hence, S = ax with Av 4 | Av! |. In 

Schumacher coordinates, 
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hou” — hty’t 

Av! = TAV = | uw-(htcos¢ —h’) 5.3.1 

htu- sing 

in the local basis (f, 7’, h). A minus sign indicates immediately before the burn, and a plus sign 

  

indicates immediately after the burn. Also, sing = (?’ + h ), and cos¢ = (?’ + ), 

= _ Ay! . . 
From the § = Ay relationship, therefore, 

-r. 7 
>; hu _ hty’t 

hay, — uA 
h ha w |= u-(htcos¢ — h’) Av . 5.3.2 

de, h 
( r htu- sing 

LL _ = ~         
As a result, at each burn the quantities 47, Ay, and (Ay, h) can be determined from this 

simple linear equation. These variables need to be computed for all 7 values between impulsive 

thrusts, in order to check that S(7) < 1 for all 7. To this end, consider first computing An): 

Its value is known at the beginning and at the end of the coasting arc, but A,9 is needed at the 

beginning of the arc because it appears in (from Eq. 5.2.4) 

An) = —Ayosinn + A 'o080 . 5.3.3 
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Since 

Qu 2 . 
An(n) = +3 uo (cosy - 1) + 13 ro sing + ALG » 5.3.4 

then, with subscript “o” referring to the beginning of a coasting arc, “f’ referring to the end of a 

coasting arc, and 7, denoting the total coasting angle, 

sinnr 
duo = h° ——t 

(cosy, ~ 1) u’o’ 
wo = Bylcosny —T) 5.3.5 (Ang 7 *ho) ~ 

This 4,9 and the given ro provide An) for all 7. 

It is interesting and significant to note, however, that given arbitrary values of Av! at 

both ends, and hence arbitrary values of A, , A, A,,,, and 4, , , the functional form of 
u’0 u ho hf f ’ 

df) (i.e., Eq. 5.3.3) evaluated at nz will not necessarily equal the given An's . Asa result, if 

a coasting arc between two burns on a proposed optimal trajectory is not such that f? from 

_ wl 
the S = a relationship, matches the value from the functional form of A Wn4)s then the 

trajectory cannot be optimal. This is so because the Maximum Principle states?! 3? that if the 
  

trajectory is optimal, then there does exist a non-trivial adjoint response satisfying the 

conditions mentioned previously; but, the mismatch of the final functional value of aa) and that 

= sl 
obtained from the requisite S = Av" relationship indicates that there is no such adjoint 

Av 

response. This fact provides an additional test of optimality, even before the requirement that 

S(n) < 1 for all 7 is checked. This test can be put in the analytical form 6 = 0, where 

  

H 

a 

    
Aut + Ayosinns — A, 1,c°87; = 0. 5.3.6 
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As a reminder,  , uo and am t are determined from Eq. 5.3.2 at each end of the coasting arc in 

question, 41,5 comes from Eq. 5.3.5, and 7 7 is the coasting angle. 

Returning to analyzing S(n), evaluating A, (n) is straightforward, after Ayo is computed 

from Eq. 5.3.5, since it is function of only Ayo , a0 ; Ano , and n (see Eq. 5.3.4). The last 

quantity to be considered is (Az , h). For notational convenience, define Aq 4 (Az , h) and 

As 4 (Az 5 h) (where subscript “N” stands for normal, since the component of these vectors in 

the h direction is the out-of-plane component, normal to the plane of motion). Then, 

Azmn(n) = —AzNo Sinn + Az, COSN 5.3.7 

so that, evaluating Eq. 5.3.7 at ny and solving for Agno yields 

AzNo = A-NOo cotn s - AYN YS CSCI ¢ - 5.3.8 

This equation can be used to find AzNo 28 long as sinn # 0 (i-e., 7 f # nn for any integer n). 

~ al 
This value of A: ,, along with the A-1No given from the S = Av at the beginning of the 

coasting arc, yields \~1(7) for all 7 through Eq. 5.3.7. 

Thus, all variables in the equation for S(n) can be determined as functions of the 

independent variable 7, so that the necessary condition S(n) <1 V n€ [0,7] can be checked. 

Along the way to unearthing the method for computing S(n), a new test of optimality along a 

coasting arc was discovered as an artifact of the functional form of the adjoint variables, the fact 

that A, (n) and A 7) are related through the initial value of 4,,(7), Ayo- 
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5.4 Computation of S’(n) 

Now that S(n), and hence S(7), can be evaluated on coasting arcs, the functional form 

for S‘(n) is required for two purposes. Firstly, and primarily, it is required in order to test the 

S’=0 conditions at the appropriate burn times, as mentioned in Section 5.1. Secondly, 

the condition S’(7) = 0 can be used to find the points n* where the maxima of S(n) occur, in 

order to check the condition S(n*) <1 at these critical points in order to verify that S(n) <1 

everywhere on the trajectory. 

To this end, consider that if S(7) #0, then the zeros of S’(n) are the same as the zeros 

of S(n)-S'(n) = (S(n) , S'(n)). Since h and u(7) do not go to zero on any of the trajectories of 

interest, the zeros of o(7) D }? u(n)* S(n) -S/(n) will be the same as the zeros of S/(n). Taking 

straightforward derivatives of S(n) yields 

Au 
h 

u 
(a +u? + u?)A + uv’A, — hur, 
  

      
5’ - 5.4.1 (7) hue 

_ a, h) + u/(Azr , h)) 

hu? 

Therefore, 

u 
o(n) = —w yA + (hA, — WA MEG tu? + 0 )r + uu’, — hu’A] 

5.4.2 
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+ u’d2,,,). 
i/N 

In these previous two equations, all quantities on the right hand side are evaluated at n. 

5.5 Review 
  

A two step check is suggested for checking the optimality of a trajectory consisting of 

impulsive burns instead of thrusting arcs. First, on each coasting arc between burns, the 6 = 0 

test (Eq. 5.3.6) is evaluated. If 6 # 0 on any arc, then the trajectory is not optimal. If 6 = 0 

on all arcs, then the classical optimality conditions on the primer vector must be checked. If 

S(n) > 1 for any n on any coasting arc, or if S’(n) #0 at interior burns or after an initial coast 

or before a final coast, then the trajectory is not optimal. Otherwise, the trajectory is still a 

candidate for an optimal trajectory. 
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6.0 VERIFICATION OF IMPULSIVE THRUST TRAJECTORIES — TIME SPECIFIED 

6.1 Introduction 

The problem of verifying optimal trajectories when a maximum final time is given is 

nearly as easy as the open time case. As far as primer vector theory is concerned, very little is 

different from the time open case. The solution, however, of the Schumacher adjoint variables is 

slightly more complicated, since 4, #0 in general for time specified trajectories. This extra 

degree of freedom in the adjoint variables (the 4, parameter) unfortunately means that the new 

6 = 0 test for optimality does not apply for the time specified case. In other words, recall that 

unless 6 = 0, the functional form of Ay(n,) propagated from 1, does not match the value of 

AW f determined from the S = avi requirement the Maximum Principle places on the control. 

But, for the time specified case, the parameter 4, is now part of the WV solution, so this extra 

degree of freedom essentially allows 6 = 0 to be true always. 

Effectively what has happened is that knowledge of the time of flight on the coasting arc 

has replaced the condition 6=0, as will be shown later in this chapter. When there are more 

coasting arcs than one (i.e., more burns than two for rendezvous or more than one for intercept), 

more conditions are required to replace 6=0 on each coast. The appropriate condition is 

Atm = At m-1 for each coasting arc m after the first one, resulting from the solution 

A,=constant over the whole trajectory. 

The extant conditions on the primer vector, however, still hold, of course, in the time 

specified case. With the solutions and procedures developed in this chapter, these conditions can 

be easily checked by propagating the primer vector transformed to Schumacher space, S, as well 
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as its derivative, S’, and the derivative of its magnitude, S’. 

6.2 Solution of Adjoint Variables 

The adjoint variables were solved for coasting arcs in Section 5.2 for the case when 

A, = 0. Examination of Eqs. 4.2.7 reveals that only Ay, a, , and An are changed when 

A, # 0. The A, = 0 solutions to these equations are homogeneous solutions, and 4, multiplied 

by its factors are forcing functions, the consideration of which leads to complementary solutions. 

Consider first the solution of we The equation from Eq. 4.2.7 , on coasting arcs, is 

“A, = -4y 
dr? u’ dn U 

Using 

d, _ 2X¢ 
aye = AW +58 

from Eq. 4.2.7 produces, after appropriate rearrangement, 

2X¢ 
r+ AW = - 73° 

d2 

x 
hu? dy? u 
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When 4, = 0, this is the homogeneous equation solved before. Since A, is a constant, let the 

right hand side be 4, - f(7); i.e., 

2 f(n) = —-“%. 6.2.5 (n) 53 

Then using the variation of parameters approach to the solution of this, the complementary 

solution is 

Me = C,(n)cosn + C,()sinn 6.2.6 

(since cosy and sinn are two independent solutions of the homogeneous equation). C,(7) and 

C,(n) are found from 

(7) = —f(n)sinn 6.2.7 

and 

C3(n) = f(n)cosn. 6.2.8 

These two equations can be integrated analytically, as is shown in appendix A. 

In order to solve 4,,, next, recall that from Eq. 6.2.1 

6.2.9 

Therefore, 
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Aue = —[Ci(n) + Co(n)] cosn + [Cy(n) — Ch(n)] sin. 6.2.10 

Finally, »n ¢ 18 to be solved. The differential equation of An is 

  

dA XN h _ 2H t =— = -5A + . 6.2.11 dn ho w?) h2u(n) 

Substituting both homogeneous and complementary solutions of Aa) into this equation gives 

dA, 
dn 6.2.12 _ 2b t 

= 980 uh + Awe) + BReGy’ 

Since the right hand side of this equation contains only known functions of n, Ay is solved by 

integrating both sides. Doing this, and subtracting the homogeneous solution from both sides 

yields the complementary solution of Ap! 

nfo Apel?) — Ay-(0) = Jolie A(x) + reo 6.2.13 

u] 7 
The first term on the right side of the equation requires the integral | del) dx, which is 

0 

solved analytically in appendix A. For solving the second term on the right hand side, recall 

that st = a This means that the integral of the second term is just : times the time of flight 
u 

of the coasting arc. Finally, choose A, (0) = 0. Putting these together, 

_ uf" (t — to) Ane) = 3 rel) dx + — 6.2.14 
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where A, - An AU) is the total complementary solution. 

Adding these complementary solutions to the homogeneous equations, Eqs. 5.2.4, and 

including all of the adjoint equations for completeness, 

A2(n) = A;_cosn + A181 

A-/(n) = -A,)sinn + A-1,6087 

Ay(n) = Ayocosn + A /osinn + At Auc(n) 6.2.15 

An) = —\yosinn + A lpcO8N +A Ahn 

d,(n) = “4 rug (cosn-1) + AA, sinn + ApAp_(n) +A h\}/ = F3 “uo (cost) bp? wo 07 TF At “hc? © “ho 

and 

A = constant. 

6.3 The Time Specified Local Primer Vector 
      

In order to be able to determine the values of the local primer vector, S(n), for all 

values of n € [0,7 fl on any coasting arcs between burns on a proposed optimal trajectory, the 

values of the adjoint variables comprising S must be determined from the S = Av condition at 

both ends of the coast as before. Now, however, the additional adjoint variable, 4,, must also 

be computed. To this end, consider the two equations of the two adjoint variables (from Eqs. 

6.2.15), 
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An) = —Ayosing + A, 1,c087 + rt df) 6.3.1 

2 2 . 
An(n) = i Ayo (cosy - 1) 4+ 3 ro sing + Az Ap (7) + Ang: 6.3.2 

When these expressions, Eqs. 6.3.1 and 6.3.2 are evaluated at Np the left-hand-sides become 

AW i and An t These are known from the S = ar condition at the final burn on the coasting 

arc of interest. Similarly, r/o and Ano are determined from the first burn. nF is the known 

coasting angle, and ln f) and A, AU f) can be computed from 1; and the state variable. The 

only unknowns, therefore, are Ay, and 4,4. Eqs. 6.3.1 and 6.3.2 are two linear equations in two 

unknowns, so the solutions are readily determined. 

