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Simulation Studies of Parametric Processes Associated with
Ionospheric Electromagnetic Radiation

Ahmed Hussein

(ABSTRACT)

Parametric instability processes are thought to produce Stimulated Electromag-
netic Emissions (SEE) during ionospheric heating experiments. The phenomenon is
primarily attributed to plasma turbulence excited by the high frequency HF heater
in the altitude region where the pump frequency ω0 is near the plasma upper hybrid
frequency ωuh. In this study, parametric instability processes thought to produce SEE
are studied using theoretical and electrostatic Particle-In-Cell PIC simulation models.
The simulation plasma is driven with a uniform oscillating electric field directed nearly
perpendicular to the background geomagnetic field B to consider interactions when
ωuh is near electron cyclotron harmonics nΩce. The pump frequency and amplitude
are varied to consider the effects on the simulation electric field power spectrum.

In this study, theoretical predictions and numerical simulations are used to study
the three-wave decay instability process thought to be responsible for the generation of
the down-shifted sidebands, the downshifted peak DP and the downshifted maximum
DM. In particular, the lower hybrid decay instability LHDI and the ion cyclotron
decay instability ICDI are studied in detail. The theory is used to provide the angular
regime, with respect to the direction perpendicular to the magnetic field, at which
the sidebands develop as well as the frequency and wavenumber regimes of both the
LHDI and the ICDI. The effect of the temperature ratio Te/Ti for both instabilities is
discussed. A comparison between the theoretical predictions, the simulation electric
field power spectrum and the experimental observations are presented in this study.
Time evolution of both the LHDI and the ICDI is also investigated. The theoretical
predictions are also used to investigate the cascading of the LHDI and the ICDI. The
spectra show consistencies with the experimental observations.

A four-wave parametric decay instability process thought to be responsible for
SEE broad up-shifted sideband spectral features is discussed as well. Many theoretical
results are presented, in which the effect of stepping the heater frequency closer to
the upper hybrid frequency on the angle of maximum growth θmax, the growth rate
γ and on both the frequency and wavenumber regimes of the four-wave process is
investigated. The simulation electric field power spectrum showed a large amplitude
up-shifted sideband and a much smaller amplitude down-shifted sideband, consistent
with the experimental observations. Comparisons between the theoretical predictions,
the simulation electric field power spectrum and the experimental observations are
discussed in detail. The time evolution of the four-wave process is one important
aspect that is also presented in this study. The development of density irregularities,



cavities and particle heating is also analyzed and investigated in this study.
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Chapter 1

Introduction

The interaction of electromagnetic waves with the ionosphere has been an active
research area since the trans-Atlantic experiment by Marconi in 1901. Evidence of
ionospheric modification by a powerful radio wave was first observed in 1933 when
a powerful transmitting station in Luxemburg was found to modulate signals trans-
mitted from Switzerland to Holand. Baily and Martyn proposed that the signal from
the Luxemburg station had increased the ionosphere electron temperature and thus
had modulated the radio wave absorption. Since that time, there has been a growing
interest in “heating” the ionosphere with high power radio waves.

In the past two decades, a number of heating facilities have been built in Europe,
Russia and the United States to study the remote interaction of high frequency elec-
tromagnetic waves with the ionospheric plasma. Some of these heating facilities are
HIPAS facility in Alaska, the one in Tromsø Norway and in Arecibo, Peurto Rico.
The location of these heating facilities depends on the orientation of the Earth’s geo-
magnetic field. Current topics of interest in ionospheric modification research include
such diverse aspects as modification of polar electrojet and ELF/VLF generation, hot
electrons and artificial airglow emissions, large scale density and temperature modifi-
cations and generation of electrostatic waves, parametric instabilities and production
of small scale density irregularities.

Another interesting phenomenon in ionospheric modification is the Stimulated
Electromagnetic Emission (SEE). During heating experiments near Tromsø, Norway,
it was discovered that when a powerful O-mode electromagnetic pump wave, which
has a frequency near the harmonics of electron cyclotron frequency nΩce is injected
into the ionosphere from a ground station, secondary electromagnetic waves are gen-
erated and can be detected on the ground [Thidé 1982]. These electromagnetic waves
have frequencies that are in a relatively small bandwidth around the pump wave fre-
quency. Under varying pump wave and ionospheric conditions, these waves may be at

1
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frequencies above or below the pump frequency. Some of the important SEE features
that exhibit down-shifted sidebands are the Downshifted Maximum (DM) and the
Downshifted Peak (DP). Some of the up-shifted sidebands are the Broad Upshifted
Maximum (BUM) and the Upshifted Maximum (UM). Another feature that exhibits
a symmetrical structure is the Broad Symmetrical Structure (BSS). The continuum
feature is one important feature that will be discussed later.

1.1 Objectives

In this work we study some of proposed processes associated with SEE generation
using particle in cell (PIC) simulation models. The PIC simulation model was used in
this study since it includes kinetic modes such as Bernstein modes which are thought
to play an important role in producing SEE. It also allows for detailed studying of
nonlinear evolution. The emphasis is on DM, DP and the BUM features. Although
numerical simulations will ultimately provide important contributions to the under-
standing of nonlinear processes that are thought to produce SEE and bridge the gap
between theoretical development and experimental observations, there have been few
studies in the past [Hussein and Scales 1997 and references therein]. Our emphasis
here will be to study the electrostatic parametric processes that ultimately produce
currents that radiate as SEE.

The study investigates the effect of varying different plasma parameters that might
affect the parametric instability. These parameters include the temperature effect
Te/Ti, the effect of varying the electron cyclotron harmonic nΩce and the effect of
varying the pump frequency on the instability process. It also involves using the
linear theory predictions which were very useful in providing us with a qualitative
information on different physical processes. The theory predictions also proved to be
very useful and accurate in guiding the simulations conducted in this research. The
dissertation is arranged as follows. This first chapter is an introduction to the study
under investigation and our research objectives. The second chapter is an overview
on important plasma parameters and SEE. Next chapter discusses the three-wave
processes responsible for the down-shifted sidebands. Chapter four discusses the four-
wave interaction process responsible for the up-shifted sidebands. Finally, summary
and conclusions are discussed.



Chapter 2

Plasma parameters and SEE

The classification of the Earth’s upper atmosphere can be categorized into many
categories, temperature regime (troposphere, mesosphere ,...), chemical composition
regimes (homosphere, heterosphere), ionization regimes (ionosphere, magnetosphere),
and dynamics/mixing regimes (barosphere, exosphere).

All of these classification schemes divide the atmosphere into different regions
depending on the altitude. Our focus in this work is on the ionization layer known
as the ionosphere shown in Figure 2.1. At high altitudes the radiation from the
sun causes a considerable amount of photoionization of the upper atmosphere. This
results in free electrons and free ions which tend to recombine. In the ionosphere,
the recombination of ions and electrons is slow due to low gas densities. Thus, the
ionosphere is a region characterized by a high density concentration of both free
electrons and ions. In general, any region that has the same characterization is
classified as a plasma.

A plasma is often considered as a state of matter. At low temperatures collisions
between atoms are rare, and these collisions do not have enough energy to ionize one
or both atoms. However, as a gas heats up the number of collisions between atoms,
with energy sufficient enough to ionize the atoms, increases. At a certain point the
number of ionized atoms will increase enough that there is an abrupt change in the
ratio between ionized and neutral atoms. At this point we are no longer talking about
a gas, but a plasma. It is possible for a plasma to heat up enough that the number
of ionized atoms will exceed the number of neutral atoms, making the plasma fully
ionized.

A plasma can also be considered a quasineutral gas of charged and neutral particles
which exhibits a collective behavior.

3
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Figure 2.1: A plot showing the variation of the ionospheric density with height [Collin,
1985].
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Table 2.1: Classification of layers in the ionosphere.

Ionospheric Layer Altitude Electron density

D 60-90 km 108 − 1010 m−3

E 105-160 km several 1011 m−3

F1 168-180 km several 1011 − 1012 m−3

F2 maximum variable around 300 km up to several 1012 m−3

The ionosphere, being a plasma and a conducting medium, both propagates and
reflects radio waves, depending on frequency; thus, allowing for long distance radio
communication.

The ionosphere is classified into vertical regions. This vertical structure is contin-
uously changing, and varies from day to night, with the seasons of the year, and with
latitude. The ionospheric layers are summarized in Table 2.1.

The E and F layers are the most important layers for radio communications in the
frequency range of 3 to 30 MHz. Anything above 40 MHz is able to penetrate through
the ionosphere. In the D region, only waves of 2 MHz and below are reflected. This
is because the D region has a much lower electron density than the other layers. The
D region also has a much larger collision frequency, due to a high neutral density.

Understanding the development of irregularities in the plasma is one of the most
active areas of ionospheric research. There are many physical processes that can
produce irregularities. One set of physical processes that we are interested in are
plasma instabilities. There are several different classifications of plasma instabilities,
but all of them are caused by waves produced by free energy in the ionosphere.

In this chapter we shall discuss the important concepts in plasma and it’s physical
parameters.

