LIST OF FIGURES

Figure 1.1	Reaction scheme for the preparation of Kapton [®] polyimide (ref 2)4
Figure 1.2	Generalized reaction mechanism of imide formation (ref 2)5
Figure 1.3	Idealized charge transfer complex formation in dianhydrides (ref 31)16
Figure 1.4	Idealized polymer chain-chain interaction in the
	crystalline state (ref 38)17
Figure 1.5	Packing structure of New-TPI viewed along the b-axis as proposed by
	Okuyama et al. (ref 39)19
Figure 1.6	Effect of isomeric attachment of BTDA based polyimides (ref 33)
Figure 2.1	General behavior of thermodynamic variables at the equilibrium melting
	temperature T_m^{∞} (a) gibbs free energy (b) entropy and volume31
Figure 2.2	(a) Crystallization of macromolecules (i) polymerization, followed by
	crystallization [(i.e.) separate polymerization and crystallization] (ii)
	crystallization during polymerization and (b) example of macroscopic
	single crystal obtained by simultaneous polymerization and
	crystallization-poly (sulfur nitride) 1 division = 0.5 mm.(ref 3)34
Figure 2.3	Schematic representation of orientation induced crystallization. The first
	three drawings illustrate the orientation and crystallization of random coils
	while the last two drawings show the growth of folded chain kebabs
	around the central shish. (ref 10)
Figure 2.4	(a) Shish kebab morphology of polyethylene from solution (from
	pennings, 1967, Ref 2. (b) shish kebabs of cellulose formed by
	recrystallizing cellulose II onto valonia microfibrils of high molecular
	weight (also from ref 2). (ref 3)
Figure 2.5	Fringed micelle model (a) model of crystallization as might be visualized
	in a thermoreversible gel (keller et al. Ref 10) (b) hermann and gerngross
	model (ref 15) for a semicrystalline polymer. Similar schematics illustrate
	the general molecular picture in fringed micellar crystallization

- Figure 2.6 Single crystals of polyethylene after evaporation of tetrachloroethylene solvent. Pleats form due to crystal collapse. Micrograph is taken from 'Polymer Single Crystals' by P.H. Geil. (ref 19)......41
- Figure 2.7 (A) Schematic of a switchboard model, showing the surface of a lamella, interlamellar region and tie chains between the lamella. (from mandelkern)
 (B) originally proposed model for melt crystallization in polymers........42
- **Figure 2.9** Formation of the physically aligned activated complex and its conversion to first crystallographically attached stem. The first step A_0 is the slowest and rate determining step while the step A_0 ' is fast. (ref 39)......49

Figure 3.3	Chemical structure and thermal stability of New-TPI polyimide. The 3-D
	plot illustrates the heat of melting after exposures to different melt
	temperatures and melt residence times
Figure 3.4	(a) spherulitic growth rates for New-TPI. (b) negatively birefringent
	spherulites observed for New-TPI. (c) SAXS for LaRC-CPI-2 samples
	indicating differently thick lamellae responsible for different endotherms.
	(d) The hedritic structure obtained for LaRC-CPI by Muellerleile et al. (e)
	The variation of lamellar thickness for New-TPI observed by Srinivas et
	al
Figure 3.5	Rheological results for different grades of LaRC-TPI. (a) loss modulus,
	storage modulus and complex viscosity at 350°C for up to 3 hrs. (b)
	complex viscosity-frequency profiles at different melt temperatures for
	two grades of LaRC-TPI. (c) master curves for the two grades constructed
	using the data in (b)95
Figure 3.6	(a) Melt rheology of an amorphous polyimide by Hergenrother et al. (b)
	continuous loss and storage shear modulus for LaRC-8515 polyimide at
	different melt temperatures (c) melt viscosity vs. time at 360°C for LaRC-
	IA and -IAX (d) crystallization behavior of LaRC-8515 after annealing at
	different temperatures97
Figure 3.7	Rheological behavior of (a) New-TPI and (b) TPEQ-ODPA polyimides
	showing molecular weight changes for both polyimides
Figure 4.1	The surface morphology of the Ti-6Al-4V after various surface treatments
	(a) gritblasting (b) TURCO 5578 sodium hydroxide etch (c) chromic acid
	treatment (d) chromic acid treated samples after exposure to water vapor
	at 300°C
Figure 4.2	Shear strain (& shear stress) in the bond-line and tensile stress on the
	adherends as given (a) ideally & (b) predicted by Volkersen's analysis.
	(c) effect of bending moment, which acts along the bondline to give a peel
	stress, thereby reducing joint strengths. (d) shear strength profile as given
	by various analysis (e) peel stresses along the bondline as calculated by
	goland-reissner analysis112