Before solving these equations, reflect on the fact that when A, was specified to be zero, 

these two equations gave the 6 = 0 additional test of optimality, since they were two equations 

in the one unknown, 4,5. Now, however, knowledge of the time of flight has replaced the 6 = 0 

condition, since a specific time of flight yields a specific A, on a given coast between two burns, 

with the previous and subsequent orbits fully known. In other words, in view of Lambert’s 

theorem”, if the previous and subsequent orbits are known, then one parameter will suffice to 

specify the trajectory between these two orbits. Let this parameter be called y. In the next 

chapter it will be shown that when it is desired to compute (as opposed to merely checking) 

trajectories which satisfy the Maximum Principle, the parameter of choice ~ chosen in this work 

is ug. If the time of flight is free, then 5(~) = 0 specifies the trajectory. If the time of flight is 

specified, then the value of ~ which yields this time of flight is the desired one as long as the 

time open solution (6(~) = 0) has time of flight longer than the specified maximum time. 

On trajectories with more than two burns, the fact that A, must be constant gives an 
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additional check for each burn beyond two. That is, Abn = AL, n+1 for coasting arcs n and 

n+1. If n, is the number of burns, then these n, — 2 conditions on matching values of A; on all 

coasting arcs, plus the one additional total time of flight condition (for a total of ny- 1 

conditions), replace the n),— 1 conditions é: =0, i=l,..., n- 1, whenever the time free 

solution has time of flight longer than the specified maximum. Note that if a time specified 

solution was forced even though the time open trajectory had shorter time of flight, then 4, 

would become positive. 

Returning to solving Eqs. 6.3.1 and 6.3.2, solve the first for A,,)sinn: 

Ayosinn = A 0087 — AY + ALA etm) 6.3.3 
f 

Next, multiply Eq. 6.3.2 by sinn and substitute for Ay siny from above, then solve for 4, to 

yield 

. 2 
(An ~ Aho) 8in7 + Ong + Au?) (cosy — 1) 
  AL = 7 6.3.4 

Mic(7) sing + bo tue) (cosy — 1) 

Finally, use this value of A, in Eq. 6.3.2 to solve for Ay9: 

hry, — a + An) ] + X08 aT h _ h t h 1) 7, $1Nn7) 

ug = ee ‘ uo 6.3.5   

(1— cosy) 

The computation of A. (1) is the same as in the time open case, since it is not affected by ,. 

With all of these values of the adjoint variables, S(n) can be computed in order to check that 
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S(n) < 1 for all 7 €[0,n,]. 

6.4 Computation of S'() 

The computation of S’(n) for the time specified case is accomplished in exactly the same 

way as in the time open case. As already shown above, S(m) is the same regardless of the 

dispensation of the final time; hence, S‘(n) is the same as before except that the derivative of 

one of the adjoint variables now contains a term with 4, in it. To this end, again taking 

straightforward derivatives of the local primer vector S(n) (Eq. 3.4.37), and using Eqs. 4.2.7 for 

the derivatives of the adjoint variables (with zero thrust and nonzero 4,), 

Au 
h 

X pu 2 12 ! t t 
(a +u’+u ay + uu Ay _ hu An + hu 

hu? 
  S'(n) = 6.4.1 

_ (aQj sh) + uy sh) 

hu? 
      

The only difference between this vector and the time open vector, Eq. 5.4.1, is the addition of 

rt 
the term 33 

h 
3 in the direction of f’. The function a(n) 2 h2u(n)? S(n) S'(n) defined in 

u 

Section 5.4, which has the same zeros as does S/(7) when S(n) #0, is therefore 

A u 

a(n) = —WAyA 7 + (hA, _ ud Gy + w? + w?)d + uu’Ay, _ hu’A, + 5] 
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6.4.2 

4y\2 
- (WArNAsny +u A-rn) . 

So, with the knowledge of 4, obtained by the methods of the previous section, as well as the 

other adjoint variables, o(n) can be calculated in order to check the necessary condition o(n) = 0 

where it applies. 
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.1 Introduction 

The new optimality test, Eq. 5.3.6, can be used not only to verify optimality of 

impulsive burn trajectories, but also to compute trajectories which satisfy the Maximum 

Principle. First, in this chapter, the two burn case will be considered to a fixed position, then 

from this foundation a more general procedure will be built in the following chapter. The first 

several sections, Sections 7.2-7.6, will be devoted to the time free case. Section 7.7 will then 

treat the time specified two burn rendezvous and one burn intercept problems. 

7.2 Two-Burn Time-Free Rendezvous Trajectories, No Initial Coast 

Consider, first, the impulsive burn rendezvous optimal control problem where it is 

known a priori that the interceptor space vehicle will burn immediately at its current position 

(no coast), and that there will only be two burns, the initial one and the final one. This is 

indeed a simple subset of all the problems of interest. Many real problems, however, do fall into 

this category, and the new optimality test, Eq. 5.3.6, allows the solution to be easily computed. 

As a matter of notation, let index subscripts denote the number of the coasting arc; e.g., 

f,(0) and F(z) are the values of the element f at the beginning and at the end of the nth 

coasting arc. Thus, for rendezvous problems, n € {0 ,1,..., Ogura}, Where ny,,,,, is the number 

of burns. For intercept problems, n € {0 , 1, ..., 05,,-,—1}. Hence, for the two burn problem, 
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n=0 is the initial trajectory of the interceptor, n=1 is the intermediate trajectory, and n=2 is 

the target trajectory. Although this general notation need not be used when there are only two 

burns as is presently being considered, the ensuing results are more generally applicable and 

hence will also be used in later chapters. 

Using this notation for the coasting arc between the two burns (i.e., n = 1), consider 

that the full set of elements are known at the end of the original interceptor trajectory: Bn fs 

Un-1(7p)> Fy-1(77)> Up_y(n4)> and h, ,. Similarly, the full set of elements at the beginning of 

the target trajectory are known: f,, (0), u,4 (0), #43(0), uy, 41 (0), and hi44- From 

elementary geometry, the vectors £,(0), and f, (0) can be easily computed when 

ny # (2m—1)r for any integer m: f,(0)=f,_4(n,), and i, (0) = hy x f,(0), where 

- 

hy = sgn(siny,) f,(0) x Fn 41(0)- Also, u,(0) = u,_4(n,)- 

On the other hand, if n; = (2m—1)7 for some integer m, then the plane of motion of 

  

the coasting arc is not uniquely determined. Since AsINg = —Az!N f when ny = (2m—1)7 (see 

— wl 
Eq. 5.3.7), the third component of the S = aS equation, 

Ast htu- si iN _ u- sing PN le 7.2.1 

can be used at the endpoints of the coasting trajectory to determine the plane of motion 

(namely, ¢ determines the plane of motion). That is, 

h2u2(0)singg Anh, 4 Un(n4) sind 
Avo = Av; 7.2.2   

Notice that Avg and Av f are functions of ¢ 9 and ¢;, also. This is only one equation for the 

two unknowns ¢, and ys so another equation relating the two must be found. The requisite 
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relationship comes from the fact that since the planes of motion before and after this current one 

are known, once ¢g is given, ¢¢ can be immediately determined. Since f,(7) = —f,(0), the n—1 

and the n+1 planes can be related by an angle a defined by: 

sina = (hi 4158 4(n9)) 7.2.3 

and 

cosa = (hy 44 »hy_1)- 7.2.4 

Then ¢; = ¢9 +c. Substituting this into Eq. 7.2.2 gives 

h2u2(0)sing, a hyh, , :un(74) sin(¢? 9 + a) 
AV, = Av; 7.2.5   

This is an implicit function of ¢), which can be solved numerically. 

Now, the only remaining undetermined elements are uj, (0), and h,. These two 

elements are not independent, either, for since ny is known, the following equation (Eq. 5.2.2) 

can be used to find h,, in terms of ul, (0) (or vice versa): 

Un(ns) = iz + (u,(0) ~ i) cos, + up (0) sinn, 7.2.6 

Hence, either uj, (0) or h, can be considered to be the parameter of choice for defining 

trajectories between the two positions, so all trajectories between these two positions can be 

parameterized in terms of this single parameter. Since uj, (0) will be referred to often, define 

yp 4 uy, (0). It is better to keep y as the parameter of choice instead of h,, and hence define h, 

in terms of ~, because ~ in Eq. 7.2.6 is multiplied by sing +. As a result, % could not be 
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determined from h, when n= (or any multiple of 7); on the other hand, h, can be 

determined in terms of ~ from Eq. 7.2.6 for all nz € (0,27). (Obviously, neither variable can be 

uniquely determined for trajectories with np = 27m, where m is any integer, because ail 

trajectories will repeat the same elements after traversing an angle of 27.) The result of solving 

for hy in terms of » from Eq. 7.2.6 is 

  

wl — cosn,) 
h, = : 7.2.7 

nh \un(nz) — un (O)cosn, — dsinn, 
  

  

The positive root is chosen since the specific angular momentum, h, is a non-negative quantity. 

Thus, all coasting trajectories between the initial interceptor position and the target position can 

be parameterized in terms of the single parameter %. When Eq. 7.2.7 is evaluated at 7 fa™ 

h, is a constant for all ~ values since sina = 0. In other words, all trajectories which fly from 

Ug to uy in a transfer angle of 7 will have the same angular momentum. This is why h cannot 

be an iteration variable near 7 fut 

The only remaining unknown, then, is the value of # which yields an optimal trajectory. 

Perhaps the most straightforward means of obtaining the value of ~ which satisfies the 

Maximum Principle is to numerically find the zero(s) of 6, Eq. 5.3.6, which should now be 

written functionally as 6(7). That is, each choice of ~ gives a coasting trajectory, and the 

elements of the trajectory along with the known elements of the initial interceptor trajectory and 

of the target trajectory are used to compute Av! at the beginning and at the end of the coasting 

arc. Then the values of the adjoint variables AY and »n can be determined at both ends of the 

5 — Av! trajectory from Eq. 5.3.2 (i.e., Av ). These, in turn, are used in Eq. 5.3.5 to determine Au0° 

Finally, An0 ; d'0 ; a) , and Ny are used to determine 4(7) for this value of y. In this 
f 

manner, a suitable numerical technique can iterate on w to determine the value(s) ~* such that 
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It must be observed, in order for 6(~) to be successfully manipulated, that not all values 

of y yield physically valid trajectories. These limits on %, which restrict its domain, are derived 

in Appendix B. Summarizing the results of Appendix B, when sinny > 0, 2 has a lower bound, 

  

i 2u,u 
y > 097 — ,|, ef 7.3.1 

— cosn + \ — Cosy ¢ 

and an upper bound, 

u — u,(0)cos 
wy Un(7 4) — Un(O)cosn ¢ 7.3.2 

sinn 

On the other hand, when sinn < 0, the lower bound on y is Eq. 7.3.1, but there is no upper 

bound. 

7.4 Rendezvous Solutions as Roots of a Polynomial 
  

Careful examination of the 6() equation, Eq. 5.3.6, together with each of the functions 

of y contained within it (A Auo > Ag/a » and the functions within them), reveals that 
w f°? uo 

5() = 0 is an algebraic equation in 4. Therefore, by appropriate algebraic manipulations, 6(7) 

can be converted to a polynomial in y such that the zeros of 6(%) are also zeros of the 

polynomial (though the polynomial also has extraneous roots). For the rendezvous problem, 
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this yields a twelfth degree polynomial. The numerical difficulties of obtaining accurate 

solutions with such a high degree polynomial, however, make the numerical usefulness of this 

fact dubious. Theoretically speaking, it is nice to know the maximum number of possible real 

roots, but in practice it has proven better to work directly with 6(w) to find its zeros for 

rendezvous problem. Intercept problems, on the other hand, yield a polynomial in y which is 

only a quartic, which can be solved analytically. This is indeed useful. The derivation of this 

intercept polynomial will be given in Section 7.6. 

