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Abstract

The advent of various types of high-throughput genomic data has enabled researchers to

investigate complex biological systems in a systemic way and started to shed light on the

underlying molecular mechanisms in cancers. To analyze huge amounts of genomic data,

effective statistical and machine learning tools are clearly needed; more importantly, in-

tegrative approaches are especially needed to combine different types of genomic data for

a network or pathway view of biological systems. Motivated by such needs, we make ef-

forts in this dissertation to develop integrative approaches for gene network and pathway

inference. Specifically, we dissect the molecular pathway into two parts: protein-DNA in-

teraction network and protein-protein interaction network. Several novel approaches are

proposed to integrate gene expression data with various forms of biological knowledge, such

as protein-DNA interaction and protein-protein interaction for reliable molecular network

identification.

The first part of this dissertation seeks to infer condition-specific transcriptional regu-

latory network by integrating gene expression data and protein-DNA binding information.

Protein-DNA binding information provides initial relationships between transcription factors

(TFs) and their target genes, and this information is essential to derive biologically mean-

ingful integrative algorithms. Based on the availability of this information, we discuss the

inference task based on two different situations: (a) if protein-DNA binding information of

multiple TF is available: based on the protein-DNA data of multiple TFs, which are derived

from sequence analysis between DNA motifs and gene promoter regions, we can construct

initial connection matrix and solve the network inference using a constraint least-squares

approach named motif-guided network component analysis (mNCA). However, connection



matrix usually contains a considerable amount of false positives and false negatives that

make inference results questionable. To circumvent this problem, we propose a knowledge

based stability analysis (kSA) approach to test the conditional relevance of individual TFs,

by checking the discrepancy of multiple estimations of transcription factor activity with re-

spect to different perturbations on the connections. The rationale behind stability analysis

is that the consistency of observed gene expression and true network connection shall remain

stable after small perturbations are applied to initial connection matrix. With condition-

specific TFs prioritized by kSA, we further propose to use multivariate regression to highlight

condition-specific target genes. Through simulation studies comparing with several compet-

ing methods, we show that the proposed scheme are more sensitive to detect relevant TFs

and target genes for network inference purpose. Experimentally, We have applied stability

analysis to yeast cell cycle experiment and further to a series of anti-estrogen breast can-

cer studies. In both experiments not only biologically relevant regulators are highlighted,

the condition-specific transcriptional regulatory networks are also constructed, which could

provide further insights into the corresponding cellular mechanisms. (b) if only single TF’s

protein-DNA information is available: this happens when protein-DNA binding relation-

ship of individual TF is measured through experiments. Since original mNCA requires a

complete connection matrix to perform estimation, an incomplete knowledge of single TF is

not applicable for such approach. Moreover, binding information derived from experiments

could still be inconsistent with gene expression levels. To overcome these limitations, we

propose a linear extraction scheme called regulatory component analysis (RCA), which can

infer underlying regulation relationships, even with partial biological knowledge. Numerical

simulations show significant improvement of RCA over other traditional methods to identify

target genes, not only in low signal-to-noise-ratio situations and but also when the given

biological knowledge is incomplete and inconsistent to data. Furthermore, biological ex-

periments on Escherichia coli regulatory network inferences are performed to fairly compare

traditional methods, where the effectiveness and superior performance of RCA are confirmed.

The second part of the dissertation moves from protein-DNA interaction network up to
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protein-protein interaction network, to identify dys-regulated protein sub-networks by inte-

grating gene expression data and protein-protein interaction information. Specifically, we

propose a statistically principled method, namely Metropolis random walk on graph (MR-

WOG), to highlight condition-specific PPI sub-networks in a probabilistic way. The method

is based on the Markov chain Monte Carlo (MCMC) theory to generate a series of samples

that will eventually converge to some desired equilibrium distribution, and each sample in-

dicates the selection of one particular sub-network during the process of Metropolis random

walk. The central idea of MRWOG is built upon that the essentiality of one gene to be

included in a sub-network depends on not only its expression but also its topological impor-

tance. Contrasted to most existing methods constructing sub-networks in a deterministic

way and therefore lacking relevance score for gene node, MRWOG is capable of assessing the

importance of each individual protein node in a global way, not only reflecting its individual

association with clinical outcome but also indicating its topological role (hub, bridge) to con-

nect other important proteins. Moreover, each protein node is associated with a sampling

frequency score, which enables the statistical justification of each individual node and flexible

scaling of sub-network results. Based on MRWOG approach, we further propose two strate-

gies : one is bootstrapping used for assessing statistical confidence of detected sub-networks;

the other is graphic division to separate a large sub-network to several smaller sub-networks

for facilitating interpretations. MRWOG is easy to use with only two parameters need to

be adjusted, one is beta value for performing random walk and another is Quantile level

for calculating truncated posteriori mean. Through extensive simulations, we show that the

proposed scheme is not sensitive to these two parameters in a relatively wide range. We also

compare MRWOG with deterministic approaches for identifying sub-network and prioritiz-

ing topologically important proteins, in both cases MRWG outperforms existing methods

in terms of both precision and recall. By utilizing MRWOG generated node/edge sampling

frequency, which is actually posteriori mean of corresponding protein node/interaction edge,

we illustrate that condition-specific nodes/interactions can be better prioritized than the

schemes based on scores of individual node/interaction. Experimentally, we have applied
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MRWOG to study yeast-stress condition first to and then breast cancer patient prognostics,

where the sub-network analysis could lead to an understanding of the molecular mechanisms

of antiestrogen resistance in breast cancer.

Finally, we conclude this dissertation with a summary of the original contributions, and

the future work for deepening the theoretical justification of the proposed methods and

broadening their potential biological applications such as cancer studies.
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Chapter 1

Introduction

1.1 Research Motivation

From human genome sequencing (Lander, Linton et al. 2001) to microarray gene expression

profiling (Hoheisel 2006), recent biotechnologies have revolutionized the traditional biology

research and discovery. In the past, biologists need to narrow down to specific genes or

proteins first and measure their activities individually. According to measured results, they

have to generate and test biological hypothesis one by one, as the old-fashioned technique

cannot profile the activities of multiple molecular targets simultaneously. Nowadays, the

advanced genome technology is rapidly changing the situation - with a chip as small as a

fingernail one can obtain the dynamic mRNA expression profiling of entire genome.

The wide adoption of high-throughput technology has accelerated the hypothesis genera-

tion process for biological research dramatically. At the same time, thousands of new data

have been generated and made publicly available to all researchers. For example, The Can-

cer Genome Atlas (TCGA) project (TCGA-Research-Network 2008) initiated the effort to

acquire the genomic characteristics of human tumors using multiple platforms, measuring ge-

netic signals of copy number alternation/variation, Single-nucleotide polymorphism (SNP),
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methylation, microRNA, mRNA, etc. The initial TCGA pilot research has been expanded

to a large-scale project aiming to provide genomic measurements of 20 25 different tumor

types. Having huge amount of genomic data, traditional statistical analysis tools and ma-

chine learning approaches, such as differential analysis, classification, clustering and feature

selection, are adopted to generate individual gene based hypotheses. Based on each chip

platform, these algorithms can potentially provide hundreds of genes or thousands of loci

having statistically significant association with biological phenotype or clinical outcome.

Hence, biological researchers are overwhelmed by numerous hypotheses (that could lead to

potential discoveries) as flooded from high-throughput data analysis.

However, many of the computationally generated hypotheses cannot be verified with further

biological validation experiments, and even some gene markers discovered in one cohort

cannot be validated in another cohort (Ein-Dor, Kela et al. 2005; Allison, Cui et al. 2006).

Why does this happen? First of all, biological data are very noisy; they are heavily affected

by a series of experimental procedures such as tissue preparation, biological experiment

protocols and hybridization. Second, biological systems by nature are heterogeneous and

dynamic. The profiling measurement that we acquired is mixture of multiple cells at different

stages. Although some external controls (e.g., synchronization of the cell cycle by applying

certain chemical compound to arrest all the cells in G1 stage (Spellman, Sherlock et al.

1998) could be used to synchronize/initialize the biological process of interest, these controls

may also introduce other types of artifacts, which is non-specific to biological conditions of

interest. To limit the number of false discoveries caused by all these factors, continuous efforts

have been made in the field statistical analysis by estimating and consequently controlling

the false discovery rate (Storey and Tibshirani 2003), the probability that an algorithm

claimed discovery is a false one. However, pure data driven statistical approaches, even with

a stringent false discovery rate control, cannot provide immediate biologically interpretable

results. Moreover, data driven statistical data analysis or machine learning approaches also

suffer from the risk of over-fitting due to the curse-of dimensionality problem (Clarke, Ressom

et al. 2008), i.e., the very high dimensionality of genes as compared to the small number of
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available biological samples. As a result, the genes selected based on data-driven approaches

using one data set are less likely to be reproduced in another cohort study.

The abovementioned difficulties have motivated researchers to integrate gene expression data

with existing biological knowledge sources for modeling and analyzing genomic data. In the

field of bioinformatics and systems biology, it is becoming a common practice to incorporate

biological knowledge into the mathematical or statistical modeling process. The advantage

of knowledge integration is that one can interpret the genes selected by computational ap-

proaches within biological context, like their potential interacting neighbors and biological

functionality groups. It has been shown that with the gene set analysis or gene network

analysis one can enlarge the overlap of the results from the analysis of different platforms

for a same study (Manoli, Gretz et al. 2006; Chuang, Lee et al. 2007; Carro, Lim et al.

2010). Additionally, integration of knowledge can further decrease the model complexity

and reduce the over-fitting risk, as the feasible parameter space is largely reduced by the

biological constraints (Ideker, Dutkowski et al. 2011).

Having these benefits of biological knowledge integration, in this dissertation we intend to

address several specific problems associated with integrative leaning approaches, which lead

us to develop novel methods for transcriptional regulatory network inference, target gene

identification and sub-network identification. We will describe these problems in detail in

the following sections, starting with a brief introduction to biological background.

1.2 Biological Background

1.2.1 Central dogma of molecular biology

The central dogma of molecular biology is about the information transferring among DNA,

RNA and protein, which are the key elements in molecular systems. DNA contains all

types of genetic information of a cellular system, including coding regions that serve as the
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blueprint for producing protein and non-coding regions that are believed to be responsible

for controlling mechanisms of the system. RNA is the intermediate messenger to carry the

protein coding information from DNA out of nucleic to plasma. According to RNA, different

types of proteins are synthesized to perform numerous biological functions. Among them,

some proteins called transcription factors (TFs) physically interact with DNA to initialize

the transcription of RNA, some proteins synthesize RNA according to DNA coding region,

and some proteins translate RNA information into the end product protein. Therefore, the

levels of DNA, RNA and protein are also closely coupled. In each level, we can measure

different signals to describe the genetic characteristics. For examples, in the DNA level, we

can measure sequence mutations, copy number alternations, and epigenetic changes such

as methylation status; in the RNA level, we can measure activity, i.e., the concentration

of mRNA and microRNA; in the protein level, we can measure the amount, structure, and

phosphorylation status of certain protein. Moreover, different physical interactions among

them can also be measured, such as protein-DNA binding and protein-protein interaction.

Overall, the cellular system has sophisticated hierarchical structure not only about intra-

cellular controlling mechanism but also involving cell-cell signaling events, shown in Fig. 1.1.

In the studies of this dissertation, we mainly focus on how to model the cellular system using

data from mRNA microarray, as the number of available microarray data sets is sufficiently

large for data modeling and analysis and its measuring technique is relatively mature.

1.2.2 Microarray technology and gene expression

The basic idea of microarray technique is to measure the concentration of certain molecular

by utilizing the hybridization between the signature sequence of this molecular and another

complementary DNA sequences (Allison, Cui et al. 2006; Hoheisel 2006). The commonly

used microarray chip consists of a series of microscopic spots of DNA oligonucleotides, each

of which contains specific DNA sequence known as probe (or reporter) to hybridize a corre-

sponding cDNA or cRNA sample (also known as target) under well controlled experimental
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Figure 1.1: The complex genetic system: from the human genome and beyond. (http:

//www.ornl.gov/sci/techresources/Human_Genome/publicat/primer2pager.pdf)

conditions. Tens of thousands of probes are laid out in a hard surface such as glass and sili-

con using surface engineering. Using these probes, a microarray chip measures the activities

of huge amounts of genetic targets in parallel. Besides acquiring mRNA gene expression,

microarray technique is also applied to monitor other genetic signals such as single nucleotide

polymorphism (SNP), methylation, etc. (Hoheisel 2006).

Taking the measurement of mRNA as an example, the microarray experimental procedures

comprise of several steps as shown in Fig. 1.2: biological sample preparation to extract tissue

of interest, purification to isolate mRNA, reverse transcriptase mRNA to cDNA, coupling to

dye the color on cDNA, hybridizing the cDNA, washing away non-specific binding, and signal

detection by a scanning machine. As multiple steps are involved in acquisition of microarray

data, the data could be very noisy, shown in Fig. 1.3 as an example, and variation and

difference in experimental operation make different microarray samples not comparable. As

the results, normalization of microarray signals has become a necessary and essential step for

any further data analysis. The purpose of normalization is to correct the experimental bias

by adjusting multiple data according to common reference or the same distribution. Several
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Figure 1.2: Multiple experimental procedures in acquiring microarray data. (http://

upload.wikimedia.org/wikipedia/en/e/e8/Microarray_exp_horizontal.svg)

typical normalization algorithms have been regarded as standard approaches, such as MAS,

RMA and PLIER (Quackenbush 2002).

After the normalization, gene expression data from multiple biological samples are usually

organized as a numerical matrix, in which one dimension is corresponding to gene and another

dimension to biological sample. Based on this data matrix and explicit biological information

like condition or phenotype labels, several types of statistical analysis and machine learning

methods such as differentially expressed gene analysis (Tusher, Tibshirani et al. 2001; Storey,

Xiao et al. 2005), clustering and classification (Chuang, Lee et al. 2007) were also carried

out to explore the data characteristics and pattern structures.

1.2.3 Various biological knowledge sources

With expression measurement of all the genes, it remains unclear how do they interplay

with each other and contribute to phenotype difference, since the protein product of a sin-

gle gene could participate in various cellular processes and collaborate with other molecules

to perform different biological functions. Therefore, it is very important to understand

relationships of genes in a cellular system. Tremendous efforts have been made both exper-

imentally and computationally in order to complete the understanding of genetic systems

from multiple molecular levels. Without naming all of biological knowledge sources, a brief

introduction of protein-DNA interactions (PDIs), protein-protein interactions (PPIs) and

6



Figure 1.3: One example of a spotted oligo microarray chip with a zoom-in picture. (http:

//upload.wikimedia.org/wikipedia/commons/0/0e/Microarray2.gif )

annotation databases will be given in the following sections, as the necessary background of

our proposed knowledge integrated approaches.

Protein-DNA interaction information

Transcription is the biochemistry step that certain DNA regions are transcribed to mRNA.

It is initiated and controlled by transcription factors (TFs), a special type of proteins that

can bind to DNA. The binding site of a TF is typically close to the gene’s promoter region,

and has certain short sequence pattern. Such specific sequence pattern is defined as a DNA

sequence motif. When direct physical binding measurement is not available, such motif

analysis is usually treated as an initial step to explore or discover the TF-DNA binding

relationship.

Chromatin Immunoprecipitation (ChIP) is the way to investigate whether one protein is

associated with certain DNA segment by immunoprecipitation, a technique precipitating the

protein antigen using a specifically binding antibody. When ChIP is incorporated with DNA
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Figure 1.4: Workflow of ChIP-chip experiment.(http://upload.wikimedia.org/

wikipedia/en/8/8d/ChIP-on-chip_wet-lab.png)

microarray technology (i.e., ChIP on chip or ChIP-chip), the high-throughput measurements

of multiple DNA regions’ binding events are acquired simultaneously. The workflow of ChIP-

chip is shown in Fig. 1.4.

Similar to gene expression data, ChIP-chip data also need to be normalized to eliminate the

systematic bias caused by experimental operations and unbalanced hybridizations. After

normalization, binding peak detection is performed to locate DNA regions that are bound

by the protein of interest. The ChIP-chip data are almost complete and available for the

yeast model system (Lee, Rinaldi et al. 2002; Harbison, Gordon et al. 2004), and analysis of

these data reveal complex regulation structures, shown in Fig. 1.5 as an example. However,

only a few of ChIP-chip experiments are available for mouse and human studies.

ChIP-chip is specifically designed for certain known protein and its corresponding antibody

is available for cross-link purpose. In many cases when the proteins actively regulating gene
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Figure 1.5: Different types of regulation structures revealed from analysis of yeast ChIP-chip

experiments. (This figure is summarized from (Lee, Rinaldi et al. 2002))

expression are unknown, DNA sequence motif analysis becomes a practical way to shed some

lights on the transcriptional regulation. The certain sequence segments recognized by TFs

usually have some nucleotide patterns, and this sequence pattern is called binding motif (or

simply called motif thereinafter). Motifs are relatively short sequence patterns (6 20 bp),

and they are possibly distributed in a quite large range of one gene’s promoter region (5,000

50,000 bp). There are several existing strategies to find motifs:

(a) Motif discovery based on sets of co-regulated genes: this is a statistical technique to

find over-represented sequence pattern according to gene sets that are selected based on the

existing biological knowledge or expression profile analysis. Due to some common features

or expression patterns that these genes share, their promoter regions tend to be bound by

the same set of TFs as compared to random selected DNA sequences.

(b) Conserved motif analysis by evolution clues: since most regulatory elements are in non-

coding regions and show considerable variation in sequence even for the same TF, they are
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not easily recognizable. However, binding sites are often preserved through evolution, thus

the alignments of othologous regions from different genomes can help make the binding sites

apparent. The conservation of motif can help filter out some irrelevant or false positive

results from motif discovery methods.

(c) Discovery of Cis-regulatory module (CRM): Cis- is the prefix indicating on the same

side, so Cis-regulatory module is referring to the regulatory motif organization and coopera-

tion relationship within short distance. CRM contains multi-TFs that interact or cooperate

with each other for either synergistic or antagonistic combinatorial effects. For most eukary-

otic genes, the binding of a single TF is not sufficient to regulate transcription. Efficient

regulation of downstream targets needs not only the binding of a TF itself, but also other

co-operative TFs. For example, researchers have found that there are a number of other

motifs, which are significantly enriched close to ERα’s binding positions, and these motifs

serve as the combinatorial regulatory candidates of ERα, an important TF in breast cancer

(Carroll, Meyer et al. 2006).

DNA sequence motif is usually represented as a weighted position matrix, indicating the

occurrence probability of ”ACGT” in each position. The motif information has been collected

and organized by some biological knowledge databases such as TRANSFAC (Matys, Kel-

Margoulis et al. 2006).

Protein-protein interaction information

Proteins interact with each other to perform all types of molecular functions. The abnormal

change in the collaboration of certain functionally important protein with its partners has

been observed and associated with disease status (Taylor, Linding et al. 2009). Therefore,

the global picture of PPI is extremely helpful to understand the underlying mechanisms.

There are multiple ways to measure the protein interaction, such as Y2H (yeast two hybrid)

and affinity purification-MS (Shoemaker and Panchenko 2007). Y2H utilizes the fact that

eukaryotic transcription activators have at least two domains called binding domain (BD)
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Figure 1.6: Yeast two-hybrid (Y2H) technique for measuring protein-protein interaction.

If physical interaction occurs between proteins X and Y, their combination will lead to

the activation of the reporter gene that is paired with its promoter. (This figure is from

(Sobhanifar 2003))

and activating domain (AD), and the transcription of target gene will be activated only when

BD is physically associated with AD domain. By designing the BD (bait) on one protein and

AD on the other protein, we can detect whether these two proteins physically interact with

each other by checking the transcription level of target gene (also called reporter gene). The

most commonly used bait-prey combination is according to transcription factor GAL4 and

its target LacZ, BD and AD are fused on two proteins first and according to the expression

of reporter gene LacZ the interaction between these two proteins can be determined, as

illustrated in Fig. 1.6.

As the protein interaction occur in the interfaces of proteins where the sequence structure

matched, the PPI relationship can be computationally predicted based on this information

(Shoemaker and Panchenko 2007). Some researchers also show that the interaction can be

predicted through co-expression of genes, as the members of same protein complex tend to

show consistent expression changes. The co-expression during the evolution could even serve

as better evidence than sequence similarity to predict protein interaction. The collections of

11



Figure 1.7: Protein interaction network from Human Protein Reference Database (HPRD)

(Keshava Prasad, Goel et al. 2009). The network layout is performed using Cytoscape

software (Smoot, Ono et al. 2011).

protein interactions derived from text-mining, co-expression and/or experimental evidence

are also available in several databases such as STRING (Jensen, Kuhn et al. 2009). Fig. 1.7

shows a PPI network derived from Human Protein Reference Database (HPRD) (Keshava

Prasad, Goel et al. 2009).

Biological knowledge based gene set

Gene Ontology (GO), which is the most widely used biological knowledge source, organizes

the representation of gene and gene product attributes. Through GO, researchers can find

one particular gene’s function, cellular location and the biological processes that the gene

might be involved in. Several popular websites and web tools are available for GO term

annotation, such as AmiGO (Carbon, Ireland et al. 2009), DAVID (Huang da, Sherman et

al. 2009) and GSEA (Subramanian, Tamayo et al. 2005). Fig. 1.8 shows an example of
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Figure 1.8: Graphic result of querying GO term ”response to hormone stimulus” in AmiGO

(Carbon, Ireland et al. 2009), which is a web tool to access ontology information.

querying GO term ”response to hormone stimulus” in AmiGO (Carbon, Ireland et al. 2009),

which is a web tool to access ontology information.

Another important knowledge database is Kyoto Encyclopedia of Genes and Genomes (KEG-

G: http://www.genome.jp/kegg/), which contains a collection of manually annotated molec-

ular pathways. Besides GO terms and KEGG canonical pathways, there are also other bio-

logically defined gene sets, as defined or organized according to biochemistry perturbations,

chromosome arrange-ments, or other biological commonalities. These gene sets provide re-

searchers a knowledge reference to check with for looking into a newly generated gene list.

There are mainly two common practices to assess the relationship between an observed gene

list from experiments and given knowledge gene sets. The first practice is to use over- or

under-representative analysis, which is a statistical significance analysis aiming to investigate

whether the occurrence of genes belong to certain category is significantly different from ran-

dom occurrence. The second practice is called gene set enrichment analysis (Subramanian,

Tamayo et al. 2005), which is usually based on a given gene ranking, to interrogate how the
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ranking distribution of genes in a category is different from a randomly distributed way.

1.3 Problem Statement

1.3.1 Transcriptional regulatory network inference

Transcription factors are the special proteins that control and affect the rate/efficiency of

downstream genes’ mRNA transcription. Regarding TFs and their target genes as nodes in

a graph, and the regulation relation from a TF to its target gene as an edge, this bipartite

graph represents transcription regulatory network.