Figure 4.3	Room temperature lap-shear strength of the LaRC-TPI-am adhesive for
	various bonding temperatures and pressures
Figure 4.4	Lap-shear strengths for LaRC-TPI and effect of adding various additives
	(to change the melt viscosity) when bonded at 50 psi120
Figure 5.1	Percentage weight loss as a function of increasing temperature in nitrogen
	and air for TPER-BPDA-PA (15,000 Daltons) when heated at
	10°C/minute
Figure 5.2	Consecutive DSC heating scans after heating to 430°C at 10°C/min,
	holding for 1 min, quenching to 150°C and reheating at 10°C/min138
Figure 5.3	Complex viscosity as a function of increasing temperature for TPER-
	BPDA (30,000 Daltons) and TPER-BPDA-PA (15,000 Daltons)140
Figure 5.4	Polarized optical micrograph of the initial TPER-BPDA-PA film142
Figure 5.5	Polarized optical micrograph of TPER-BPDA-PA (15,000 Daltons) after
	heating at 430°C for 20 minutes and subsequent quenching to various
	crystallization temperatures144
Figure 5.6	Growth rate of spherulites as a function of crystallization temperature for
	TPER-BPDA-PA (both 15,000 Daltons and 30,000 Daltons molecular
	weights) after 20 minutes in melt at (\triangleq) 420°C and (\bullet) 430°C146
Figure 5.7	Lap-shear strengths as a function of bonding temperature (420°C and
	430°C). Bonding pressure and bonding time were kept constant at 300 psi
	and 20 minutes respectively
Figure 5.8	Lap-shear strengths as a function of bonding time (10, 20 and 30 minutes).
	Bonding pressure and bonding temperature were kept constant at 300 psi
	and 430°C respectively
Figure 5.9	Lap-shear strengths as a function of bonding pressure (100, 200, 300 and
	500 psi). Bonding temperature and bonding time were kept constant at
	430°C and 20 minutes respectively154
Figure 5.10	Thermal cycle followed for preparing lap-shear specimens155
Figure 5.11	Scheme illustrating the conditions tried and finally selected for
	optimization of the bonding process
Figure 5.12	SEM micrographs of the fracture surface of the lap-shear specimens157

Figure 5.13	Scheme followed in the aging study of the lap-shear bonds159
Figure 5.14	Lap-shear strengths after aging at room temperature for a period of 1,3 and
	7 weeks and testing at ambient, 177°C and 232°C
Figure 5.15	Lap-shear strengths after aging at 177°C for a period of 1,3 and 7 weeks
	and testing at ambient, 177°C and 232°C161
Figure 5.16	Lap-shear strengths after aging at 232°C for a period of 1,3 and 7 weeks
	and testing at ambient, 177°C and 232°C162
Figure 5.17	Lap-shear strengths shown as function of test temperature for various
	aging times and aging temperatures163
Figure 5.18	Lap-shear strengths of TPER-BPDA-PA (15,000 Daltons) after exposure
	to different solvents for a period of nine days. Values from other similar
	studies in literature are also shown for comparison
Figure 6.1	Crystallization exotherms at various crystallization temperatures after
	20min residence time at 430°C176
Figure 6.2(a)	Normalized crystalline content as a function of Log (time) at various
	crystallization temperatures177
Figure 6.2(b)	Plot of log [-ln (1- X_c (t))] versus log (time) at various crystallization
	temperatures178
Figure 6.3	Variation of logarithm of transformation rate 'K', and crystallization half
	time 't_{1/2}', as a function of crystallization time after a melt holding
	conditions of 430°C for 20 minutes
Figure 6.4	Polarized optical micrographs at the indicated crystallization temperatures
	after being at a melt temperature of 430°C for 20 minutes
Figure 6.5	Evolution of spherulitic growth ranging from a folded-chain single crystal
	to a fully developed spherulite
Figure 6.6	Radial growth rates of spherulites at various crystallization temperatures
	after melt temperature of 430°C for 20 minutes. (M_n=15,000 Daltons,
	M _w =30,000Daltons)
Figure 6.7	(a) AFM height image of a central part of a spherulite for a sample
	crystallized at 360°C after a melt temperature of 430°C for 20 minutes. (b)
	AFM height image of a outward region of a spherulite for a sample

crystallized at 360°C after a melt temperature of 430°C for 20 minutes. The center of the spherulite lies toward upper-right of Figure 6.8 Crystallization exotherms at 355°C after various melt residence times at Figure 6.9 Plot of log [-ln (1-X_c (t))] versus log (time) at 355°C after various melt Figure 6.10 Variation of logarithm of transformation rate 'K', and crystallization half time ' $t_{1/2}$ ' at crystallization temperature of 355°C, as a function of Polarized optical micrographs at 355°C after indicated melt residence Figure 6.11 Figure 6.12 Crystallization exotherms at 355°C after 20 minutes residence times at Figure 6.13 Plot of log [-ln (1-X_c (t))] versus log (time) at 355°C after various melt Figure 6.14 Polarized optical micrographs at 355°C after indicated melt temperatures Figure 6.15 Non-newtonian viscosity-frequency profile of TPER-BPDA-PA (initial M_n=15,000 Daltons, M_w=30,000 Daltons) at 430°C. The plot also indicates the data collection times for consecutive scans at the Figure 6.16 Isothermal complex viscosity (1 radians/s) as a function of residence time Figure 6.17 Non-isothermal complex viscosity (1 radians/s) when cooled at 10°C/min from various melt temperatures after 20 minutes residence time. Inset: Corresponding arrhenius plots for the non-isothermal viscosity profiles when cooled from various melt temperatures. The initial regions prior to crystallization were utilized for estimating value of activation energy