7.5 Addition of an Initial Coast 

In the course of analyzing optimal trajectories, it may become necessary to add an 

initial coast to the trajectory before the first burn. This may be necessary, for example, when 

S > 1 on the no initial coast solution (particularly when S’ > 0 at 7 =0). Since it is a 

requirement that S’ = 0 on both sides of an interior burn; since S’ is just a function of the state, 

the adjoint variables, and the independent variable n (as shown in Section 5.4); and, since all of 

these quantities are known between burns as derived above, S/(0) = 0 between the two burns 

gives an extra condition which can be used to determine the initial coast angle, 79. As in 

Section 5.4, the quantity o(0) (Eq. 5.4.2) will be used in place of S’(0) in actual computations. 

The whole solution process for two-burn trajectories, therefore, consists of two steps. 

First, assume 7) = 0, and solve the one dimensional problem 6(%) = 0 for y. If S(n) > 1 for 

some 7) on the resulting trajectory, then solve the two nonlinear functions 6(~, 79) and o(%, 79; 0) 

for the two unknowns y and np. 
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7.6 Intercept Trajectories Between Fixed Positions 

The intercept problem analogous to the two burn rendezvous problem is the one burn 

case. The reason for this is that, unlike the rendezvous problem, the optimal intercept 

trajectory will never thrust at the end of the trajectory (the intercept point), as demonstrated in 

Section 4.3. Therefore, the adjoint variables Aue > Ah f? and AN p are set equal to zero as f ’ 

mandated by the transversality condition at the endpoint, instead of being determined from the 

— sal 
final burn S = ar condition. Apart from this difference, the solution procedure for finding the 

values of y which are zeros of 6(y) is basically the same as in the rendezvous case. 6(%) is a 

simpler function, since the terms with adjoint variables at the end of the coasting arc vanish: 

6(~) = Ayosinn ¢ — dof . 7.6.1 

Since 6(y) is a simpler expression, a polynomial which is only a quartic can be derived 

from it. Evaluating Ay with Ay f= 0, 

h?) sin 
dM = ho "f 7.6.2 

uo 2u(1 — cosn,) + (1 — cosn ¢) u’o" 
  

In this equation and in what follows, h & hn» uy, u,(0), and u,8 Un(7z). With this 

expression 6(7) becomes, after simplification of the total factor of do ’ 

su) = ome yg y 7.6.3 
(1 — cosn¢) 2 ho u’o 

— sl 
Ano and ro are determined from the S = a requirement, Eq. 5.3.2., 
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h?p — bh, yupy (ng). 

  

  

  

Ayo = Av, 7.6.4 

_ hy? _ hon (ny) ¥ + ud(h cos¢ — h,_1) 

Aho = Ay ; 7.6.5 
1 

Av, 6 
Then, Avs 5) = 0 is the same requirement as 6(7)=0, so that 

sing 

2p(1 oan + ugcosd — F (by 1 UH-1 (ng) v + hy-1%9)] 

+ 43y - Shh (ap) = 0 7.6.6 h2 bh? nl nl f . 

Since 

1_ Un(7¢) — Up(O)cosn, — psinn 76.7 

h \ p(1 — cosy»)   

it and its factors must be isolated on one side of Eq. 7.6.6, then both sides must be squared and 

once again combined on one side of the equation to yield a quartic polynomial. Proceeding in 

this manner, Eq. 7.6.6 becomes 

ey? +avt+ 5G cosé = 1 fh uy (ng) vo + h,1($u9 + aut) (nj) 7.6.8 

sin uy — U,cos 
__ as and a= nf > MoS t 
a1 — cos) (1 — cosn;) 

rewrite Eq. 7.6.8 in generic terms, 

, so that r= Jo — wy. Next, for simplicity, where w = 
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ayy? +ayptay = Ja — we (bp + bg); 

where, 

—_ W2 a = Zuo cos¢, 

ao = —5) 

bo = h, 4($ug + aut (n¢)), 

and 

by = Shy yun (n,)- 

7.6.9 

7.6.10 

7.6.11 

7.6.12 

7.6.13 

7.6.14 

Squaring Eq. 7.6.9 and combining all terms on one side of the equation results in the quartic 

  

  
azyt + (2aja, + wb?)p? + (2aga, + a? + Qwbyb, — ab?)y? 

+ (aga, + wb? — 2abyb,)y + (a2 — ab2) = 0     

7.6.15 

All the real roots of Eq. 7.6.15 are easily obtained analytically or numerically, so that 

all the zeros of Eq. 7.6.6 (which are a subset of the roots of the polynomial) are easily verified 

by substitution. So, the 6 = 0 condition takes on a particularly simple form for the case of one 
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burn intercept trajectories -- the test has reduced to the solution of a quartic. 

7.7 Time-Specified Two-Burn Trajectories 

Consider, again, the problem where the orbital transfer will occur between two fixed 

positions using only two burns (or one burn for intercept), with no initial coast. Since the 

transfer time is specified, the problem is just a Lambert’s problem. yw can be used as the 

iteration parameter for the solution process for Lambert’s problem, just as it was presented as 

the iteration parameter for the 6(~) = 0 equation in Section 7.2. The same arguments hold here 

as they do there, since a given y will uniquely specify the trajectory between the fixed positions. 

The only difference is that the requirement that time of flight be a specified value, 

t(p) — to — At, ecified = 0, replaces 6() = 0. 

It is of interest to note how this Lambert’s solution compares with other popular 

Lambert’s solution techniques, especially the p-iteration method. Since p = b this method is 

essentially an h-iteration method. In section 7.2 it was shown that iterating in y is much better 

in general than iterating in h, because when 7 fa=™ h is a constant over all trajectories, so that 

it cannot be used as an iterative parameter at that value of the transfer angle. Battin’s latest 

Lambert problem solution technique’, a modification of Gauss’ original solution method, is 

generally reputed to be the most robust method available. In comparing Battin’s method to an 

implementation of the y-iteration technique, Battin’s method in general seemed a little more 

robust, though the 7y-iteration technique was generally competitive. 

After Lambert’s problem has been solved by whatever method, the solution must be 

checked for satisfying the necessary conditions on the primer vector, as in the time open case. In 
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this case, \, is computed first, then the Schumacher adjoint variables and hence the local primer 

vector S(n) can be propagated to check the requirement S(n) <1 V 7 € [0,7 fl: If this test fails, 

an initial coast can be added, and exactly as in the time open case, the value of the initial 

coasting angle which causes the condition S’ = 0 to be satisfied immediately after the first burn 

is the proper choice. Again, as stated above, for the two burn rendezvous problem (or the one 

burn intercept problem), the only difference in the solution process is the replacement of the 

6(#) = 0 condition with the t(p) — tg — At, ecified = 0 condition. 
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8.0 COMPUTATION OF GENERAL IMPULSIVE TRAJECTORIES 

8.1 Introduction 

In the previous chapter, it was shown that candidate solutions to the impulsive fuel- 

optimal two-burn rendezvous and one-burn intercept problems could be computed by solving 

either one nonlinear equation (if no initial coast was required), or two nonlinear equations (if an 

initial coast was required). In this chapter, these results will be extended to the general n-burn 

case. As before, two distinct cases occur for the general problem: the no initial coast and the 

initial coast cases. 

First in order of development in this chapter is an explanation of the additional 

nonlinear equations which must be solved when additional burns beyond two are added. Next, 

two slight modifications to the solution process are introduced. These modifications are 

necessary to simplify the numerical solution process, especially to make the iteration process in 

searching for candidate optimal trajectories more smooth. Finally, changes to the algorithm 

when time is specified are presented. 

8.2 Additional Unknowns 

If an additional burn is added to a two-burn trajectory, making it a three-burn 

trajectory, then new unknowns crop up in the problem. Consider first motion restricted to a 

plane. In order to specify where the burn will take place, the coasting angle between the first 

burn and the additional burn, 7,;, must be determined. Next, uy, the reciprocal radius at the 
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intermediate burn point, is unknown. Once these are specified for the planar problem, and it is 

assumed that the subsequent trajectory is specified (in some solution process), then the only 

remaining unknown on the new trajectory is, as before, y (because, as in the two burn case, the 

flight is between two fixed positions specified by 7, and w). It is easily shown by examining the 

equations of coasting motion (u(7) and u‘(7)) and of S(n) that knowing these additional three 

quantities permits these equations to be determined. By the way, h on the new coasting 

trajectory could be used instead of u,, if this is desirable. 

Now, three additional equations must be found in order to solve for the three new 

unknowns. The most obvious equation to use is, of course, 6(y~) = 0 on the new coasting arc, as 

before. Since interior burns must have S’=0 on both sides of the burn (as deduced by 

Lawden*!, and as was used in the two-burn case with initial coast), O(N) =, 4.1 (0) =0 

provide the two remaining equations. For each additional burn beyond three, again the three 

quantities 7,, Y,, and u, f (or h,), must be determined, and the three equations above on this 

new trajectory provide a means for solving for them. 

If the problem is not restricted to have only planar motion, as was assumed above, then 

the angle between the current and the previous trajectory, ¢,, must be determined for each new 

coasting arc before a new burn. Hence, another condition is required in order to determine ¢, 

for each additional burn. The extra equation to be satisfied comes from another necessary 

condition due to Lawden®°, which is related to the S’=0 condition used extensively above. 

Lawden solves the impulsive thrust optimization problem using Calculus of Variations, with 

each burn being a corner of the trajectory (in Calculus of Variations parlance, a corner is a 

discontinuity in the derivative of the state). He extends the classical Weierstrass-Erdmann 

corner conditions to include problems with differential constraints and Lagrange multipliers (i.e., 

the adjoint variables), and shows that, among other things, the primer vector and the primer 
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vector rate must be continuous across an impulsive burn. Since the primer vector rate is 

Az = —Az , the continuity of A; can be used in its stead. 

st os . . ey: 
Az =A, across the burn gives three equations to be satisfied. Two of these conditions 

have already been used above, in the stu gi = 9 equations. That is, S’=0 because 

4 | Az | = 0 on each side of the burn (as shown in chapter 5), but the fact that 4 | Az | = 0 at 

an interior burn is already derived from the continuity of Ay (together with the requirement 

|Az| <1). Hence one degree of freedom is all that is left from the continuity of dy 

requirement. Since the continuity of 4; is used in its place, the new equation chosen to be used 

is 

gh -Bo = Ap +P. 8.2.1 

This direction of 4; is chosen since S’ is effectively the component of Ay in the A; direction (i.e., 

the direction of thrust), and it should be rare to thrust in the radial direction. If AZ is ever 

nearly aligned with f, then another component should be used instead. 

Now, all the adjoint variables in the analyses above are in Schumacher space, so the 

transformation between them and A; are needed to make Eq. 8.2.1 useful. The appropriate 

transformation equation is Eq. 3.4.40: 

= ulhdp—u/A—uAay)é + [uA #- dnt) +hu’d —(u?+u?)r JF 
/ _ 8.2.2 

+ (WAP h+u/AZb)h. 

The inner product of this with f is 
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AP F = u(hdA, - WA —udr,) 8.2.3 

so that the required equation to be solved is 

~,- —\- - + + r 8 boar a AG -uay- htatsu tay sual = 0. 8.2.4 

The solution of this 7 equation at every burn other than the first and the last burn, together 

with the solutions of the previously mentioned equations, yields a trajectory which is an 

extremal. 

8.3 Further Considerations 
  

The development of the equations which are to be solved in order to find impulsive burn 

approximations to the general n-burn intercept and rendezvous problems is nearly complete. 

There are, however, two additional considerations to be addressed, which simplify the numerical 

solution process. First, in Section 5.3 it was stated (immediately after Eq. 5.3.8) that ANo 

could be solved for (at the beginning of any coasting trajectory) as long as sinn,# 0. There 

seems to be no reasonable method for solving for AzNo directly, however, when siny f= 0. Arno 

is, however, an integral member of the equations which must be solved numerically. Therefore, 

AzNo On each coasting arc can be added as an additional unknown in the problem, the correct 

choice of which (together with the other variables in the solution process) will solve the equation 

Ad-N 4 = —A:nosinn + A= C081 — AVINS = 0. 8.3.1 
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This equation is the difference between the functional value of As t (the 

_ wl 
[—Aznosinn + As 687 portion of Eq. 8.3.1) and the value obtained from the S = x 

condition at the terminal end of the current coasting trajectory (denoted AN f in Eq. 8.3.1), 

which must be equal. With one new variable and one new equation per coasting trajectory, 

there are now n),— | new variables and equations in the solution process. 