Inference of transcriptional regulatory networks would benefit the understanding of complex

cell systems, especially how cells respond to different environmental changes. It can also help

reveal the dys-regulation mechanism happening in cancer cells as several key TFs have well-

known relationships with tumor progression (Nebert 2002; Libermann and Zerbini 2006).

Although the underlying biochemistry regulation relationship from TF to target gene may

be highly nonlinear, through log transform and Taylor expansion approximation the tran-

scription regulatory network can be simplified as a linear latent variable model, where the

activities of TFs are latent variables and regulatory impacts of TFs to genes are coefficients

of the latent variables (Liao, Boscolo et al. 2003).

The biological fact that TF regulates gene through protein-DNA interaction (PDI) provides

researchers further clues to tackle the inference problem. There are several information or

data sources that provide us potential PDI relationship: DNA sequence motif, ChIP-chip

experiment, and biological knowledge database. By incorporating the PDI information into

a linear latent variable model, several methods have been proposed to solve the inference

problem using regression (Alter and Golub 2004) or constraint regression (Liao, Boscolo

et al. 2003; Nguyen and D’Haeseleer 2006). Among them, Network Component Analysis

(NCA) is a prominent method, which has mathematically derived identifiability conditions
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(Boscolo, Sabatti et al. 2005) and resulted in successful applications for several real biological

problems (Brynildsen and Liao 2009; Ye, Galbraith et al. 2009). However, most of the

existing methods including NCA do not consider the false positives in the given connections,

as they assume that the given biological knowledge is perfect. This unrealistic assumption

could degrade the performance of proposed methods greatly and even lead to misleading

inference results. Moreover, most of currently available methods only focus on the study of

simple organisms such as E. coli and yeast, where the regulation relationship is relatively

simple and the PDI information is readily available with good quality. For mouse and human,

since these species have much more complicated regulation mechanisms and less confident

PDI information, the false-positives within biological knowledge cannot be simply ignored.

Integrating gene expression data with in-consistent biological knowledge is a true challenge

for the development of computational methods, since the inconsistency can degrade the

performance of computational methods greatly or even fail the inference of transcriptional

regulatory network completely.

In this dissertation, we address the regulatory network inference problem under two different

circumstances, depending on the availability of protein-DNA information:

(a) When protein-DNA information of all TFs is available, we propose a knowledge based sta-

bility analysis approach to tackle this problem. By assuming that the consistent expression-

knowledge relationship remains stable after small perturbations are applied to the knowledge,

we can assign the knowledge-derived estimation (ie., TFA, regulatory strength, etc.) a sta-

bility score that is the average distance of multiple estimations upon different perturbations.

Having the estimated activities of condition-specific TFs prioritized by stability analysis, we

further propose to use multivariate regression to rank condition-specific target genes.

(b) When only protein-DNA information of a few or even single TF is available, it is not

realistic to use decomposition or regression-based methods for transcriptional regulatory

network reconstruction. We propose to a single TF knowledge guided approach named as

regulatory component analysis (RCA), which explicitly captures the TF target genes that
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are likely to be expressed in a coordinative manner. RCA is based on a linear extraction

scheme and can be solved efficiently using generalized eigenvalue decomposition.

1.3.2 Dys-regulated protein interaction sub-network identification

Protein, the end product of gene transcription and translation processes, is responsible for

every biological process and molecular function of living cells. The defects of proteins can

lead to diseases such as muscular dystrophy (Khurana and Davies 2003), which is single gene

mutation disease, and the re-wiring of the protein signaling network could contribute to the

metastasis mechanisms (Chuang, Lee et al. 2007) and clinical outcome (Taylor, Linding et

al. 2009) of breast cancer. Therefore, it would be very important to understand the function

of protein and the biological relationship among proteins. With the advent of yeast2hybrid

technique, protein-protein interactions (PPIs) can now be measured in a high-throughput

way and protein-protein interaction data are readily available for several species.

PPI data alone can be utilized to predict proteins’ molecular functions according to their

adjacent neighbors (Sharan, Ulitsky et al. 2007). The topological characteristics of PPIs are

also of interest for cancer studies (Taylor, Linding et al. 2009). In addition, PPI network

structure has also been integrated with gene expression data to pinpoint the local changes

of biological systems, in response to environmental change or disease status switch. Techni-

cally, such changes can be identified from a given overall PPI network by using sub-network

identification approaches, aiming to extract certain sub-graph that undergoes significan-

t changes between different biological conditions or disease phenotypes. Several methods

have been proposed based on different criterion functions and optimization procedures. For

example, p-values of the gene nodes were transformed to normal distributed z-scores and

simulated annealing was used in (Ideker, Ozier et al. 2002) to find optimal sub-networks.

Mutual information was used in (Chuang, Lee et al. 2007) to narrow down phenotype-

specific sub-networks and three different levels of permutation tests were implemented to

identify statistically significant sub-networks. In (Dittrich, Klau et al. 2008) a modified
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prize-collecting tree was devised to solve the integer programming problem for sub-network

identification, and a false discovery rate control was also incorporated into the scheme for

significant sub-network identification. Clustering and graph cut techniques were combined

in (Ulitsky and Shamir 2007) to find coherent sub-networks. However, there are two ma-

jor limitations in these approaches. First, there is no importance ranking for the nodes in

identified sub-networks, consequently hindering the interpretation of sub-network members.

Second, all the protein interactions are treated equally and no importance ranking of edges is

provided when sub-network identification is done, leaving the question of how these proteins

interact within sub-network unanswered. Moreover, considering PPI data are very general

and not conditionally specific, it would not be sufficient to use deterministic methods to

solve the sub-network identification problem due to the high rate of false-positives in the

PPI data.

With the awareness of above-mentioned problems, we propose a Metropolis sampling-based

approach for sub-network identification in this proposal. Instead of searching for an opti-

mal solution, we explore the entire available network using graphical random walk based

metropolis sampling. By regarding random walk through the PPI network as the propos-

al function of metropolis sampling and casting the optimization problem as a distribution

learning one, we avoid the strong and unrealistic assumption that every protein-protein in-

teraction is plausible for the biological system under study. Attributed to the Markov chain

Monte Carlo (MCMC) nature of Metropolis sampling, we can check to ensure the conver-

gence of the sampling process, and obtain probability-like scores for the nodes and edges

in the whole network, reflecting how likely this protein/interaction is involved in given bio-

logical condition. Based on proposed sampling approach, we further propose two strategies:

one is bootstrapping used for assessing statistical confidence of detected sub-networks; the

other is graphic division to separate a large sub-network to several smaller sub-networks for

facilitating biological interpretations.
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1.4 Summary of Contributions

In the context of the research topics discussed above, we summarize the main contributions

of this dissertation:

Transcriptional regulatory network inference by motif-guided network compo-

nent analysis (mNCA) and knowledge-based stability analysis (kSA)

For the transcriptional regulatory network inference problem where protein-DNA interaction

information is complete, we propose to develop a motif-guided Network Component Analysis

(mNCA) approach, in which expression profiles and DNA sequence motif information are

integrated to infer underlying transcription factors’ activities and the regulatory relationship

from TFs to their target genes. The mNCA approach can facilitate the inference of regulatory

networks in the situation that ChIP-chip data are not available. Since the initial connection

information extracted from motif analysis is especially noisy, we further propose a knowledge-

based stability analysis (kSA) approach to address the consistency between gene expression

data and biological knowledge of motif information. We further propose target identification

scheme with TFs prioritized by kSA. We have initially applied kSA to the application of yeast

cell cycle study, and successfully revealed most of biologically important TFs associated with

yeast cell cycle process. We derive the theoretical justification of stability analysis, revealing

that if the perturbation is small enough the stability score is not affected by the perturbation

level applied onto the knowledge.

Transcriptional regulatory network inference by regulatory component analysis

(RCA)

For the regulatory network inference with incomplete protein-DNA interaction information,

we propose a linear extraction scheme called regulatory component analysis (RCA), which

can infer underlying regulatory components even with partial biological knowledge. The

proposed scheme differs from the matrix decomposition optimization in NCA, and requires

full knowledge of all regulatory components. Moreover, it can be applied even with par-
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tial knowledge of one regulatory component. The RCA criterion is designed to maximize

the coincidence of extracted component with knowledge, rather than fully follow the given

knowledge that may be inconsistent to expression data. Thus, RCA is also less affected by

false-positives (FPs) and false-negatives (FNs) within biological knowledge. The Rayleigh

quotient function of RCA criterion enables efficient computation using generalized eigenvalue

decomposition. Simulation-wise, to the best of our knowledge, statistical assumption-based

methods (e.g., ICA and PCA) and knowledge guided methods (e.g., NCA and RCA) are

fairly compared for the first time. This comparison is also performed with the realistic con-

sideration that given biological knowledge could be incomplete and inconsistent to expression

data. Furthermore, real biological expression data with ground truth collected from knowl-

edge database are also designed to compare the performance of all the methods. Therefore,

our comparison results would also serve as reference for other researchers in signal processing

and bioinformatics.

Dys-regulated protein sub-network identification by Metropolis random walk on

graph (MRWOG)

For integrative analysis in protein-protein interaction network, we proposed a novel scheme

called Metropolis Random Walk On Graph (MRWOG) to identify the condition-specific

sub-networks in a stochastic way. Instead of looking for single sub-network associated with

maximum score, we sample multiple sub-networks through a designed random walk on inter-

action network. Then, we ensemble sampled sub-networks to form an average sub-network

to assess the importance of each individual protein node in a global way, not only reflecting

its individual association with clinical outcome but also indicating its topological role (hub,

bridge) to connect other important proteins. Moreover, each protein node is associated with

a sampling frequency score, which enables the statistical justification of each individual n-

ode and flexible scaling of sub-network results. Based on MRWOG approach, we further

propose two strategies: one is bootstrapping used for assessing statistical confidence of de-

tected sub-networks; the other is graphic division to separate a large sub-network to several

smaller sub-networks for facilitating interpretations. MRWOG is easy to use with only two
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parameters need to be adjusted, one is beta value for performing random walk and another

is Quantile level for calculating truncated posteriori mean.
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Chapter 2

Inference of transcriptional regulation

network

Revealing of transcriptional regulation network is essential to understand the controlling of

mRNA synthesis process in given biological conditions, which in turns affects translation

of proteins that are needed for cellular system. To investigate the underlying mechanism

using computational methods, many computational efforts have been made through different

forms of modeling, using biochemistry PDE model (Kar, Baumann et al. 2009; Honkela,

Girardot et al. 2010), Boolean network model (Shmulevich, Dougherty et al. 2002) and

simple regression model (Conlon, Liu et al. 2003). In general, the more fine-resolution

methods require the larger data-set and more detailed measurement. However, considering

that number of available microarray samples is relatively small in focus biological study,

simplified model such as linear regression or linear decomposition are very prevalent. In

stead of aiming to predict specific regulations accurately, these models are developed to pri-

oritize condition-specific TFs and TF-gene regulation relationships. Through prioritization

of important molecular players, biologists can design detailed experiments to validate their

functions and influence towards phenotypes. This chapter is divided into two parts: the first

part is dedicated to address regulatory network inference when protein-DNA interaction in-
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formation of all TFs is complete. The second part is focused on the inference task where

only partial protein-DNA interaction information is available.

Table 2.1: Mathematical notations in Chapter 2.

Number of genes, microarray

samples and underlying tran-

scription factors

N,M,L

Expression concentration matrix E ∈ R
+N×M

Expression activity matrix X = [x1, · · · ,xN ]
T ∈ R

N×M

Expression pattern of the n-th

gene

xn ∈ R
M

Regulatory component matrix

(RC matrix)

A = [a1, · · · , aL] ∈ R
N×L

the l-th regulatory component al ∈ R
N

Transcription factor activity ma-

trix (TFA matrix)

S = [s1, · · · , sL]
T ∈ R

L×M

the l-th TFA sl ∈ R
M

Score matrix of protein-DNA in-

teractions

K ∈ R
N×L

Connectivity pattern matrix B ∈ (0, 1)N×L

Regulatory matrix set Z0

Z0 , {A ∈ R
N×L|anl = 0 if knl < ηl}

or Z0 , {A ∈ R
N×L|anl = 0 if bnl = 0}
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2.1 Introduction of Transcriptional Regulation

With the advent of high-throughput microarray technology, researchers can simultaneously

profile the dynamic activity of tens of thousands of genes, and generate hypotheses with

various statistical and computational tools (Clarke, et al., 2008; Tusher, et al., 2001) to un-

derstand molecular mechanisms of phenotypes or disease sub-types. However, bioinformatics

researchers have recently become aware that the molecular relationship between different

types of genes cannot be ignored in computational analysis, not only for the identification

of reliable biomarkers (Chuang, Lee et al. 2007) but also for the understanding of disease

mechanisms (Lee, Chuang et al. 2008). Therefore, it is desirable to advocate a systems

biology treatment of computational analysis by integrating gene expression data with differ-

ent types of biological knowledge, such as protein-protein interaction networks (Chang, et

al., 2008; Ideker, et al., 2002; Liao, et al., 2003; Wang, et al., 2008), function annotations

(Pan, 2006; Zhou, et al., 2002), and pathway information (Lee, et al., 2008; Li and Li, 2008).

These integrative approaches can reduce the impact of curse-of-dimensionality effectively by

decreasing the number of estimated parameters, and facilitate the interpretation of com-

putational results in order to generate biologically meaningful hypotheses. Nevertheless, a

common pitfall is often shared by the abovementioned and many other integrative approach-

es; that is, given biological knowledge is assumed, with rare exceptions, to be consistent with

gene expression data acquired under certain biological conditions. Such an assumption could

yield misleading computational results that may generate incorrect biological hypotheses. In

this section, we will restrict our discussions to infer transcriptional regulatory networks by

integrating gene expression data with the binding knowledge of transcript factors to DNA

sequences.

Transcriptional regulation is an essential mechanism for cells to respond fast-changing ex-

ternal conditions (Lee, et al., 2002; Luscombe, et al., 2004). Identification of transcriptional

regulatory relationships can help us understand the activation of specific regulators, bio-

logical processes and pathways; particularly for cancer research, it is an important step to
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reveal diverse molecular pathways dysregulated in cancers. Transcriptional regulatory rela-

tionships can be explicitly described as transcriptional regulatory networks (TRNs) (Liao, et

al., 2003; Yu and Li, 2005), or functionally categorized as transcriptional regulatory modules

(TRMs) (Li, et al., 2007; Segal, et al., 2003). Both TRNs and TRMs consist of transcription

factors (TFs) as regulators and downstream genes as their target genes, transcription levels

of which are modulated through TFs binding to their corresponding DNA promoter regions.

Previously, many computational methods were proposed to identify transcriptional regula-

tory modules from either gene expression data (Pe’er, et al., 2001; Segal, et al., 2003) or

TF-DNA interaction information (Sharan, et al., 2003; Zhou and Wong, 2004) but not both.

Later, it became clear that these two information sources complement each other, based on

which many integrative approaches were developed to better identify key TF regulators and

their corresponding target genes (Bar-Joseph, et al., 2003; Bussemaker, et al., 2001; Chen, et

al., 2007; Conlon, et al., 2003; Li and Zhan, 2008; Liao, et al., 2003; Nguyen and D’Haeseleer,

2006). However, some assumptions made in these approaches may not be valid in the reality

of biological settings. For examples, some regression-based approaches (Bussemaker, et al.,

2001; Conlon, et al., 2003; Nguyen and D’Haeseleer, 2006) assume that regulation relation-

ship is approximately reflected by binding evidence, but this assumption ignores that TF

binding does not necessarily suggest effective regulation. Some other approaches approxi-

mate the activity of a TF by its mRNA expression level (Wang, Xuan et al. 2008), which is

also questionable as the protein level of a TF is known to only have weak correlation with its

mRNA expression (Greenbaum, Colangelo et al. 2003); since post-translational modification

also plays essential roles in the activation of TF regulators. Moreover, many of the regression

schemes estimate the activity or influence of each TF individually (i.e., one by one), as a

result possible collaborative regulation among different TFs would likely be overlooked.

Being aware of the above-mentioned limitations, network component analysis (NCA) was

proposed to deduce the network and underlying transcription factor activity (TFA) (Liao,

Boscolo et al. 2003). NCA is based on a biochemical model-based approach considering

regulations of multi-TFs simultaneously: given the initial binary TF-DNA topological con-
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nections, the regulation relationship is estimated according to gene expression data rather

than being fixed according to initial binding evidence scores; TF activities are determined

according to expression patterns of their targets. Several successful applications of NCA have

been reported (Brynildsen and Liao, 2009; Rahib, et al., 2009; Yang, et al., 2005; Ye, et al.,

2009), as well as a number of methodology improvements (Brynildsen, et al., 2006; Chang,

et al., 2008; Dai, et al., 2009; Galbraith, et al., 2006; Sabatti and James, 2006; Tran, et al.,

2005; Wang, et al., 2008). However, NCA, along with all other existing integrative approach-

es for TRN inference, still encounters one critical problem for many biological applications,

that is, the given biological knowledge may be (more or less) inconsistent with the gene

expression data. The inconsistent biological knowledge could lead computational methods

to giving incorrect results and hence false discoveries. Many factors could contribute to such

data-knowledge inconsistency, such as noises corrupting biological measurements, differences

in biological conditions (e.g., in vivo vs. in vitro; cell line vs. tissue tumor), and inevitable

false positives (or false negatives) in biological knowledge itself.

To delineate accurately condition-specific regulation, it is essential to prioritize TF regulators

and their target genes with consistent knowledge support. For TF prioritization, conven-

tional approaches either utilize prior knowledge of TF activities (Yang, Suen et al. 2005), or

adopt statistical approaches to test the statistical significance of TF associated regulation

(Bussemaker, et al., 2001; Conlon, et al., 2003; Tsai, et al., 2005). The former scheme requires

prior information about specific biological conditions (e.g., stimulus, response, etc.) under

study. For example, for yeast cell cycle studies, it is expected that cell cycle regulators should

exhibit their activity with periodic cycles. However, prior information-based approaches will

lead to biased results if a priori is inaccurate, and not all applications have complete pri-

or information known beforehand especially for exploratory studies. The significance-based

approaches are widely accepted as a norm to evaluate whether one TF (or its binding mo-

tif) can significantly contribute to the explanation of expression variations of its targets, or

equivalently, whether the expression pattern of target genes can be well fitted by its regula-

tor’s activity (Brynildsen, et al., 2006; Galbraith, et al., 2006). These statistical approaches
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require an explicit formulation of null hypothesis and generation of corresponding null distri-

bution by permutation. However, null distribution sometimes cannot be easily generated by

sample permutation, particularly when different microarray samples are not exchangeable

(for example, in time-course microarray data). Moreover, when substantial amount of false

knowledge occurs, the estimation accuracy of null distribution is also questionable.

Here, we proposed a novel approach based on stability analysis to address the inconsistency

between data and knowledge. The approach is especially capable to reveal condition-specific

TFs and downstream target genes for TRN inference. The basic idea of stability analysis

is to introduce small perturbations on knowledge and interrogate the variation of resulting

estimation when data are examined. Such variations reflect potential estimation deviations

introduced by flawed knowledge.

The proposed scheme was extensively tested with simulation data, comparing with its coun-

terparts. It has been shown that the stability analysis-based scheme is effective to prioritize

condition relevant TFs and downstream targets when false connection number is relative-

ly large and given connection knowledge is incomplete. We further applied the scheme to

yeast cell cycle data to show its improved capability to highlight cell cycle related TFs and

targets, without utilizing the prior knowledge of cycle pattern. Finally, the stability analy-

sis is carried out to reveal different estrogen-related transcriptional regulatory networks in

estrogen-induced and estrogen-deprived experiments. Such study might provide compara-

tive pictures of regulatory relationship in breast cancer studies, and bring new insights to

understand how regulatory networks are involved in estrogen signaling mechanisms.
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2.2 Problem Formulation and Existing Methods

2.2.1 Unsupervised linear latent model analysis

Firstly, we briefly review the unsupervised linear latent model analysis for genomic signals.

Given a high-dimensional genomic data matrix X ∈ R
N×M , which can be seen as N realiza-

tions of random vector x ∈ R
M , the purpose of statistical latent variable algorithms such as

PCA and ICA is to find a linear transformation W ∈ R
M×L to reduce the dimension of orig-

inal genomic data, through which the transformed components of Y = XW = [y1, · · · ,yL]

are statistical uncorrelated and independent, respectively. When observed expression data

is assumed to be the linear mixtures of underlying sources and components of sources are

non-Gaussian distributed and independent, ICA can be used to perform blind separation,

estimates of which correspond to underlying sources up to some scale and order ambiguities

even without the exact distribution form of latent variable (Cardoso 1998; Lee, Girolami et

al. 2000). Many ICA algorithms have been successfully applied to many biomedical problems

where the source independence assumption holds (Jung, Makeig et al. 2000; Vigario, Sarela

et al. 2000). All these linear models can be summarized as following matrix decomposition

model:

X = AS, (2.1)

where the observed data matrix X is decomposed as the product of two latent data matrices

A and S with lower dimension.

We illustrate the common biological interpretation of latent variable model in Fig. 2.1. X is

a genomic signal matrix of M measurements by N genomic instances, which could be genes

(Liebermeister 2002), metabolisms (Scholz, Gatzek et al. 2004), or genome loci (Dawy, Sarkis

et al. 2008). It is generally assumed that realizations of l-th latent component [a1, · · · , aL]

reflect the genomic influences of underlying biological processes to all genomic instances. It is

further assumed that (from energy efficiency point of view of cellular system) each biological

process can only affect the activities of small portions of genomic instances, therefore a
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Figure 2.1: General linear latent variable model for genomic signals.

super-Gaussian distribution of each component al can be approximately assumed. This

assumption is partially verified though previous studies involving the comparison between

ICA and PCA, where non-Gaussianity assumption based ICA clearly outperforms PCA in

revealing biological meaningful results (Liebermeister 2002; Lee and Batzoglou 2003).

Despite the initial successes of applying statistical linear latent variable methods for gene

expression analysis, several limitations of totally ”blind” approaches still exist: first, the

underlying true dimension is hard to decide, and over-/under-estimation of source number

will apparently lead to misinterpretation of expression data; second, expression level mea-

surement is acquired through a sophisticated process where large amounts of errors and

noises relying in data (Klebanov and Yakovlev 2007), pure data-driven approach suffer-

s reproducibility problems (Kreil and MacKay 2003); third and most importantly, ”blind”

approaches can only produce expression analysis in relatively low resolution with gene group-

ings, and the specific biological interpretation is difficult to proceed with virtual signal sources

based statistical assumptions. As a general trend for advanced bioinformatics and system-

s biology, it is usually required that the computational approach can lead to biologically

testable hypothesis (Lander 2010).
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The applications of statistical latent variable algorithms are mainly limited in explorato-

ry analysis of genomic data, but the resulted computational results are too general to be

interpreted in a specific biological context. Therefore, we focus on gene expression analy-

sis for transcriptional regulatory network inference, where a clear generative model can be

formulated with biological implications, discussed in following sections.