2.1 Plasma oscillations and plasma frequency

If the electrons in plasma are displaced from a uniform background of ions, electric
fields will be built up in such a direction as to restore the neutrality of the plasma
by pulling the electrons back to their original positions. Because of their inertia,
the electrons will over shoot and oscillate around their equilibrium positions with
a frequency known as the plasma frequency ωp. Their oscillations are so fast such
that the massive ions may be assumed fixed. The plasma frequency is given by the
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expression:

ωp
2 =

q2n0

mε0
(2.1)

where, ωp is the plasma frequency , q, n0,m are the charge, charge density and the
mass of the species respectively, and ε0 is the permitivity of free space.

2.2 Cyclotron frequency

If a magnetic field is applied on a charged particle, the particle will experience
a cyclotron gyration with a frequency known as the cyclotron frequency Ωc. The
cyclotron frequency is given by:

Ωc =
qB

m
(2.2)

where, Ωc is the cyclotron frequency, q,m are the charge and mass of the species
respectively, and B is the applied magnetic field strength.

2.3 Debye shielding

A fundamental characteristic of the behavior of the plasma is its ability to shield
out electric potentials that are applied to it. Suppose an electric field is applied into
a plasma by putting two charged metal surfaces connected to a battery. The charged
surfaces would attract potentials of opposite charges and almost immediately a cloud
of ions will surround the negatively charged surface and a cloud of electrons will
surround the positively charged surface. If the plasma were cold and there were no
thermal motions, there would be just as many charges in the cloud as on the surface,
and the shielding would be perfect. No electric field in this case would be present
in the body of the plasma outside the cloud. On the other hand, if the temperature
is finite, the particles that are at the edge of the cloud, where weak electric field is
present, would have enough thermal energy to escape from the electrostatic potential
well. The edge of the cloud occurs at the radius where the potential energy is ap-
proximately equal to the thermal energy KT , where K is Boltzman’s constant and T
is the temperature of the species, of the particles, and the shielding is not complete.
Potentials of the order KT/q can leak into the plasma and cause a finite electric field
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to exist [Chen, 1984]. A measure of the plasma shielding is called the Debye length
λD which is given by :

λD =

√
ε0KTe
nq2

e

(2.3)

which is a measure of the shielding distance. Note that describing the plasma as a
quasineutral gas means that its neutral enough to assume ni = ne = n where n is the
plasma density.

2.4 The upper hybrid frequency ωuh

Assuming high frequency electrostatic electron oscillations propagating at right
angles to the background geomagnetic field. These electrostatic electron waves across
B will oscillate with the frequency called the upper hybrid frequency, ωuh. The upper
hybrid frequency is given by

ω2
uh = ω2

pe + Ω2
ce (2.4)

where, ωuh is the upper hybrid frequency, ωpe is the electron plasma frequency, and
Ωce is the electron cyclotron frequency. Note that those are different oscillations than
those along B which are the usual plasma oscillations with ω = ωp.

2.5 The Bernstein waves

These are electrostatic waves propagating at right angles to B at harmonics of the
cyclotron frequency, nΩc.

2.6 Electrostatic ion waves perpendicular to B0

Assume k, the wave vector, is almost perpendicular to the background magnetic
field B0. Assume also an infinite plasma in equilibrium with uniform density, n0 and
magnetic field B0. Also the assumption of cold ions is considered, i.e Ti=0. The
geometry is shown in Figure 2.2. The angle π/2− θ is taken to be so small that we
may take E = E1x̂ as far as ions are concerned. For the electrons, however it makes a
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great difference whether π/2− θ is zero or small and finite. The electrons have small
Larmor radii that they cannot move in the x-direction to preserve charge neutrality;
all that the E field does is make them drift back and forth in the y direction. If θ
is not exactly π/2,the electrons can move along the dashed line (along B0) to carry
charge from negative to positive regions in the wave and carry out Debye shielding.
The ions cannot do this effectively because their inertia prevents them from moving
such a long distance in a wave period. This critical angle π/2 − θ is proportional

to the ratio of ions to electrons thermal velocity which is proportional to
√
me/mi.

Considering the plasma approximation ni = ne, the dispersion equation of the ion
cyclotron waves is obtained [Chen, 1984], which is given by:

ω2 = Ω2
ci + k2v2

s (2.5)

where, Ωci is the ion cyclotron frequency, k is the wave number, vs is the electron
oscillating velocity.

Now, consider the case with θ is exactly equal to π/2, and the electrons are not
allowed to preserve their charge neutrality by flowing along the lines of force. Assum-
ing also that the electron mass is finite and considering the plasma approximation
ni = ne, we obtain the frequency called the lower hybrid frequency ωlh [Chen, 1984]
which is given by

ωlh ≡
√

ΩciΩce (2.6)

where Ωci and Ωce are the ion cyclotron and electron cyclotron frequencies respectively.
Note that the lower hybrid oscillations are only observed when θ is very close to π/2.

2.7 Parametric instability

Ion density fluctuations may couple an electromagnetic wave into an electron
plasma wave to give us an electric field Ẽ. In turn, the electron plasma wave beats
with the electromagnetic wave to generate a spatial variation in the electric field in-
tensity which can enhance the ion density fluctuations via the ponderomotive force.
Hence, a feedback loop is formed and depending on the pump amplitude, instability
can result. Such instability is called parametric instability, with the parameter being
the wave’s amplitude. Note that the spatially varying electric field E0 which is re-
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Figure 2.2: A plot showing the geometry of an ion cyclotron wave propagating nearly
at right angles to B0 [Chen, 1984].
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sulting from beating of two waves requires a two-wave number matching to produce
sustaining instability, the condition is

k0 = ki + ks (2.7)

where the scripts “0”,”i” and “s” stand for the pump, idler and the signal respectively.
In the SEE problem, the electromagnetic wave is the pump, the electron plasma wave
is the idler, and E0 is the signal. The wave number matching condition is equivalent
to conservation of momentum. However, the parametric instability has to satisfy the
conservation of energy to take place. This translates into the frequency matching
condition

ω0 = ωi + ωs (2.8)

Note also that the instability can occur only when the pump amplitude is above
a critical value in order to maintain the feedback growth. Figure 2.3 shows the
parallelogram construction for the parametric decay instability process. Here, (ω0, k0)
is an incident electromagnetic wave of large phase velocity (ω0/k0 ' c). It excites an
electron wave and an ion wave moving in opposite directions. Since |k0| is small we
have |k1| ' −|k2| and ω0 = ω1 + ω2 for this instability.

2.8 Production of beat currents

An electrostatic particle-in-cell simulation model was used to investigate the Stim-
ulated Electromagnetic Emission SEE in our study. To explain the validity of this
approach we need to discuss the generation mechanism of SEE. Recent theoretical
and simulation studies have predicted that the development of frequency sidebands in
the SEE spectrum are produced by interactions between electrostatic waves which are
scattered into electromagnetic waves to produce the observed stimulated waves [Zhou
et al., 1994, Mjølhus et al., 1994; Goodman et al., 1995]. A theoretical model for
SEE generation is shown in Figure (2.4). When an o-mode heater wave is launched
into the ionosphere and at the altitude region of the upper hybrid resonance layer,
the pump wave excites electrostatic waves at this altitude. These electrostatic waves
parametrically decay into low frequency waves and electrostatic high frequency HF
sidebands. The conversion from electromagnetic wave (pump wave) into electrostatic
waves is called mode conversion and in this case it is called ”direct conversion”. An-
other mechanism that could also produce these electrostatic waves is the thermal
oscillating two stream instability OTSI [Huang and Kuo 1994; Lee and Kuo 1983;
Dysthe et al. 1982]. The crucial part in the direct conversion is the pre-existing short
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Figure 2.3: A parallelogram construction illustrating the parametric decay instability
process [Chen, 1984].
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scale ( ∼ 1m ) field aligned density irregularities. Irregularities of a variety of scale
sizes (varying over many orders of magnitude) exist in the different regions of the
ionosphere. They arise from a number of sources such as wind, gravity, etc. The
physical process of the direct conversion is as follows [Antani 1991]. The incident
o-wave induces oscillating electron drift in the upper-hybrid resonance layer. This in-
duced electron velocity mixes with the pre-existing density irregularities to generate
a source current that plays the role of an in-situ antenna radiating the excited upper
hybrid wave

Js = −e ñel veh (2.9)

where e is the electron charge, ñel is the low frequency electrons density fluctuation
and veh is the high frequency pump induced velocity (oscillating velocity) which is
given by

veh = v0 exp(i(kxx− kzz − ω0t)) (2.10)

The low frequency density irregularities produced by the parametric instability prop-
agate in either the forward or backward direction. The low frequency forward prop-
agating density irregularities are given by

δ+
ne = δn0 exp(i(kxx− ωlt)) + c.c. (2.11)

where c.c. denotes the complex conjugate. These low frequency forward propagating
density irregularities mix with the high frequency electron oscillations to produce a
current responsible for producing the down-shifted frequency

J+ ' J0 exp(i(−kzz − (ω0 − ωl)t)) (2.12)

The low frequency backwards propagating density irregularities are given by

δ−ne = δn0 exp(i(kxx+ ωlt)) + c.c. (2.13)

These low frequency backwards propagating density irregularities mix with the high
frequency electron oscillations to produce a backward propagating beat current which
is responsible for producing the up-shifted frequency
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J− ' J0 exp(i(−kzz − (ω0 + ωl)t)) (2.14)

These beat currents are responsible for the propagation of the up-shifted and the
down-shifted frequencies seen on the ground as SEE. This process is called nonlinear
scattering. This process occurs whenever the following frequency and wave matching
conditions are satisfied

ω0 = ωuh + ωn (2.15)

k0 = kuh + kn (2.16)

where the subscripts ”0” and ”n” refer to the pump and the irregularities respectively.
The direct conversion process differs from the parametric process in that it has no
threshold field power requirement and also it leads to a linear growth that is linear in
time. Note that since the direct conversion relies on these irregularities in the iono-
sphere, which vary with time and position, we can expect that the direct conversion
process is not a static process but a process with high degree of fluctuations.