In doing this, the solution process for part of the rest of the equations is simplified. 

Recall from Section 7.2 that if "NY is an integer multiple of 7, then the plane connecting the 

previous and the subsequent orbital planes is not uniquely determined by mere geometry. With 

the aid of the functional requirements of d-IN , 2 nonlinear equation (Eq. 7.2.5) was found whose 

solution yielded ¢9, the angle between the previous and the current trajectory planes. With this 

current solution process, however, the solution of this equation is avoided since it is subsumed in 

Eq. 8.3.1. That is, solutions which satisfy Eq. 8.3.1 will satisfy Eq. 7.2.5 when 1f is an odd 

multiple of 7, which is easily verified by direct substitution of 7 in Eq. 8.3.1. When ny = 7, Eq. 

8.3.1 says that 

8.3.2 A — x. #No — fg’ 

Hence, only the correct choice of ¢) and/or ¢, will satisfy Eq. 8.3.2 (since A-rgand AsN 7 are 

functions of $y and ¢¢ -- see Eq. 5.3.2), thus forcing the correct transfer plane to be chosen. 

Of course, Eq. 8.3.1 is equal to zero when 7 = 7 no matter what choice of Azno is made 

(for the appropriate value of ¢) and other parameters which make A-NoT since ANo 
~ AN f ) 

is then multiplied by sina = 0. Since ¢, is in the state of the optimization problem, a solution 

will yield the correct plane of motion as stated above, but will the correct choice of A:yy be 

made? This is important because Ax, is used in S(7) is order to check that S(n) < 1 for all n. 
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The answer is yes, the correct A=No will be chosen because this quantity is in the o(7) equation, 

so that the requisite o(0) = 0 (ie., S’(0) = 0) and/or o(ns) = 0 will force the correct value of 

»No to be found. The only exception to this is in cases when no o(n) = 0 condition is required; 

the only such case is the two burn trajectory with no initial coast. Even in that case, unless 

nf = 7, Eq. 5.3.8 can be used to compute Agno. 

The second consideration mentioned at the beginning of this section has to do with 

smoothness of the numerical solution process. In the computational problem introduced so far, 

the position of the interceptor trajectory at the second to last burn is known. Since the position 

of the final burn is given (from the target elements), ¢,_, (the angle between the planes of 

motion at the next to last burn) and ny (the final coasting angle) can be computed from 

geometry. There is, however, an ambiguity in determining these values. That is, if ¢,_, and 7 f 

satisfy the geometric requirements, ¢,_,—a and 27— ny also transfer the trajectory to the 
n-1 

same final position. Of course, both choices could be made, and the better of the two solutions 

could be selected as the proposed optimum. 

But, in terms of a numerical solution process, this ambiguity is much more serious than 

that; it could lead to lack of smoothness at certain values of ¢,_, and ny For example, if the 

shortest nz is always chosen (i.e., np <7 is always chosen), a slight variation in the 7 value of 

the second to last coast at a point such that ny is near 7 may cause the direction of the 

trajectory to suddenly do a plane change of 7! This kind of jump devastates the effectiveness of 

calculus based descent methods such as Quasi-Newton methods. 

Therefore, ¢,_, and ny are added to the variables in the numerical solution process. 

The resulting equation which must be satisfied is 
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r,.(74) - rr = Q. 8.3.3 

r,.(7,) is the final position of the interceptor trajectory, and f, is the target position. This 

equation is actually composed of three redundant equations, with only two degrees of freedom, 

in the two unknowns ¢,_, and ny. These three equations could be transformed to the difference 

between two angles to rid the redundancy, but these angles would again have undesirable 

ambiguities which would again destroy smoothness in the numerical process. Since, with 

redundant equations, the system cannot be solved as a problem of n equations in n unknowns, a 

robust nonlinear least squares algorithm is used to solve the equations. 

8.4 Maximum Time Specified 

As briefly mentioned in chapter 3, when a maximum time constraint in which to 

perform the rendezvous or intercept is specified, the solution process is expanded to a two step 

procedure. First, the open time problem is solved as presented above; after that, the total time 

of flight of the solution trajectory is computed. If this time is less than the maximum, then it is 

the maximum time specified solution as well. On the other hand, if the total time of flight is 

greater than the maximum, then the solution process takes on a different form. 

For the two burn rendezvous case with no initial coast, the resulting problem is merely 

a Lambert’s problem (i.e., find the trajectory between two positions which has the specified time 

of flight). According to Lambert’s theorem, one single parameter is sufficient to specify the 

trajectory between these two positions. In this case, the parameter of choice is » (¥ A Ug): The 

solution is then the candidate optimal trajectory. As a check, Eq. 6.3.4 can be used to compute 

A,, which must be negative; a positive A, indicates that the time open solution requires less time 
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of flight and would hence be the candidate optimal solution. 

As with the open time case, the resulting trajectory must be checked to ensure that 

S(n) < 1 for all 7 on that trajectory. If not, then the first thing to add to the two burn 

trajectory is an additional coast. The new condition to be satisfied in order to determine 19 is, 

as with the time open problem, o(n) = 0 (i.e., S’(79) = 0). The problem is now one of solving 

two nonlinear equations, Lamberts problem and o(n9) = 0, simultaneously for p and no. 

Then, again, S(n) < 1 for all 7 must be checked. If the two burn trajectory with initial 

coast still is not optimal, then an additional burn must be added. In this case, the specified 

time of flight, and the fact that A, on the arc between the first two burns must equal 4, on the 

arc between the middle and last burns, together replace the two conditions 6 = 0 for the two 

coasting arcs between burns. The rest of the equations in the solution process remain the same 

as in the open time case. For each subsequent addition of a burn, the 6 = 0 equation is replaced 

by Atm = At m1 (where the burn was added on the m‘h coasting arc). This process is 

continued until S(m) < 1 for the correct number of burns. 
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9.1 Introduction 

The ultimate goal of the analyses in this work is to obtain finite thrust trajectories for 

general three dimensional motion, because they are much closer to actual physical trajectories 

than are the instantaneous impulse thrust trajectories developed by the methods of the previous 

chapters. The instantaneous impulse solutions, however, can be used as initial conditions in the 

finite thrust numerical solution process. It is shown in this chapter that adjoint variable 

transformations are again useful to accomplish this goal. The solutions from the instantaneous 

impulse formulation developed above allow both the state and the adjoint variables to be 

propagated along the candidate optimal interceptor trajectory in Schumacher coordinates; then, 

as will be shown below, it is desirable to transform the state and adjoint variables to fT, V, A; , 

and A; for use in a numerical differential equations solution method at several points along the 

trajectory. 

9.2 The Boundary Value Problem 

When finite thrust trajectories are to be propagated, the portion of the trajectory where 

the thrust is nonzero must be integrated numerically. As was mentioned in Chapter 4, the 

optimal control problem is a boundary value problem, with some of the state and adjoint 

variables defined at the initial time, and some of them defined at the final time. One of the 

most popular and successful numerical boundary value solution methods is the shooting method. 

In this technique, the unknown initial conditions are guessed, then the variables are integrated 
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to the final time. The endpoint variables are then compared with the specified values, and a 

Newton’s method (or other method for solving nonlinear systems of equations) iterates on the 

unknown initial conditions until the difference between the final variable values and the required 

values is made zero. 

A slight modification to this shooting method is very popular for finding numerical 

solutions to optimal control problems. It is called the multiple shooting method, because the 

whole time span of the trajectory is broken into multiple smaller intervals, then the functions to 

be made zero are not only the discrepancies in the final variable values, but also the 

discrepancies between the variables at the end of one interval and their values at the beginning 

of the next interval. This is an important technique for optimal control problems because often 

either the state or the adjoint variables are unstable (hence they have a positive Lyaponov 

exponent), which will cause the solution of nearby trajectories to diverge exponentially from 

each other. For example, if the state is a stable linear system (hence having negative 

eigenvalues), then the adjoint state is unstable (having positive eigenvalues). So, in order to 

minimize integration errors, the trajectories are integrated over smaller time spans. 

Also, if the optimal control solution process yields a bang-bang control law (i.e, 

discontinuities in the control variables function occur, as is the case with minimum fuel space 

transfers), then a slight modification to the multiple shooting method greatly aids the numerical 

solution of these problems. The switching times can be made part of the multiple shooting 

method state, and conditions in the state and adjoint variables indicating a switching point 

become functions to be made zero. This way, discontinuities in the control variables over a 

Runge-Kutta integration step (which can cause significant errors) can be avoided. One popular 

computer program which contains all of these features is BOUNDSCO. This program was used 

to obtain the numerical finite thrust optimal control solutions for this research. 
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BOUNDSCO requires, by definition of the multiple shooting method, initial guesses for 

both the state and adjoint variables at several points along the trajectory, including the 

endpoints. Obtaining good initial guesses, sufficiently close to the solution to allow the locally 

convergent Quasi-Newton iteration process to converge, is an extremely difficult task in general 

(especially for the adjoint variables). Experience shows that “hand-made” guesses to the initial 

conditions for a high dimension problem like three dimensional space transfer problems often 

fail. This is one nice feature of the methods developed above for instantaneous impulse 

trajectories, since both the state and adjoint variables are determined in the solution process. 

This instantaneous impulse solution is used as an initial estimate of the multiple shooting 

method state. The impulsive burn solutions are used to propagate the trajectories to several 

points in Schumacher coordinates, then the state and adjoint variables are transformed to fF, V, 

4; and A4;. The trajectory is then integrated in these Cartesian variables due to their simple 

form: 

<I
 I | 

9.2.1 

and 

These equations are much simpler on thrusting arcs than the Schumacher variables (compare 

these with Eqs. 4.2.7), so there is much less likelihood of programming errors and accumulation 
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of roundoff errors using these Cartesian variables. 

The thrust control, T, is of course determined from the Maximum Principle to be 

Ay _ Taz P|’ |Az| > 1 
T Vv 9.2.2 

0 ; JAy| < 1 

Hence the condition for determining a switching time is |Az| = 1. In converting from the 

instantaneous solution to the finite burn case, the burn times in general become the center of a 

thrusting arc. Then the magnitude of the AV in the instantaneous burn case is used to 

determine an approximate burn time At,, so that the switching times become the instantaneous 

burn time plus and minus At,/ 2. The exceptions to this are the initial burn if there is no initial 

coast, and the final burn. In the initial burn case with no initial coast, the trajectory is initiated 

with |T| = T,,,,» and the first switching time is at At,,- Similarly, the final switching time 

for rendezvous problems is t fo At) r 

The magnitude for each At), is determined from the impulse equation resulting from the 

derivative of the velocity vector: 

Av = | (-5 + T)av. 9.2.3 
r 

tho and t, f here denote the initial and final burn times for the current thrusting arc. If the 

thrust acceleration magnitude is sufficiently large as compared to the gravity acceleration, then 

AV can be approximated by 

AV & | Tdt. 9.2.4 
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Furthermore, if the time duration is sufficiently short such that motion in the direction of T can 

be ignored (this is essentially the instantaneous impulse approximation), then an approximation 

for the magnitude of AV is 

From this, the approximate burn duration used to guess the switching times is 

  

_ _Av At, = 7 . 9.2.6 
mar 

9.3 Transformation of Adjoints 

The transformation equations for the adjoint variables have already been given in 

Chapter 3. The primer vector transformation equation, which has been used extensively to this 

point, again is, from Eq. 3.4.35, 

! (TT \, (ha, ur) BPAY . 
Ay = -zi t+ hu f+ =o 9.3.1   

The quantities AW! , An , and the component of dw in the h direction are known on coasting 

trajectories between burns as determined in Chapters 5 and 6, A; is completely known on the 

instantaneous impulse trajectory, except possibly on an initial coast before the first burn. The 

values to be used on an initial coast will be derived in the next. section. 
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As far as 4; is concerned, the relevant equation is Eq. 3.4.40: 

r 
Ae = uh —uAy—uday)e + [u(y #- ye f)+hu’A, —(u? +u)r, vf 

nent 9.3.2 
’ AoA 

+ (uAs h+uwAh)h. 