2.2.2 Log-linear model for transcription expression

Gene expression generally refers to an information conversion process from DNA sequence of

one gene to its messenger RNA (mRNA), which will be further translated to corresponding

protein(s). Therefore, mRNA molecular concentrations of genes are generally called as gene

expression levels, or expression data for short. Expression data is acquired through a series of

biochemistry-photo transformation, providing the parallel mRNA measurement of thousands

of genes in a single microarray chip. Gene expression is one of the data types received the

most intensive research attentions, not only because of its relatively cheap cost to acquire,

but also it can reflect the genetic dynamics of cellular system (Stafford and Yidong 2007).

Having M microarray measurement with N genes, we denote the raw concentration data

of mRNA as a matrix E ∈ R
+N×M

, in which enm reflects the concentration of n-th gene in

m-th microarray measurement. We denote normal concentration of n-th gene as e
(0)
n , which

is usually generated in baseline condition as reference signal. It has been shown in (Liao,

Boscolo et al. 2003) that transcription rate of one gene is decided by concentrations of several

controlling proteins named transcription factors (TFs). Specifically, Vpromoter,n(t), the rate

of mRNA synthesis (promoter activity) at time point t, and the rate of mRNA degradation

Vdegradation,n(t) of the n-th gene are defined as follows according to Hill equation (Liao, et

al., 2003; Ronen, et al., 2002):

Vpromoter,n(t) =

λn

L∏
l=1

(
cl(t)
knl

)anl

1 + λn

L∏
l=1

(
cl(t)
knl

)anl
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and

Vdegradation,n(t) = kdegradation,nen(t),

where knl and anl are kinetic parameters from the l-th TF to the n-th gene; λn and kdegradation,n

are synthesis and degradation parameter for the n-th gene. Assume that mRNA levels reach

a quasi-steady state:

Vpromoter,n(t)− Vdegradation,n(t) = 0,

after some mathematical manipulations we have following relationship between the ratio

level of mRNA and ratio levels of TFs:

en(t)

en(0)
=

L∏

l=1

(
cl(t)

cl(0)

)anl
1 +

L∏
l=1

(
cl(0)
knl

)anl

1 +
L∏
l=1

(
cl(t)
knl

)anl

.

It has been further assume in (Liao, et al., 2003) that cl(t) is around the neighborhood of

cl(0) so that the term
1+

L
∏

l=1

(

cl(0)

knl

)anl

1+
L
∏

l=1

(

cl(t)

knl

)anl
≈ 1. Finally, we replace the time index using the discrete

sample index m, denote baseline mRNA level of the n-th gene as e
(0)
n = en(0), and denote

baseline TF concentration of the l-th TF as c
(0)
l = cl(0), we come to a linear approximation

of transcriptional regulation under equilibrium assumptions:

enm

e
(0)
n

=
L∏

l=1

(
clm

c
(0)
l

)anl

, (2.2)

in which, clm and c
(0)
l are concentrations of the l-th TF under m-th microarray measurement

and baseline condition, respectively; exponential item anl reflects how l-th TF regulates the

transcription rate of n-th gene, anl = 0 as no regulation, anl > 0 as transcription promotion

(or up-regulation), anl < 0 transcription suppression (or down-regulation). It needs to be

emphasized that only expression concentration enm and e
(0)
n are directly observable, while

clm,c
(0)
l and anl are all hidden variables.

31



By denoting

xnm = log
enm

e
(0)
n

(2.3)

and

slm = log

(
clm

c
(0)
l

)
, (2.4)

the Eq. (2.2) is expressed as

xnm =
L∑

l=1

anlslm (2.5)

or in a matrix multiplication form with an additive noise matrix Γ ∈ R
M×N

X = AS+ Γ. (2.6)

Eq. 2.6 can further be written in latent variable model with respect to gene index n:

xn =
L∑

l=1

anlsl + γn, (2.7)

where xn = [xn1, · · · , xnM ] and γn = [γn1, · · · , γnM ] are gene expression profile and noise

vectors of n-th gene; sl = [sl1, · · · , slM ] is the hidden activity vector of l-th TF. Eq. (2.6)

is actually called log-linear model, considering the transformation from original Eq. (2.2)

to (2.5) (Liao, Boscolo et al. 2003). It has also been observed that the log-ratio transfor-

mation of gene expression data approximately fit with Gaussian distribution (Liebermeister

2002). Different from general latent variable analysis, now everything has clear biological

implication: latent factors of Eq. (2.6) correspond to the controlling proteins - transcription

factors (TFs). We defined l-th row of matrix S = [s1, · · · , sL]
T as l-th transcription factor

activity (TFA), which reflects the hidden protein relative activity of l-th TF. The influence

variable of l-th TF al is called l-th regulatory component (RC). Through this dissertation,

S and A are referred as TFA matrix and regulatory component matrix (or RC matrix) for

highlighting their biological implications.
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2.2.3 Network component analysis (NCA)

For transcriptional regulatory network inference, some biological knowledge could facilitate

the estimation of latent activities and controlling relationships. Recall that each regulatory

component al in Eq. (2.7) corresponds to the controlling effect of certain TF to genes’

transcription rates. It is known that one TF has to bind on DNA promoter region of certain

gene in order to regulate the expression of this gene. Such physical binding relationship

is usually measured through biological experiments (Wu, Smith et al. 2006) or predicted

through computational sequence analysis (Ji and Wong 2006). Based on TF to gene binding

evidences, we encoded regulation relationships from TFs to genes as a network connectivity

pattern B ∈ (0, 1)N×L , which is a binary matrix with element bnl = 1 indicating potential

regulatory relationship from l-th TF to n-th gene.

Usually we called genes controlled by TFs as target genes. Assuming there is no feedback

from target genes to TFs, the transcriptional regulatory network describing the relationship

between TFs and target genes is a bipartite network, where the nodes of latent layer and of

observed layer are TFs and downstream genes, respectively. Regulatory component matrix

S describes weights of bipartite network edges. Therefore, estimation of hidden regulatory

components is equivalent to inference of underlying regulatory network, illustrated as Fig.

2.2.

To solve Eq. (2.6) based on available biological knowledge B, the original NCA algorithm is

designed to estimate A and S by minimizing fitting errors (Liao, Boscolo et al. 2003):

(Â, Ŝ) = argmin
(A,S)

||X−AS||22, (2.8)

s.t. A ∈ Z0. (2.9)

In (2.9), Z0 is a regulatory matrix set, deriving from biological knowledge of connectivity

matrix:
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Figure 2.2: Illustrative figure of regulatory component (RC) and transcription factor activity

(TFA) in NCA model.

Z0 , {A ∈ R
N×L|anl = 0 for bnl = 0}. (2.10)

Assuming the elements of noise matrix Γ is i.i.d Gaussian distributed, NCA criterion is

equivalent to maximization likelihood with respect to noise distribution (Boscolo, Sabatti et

al. 2005). It is interesting to notice that NCA criterion does not incorporate any statistical

priori of A or S. This is motivated by the discussions in (Liao, Boscolo et al. 2003) that

statistical assumption may not fit to biological reality. Therefore, the NCA criterion is simply

a least-squares with structure constraint onA. From the perspective of source separation, we

can regard A as mixing matrix and S as underlying source signals, or vice versa. Noticeably,

A is more appropriate to be assumed as underlying sources than S for applying statistical

latent variable methods. It is because non-Gaussianity assumption of each component al

approximately holds, considering the fact that one TF can only regulate a small portion of

genes (Liao, Boscolo et al. 2003; Boscolo, Sabatti et al. 2005).
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2.2.4 Estimation ambiguities and identifiability conditions of N-

CA

Although priori biological knowledge eliminates the ordering ambiguity of regulatory compo-

nents, the scaling of underlying signals is still undetermined. Therefore, even with fulfillment

of all identifiability conditions, estimated regulatory component could still differ from under-

lying true signals A up to some scaling ambiguity Â = AD, where D is arbitrary diagonal

matrix with non-zero diagonal items. Such ambiguity is usually acceptable as it is wave-form

preserved.

As NCA solution optimization involved biological knowledge B, the structure characteristic

of B is essential for NCA estimation. This is reflected from identifiability conditions of NCA.

In the noiseless case, that is when Γ = 0, the identifiability conditions for NCA are proved

when the following four assumptions are met (Liao, Boscolo et al. 2003) (We adopt As. as

the abbreviation for Assumption):

Identifiability conditions of NCA

(As. 1) The microarray sample number M should be greater or equal to TF number L.

(As. 2) Different TFAs sl(l=1,··· ,L) are linear independent.

(As. 3) For connectivity pattern matrix B, if any TF is taken out, the modified connectivity

pattern matrix B̃ by removing the genes associated with this TF should have full row rank

(rank = L− 1).

(As. 4) The network connectivity pattern B is perfectly known a priori.

Both As. 1 and As. 2 are almost universal presumptions for linear latent algorithm. As. 1

is generally needed to ensure the problem is not underdetermined. As. 2 is also similar to

the presumptions for PCA/ICA models that mixing matrix S is non-singular.

As. 3 is equivalently saying that if one TF is determined, the rest L − 1 TFAs can still

be determined uniquely. If the As. 3 is not meet, trimming of topological connections
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is suggested to be performed. By explicitly exploiting property of As. 3, Chang and etc.

(Chang, Ding et al. 2008) proposed an alternative algorithm fastNCA, which could be several

tens times faster than original NCA algorithm. Since As. 3 is not always fulfilled for given

connectivity, a condition check is usually carried out and connections violating As. 3 will be

pruned (Liao, Boscolo et al. 2003). However, it is obvious that an effective condition check

for As. 3 also relies on As. 4, assuming that given B reflects underlying true relationship

B0. Therefore, it can be expected that the estimation accuracy of both NCA and fastNCA

heavily depends on availability and quality of given biological knowledge.

2.2.5 Motif-directed network component analysis (mNCA)

Noticeably, most of current NCA applications are focused on simple cell system such as E.

coli (Kao, Yang et al. 2004) and yeast (Liao, Boscolo et al. 2003; Yang, Suen et al. 2005).

This is because complete biological connection data, such as high-throughput ChIP-chip

data, are often not available for common species including rodent and human.

To solve this limitation, we propose a motif-directed NCA (mNCA) approach for regulatory

network inference, which utilizes sequence motif information to construct initial connections

and later integrates with gene expression data to estimate the activities and downstream

targets of transcription factors. First, the upstream regions of the genes can be extracted

from the database PromoSer (Halees, Leyfer et al. 2003). Second, MatchTM (Kel, Gossling

et al. 2003) (or its improved version, P-Match (Chekmenev, Haid et al. 2005)) can be used to

search the transcription factor binding sites (TFBSs) in each upstream region; this approach

generates the scores of both ”core similarity” and ”matrix similarity” for each matched

motif. Third, Match searches the TFBS for its position-weighted matrices (PWMs) that can

be extracted from the TRANSFAC 11.1 Professional Database (Matys, Kel-Margoulis et al.

2006). Fourth, according to the PWMs, a motif score can be calculated for each TF-gene

pair where the score is the maximum of the average scores of core similarity and matrix

similarity. These motif scores provide the initial connection information for further mNCA
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analysis as is detailed in the next section.

As TF binding motif is a relatively short sequence pattern, the topology obtained from

motif information is very noisy and contain many false positives. Since the initial topology

information is often unreliable for any specific TF-gene pair, we are going to address the con-

sistency between biological knowledge derived from DNA motif information and expression

data in the next section, through proposed stability analysis.

2.3 Knowledge-based Stability Analysis

2.3.1 Problems associated with biological knowledge

Since NCA is a network structure constraint approach to infer regulatory activities and

relationships, the quality of Z0 and its consistency to data X will affect the accuracy of

inferred networks. Previously, we simply assume that some binary matrix B is available to

construct Z0. In reality, we know that Z0 is actually derived from some TF-DNA binding

evidence such as DNA motif matching scores or ChIP-chip binding p-values, which have

some dependence to regulation but cannot fully decide the occurrence of true regulation.

To facilitate the following discussion, we use a matrix form to denote all binding evidence

scores as a matrix K ∈ R
N×L. Assume the higher a binding evidence score bnl is, the more

likely that the promoter region of the n-th gene can be bound by the corresponding l-th

TF. To distinguish a likely regulatory relationship from an unlikely one, we can setup a

cut-off threshold ηl for the l-th TF. If some TF-target pair between the l-th TF and the

n-th gene has a binding evidence score below ηl, we determine this as an unlikely regulatory

relationship. Therefore, we can redefine Z0 in Eq. (2.10) as

Z0 , {A ∈ R
N×L|anl = 0 if knl < ηl}. (2.11)

Please see Fig. 2.3 for this basic idea of transforming binding score to Z0.
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Figure 2.3: An illustration of constructing the regulatory matrix set Z0 from binding knowl-

edge.

However, we understand that biological information sources could contain considerable amoun-

t of errors due to their incompleteness or lack of condition-specific knowledge. The binding

evidence score can come from different information sources, such as ChIP-chip experiments

(binding p-value), DNA motif sequence matching results (motif matching score) and litera-

ture surveys (text mining score). Even with reliable binding information, the occurrence of

transcriptional regulation still cannot be fully decided, because transcription regulation is

also affected by other factors, such as whether DNA is accessible at that time, and whether

other necessary co-factors also bind onto the adjacent regions. Therefore, it is not sufficient

to distinguish targets and non-targets purely based on binding scores. Z0 and its related

NCA inference are heavily influenced by false positives (FPs) (bnl ≥ ηl but the l-th TF does

not regulate the n-th gene) and false negatives (FNs) (bnl < ηl but the l-th TF actually reg-

ulates the n-th gene) within Z0. As in many real applications the FPs and FNs of biological

knowledge is known to be relatively high, the confidence of inference results could be very

problematic. It has been shown that by directly applying NCA to yeast gene expression

data with ChIP-chip data, the results could be as bad as only comparable to that with

random network information (Brynildsen, Tran et al. 2006). Since the DNA binding score

only provides incomplete evidence for TRN inference, we emphasize that it is essential to

filter out less irrelevant and inconsistent knowledge for a further integrated analysis of gene

expression data. We propose a novel stability analysis in the following section to perform
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this task for TRN identification.

2.3.2 Basic idea of stability analysis

Stability analysis was originally proposed to perform model selection for various types of

machine learning algorithms (Tilman, Volker et al. 2004). The basic idea of stability anal-

ysis can be described as follows: with multiple resampled versions of input data, the most

consistent (stable) estimation will only occur when an appropriate model is chosen, which

fits correctly to the underlying structure of the data. Specifically, stability has been shown

to be tightly linked with the generalization capability of any supervised learning approach

(Bousquet and Elisseeff 2002; Subramanian, Tamayo et al. 2005). Recently, stability has

been also revealed as an effective criterion to perform feature or variable selection (Calle and

Urrea, 2010; Kalousis, et al., 2007; Kř́ıžek, et al., 2007; Meinshausen and Bhlmann, 2010).

The estimation consistency, or stability, reflects how relevant a feature or variable of interest

is with respect to a specific machine learning task. In bioinformatics applications, stability

analysis has also been used for gene ranking (Boulesteix and Slawski, 2009; Calle and Urrea,

2010) and classification label correction to deal with high levels of experimental noises and

errors.

However, there is no existing stability analysis scheme to explicit evaluate the consistency

between biological knowledge and gene expression data. Here, following a similar philosophy

but with a different quest, we propose a new scheme, by adding small perturbations to giv-

en topological connections, to prioritize condition-specific TFs and their target genes. We

will develop this so-called knowledge-based stability analysis scheme to identify condition-

specific regulatory networks by integrating gene expression data and binding information.

As we mentioned before, when network (topology) information is consistent with expression

data, NCA can lead to correct TFA estimation hence regulatory relationships. But such con-

sistency is not guaranteed, considering that topological information usually contains many

false positives/negatives and expression data are often very noisy. As true TFA measure-
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Figure 2.4: Illustration of basic ideas of stability analysis.

ments are unavailable and definite target genes are unknown in real experiments, we must

clarify whether the estimated TFAs and regulatory relationships are reliable or arisen by

chance. Only with purified TFs and their known targets, which are relevant to our study

of interest, we can proceed to infer regulatory networks correctly via TFA estimation. For

available topological information with errors, we propose to use a perturbation analysis to

test the reliability of TFAs for regulatory network inference. To introduce proper pertur-

bations of topological information, we can modify Z0 by deleting some existing edges or

adding some non-existing edges; we can also add small amount noises in binding score K (if

available) for perturbation analysis.

Taking an example shown in Fig. 2.4, we aim to study the regulatory role of the l-th TF

through its TFA estimation sl but the quality of biological knowledge, network information

(Z0), is our concern. We can keep the expression unchanged and generated a perturbed Z
′
0

by intentionally altering a small amount of entries in given Z0. As a result, we would expect

a deviation (denoted as d) between estimated s′l (based on the perturbed Z
′
0) and original

estimation sl( based on Z0). The rationale behind our stability analysis is that the TFA

estimation of a condition-specific TF should be more robust to a small amount of perturba-
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tion than any non-specific TF that generally lacks of support in data-knowledge consistency.

With multiple different perturbations applied to Z0, we can define an evaluation metric of

robustness as the average deviation of different estimations with respect to multiple small

perturbations. By perturbing the initial network topology, we will perform a stability anal-

ysis on the variation of estimated TFAs and predicted TF-target relationships. A falsely

estimated TFA, which is either caused by unspecific TF or inconsistent topological informa-

tion, tends to be altered easily by small perturbations. On the contrary, an active TF (with

a relatively good consistency between expression data and topology knowledge) will tend to

keep its activity pattern stable throughout multiple perturbations. The prioritization of true

target genes will depend on a stability analysis of prediction errors, as one gene could be

regulated by multiple TFs and its expression pattern should be explained, at least in large

part, by the TFAs of its regulators.

Specifically, we propose two strategies of stability analysis for TF and target gene prioritiza-

tion, with both strategies focused on identification of condition-specific TFs and their target

genes by intentionally altering the network topology information. After active TFs and tar-

get gene subsets are obtained, the TFAs are further refined (estimated) for a significance

analysis of regulatory relationship. The overall workflow of the proposed stability scheme is

shown in Fig. 2.5.

2.3.3 Knowledge perturbation and stability score

We apply multiple perturbations on biological knowledge (network topology) for stability

analysis, each individual perturbation leading to a different estimated TFA. That is, we

apply P independent perturbations on original Zp = Perturb(Z0, α, β) to obtain different

versions of Zp = Perturb(Z0, α, β); we control the degree of perturbation to be very small

(FP = FN = α ≪ 1 with respect to Zp = Perturb(Z0, α, β)). Mathematically, we denote

the perturbation function as follows:

Zp = Perturbα(Z0). (2.12)
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Figure 2.5: Workflow for proposed stability analysis schemes for transcription regulatory

network inference.

The estimated TFA of the l-th TF (with respect to expression dataX) and the p-th perturbed

regulatory matrix set Zp can be represented, respectively, as

ŝl,p = NCAl-thTFA(X,Zp) (2.13)

and

âl,p = NCAl-thRC(X,Zp). (2.14)

We define a stability measure, namely instability score of TFA, (for the l-th TF) as follows:

ISTl
.
=

1

P (1− P )

P∑

p1=1

P∑

p1=1,p1 6=p2

d(̂sl,p1, ŝl,p2). (2.15)

Similarly we also define a second instability score, called instability of RC (ISR), as

ISRl
.
=

1

P (1− P )

P∑

p1=1

P∑

p1=1,p1 6=p2

d(âl,p1, âl,p2). (2.16)
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Table 2.2: Stability analysis algorithm for TFs.

In both Eq. (2.15) and (2.16), the distance function d0(v1,v2) is defined in the way that

intrinsic ambiguity of NCA solutions will not be taken into account:

d0(v1,v2) = min(cos(v1,v2), cos(v1,−v2)), (2.17)

in which, cos(·, ·) is the cosine distance. However, the range of such distance function is

very narrow. When we calculate the averaged distance value, the final estimation could be

heavily affected by the outliers. To further improve it, we propose a modified distance

d(v1,v2) = log

(
d0(v1,v2)

1− d0(v1,v2)

)
. (2.18)

The operator log
(

x
1−x

)
spans the distance range to be much larger and makes the resulted

distribution more normal like. After the modification, the distance calculation is less affected

by outliers than the un-modified distance function.

The algorithm of stability analysis for TFs is described as Table 2.2.
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2.3.4 Target gene identification based on stably estimated TFA

Once having the TFA estimates of relevant TFs prioritized by kSA, we can identify target

genes controlled by these TFs utilizing the relationship in Eq. (2.7), which describes that

the individual expression profile xn of the n-th gene can be represented as a summation of

TFAs weighted by regulatory strength anl from the l-th TF to the n-th gene, plus a noise

term γn.

A natural question is can we directly use anl to decide TF-gene controlling relationship?

Although in general the larger value of anl the more likely the n-th gene is actually regulated

by the l-th TF, different genes may not be directly comparable as they have distinct baseline

activities. Moreover, we also wish to know statistical confidence for one particular regulato-

ry relationship associate with value of each anl. Therefore, we use a multivariate regression

scheme to further decide the statistical significance of TF-gene regulatory relationship. Ba-

sic idea of specifying the regulation relationship between TF and gene is as following: when

we perform stability analysis for prioritizing condition-specific TFs, we can acquire stably

estimated TFAs. For n-th gene, we are going to use the activities of its potential regula-

tors ({sl|anl 6= 0}) to regress its expression profile xn and calculate the resulted p-value of

regression coefficient, which is the statistical significance level reflecting how well the gene

expression can be fit by corresponding TFAs. Considering that many TF-target relation-

ships will be tested, multiple hypothesis testing correction scheme described in (Storey and

Tibshirani 2003) will be performed to calculate the false discovery rate (FDR) of TF-target

relationship.

Based on the regression procedures described as above, we further propose to distinguish

”foreground” genes (which are truly regulated by active TFs with consistent data-knowledge

support) from ”background” genes (the expression pattern of which cannot be reliably pre-

dicted by its TF regulators’ activities). We simply define the relevance score of downstream
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gene (RSDG) based on its average significance level based on TFA regression analysis:

RSDGn =

−
L∑
l=1

log(p-value(anl))

#(anl 6= 0)
, (2.19)

where #(·) is the operator to count the number of elements. The higher the score, the more

likely this gene is a ”foreground” gene truly regulated under this circumstance.

To summarize, for stability-based inference of transcriptional regulatory networks, we pro-

pose two consecutive steps: i) Identify condition-specific TF by stability analysis; ii) Identify

condition-specific downstream target genes based on stable TFA estimates.