So, from the above discussion, the generation of SEE is through two steps the
first and the most important step is the mode conversion ”forward conversion”, where
the electromagnetic o-mode pump wave decays into electrostatic sidebands and low
frequency decay mode at the altitude region of the upper hybrid resonance layer.
The second step is the ”backward conversion” from the electrostatic sideband waves
into radiated electromagnetic waves radiated by the currents back to the ground as
SEE. So, the reason for using a pure electrostatic model to study SEE is that we
are looking at the electrostatic sidebands developed in the altitude region of upper
hybrid resonance layer. In this region, most of the physical processes responsible for
the generation of the SEE sidebands take place before it is scattered from the field
aligned density irregularities and radiated to the ground through backward conversion
and seen as SEE.

In essence of the above, we have chosen to use a purely electrostatic rather than
a fully electromagnetic model to study SEE. It is also worth mentioning that a pure
electrostatic model is computationally more feasible and consequently provides more
resolution of the electrostatic parametric processes that produce SEE.
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2.9 Cascading of electron waves

During ionospheric heating experiments, it was found that the down-shifted side
bands can appear in a cascading or multiple structure [Fejer and Kuo, 1973; Perkins
et al., 1974]. The mechanism is atributed to the fact that ω0 might decay into
electrostatic electron waves and low frequency ion waves. These electrostatic upper
hybrid/electron Bernstein sidebands may act as a secondary pump that would in turn
decay into a second sideband and thereby causing the multiple sideband feature. This
mechanism is demonstrated in Figure (2.5).

2.10 Stimulated Electromagnetic Emission (SEE)

Many phenomenon attributed to wave-wave interaction have been observed during
ionospheric heating experiments. Stimulated Electromagnetic Emission SEE is a
wave-wave process thought to be produced by parametric instabilities. The waves
include upper hybrid, lower hybrid, and ion cyclotron waves. The SEE spectrum
exhibits sidebands that are up-shifted and down-shifted from the pump wave within
roughly about 10 KHz bandwidth. A physical model for the generation mechanism
of the SEE is shown in Figure (2.4).

The SEE is a very important diagnostic tool for studying parametric instabilities
and other nonlinear physical processes that may occur around the heated region. It
was noted that the spectrum from SEE may be used to measure the electric field
strength in the heated region. The SEE spectrum was used in many experimental
observations to measure the magnitude of the background magnetic field. The results
show that the SEE can be a very important diagnostic tool and it is also considered a
fundamental plasma phenomenon. A physical model for the SEE and the important
altitude regions is shown in Figure (2.6).

The classification of SEE spectral features and the description of their generation
through parametric decay instability processes was provided by Stubbe et al. [1984].
The SEE spectral sidebands were found to depend on a number of ionospheric pa-
rameters in addition to the pump wave. It was also postulated that the sidebands in
the SEE spectrum should develop in the altitude region where ω0 is near the plasma
upper hybrid frequency ωuh. It was also found that this spectrum is dependent on
the proximity of ω0 to the harmonics of the electron cyclotron frequency nΩce.

Some of the important SEE spectral features sidebands which extend above and
below the pump frequency by multiples of the lower hybrid frequency or less than a
lower hybrid frequency are described in the following subsections.
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2.10.1 Downshifted Maximum (DM)

The downshifted maximum DM is one of the prominent SEE spectral features.
This sideband in the SEE spectrum has a frequency shift below the pump frequency
approximately equal to the local plasma lower hybrid frequency ωlh. The theoretical
studies of the DM considered the generation through the parametric decay of the
electromagnetic pump wave into upper hybrid waves. The upper hybrid waves either
decay into a lower hybrid wave and an O-mode wave [ Murtaza and Shukla, 1984,
Stenflo and Shukla, 1992, Leyser, 1991] or decay into a lower hybrid wave and an
electrostatic upper hybrid electron Bernstein wave which is scattered by field-aligned
irregularities into electromagnetic waves that are observed on the ground [Zhou et al.,
1994]. Some of the experimental results showing the DM and the cascading structure
of the DM are shown in Figure (2.7).

2.10.2 Downshifted Peak (DP)

Another SEE spectral feature is the downshifted peak DP. The DP is a down-
shifted sideband which is usually observed when the pump frequency is very close
to the third harmonic of the electron cyclotron frequency 3Ωce. Its offset frequency
from the pump is about 2 KHz. It was postulated by Huang and Kuo [1995] that
the generation mechanism for the DP feature is through parametric decay of an
electron Bernstein pump wave into an electron Bernstein sideband wave and a nearly
perpendicularly propagating ion acoustic or electrostatic ion cyclotron decay wave.
Some experimental results are shown in Figure (2.8). The figure shows the down
shifted peak extending below ω0 by a factor less than a lower hybrid frequency ωlh.
It was also noted that the DP may appear in a cascading structure when the upper
hybrid resonance frequency is equal to third electron cyclotron harmonic ωuh = 3Ωce

(double resonance) and ω0 is very close to 3Ωce. An experimental result showing the
cascading of the DP is also shown in Figure (2.8).

2.10.3 Broad Upshifted Maximum (BUM)

The most important up-shifted feature in the SEE spectrum is the broad up-
shifted maximum BUM only seen when ω0 is above nΩce. It was noted by Leyser
et al [1989] that the BUM feature could be generated through a four-wave interac-
tion process involving two pump photons or upper hybrid plasmons, a decay mode
at nΩce, and the stimulated radiation at ωBUM. When the heater frequency ω0 is
above an electron cyclotron harmonic nΩce, frequency up-shifted upper hybrid waves
and frequency down-shifted electron Bernstein waves can be excited above the upper
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hybrid resonance layer via the considered four-wave process. Huang and Kuo [1994]
have proposed that the BUM is produced in the region where the pump frequency is
about the mean of the upper hybrid wave frequency and the electron Bernstein wave
frequency. A low frequency electrostatic oscillation in the frequency regime of ωlh is
also generated. Figure (2.9) shows the BUM during a heating experiment.

2.10.4 Broad Downshifted Maximum (BDM)

It is a broad down-shifted sideband which is often observed accompanying the
presence of the BUM. It has a broad frequency spread like the BUM with a smaller
amplitude. Figure (2.9) shows the BDM during a heating experiment.

2.10.5 Continuum feature

It is an asymmetric feature, with more energy on the down-shifted side. The
width of the down shifted portion of the continuum is strongly variable, ranging from
a few KHz, Narrow Continuum NC, to as much as 100 KHz, Broad Continuum BC.
A result from experimental data for the continuum feature is shown in Figure (2.10).

2.10.6 Upshifted Maximum (UM)

It is an up-shifted sideband mostly seen with the DM. The frequency shift of the
UM from the pump frequency is about 5 to 9 KHz. This feature is much weaker than
the DM. Figure (2.11) shows the UM during a heating experiment.

2.10.7 Broad Symmetrical Structure (BSS)

It is a symmetrical structure composed of two equal sidebands symmetrical about
the pump frequency by about 15 to 30 KHz. The BSS has the narrowest pump
frequency range of existence among all the primary features and occurs for pump
frequencies in the range of 40 KHz near 3 fce, which is very similar to the DP feature.
An experimental result for the BSS is shown in Figure (2.11).
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Figure 2.7: Two results from experimental data showing the DM and the cascading
of the DM.
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Figure 2.8: Two results from experimental data showing the DP and the cascading
of the DP.
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Broad Upshifted Maximum (BUM) [Stubbe et al. 1984]

∆f (KHz) from f0

Figure 2.9: Experimental data result showing the BUM and BDM features.
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Figure 2.10: A result from experimental data showing the continuum structure.
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Broad Symmetric Structure (BSS) [Stubbe et al. 1990]

Figure 2.11: A result from experimental data showing the BSS.