All of these quantities are known as functions of 7 from the analyses in Chapters 5 and 6 except 

for AP i’ and ie. These can be determined on an optimal trajectory by using the fact that the 

Hamiltonian is zero, even for time specified problems, because even time specified problems have 

n free. Now, from Eq. 4.2.6, the Hamiltonian on coasting arcs is 

A 
— \rs T - L t _ 

H = Az zr’ _- A 7tt+ uw’ Ay - (us a)AY + hw = 0. 9.3.3 

Rearranging this equation gives the unknown quantity in A; in terms of known quantities: 

A - ~ t Mew - Me = -w/A, + (u- 5) Ay -—. 9.3.4 

Thus, 4; and A; can be computed anywhere on coasting arcs between burns, to then be written 

to a file which is read as input by the program which uses the BOUNDSCO routines. How to 

compute the adjoints on an initial coasting arc is the subject of the next section. 

9.4 Computation of the Adjoints on an Initial Coasting Arc 

On an initial coasting arc, there is a burn on only one side of the arc, so the previous 

COMPUTATION OF FINITE THRUST TRAJECTORIES 109



~ ol 
methods cannot be used. From the § = ay condition (Eq. 5.3.2) at the end of the coast, 

however, some of the adjoint values can be determined: 

  

f dys tof | 
ho houg(nf) — hyv, 

boAh ¢ ~ Yolo) Ay! aw =| u,(h,cos¢, — hy) |/Av. 9.4.1 

Aw r’Nf . 
Tot, h,u, sing,         

Subscript “o” here denotes a quantity at the beginning of the first arc after the first burn, and 

“f” denotes a quantity at the final point of the initial coast. As a reminder, Av in the 

denominator on the right side of the equation is the magnitude of the vector in the numerator. 

Since the quantities in this equation are evaluated on the initial intercept trajectory, at the end 

of the initial coast, the elements on the left side of the equation are for the initial interceptor 

trajectory. The right side contains the change in elements over the first impulsive burn. Hence, 

Au't > Ahgs and Az f are known for the the initial coasting arc. If these can be propagated 

to the beginning of the arc, then the primer vector, A; , will be known there since it is a 

function of these three adjoints and the orbital elements (see Eq. 9.3.1). Eqs. 5.2.4 (for time 

free) or Eqs. 6.2.15 (for time specified) can be used to find these values, as well as 4,9) and Asno 

required by the 4; transformation equation (Eq. 9.3.2 with Eq. 9.3.4), if only Ap» Au f and Asn f 

are also known. 

First of all, A, is known because it is a constant over the entire trajectory, so it is 

computed between subsequent burns. This leaves two unknowns, Auf and A:N f Lawden’s 
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corner condition used in Section 8.2, iz = AG , can be used to obtain these two values. Using 

Eq. 8.2.2, Ay f and Asn f appear in readily usable forms in the f and in the h directions. From 

the continuity of the r component of Eq. 9.3.2, 

1 Ay = oh (hop py Do t Ago tt Auo J: 9.4.2 

For determining A-w } it must be recalled that 

gt. cos¢i’ + sing h- 9.4.3 

and 

a+ ae _- 
h = -sindgt + cos¢h . 9.4.4 

Using these with the inner product of Eq. 9.3.2 (with Eq. 9.3.4 substituted in) with hon both 

sides of the burn, then solving for A: f yields 

INf a; ,   

where 

  

A 

1 1°1 

and 

by = uy Asny + U1 AgNO - 9.4.7 

COMPUTATION OF FINITE THRUST TRAJECTORIES 111



So, with values obtained for all of the relevant adjoint variables at the final point of the 

initial coast, the equations for the adjoint variables on coasting arcs (Eqs. 6.2.15) can be used to 

determine their values at the beginning of the coasting arc: 

AsNo = CSN AENy — sinng AEN’ s 9.4.8 

AsN’o = sin No AEN E + cos No AEN's 9.4.9 

A cos —sin An¢— AeA uo _ No No uf “t uc(%o) 9.4.10 

d1'0 sin Np COS Ig AW fn AAvielo) 

and 

A = Ane — 2H y (cosnyp- 1) — 2H y sinng — AA,,(N) 9.4.11 ho ~ “hf he “v0 No he vo =!"N0 trhc(7o) - A, 

These values are then transformed to 4; and Ay , then written to an input file to be read and 

used by BOUNDSCO. 
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10.0 NUMERICAL EXAMPLES 

10.1 Introduction 

In order to illustrate the algorithm derived in the preceding chapters, various solutions 

of extremals using this algorithm are given in this chapter. Two and three burn solutions are 

shown for both time open and time specified rendezvous problems to a fixed set of target 

elements. Two burn solutions are presented in the next section, and three burn solutions are 

presented in the subsequent section. In both sections, some classical results are investigated 

first, followed by variations in these problems, and concluding with other more general 

problems. 

In each case where the solution of the impulsive thrust algorithm satisfied the condition 

that the primer vector magnitude be no greater than one over the entire trajectory, the state 

and adjoint trajectories from the solution were fed as initial conditions into the multiple 

shooting computer program BOUNDSCO. These initial conditions are automatically written to 

the input file used by the computer routines which call BOUNDSCO. The shooting points 

generated by the impulsive thrust program are the initial and final points of the trajectory, and 

the points one third of the transfer angle and two thirds of the transfer angle between each burn. 

In order to ensure close comparison between the impulsive thrust results and the finite 

thrust results, the magnitude of the finite thrust was chosen to be large: ten times the 

gravitational acceleration. Good results have also been obtained from BOUNDSCO when the 

thrust was as low as one times the gravitational acceleration with the initial conditions obtained 

from the impulsive thrust routines, but the larger number should help guarantee convergence of 
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BOUNDSCO. If the thrust is low enough for there to be a large discrepancy between the finite 

burn and the impulsive burn trajectories, then the impulsive approximation is probably not 

good for that problem. In actual engineering applications, a large number such as the one used 

here would likely be used to obtain an initial finite thrust solution, then thrust would be 

(perhaps slowly) reduced to the correct level. Also, other slight variations would potentially 

have to be made to some other parameters until the solution was exactly the desired one. For 

example, for time open problems, both 4, and the common Hamiltonian in Cartesian 

coordinates would have to be zero, but the Hamiltonian would be slightly nonzero due to 

variations in time of flight between infinite and finite thrust solutions; hence, time of flight 

would need to be adjusted until the Hamiltonian became zero. For the results presented here, 

only the initial BOUNDSCO solution is given without these (probably minor) adjustments. 

For all the results presented, three tables are given for each problem investigated. The 

first contains the interceptor and the target elements; the second contains the initial guess and 

converged solution for the iteration parameters in the impulsive thrust algorithm; and the third 

contains various iteration characteristics such as number of iterations for both the impulsive 

thrust algorithm and for BOUNDSCO, the cost function for the converged results for both 

programs, the values of A, and of the finite thrust Hamiltonian in Cartesian coordinates, and the 

time of flight of the extremal trajectory. Also included in this last table is the initial error of 

the norm used by the Quasi-Newton method in BOUNDSCO; this gives a measure of how good 

the initial conditions from the impulsive thrust routines are. For most of the problems 

presented, the iteration parameters for the plane change at the second to last burn (¢, or ¢) 

and for the final coasting angle (7, or 7.) are missing from the tables because the computer 

program will, on option, automatically generate values for these parameters which will cause the 

final trajectory position to match the targets position. Finally, a plot of the primer magnitude 
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history is given for both the impulsive thrust trajectory and the finite thrust trajectory. 

10.2. Two-Burn Trajectories 

The most obvious two burn optimal trajectory to check the algorithm against is the 

Hohmann transfer. Tables 10.2.1 through 10.2.3 contain the data for a sample Hohmann 

solution from a circular orbit of radius one to a second circular orbit of radius two. Time is 

open in the solution process shown. For most two burn problems, the first three iteration 

parameters (see Table 10.2.2) are usually set to zero. In this case, those values are the solution 

to the Hohmann transfer when the rendezvous point is already 180° away from the interceptor, 

so the parameters had to be made nonzero in order to obtain any iterations. In other runs made 

without this initial lineup, the algorithm quickly creates an initial coast until the interceptor is 

180° from the target, at which point the first burn commences. Table 10.2.3 shows that for the 

Hohmann problem, when BOUNDSCO is fed initial conditions from the impulsive burn solution, 

the error is already very small, so that only six iterations are required to obtain convergence (the 

relative precision tolerances in the impulsive burn software and in BOUNDSCO were set to 10° 

in the runs presented here). Figures 10.2.1 and 10.2.2 both show the well known attribute that 

S’=0 at the beginning and at the end of the transfer orbit for the impulsive thrust solution. 

The finite thrust solution has the primer magnitude p > 0 whenever a thrust is occurring, which 

is at the beginning and end of the trajectory in this case. 

Tables 10.2.4 through 10.2.6 show the results when the two space vehicles have the same 

initial elements as in the preceding problem, but the transfer time is now specified to be 5.0 TU 

(the time open transfer time is 5.77 TU). In order to reduce the transit time, an initial coast of 

0.33 rad was added by the algorithm, since the original radius is smaller and hence has a faster 
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Table 10.2.1. Elements for Hohmann Transfer. 

  

  

  

                    
  

  

  

  

              
  

  

  

                
  

i u 7’ u’ h 

Interceptor [| 1.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 1.000000 

Target -1.000000 |0.000000 |0.000000 |0.500000 {0.000000 |{-1.000000 |0.000000 | 0.000000 | 1.414000 

Table 10.2.2. Iteration Parameters for Hohmann Transfer. 

vy No | Atnor | ot m4 

initial | 0.010000 | 0.500000 | 0.000000 — — 

final | 3x107!%| 410729! 0.000000 | 0.000000 | 3.141593 

Table 10.2.3. Iteration Characteristics for Hohmann Transfer. 

flight _ 
number | char. vel. "8 BOUNDSCO|BOUNDSCO} f | T | at aos 
. rv time . . . Hamiltonian 
iters. (du/tu) init. error iterations 

(tu) (du/tu) 

3 0.284350 -6.x1013 | 5.771474 0.00002 6 0.2843673 |-9.31x1074 
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Figure 10.2.1. Impulsive Thrust Primer Magnitude for Hohmann Transfer. 
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Figure 10.2.2. Finite Thrust Primer Magnitude for Hohmann Transfer. 
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Table 10.2.4. Elements for Hohmann-Like Transfer with Max. Time = 5.0 TU. 

  

  

                        
  

  

  

  

f z! u’ h 

Interceptor | 1.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 1.000000 

Target -1.000000 | 0.000000 |0.000000 |0.500000 | 0.000000 |-1.000000 | 0.000000 | 0.000000 | 1.414000 

Table 10.2.5. Iteration Parameters for Hohmann-Like Transfer with Max. Time = 5.0 TU. 

¥y 70 | Atwor | 1 7 

initial | 0.000000 | 0.000000 | 0.000000 — _ 

final | 0.011238 | 0.332034 | 0.000000 | 0.000000 | 2.809558               
  

Table 10.2.6. Iteration Characteristics for Hohmann-Like Transfer with Max. Time = 5.0 TU. 

  

  

                
  

NUMERICAL EXAMPLES 

flight = 
number char. vel. . & BOUNDSCO | BOUNDSCO J | T | dt aos 
. A time _. . . Hamiltonian 
iters. (du/tu) init. error iterations 

(tu) (du/tu) 

5 0.329793 -0.131951 5.000000 0.020 7 0.330514 0.133648 
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angular rate. While the Hohmann transfer has no radial component of thrust at either burn, 

this lower time trajectory required a small component of thrust in the radial direction (i.e., 

> 0) since the burn could not occur at the 180° separation point. Notice in Table 10.2.6 that 

A, is now nonzero and negative as it must be. Recall that the Hamiltonian used in the 

BOUNDSCO software is equal to — A, according to the theory in Section 3.4. In Table 10.2.6 

these two quantities are nearly equal in magnitude; the difference is mainly due to the fact that 

the corresponding finite thrust trajectory has higher cost. Figures 10.2.3 and 10.2.4 show that 

S’=0 at the first burn since it is after an initial coast, but it is nonzero at the terminal 

(rendezvous) point. 