2.3.5 Under-determined case (more TFs than microarray sam-

ples)

Another issue has to be considered is one of NCA identifiability conditions, which requires

larger microarray sample number than TF number. In the real application, we usually

encounter the reverse situation, much larger TF number than the sample number. To avoid

this limitation, we proposed to randomly sample a small number (¡L) of TFs each time,

calculate and store their instability scores. After multiple times of above-mentioned random

sampling, we will calculate averaged instability score of each TF across multiple random

divisions. The reasoning behind this scheme is that if a TF actively participate under certain

condition and regulate its targets, it should also be averagely stable in randomly sampled

sub-networks. The algorithm for under-determined case is described in Table 2.3.

45



Table 2.3: Stability analysis algorithm for under-determined case.

2.4 Experiments for Stability Analysis

2.4.1 Simulation studies

To test the performance for regulatory network identification, we generated simulated reg-

ulatory networks consisting of TFs and target genes. The simulated expression data were

generated based on Eq. (2.6). The performance of an algorithm was evaluated using 50

randomly generated networks across different signal-to-noise ratios (SNRs).

TF prioritization

To realistically simulate real microarray data studies, we purposely added some ’non-relevant’

or ’less-relevant’ TF connections in the simulation data. We simulated these two cases

separately as follows: (a) ’non-relevant’ TF case: gene expression data were generated as all

genes were regulated by 15 TFs according to Eq. (2.6), and false connections of another 15
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TFs, which have no impact on regulating expression of the all genes, were added. (b) ’less-

relevant’ TF case: gene expression data were generated as regulated by 30 TFs; within 30

TFs, 15 of them were associated with moderate false connections (FP/FN rate = 2%), while

the connections of remaining 15 TFs were contaminated with considerable amount of FPs and

FNs (20%). In both cases, we can separate the 30 TFs to be a positive set and a negative

set. The positive set contains regulators having consistent topological information with

expression data, and negative set contains regulators having inconsistent or less consistent

expression-connection relationships. We compare kSA with several other typical methods to

rank condition-specific TFs:

(a) Least-squares regression: for each TF, we directly use biological knowledge bl to regress

gene expression matrix X. We rank TFs according to residue errors of using biological

knowledge of each TF. The smaller the TF residual error, the more relevant this TF to

biological condition that expression is measured.

(b) NCA regression: similar to least-squares regression scheme, except that we use estimated

regulatory component al to regress gene expression.

(c) Averaged TFA: if we normalized each estimated regulatory component to be unit-

standard deviation, we can have TFA average activity directly comparable. The higher

the averaged absolute TFA level, the more relevant this TF to biological condition that

expression is measured.

From performance comparison curves shown in Fig. 2.6, we can observe that least-square

regression always lead to worst performance, it is understandable as there is no fine tune

estimation about regulation strength anl. Averaged TFA is as good as both stability analysis

schemes, and outperforms NCA regression approaches in distinguishing ’non-relevant’ TFs,

shown in Fig. 2.6(a). However, both stability analysis schemes clearly outperform all the

other methods in distinguishing ’less-relevant’ TFs shown in Fig. 2.6(b), demonstrating that

stability analysis is more sensitive to prioritize condition-specific TFs.

Target gene prioritization
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Figure 2.6: Comparison of prioritizing condition-specific TFs, in distinguishing relevant TFs

from (a) ’non-relevant’ TFs, and (b) ’less-relevant’ TFs.

In order to evaluate the performance for target identification, we designed simulations as

follows: an initial regulatory network was formed by 30 TFs (L = 30) and 500 downstream

genes (N = 500), and 35 simulated microarray expression data samples (M = 50) were

generated based on the original topology with varying SNR. For evaluating the prioritization

capability of target genes, we keep half of downstream genes (250) having true topological

information, while topological information of other half of genes was replaced with randomly

generated connections, making topological knowledge of this set of genes inconsistent with

expression data. We compare totally three different methods:

(a) Target gene ranking based on regression with estimated TFAs: we use relevance score of

downstream gene (RSDG) defined in Eq. (2.19), which is based on average significance level

of TFA regression analysis. The higher the RSDG score, the more relevant this downstream

gene is.

(b) Target gene ranking based on averaged absolute regulation strength: for n-th gene,

we calculate the averaged absolute value of all non-zero regulation strength {anl|anl 6= 0}

pinpointing to this gene. The higher the averaged absolute regulation strength, the more
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relevant this downstream gene is.

(c) Target gene ranking based on NCA regression error: for n-th gene, we calculate the

residual error regressed by NCA estimates: errgene(n) = ||xn −
L∑
l=1

ânlŝl||
2
2. The lower the

residual error, the more relevant this downstream gene is.

To test the robustness of each method, we purposely permute certain percentages of gene

expression patterns to disrupt the ideal linear model assumptions. We vary the cases from

no permutation to 10%, 20% and 50% permutation rate of expression patterns, the perfor-

mances in terms of AUC are presented in Fig. 2.7(a), (b), (c) and (d), respectively. In

every case, the proposed RSDG-based method outperforms other two methods to detect

relevant downstream target genes. Specifically, when expression data is not permutated and

well corresponds to underlying linear model, both regulation strength based and regression

residual error based methods achieved very similar performance; when expression data is

permuted slightly (10%), we can observe performance difference between regulation strength

based and regression residual error based methods. This difference is enlarged with increas-

ing permutation rate of expression data, suggesting that regression approach may over-fit to

the expression data.

2.4.2 Yeast cell cycle experiment

The yeast cell cycle microarray experiment was performed using fluorescently labeled cDNA

arrays, measuring the expression levels of 6,178 genes of wild-type S. cerevisiae cells. The

cell cycle was synchronized by three independent methods: (1) α-pheromone (α-factor) was

used to arrest the cells in G1 phase; (2) a temperature-sensitive mutation cdc15-2 was

utilized to arrest cell in mitosis; (3) a temperature-sensitive mutation cdc28 was utilized

to arrest cell in mitosis. We set the p-value threshold as 0.01 to integrate ChIP-chip data

(Lee, Rinaldi et al. 2002) for initial network information. Although in (Lee, Rinaldi et

al. 2002) the threshold was set as 0.001 (a stringent threshold) to better eliminating false-

positives, here our motivation was to test the capability of the proposed stability-based

49



Figure 2.7: Comparisons of target prioritization when expression matrix (a) is not permuted,

(b) permuted in 10%, (c) permuted in 20% and (c) permuted in 50%.

50



scheme for identifying cell cycle related genes even with false positives in knowledge. After

preprocessing, the total number of genes is 4,419 and the number of TFs is 111. Within these

4,419 genes, there are 644 cell-cycle regulated genes as biologically validated in (Spellman,

Sherlock et al. 1998).

After stability analysis, we extracted top 20 most stable TFs, 18 out of which are cell

cycle-related regulators. Specifically, 14 of them are well established cell cycle regulators in

different phases, as shown in Fig. 2.8. Based on these 20 TFs, we further identified their

condition-specific target genes. With a FDR cut-off of 0.05, we obtained 164 cell cycle-related

genes from top 300 stable downstream genes, with a significance p-value of 3.27e-13. The

expression pattern of these cell cycle-related target genes is shown in Fig. 2.9. Notice that

for the identification of both TF and target genes, unlike in (Spellman, Sherlock et al. 1998)

we did not utilize any cell cycle pattern information (i.e., the cycle-like pattern), underlining

the usefulness of the proposed stability analysis. It should be emphasized that if the prior

pattern information (being biologically meaningful) is available, such as cycle pattern in

yeast cell cycle experiment, it will be more informative to evaluate both expression pattern

and stability of downstream targets. However, stability analysis is more generally applicable

than pattern-based methods, especially for exploratory and discovery studies in which specific

pattern knowledge is usually not known.

With the top 20 stable TFs, we show in Fig. 2.10 the estimated TFAs of three representative

TFs: SWI4, MBP1 and HSF1. The cycle-like patterns of both SWI4 and MBP1 (TFAs)

are well consistent with their cell cycle roles, in all three synchronization conditions. It

suggests that these TFs are stably involved in the cell cycle process, and their TFAs thus

can be reliably estimated even with a small percentage of topological connection errors. It

is also interesting to notice that the estimated TFA of HSF1 only shows very small changes

in the -factor synchronized condition, which is much smaller than the activities in CDC15

and CDC28 conditions. Actually, this phenomenon can be explained (at least partially) by

the temperature related synchronizations of CDC15 and CDC28 conditions, as HSF1 is a

heat shock stress responsive TF. Therefore, a caveat there should be raised that condition-
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Figure 2.8: The distribution of top 20 TFs identified by stability analysis in different cell

cycle phases.

Figure 2.9: Heatmap of cell cycle related genes within top 300 stable targets.
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Figure 2.10: Estimated TFAs of SWI4, MBP1 and HSF1.

specificity does not directly suggest that a stable TF/target is relevant of the biological

condition of interest, further biological context and interpretation need to be checked with.

With the confidently identified TFs, we further proceeded to evaluate how well each method

can identify or highlight target genes. If regarding the 644 genes in (Spellman, Sherlock et

al. 1998) having cell-cycle pattern as the true target genes (we should keep in mind that this

ground-truth could be incomplete), we can rank target genes according to regression errors

and stability scores, respectively. The precision-recall curves of three different methods

(RSDG-based, NCA regulation strength-based, NCA regression-based and direct regression-

based methods) are shown in Fig. 2.11. As we can see from the figure, RSDG based

scheme shows a much improved performance (Area Under PRC curve (AUPC = 0.58)) in

identifying condition-specific genes than both NCA regulation strength -based (AUPC =
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Figure 2.11: Precision-recall curves of different schemes to prioritize cell-cycle related genes.

0.48) NCA regression-based (AUPC = 0.49) and direct regression-based methods (AUPC =

0.29).

With condition-specific TFs and target genes identified by stability analysis, we can have a

full picture of cell-cycle related transcriptional regulatory network, shown in Fig. 2.12.

2.4.3 Breast cancer cell line experiments

World widely breast cancer is the most common type of non-skin cancer in women popu-

lation and one out of eight United States females could suffer from breast cancer in their

lifetime. Some of the breast cancer cases, which are sensitive to hormones such as estrogen,

can be treated effectively by blocking the effects of corresponding hormones. Unfortunately,

one of the hurdles in the therapy is that substantial portions of breast cancer cases do not

respond to anti-estrogen treatment, as the tumor could be inherently resistant to the drug

or developing the drug resistance through time. Therefore, it is essential to establish under-

54



Figure 2.12: Yeast cell cycle regulatory network inference results based on proposed schemes.
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standing of estrogen independent progression of breast cancer, identify molecular signature

of drug resistance and develop novel treatment scheme.

Several known transcription factors play vital roles in the cancer progression to impact pro-

liferation, differentiation and apoptosis these essential biological processes (Nebert 2002). In

addition, TFs could also serve as therapy targets (Libermann and Zerbini 2006). To facilitate

better understanding of transcriptional regulations in drug resistance/estrogen independent

environment, in the following experiments we aimed to investigate the transcriptional regu-

latory networks in (a) E2 induction cell line study; (b) E2 deprivation cell line studies. We

analyze three breast cancer gene expression data sets:

(1) E2 (17β-estradiol) induced dataset (E2 induced cell lines)

In corresponding experiment (Creighton, Cordero et al. 2006), three estrogen-dependent

breast cancer cell lines (MCF-7, T47D and BT-474) were treated with E2(17β-estradiol)

from 0 to 24 h, and then profiled for gene expression using Affymetrix GeneChip Arrays.

This particular dataset provides us opportunity to investigate E2 dependent transcriptional

regulation mechanisms in breast cancer cell lines.

(2) Estrogen deprived dataset (LCC cell lines)

With previously derived series of breast cancer variants (Brunner, et al., 1997) (Clarke,

Brunner et al. 1989), which closely reflect clinical phenotypes of endocrine sensitive and

resistant tumors, several E2 independent breast cell lines (MCF-7 stripped, M3, LCC1) were

profiled. This profiling reflects the tumor progression in estrogen deprived case and therefore

shed light on the understanding of regulation in such situations.

(3) Long term estrogen deprived dataset (LTED cell lines)

This dataset is measured based on a long-term estrogen-deprived (LTED) MCF7 cell model,

which was made to study acquired resistance in postmenopausal women (Aguilar, Sole et

al. 2010). Gene expression data were integrated into the time course of MCF7-LTED

adaptation.
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Computational results

Notice that here the number of motifs we evaluated is much larger than the available mi-

croarray sample number. Therefore, we adopted the scheme we proposed to tackle this

underdetermined situations. Perturbation level α was set as 0.02, and number of stability

running P and random partitions R were set as 50 and 200. The top motifs associated with

most stable TFA estimations are displayed in Table 2.4. In the first E2-induced experiment,

several E2F motifs (E2F-02, E2F-Q4-01, E2F-Q3-01) to be ranked in the top places, and

it is consistent to the fact that proliferation was activated through E2F family TFs (Prall,

Rogan et al. 1998). It is not surprised to see that estrogen receptor binding site (ER-Q6)

only appear in this experiment as in the remaining experiments the activity of estrogen is

purposely inhibited either through E2 deprivation or antiestorgen drug. As another evi-

dence of estrogen receptor is activated, the co-activator of estrogen receptor CREB is also

shown in the E2-induced list with multiple motifs (CREB-Q4, CREBATF-Q6, CREB-01).

Interestingly, the binding motif ETS-1B of ETS1 (v-ets erythroblastosis virus E26 oncogene

homolog 1) shows up in the stable lists of both E2 deprived case, and breast cancer study has

shown that the over-expression of ETS1 is indicative of poor prognostics (Buggy, Maguire et

al. 2004). In the E2-deprived experiment for LCC cell lines, in contrast several AP1 motifs

(AP1-Q6, AP1-Q6-01, AP1-Q4-01, AP1-Q2-01) appear, and it is well accepted that AP1 is

associated with drug resistance (Daschner, Ciolino et al. 1999). This confirms the observa-

tion in the previous E2-deprived cell line study. It is also interested to see that SP1 (Porter,

et al., 1997), a TF could interact with ESR1, also activated in the corresponding patient

group. Distinctly in the late case, MYB, a famous onco-gene related with breast cancer also

(Drabsch, Hugo et al. 2007) has multiple stable motifs (MYB-Q6, MYB-Q5-01, MYB-Q3).

Some further discussions on motif analysis results

Motif analysis using kSA partially revealed complicated picture of estrogen-related regulation

mechanism. As the signal receiver of estrogen ligand, estrogen receptor (ER) generally refers

to a group of receptors that could be activated by E2 (Dahlman-Wright, et al., 2006). There
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are two different forms of estrogen receptors ER-α and ER-β, which are encoded by two

distinct genes: ESR1 and ESR2, respectively. The receptors could form ER-αα/ ER-ββ

homodimers or ER-αβ heterodimers.

In the classical mechanism of ER regulation (Hall, et al., 2001), E2 ligand activates ER

complex by changing its conformation so that ER could bind to estrogen responsive elements

(EREs) in the promoter regions of ER target genes. DNA-bound ER in turn recruits other

co-factors such as CBP-p160 complex to regulate expression of the downstream target gene.

In addition to E2 induced activation, it has also been shown that ER function can be initiated

by growth factors, such as epidermal growth factor (EGF) and insulin-like growth factor-1

(IGF-1).

Whereas genomic actions of ER could be modulated by E2 or growth factors, ER also plays

non-genomic roles without directly binding to ERE DNA sequence. This could occur in

both E2-dependent and E2-independent conditions (Hall, et al., 2001; Kushner, et al., 2000).

Taking the ER activation at AP-1 sites as an example (Kushner, et al., 2000), it is accepted

that ER could activates gene transcription at AP-1 sites through the formation of protein

complex with cJun/cFos, without utilizing ERE. The complicated activation mechanism

have been summarized as two separate scenarios depending on the status of AF protein

domain of ER: (a) ER-αwith estrogen or with tamoxifen could activate AP-1 though an AF

mediated pathway; (b) if AF is absent, ER-α and ER-β could activate AP-1 in the presence

of selective estrogen receptor modulators (SERMs).

Since motif analysis could only reveal active response elements on DNAs, the non-genomic

regulation mechanism cannot be fully reflected unless more interaction measurements are

acquired.

We further categorized the stable downstream targets into different gene families, according

to growth factors, TFs, oncogenes and protein kinases (shown in Table 2.5, 2.6, 2.7 and

2.8), which play vitals roles to propagate the regulation in a cascading way. These genes

are stably driven by the upstream TFs, which are identified by stability analysis, and they
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Table 2.4: Top regulatory motifs ranked by proposed stability analysis scheme, for each of

dataset analysis results.

Rank E2 induced cell lines LCC cell lines LTED cell lines

1 CREB-Q4 T3R-Q6 E2F1-Q4

2 YY1-Q6 TAL1ALPHAE47-01 STAT1-03

3 CREBATF-Q6 NFKB-Q6 E2F-Q4-01

4 ATF4-Q2 ATF3-Q6 TAL1-Q6

5 OCT1-06 AP1-Q6 GATA1-03

6 CREBP1-Q2 TAL1BETAE47-01 NFY-Q6-01

7 CREB-01 NFKB-C OCT1-B

8 ER-Q6 AP1-Q6-01 MAF-Q6-01

9 NFY-C GATA1-03 P53-01

10 SRY-01 NFKB-Q6-01 E2F1-Q4-01

11 OCT1-Q6 ETS2-B P53-02

12 E2F-Q3-01 ETS1-B USF-Q6-01

13 STAT1-02 SRY-01 HNF1-Q6

14 E2F-02 AP1-Q2-01 SP1-Q4-01

15 ETS-Q6 STAT5A-03 YY1-Q6-02

16 E2F-03 STAT1-02 SP1-Q6

17 USF2-Q6 HFH3-01 BACH2-01

18 OCT1-03 HNF3ALPHA-Q6 HNF1-01

19 ETS2-B AP1-Q4-01 SP1-Q6-01

20 ARNT-02 FOXJ2-01 LHX3-01
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Table 2.5: Growth factors within top 300 downstream targets genes for each study.

E2 induced cell lines LCC cell lines LTED cell lines

ARTN ARTN AMH

CXCL10 CSF2 ARMET

CXCL12 CXCL10 ARTN

EPO FGF9 CSPG5

FGF23 GAL EPO

GAL IL6ST FGF9

IL19 NRTN SEMA3C

IL6ST TNFSF15 STC2

JAG2

RABEP1

SEMA3C

Table 2.6: Oncogenes within top 300 downstream targets genes for each study.

E2 induced cell lines LCC cell lines LTED cell lines

CCNB1IP1 HMGA1 ARHGAP26

HMGA1 IL6ST CBFA2T3

IL6ST MITF CCNB1IP1

MYB MYB RET

RABEP1 TFG TPR

RARA TRIM27

TFRC WHSC1

TPR

TRIM27

WHSC1
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Table 2.7: Protein kinases within top 300 downstream targets genes for each study.

E2 induced cell lines LCC cell lines LTED cell lines

BUB1B BUB1 CAMKK2

CAMKK2 CDK2 CHEK2

CDK2 CHEK1 CSNK2A1

CHEK1 IGF1R GRK6

LIMK1 MST1R HSPB8

PBK SGK3 IGF1R

RAGE SRPK1 PBK

ROCK2 RET

STK17A SGK3

STK38L TEX14

could in turn activate the secondary signaling transduction pathways and transcriptional

regulations. As we are particularly focused on the transcriptional regulation mechanisms,

we mainly inspected the TFs within the downstream targets (namely downstream TFs) and

their potential relationships with upstream TFs. The collaboration of TFs is essential for

the effective transcriptional regulation, as TFs need to form TF complex, bind on DNA pro-

moter regions of target genes, and further recruit the RNA polymerase enzymes to perform

transcription of specific genes. Take ESR1 as an example, the formation of TF complex can

provide it an alternative way to bind on DNA indirectly, which could be explained by one

of the drug resistance mechanisms (Bjornstrom and Sjoberg 2005).

We display the potential interactions among TFs in Fig. 2.13 by querying STRING web

tool (Jensen, Kuhn et al. 2009), which can identifies interactions based on multiple sources

of evidences. We can see that many TFs have multiple interactions, which may suggest

collaborations among these TFs. Also, it is noticed that up-stream TFs tend to have higher

interaction degree than down-stream TFs, which further confirm their pivotal roles in the
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Table 2.8: TFs within top 300 downstream targets genes for each study.

E2 induced cell lines LCC cell lines LTED cell lines

ARID5A ASCL1 CBFA2T3

ARIH2 ASH2L E2F3

ATF5 ATF5 E2F5

CNOT4 ATF6 EED

CSDA CDR2 EGR3

E2F1 CNOT4 EHF

E2F3 E2F3 GTF2A1

E2F5 EED HIRA

EGR3 EGR3 HMGB1

FHL2 ESR2 HOXC5

HIRA FHL2 SART3

HMGA1 GATA4 SMARCA1

HMGB2 HMGA1 SNAPC5

HOXC5 HMGB1 TEAD4

ILF2 KIAA0040 TP73

L3MBTL KLF4 TRIM27

LARP1 LHX6 WHSC1

MAX MITF WT1

MSX1 MSX1 YBX1

MYB MYB YY1

NRF1 NRIP1 ZNF202

PAXIP1 RB1 ZNF592

RARA SOX9 ZNF696

RNF24 TRMT1

SART3 ZNF232
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regulations. Moreover, the TF interactions in E2 induced and E2 deprived conditions show

quite different landscapes. In E2 induced case, ESR1 and CREB1 has known binding rela-

tionship, as the result of activation of ER signaling pathway. Several E2F family TFs show

up in E2 induced case. All the E2F TFs are observed to associate with a stable upstream TF

TFDP1, which has alias namely E2F-related transcription factor and can form heterodimer-

ize with E2F proteins to enhance their DNA-binding activity and promote transcription of

E2F target genes (Slansky and Farnham 1996). The activation of E2F has known association

with increased proliferation activities, which again confirms transcriptional regulations in E2

induced condition promote the growth of cells. Specifically, the interaction between JUN

(AP-1) and ESR2 has been shown associated with drug resistance mechanisms in multiple

studies, and the cross-talk between AP-1 pathways and estrogen receptor could form the

breast cancer alternative pathway (Jakacka, Ito et al. 2001) (Bjornstrom and Sjoberg 2005).

To further investigate the biological relevance of downstream targets in each condition, we

performed functional enrichment analysis using David web tool (Huang da, Sherman et

al. 2009). Specifically, it is interesting to notice that ”cell cycle” (GO: 0007049) is one

of significantly enriched biological processes in E2 induced case (FDR = 3.57e-4), while its

enrichment significance greatly decreases in E2 deprived case (FDR = 3.34e-1). Furthermore,

another biological process ”negative regulation of programmed cell death” (GO: 0043069) is

not enriched in E2 induced case (FDR = 9.9e-1) but in E2 deprived case (FDR = 1.1e-2).