Chapter 3

Three-Wave Decay Instability

3.1 Theory

Porkolab [1972] has discussed the coupling between low frequency and high fre-
quency electrostatic waves by parametric instabilities. The model may be used for
a qualitative description of down-shifted sidebands such as the DM and DP. The
parametric coupling process for the decay of a pump wave (ω0, k0) into a sideband
(ω1, k1) along with a low frequency decay mode (ωs, ks) has the frequency and wave
vector matching conditions ω0 = ω1 + ωs, k0 = k1 + ks. The dispersion relation for
this 3-wave interaction is given by

ε(ωs) +
β2
e

4
χi(ωs)

{
εe(ωs)

εe(−ω∗1)
− 2

}
= 0 (3.1)

where, βe = 2kvosc/(ω0 + Ωe), vosc = qE0/meω0 is the electron oscillating velocity, k
is the wave number, me the electron mass, E0 the electric field strength, and q is the
electron charge. Also,

ε(ω) = 1 + χe(ω) + χi(ω) (3.2)

εe(ω) = 1 + χe(ω) (3.3)

and the susceptibility of the jth species is given by

25
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χj(ω, k) =
1

k2λ2
Dj

{
1 + ζj0

∞∑
n=−∞

Γn(bj)Z(ζjn)

}
(3.4)

where bj = k2
⊥ρ

2
j/2, ζjn = (ω − nΩj)/k‖vtj, Γn(bj) = In(bj) exp(−bj), Z is the Fried

Conte function, In is the modified Bessel function of the first kind of order n, λDj
is the Debye length, k‖(k⊥) is the component of k parallel (perpendicular) to B, ρj
is the gyroradius, and vtj is the thermal velocity. Zhou et al. [1994] have developed
a more complete treatment of the three wave decay to interpret SEE. Future work
might make comparisons with this more detailed theory. The Porkolab [1972] model
was found to be more than adequate for guiding the simulation work and in general
was in good agreement with simulation results.

Since we consider processes nearly perpendicular to the magnetic field, the relevant
low frequency decay modes in this case are the lower hybrid and the ion acoustic
modes. The linear dispersion relation for the low frequency decay mode is given as
follows [Ichimaru, 1973]

1−
ω2
pe

ω2
s −Ω2

e

+
k2
de

k2
s

W(
ωs
kszve

)−
ω2
pi

ω2
s − Ω2

i

+
k2
di

k2
s

W(
ωs
kszvi

) = 0 (3.5)

where W(
√

2ζ) = 1+ζZ(ζ), and Z is the Fried and Conte function. In the frequency
regime kszvi << kszve << ωs and neglecting damping effects, the dispersion relation
reduces to

1−
ω2
pe

Ω2
e

−
ω2
pi

ω2
s − Ω2

i

+
k2
sz

k2
s

ω2
pe + ω2

pi

ω2
s

= 0 (3.6)

which leads to the dispersion relation for the lower hybrid wave given by

ω2
s =

ω2
pi

(1 + ω2
pe/Ω

2
e)

[1 +mi/me(ksz/ks)
2] (3.7)

We then obtain the dispersion relation for the lower hybrid wave in the regime

θ <
√
me/mi

ω2
s ' ω2

lh[1 +
mi

me

(
k‖
ks

)2] (3.8)
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where ksz/ks = sin(θ) and ωlh ≡
√

ΩceΩci is the lower hybrid resonance frequency.

In the frequency regime kszvi << ωs << kszve and neglecting the damping effects
and using ωs << Ωe, the dispersion relation in equation (1) reduces to:

1− k2
de

k2
s

− k2
sz

k2
s

ω2
pi

ω2
s

+
ω2
pe

Ω2
e

−
ω2
pi

ω2
s − Ω2

i

= 0 (3.9)

We then obtain the dispersion relation for the electrostatic ion cyclotron wave in

the regime θ >
√
me/mi as follows

ω2
s = Ω2

i + ω2
pi/(1 + k2

de/k
2
s) ' Ω2

i + k2
sc

2
s (3.10)

where cs =
√

(KTe +KTi)/mi is the sound speed and K is Boltzman constant.

Figure (3.1) shows the dispersion relation for the lower hybrid wave obtained

numerically at different angles θ, (a) θ = 0.7
√
me/mi, (b) θ = 1.0

√
me/mi, (c)

θ = 1.4
√
me/mi, since it is an angular dependent wave. The dispersion relation for

the ion cyclotron wave is also shown in Figure (3.1) (thick dashed line) which was

also obtained by solving equation (3.1) numerically for the case θ = 4
√
me/mi. Note

that the ion cyclotron waves were found to be nearly angular independent. It was also
found that the dispersion relations for both the lower hybrid and ion cyclotron waves
obtained numerically were in a very close agreement with the analytical approximate
expressions given in equations (3.9) and (3.10) respectively.

The dispersion relation given in (3.1) is solved using the method of Rönnmark
[1983] [Appendix A,B] to obtain the growth rate γ. The angle corresponding to the
deviation from perpendicular propagation θ is varied and the growth rate is computed
when ω0 = 3Ωce + 3ωlh and ωuh = 3Ωce. The mass ratio in this case is me/mi =
400 (corresponding to the simulations to be discussed later), the oscillating velocity
vosc/vte = 0.3, and the electron to ion temperature ratio (Te/Ti) is taken to be 0.2,
1.0 and 10.0. Again, we consider the case ω0 > ωuh. The dispersion relation for the
upper hybrid and the electron Bernstein mode and the location of ω0 are shown in
Figure (3.2). The results shown in Figure (3.3) show the growth rate for both the
lower hybrid mode and the ion cyclotron mode versus angle for different Te/Ti. The
two sets of growth rate curves shown in Figure (3.3) (a-c) correspond to the lower
hybrid decay instability LHDI (dashed plot) and the ion cyclotron decay instability
ICDI (solid plot). The growth rate for the LHDI peaks at an angle which roughly

equals
√
me/mi. The growth rate for the ICDI maximizes at an angle which is larger
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than
√
me/mi. Also note the sharp cutoff in the growth rate for both cases as θ

decreases.

The result obtained by varying Te/Ti shows that the growth rate for the ICDI
increases substantially as the ratio Te/Ti is increased and the growth rate for the
lower hybrid wave is essentially temperature independent. For small ratios of Te/Ti
the ion cyclotron modes are ion Landau damped and the growth rate is reduced.
Note also that the growth rate for the ion cyclotron waves becomes larger than that
of the lower hybrid waves as Te/Ti increases. Figure(3.4) is a plot for γ versus Te/Ti
for both the LHDI and ICDI. It shows that the growth rate of the ICDI increases as
the ratio Te/Ti is increased. It also shows that the LHDI is essentially temperature
independent for Te/Ti > 1.

The angle at which the growth rate maximizes in Figure (3.3) for both the ICDI
and the LHDI was used to plot the growth rate versus frequency. The result is shown
in Figure (3.5). The result shows that for the ICDI, the frequency of maximum growth
and the bandwidth decrease as Te/Ti increases. Similar effects are observed in the
LHDI but much less pronounced. Also, the angle of maximum growth for both the
ICDI and the LHDI is used to plot the growth rate versus the wavelength k. The
result is shown in Figure (3.6). The result shows that the ICDI appears at a shorter
wavelength regime than the LHDI.

3.2 Simulation model

A periodic one space dimension and three velocity dimension (1D3V) electro-
static Particle-In-Cell (PIC) simulation model using standard techniques [Birdsall
and Langdon, 1991] is used in this study. The model geometry is shown in Figure
(3.7) [Appendix C]. An external oscillating uniform electric field E with amplitude
given by

E = E0cos(ω0t) (3.11)

is used to present the long wavelength electromagnetic pump field and is applied
uniformly across the simulation box. The system length is 1024λD , where λD is the
initial electron Debye length, with a uniform density of 200 particles per grid cell for
each species. The total number of particles in the simulation is 405600. The mass
ratio of ions to electrons is mi/me = 400 which provides sufficient separation of the
ion and electron timescales. The ions and electrons are initialized with a Maxwellian
velocity distribution. The field strength vosc/vte = 0.3. Note that these artificially



Ahmed A. Hussein Chapter 3. Three-Wave Decay Instability 30

ω0 −−−−>

 

ω
c
e

e
ρκ

⊥

Ω
/

EB mode

UH mode

0 1 2 3 4
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Figure 3.2: The dispersion relation for the upper hybrid and electron Bernstein modes
and the location of the pump frequency ω0 for the growth rate shown in Figure (3.3).



Ahmed A. Hussein Chapter 3. Three-Wave Decay Instability 31

0 1 2 3 4
0

0.09

0.18

0.27

0 1 2 3 4
0

0.09

0.18

0.27

γ
/

lh
γ

/
lh

θ /   e / m i

γ
/

T e / T i

T e / T

T e / T

lh

m

 i

 i

 = 0.2

 = 1.0

 = 10.0

ω
ω

ω

−−−−−− LHDI

√

______ ICDI

________

0 1 2 3 4
0

0.09

0.18

0.27

Figure 3.3: A plot of the growth rate γ vs θ in equation (1) for the case ω0 = 3Ωce+3ωlh
and for different temperature ratios Te/Ti for the LHDI and the ICDI.
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large values allow the simulation to run in a reasonable amount of CPU time and will
not make qualitative physics changes. The simulation runs for up to 600, 000 time
steps (corresponding to an end time ωlht = 2000 and a real time of approximately
60 milliseconds) to allow for a steady state to take place and sufficient frequency
resolution.