Both of the previous examples have both the initial and the final orbits as circular 

orbits. Tables 10.2.7 through 10.2.9, together with Figures 10.2.5 and 10.2.6, present the 

characteristics of a circular to non-circular in-plane transfer through an angle of two radians, 

with time unspecified. When this solution was attempted the first time, the initial coasting 

angle went negative. With time open problems this really is not a problem, since adding 27 to 

the original coasting angle yields a valid trajectory. Hence, the algorithm was run again with np 

set to 6.28 for an initial guess; the algorithm converged with yj = 5.19 rad. The characteristic 

velocity shown in Table 10.2.9 is very low. In fact, it is less than the Hohmann characteristic 

velocity to the same radius (Table 10.2.3) because the rendezvous orbit has a small outward 

component of radial velocity (u’ <0), so the interceptor need not expend as much fuel as it 

would if rendezvous was to a circular orbit. This is also why the final coasting angle, n,, is now 

slightly less than 7. 

The next set of tables and figures (Tables 10.2.10 through 10.2.12 and Figures 10.2.7 

and 10.2.8) start with the same set of elements, but the time of transfer is now specified to be 

3.0 TU (as opposed to 10.8 TU of the previous solution). The first burn now occurs right away 
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Figure 10.2.3. Impulsive Thrust Primer Magnitude for Hohmann-Like Transfer with Max. Time 

= 5.0 TU. 
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Table 10.2.7. Elements for Circular to Non-Circular in-Plane Transfer. 

  

  

                        
  

  

  

  

              
  

  

  

i u r’ u! h 

Interceptor | 1.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 1.000000 

Target -0.416147 |0.909297 |0.000000 |0.500000 |-0.909297 | -0.414614 | 0.000000 |-0.010000 | 1.400000 

Table 10.2.8. Iteration Parameters for Circular to Non-Circular in-Plane Transfer. 

oy No Azwor | 91 m1 

initial | 0.000000 | 6.280000 | 0.000000 _ _ 

final 3x 10°29 5.186872 | 0.000000 | 0.000000 | 3.096313 

Table 10.2.9. Iteration Characteristics for Circular to Non-Circular in-Plane Transfer. 

flight — number | char. vel. “6 BOUNDSCO|BOUNDSCO| f | T | dt as 
. At time _ . . Hamiltonian 
iters. (du/tu) init. error iterations 

(tu) (du/tu) 

4 0.277403 2.x10729 | 10.80436 0.005 6 0.277405 4.68 x 1074                 
  

NUMERICAL EXAMPLES 123 

 



1.05 

1.00 

O 
Oo 

<@
) 

CO
 

©
 

Nn 

pr
im

er
 

m
a
g
n
i
t
u
d
e
 

©O
 00 On
 

0.80 

Le
tt

er
s 

r 
tt
 
r
t
t
r
p
p
 

pr
ep
 

r 
br
 
pp
t 

rp
 

te
t 

ti
pp
er
 

t
t
t
 

et
 

tt
 
t
e
 

t
t
t
 

t
t
 

    0.75 TT TTT TrrTrprrrrrrrrrep rrr rrr rrr yp rrr rrp rr tT PT TTT ET] 

0.00 2.00 4.00 6.00 8.00 10.00 

eta (rad) 

Figure 10.2.5. Impulsive Thrust Primer Magnitude for Circular to Non-Circular in-Plane 

Transfer. 

NUMERICAL EXAMPLES 124



1.05 

1.00 

Oo 
O 

L
O
 

CO 
©
 

‘S
e 

pr
im
er
 

m
a
g
n
i
t
u
d
e
 

©O
 60 O1
 

0.80 

O.75 
QO. 

Figure 10.2.6. 

    

q 

4 
J 

4 
+ 

x 
7 

a 

7 

a 

7 

7 
“TUPPTTTTTP TTT TTT rit rp r rrr rrr rtp rrr rrr rrp Prey e TP TT Te | 

OO 0.20 0.40 0.60 0.80 1.00 1.20 

scaled time 

Finite Thrust Primer Magnitude for Circular to Non-Circular in-Plane Transfer. 

NUMERICAL EXAMPLES 125



Table 10.2.10. Elements for Circular to Non-Circular in-Plane Transfer (‘Time Specified). 

  

  

  

                    

f u z! u! h 

Interceptor | 1.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 1.000000 

Target -0.416147 |0.909297 |0.000000 {0.500000 |-0.909297 |-0.414614 |0.000000 | -0.010000 | 1.400000 

  

Table 10.2.11. 

  

  

  

Specified). 

a No | Atwor | 91 1 

initial | 0.000000 | 0.000000 | 0.000000 ~ — 

final | -0.04429 | 0.000000 | 0.000000 | 0.000000 | 2.000000                 

Table 10.2.12. 

Iteration Parameters for Circular to Non-Circular in-Plane Transfer (Time 

Iteration Characteristics for Circular to Non-Circular in-Plane Transfer (Time 

  

  

                  

Specified). 

flight — 
number | char. vel. 18 BOUNDSCO|BOUNDSCO| [ | T | at i, 
. At time _. . . Hamiltonian 
iters. (du/tu) init. error iterations 

(tu) (du/tu) 

4 0.558938 -0.36792 3.000000 0.0001 6 0.565132 0.376713 
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since there is no time for a long coast, resulting in a characteristic velocity which is of course 

much higher. 4, also now has a substantial magnitude. Furthermore, S’ is far from zero at 

both ends of the trajectory. 

The final two burn trajectory presented (see Tables 10.2.13 through 10.2.15 and Figures 

10.2.9 and 10.2.10) is a time specified out-of-plane transfer between two non-circular orbits. 

Since the two orbit positions are at a distance of at least two DU, and since the specified time is 

so short, the characteristic velocity is quite large. When the specified time was relaxed from 3 

DU to 4.65 DU in another run, the characteristic velocity decreased from 2.15 to 1.13 DU/TU. 

In all of the runs presented, and indeed in nearly all of the two burn problems 

attempted, the algorithm seems to be quite robust. Non-circular and out-of-plane solutions are 

generally no more difficult to obtain than are circular and in-plane solutions. Of course, if the 

orbits are sufficiently non-circular, or if the required plane changes are large, more burns than 

two are generally required. Three burn solutions are the topic of the next section. . 

10.3 Three-Burn Trajectories 

Just as the Hohmann transfer is the most common and most significant time open two- 

burn transfer, so also are the bi-elliptic and bi-parabolic transfers for three-burn time open in- 

plane maneuvers.7!11934 It has been analytically shown that bi-elliptic transfers are lower in 

cost than Hohmann transfers (between circular orbits) when the ratio of the larger orbit to the 
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Table 10.2.13 Elements for Non-Circular to Non-Circular Time Specified Out-of-Plane 

Transfer. 

r u ’ h 

Interceptor | -0.414563 | 0.905837 | -0.087156 | 0.500000 | -0.901781 | -0.396063 | 0.172987 |-0.00100 | 1.400000 

Target -0.482969 | -0.836515 |-0.258819 |0.350000 | 0.851451 |-0.517633 | 0.084186 | 0.002000 | 1.500000                       

Table 10.2.14. 
Plane Transfer. 

  

  

  

          

vy Io AzNO1 oy ny 

initial | 0.000000 | 0.000000 | 0.000000 — _ 

final | 0.375991 | 0.000000 | 0.480898 | -0.54592 | 2.135270       

Table 10.2.15. 

of-Plane Transfer. 

Iteration Parameters for Non-Circular to Non-Circular Time Specified Out-of- 

  

Iteration Characteristics for Non-Circular to Non-Circular Time Specified Out- 

  

  

                  

flight = 
number | char. vel. 8 BOUNDSCO|BOUNDSCO| f | 7] dt a, 
. Ay time i. . . Hamiltonian 
iters. (du/tu) init. error iterations 

(tu) (du/tu) 

7 2.150220 -0.927518 3.000000 1.59 9 2.230903 1.091184 
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smaller orbit is greater than about 15.56. The bi-elliptic transfer burns initially purely in the 

transverse direction to carry the interceptor to a radius greater than the larger of the two 

circular orbits through an angle of a rad, then a transverse burn is again accomplished go bring 

the trajectory back to the target trajectory. The bi-elliptic transfer is not optimal in theoretical 

terms because there is no radius of the intermediate burn which furnishes a minimum; the cost 

continues to decrease as that radius is increased. In the limit as the intermediate radius 

approaches infinity, a so-called bi-parabolic transfer is obtained. 

An interesting feature of Schumacher coordinates is that as an infinite radius is 

approached, the value of the reciprocal radius merely approaches zero. So, as long as time is not 

involved in the problem (since the limiting bi-parabolic orbit requires an infinite amount of 

transfer time), a bi-parabolic orbit presents no problems for Schumacher coordinates. Although 

the algorithm using the primer vector theory has some difficulty fully converging to the bi- 

parabolic orbit since u occurs in the denominator of some of the expressions, the solution was 

nonetheless attempted. The results are shown in Tables 10.3.1 through 10.3.3 and Figure 10.3.1. 

They are termed bi-elliptical there because u never quite reached zero in the solution process. 

No BOUNDSCO solution was attempted since time is the independent variable used in the 

routines called by BOUNDSCO. 

The way the target elements were aligned required an initial coast of 270°. , is very 

small, as it should be since this is a time open solution. Notice that the initial condition is a bi- 

elliptic orbit, but the algorithm causes u to approach zero. Since the bi-elliptic orbit consists of 

two Hohmann-like maneuvers, it is of interest to determine which of the equations is not 
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Table 10.3.1. Elements for Bi-Elliptic Transfer. 

  

  

  

                      
  

  

  

  

                      
  

  

  

  

                
  

r u 7’ uw! h 

Interceptor | 1.000000 | 6.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 1.000000 

Target 0.000000 |-1.00000 [0.000000 {0.040000 {1.000000 {0.000000 {0.000000 {0.000000 | 0.200000 

Table 10.3.2. Iteration Parameters for Bi-Elliptic Transfer. 

9 vy To | Atwor | Y2 vo un Azno2 | 2 UF, 

initial | 0.000000 | 0.000000 | 4.710000 | 0.000000 | 0.010000 | 0.000000 | 3.140000 | 0.000000 — — 

final |-1 x 10°19 |-0.000518 | 4.709942 |5 x10!” |0.000071 |-0.000044 |3.140121 |-5 x 107!4 |-9 x 107!4 | 3.141551 

Table 10.3.3. Iteration Characteristics for Bi-Elliptic Transfer. 

flight _ 
number | char. vel. 8 BOUNDSCO|BOUNDSCO| f[ | T | at a 
. At time . . , Hamiltonian 
iters. (du/tu) init. error iterations 

(tu) (du/tu) 

45 0.689157 -1x10!? | 3.7x107 _ _ — - 
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Figure 10.3.1. Impulsive Thrust Primer Magnitude for Bi-Elliptic Transfer. 
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initially satisfied, causing u—0. All of the equations are initially satisfied if the coasting angles 

are exactly correct, except for the 7 equation (Eq.8.2.4) from Lawden’s corner condition. It is 

easy to see by examination of the components of the 7 equation that u must be zero to satisfy 

7=0 at the middle burn of a bi-elliptic transfer (thus actually making it a bi-parabolic 

transfer). The actual transfer time of this almost converged trajectory, which has a maximum 

radius of 14,000 DU (u = 7.1x 107), is 3.7x 10’ TU (1009 years). 

Another classical three burn transfer occurs when the inclination of a circular orbit is to 

be changed, without changing the semi-major axis or the eccentricity of the orbit. Of course, 

this can be accomplished through one burn at the node of the common axis of the two orbits, 

but it has been shown that a three burn transfer always requires less fuel than the one burn 

maneuver. The three burn transfer burns at the common axis of the two planes; this burn 

chiefly raises the apo-apsis of the trajectory, while producing just a small portion of the total 

required plane change. The second burn produces most of the requisite plane change at a large 

radius (plane changes are less expensive at greater distances from the attracting body). For 45° 

plane change in a circular orbit of radius one, for example, this radius is about 1.6 DU. The 

third and final burn produces the last little bit of plane change, while making the orbit circular 

again, at the common axis of the two orbits. 