It implies that the cell growth is advanced differently in these two conditions. It is known

that tumor cells can acquire resistance to therapy through the activation of anti-apoptotic

genes (Igney and Krammer 2002), such as IGF1R, ESR2, ATF5. Insulin-like growth factor

1 receptor (IGF1R), a glycoprotein located on the cell membrane, is regulated by steroid

hormones and growth factors and inhibited by anti-estrogen tamoxifen (Huynh, Tetenes et

al. 1993).

According to current understanding of estrogen related regulation mechanism (Bjornstrom

and Sjoberg 2005), we summarize the schematic plots of transcriptional regulations in dif-

ferent conditions as Fig. 2.14.
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Figure 2.13: Protein interactions of stable TFs, identified by STRING web tool for (a) E2

induced cell lines, (b) E2 deprived LCC cell lines, and (c) E2 LTED cell lines.
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Figure 2.14: Schematic plots of underlying transcriptional regulations highlighted by mNCA

and kSA, for (a) E2 induced cell lines, (b) E2 deprived LCC cell lines, and (c) E2 LTED cell

lines.
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2.4.4 Discussions on stability analysis

As an emerging trend of biomedical research, systems biology requires the advancement of

integrated approaches fusing data and knowledge to describe complex properties and in-

teractions within cellular systems, such as various forms of interaction networks, signaling

transduction pathways and metabolic reaction pathways. Integrating genomic data with spe-

cific biological knowledge, such as interaction information, becomes a practical way to tackle

these problems. Noticeably, an increasing amount of biological knowledge is being accumu-

lated and categorized to facilitate the development of this prosperous field, through manual

annotation (Camon, Magrane et al. 2004; Vastrik, D’Eustachio et al. 2007), high-throughput

data acquisition (Carroll, et al., 2006; Lee, et al., 2002; Shoemaker and Panchenko, 2007), and

computational prediction (Kummerfeld and Teichmann, 2006; Shoemaker and Panchenko,

2007). However, along with great abundance and diversity of biological knowledge, the

quality of knowledge and its consistency with biological data become serious issues that

any computational approach cannot avoid. Staring with unjustified biological knowledge,

inferred biological interactions and activities could be less accurate and even misleading.

Motivated by that, we proposed a novel computational scheme to filter out irrelevant and

less consistent biological knowledge with a stability analysis procedure.

The proposed stability analysis scheme mainly focuses on assessing data-knowledge consis-

tency for regulatory network inference. By purposely adding small perturbations to biological

knowledge, we can distinguish reliable inference results from less confident ones, which can be

caused by noises, errors and/or data-knowledge inconsistency. The scheme has been applied

for prioritization of TFs and target genes. It has been shown that the proposed stability

analysis outperforms several conventional approaches with superior robustness for regulatory

network identification when given knowledge is incomplete. Note that it is easy to perform

the proposed stability analysis and the procedure can be readily plugged into other knowl-

edge integration approaches. Stability analysis of the consistency of data and knowledge

could also serve as a testing and evaluation procedures for any knowledge-based integrated
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approaches, considering that a practically useful approach should have a reasonable tolerance

to certain amount of inaccurate knowledge.

It is worth noting that the proposed scheme not only is related to many previously stability

analysis methods for model selection (Tilman, Volker et al. 2004), feature selection (Kalousis,

Prados et al. 2007; Kř́ıžek, Kittler et al. 2007; Calle and Urrea 2010) and variable selec-

tion (Meinshausen and Bhlmann 2010), but also has strong connections with several other

statistical or machine learning concepts:

i) Reproducibility: reproducibility is a fundamental requirement for designing any machine

learning approaches, such as classifiers (Ruschhaupt, Huber et al. 2004). We expect a robust

algorithm should be able to generate similar results even the input data are slightly perturbed

or modified, due to noises or errors in measurements. From this perspective, our proposed

method is aimed to address the problem that biological knowledge is often contaminated

with noises and errors, and then to test the reproducibility of TRN inference by stability

analysis.

ii) Variance: any statistical estimator gives the output based on random data samples as

an estimate. Any estimate itself is also a random variable. The variance of estimate in-

forms the potential variation range of obtained estimate values. The smaller the variance

is, the more confidently we feel about this particular estimate (Delmar, Robin et al. 2005).

The variance of estimate is affected by several factors: the function form of an estimator,

the number of available data samples and the level of noise. Here, our proposed stability

analysis can also be regarded as a way to assess the variance of estimate with respect to

unreliable biological knowledge. Assuming that the knowledge-guided approach can provide

unbiased estimation results with correct knowledge, stability analysis estimates the variance

with respect to knowledge perturbation. Therefore, we will trust the estimated activity or

regulatory relationship if associated with stable estimation (i.e., of less variance).

iii) Influence function: in the field of robust statistics (Huber 1981), influence function is

used to measure how sensitive the output of estimator is with respect to an input outlier.
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If the estimator is a derivable function with respect to the variable of interest, the value of

influence function can be directly calculated. However, if the estimator is non-differentiable,

very complex or mathematically intractable, stability analysis provides a Monte-Carlo way

to calculate the empirical value of influence function. Moreover, influence function is a

function defined on the domain of data, while stability analysis is a much more complex

scheme defined for evaluating data-knowledge consistency.

The proposed stability analysis approach can be combined with other approaches such as

(Chen, Xuan et al. 2010), to further decipher condition-specific TFs and targets. It can also

be extended as a complementary technique for statistical significance analysis to assess the

relevance of biological knowledge to experimental data. While for significance analysis the

null hypothesis and corresponding distribution assumption under null hypothesis should be

made, there is no need for the stability analysis-based approach to specify any particular

assumption of distribution.

2.5 Regulatory Component Analysis (RCA)

Assumption 4 of the NCA identifiability conditions assumes the biological knowledge - con-

nectivity pattern matrix B is (a) complete (including all TFs), and (b) accurate (consistent

to expression data X). However, in reality biological connection knowledge is often in-

complete, especially for high species such as human, where only a few transcription factors

can be known in advanced. Sometimes, transcriptional regulation network is even studied

according to individual TF. Besides knowledge incompleteness, biological knowledge is al-

so generally inconsistent with gene expression data. Such knowledge-data inconsistency is

mainly stemmed from two situations: 1. part of given knowledge is also generated from

other biological experiments, which may also introduce errors; 2. knowledge is very general

and may not be specific to the biological conditions when expression data are acquired. As

the result, biological knowledge usually contains considerable amount of false-positives and
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Figure 2.15: Illustration of biological knowledge degeneration. The left arrows indicate

incompleteness of biological knowledge, and the arrows in the center false positives and false

negatives could contaminate the final knowledge we obtained.

false-negatives, which should not be ignored for computational modeling.

We summarize incompleteness of biological knowledge and its inconsistency with expression

data as knowledge degeneration, illustrated in Fig. 2.15. We denote B0 =
[
b
(0)
1 , ...,b

(0)
L

]
, in

which b
(0)
l represent the true connectivity pattern for l-th TF. In Fig. 2.15, we make up the

extreme case when only the knowledge of 3rd TF b3 is available, however, the given b3 is

still different from true b
(0)
3 because of false positives and false negatives relying in biological

knowledge.

With the aware of degeneration of given biological knowledge, this section is dedicated to

describe the motivation and criterion of proposed regulatory component analysis (RCA).

2.5.1 From matrix decomposition to linear extraction

Following As. 2 of NCA that different TFAs are linearly independent so that matrix S is

invertible, a good regulatory components estimate Â can be regarded as a linear projection

from expression matrix X:

Â = XW, (2.20)
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where the projection matrix W is also called de-mixing matrix in blind separation problem.

Ideal W is the pseudo-inverse of mixing matrix up to a scaling ambiguity:

W = S†D. (2.21)

In Eq. (2.21), † is the notation for pseudo-inverse operator. While goals of PCA and ICA is

to find projection matrixW = [w1, ...,wL] so that resulting components that are statistically

uncorrelated or independent, the purpose of NCA projection matrix is to find source matrix

exactly following given connectivity knowledge and minimizing the fitting errors. Instead of

matrix decomposition, PCA and ICA solutions can also be achieved in an extraction manner,

by maximizing the variance and non-Gaussianity of estimated components, respectively.

Extraction is usually implemented through a linear projection:

y = Xw, (2.22)

where a good extraction filter w ∈ R
M should correspond to one row of the de-mixing matrix

in Eq. (2.21). When only certain sources are of interest, blind extraction appears to be a

more efficient scheme than full blind separation. Typical blind extraction algorithms are

designed to recover components of interests by maximizing certain desired characteristics of

extracted components,

ŵ = argmax
w

J(y) = argmax
w

J(Xw), (2.23)

where function forms of J(·) are generally designed according to properties of underlying

source signals, including non-Gaussianity, temporal continuity and etc (Cruces-Alvarez, Ci-

chocki et al. 2004). Linear extraction scheme also avoids the dimension determination

problem for latent components, which is difficult to carry on in real world application.

From previous discussions, we can see that an extraction scheme is very attractive for gene

regulatory network inference, especially when only partial knowledge is available. However,

an extraction scheme is not immediately clear for NCA scheme, as NCA fitting error mini-

mization criterion required all regulatory components to be estimated in parallel. Motivated

by limitations of NCA and inspired by extraction schemes originated from ICA, we propose a
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linear extraction algorithm for regulatory network inference capable of incorporating partial

biological knowledge, in next section.

2.5.2 Formulation of regulatory component analysis

Assume only one column of B is given, say l-th column bl, we proposed a scheme to extract

corresponding regulatory component. First, according to bl we divide column vectors of

matrix X into two non-overlapped sets:

X
(l)
+ = {xi|bil = 1} (2.24)

and

X
(l)
− = {xj|bjl = 0}. (2.25)

Number of members in X
(l)
+ and X

(l)
− are denoted as N+ and N−, respectively (N++N− = N).

Regulatory component analysis is designed to find a linear projection maximizing following

cost function:

J0(X,bl,w) =

1
N+

∑
xi∈X

(l)
+
(xiw)2

1
N−

∑
xj∈X

(l)
−

(xjw)2
. (2.26)

The function value of J0(X,bl,w) has intuitive explanation with data-knowledge consistency,

reflecting how well the estimated regulatory component is supported by given biological

knowledge. The larger function value of J0(.), the more consistent estimated component

y = Xw with given knowledge vector bl. In the noiseless case where Γ = 0 and perfect

knowledge is given, J0 → ∞. With function value equals to 1, it suggests that estimated

regulatory component is not consistent with biological knowledge, as the averaged controlling

strength of potential target genes is the same with of non-target genes.

We further stack the members of each set to form two matrices X
(l)
+ and X

(l)
− , which corre-

sponds to X
(l)
1 and X

(l)
0 , respectively. The criterion function is rewritten as:
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J0(X,bl,w) =
N−

N+

wT
(
X

(l)
+

)T
X

(l)
+ w

wT
(
X

(l)
−

)T
X

(l)
− w

. (2.27)

It has a Raleigh ratio form so that through some manipulations we can achieve following

equation:

wT
(
X

(l)
+

)T
X

(l)
+ = λwT

(
X

(l)
−

)T
X

(l)
− , (2.28)

which can be effectively solved using generalized eigenvalue decomposition between
(
X

(l)
+

)T
X

(l)
+

and
(
X

(l)
−

)T
X

(l)
− . Estimated extraction filter ŵRCA is the eigenvector associated with the

maximum generalized eigenvalue of Eq. (2.28).

The proposed RCA criterion has several advantages over traditional NCA approaches (Liao,

Boscolo et al. 2003; Boscolo, Sabatti et al. 2005; Chang, Ding et al. 2008):

1. Instead of requiring the complete priori knowledge of all TFs for pursuing a constrained

least-square solution, RCA can incorporate incomplete knowledge to estimate individual

regulatory component by maximizing on a knowledge-data consistency criterion.

2. Rather then strictly following given biological knowledge, RCA criterion function allows

mismatch between estimated regulatory component and biological knowledge. This feature

enables the detection of false-positives and false-negatives of biological knowledge, with the

information from expression data.

3. Raleigh ratio function form of RCA criterion facilitates efficient optimization using gener-

alized eigen-value decomposition. Moreover, it is convenient to incorporate other regulariza-

tion items with form Jr(X,bl,w) = wTF (X,b)w

wT
(

X
(l)
−

)T
X

(l)
−

w
if extra priori knowledge is known. This

is because the extended criterion function J(w) = J0(w) + αJr(w) can still be efficient-

ly solved using generalized eigenvalue decomposition, where αis some trade-off parameter.

Notice that generalized eigenvalue decomposition has been widely used in various pattern

72



recognition applications (De Bie, Cristianini et al. 2005), as well as statistical criterion based

blind separation problems (Parra and Sajda 2003). It suggests that the proposed RCA has

the potentials to be extended with other priori property function terms, which is a topic

under our further investigations.

2.5.3 Simulation studies

Simulation descriptions

Following the characteristics of true regulatory network, connectivity matrix is generated

with sparse property. Transcription regulation could be involved with synergistic mecha-

nism (one gene can be regulated through the collaboration of two or more TFs) so that

regulatory components are dependent with each other. We generated dependent regulato-

ry component with an average pair-wise correlation around 0.1. To evaluate the impact of

biological knowledge to estimation, we consider two simulated scenarios:

(1) Perfect connectivity pattern is given (B = B0).

(2) Imperfect connectivity pattern (B 6= B0). In order to simulate the real situation where

biological knowledge is incomplete and in-consistent, the given B input to algorithms is

generated in two steps: first, only some row vectors of true B0 are given; second, the given

partial B0 is corrupted with false positives (FPs) and false negatives (FNs).

In each scenario, we comprehensively test the estimation performance of multiple algorithms

(PCA, fastICA, JADE, NCA, fastNCA and proposed RCA) under various signal-to-noise-

ratio (SNR) conditions, where SNR is defined as follows according to Eq. (2.6):

SNR = 10log10
Powersignal
Powernoise

= 10log10

N∑
n=1

M∑
m=1

(xnm − γnm)
2

N∑
n=1

M∑
m=1

γ2
nm

. (2.29)

As the regulatory component estimation problem is also equivalent to inference of transcrip-
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tional regulatory network, we defined two performance evaluation functions for âl estimated

by each algorithm:

Averaged pair-wise absolute correlation (APAC)

APAC =
1

L′

L′∑

l=1

|corr (âl, al) | (2.30)

and Averaged Area Under precision-recall Curve (AAUC)

AAUC =
1

L′

L′∑

l=1

AUC
(
âl,b

(0)
l

)
. (2.31)

In Eq. (2.31), b
(0)
l is the true biological knowledge of l-th TF, which is l-th row vector of true

connectivity pattern matrix B(0). AUC(·, ·) is a function calculate the value of area under

precision-recall curve, which describes how well the estimated component can reveal the true

target genes of corresponding TF. While APAC has clear implication for signal estimation

accuracy, AAUC is more suitable for evaluating biological ground truth when quantitative

regulatory component is usually not available.

Regulatory component estimations

(i) PCA and ICA: after regulatory components yl, l = 1, · · · , L are estimated, correspondence

relationships need to be established with true components al for performance evaluation.

Since NCA, fastNCA and RCA approaches implicitly incorporated with biological knowledge,

correspondence is simple: âl = yl. But for PCA and ICA, ordering ambiguities still exist.

Therefore, yl is designed to correspond to âl′ , knowledge vector bl′ of which has the highest

similarity with yl. Two popular ICA algorithms were adopted in simulation studies: JADE

(Cardoso and Souloumiac 1993; Cardoso 1999), which is based on algebra criterion to jointly

diagonalize a set of higher-order statistics matrices, and fastICA (Hyvärinen 1999), which

is based information theory derived criterion to maximize negative-entropy, or the distance

with Gaussian distribution.
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(ii) NCA and fastNCA: PCA, ICA and RCA allow ânl to be arbitrary value even with no

biological support bln = 0, while NCA and fastNCA explicitly require ânl = 0, ∀bnl = 0. Since

one of our purposes in simulations is to detect with false knowledge how well the underlying

true regulatory component can still be recovered, we made a natural extension for NCA

and fastNCA: assuming the non-singularity of mixing matrix A(which is according to As.

2 in section 2.2.2), we use Â = XŜ† as the estimates for regulatory components, in which

Â is the estimate of TFA matrix from NCA or fastNCA algorithm. Through this simple

transformation, ânl could be of any value even for bnl = 0. Now all methods can be fairly

compared.

Simulation results

a) Biological knowledge is perfectly given (B = B0)

To obtain a full spectrum of comparison, we test all the methods under SNR conditions

from -1dB to 15dB. For each SNR condition, 50 times of experiments were carried out to

calculate the average performance value: transcriptional regulatory network consists of 300

genes regulated by 15 TFs is randomly constructed; based on generated network simulated

expression data with 35 samples are produced according to Eq. (2.6). (M = 35, N =

300, L = 15). From Fig. 2.16, we can observe that two performance evaluation display quite

consistent pictures: in general, RCA and NCA show much better performance than JADE

and fastICA these two ICA algorithms, while PCA remains the worst. It is understandable

as the implicit utilization of knowledge give the advantages to NCA and RCA. However, it is

interesting to notice that fastNCA shows similar performance with both NCA and RCA in

high SNR region, but undergoes a dramatic degradation in low SNR region. This is because

fastNCA is derived differently from least-squares solution of NCA; instead, it is based on a

signal sub-space approach based on the As. 3 of NCA. As the result, the accurate estimation

of sub-space is essential for its estimation accuracy. While in the high SNR conditions the

sub-space estimation is generally reliable, its performance tends to degrade the performance

in low SNR conditions. As a contrast, although matrix decomposition based NCA is more
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Figure 2.16: Curves of estimation performance for all the methods in scenario 1, where bio-

logical knowledge is perfectly given (B = B0). (a) corresponds to the performance evaluation

in averaged pair-wise absolute correlation (APAC) and (b) corresponds to the performance

evaluation in Averaged Area-Under-precision-recall-Curve (APAC).

computationally costive than fastNCA, its performance is much more robust than fastNCA.

b) Biological knowledge is imperfectly given (B 6= B0)

Keeping all the other simulation configuration parameters unchanged, we modify the quality

of input biological knowledge B. This scenario is designed to evaluate the impact of im-

perfect biological knowledge to regulatory component estimation by only providing 10 TFs

information out of underlying 15 TFs. Moreover, the given knowledge of these 10 TFs are

contaminated with moderate FP and FN (FP rate = 1% and FN rate = 10%) to simulate

the real biological study. Again, since estimation of regulatory component is equivalent to

inference of regulatory network, two performance evaluations present consistent comparison

orderings: RCA>NCA>(JADE and fastICA)>(fastNCA and PCA), shown in Fig. 2.17.

It is brought to our attention that fastNCA fails miserably, sometimes the performance of

which is even worse than PCA. This is because fastNCA heavily depends on As. 3 and

As. 4, which are severely violated in this simulation case. Moreover, although least-squares
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Figure 2.17: Estimation performance curves for all the methods in scenario 2, where biologi-

cal knowledge is imperfectly given (B 6= B0) . (a) corresponds to the performance evaluation

in averaged pair-wise absolute correlation (APAC) and (b) corresponds to the performance

evaluation in Averaged Area-Under-precision-recall-Curve (APAC).

based NCA remains a relatively robust performance, its performance apparently inferior to

our proposed scheme RCA. In both simulations, two ICA algorithms consistently outperform

PCA, this is due to the non-Gaussianity property used by ICA is well matched with sparse

regulation relationship of regulatory components, even when independence assumption is

violated.

We further present a few regulatory component estimation results and corresponding precision-

recall curves, show in Fig. 2.18.

Different from the supervised learning utilizing the reference signal, unsupervised learning

or blind signal processing is usually based on the statistical assumptions of underlying sig-

nals. Since no priori information is needed, unsupervised learning is especially suitable for

exploratory data analysis where little biological knowledge is available. However, statistical

assumptions such as statistical un-correlatedness and independence are difficult to justify
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in the real biological studies (Liao, et al., 2003). NCA and fastNCA can be seen as semi-

supervised learning method. This is because biological knowledge is only used to enforce

some items of regulatory component matrix A without available knowledge support to be

zero. Different from NCA and fastNCA, the proposed RCA scheme is a semi-supervised algo-

rithm with relaxed constraint: the regulatory strength anl could be non-zero even there is no

biological knowledge support (bnl = 0). Such relaxation enables RCA to reveal false negative

target gene and further improve the performance. Different from traditional classification

where the label information is correctly given, biological knowledge for network inference is

usually un-reliable and could be in-consistent to the biological study. Since the validity of s-

tatistical assumption and accuracy of biological knowledge cannot be guaranteed in practice,

such comparison of ”supervised” learning and ”un-supervised” learning with inaccurate prior

knowledge provides very meaningful reference for choosing appropriate method in practice.

2.5.4 Real biological experiments

In previous sections, simulation data verify the effectiveness and illustrate superior perfor-

mance of proposed RCA algorithm. We are also willing to proceed to real biological data

analysis. However, the revealing of real transcriptional regulation network for human being

is still on-going and many related mechanisms remains unclear. Therefore, we purposely pro-

ceed to test all the algorithms on inferring transcriptional regulatory network for Escherichia

coli, which is a simple bacterium and has been well studied as model system for various

biological studies. We extracted biological knowledge of TFs from a knowledge database

named RegulonDB (http://regulondb.ccg.unam.mx) with recently updated version 7.0

(Gama-Castro, Salgado et al. 2010). The RegulonDB database contains a collection of TF-

target relationships that have been experimentally verified in Escherichia coli. Out of 169

TFs recorded in RegulonDB, we select 30 TFs with at least 15 experimental validated tar-

get genes to form initial connectivity pattern matrix, this selection criterion is based on the

considerations for reliable precision-recall curve estimation and performance evaluation. The
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Figure 2.18: Estimated regulatory component profiles and associated precision-recalling

curves for retrieving the genes truly affected by corresponding TFs. (a) is the underlying

true regulatory component profile; (b), (d), (f) and (h) are estimated regulatory compo-

nent profiles according to RCA, NCA, JADE and PCA, respectively. (c), (e), (g), and (i)

are precision-recalling curves for retrieving the genes truly affected by corresponding TF,

according to RCA, NCA, JADE and PCA, respectively.79



targets genes of the 30 selected TFs were overlapped with a huge expression compendium

(Faith, Hayete et al. 2007), which contains 445 Escherichia coli microarray samples under

distinct biological conditions; after all above-mentioned procedures, a network connectivity

pattern matrix with 1193 target genes and 30 TFs is obtained. Moderate amount of false

positives and false negatives (FP =0.01, FN = 0.1) are added to connectivity pattern matrix.

This is aiming to test how well the regulatory components can be estimated with incomplete

and inconsistent knowledge.

As there is no quantitative ground truth for true regulatory component, we just used AAUC

criterion to evaluate the performance. In addition, it has been observed that AAUC is

highly correlated with APAC from our previous simulation studies. Each time we use 100

microarray samples randomly selected from total 445 microarray samples to estimate regu-

latory components for all the methods. 50 random randomly selections are done to calculate

performance evaluation AAUC. Again, RCA significantly outperform all the other methods

to retrieve the true target genes regulated by corresponding TFs, shown in Fig. 2.19. To

further illustrate the retrieve performance of different methods, we present precision-recall

curves for two TF ArgR and LexA as examples, shown in Fig. 2.20.

