
94

CHAPTER 6

HEURISTIC REDUCTION OF THE NETWORK BASED ON

ESTIMATED COMPLETION TIMES

Suppose that we are finding a shortest path from node s to node t in a network or

digraph G(N, A), where N is the set of nodes, A is the set of (directed) arcs, and where for

each (i, j)∈A, cij represents the travel time. For the sake of simplicity in exposition, we

present our discussion in this section for such a static shortest path problem; its

extension to the time-dynamic label-constrained case follows an identical process.

Suppose that in the application of the prescribed shortest path algorithm, we are

examining the forward-star FS(k) of some node k∈N that has been selected to be

considered in the reduced network. (To initialize, this node would be node s.) Let l(k)

denote the level of node k in the current shortest path tree. Then, the revised scanning

and update rule that we employ is as follows.

Denote

wi = current shortest path labels, ∀ i∈N;

d(i, t) = estimate for the travel time from i to t;

iβ = parameter ( ≥ 1) whose choice is specified in the sequence, and

T = upper bound on an acceptable total travel time.

Then, for each i∈FS(k), if ≡′iw (wk + cki) < wi (6.1a)

and if iw′ + iβ d(i, t) < T, (6.1b)

then update wi ß iw′ , and set DOWN (i) = k and l(i) = l(k) + 1, and include node i in the

list (NEXT) for further updating subsequent nodes.

The function d(i, t) is based on the Euclidean distance between the locations of

nodes i and t. Denoting xi = ( ii xx 21 , ) to be the coordinates of node i in some two-

dimensional Cartesian space, we have
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d(i, t)  = 
v

xx ti −
(6.2)

where v is some average estimated velocity of travel. Note that nodes whose labels are

not revised according to equation (6.1) are not considered in further computations.

Hence, this is akin to dynamically curtailing the network being considered during the

process of the algorithm. Also, the role of the parameter iβ  in equation (6.1b) is to

reflect the fact that the travel time measure equation (6.2), which is based on the

Euclidean distance, is likely to be more accurate when i is in the relative vicinity of t, and

is likely to be a relatively weaker lower bound on the actual travel time value when i is

further away from t. Accordingly, it might be beneficial to vary iβ  from a value greater

than 1 toward a value of unity as the path progresses from s to t. Below, we prescribe

four such possible strategies that we will evaluate and compare experimentally.

Case (i) (Standard Base-Case) iβ = 1  ∈∀ i N.

Case (ii) Network Sectioning Technique .

Consider a linear transformation of the coordinate system from the  x-space to a

y-space according to the relationship

x = xs + By (6.3a)

where  B = 






 −
pq
qp

, and  where  
st

st
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 )(
. (6.3b)

The transformation equation (3) shifts the origin to xs and rotates the axes so that the y1

axis is oriented along the vector (xt – xs) and the y2 axis is orthogonal to this axis, being

rotated 
o

90 in the anti-clockwise direction with respect to it (see Figure 23).
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Figure 23: Transformation of Space.

Note that since B is an orthonormal matrix, we have B-1 ≡ BT, and so, the inverse

transformation to equation (3) is given by

y = BT(x - xs). (6.4)

Accordingly, suppose that we have a priori computed the coordinates yi =

( ii yy 21 , ) ∈∀ i N  by using equation (6.4). Let us now define (with respect to the terminus

node t)

0τ = 0, 
3

1
1

ty
=τ , ty12 3

2
=τ , ty13 =τ (6.5a)

and let us section the nodes in N into the sets

Sr = { }r
i

r yNi ττ <≤∈ − 11:   for r = 1, 2, 3 (6.5b)

(where for r = 3, we include i in Sr if 31 τ≡iy ). Correspondingly, we define

rri Si∈∀≡θβ , where rθ  = 1 + (3 – r)θ   ∀ r = 1, 2, 3, (6.6)

and where θ  > 0 is some (to-be-empirically determined) parameter. (For example, we

can try θ  = 0.25.) This provides a section-wise linear progressively decreasing sequence

for the β -parameters.
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Case (iii) Level-Based Technique

Let N = n  be the number of nodes in the problem. In this case, we vary iβ

according to its level or depth away from the starting node s by using one of the

following two relationships:

iβ  = max{ })(5.09.0,1 ile λ−+  ∈∀ i N, where 
nα

λ
)2.0ln(−

= (6.7a)

or iβ  = max


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4.0
4.1,1 il

nα
 ∈∀ i N, (6.7b)

where ≡tβ 1, and where 0< ≤α 1.

Figure 24 depicts the schema based on which equations (6.7a) and (6.7b) are

designed. The value 1.4 is selected as an approximation to 2 , which represents an

upper bound on the ratio of the rectilinear to the Euclidean distance measure.

(a) Depiction of Equation (6.7a) (b) Depiction of Equation (6.7b)

Figure 24: Prescription of β  Based on the Level Measure.

The equation (6.7b) is computationally less expensive to implement, being linear.

The breakpoint nα  used in either case is a value that could be experimented with, based

on the philosophy that we would like iβ  = 1 when i is in the relative vicinity of node t.

(For example, we might try α = 0.5.)
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Case (iv) Ellipsoidal Region Technique

In this case, we curtail the network under construction based on three ellipsoidal

regions defined using:

• the line connecting nodes s and t as the major axis for the first ellipsoidal

region (E1),

• the line connecting node s and the known freeway entrance in the

corresponding zone as the major axis for the second ellipsoidal region (E2),

• the line connecting node t and the known freeway exit in the corresponding

zone as the major axis for the third ellipsoidal region (E3),

with the centers being at the midpoints ( x ) of these line segments, and with their

major and minor axes lengths being parameters as specified below (see Figure 25).

Consider the linear transformation

x = x + By (6.8a)

where   B = 






 −
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21

dd

dd
,

so that the inverse transformation that defines the y-space coordinates yi ∈∀ i N is

given by

y = BT [ ]xx− . (6.8b)

Hence, consider the ellipsoidal region in y-space given by

E = 





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y (6.9a)

where a = ty1γ , and b = ψ a, (6.9b)
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and where γ > 1  and  0<ψ <1 (6.9c)

are prescribed parameters. (For example, we can take γ = 1.25, and ψ = 0.75.)

The ellipse (6.9a) is of the form  1T ≤yFy where  F = 
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In the x-space, this translates to

1)()( TT ≤−− xxBFBxx .

Then, defining the ellipsoids E2 and E3 in x-space in this manner, we let





∞
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=
otherwise

Freewayif0 321 EEEy i

iβ . (6.10)

Note that in general, one could actually also include nodes that lie on some

known paths between s and t and between these nodes and suitable freeway

entrances/exits. In essence, the rule in Equation (6.10) simply performs the usual shortest

path computations on a reduced network that contains only those nodes i∈N that lie

within the designated ellipsoidal regions E1, E2, E3, or the freeway. The motivation here

is that users will typically explore local vicinity routes as well as high speed corridors

that are reasonably accessible between any origin-destination pair.

Figure 25: Ellipsoidal Regions E1, E2, and E3 to Curtail the Network.