It is shown by this current analysis, however, that this classical transfer is not optimal 

from the point of view of optimal control theory. A parameter optimization routine which seeks 

to minimize the characteristic velocity of the three burn trajectory will, on the other hand, 

converge quite rapidly to this classical solution. When time open transfers with the algorithm 

developed in this dissertation failed to obtain the classical solution (in fact, it always diverged 

away from it), the solution was obtained by a parameter optimization routine. The optimal 

control necessary conditions of Lawden, and the new 6 = 0 necessary condition developed herein, 
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were then applied to this converged trajectory; it was non-optimal on both counts. Lawden’s 

corner condition at impulsive burns (the r = 0 condition in this work, Eq. 8.2.4) is violated by 

the trajectory (7 = 0.304), and also 6 #0. The former condition must hold even if the solution 

was a time specified extremal. To numerically confirm that this conundrum is not just some 

analysis gone astray, the parameter-optimal solution was fed into BOUNDSCO to see how it 

behaved. It also diverged away from that solution, converging to a totally different solution. 

Tables 10.3.4 through 10.3.9, with Figures 10.3.2 through 10.3.5, show two time 

specified attempts at attaining an optimal solution for this problem, when the plane change 

angle is 45°, through the algorithm developed in this work. The times of flight for the two cases 

are 20 TU and 19 TU, respectively. While both solutions have characteristic velocities less than 

the one burn case (which is 0.765 DU/TU), they are also higher than the classical solution 

(0.703 DU/TU). The 19 TU solution has nearly zero A, » 80 it is approximately an open time 

extremal (BOUNDSCO converges to effectively the same solutions). The most probable 

explanation for this conundrum is that a four impulse solution probably exists which has lower 

characteristic velocity than all of the solutions mentioned above. 

One final three burn solution will be shown to demonstrate the algorithm on problems 

with non-circular orbits (see Tables 10.3.10 through 10.3.12 and Figures 10.3.6 and 10.3.7) when 

time is unspecified. The initial interceptor elements in this case are the most commonly used 
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Table 10.3.4. Elements for Time Restricted Classical Three Burn Plane Change. 

  

  

  

                      
  

  

  

                        
  

  

  

                  
  

i u f uw! h 

Interceptor | 1.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 1.000000 

Target 1.000000 |0.000000 |0.000000 | 1.000000 |0.000000 |0.707107 |0.707107 |0.000000 | 1.000000 

Table 10.3.5. Iteration Parameters for Time Restricted Classical Three Burn Plane Change. 

%y v1 "lo Aeno1 Ug v2 n Az N02 G2 If 

initial | 0.050000 | 0.000000 | 0.000000 | 0.000000 | 0.300000 | 0.000000 | 3.140000 | 0.000000 | -0.78000 | 3.140000 

final |0.057001 |-2x107!>|0.000000 |-2 x 107!4|0.300502 |-2 x 1074 |3.141593 |-5 x 10°!4 |-0.656319 | 3.141593 

Table 10.3.6. Iteration Characteristics for Time Restricted Classical Three Burn Plane Change. 

flight _ 
number | char. vel. 8 BOUNDSCO|BOUNDSCO| f | T | at a. 
. A time . . . Hamiltonian 
iters. (du/tu) init. error iterations 

(tu) (du/tu) 

7 0.741732 1x 10°16 20.00000 2.21 16 0.741179 |-2.92x 103 
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Table 10.3.7. Elements for Further Restricted Time. 

  

  

                        
  

  

  

                        
  

  

  

                  
  

i u a u! h 

Interceptor | 1.000000 | 0.000000 | 0.000000 | 1.000000 |0.000000 | 1.000000 | 0.000000 | 0.000000 | 1.000000 

Target 1.000000 |0.000000 |0.000000 |1.000000 {0.000000 |0.707107 | 0.707107 |0.000000 | 1.000000 

Table 10.3.8. Iteration Parameters for Further Restricted Time. 

% vy No Atno1 | U2 be ur AzNo2 | 2 "f 

initial | 0.050000 | 0.000000 | 0.000000 | 0.000000 | 0.300000 | 0.000000 | 3.140000 | 0.000000 |-0.78000 | 3.140000 

final | 0.058538 |-5x107!5|0.000000 |-1x 10722 |0.314241 {110724 |3.141593 |1x10°!4 |-0.653115 |3.141593 

Table 10.3.9. Iteration Characteristics for Further Restricted Time. 

flight _ 
number char. vel. 18 BOUNDSCO | BOUNDSCO J [Tae oo, 
, At time . . . Hamiltonian 
iters. (du/tu) init. error iterations 

(tu) (du/tu) 

11 0.738735 -3x10!" | 19.00000 2.10 11 0.738157 |-3.13 x 10°? 
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Table 10.3.10. Elements for General Three Burn Trajectory. 

  

  

                        
  

  

  

                        
  

  

                    
  

u i’ u! h 

Interceptor | 1.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 1.000000 

Target 0.816035 |-0.571394 | 0.0871557 | 0.800000 | 0.456063 | 0.543879 |0.704416 |0.010000 | 1.100000 

Table 10.3.11. Iteration Parameters for General Three Burn Trajectory. 

1 vy No rzNO1 Ug bo up Az NO2 $2 "f 

initial | 0.000000 {0.000000 | 0.000000 | 0.000000 | 0.700000 | 0.000000 | 3.000000 | 0.000000 _— _ 

final 0.039508 | 0.003868 /|0.000000 |0.085565 |0.908730 | -0.022867 | 2.993129 | 0.015861 |-0.143233 | 2.672594 

Table 10.3.12. Iteration Characteristics for General Three Burn Trajectory. 

flight — 
number | char. vel. 18 BOUNDSCO|BOUNDSCO| f | T | dt a. 
. At time _. . . Hamiltonian 
iters. (du/tu) init. error iterations 

(tu) (du/tu) 

7 0.730182 2.x 10712 6.638881 0.0743 9 0.732539 -3.45 x 10° 
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Figure 10.3.7. Finite Thrust Primer Magnitude for General Three Burn Trajectory. 
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above starting at a radius of 1 DU. The target elements were picked by hand to have 

characteristics common to many problems which require three burn solutions, specifically a 

planar orientation very different from the original interceptor orbit. The f and f’ elements can 

be obtained by rotating the 3, f’, h basis from the interceptor elements through a 3-2-1 rotation 

with angles of 315°, 5°, and 45°, respectively (in the order of rotation). Both the impulsive burn 

routine and BOUNDSCO converge very well to the extremal. 

NUMERICAL EXAMPLES 147



11.0 CONCLUSIONS 

The use of redundant adjoint variable transformations has proven to be a very valuable 

tool as applied to the transformation between Cartesian adjoint variables and Schumacher 

adjoint variables. Several benefits result from the application of this transformation. First, the 

transformation has provided a useful means of propagating the primer vector of classical theory 

along coasting arcs, since for time open problems the Schumacher adjoint variables are simple 

harmonic oscillators. Second, the application of the classical primer vector theory in the 

transformed Schumacher space led to the development of a new necessary condition for time 

open minimum-fuel transfer. Furthermore, the transformation led to a convenient check of 

Lawden’s corner condition at burns on optimal trajectories; specifically, the time rate of change 

of the primer vector must be continuous across a burn. Since it proved convenient to do the 

propagating of the adjoint variables in Schumacher space, using the local primer vector S, and 

since S’ itself is not in general continuous across a burn, the derivative of the primer vector was 

transformed into Schumacher adjoints. Finally, it proved convenient to propagate extremal 

impulsive thrust trajectories in Schumacher variables and adjoint variables, then transform them 

to Cartesian position, velocity, and the adjoint variables associated with these, in order to use 

them as initial conditions in a finite thrust boundary value solver. Then these Cartesian 

variables were used in the boundary value solver since the differential equations associated with 

them are more convenient than the Schumacher variables on thrusting arcs. 

The conclusion is that adjoint variable transformations are very useful; some properties 

or conditions may be used in one space, then the adjoint variables may be transformed to 

another space to take advantage of salient features in that system. In this specific application, 

some necessary conditions for fuel-optimal space flight transfer exist in one adjoint space, and 
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others exist in the second adjoint space. Also, the Schumacher adjoints are easily propagated on 

coasting arcs, while the Cartesian adjoints are much simpler for propagation along thrusting 

arcs. The redundant adjoint variable transformation derived in this dissertation proved to be a 

valuable means of simultaneously tapping both resources. 

When all of the equations derived from the necessary conditions of both systems were 

put into a computer program which simultaneously solves the system of equations, a useful 

numerical tool resulted. The program seems to be robust, generally finding candidate optimal 

control solutions with a minimum of effort. 
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In this appendix, the variables C,(7) and C,(n) from the variation of parameters 

solution approach to deh): as well as other related equations, are integrated analytically. 

Recall from Eqs. 6.2.7 and 6.2.8 that 

  

  

  

Ci = 2 sin A.l 1 (7) buen” 

and 

Ch(n) = - 2 cosn. A.2 
hu(n)? 

a a a h7uo 
Since u(n) = 12 + (Up~;5)cosn + up sinn = wt! + acosn + @sinn), with a = =z 71, 

h2 / 

and 8 = a, A.1 leads to 

5 sinn 
Cc = zie | dn + const. A.3 

17) w J (1 + acosn + Bsinn)? 7 

When 1—a?—f? ¥ 0, this integral can be solved by applying formulae 2.558 of Gradshteyn and 

Ryzhik?”, page 149, successively. After the first application, 

  

_ 2h> —(a + cos7) 
Cy(n) = we oon + acosn + #sinn)? 

A.4 

  

1 sinn — 28 
+ d + const. 

2(1-a?— 6") lq + acosn + Bsinn)? nt 

Applying the formulae again to the integral in A.4, 
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C,(n) = _ he (a+ cos n)(1—a?—6?) + [a+(1+287) cos +208 sin n] (1+acosn+f sin 7) 

ws 3 (1-a*?—8*)(1 + acosn + Bsinn)? 

  

  

A.5 

36 dn 
+ (1-a*—p?)? la + acosy + samt} + const. 

The remaining integral in A.5 is 

n 
(1—a) tans + 8 

| dy ; = 2 tan“ { — + const. A.6 
(1 + acosn + Bsinn) [1-a?—? [1—a?—p? 

Since this expression involves tan 7. which is singular at 3 = > the equation in this form is only 

valid up to 7 = x. However, 7 is typically required up to 27. Therefore the form of Eq. A.6 

needs to be modified. 

Consider first the elliptical case ( 1-a?—p? > 0 ). Eq. A.6 for that case can be put in a 

more useful form by applying a technique similar to what Schumacher did to the true anomaly 

time equation in order to make it universal. First, define 

9 _ (i-a)z + B A? 
tang = ——— _, 

2 [1—a?_? 

where 

z = tan 3 , A.8 

so that 

  

dn _ 6 
lq + acosn + Bsinn) — 1-a?—p? + const. A.9 
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n 
Then, defining v = tan—, and using the trig identities 

  

4? 

6 tang 
tanz = —_—_—+ 

1+ ! + tan?g 

and 

n 
2tan— 

" 4 2v 
tang = ———— {| => v= 

2 1—- tan?y 1-—v? 

it follows that 

_ _ we tan? _ 2(1-a)v + B(1—v*) 
  

ane imei + foto « ESPs 9p ) 

2
 

In other words, substituting for @ in Eq. A.9, where 6 = 4tan'S, 

  | oe acasn F Baa) * (1 + acosn + Bsinn) — 

4 “1 2(1-a)v + B(1—-v?) 

A.10 

A.ll 

A.12 

A.13 

  

  

Teta ge stan = " 

i p («- v2), J1—a?— 6? + sgn(1— a v?)(1—a? -#) +(e 

Since v = tan 4 is not singular until 7 = 27, this equation is valid for 7 < 27. 
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For the hyperbolic case ( 1—a*—6? < 0 ), the same basic approach is used. In fact, Eq. 