2.5.5 Discussions on RCA work

Linear latent variable models are widely used in biomedical applications for estimating un-

derlying biological signals, which are corrupted by artifacts or undesired signals. Statistical

assumptions such as un-correlatedness and independence are readily accepted in many of

these applications such as ECG, EEG and MEG data analysis (Vigario, Sarela et al. 2000).

However, when applying these statistical tools to analyze genomic signals with complicated

underlying mechanisms, the results become very difficult to interpret. This is caused by

many factors: 1. Underlying genomic activities could be dependent to ensure the robustness

of biological system; 2. without clear biological context indication, the statistical approach

may ignore or blur certain estimation.
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Figure 2.19: Boxplots for Averaged Area-Under precision-recall Curve (AAUC). Where the

red-line of each boxplot corresponds to median of all AAUC values, and top and bottom of

boxplot corresponds to 75% and 25% Quantile of all AAUC values.

Instead of enforcing strong statistical assumption, NCA incorporated biological knowledge

into the solution process of linear latent model for gene expression application, leading to

biologically interpretable sources, which we named as regulatory components through this

paper. Noticeably, this linear model is also equivalent to a bipartite regulatory network

describing the controlling relationships between TFs and genes. However, optimization of

NCA is performed based on a biological knowledge constrained least-squares, making its

estimation largely depending on available TF-gene binding knowledge, as well as the quality

of given knowledge. Unfortunately, the real biological knowledge is generally incomplete and

in-consistent to the expression data under study.

With aware of above-mentioned pitfalls in biological knowledge, we proposed a linear extrac-

tion based framework named RCA, which explicitly find the linear projection maximizing

the coincidence with given partial biological knowledge. The linear extraction scheme al-

so allows RCA to detect FPs and FNs of biological knowledge, which is inconsistent with

gene expression data. The contributions of our works are multi-folded: first, transiting from
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Figure 2.20: Precision-recalling curves for retrieving the genes truly affected by corresponding

TFs. (a), (c), (e) and (g) are curves according to TF ArgR, by using RCA, NCA, JADE and

PCA, respectively. (b), (d), (f) and (h) are curves according to TF LexA, by using RCA,

NCA, JADE and PCA, respectively.
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general linear latent model for genomic signals, we review the network inference problem’s

equivalence with linear latent variable model, which could sever as useful reference for signal

processing researchers who are interested in genomic signal processing. Second, for the first

time, we formulate a linear extraction scheme for transcriptional regulatory network infer-

ence problem, by utilizing incomplete but informative biological knowledge. The proposed

scheme show significant performance improvement over traditional NCA methods in both

simulations and real biological experiment in E. coli. Thirdly, through designed simulation

studies, we showed that how to efficiently integrate biological knowledge is not a trivial

problem, considering the given biological knowledge is usually incomplete and in-consistent

to the data we have. An inappropriate incorporation of biological knowledge may even lead

to worse performance than the methods without using biological knowledge.
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Chapter 3

Identification of protein-protein

interaction sub-networks

With increasingly accumulated protein interaction data, the identification of condition-

specific protein sub-networks emerges as an attractive research problem, solutions of which

can facilitate the understanding of molecular mechanisms, and provide reliable sub-network

bio-markers for disease diagnosis/prognosis. Most of the existing algorithms mainly search

for sub-networks enriched with differentially expressed genes, but overlook their potential

interactions and topological importance. In addition, the identification of sub-network is

usually solved through optimization schemes, and there is no condition-specific score asso-

ciated with each gene/protein and each interaction. This makes prioritization of genes and

interactions infeasible, and hinders the interpretation of network results. In this disserta-

tion, we propose a novel scheme called Metropolis Random Walk On Graph (MRWOG) to

identify the condition-specific sub-networks in a stochastic way. Instead of looking for single

sub-network associated with maximum score, we sample multiple sub-networks through a

designed random walk on interaction network. We then assemble the sampled sub-networks

to form an aggregated sub-network to assess the importance of each individual protein node,

which not only reflects its individual association with clinical outcome but also indicates its
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topological role (hub, bridge) to connect other important proteins. Moreover, each protein

node is associated with a sampling frequency score, which enables the statistical justification

of each individual node and the flexible scaling of sub-network results.

3.1 Introduction

Protein, the workhorse of living cell, is involved in every biological process. As the evolution

result of cellular systems, proteins usually collaborate with each other to perform biological

functions (Hakes, Pinney et al. 2008). Such collaboration enhances the robustness of bio-

logical systems, avoiding the collapse of normal functionality when some genetic errors or

unexpected environment changes occur (Maslov, Sneppen et al. 2004). The way that one

protein physically associates with other protein is called protein-protein interaction (PPI).

Thanks to the advanced microarray technology, physical interactions among proteins can

now be measured using different experimental techniques, such as yeast two-hybrid (Y2H),

tandem affinity purification (TAP) and mass spectroscopy (MS) (Shoemaker and Panchenko

2007). Through these technologies, we can access a rich information source called PPI net-

work, which describes the potential interaction relationships among thousands of proteins in

a network point of view.

With the PPI network, researchers have multiple ways to integrate this information according

to different computational biology applications: in (Tornow and Mewes 2003), a clustering

technique was proposed to dissect the whole PPI network into small groups of genes with

functional coherence. PPI was also used to prioritize the cause genes of different diseases

(Wu, Jiang et al. 2008). Chuang and his co-workers (Chuang, Lee et al. 2007) showed

that PPI sub-networks are better biomarkers than individual proteins to predict metastasis

status of breast cancer. In addition, since signal activation of proteins also requires physical

interactions, PPI information is utilized to infer signaling transduction pathways, by using

various mathematical methods ranging from integer programming (Zhao, Wang et al. 2008),
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random coloring coding algorithm (Jung, Makeig et al. 2000), to network information flow

approach (Yeger-Lotem, Riva et al. 2009). Besides all abovementioned applications, another

very important focal point of utilizing PPI information is to identify condition-specific protein

sub-networks with significant changes (Ideker, Ozier et al. 2002; Dittrich, Klau et al. 2008;

Qiu, Zhang et al. 2010), which is the focus of this dissertation research. The sub-network

analysis helps researchers break down the entire protein interaction network into small parts,

and locate the abnormal local regions, which could reveal the disruption of cellular systems

or the dys-regulated pathways of disease (Liu, Liberzon et al. 2007). Among the existing

methods, Trey Ideker et al. (Ideker, Ozier et al. 2002) proposed to use a simulated annealing

method to find sub-network with the largest conditional relevance. A prize-collecting tree-

based cost function was designed in (Dittrich, Klau et al. 2008) and the optimization was

obtained through mathematical programming techniques. With the edge scores derived from

co-expression relationships, the problem was also solved using support vector regression with

diffusion kernels (Qiu, Zhang et al. 2010).

Despite that the above-mentioned methods have been successfully applied to some biological

studies, one important assumption commonly made in the approaches limits their further

applications: that is, all the protein interactions are assumed to be equally reliable and

the uncertainty is ignored. In reality, even protein interactions collected from biological

experiments may also contain considerable amount of false positives and false negatives.

Moreover, almost all the existing methods regard the sub-network identification problem

as a ’0 or 1’ combinatorial search problem, and provide the search results with a bunch

of proteins without any weights associated with. In specific biological studies, biologists

are interested in not only sub-network constitution but also the relative importance of each

protein in the sub-network, through which specific biological experiments can be designed

to verify a few protein markers and their functionality. Last but not the least, even when

all sub-network members are found, the edges between the members are not quantified or

highlighted with their confidence levels. It is essential to assign each individual interaction

with some continuous score so that biologists can prioritize different hypotheses regarding
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Figure 3.1: Graphic illustration of the proposed scheme. It starts from integrating gene ex-

pression and protein-protein interaction information, sampling multiple sub-networks, gen-

erating an ensemble of sub-networks to identify highly dys-regulated local regions with node

and edge scores, and finally multiple scale results can be obtained according to the scores.

the signaling pathways of interest. In the following sections, we propose a novel method

called Metropolis Random Walk On Graph (MRWOG) to overcome the above-mentioned

limitations. A graphic illustration of the proposed scheme is shown in Fig. 3.1.

3.2 Existing Methods

3.2.1 PPI network and protein node score

Throughout this dissertation gene and protein is used exchangeable, as we assume that

protein activity is approximately proportional to gene expression level. We use a graph

G = (V,E) to represent given interaction network, such as PPI network. Vertex set G =
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(V,E) contains N proteins; edge set G = (V,E) comprises K physical interactions between

proteins. In general, PPI is very sparse so that K ≪ N2. Given the expression measurement

X = [x1, · · · ,xN ]
T ∈ R

N×M consisting mRNA levels ofN genes acrossM microarray samples

associated with some phenotype information vector c ∈ R
M , we can calculate the association

score of each gene node through some function A(·, ·):

zn = A(xn, c), (3.1)

in which, zn reflects expression differentiation of n-th gene between two phenotypes (cm= 0,

1) , or association between expression pattern of n-th gene and clinical trait (cmis continuous).

Protein node score

Having expression data matrix X ∈ R
N×M and phenotype information of each microarray

sample c ∈ R
M , statistical analysis is usually used to estimate an association score describing

relevance of individual gene pattern to the given phenotype information. There are two cases:

1) Each element of c is of discrete value. For examples, to analyze gene knock experiments

in the yeast (Ideker, Ozier et al. 2002), discrete genotype is used to construct phenotype

information c; in breast cancer metastasis study (Chuang, Lee et al. 2007), good or bad

clinical outcome is also of discrete value. Mathematically, two biological phenotypes or

clinical conditions can be defined as two index sets:

I1 = {i|ci = 0} and I2 = {j|cj = 1} (3.2)

so that p-value is usually calculated based on two-sample t-test:

pn = p-value(n) = t-test({xn,i}i∈I1 , {xn,j}j∈I2). (3.3)

2) Each element of c is of continuous value. For example, in (Dittrich, Klau et al. 2008),

the phenotype information is continuous trait of clinical survival time. If given c is survival

time vector of patients, p-value can also be obtained through cox-regression to assess how

well the pattern of n-th gene can be used to determine survival time:
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pn = p-value(n) = cox-regression(xn, c). (3.4)

Having the estimated pn from either case, a z-score transformation was proposed in (Ideker,

Ozier et al. 2002):

zn = Φ−1(1− pn), (3.5)

where Φ(·) is the CDF function of normal distribution. This z-score transformation was pro-

posed to facilitate the statistical significance evaluation of identified sub-network, since the

sub-network z-score of random case (pn ∼ Unif(0, 1)) follows normal distribution. There-

fore, the association function A(·) can be seen as the combination of z-score transformation

and p-value calculation:

zn = A(xn, c) = Φ−1 (1− pn(xn, c)) . (3.6)

Remarks:

1. Noticeably, we can also combine multiple phenotype information {c1, · · · , cO} if available

using order statistics (Ideker, Ozier et al. 2002; Dittrich, Klau et al. 2008). 2. A bias

correction procedure is recommended in (Ideker, Ozier et al. 2002) to ensure sub-network

scores with different sub-network sizes are directly comparable.

3.2.2 Optimization based approaches for identifying dys-regulated

sub-networks

Protein interaction information is known to be very noisy (Bader, Chaudhuri et al. 2004),

and inconsistent results may be obtained by different techniques (Blow 2009). Even if the

interaction is measured through experiments, it still may not be specific to the certain

biological condition we are interested. So it is meaningful to assign each interaction edge

a score to reflect its condition specificity, rather than treating them equally. There are

multiple ways to do so, for examples, in (Jung, Makeig et al. 2000) multiple evidences were

89



Figure 3.2: Illustration of representing a sub-network as a corresponding binary selection

vector. A binary vector u is used to represent a sub-network, with 1 indicating the selection

of gene node with corresponding index.

combined to calculate edge score, in (Zhao, Wang et al. 2008; Qiu, Zhang et al. 2010),

gene-gene co-expression evidence was used to compute edge score. Once having edge score

wij for each edge between protein i andj, we can define the sub-network score together with

previously defined vertex score to reflect the condition-specific relevance/importance of given

sub-network. We use a binary vector u of gene size to indicate the selection of corresponding

vertices, depicted in Fig. 3.2. Similarly, another binary vector y ∈ (0, 1)K is used to indicate

the selection of corresponding edges.

The sub-network score with vertex score only is defined as

S(u; z) =
N∑

n=1

znun/

√√√√
N∑

n=1

un . (3.7)

We can also incorporate edge information into the scoring:

Se(u,y; z,w) =

(
N∑

n=1

znun + λ
K∑

k=1

wkyk

)
/

√√√√
N∑

i=1

ui , (3.8)

in which, λ is the trade-off parameter controlling the balance between gene differentiation
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and edge confidence.

Optimization based sub-network identification

Given the vertex based sub-network score defined in Eq. (3.7), the conventional algorithms

purse the solution through optimization constrained by PPI topology:

uopt = argmax
u

S(u; z), (3.9)

s.t. Selected nodes (un = 1) are connected through E.

If edge weight information w is available, we can further incorporate it into the sub-network

identification problem with most likely nodes and edges:

(uopt,yopt) = argmax
(u,y)

S(u,y; z,w), (3.10)

s.t. Selected nodes (un = 1) and selected edges (yk = 1) are connected through E.

Since it is straightforward to add edge score into sub-network score function, using corre-

lation or dependence values, we limit our discussion to be only node score associated for

clarity. Noticeably, the sub-network identification problem in (3.9) was proved to be a NP-

hard problem (Ideker, Ozier et al. 2002) so that only heuristic approaches can be applied

to find sub-optimal solutions. Some algorithmic effort has been made to convert the orig-

inal problem to be a prize collecting tree construction problem, and exact binary solution

can be achieved using integer linear programming (Dittrich, Klau et al. 2008). However,

the solutions provided by all the conventional methods are binary, not only insufficient to

prioritize individual gene or interaction, but also difficult to adjust the sub-network size

smoothly. More importantly, considering the inherent noises and errors in microarray ex-

pression data and protein interaction structure, as well as the complexity of cellular system,

numerical optimal solution may not fully reflect the underlying biological mechanisms. For

two distinct sub-optimal solutions with very similar scores, optimization based methods only

prefer the solution with larger score, and overlook the other one, which may also convey im-

portant biological implications. Even heuristic average can be applied to ensemble multiple
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sub-optimal solutions, it still lacks statistical justifications. Motivated by above-mentioned

concerns, we formulate the sub-network identification problem differently as a probabilistic

inference problem.

3.3 Stochastic Exploration of Interaction Network

3.3.1 Probabilistic formulation of sub-network identification prob-

lem

According to optimization according to network score function in (3.9), we define a non-

negative score according to network constraint:

L0(u; z) = max(0,S(z,u)CE(u)) (3.11)

and its shape could be adjusted according to some non-negative constant β

L(u; z) = L0(u; z)
β, (3.12)

where CE(u) is connection check for vertex selection vector CE(u):

CE(u) =




1, all the vertices associated with = 1 connected through E

0, else
(3.13)

Following the definition in Eq. (3.12), sub-network CE(u) is associated with a likelihood score

L(u; z) assessing how likely this sub-network contributes to phenotype/clinical difference.

This likelihood function corresponds to some underlying conditional probability L(u; z) ∼

Pr(z|U = u).

Without loss of generality, we can define an energy function Energy(u) = log 1
L(u;z)

so that

we will have higher probability in lower energy (higher L(u; z) value). This is similar to the

probability definition in thermodynamics of physics, and u can be imagined as the position
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(state) vector of a particle in high dimensional space. Due to thermodynamics, particles

wander around in entire space randomly. The probability that particles are found in a

position (state) with low potential energy is higher than the probability in high potential

energy. Formally, it could be linked with the Boltzmann distribution, which is also known

as Gibbs measure. Boltzmann distribution is a certain probability measure for the states of

a system. For a system with N particles, the Boltzmann distribution is defined as:

Pr(Energyi) =
Ni

N
=

gie
− 1

kBT
Energyi

V (T )
,

which reflects the portion of particles (Ni out of N) occupying a set of states i with energy

Energyi. kB is Boltzmann constant, gi is the degeneracy, T is temperature of the system

and V (T ) is the partition function. Therefore, we can also write down the probability of

proposed MRWOG scheme according to Boltzmann distribution form:

Pr(U = u) =
L(u; z)

V (β)
=

e
−β log 1

L0(u;z)

V (β)
=

e
− 1

T
log 1

L0(u;z)

V (T )
,

where β = 1
T

is the inverse of temperature T . Whereas the stochasticity of one thermo-

dynamic system is mainly caused by the temperature and particle dynamics in the system,

the uncertainty of network arises from the noisy measurements of expression data, dynamics

of interaction network and inconsistency biological knowledge and data. Therefore, a sub-

network with high network score may not ensure its aberrance, rather to suggest a higher

likelihood that this sub-network undergoing certain degree of aberrance.

Importantly, if the energy function Energy(.) can be written as a sum of parts, the Boltzman-

n distribution (Gibbs measure) has the Markov property so that a joint distribution/likelihood

of random variables can be greatly simplified (Kindermann, 1980). Such energy function with

Markov random field (MRF) property is preferred for its computational convenience: the

likelihood function is decomposed as the product of different orders of cliques, so that a

high-dimensional joint distribution can be approximated up to certain orders. The MRF

approximation is usually motivated by enabling a simple optimization scheme for ML/MAP
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like point estimation. If the sampling technique is deemed to used, the function form of

potential energy function could be relaxed to be any form in order to accommodate higher-

order and complex interactions. Notice that even though ML/MAP solution can be achieved

through optimization of simplified/approximated MRF energy function, it is generally in-

tractable to evaluate the probability and likelihood of underlying particles. This is because

the computation of partition factor V (T ) requires the integration of high dimensional distri-

bution.

From stochastic point of view, the typical optimization approach is just like a ML (maximum

likelihood) or MAP (maximum a posterior) estimator. If multiple independent observations

{zr}r=1,··· ,R are available, we can combine all of them to obtain more accurate ML estimate:

ûML(z) = argmax
u

R∏

r=1

Pr(zr|u) = argmax
u

R∏

r=1

L(u; zr). (3.14)

If kernel function g(u) of priori distribution Pr(U = u) is available, we can further use

maximum a posterior (MAP) estimator:

ûMAP(z) = argmax
u

L(u; z)g(u). (3.15)

Once the uncertainty within expression data and network topology is not negligible, which

is usually the case in real biological application, we are more interested to an ensemble

solution of multiple sub-optimal solutions accommodating the uncertainty. Therefore, a

Bayesian mean estimator minimizing mean square error will be better of our interest than

ML or MAP point estimates:

fu = argmin
f

E
[
(f − U)2

]
. (3.16)

where fu is a vector of continuous values, indicating how frequently one node is selected into

a condition-specific sub-network. The solution of (3.15) is simply a Bayesian mean estimate:

fu,BM = ûBM = E[U |z] =
∑

u∈U

uPr(U = u|z). (3.17)
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If the function shape Pr(z|U = u) is simple and sharp implying not too much randomness,

optimal solution through ML and MAP point estimations is good enough to reveal under-

lying true sub-network. Each element of the solution un could accurately reflect underlying

activation status of the n-th gene. However, if uncertainty in the data cannot be ignored, a

single ”guess” from ML/MAP estimate is not informative to reflect the underlying network

dynamics and inference uncertainty. In contrast, Bayesian mean estimate can reflect this

uncertainty following probabilistic principal.

3.3.2 Metropolis random walk on graph (MRWOG)

Unfortunately, Bayesian mean in Eq. (3.17) is difficult to calculate analytically, since the

posterior distribution Pr(U = u|z) is difficult to compute according to Bayesian rule:

Pr(U |z) =
Pr(z|U) Pr(U)∑

U ′∈U

Pr(z|U ′) Pr(U ′)
, (3.18)

where Pr(U) is the priori distribution and U is its domain. To avoid this limitation, we

proposed to use Monte-Carlo Markov Chain (MCMC) technique to accomplish the estimation

in (3.18). Specifically, we used Metropolis sampling, a type of Monte-Carlo Markov Chain

(MCMC) methods, to generate a series of samples that can be assumed as sampled from

the posteriori distribution Pr(U |z). Here, we used Metropolis-Hastering sampling to obtain

a sequence of random samples, by checking the following criterion value:

α =
L(u(p); z)

L(u(c); z)

Q(u(c);u(p))

Q(u(p);u(c))
, (3.19)

in which, Q(u(p);u(c)) is a proposal function that is used to propose a new sample u(p) based

on current sample u(c). Here, the function Q(·) is actually emulating a random walk as

described in Fig. 3.3.

Since we assign the equal probability to add or delete one node from current sub-network,
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Figure 3.3: Illustration for proposal function Q(·) in proposed metropolis sampling scheme.

96



the sampling procedure is further simplified as Metropolis sampling:

α =
L(u(p); z)

L(u(c); z)
. (3.20)

If α ≥ 1, the newly proposed sample u(p) will be accepted; if α < 1, the newly proposed

sample u(p) will be accepted in probability α. The addition-deletion random walk starting

from given initial selection u(0) will eventually produce a Markov chain comprising of vertex

selection samples:

MCu = {u(0),u(1), · · · ,u(l), · · · ,u(L)}, (3.21)

where each member u(l) within this chain only depends on adjacent precedent member u(l−1).

Detail discussions, such as selection of acceptance rate and convergence check of Markov

chain, are described as following sections.

Post-processing of resulting networks

Having sampled sub-networks according to proposed random walk scheme, we still have

following questions regarding our ultimate goal - identifying dys-regulated sub-networks:

(a) Should we treat sampled sub-networks equally?

(b) How many underlying sub-networks are activated for given biological conditions?

The answer to question (a) is no, since we are more interested in sub-networks with relatively

high scores and low-scored sub-networks are not of our interests. The answer to question (b)

is less intuitively: if there are multiple underlying sub-networks and MRWOG could sample

each true sub-networks enough times, we can use graph-cut to divide different sub-networks.