3.3 Simulation results

3.3.1 Simulation results for the LHDI

A large number of simulations have been performed by using the parameters
described previously. The results in Figure (3.2) and Figure (3.3) are used to guide
our simulation runs. Figure (3.8) shows the total electric field energy history during
the simulation of the LHDI. It shows that the field energy reaches steady state by the
end of the simulation. It also shows that the simulation runs for at least 5 growth
periods of the LHDI. Figure (3.9) shows the history plots of the kinetic energy for
both the ions and electrons. Note the increase in the kinetic energy for the electrons
due to wave -particle heating process. Figure (3.10) shows simulation electric field
power spectra |E(ω)|2 [Appendix D] for the angle θ chosen to correspond to the
angle at which the growth rate in Figure (3.3.b) maximizes for the lower hybrid
parametric decay process. The high frequency spectrum shows a sideband emission
shifted below the pump wave frequency with a maximum in power at approximately
2ωlh which corresponds to the lower hybrid wave frequency given in equation (3.8)
for this propagation angle. A minimum in wave power is observed at ωlh. The low
frequency spectrum shows a maximum in power at approximately 2ωlh corresponding
to the lower hybrid decay wave. A weaker sideband up-shifted by approximately the
lower hybrid frequency is also observed. Note that if the simulation power spectrum
was obtained using the current |J(ω)|2 we would get the same high frequency spectrum
we obtained using the electric field |E(ω)|2. However, we will not be able to obtain the
low frequency power spectrum in this case. This was the reason we used the electric
field rather than the current to obtain the simulation electric field power spectra.

Figure (3.11) and (3.12) show the electron and ion density during the simulation
run for the LHDI discussed earlier at time ωlht = 20 (early in the simulation run),
180 (late in the simulation run). Well defined density irregularities can be observed
to exist in the plasma density. Note that the irregularities become more pronounced
as time goes along the simulation run. Figure (3.13) shows the electric field strength
during the simulation run. Note that the wavelength in this case is in a very good
agreement with the wavelength regime for the LHDI predicted by the theory in Figure
(3.6).
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Figure 3.7: A schematic 1D electrostatic PIC model for studying SEE parametric
processes around electron gyroharmonic frequencies nΩce
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Figure 3.8: Simulation result showing the total field energy in the simulation of the
LHDI responsible for the DM.
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trons in the simulation of the LHDI responsible for the DM.
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Figure 3.10: Simulation result showing the down-shifted sideband for the case ω0 =
3Ωce+3ωlh and Te/Ti= 1.0 which corresponds to the growth rate calculation in Figure
(3.3.b).
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Figure 3.11: Simulation result showing the electron density and density irregularities
in the simulation of the LHDI responsible for the DM.
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Figure 3.12: Simulation result showing the ion density and density irregularities in
the simulation of the LHDI responsible for the DM.
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Figure 3.13: Simulation result showing the electric field strength in the simulation of
the LHDI responsible for the DM.
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3.3.2 Cascading of the LHDI

It was noted during the experimental observations that the DM is absent when
the pump frequency ω0 is very close to an electron cyclotron harmonic nΩce and also
when the pump frequency is significantly separated from the cyclotron harmonic. It
was also noted that multiple DM structure could also be observed when the pump
frequency is reasonably separated from nΩce, Figure (2.7). A simulation run was
done for the case ω0 = 3Ωce + 4ωlh and ωuh = 3Ωce (double resonance condition) to
simulate the cascading of this down-shifted sideband. Figure (3.14) shows the growth
rate calculation for this case. The angle at which the growth rate maximizes in Figure
(3.14) was used to guide the simulation for the cascading of the LHDI. Figure (3.15)
shows the electric field power spectrum corresponding to the growth rate calculation
in Figure (3.14). The low frequency spectrum shows the corresponding lower hybrid
decay wave. The high frequency spectrum shows the multiple down-shifted sidebands
corresponding to the cascading of the LHDI.

3.4 Time evolution of the LHDI frequency spec-

trum

Three simulation electric field power spectra for the LHDI were taken at different
time instants of the simulation. ω0 = 3Ωce + 3ωlh and vosc/vte= 0.3. Figure (3.16)
shows the simulation electric field energy history which shows that the simulation
reaches steady state at ωlht ' 500. Figure (3.17.a) shows the simulation power
spectrum in the linear growth rate regime where 0 < ωlht < 250. Figure (3.17.b,c)
show the simulation power spectra after the simulation has reached a steady state
or equilibrium. Figure (3.17) shows that the amplitude and shape of the down-
shifted sideband in the simulation electric field power spectrum of the LHDI does not
change much when the spectrum is taken in the linear growth rate regime or after the
simulation has reached a steady state. Figure (3.18) shows three simulation results
of the LHDI at the linear growth phase. It shows how the LHDI develops with time.

3.4.1 Simulation results and temperature effect on the ICDI

Figure (3.19) shows 3 simulation runs corresponding to the three growth rate
calculations of the ICDI shown in Figure 3.3. The high frequency spectrum shows a
sideband shifted below the pump wave frequency by a frequency less than the lower
hybrid frequency which corresponds to the ion cyclotron wave frequency given in
equation (3.10). The result of varying Te/Ti shows that the down-shifted sideband
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Figure 3.18: Three simulation results showing the simulation electric field power
spectrum for the LHDI at different instants of time (a) 0 < ωlht < 60 (b) 60 ≤ ωlht <
200 (c) 200 ≤ ωlht < 330.
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produced by the ICDI is very sensitive to temperature. For Te/Ti = 0.2 the sideband is
very weak and relatively broad. It is barely above the noise level. As Te/Ti is increased
the amplitude increases. The frequency of maximum amplitude and bandwidth also
decrease. These results are in good qualitative agreement with the linear theory
calculation described in Figure (3.3). We also not that the amplitude of the sideband
for the LHDI is comparable to that for the ICDI for Te/Ti = 1.0.

By also comparing the spectrum shown in Figure (3.10) and Figure (3.19.b) we
notice that the ICDI has a growth rate amplitude larger than that of the LHDI since
it has a sharper peak transition. For large values of Te/Ti = 10.0 the ICDI sideband
has significantly large amplitude. The LHDI sideband is affected only slightly by
variations in Te/Ti.

Figure (3.20) and (3.21) show the electron and ion density during the simulation
run for the ICDI shown in Figure (3.18.b) (Te/Ti = 1.0) at ωlht = 20 (early in the
simulation), 180 (late in the simulation). Density irregularities can be seen to exist
in the plasma density. Figure (3.22) shows the electric field strength during the
simulation run. Note that the wavelength in this case is in a very good agreement
with the wavelength regime for the ICDI predicted by the theory in Figure (3.6).
Figure (3.23) shows the history plots of the kinetic energy for both the ions and
electrons. Note the increase in the kinetic energy for the electrons due to wave -
particle heating process. Note that the particle heating in the case of the ICDI is
less pronounced than that of the LHDI. Figure(3.24) shows the field energy history
during the simulation run of the ICDI responsible for the DP. It shows that the field
energy reaches a steady state by the end of the simulation. It also shows that the
simulation runs for up to 9 growth periods of the ICDI. The simulation results for
the ICDI were in good agreement with the experimental observations, Figure (2.7).

3.4.2 Cascading of the ICDI

A simulation run was done for the case ω0 = 3Ωce + 5ωlh and ωuh = 3Ωce (double
resonance condition) to simulate the cascading of the down-shifted sideband. Figure
(3.25) shows the growth rate calculation for this case. The angle at which γ maximizes
in Figure (3.25) was used to guide our simulation for the cascading of the ICDI.
Figure (3.26) shows the electric field power spectrum corresponding to the growth rate
calculation in Figure (3.25). The low frequency spectrum shows the corresponding ion
cyclotron decay wave. The high frequency spectrum shows the multiple down-shifted
sidebands corresponding to the cascading of the ICDI process. The simulation results
we obtained were in good agreement with the experimental observations, Figure (2.8).
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Figure 3.19: Three simulation runs showing the down-shifted sideband for the case
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Figure 3.20: Simulation result showing the electron density and density irregularities
in the simulation of the ICDI responsible for the DP.
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Figure 3.21: Simulation result showing the ion density and density irregularities in
the simulation of the ICDI responsible for the DP.
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Figure 3.22: Simulation result showing the electric field strength in the simulation of
the ICDI responsible for the DP.
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Figure 3.23: Simulation result showing the energy history of the kinetic energy for
both the ions and electrons in the simulation of the ICDI responsible for the DP.
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Figure 3.24: Simulation result showing the total field energy in the simulation of the
ICDI responsible for the DP.
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3.5 Time evolution of the ICDI frequency spec-

trum

Three simulation electric field power spectra for the ICDI were taken at different
time instants of the simulation. ω0 = 3Ωce + 3ωlh and vosc/vte= 0.25. The oscillating
velocity was reduced in this case in order to get a better frequency resolution by
running the simulation longer, since the ICDI is a narrow frequency band feature
that requires good frequency resolution. Figure (3.27) shows the simulation electric
field energy history. Figure (3.28.a) shows the simulation power spectrum in the linear
growth rate regime where ωlht < 1000. Figure (3.28.b) shows the simulation power
spectra after the simulation has reached a steady state or equilibrium. Figure (3.28)
shows that for the ICDI, in the weakly nonlinear regime and early in the simulation,
the peak of the down-shifted sideband becomes narrower in frequency and moves
closer to ω0 as the simulation progresses, as predicted by the theory. Figure (3.28)
shows that when the simulation electric field power spectrum is taken in the regime
where strong nonlinearities take place the down-shifted sideband becomes narrower
in frequency and moves closer to ω0 it also becomes larger in amplitude.