Figure 6.18	Spherulitic growth rates at 345°C after 20 minutes at various initial melt
	temperatures
Figure 6.19	DSC cooling scans at 10°C/min after 10 minutes at various melt
	temperatures
Figure 6.20	Polarized optical micrographs illustrating the morphological development
	when cooled at 20°C/min from the melt at 430°C for 20 minutes.
	Micrographs taken at (a) 340°C (b) 332°C (c) 323°C217
Figure 7.1	Specimen configuration for the wedge test
Figure 7.2	Crack growth vs. time in various solvents. (a) and (b) represent the data
	for each of the two samples
Figure 7.3	Fractured wedge test samples in environment (a) acetone (b) boiling
	water
Figure 7.4	(a) Collected data for the DCB sample for the standard bonding condition
	(b) Calculation using the compliance method
Figure 7.5	Maximum and arrest strain energy release rates for samples bonded under
	the standard bonding conditions. Both ASTM and Compliance method
	are used to calculate the results
Figure 7.6	Photomicrograph of the fractured DCB specimen that was bonded under
	the standard bonding conditions
Figure 7.7	Scanning electron micrographs of the fractured DCB specimen that was
	bonded under the standard bonding conditions. (a) lower magnification (b)
	higher magnification
Figure 7.8	Results for the samples (a) that were only bonded for 2 min and (b) that
	were quenched to room temperature from the standard bonding
	conditions
Figure 7.9	Photomicrograph of the fractured DCB specimen that was bonded for only
	two minutes
Figure 7.10	Photomicrograph of the fractured DCB specimen that was held at 365°C
	for 2 hours before cooling to room temperature
Figure 8.1	Scheme for synthesis of TPER-BTDA-PA polyimide250

Figure 8.2	(a) Dynamic heating profiles for weight loss in air and nitrogen when
	heated at 5°C/min
Figure 8.2	(b) Weight loss profile with time in air and nitrogen when kept at a typical
	melt temperature of 450°C255
Figure 8.3	Consecutive DSC heating scans after heating to 450°C at 10°C/min,
	holding for 1 min, quenching to 100°C and reheating at 10°C/min257
Figure 8.4	Second heat DSC scans at 10°C/min after cooling from 450°C, 1 min at
	different cooling rates
Figure 8.5	(a and b) Scans from room temperature at 10°C/min after crystallizing at
	different temperatures from the melt at 450°C, 1min
Figure 8.6	Peak times for isothermal crystallization exotherms, after quenching from
	450°C, 1 min to different crystallization temperatures. The error bars
	indicate the standard deviation of at least four samples
Figure 8.7	Polarized optical micrographs of sample (a) crystallized at 340°C for 20
	min and (b, c, d) held at 370°C for (a) 30s (b) 90s (c) 120s. The error bars
	indicate 25 microns
Figure 8.8	WAXD patterns of TPER-BTDA-PA -initial film and melt crystallized at
	different temperatures. Samples were precisely prepared in the DSC270
Figure 8.9	Direct DSC heating scans at 10°C/min after crystallizing for various times
	at (a) 320°C and (b) 360°C272
Figure 8.10	DSC heating scans at different heating rates for (a) initial film, (b)
	crystallized at 320°C, (c) crystallized at 360°C and (d) zinc after
	calibrating the DSC at different heating rates
Figure 8.11	Isothermal crystallization at 360°C with respect to logarithm of time (\blacksquare)
	heat of melting obtained after heating to melt (\blacktriangle) the corresponding peak
	melting points obtained
Figure 8.12	Isothermal crystallization at various temperatures with respect to
	logarithm of time and the peak melting points obtained on heating for
	crystallization temperatures of (a) 380°C, (b) 377.5°C, (c) 375°C and (d)
	370°C

LIST OF TABLES

Table 1.1	Electron affinity of common aromatic dianhydrides (ref 2)7
Table 1.2	Dependence of glass transition on the chain length
	of diamines (ref 40)21
Table 1.3	Effect of isomeric attachment of the diamine for ODPA
	based polyimides. (ref 40)
Table 1.4	Effect of dianhydride on the T_g of the various ether
	based diamines (ref 40)24
Table 2.1	Values of $T_m,\Delta H_f$ and ΔS_f for various polymers. (ref 2)31
Table 2.2	Exponents of time in the Avrami equation. (ref 82)71
Table 3.1	Chemical structures and T_g 's and T_m 's of various semicrystalline
	polyimides. The structures and values for ULTEM, an amorphous
	polyetherimide, and PEEK are also shown
Table 4.1	Some selected properties of different metals106
Table 8.1	Previously developed semicrystalline polyimides at Virginia Tech 246