3.3.3 Metropolis sampling andMCMC (Monte-Carlo Markov Chain)

Markov chain is a discrete random process consisting of a series of successive random vari-

ables, and each variable is only dependent on the previous variable. Mathematically, a series

of random variables {Ul}l=1,...,L is Markov chain if the following equation holds:

Pr(Ul|Ul−1, · · · , U1) = Pr(Ul|Ul−1). (3.22)
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MCMC is a computational way to construct a Markov chain where the equilibrium dis-

tribution (which can also be called as steady-state distribution, limiting distribution, and

stationary distribution in different literatures.) of samples within this chain is some de-

sirable distribution. The convergence of Markov chain to the equilibrium distribution can

be guaranteed, if (a) the chain is irreducible, and (b) every state is positive recurrent. In

our sub-network identification application, each state is corresponding with a distinct sub-

network, or equivalently a node selection vector u. Let us assume there are H hidden statues

and each state is associated with a different node selection vector, denoting as ũ(h) for h-th

hidden state. Equilibrium distribution Π = [πij]i,j=1,··· ,H is satisfied with following condition:

For any i and j,

πij =
H∑

i=1

πiP
r
ij, (3.23)

where P r
ij is transition probability from i-th state to j-th state. Therefore, the Bayesian

mean estimator is the ensemble of all the states weighted by equilibrium probability:

ûBM =
H∑

h=1

ũ(h)πh. (3.24)

Gibbs sampler and Metropolis sampling are two most popular MCMC approaches to gener-

ate Markov chain, the samples of which follows some high-dimensional distribution Pr(U) =

Pr(U1, · · · , UN). The difference between these two approach is that Gibbs sampler re-

quires that every conditional distribution Pr(Un|U1, · · · , Un−1, Un+1, · · · , UN) is known, while

Metropolis only requires that the likelihood function L(u) of probability is known: L(u).

In this work, we mainly adopt the Metropolis sampling scheme to generate Markov chain

because L(u) is designed according to modified sub-network score function.

The random walk on graph is actually the transitions between different hidden states, where

each state corresponds to one distinct sub-network. The basic principal is shown in Fig. 3.4

and Fig. 3.5.
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Figure 3.4: Illustration of basic principal of MRWOG. Starting from the sub-network on the

left with four nodes being selected, there are six possibilities to propose new sub-networks,

showing on the right.

Figure 3.5: Illustration of hidden states of MRWOG, corresponding to the case shown in

Fig. 3.4.
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3.3.4 Priori distribution of metropolis sampling

Having the likelihood function

L(u; z) ∝ Pr(z|U = u), (3.25)

we are interested to compute posteriori probability according to Bayesian rule

Pr(U = u|z) =
Pr(z|U = u) Pr(U = u)∑

U ′∈U

Pr(z|U ′) Pr(U ′)
. (3.26)

From (3.26) we have following relationship:

Pr(U = u|z) ∝ Pr(z|U = u) Pr(U = u) ∝ L(u; z)g(u), (3.27)

in which, g(u) is the kernel function of the priori distribution: Pr(U = u) ∝ g(u). If

additional priori knowledge of sub-network is available, we can expect that the accuracy of

algorithm can be further improved. In the simplest case, we just need to control the size of

selected sub-network below preset size N0:

g(u) =




1,

∑
un ≤ N0

0, else
, (3.28)

which simply assumes every sub-network with size smaller than given threshold N0 are

equally possible. It is just like uniform priori. If sub-networks of certain size are interested

in practice, we can also design specific priori distribution form. However, for the current

study, we just use this simple priori for unbiased discovery purpose. If the priori distribution

g(u) is simple enough, it can also be incorporated into the design of proposal function Q(·).

For example, instead of checking whether the size of sub-network is smaller than preset N0,

we can design the Q(·) to only propose the sub-network with size smaller than N0. Another

example of priori distribution can be about the density of the underlying sub-networks:

DE(u) =
2NE(u)∑

un (
∑

un − 1)
, (3.29)
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in which NE(u) is the number of edges in selected sub-network according to u, and
∑

un

is the sub-network size. If the density of desired sub-network is known as priori, following

form of g(u) can be defined:

g(u) = exp

(
−
(DE(u)−D0)

2

V

)
, (3.30)

where V is a constant to control the degree of preference. Through this setup, we can extract

the sub-networks of different priori interests.

Moreover, if molecular function and cellular component information from GO-term is of

particular interests, we can also design priori likelihood function g(u, GO) to identify sub-

network with specific context.

3.3.5 Convergence check

A Markov chain is deemed as ”converged” if the samples produced after sufficient iterations

are truly representative to the underlying stationary distribution. Once the convergence

of MCMC can be determined, it is reasonable to terminate sampling process and compute

statistics of interest using already generated samples.

Since the explicit form of stationary distribution is unknown, a direct check according to

probability or likelihood is infeasible. Instead, the convergence diagnostics are mostly per-

formed based on produced samples (Dodds and Vicini, 2004). We could have two ways to

investigate the convergence of chain:

1. Split of a long chain:

By discarding the initial burn-in samples, we can split the remaining Markov chain MCu =

{u(1), · · · ,u(L)} to be two halves: MCu,left = {u(1), · · · ,u(⌊L/2⌋)} andMCu,right = {u(⌊L/2⌋+1), · · · ,u(L)}.

If the chain is converged to equilibrium distribution, the same statistics derived from two

halves:

θ̂(u ∈ MCu,left)
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and

θ̂(u ∈ MCu,right)

should be very similar to each other. In practice, we can just compare the estimated posterior

means by calculating Pearson or Spearman correlation value:

ρ = corr(ūleft, ūright). (3.31)

2. Comparison of multiple short chains:

An alternative way to check the convergence of MCMC is to check the closeness of multiple

independent short chains, which are initialized randomly. If the Markov chains are converged,

all of multiple chains will move away from initially assigned samples and generate samples

following the same stationary distribution. Similarly with the scenario of single chain based

check, we can calculate the statistics from each chain and comparing their closeness.

If cluster computing is available, the sampling of multiple chains can be employed in a

parallel way to save computation time. After convergence is confirmed, the combination of

produced samples from multiple chains will further enhance statistical power.

3.3.6 Acceptance rate and β value

Recalling the likelihood function L(u; z) = max(0,Sβ(u; z)CE(u)), the value of β(> 0) does

not affect the mode of underlying distribution Pr(z|U = u), but does impact the way M-

RWOG exploring the whole network. Specifically, β value affects the acceptance rate of

metropolis sampling; a high acceptance rate makes the random walks wandering around

the entire network while a low acceptance rate may make random walks trapped in local

optimum. Acceptance rate is defined as:

acptL =
1

L

L∑

l=1

min(α(l), 1), (3.32)

where α(l) is the Metropolis sampling criterion value of l-th generated sub-network sample.

A large acceptance rate tends to lead to a slow mixing process, that is, the generated Markov
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chain needs a long time to converge to equilibrium distribution. A small acceptance rate will

also make the chain converge slowly as a large portion of the proposed samples are rejected,

and the chain tends to be stuck in a certain region, failing to explore the entire sample space.

In practice, we adjust the β value according to acceptance rate, since acceptance rate has

clear implication for random walk within [0, 1].

3.3.7 Bootstrapping procedures

In reality, zi, the relevance score of each gene, is derived from limited number of microarray

measurements, the signal quality of which is known to be problematic, due to considerable

amount of errors and noises from tissue sample preparation to hybridization. Therefore, it

is very important to evaluate the statistical confidence of obtained computational results,

with the awareness of limited sample effect and noise issues. To address statistical confi-

dence of each node/edge selection, we propose to utilize bootstrapping technique to generate

B bootstrap replicates X∗1, · · · ,X∗B of original expression data X, as well as associated

phenotype information c∗1, · · · , c∗B. For each (X∗b, c∗b) pair, MRWOG is applied to obtain

corresponding Bayesian mean estimate fu,
∗b
BM = MRWOGG(z

∗b) = MRWOGG(X
∗b, c∗b).

The confidence of each node selection can thus be computed from the bootstrap results as

follows (Segal, Shapira et al. 2003):

conf(n-th protein node) =
1

B

B∑

b=1

f ∗b
u (n), (3.33)

where f ∗b
u (n) is the n-th item of f∗bu,BM . Furthermore, we test the credibility of our confidence

assessment by randomly permuting the phenotype information vector. Using random per-

mutations, we can obtain an empirical distribution of the confidence score as the baseline.

For a given confidence score conf0, we can then calculate the false discovery rate (FDR) as

follows:

FDR(conf0) =
#of expected false discoveries

#of true discoveries
=

# of nodes with confbaseline ≥ conf0
# of nodes with confobserved ≥ conf0

.
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It should be noticed that this FDR is designed to assess the statistical significance of each

individual node/edge.

3.3.8 Truncated mean

Let us assume the true sub-network is associated with a node selection vector u(True). The

probability Pr(U = u|z) has a single mode (peak) in U = u(True). It is expected that if the

distribution of Pr(U = u|z) is very wide and asymmetrical, Bayesian mean estimate fu,BM

approximated by sample average

fu,BM = EU [U |z] =
∑

U∈U

U Pr(U |z) ≈
1

L

L∑

l=1

u(l), (3.34)

which can be far away from u(True). Two strategies can be adopted to address this problem:

(a) Increasing β value

By adjusting the value of β, we actually manipulate the shape of Pr(U |z). Ideally, if β

is large enough, we can ensure the samples generated from MCMC is highly concentrated

around u(True). However, we also encounter the dilemma that larger β value could make the

algorithm trapped in local optimum more easily, and consequently requires longer Markov

chain to ensure the exploration of entire PPI network. Instead of greedily pursuing u(True),

we prefer to keep intermediate value of β and apply an alternative estimator.

(b) adopting truncated mean (TM) estimator

For single-peak distribution with heavy tails, truncated mean is robust to outliers. Here, we

define truncated mean (TM) estimator as:

fu,TM ,
1

L∑
l=1

1q(u(l))

L∑

l=1

u(l) · 1q(u(l)), (3.35)

where

1q(u(l)) =




1, L(u(l); z) ≥ Quantile({L(u(l); z)}l=1,··· ,L

, q)

0, otherwise
(3.36)
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is a 0-1 indicator function simply reflecting whether given sub-network sample u(l) has asso-

ciated function value larger than γ Quantile of function values of all the samples. q ∈ [0, 1]

serves as an adjustable parameter for user to decide how many sub-optimal solutions should

be taken into consideration.

3.3.9 Further dissection of sub-network using graph-cut technique

Even with the sub-networks prioritized by MRWOG, occasionally we still observe that many

genes tangling together with dense connections. To further clarify the sub-network results,

we propose to dissect sub-network using graph-cut technique. Here, we only briefly describe

graph cut for bipartition case as an example, as it is straight-forward extension to multi-

partition situation. We denote the sub-network associated with given u as a graph Gu =

(Vu,Eu). Denoting the two nodes connected through the k-th edge as vk1 and vk2, we defined

the similarity between these two nodes as the selection frequency of corresponding edge:

sim(vk1, vk2) , fy(k), (3.37)

which reflects how likely these two nodes belongs to the same sub-network. By removing

certain edges, the graph Gu can be partitioned into two disjoint vertex sets A and B, where

A∪B = Vu and A∩B = ∅. For applications such image segmentation the optimal partition

is designed to be a minimum cut problem minimizing following cut function:

cut(A,B) = −
∑

v1∈A,v2∈B

sim(v1, v2). (3.38)

To avoid the partition bias preferring small sub-graphs, normalized cut (Ncut) was proposed

to take total edge count connections into considerations:

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
, (3.39)

where assoc(A,V) = −
∑

v∈A,t∈V

sim(v, t) is the total connection from nodes in Ato all nodes in

the graph. Many algorithms were proposed to achieve cut and later it has been reported that
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spectral clustering methods can be readily used to solve graph cut problems (von Luxburg

2007). Review and in-depth discussions about spectral clustering can be seen in (von Luxburg

2007). Here, we adopt a classical graph-cut tool described in (Shi and Malik 2000), which

was originally proposed to perform image segmentation using eigen-value decomposition

technique.We utilized this tool of graph cut to do modular partition fromMetropolis sampling

results.

3.4 Simulation Studies of MRWOG

3.4.1 Simulation of gene expression data

To mimic real microarray data, we adopt the Gamma-Gamma (GG) model described in

(Newton, Kendziorski et al. 2001) to generate simulation data. In GG model, observed

gene expression x follows a Gamma distribution with shape parameter αg > 0 and scale

parameter βg, and the mean value of this distribution µg = αgβg. The probability density

function of GG model is defined as

p(x|αg, βg) =
xαg−1 exp(−x/βg)

β
αg
g Γ(αg)

, (3.40)

where the scale parameter βg further follows a Gamma distribution with shape parameter α0

and scale parameter β0. Given these parameters, we can simulate the gene expression levels

under two conditions with multiple replicates. Two types of expression patterns are generated

according to whether this gene is ”equally expressed” (EE) or ”differentially expressed”

(DE). In simulation, expression level of EE gene has same means under both conditions,

while expression level of DE gene has different means. Examples of generated simulation

expression are shown in Fig. 3.6.

106



Figure 3.6: Examples of simulated expression data. (a) Heatmap of expression data contain-

ing both EE (”equally expressed”) and DE (”differentially expressed”) genes. (b) Heatmap

of expression data only containing DE (”differentially expressed”) genes.

3.4.2 Simulation network

To simulate different scenario in the real biological network, we constructed underlying

ground truth sub-networks with a signaling structure with bridges connected with different

modules, shown in Fig. 3.7. We purposely evaluate the performance of MRWOG using this

simulation network and also compare with other related methods.

Starting with simulation network, we present in Fig. 3.8 influences of some related parame-

ters to the algorithm. Fig. 3.8(a) displays the relationship between average acceptance rate

and β: the larger value of β, the larger average acceptance rate. Fig. 3.8(b) presents the

retrieving performance of MRWOG under various acceptance rates, where different Quantile

level q are tested. It is observed that within a very wide range of acceptance rate between

0.3 to 0.7 with q = 0.9 almost equally good results are produced. Therefore, MRWOG is

insensitive to selection of particular β value as long as the acceptance rate is in this range.

Fig. 3.8(c) is the retrieving performance for bridges and hubs, where the performance is

better than all the genes case. This is because MRWOG scheme is very effective to prioritize

topologically important genes through the random walk scheme. Fig. 3.8(d) is the conver-
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Figure 3.7: Illustration for the simulation network, where both hub and bridge nodes are

considered. Left dense graph refers to the global network we used in simulation, and yellow

nodes highlighted forming the underlying true sub-network, in a zooming view as right

network.

gence check for Markov chains with varying q values, it is observed that generally higher

q-value will converge slower in terms of spearman correlation value. This is understandable

as fewer samples are used for higher q-value MRWOG models. Even though, we can see

that the convergence is achieved consistently. After the spearman correlation with q = 0 as

high as 0.7 (after around 9000 iterations), both the performance of all genes detection and

hub/bridge detection will be very stable.

Comparison with other methods

In order to fully evaluate the performance of proposed MRWOG algorithm with or without

edge information, we also perform comparison against two other methods, jactiveModule

(Ideker, Ozier et al. 2002), and Heinz (Dittrich, Klau et al. 2008). As the sub-network cost

functions are quite similar, we just briefly review these approaches as follows: jactiveModule

solves the sub-network identification problem through simulated annealing search and simply

return several sub-networks with maximum sub-network score. Its disadvantage is originated

108



Figure 3.8: (a) β versus acceptance rate. (b) AUC for all genes under various q (Quantile)

values. (c) AUC for hub genes under various q (Quantile) values. (d) Convergence check

function according to varying length of Markov chain. (e) AUC for all the ground truth

genes according to varying length of Markov chain. (f) AUC for all the ground truth hub

genes according to varying length of Markov chain.
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from its heuristic search procedure, it starts from given initial gene(s) and grows in the

direction to increase the network score; Since every different running tends to lead to different

sub-network results even with the same gene initialization, the computational results of

jactiveModule is highly variable. Also, there are multiple heuristic parameters affecting

the performance of jactiveModule as well: the maximum jumps allowing the method to

explore, the temperature of simulated annealing and the stopping criterion (usually it is

configured as without significant growing). Heinz actually reformulates the original sub-

network identification problem; it converts the differentiation gene score to FDR (False

Discovery Rate) and only considers the genes with FDR above certain threshold. Then it

solves the sub-network identification problem using a prize-collecting tree. Because Heinz

solves the problem in an exact way, the optimal solution can be achieved if appropriate

FDR threshold is given. However, it can also only provide with single sub-network solution,

without statistical confidence. Also, the selection of each gene vertex is in a binary way. In

many situations, researchers are more interested to scale the sub-network inference results

in a continuous way. Therefore, any sub-network associated properties such as sub-network

size are also unclear to the users.

From the simulation results shown in Fig. 3.9, it is not surprised to observe that jactiveMod-

ule achieves the worst performance due to its heuristic searching strategy. Heinz achieves

quite similar performance with MRWOG except for the cases that hub genes only have small

or no differentiation between two simulated conditions. In contrast, MRWOG can incor-

porate the edge information to further improve its performance (with the assumption that

genes with larger differentiation score are more likely to be connected through edges with

higher confidence.) Good performance of MRWOG is understandable as the random walk

on graph is guided towards the direction to identify most differentiable sub-networks. The

random acceptance procedure also provides algorithm with opportunities to fully explore

the whole solution space, without trapping into local optima. Moreover, the advantage of

MRWOG is not limited to this as it can further provide the Bayesian mean estimate with

associated statistics for each vertex and edge, which cannot be provided by conventional
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Figure 3.9: Performance comparisons of different algorithms for identification of (a) all the

genes, (b) hub and bridge genes only. (I) and (III) correspond to simulations where ground

truth sub-networks that are highly differentiable and moderately differentiable and all the

vertices are equally differentiable. (II) and (IV) corresponds to simulations where ground

truth sub-networks that are highly differentiable and moderately differentiable but hubs and

bridges are not differentiable.

methods.

Performance comparison with point estimate

In real applications, it is always difficult to know the size of underlying true sub-network,

and many algorithms are designed based on unrealistic assumption that sub-network size

is known. The point estimate based on incorrect sub-network size leads to bias estimation

where posteriori mean is much robust to such bias. We simulate the case that underlying

true sub-network has 18 genes but the sampled sub-network size is 14, and such mismatch

is expected to affect the performance of point estimate. Fig. 3.10 (a) and (b) show that ML

point estimator generally performs worse than truncated mean based on MRWOG scheme.

Presumably, if accurate priori (sub-network size) is given, ML should lead to very similar

estimates with MRWOG. However, if improper priori given, point estimate could ”over-fit”

to the data, while sampling based scheme remain robust, if a reasonable q value is given

(around 0.9). The performance evaluation we used here is F-measure, which considers both
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precision and recall:

F-measure = 2 ·
precision · recall

precision + recall
. (3.41)

Performance comparison with varying sub-network size

Furthermore, if we vary the size of generated sub-networks by MRWOG and Heinz, from

1 to 200. For each sub-network size case, we run multiple times to draw the performance

interval based on F-measure, shown in Fig. 3.11. We can see that sampling based MRWOG

is much robust than optimization based Heinz, as the 15%-85% Quantile interval of MRWOG

is much narrower than interval of Heinz, and median performance of MRWOG is also clearly

better than Heinz.

Prioritization of condition-specific nodes and edges

After MRWOG analysis, each gene node is assigned a selection frequency score we denoted

as fu(n), n = 1, · · · , N , where

fu(n) = E [Un] ≈
1

L

L∑

l=1

un(l). (3.42)

Similarly, we also have edge selection frequency score fy(k),k = 1, · · · , K assigned to each

interaction edge, where

fy(k) = E [Yk] ≈
1

L

L∑

l=1

yk(l). (3.43)

Using node score fu(n) and edge scorefy(k), we can prioritize proteins and interactions

specific to the biological conditions of our interests. We show the simulation results or node

and edge prioritization as Fig. 3.12. For node prioritization, we used z-score based ranking

as the baseline, and it can be observed from Fig. 3.12(a) that prioritization using both

node scores and edge scores have much better than z-score based ranking, it is because

the sampling consider the interrelationship between different genes. Similarly, Fig. 3.12

(b) shows that both edge score and node score based schemes perform much better than
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Figure 3.10: Performance curves of F-measure for different q values. (a) Performance curve

for identifying all underlying genes. (b) Performance curve for identifying hub genes only.

Red dashed lines indicate baseline performance according to using ML point estimates.
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Figure 3.11: Performance comparison between MRWOG and Heinz. Blue shadow line is

according to MRWOG, and red shadow line is according to Heinz. The range of the shadow

line is 15% to 85% Quantile of F-measures after multiple runnings.

correlation approach, which use the correlation value of expression patterns of gene pairs

to prioritize condition-specific edges. Interestingly, except for the region where q-value is

very high (> 0.97), edge score perform much better than node score to prioritize condition-

specific edges. This shows that although edge selection frequency is highly dependent to node

selection frequency, it still emphasizes the specificity of edges that are not totally determined

by the specificity of nodes.

Time complexity comparison

In general, the computation complexity of random walk approaches are difficult to assess

analytically, considering that exploration efficiency is highly dependent on given graph and

underlying stationary distribution. Empirically, we perform twenty runnings to compare the

average running times of MRWOG, jactiveModule and Heinz in simulation studies. It turns

out Heinz is the fastest algorithm with average computation time second; jactiveModule

ranks the second with average time 1.35 seconds; while MRWOG is the most computation

expensive in terms of running time (12.4 seconds). We can expect that the running time
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Figure 3.12: Prioritization of condition-specific (a) nodes and (b) edges using MRWOG.

difference would be even larger if a larger graph is tested, as MRWOG aims to thoroughly

explore entire given network while the two other methods mainly focused on providing an

ad-hoc single solution. However, since the sampling scheme could be easily distributed for

parallel computation, the running time of proposed MRWOG can be greatly reduced.

3.5 Experiments on Real Biological Data

3.5.1 Experiments on yeast galactose-utilization pathway

In (Ideker, Thorsson et al. 2001), genetic perturbations on several key genes of galactose-

utilization pathway were carried out to interrogate related cellular responses. Based on a

focus physical interaction network incorporating both PPI and PDI interactions and differ-

ential scores derived from (Ideker, Ozier et al. 2002), MRWOG was run to prioritize genes

involving with galactose utilization. Since MRWOG running results consists of node and

edge selection frequency implying the importance of each gene and interaction edge, we can
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easily visualize such prioritization effects by setting the size of nodes and width of edges

proportional to selection frequency. Moreover, since MRWOG provides continuous selection

frequency, we can setup different frequency threshold to look into the affected network in

different scales, shown as in Fig. 3.13 (a), (b) and (c).

Overall, most edges prioritized by using high selection frequency belong to PDI categories

as shown in Fig. 3.13(c), which suggests transcriptional regulation is heavily involved in

galactose-utilization pathway. Moreover, a skeleton of most frequently visited genes were

highlighted in this case, informing us the key components of the sub-networks. However, we

can also investigate multi-scale results provided by MRWOG, whether they can lead us into

different angles. Although large changes in down-stream transcriptional levels are expected

and presumable, genes playing signaling roles with moderate changes are also of interested.