Figure (3.29) shows three simulation results of the ICDI at the linear growth
phase. It shows the development mechanism for the ICDI.

3.6 Summary

In this chapter, theoretical predictions were used to study the three-wave instabil-
ity process responsible for the generation of the down-shifted sidebands, in particular
the DM and the DP. The theory was very successful for providing us with the angu-
lar regime at which the sidebands develop as well as the frequency and wavenumber
regimes of both the ICDI and the LHDI. The investigation involved studying the
LHDI responsible for the DM and the ICDI responsible for the DP. It was also found
that the ICDI was very sensitive to the temperature ratio Te/Ti and the LHDI was
essentially temperature independent. Looking at the simulation electric field power
spectrum, it was found that the theory was very accurate in predicting the presence of
the LHDI and ICDI at the appropriate regimes. It was also noted that, for the ICDI
as Te/Ti was increased the down-shifted sideband becomes narrower in frequency as
well as the sideband gets closer to the heater frequency, as predicted by the theory.
Time evolution of both the LHDI and the ICDI was also investigated. It was noted
that for the LHDI, the ampitude and shape of the down-shifted sidebands in the sim-
ulation electric field power spectrum did not vary much if we take the spectrum in the
linear growth rate regime or after the electric field energy has reached a steady state.
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However, for the ICDI, if the simulation electric field power spectrum was taken in
the stron nonlinear regime, the down-shifted sideband became larger in amplitude
and the sideband moved closer to ω0 and became narrower in frequency band. The
saturation mechanism of the instability can be explained from a stand point of energy
interchange between the electrostatic waves and the particles. Some electrons may
be trapped in the potential wells of the electrostatic wave. Since the motion of the
resonant particles ( both trapped and untrapped ) becomes periodic, we then expect
the amplitude of the wave to oscillate, as it first gives and then recovers energy from
the particles. In other words, first there are more electrons moving slightly slower
than the phase velocity of the wave. The wave damps as the slower electrons gain en-
ergy. This leads to a situation in which there are now more electrons moving slightly
faster than the wave phase velocity and the wave regains energy from the particles.
The periodic interchange of energy between the wave and the particles reaches steady
state and saturation takes place for the instability.

The theory prediction was also used to investigate and simulate the cascading of
the LHDI and the ICDI. Particle heating and density irregularities were also observed
to be associated with the three-wave instability in our simulations.
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Figure 3.27: The simulation electric field energy history for the simulation results of
the ICDI shown in Figure (3.28,29).
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Figure 3.28: Three simulation results showing the simulation electric field power
spectrum for the ICDI at different instants of time (a) 0 < ωlht < 1000 (b) 1000 ≤
ωlht < 2000.
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Figure 3.29: Three simulation results showing the simulation electric field power
spectrum for the ICDI at different instants of time (a) 0 < ωlht < 60 (b) 60 ≤ ωlht <
200 (c) 200 ≤ ωlht < 330.



Chapter 4

Four-Wave Decay Instability

The most prominent up-shifted feature in the SEE spectrum is the broad up-
shifted maximum BUM. The BUM is a broad upper sideband which extends more
than 100 KHz above ω0 [Leyser et al., 1989, 1993, Stubbe et al. 1994]. The BUM is
only seen when ω0 is above nΩce. The frequency of the BUM peak is approximately
given by the empirical formula ωBUM = 2ω0−nΩce for n=3,4,5 [Leyser et al., 1989]. It
was noted by Leyser et al. [1989] that the BUM feature could be generated through a
four-wave interaction process involving two pump photons or upper hybrid plasmons,
a decay mode at nΩce, and the stimulated radiation at ωBUM. Huang and Kuo [1994]
developed a theoretical model for the generation mechanism of the BUM in SEE
which has been successful at interpreting some important aspects of the experimen-
tal observations. Huang and Kuo [1994] proposed that the BUM is produced in the
altitude region where the pump frequency is near the mean of the upper hybrid wave
frequency and the electron Bernstein wave frequency. Parametric interactions involv-
ing these wave modes produce a growing upper hybrid sideband. Nonlinear mixing of
this electrostatic sideband with field-aligned ionospheric irregularities produces beat
currents that radiate the SEE observed on the ground.

The object of this study is to present detailed comparisons between the predictions
of the proposed theoretical model for the generation of the BUM in the SEE spectrum
and numerical simulations and also to study the nonlinear development of the four-
wave process.

4.1 Theory

The four-wave second order theoretical model developed by Huang and Kuo [1994]
used to study the parametric process responsible for producing the BUM is described

63
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as follows. In this proposed process, the long wavelength heater wave (ω0, k0 = 0)
parametrically decays into a frequency down-shifted electron Bernstein wave (ω1, k1),
a frequency up-shifted upper hybrid wave (ω2, k2) along with a low frequency os-
cillation (ωs, ks) near the lower hybrid resonance frequency ωlh. The wavevector
and frequency matching conditions are given by k1 + ks = 0, k2 − ks = 0 and
ω1 + ω∗s = ω0 = ω2 − ωs, where * denotes the complex conjugate. The dispersion
relation for this process is given by

ε∗1ε2 −
β4

e

16

{
1

εs
[χe(ωs)− χe(ω2)][χe(ωs)− χe(−ω∗1)]+

1

2
[χe(−ω∗1)− 2χe(ωs) + χe(ω2)]

}2

= 0 (4.1)

where ε1,2 = 1 + χe(ω1,2) and εs = 1 + χe(ωs) + χi(ωs). The susceptibility of the jth

species χj is given by

χj(ω, k) =
1

k2λ2
Dj

{
1 + ζj0

∞∑
n=−∞

Γn(bj)Z(ζjn)

}
(4.2)

where βe = 2kvosc/(ω0 + Ωce), vosc = qE0/meω0 is the electron oscillating velocity,
k is the wavenumber, me the electron mass, E0 is the electric field strength, q is
the electron charge, bj = k2

⊥ρ
2
j /2, ρj is the gyroradius, ζjn = (ω − nΩcj)/k‖vtj, Ωcj is

the cyclotron frequency, vtj is the thermal velocity, Γn(bj) = In(bj) exp(−bj), Z is the
Fried Conte function, In is the modified Bessel function of the first kind of order n,
λDj is the Debye length, k‖(k⊥) is the component of k parallel (perpendicular) to the
magnetic field B.

We have solved the dispersion relation in (4.1) numerically using the method of
Rönnmark [1983] for a variety of parameter regimes [Appendix E]. The case 4Ωce <
ω0 < ωuh is considered in detail here. The frequency separation between ωuh and 4Ωce

is chosen to be 6ωlh. In this case, ω0 is chosen to be at the mean value of ωuh and 4Ωce,
ω0 = 4Ωce + 3ωlh, as predicted by Huang and Kuo [1994]. The ion-electron mass ratio
mi/me = 400 and vosc/vte = 0.275 in this case (for comparisons to the simulations to
be discussed shortly). Figure (4.1) shows the dispersion relation for the upper hybrid
and the electron Bernstein modes and the location of the pump frequency ω0 for this
case. For given values of ω0 and ωuh, the dispersion relation in (4.1) is solved to obtain
the propagation angle with respect to the direction perpendicular to B for maximum

growth θmax. In this case, the angle is found to be θmax ' 3.0
√
me/mi. The result in

Figure (4.2) shows the growth rate γ versus angle θ for the case ω0 = 4Ωce + 3ωlh.
The growth rate γ at θmax is calculated and plotted versus wavenumber k⊥ρe. The
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result is also shown in Figure (4.1) which shows the wavelength regime for the four-
wave process. The maximum growth occurs for k⊥ρe ' 0.3, where γ/ωlh ' 0.008.
Figure(4.3) shows the growth rate γ versus frequency for the same case.

A number of theoretical calculations were done by stepping the heater frequency
ω0 closer to ωuh. The pump frequency was stepped from 2ωlh to about 5ωlh above
4Ωce. The growth rate γ was calculated in each case at the angle of maximum growth.
The result shows that as we get closer to ωuh, γ increases considerably. The result is
shown in Figure (4.4). It was also noted that, as ω0 is stepped closer to ωuh, the angle
of maximum growth θmax decreases. The result is shown in Figure (4.5). Figure (4.6)
shows that the maximum growth rate shifts to a higher frequency as ω0 is moved
away from ωuh. Figure (4.7) shows that the maximum growth rate of the four-wave
process moves to a shorter wavelength as ω0 is stepped closer to ωuh.