A.13 can be used directly if complex arithmetic is used. Complex arithmetic is necessary since 

1—a?— f? < 0, so that {1—a?—p? is complex. However, the result of the integration is real, so 

  

real manipulations are desired. First, note that \l—a?—p? = ija?+6?-1 (with i = 1), and 

for convenience, define 

A = 2(1-a)v + B(1—-v’) A.14 

B = (1-v?)J1-o2—g? A.15 

C = (1-v*)Ja?+A?-1 A.16 

and 

iD = {B2+A?2. A.17 

Then A.13 can be written 

A.18   

dn 4 -1 A : = —— tan | — SS 
Fe +acosy + Psinn)  ; la?+p?-1 Es Ba 

where the + is short for sgn(1—v’). Now, B is complex, but the term JB? + A2 may or may not 

be complex. 

Consider first the case where both B and JB? + A? are complex. Note also, for 

simplicity of the manipulations which are to follow, that by multiplying the numerator and 

denominator of the argument of the arctangent above by the conjugate of the denominator 

there results 
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A —B + \B*+ A? 

B+\B?+A? A 

Further, recall from complex analysis® that 

  tan dx = i inf} . 
21 |1l—ix 

Then, 

+|
+1
 

So, plugging the right hand side of the above into Eq. A.18, 

| dy _ 1 hn A—C +4 sgn(1—v?)D 

(1+ acosn + Bsinn) — \o?+?-1 A+C-— sgn(1—v’)D 
    

Consider next the case where B is complex but \B? + A? is real. Then 

, |B Bea] 
an {OO 

tan 0 + (arc 

  

oile-(-1+8)] 
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A.19 

A.20 

A.21 

A.22 

A.23 

A.24 

A.25 
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where 6 = arg(1 + & + i4JA2—c? ). Using the fact that the log of a product is the sum of the 

  

  

  

  

A 

logs, 

C A?-C? 
_,|-B + (B?+A2 ly (1+ SP + 2 . | 

tan” *| ———_——__] = -3| = In} ———————>"— | + it], A.26 
A 2) 2 2_ 2 (9 eS A A2 

(a+ cP + a2-C? 
= 1 jy) 2 4+ 2 A.27 

4i (a - ch + A2_C2 2” 

—~ 1,|A+C " = dn/A+ 6] + &, A.28 

so that 

| dy = 1 jp A-C + const A.29 
(1 + acosn + #sinn) la?+p?-1 A+C . 

When 1—a*—? = 0, the second of formulae 2.558 of Gradshteyn and Ryzhik is used to 

solve A.1. The result is 

h° 

Ci(n) = G 1 we 

  

(a+cos1) + Basin n—Beosn)7 + 6(acosn+Psinn) + 2(acosn+f sin ny? 

(1 + acosn + Bsinn)> 
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A.30 

+ const. 

Now that C,(7) is known, the solution to C,(7) is needed. Recall that 

  
5 cos 7 

C = —2h | dn + const. A.31 
2(7) pw J (1+ acosn + Bsinn)* 7 

Again using formulae 2.558 of Gradshteyn and Ryzhik successively for the case when 

1—a?-p? # OQ, it is easily determined that 

  

C,(n) = _ (8+sin n)(1—a*—*) + [82a f cosn+(1+2a")sin 1] (1+acos9+6sin 0) 

we. (1—a?—6?)?(1 + acosn + Bsinn)* 

A.32 

  

—3a dn 
+ (1—a*—?)? la + acosn + samt} + const. , 

where the remaining integral is the same as A.13. When ee = 0, 

5 

C.(7) = 3 

  

(B+sinn) — 2(asinn—f cos nT + 6(acosn+fsinn) + 2(acosn+f sin ny 

(1 + acosn + Bsinn)? 

A.33 

+ const. 

7) 
The final integral to be addressed in this appendix is | dWelX) dx. With 

0 

Ave = C,(n)cosn + C,(n)sinn, A.34 
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the integral can be written 

" 5/7 y : 
| vA (x)dx = 2h | cosy | —__—SINX___dxdy 

g uc Lt 0 o(1+cosx+sinx)® 

A.35 

7 y 
— | siny | ——__©08X ___ dx dy 

0 0(1+cosx+sinx) 

The first of the terms in the difference is 

1(Y nn | | cos y sinx jdxdy = | | cos y sinx xdy dx A.36 

o Jo(1+cosx+sinx) o J x(1+cosx+sinx) 

n (sin n—sj . 
_ | (sinn sinx) sin 4, A.37 

0 (1+cosx-+sin x) 

= sinn [; sin Xx dx 3- [- sin? x dx 3 A.38 
o (1+cosx+sinx) o (1+cosx-+ sin x) 

Similarly, 

7(Y — si nf sj -| | siny cos x jdxdy = -| | sin y cosx {dy dx A.39 

o J 0(1+cosx+sinx) o J x(1+cosx+sin x) 

7 _ _ -| (cos x cos 7) COSX ay A.40 

0 (1+cosx+sinx) 

= cosy |” cos dx_—, _ |" _cos'x dx, AAI 
0 (1+cosx+sinx) o (1+cosx+sinx) 

Adding Eqs. A.38 and A.41, noting that cos’x+sin?x=1, and remembering the definitions of 
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C(n) and C,(n), 

[rel dx = [C,(n)—C,(0)}sin n- [C2(n)—C,(0)]cos 7 

A.42 

— hp f” dx 
uw J o(1+cosx+sinx)? 

Again applying formulae 2.558 of Gradshteyn and Ryzhik to the integral on the right hand side, 

this becomes 

[Oryx = [Cy(n)—C,(0)]sin n- [Co()—C2(0)]cos n 

on{ (8 cosn—asin n)\[3(1-+a cosn+ Bsinn) + (1-a?_ 6?) 
A.43 

we 2(1-a*—8*)? (14+acosn+ Bsinn)? 
  

  
_ a[3(1 +a) + (1-a?—6?)) + 3--(1—a?— 7) i” dx 

2(1—a?—)? (14a)? 2(1—a*—f*)* J o(1+cosx+sinx) }’ 

where, again, the final integral is Eq. A.13. 
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There are two constraints which restrict the domain of physically valid values of y. 

First, if, from Eq. 7.2.7, a particular value of ~ causes h? < 0, then h, would be complex, 

which is not permitted. Also, h, = 0 is not permitted with Schumacher coordinates. Therefore, 

h? > 0 gives a limit for y. That is, 

pl - cosn +) > 

un(7 +) — u,(0)cosn, — psinns 
  

Since the numerator is never less than zero, it is therefore required that 

Un(¢) — Uy (O)cosn, — Ysinn, > 0, 

or, 

ysinn, < Up(7z) — Up_(0)cosn -. 

If sinny > 0 (e.g., ny € (0,7), then 

Un(74) — uy, (0)cosn ¢ 
sinn 
  

creates an upper limit on yw. On the other hand, if sinng < 0 (e.g., ny € (7,27)), then 

un(74) 7 Uy, (0)cosn 

sing 
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creates a lower limit on y. Finally, it can be seen from Eq. B.1 that if sinn, = 0 (e.g., ny = T), 

then all values of y are valid. 

The other limit on ~ comes from a more subtle requirement. Suppose, for the sake of 

discussion, the coasting angle n, is some arbitrary value less than 27. ‘Then for some, 

appropriate value of w, the coasting arc between the two given positions, u,,(0) and u,,(7 fs will 

be an ellipse. When 7 is decreased from this value, the trajectory between these positions will 

:(0) 
become increasingly lofted. (Since p = u,,(0) = h decreasing y corresponds to increasing   

the radial component of velocity, #(0).) There is a lower limit on %, #, such that the lofted 

height between these positions goes to infinity; that is, u,,(7) goes to zero at one point on this 

trajectory as 7 traverses between 0 and 7 fr This trajectory is really the open end of a parabolic 

trajectory. As y is decreased even further, the resulting trajectories become hyperbolas (i.e, they 

pass through the open end of the hyperbola), while u,,(7) actually takes on negative values as 7 

traverses between 0 and ny Clearly, therefore, w is a lower limit on physically meaningful 

trajectories. 

This phenomenon can best be appreciated by selecting an example problem and 

calculating various u(7) values for representative y values. Bate, et. al! also give a clear 

description of this phenomenon using the semi-latus rectum, p, as the parameter of choice 

instead of 7. Probably the easiest way to obtain an analytical expression for 7 is to borrow the 

results of Bate, et. al., Eqs. (5.4-14) and (5.4-15) along with (5.4-4), and recast them in terms of 

Schumacher variables. Taking note of the fact that p = i and denoting the critical value of h 

by h (corresponding to #), Eq. (5.4-14) of Bate, et. al. becomes for sinns > 0 (with u= i 

n = Av, and letting ug 4 u,,(0), and u, 4 Un(7¢)) 

h2 1 — cosny 
Al = B.6 
H Ug + uy + {2ugu ,(1 + cosy ¢) 
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12 
Since this is an upper limit on h?, Eq. 7.2.7 can be used to substitute for ae to obtain an 

imequality in terms of ~. That is, 

1 h? 1 
; > = 

uy — Ugcosns — Ysinn, — (1 — cosy) Ug + Uy + [2ugu (1 + cosi s) 

B.7 

Both sides of the inequality are positive, so 

Uz — ugcosn, — Psinn, < Ug + uy + [2ugu (1 + cost r). B.8 

Since it was stipulated that sinn 7 > 9 this previous inequality leads to the result, 

—u,(1 + cosn,) — .|2ugu (1 + cosn -) b> of 1) — {2upu( f BO 
= sinn " 
  

Using the same approach starting with Eq. (5.4-15) of Bate, et. al., for the case when 

sinn < 0, 

—Up(1 + cosy) + [2u u -(1 + cosn ,) 
b> of p a J B.10 

— sinn , 

Taking sins = \[sin?n, when sinn, > 0, and sing, = —[sin?n, when sinn; < 0, both 

inequalities B.9 and B.10 can be written in the common form, 

1 + cos 2ugu -(1 + cos 
b> -u > _ Prous(t + cosmy) B.11 

Sin?) ¢ sin’) ¢ 
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Using the trigonometric identity 

1 + cosy sinn 

sinng 1 — cosny 
  B.12 

in this inequality, the common lower limit for all n¢ € (0,27) is 

= -u _sing | 280s B.13 
~~ 01 — cosy, 1 — cosy ¢ ° 

This equation is valid at nz = (2n — 1)m (for integer n), even though this value of 7, was 

  

      

avoided in the derivation, because the limit from the left and the limit from the right exist and 

are equal. 

Putting all of the information together, for sinn, > 0 there is a lower bound (Eq. B.13) 

and an upper bound (Ineq. B.4), while for siny 5 < 0 there are two lower bounds. The question 

remains, which lower bound is the correct one? Hypothesizing that 7 is at least as large as the 

lower limit keeping h? from going negative, the following is conjectured: 

—up(1 + cosy ¢) + [2upuy( + cosy ¢) Uf — UgcosT 

sin? ¢ ~ sinn 

Ve
 

B.14   

Since sinny < 0, multiplying through by sinn, gives 

9 

—Up(1 + cosny) + [2ugu (1 + cosn,) < uy — ugcosy;. B.15 

Adding ug(1 + cos7¢) to both sides, 
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° 
[2ugu y(1 + cosns) < uy + Up. B.16 

Since both sides are positive, squaring both sides maintains the direction of the inequality, so 

? 
2ugu (1 + cosns) < uj + ue + 2u fg. A.17 

Or, 

? 
2ugu scosn, < uj + u2. B.18 

The left hand side is largest when cosn f= 1,80 the inequality is certainly true if 

? 
uj + TT ~2ugu; 2 0. B.19 

The left hand side is a perfect square, so this and the original conjectured inequalities are indeed 

true. Therefore, the correct lower bound is ¥, Eq. B.13, when sinn < 0. 

In summary, when sin? ¢ > 0, w has a lower bound, Eq. B.13, and an upper bound, 

Ineq. B.4. On the other hand, when sinn < 0, the lower bound on wy is Eq. B.13, but there is 

no upper bound. 
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