In the result generated by setting low selection frequency threshold, we can observe a large

part of PPI interactions also occurs in the top-left corner of Fig. 3.13 (a). By simply ex-

panding one jump from genes with signaling transduction roles, we obtain a sub-network is

mainly consisted of members of MAPK signaling pathway, especially in pheromone branch-

es, shown in Fig. 3.14 (a) and (b). It is already known that MAPK pathway receives the

environmental stresses, responds and regulates fundamental metabolisms (Gehart, Kumpf et

al. 2010). While ”high-resolution” result using high selection frequency threshold provides

mostly changed sub-network, the ”low-resolution” picture is also helpful to reveal some mod-

erately alternated but closer to up-stream sub-network. Starting from ”middle-resolution”

result using intermediate selection frequency, we can already generate a rough graph-cut

result with clear biological process divisions, shown in Fig. 3.15. This analysis can also been

seen as a modularity analysis, as each module with much thicker edges imply their expres-

sion variations are more coordinated induced. In summary, MRWOG is a very useful tool

to investigate dys-regulated gene networks in a scalable way and to facilitate the formation

of novel hypotheses.
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Figure 3.13: Visualization of MRWOG results for galactose experiments with various selec-

tion frequency threshold: (a) low selection frequency; (b) intermediate selection frequency;

(c) high selection frequency.
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Figure 3.14: (a) The sub-network selected from one jump of genes with signaling transduction

roles. (b) MAPK signaling pathway enrichment result where red star indicating genes belong

to the selected sub-network.
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Figure 3.15: Graph-cut of MRWOG results for intermediate selection frequency. Each col-

ored box describes the top enriched biological process with a Benjamin corrected p-value in

corresponding division.
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3.5.2 Experiments on breast cancer patient data

We further proceed to breast cancer studies, where the abnormal activities of protein sub-

networks may also contribute to the understandings of breast cancer mechanisms. We divide

patients into three different groups: early, late and none, according to their different clinical

outcomes. While early and none groups imply the totally drug resistance and effective

treatment, respectively, the late group corresponds to the progression that the treatment

was initially effective but later turns to be resistance. Therefore, comparing to early vs.

none (EvN) study, we are more interested to reveal the underlying sub-networks contributing

to the differentiation of early vs. late study (EvsL), which could shed some lights on the

signaling pathway studies of cancer metastasis and drug resistance.

We use two breast cancer data sets for experiment: Edinburg (in-house data set) and Loi

data set (Loi, Haibe-Kains et al. 2007) with similar survival time division. Initial protein

network is extracted from Protein-protein interaction network from HPRD (Keshava Prasad,

Goel et al. 2009) with the selection criterion of two jumps from ESR1. We used Probe Log-

arithmic Intensity ERror (PLIER) algorithm with Quantile normalization to preprocess the

original intensity data for gene expression measurements. We further convert gene expres-

sion data from probe set IDs to Entrez gene IDs. After mapping the PPI with available gene

expression from both data sets, we obtain PPI network containing about 2,358 genes and

12,595 interactions.

By running MRWOG for 1,000,000 iterations, we obtain node selection frequency and edge

selection frequency, which can help us prioritize condition-specific protein nodes and interac-

tion edges. We visualize the final results in Fig. 3.16, where the selection frequency of nodes

and edges are proportional to the node size and edge width, respectively. It is interesting to

observe that although the resulted two sub-networks are quite different, several important

players known to be related with breast cancer are shared by both sub-networks: ESR1,

AR and EGFR. We demonstrate the overall overlap of individual genes using Venn diagram,

shown in Fig. 3.17. Besides the high overlap rate in terms of individual genes, we also
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find that both results are highly overlapped in terms of pathway enrichment using DAVID

bioinformatics tools (Huang da, Sherman et al. 2009), shown as Table 3.2. It suggests that

even difference between distinct data sets could be very large in terms of individual genes,

the biological functionality and pathway activation could serve as the converging point to

understand their underlying common mechanism.

We further lay out these overlapped 37 protein nodes on Edinburgh resulted sub-network

and Loi resulted sub-network, shown in Fig. 3.18. Despite the commonality of protein nodes,

we can observe a lot of discrepancies in terms of interaction edges, and as well as fold-change

in different data sets. This observation informs us that the complexity and diversity of

biological interactions.

Bootstrapping analysis

As we mentioned in previous sections, even having the calculation of node selection frequency

to prioritize important proteins for each data set, we still need to cautious about the results

as it is derived from noisy microarray data. One way to enhance our confidence is through

statistical assessment such as bootstrapping. Using 100 random permutations, we obtained

a baseline distribution of the confidence, shown as Fig. 3.19(b); the confidence calculated

from the original (i.e., non-permuted) data set is also shown in Fig. 3.19(a) for a comparison.

We used a gamma distribution function to fit the confidence distributions for both cases, and

plotted the fitted confidence distributions in Fig. 3.19(c). For a given confidence score conf0,

we can then calculate the false discovery rate (FDR). Fig. 3.19(d) shows the number of nodes

in relation to different FDR cutoff values; from the figure we can obtain the following FDR

values for the top 50 nodes shown in Fig. 3.20: 50 nodes with FDR≤1.9e-4; 35 nodes with

FDR≤1.7e-5; 26 nodes with FDR≤2.5e-6; 15 nodes with FDR≤3.6e-7. It should be noticed

that this FDR is designed to assess the statistical significance of each individual node/edge.

A network point of view is also important to assess multiple genes/interactions globally. The

FDR of sub-networks can also be computed in a similar way.

Further graph-cut analysis
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Figure 3.16: Visualization of MRWOG results on (a) Edinburgh data set and (b) Loi data

set for early versus late survival analysis. The color of nodes indicates fold-change of gene

expression of corresponding protein node. Red means over-expressed in ’early recurrent’

patient group and green means over-expressed in ’late-recurrent’ patient group. The node

size and edge width is proportional to the node and edge selection frequency according to

MRWOG.
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Figure 3.17: Venn diagram of overlapped protein nodes from two separate MRWOG analysis.

Using previously described graph-cut technique, which has close relationships with image

segmentation (Tao, Jin et al. 2007) and emerging spectral clustering techniques (Archip,

Rohling et al. 2005), we can divide MRWOG results into different modules, inter-connections

of which are denser than connections among different modules. Using Edinburgh ’early

recurrent’ vs. ’late recurrent’ study as an example, the original MRWOG resulting sub-

network shown in Fig. 3.16 (a) can be divided into three different modules, shown in Fig.

3.21. The first module displayed in Fig. 3.21(a) has significant enrichment in ’Neurotrophin

signaling pathway’ (FDR = 0.02%), which has been shown having close relationship with

MAPK pathway under estrogen induced condition (Singh, Setalo et al. 1999). Moreover,

many evidences support that nerve growth factors and signaling stimulate the cell growth

in breast cancer (Dolle, Adriaenssens et al. 2004). The second module is highly enriched in

’cell cycle pathway’ (FDR = 3.8E-6%) and ’TGF-beta signaling pathway’ (FDR=0.2%). The

third module is dominated by ’ErbB signaling pathway’ (FDR = 3.0E-4%), which has well

known association with antiestrogen resistance mechanism (Shou, Massarweh et al. 2004)

so that several clinical researches have been carried out to inhibit this pathway for achieving

improved treatment results (Kurokawa and Arteaga 2001). From this initial study of using

graph-cut technique, we illustrate that further detailed investigations can be performed based

on ’fine-resolution’ according to each divided local modules.
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Figure 3.18: Visualization of overlapped protein nodes between two MRWOG results on Ed-

inburgh and Loi data sets lay out on (a) Edinburg resulted sub-network and (b) Loi resulted

sub-network. The color of nodes indicates fold-change of gene expression of corresponding

protein node. Red means over-expressed in ’early recurrent’ patient group and green means

over-expressed in ’late-recurrent’ patient group. The node size and edge width is proportional

to the node and edge selection frequency according to MRWOG.
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Figure 3.19: Credibility of confidence measured by permutations: (a) observed confidence;

(b) baseline confidence obtained from permutations; (c) fitted confidence distributions; (d)

number of nodes with respect to FDR cutoff value.

Figure 3.20: Confidence of the selected nodes as calculated by the bootstrap method. The

list of the top 50 nodes with conf 0.476 is shown with their gene symbols.
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Figure 3.21: Graph-cut analysis for Edinburg ’early recurrent’ vs. ’late recurrent’ analysis,

where (a), (b) and (c) are sub-networks divided from MRWOG result shown in Fig. 3.16(a).
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3.6 Discussions on MRWOG

The identification of dys-regulated PPI sub-networks under certain biological condition or

disease sub-type could provide important clues for further experimental investigations. In

contrast with optimization based sub-network searching schemes, which only provide yes/no

selection of protein nodes, our proposed MRWOG solves the sub-network identification prob-

lem in a stochastic manner, where association score of each sub-network is treated as a like-

lihood implying how possible this sub-network is dys-regulated. From this perspective, we

formulate the objective of MRWOG as minimization of Bayesian mean square errors, taking

into account all the sub-optimal sub-networks. With the Bayesian mean estimates, MRWOG

is capable of assigning a probability score to each protein node and interaction edge. The

score of one protein node indicates how often this node is selected in one sub-optimal sub-

network. The score of one interaction edge suggests how often the nodes connecting with

this edge is co-selected in one sub-optimal sub-network.

In addition, the probabilistic formulation makes it easy to incorporate additional information

into sub-network discovery schemes, such as protein interaction confidence score, or sub-

network modularity priori. The advantage of Bayesian mean estimate over original point

estimate is that it accommodates inference uncertainties, and more over, it is not needed to

provide any single solution, which could miss important information. Instead, the Bayesian

mean doesn’t require the complete coverage of the whole sample space.
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Table 3.1: Mathematical notations in Chapter 3.

PPI network G = (V,E)

Expression X = [x1, · · · ,xN ]
T ∈ R

N×M

Phenotype label or disease outcome c

Protein node score z

Interaction edge score w

Node selection vector u

Edge selection vector y

Random vector of node selection U

Random vector of edge selection Y

Number of genes N

Number of edges K

Number of patient samples M

Length of Markov chain L

Number of bootstrapping B

Number of hidden states H

Node score function zn = A(xn, c)

Sub-network score function S(u; z) =
N∑

n=1

znun/

√
N∑

n=1

un

Sub-network score function with edge Se(u,y; z,w) =
(

N∑
n=1

znun + λ
K∑
k=1

wkyk

)
/

√
N∑
i=1

ui

Likelihood function L(u; z) = max(0,Sβ(u; z)CE(u))

Probability mass function Pr(z|U = u) ∝ L(u; z)

Bayesian mean estimator fnode = ûBM(z)

(node selection frequency) = EU [U |z] =
∑
U∈U

U Pr(U |z)

Markov chain of node selection vector MCu = {u(0),u(1), · · · ,u(l), · · · ,u(L)}
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Table 3.2: Pathways that enriched in MRWOG results on both data sets, with a FDR cut-off

5%.

KEGG pathway (ID: name) Loi Edinburgh

(# of genes (FDR%)) (# of genes (FDR%))

hsa05200:Pathways in cancer 33 (2.30E-16) 34 (3.50E-16)

hsa04110:Cell cycle 19 (9.90E-11) 19 (4.23E-10)

hsa04520:Adherens junction 13 (7.89E-7) 12 (2.60E-5)

hsa04115:p53 signaling pathway 11 (4.15E-5) 6 (4.57)

hsa04012:ErbB signaling pathway 12 (4.16E-5) 15 (4.95E-8)

hsa04010:MAPK signaling pathway 13 (0.49) 17 (3.55E-3)

hsa04910:Insulin signaling pathway 8 (3.7) 10 (0.28)
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Chapter 4

Conclusion and future work

In this dissertation, we propose an integrative network analysis framework for genomic path-

way inference from two different levels: transcriptional regulatory network (TRN) inference

and protein-protein interaction (PPI) sub-network identification. Specifically, we develop

several computational approaches to accomplish condition-specific network analysis tasks by

integrating mRNA expression data, protein-DNA interaction and protein-protein interaction

information.

In this Chapter, we first summarize original contributions of this dissertation, and then

discuss some limitations of current approaches. Finally, we conclude this dissertation with

several potential research questions for extending current framework.

4.1 Summary of Contributions

Nowadays, high-throughput screening of genomic signals become a routine experiment for

biologists to investigate the abnormal changes in different conditions. However, revealing

of underlying mechanistic system remains a non-trivial task, considering the complexity of

cellular system and inherent noises in measurements. To study genomic data in a biological
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context, we present an integrative framework to dissect molecular pathways into two types

of network analysis: protein-DNA network analysis and protein-protein interaction network

analysis. The major contributions of this dissertation are summarized as follows.

4.1.1 Condition-specific transcription regulatory network infer-

ence with biological knowledge of all TFs

Since transcriptional regulation is the major driving force for gene expression, the inference of

transcription regulatory network could facilitate to understand the controlling mechanisms in

normal cellular system (Yang, Suen et al. 2005), as well as programmed dynamics in cancer

cells (Creighton, Cordero et al. 2006). Since the inference task purely based gene expression

is very challenging, many computational methods were proposed to integrate expression

with protein-DNA interaction information to combat noise in expression data. However, two

major issues remain unsolved: (1) biological knowledge of protein-DNA interactions is not

always available, especially for species other than yeast and E. coli. ; (2) Integrative analysis

based on inconsistent biological knowledge and data could produce misleading results and

confound our understandings.

With the awareness of these problems, we have proposed several strategies. For the problem

of transcriptional regulatory network inference where all potentially active TFs are known, we

have proposed a computational approach, namely motif-directed Network Component Anal-

ysis (mNCA), to integrate gene expression profiles and DNA sequence motif information so

that we can infer the underlying transcription factor activities (TFAs) and the regulatory re-

lationship from TFs to their targets. mNCA is designed to facilitate the regulatory network

inference problem in the situation that ChIP-chip data is not available. Since the initial

connection information extracted from DNA motif is very noisy and contains considerable

amounts of false positives, the estimated TFA cannot reflect the relevance of one TF to cer-

tain biological condition. To address the relevance of TF by using noisy biological knowledge,

we further proposed a novel computational scheme called knowledge-based stability analysis

131



to test the consistency between mRNA expression and biological knowledge. In the proposed

stability analysis, multiple random perturbations are first applied onto network connections,

and then a stability score is calculated as the average distance of different TFA estimations

after perturbations. The rationale behind stability analysis is that the TFA estimation of an

active TF is less likely to be affected by the random perturbation on knowledge than other

non-active TFs. Besides mNCA and kSA, we also propose a computational strategy to han-

dle the under-determined case, where number of microarray samples smaller than number

of TFs. This strategy greatly extends the applicability of mNCA to explore larger number

of TFs.

The proposed scheme showed robust and superior performance over conventional approaches.

We applied stability analysis to yeast cell cycle experiment and further to a series of anti-

estrogen breast cancer studies. In both experiments not only biologically relevant regulators

are highlighted, the condition-specific transcriptional regulatory networks are also construct-

ed, which could provide further insights into the corresponding cellular mechanisms.

4.1.2 Transcription regulatory network inference with biological

knowledge of single TF

Since NCA is a matrix decomposition method based on biological knowledge constraints,

which is designed for regulatory network inference under assumption that all potentially

active TFs are known beforehand, it is not suitable for the case where only a partial TF list

is known. We further propose a single TF knowledge guided approach, regulatory component

analysis (RCA), which explicitly find the linear projection maximizing the coincidence with

given partial biological knowledge. The linear extraction scheme also allows RCA to detect

FPs and FNs of biological knowledge, which is inconsistent with gene expression data. RCA

can be regarded as a complementary work to matrix decomposition based methods such as

NCA to infer transcriptional regulatory networks where the knowledge of TFs is incomplete.
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The contributions of RCA works are two-folded: first, we formulate a linear extraction

scheme for transcriptional regulatory network inference problem, by utilizing incomplete but

informative biological knowledge. The proposed scheme show significant performance im-

provement over traditional NCA methods in both simulations and real biological experiment

in E. coli. Second, through designed simulation studies, we showed that how to efficient-

ly integrate biological knowledge is not a trivial problem, considering the given biological

knowledge is usually incomplete and in-consistent to the data we have. An inappropriate

incorporation of biological knowledge may even lead to worse performance than the methods

without using biological knowledge.

4.1.3 Protein-protein interaction sub-network identification

With increasingly accumulated protein interaction data, the identification of condition-

specific protein sub-networks emerges as an attractive research problem, solutions of which

can facilitate understandings of molecular mechanisms, and provide reliable sub-network

bio-markers for disease diagnosis/prognosis. Most of the existing algorithms mainly search

for sub-networks enriched with differentially expressed genes, but overlook their potential

interactions and topological importance. In addition, the identification of sub-network is

usually solved through optimization schemes, and there is no condition-specific score associ-

ated with each gene and each interaction. This makes prioritization of genes and interactions

infeasible, and hinders the interpretation of network results.

With increasingly accumulated protein interaction data, the identification of condition-

specific protein sub-networks emerges as an attractive research problem, solutions of which

can facilitate understandings of molecular mechanisms, and provide reliable sub-network

bio-markers for disease diagnosis/prognosis. Most of the existing algorithms mainly search

for sub-networks enriched with differentially expressed genes, but overlook their potential

interactions and topological importance. In addition, the identification of sub-network is

usually solved through optimization schemes, and there is no condition-specific score associ-
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ated with each gene and each interaction. This makes prioritization of genes and interactions

infeasible, and hinders the interpretation of network results.

4.2 Future Extensions

There are many potential extensions can be done starting from current framework. We

describe some major directions in this section.

Generalization of knowledge-based stability analysis

In any integrative analysis scenarios, data-knowledge consistency or consistency between

different data types is an issue could mislead computational analysis. Although we demon-

strate the effectiveness of stability analysis in transcriptional regulatory network inference

application, through extensive simulation studies and experiments on real biological data,

it remains unclear how well this scheme can be extended to other integrative analysis ap-

plications, for example, protein-protein interaction sub-network identification. It certainly

requires more theoretical work to gain the insights about how to generalize stability analysis

to other knowledge integration applications. This part of future work is not isolated as ideas

could be borrowed from many closely related research fields, such as perturbation analysis

and robust estimators.

Statistical extension of regulatory component analysis

In current formation of regulatory component analysis, we mainly focus on the coordination

between biological knowledge and expression data. Noticeably, pure statistical approach-

es such as PCA and ICA can also reveal certain portion of target genes, without using

any biological priori. This raises an interesting research question that how to develop the

method utilizing both biological knowledge and statistical properties of underlying signals,

for example, sparse property of regulatory component. Another following question is how to

find such a balance point to fully exploit the information from both sides. Fortunately, the
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current formation of RCA allows flexible incorporation of extra statistical criterions, which

have been extensively studied in pattern recognition area (De Bie, Cristianini et al. 2005)

and signal processing field (Parra and Sajda 2003).

Incorporation of domain-knowledge in MRWOG

Currently, we only make very mild assumption about priori of MRWOG: every protein node

and interaction edge is equally possible to be activated. Such uniform priori is appropriate

to be used for unbiased exploration at initial stage. However, for further focused study

it is essential to have domain-knowledge from the biological problems we studied, such as

cellular location, regulation/activation direction of the interaction edge, implication of each

interaction (inhibition/activation/collaboration) and etc. The power of Bayesian principal

is relying on the incorporation of both data likelihood and prior belief without seeing the

data. To move forward to infer a biological context specific pathway, the incorporation of

domain-knowledge and formulation of informative priori distribution is very essential. In

this dissertation, we lay out foundation for further study on this topic.

Directional inference of protein-protein interactions

The current modeling of PPI using MRWOG is a simplification of undirected graph. As

we know that PPI involves both undirected interactions such as protein complex formation,

as well as directed interactions such as post-translation modification. There are several

potential ways to incorporate or infer directions of PPI: first, based on current MRWOG

scheme, we can enforce the random walk to be directional if additional direction information

is available, such as post-translation modification information collected in various of PPI

database (Mathivanan, et al., 2006) and cellular location information derived from gene-

ontology database (Ashburner, et al., 2000); second, given the upstream proteins (ligands

and receptors) and downstream TFs of signaling pathway, several methods treat inference

signaling transduction from upstream to downstream as a path finding problem (Scott, et

al., 2006; Yeger-Lotem, et al., 2009; Zhao, et al., 2008), and directions of intermediate

interactions can be assigned according to optimal path finding.
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Utilization of hyper-graph cut for protein sub-network division

In MRWOG scheme, one of potential research directions is to investigate the application

of advanced graph-cut techniques for sub-network dissection. Generalized from tradition-

al graph, a hyper-graph contains hyper-edges that can connect arbitrary number of nodes

(Klamt, et al., 2009). The graph-cut scheme has also been extended to accommodate hyper-

graph scenario. The concept of hyper-graph is especially suitable for describing formation

of protein complex, since each protein complex contains multiple protein members and each

protein could also involve into multiple protein complexes. It is worthy to notice that hyper-

graph has not only been utilized in some of exiting bioinformatics research works for inte-

grating multiple data-type (Tian, et al., 2009) or analyzing metabolic pathway (Mithani,

et al., 2009), but also been proposed to interrogate interaction network. It is certainly a

promising research direction to extend MRWOG beyond pair-wise interaction network to

hyper-graph network (Ladroue, et al., 2009).

4.3 Conclusion

Biotechnology is moving in an unexpected fast pace. While the initial draft of first human

genome sequence finished in 2001 costs around $3 billion in total, it only took $22 million

in 2006 to acquire the complete sequence of a nonhuman primate (Service 2006). In 2010, it

was announced by multiple biotech companies that a human genome can be sequenced in a

day for less than $6,000 (Venter 2010). With much cost-effective sequence techniques, gene

expression, methylation and many other genomic signals can be measured in a much more

accurate way (Metzker 2009). However, how to interpret huge amount of data and advance

our understandings of biological systems based on these data still remained to be challenges,

considering large gene population versus small sample number, inherent measurement noises,

heterogeneity in tissue preparation, and individual genomic difference.

Since it is known that molecules interact within each other cellular system, a network analysis
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appears to be useful to delineate the data and facilitate biological interpretations. In this dis-

sertation, we present an integrative analysis framework for dissecting molecular pathway into

two parts: protein-DNA interaction network and protein-protein interaction network. For

different network analysis scenario, we proposed several integrative approaches: (1) motif-

guided network component analysis (mNCA) and knowledge-based stability analysis (kSA)

for identifying condition-specific TFs and target genes, (2) regulatory component analysis

(RCA) for identifying target genes with partial protein-DNA knowledge, and (3) Metropolis

random walk on graph (MRWOG) for identifying dys-regulated protein sub-networks and

prioritizing condition-specific proteins and interactions. Through extensive simulation and

experiments on real microarray data, we have demonstrated that (1) condition-specific TFs

can be highlighted with proposed stability analysis and a condition-specific regulatory net-

work can be constructed based on that, (2) gene targets can be obtained even with partial

biological knowledge, and (3) the given interaction network knowledge can be re-evaluated

a specialized MCMC algorithm following Bayesian principal. All of above algorithms and

applications involve the careful design with respect to integrative analysis, especially with

the emphasis on the consistency between multiple data types and information sources. It can

be foreseen that with more data, integrative analysis will become more and more important,

and eventually lead to the complete understandings of pathway.
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