4.2 Simulation Results

Many simulation runs have been conducted for the up-shifted sideband using the
same simulation model discussed earlier. The system length is 1024λD with a uniform
density of 400 particles per grid cell for each species. The total number of particles
in the simulation is 819200. The mass ratio mi/me = 400 which provides sufficient
separation of the ion and electron timescales. The ions and electrons are initialized
with Maxwellian velocity distributions and Te = Ti. Note that this artificially large
value (as well as the artificially small mass ratio) allows the simulation to run in a
reasonable amount of CPU time and will not make qualitative physics changes. The
simulation runs for up to 1.2 × 106 time steps corresponding to an end time ωlht
= 3000 ( corresponding to a real time of approximately 100 milliseconds ) and at
least 3.5 growth periods of the four-wave interaction process to allow for a steady
state to take place and sufficient frequency resolution. The angle of propagation
θmax corresponding to the angle of maximum growth in Figure (4.2) described in the
previous section is used for the simulation.

As shown in Figure (4.1), ω0 is chosen to be ω0 = 4Ωce+3ωlh and vosc/vte = 0.275.
Figure (4.8) shows the total electric field energy history during the simulation. It
shows that the field energy reaches a steady state at time corresponding to ωlht '
1000. It also shows that the simulation runs for up to 3.5 growth periods of the four-
wave process. Figure (4.9) shows the kinetic energy history for both the ions and the
electrons. Note the increase in the kinetic energy for the electrons due to wave-particle
heating. The simulation electric field power spectrum is shown in Figure (4.10).
Note that the simulation spectrum is taken after the simulation has reached a steady
state, 1000 < ωlht < 1750. We observe a broad sideband up-shifted from the pump
frequency which corresponds to the excited upper hybrid wave. The lower frequency
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Figure 4.1: A plot of the growth rate γ in equation (4.1) vs wavelength k⊥ρe and the
dispersion relation for both the upper hybrid and the electron Bernstein modes for

the case ω0 = 4Ωce + 3ωlh, θmax ' 3.0
√
me/mi and vosc/vte = 0.275.
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Figure 4.2: A plot of showing the growth rate γ in equation (4.1) vs θ for the case
ω0 = 4Ωce + 3ωlh and vosc/vte = 0.275.
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Figure 4.3: A plot of showing the growth rate γ in equation (4.1) vs ω for the case

ω0 = 4Ωce + 3ωlh, θmax ' 3.07
√
me/mi and vosc/vte = 0.275.
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Figure 4.4: A plot showing the variation of the growth rate γ as the pump frequency
ω0 is stepped close to the upper hybrid resonance frequency ωuh for the case θ = θmax
and vosc/vte = 0.275.



Ahmed A. Hussein Chapter 4. Four-Wave Decay Instability 70

GROWTH RATE

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(ω
uh

−ω
0
)/ω

lh

θ
max

−−−−−−−−−−−−−−−
m

e
/m

i/\

Figure 4.5: A plot showing the variation of the angle of maximum growth θmax as the
pump frequency ω0 is stepped close to the upper hybrid resonance frequency ωuh for
the case vosc/vte = 0.275.
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Figure 4.6: A plot showing the variation of the frequency at maximum growth rate
as the pump frequency ω0 is stepped close to the upper hybrid resonance frequency
ωuh for the case θ = θmax and vosc/vte = 0.275.
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as the pump frequency ω0 is stepped close to the upper hybrid resonance frequency
ωuh for the case θ = θmax and vosc/vte = 0.275.
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cutoff is approximately ω0 + 4ωlh and the frequency band is approximately 7ωlh.
The low frequency spectrum shows a wave at the lower hybrid wave frequency ω '
ωlh

√
1 + sin2(θmax)mi/me. The spectrum also shows a narrower bandwidth smaller

amplitude down-shifted sideband which corresponds to the electron Bernstein wave.
The down-shifted sideband may be responsible for the so-called Broad Downshifted
Maximum BDM often observed during experiments, Figure(2.9).

The result in Figure (4.10) shows the frequency up-shifted, upper hybrid, fre-
quency down-shifted, electron Bernstein, and the low frequency, lower hybrid, waves.
Figure (4.10) indicates that the frequency matching condition is satisfied.

Figure (4.11) and (4.12) show the development of cavities in the ions and electrons
densities during the simulation run with the electric field power spectrum shown in
Figure (4.10). Figure (4.13) shows the electric field during the same simulation run
early and towards the end of the simulation.

In order to check the wavenumber matching conditions, an interferogram [Lin et
al., 1982] [Appendix F] is constructed in which we compute

Ex(x, τ ) =
1

T

∫ T

0
sin(ωdt)Ex(x, t+ τ ) dt (4.3)

where ωd is either the up-shifted, down-shifted or the low frequency wave frequencies.
The result in Figure (4.14) shows that the wavelength of both the up-shifted and
down-shifted sidebands are comparable to that of the low frequency wave which shows
good agreement with the theoretical prediction.

4.3 Time evolution of the four-wave decay frequency

spectrum

Figure (4.15) shows the simulation electric field power spectrum for the case ω0 =
4Ωce + 3ωlh and vosc/vte = 0.275 at different time instants. It shows that, in the
regime where ωlht < 1000, where the waves are growing and steady state has not
been reached yet, the broad down-shifted sideband has an amplitude comparable to
that of the broad up-shifted sideband. This result is shown in Figure (4.15.a). As we
take the simulation electric field power spectrum in the regime where the simulation
has reached a steady state and the waves are not growing any more ( this corresponds
to the case of an actual experiment ), the down-shifted sideband has an amplitude at
least 10 dB below the up-shifted sideband. This result agrees with the experimental
observations. The result is shown in Figure (4.15.b,c).
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Figure 4.8: Simulation result showing the total field energy history in the simulation
of the up-shifted sidebands.



Ahmed A. Hussein Chapter 4. Four-Wave Decay Instability 75

ENERGY HISTORY

ω  tlh

K
in

e
tic

 E
n

e
rg

y

Electrons

Ions

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

Figure 4.9: Simulation result showing the kinetic energy history for both the ions and
electrons in the simulation of the up-shifted sidebands.
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Figure 4.10: Simulation electric field power spectrum showing the broad up-shifted
spectral feature and the low frequency lower hybrid wave produced by the four-wave
decay process described in Figure (4.1).



Ahmed A. Hussein Chapter 4. Four-Wave Decay Instability 77

ELECTRON DENSITY

0 100 200 300 400 500 600 700 800 900 1000

300

350

400

450

500

X λ D

ω   t 

ω  lh  t 

 = 1100

 = 405

  lh

 / 

n(
 #

 / 
ce

ll 
)

n(
 #

 / 
ce

ll 
)

300

350

400

450

500

Figure 4.11: Simulation result showing the electron density and the development of
density cavities in the simulation of the up-shifted sidebands.
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Figure 4.12: Simulation result showing the ion density and the development of density
cavities in the simulation of the up-shifted sidebands.
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Figure 4.13: Simulation result showing the electric field strength in the simulation of
the up-shifted sidebands.
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Three simulation electric field power spectra in the linear growth rate regime
of the four-wave process (ωlht < 1000 in Figure(4.8) ) were obtained to show the
growing mechanism for both the up-shifted and down-shifted sidebands. The result is
shown in Figure (4.16). It shows that both the up-shifted and down-shifted sidebands
initially have a comparable growth rate which agrees with the theory of Huang and
Kuo, [1994]. Figure (4.17) shows the time evolution of the peak amplitude for both
the up-shifted and down-shifted sidebands. It shows that as the simulation reaches a
steady state ( corresponding to ωlht > 1000 ), the peak amplitude of the down-shifted
sideband drops significantly below that of the up-shifted sideband. Our explaination
for that, is that the electron Bernstein mode ( the down-shifted sideband ) in the
strong nonlinearity regime is cyclotron damped.

4.4 Cyclotron damping

When a particle moving along B0 in a wave with finite kz, parallel component of
k to B0, has the right velocity, it sees a Doppler-shifted frequency ω − kzvz equal to
nΩc and is therefore accelerated by the electric field E⊥ of the wave. Those particles
with the right phase relative to E⊥ will gain energy and those with the wrong phase
will lose energy. Since the energy change is the force times the distance, the faster
accelerated particles will gain more per unit time than what the slower decelerated
particles lose. Therefore the particles will have a net gain of the energy, on the
average, at the expense of the wave energy; and the wave is damped.

4.5 Summary

In this chapter, a four-wave parametric instability process thought to be responsi-
ble for SEE broad up-shifted sideband spectral features was discussed using theoretical
and numerical simulation models. Many theoretical results were presented, in which
the heater frequency was stepped closer to the upper hybrid resonance frequency and
the growth rate of the four-wave decay process was calculated. It was found that as
ω0 is stepped closer to ωuh, the angle of maximum growth rate θmax decreases at the
same time the growth rate at this angle γmax increases. It was also noted that as
the heater frequency is moved closer to ωuh, the four-wave process shifts to a higher
frequency and to a shorter wavelength. The growth rate results were also useful in
guiding the simulation results by providing us with the parameters for the four-wave
process responsible for the up-shifted sidebands. We found good agreement between
the predictions of the theoretical model and numerical simulations. The simulation
electric field power spectrum showed a large amplitude up-shifted sideband and a
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much smaller amplitude down-shifted sideband, similar to the experimental observa-
tions. The simulation electric field power spectrum was taken in the time interval
where the electric field energy has reached steady state. It was found that if the
electric field power spectrum was taken in the regime where the waves are still grow-
ing and have not reached a steady state, the up-shifted and down-shifted sidebands
would start growing together with almost the same growth rate and the same relative
amplitude.

The results we presented are very encouraging for having the potential of
complementing the experimental observations and the theoretical analysis. The de-
velopment of density irregularities, cavities and particle heating were also observed
to be associated with the four-wave instability in our simulations.
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Figure 4.14: An interferogram verifying the wavenumber matching for the four-wave
interaction process responsible for the up-shifted sideband shown in Figure (4.10) in
the interval 500 < ωlht < 505.
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Figure 4.15: Simulation electric field power spectra showing time evolution of the
broad up-shifted and broad down-shifted spectral features at different time instants
for the cases (a) 0 < ωlht < 1000 (b) 1000 ≤ ωlht < 2000 (c) 2000 ≤ ωlht < 3000.
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Figure 4.16: Simulation electric field power spectra showing time evolution of the
broad up-shifted and broad down-shifted spectral features at different time instants
for the cases (a) 0 < ωlht < 300 (b) 300 ≤ ωlht < 600 (c) 600 ≤ ωlht < 900.
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Figure 4.17: A result showing the time evolution of the peak amplitude of both the
upper hybrid and electron Bernstein modes.



Chapter 5

Summary and Conclusions

In this work, parametric instability processes thought to be responsible for SEE
sideband spectral features are discussed and analyzed using theoretical and electro-
static PIC simulation models. The decay instabilities considered include lower hybrid
decay LHDI, ion cyclotron decay ICDI and the four-wave decay process proposed by
Huang and Kuo [1994]. These decay instabilities have been proposed to produce the
DM, DP and BUM spectral features respectively. The results we presented are very
encouraging for having the potential of complementing the experimental observations
and the theoretical analysis.

Theoretical predictions and numerical simulations were used to study the three-
wave decay instability process thought to be responsible for the generation of the
down-shifted sidebands, especially the lower hybrid decay instability LHDI and the
ion cyclotron decay instability ICDI. The theoretical predictions were very successful
for providing the angular regime, with respect with the direction perpendicular to
the magnetic field, at which the sidebands develop as well as the frequency and
wavenumber regimes of both the ICDI and the LHDI. It was also found that the
ICDI was very sensitive to the temperature ratio Te/Ti and the LHDI was essentially
temperature independent. Looking at the simulation electric field power spectrum, it
was found that the theory was very accurate in predicting the presence of the LHDI
and ICDI at the appropriate regimes. It was also noted that, for the ICDI, as Te/Ti
was increased the down-shifted sideband becomes narrower in frequency as well as
the sideband gets closer to the heater frequency, as predicted by the theory. Time
evolution of both the LHDI and the ICDI was also investigated. It was noted that for
both instabilities, the simulation electric field power spectrum did not vary much if
we take the spectrum in the linear growth rate regime or after the electric field energy
has reached a steady state. The theoretical predictions were also used to investigate
the cascading of the LHDI and the ICDI. Particle heating and density irregularities
were also observed to be associated with the three-wave instability in our simulations.

86
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A four-wave parametric decay instability process thought to be responsible for
SEE broad up-shifted sideband spectral features was also discussed using theoretical
and numerical simulation models. Many theoretical results were presented, in which
the heater frequency ω0 was stepped closer to the upper hybrid resonance frequency
ωuh and the growth rate of the four-wave decay process was calculated. It was found
that as ω0 is stepped closer to ωuh, the angle of maximum growth rate θmax decreases,
at the same time the growth rate at this angle γmax increases. It was also noted
that as the heater frequency is moved closer to ωuh, the four-wave process shifts to
a higher frequency and to a shorter wavelength. The growth rate results were also
useful in guiding the simulation results by providing us with the parameters for the
four-wave process responsible for the up-shifted sidebands. We found good agree-
ment between the predictions of the theoretical model and numerical simulations.
The simulation electric field power spectrum showed a large amplitude up-shifted
sideband and a much smaller amplitude down-shifted sideband, consistent with the
experimental observations. The simulation electric field power spectrum was taken
in the time interval where the electric field energy has reached steady state. It was
found that if the electric field power spectrum was taken in the regime where the
waves are still growing and have not reached a steady state, the up-shifted and down-
shifted sidebands would start growing together with almost the same growth rate and
same relative amplitude. This result may be observed in actual experiments as time
evolves. The development of density irregularities, cavities and particle heating were
also observed to be associated with the four-wave instability in our simulations.

The results we presented are very encouraging for having the potential of com-
plementing the experimental observations since it gave a detailed study of all the
nonlinear processes that take place during the three-wave and the four-wave decay
processes thought to be responsible for the down-shifted and up-shifted sidebands,
respectively. These details may help to fully understand the physical mechanisms
responsible for generation of these sidebands during ionospheric heating experiments.
The theoretical predictions were also very useful in providing the angular regime with
respect to the geomagnetic field at which these instabilities develop. The fact that
these instabilities develop at a particular angular regime can be very useful for exper-
imental observations. The effect of the temperature ratio Te/Ti on the down-shifted
sidebands is also an important result that may be observed during ionospheric heating
experiments.

5.1 Future work

In this work, initial study of the relevant three-wave parametric decay instabilities
with a one dimensional model was conducted. The model used has some advantage
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since it only considers one angle of propagation with respect to the magnetic field.
In this case, the two primary three-wave decay instabilities, the LHDI and the ICDI
could be investigated independently since they are excited in different angle regimes,
Figure (3.2). In reality, these two instabilities are expected to exist simultaneously
when a spectrum of propagation angles with respect to the magnetic field is allowed.
Nonlinear interactions between these two processes may produce important effects on
the wave spectra in two dimensions. Future work may utilize a two-dimensional PIC
model for this study. Detailed analysis of the nonlinear evolution of the two processes
may be investigated in two-dimension as well as the relevance of nonlinear of nonlinear
interactions on the spectrum of waves. Also, important effects of the proximity of ω0

and ωuh to the cyclotron harmonics may be investigated more thoroughly.

We have presented in this study preliminary results of the first attempt at numer-
ically simulating the four-wave process thought to be responsible for the generation
of the BUM spectral feature. Future work might involve further investigation of this
process from a basic plasma stand point. Parametric studies of the four-wave de-
cay equations may be performed to determine important parametric dependencies on
Te/Ti and the pump amplitude. A two dimensional model might also be utilized in
this study as well.

In this study, we considered the case where ωuh > nΩce. Future work might
consider studying the processes for the case where ωuh < nΩce. It may also consider
the effect of other electron cyclotron harmonics.

The continuum is another prominent feature in the SEE spectrum. It was shown
by Mjølhus et al. [1995] that Langmuir caviton collapse near the reflection height
(ω0 ' ωpe). Recent observations of the continuum feature have shown that it exhibits
important cyclotron harmonic effects [Leyser et al., 1993; stubbe et al. 1994]. The
model of Mjølhus et al. [1995] did not include magnetic field and kinetic effects and
therefore could not consider the production of the continuum feature near the upper
hybrid resonance and cyclotron harmonics. Future work might provide an extension
of the work of Mjølhus et al. [1995] in order to gain insight into the cyclotron har-
monic effects on the continuum feature. The numerical model used in our study is
well suited for such investigation. Mjølhus et al. [1995] have shown that the key pa-
rameter distinguishing the cavitating Langmuir turbulence from cascading turbulence
is ∆Ω(z) = ω0 − ωpe(z). when this parameter is small, a broad frequency spectrum
is excited with many characteristics of the continuum. When ∆Ω is larger, indicat-
ing that the pump frequency is larger than the local plasma frequency, a cascading
spectrum exists. This corresponds to the regime of our investigation in this study
for parametric decay instabilities when ω0 > ωuh. Future work might extend these
concepts to the upper hybrid resonance layer where the role of the plasma frequency
ω0 may be replaced with the upper hybrid resonance frequency ωuh. The effects of
the proximity of ω0 to the cyclotron harmonics might be investigated in detail.



Appendix A

Numerical calculations of the
susceptibilities and solution of
dispersion relations

A.1

In this appendix, it is required to express the susceptibilities χi and χe in unitless
variables that are used by Rönnmark [1982]. The susceptibilities can then be used
to obtain expressions for the dispersion relations for either the three-wave interac-
tion process [equation (3.1)] or the four-wave interaction process [equation (4.1)].
These dispersion relations are solved numerically using Newton’s method to obtain
the growth rate for the three-wave and four-wave processes using the FORTRAN code
THREEWAVE.f and FOURWAVE subroutine respectively [appendix B,E]. Note that
the derivatives of the susceptibilities are also needed to solve the dispersion relations
for both the three-wave and four-wave processes since Newton’s method requires the
derivatives. Note that the susceptibilities for the ions are obtained assuming that the
ions are unmagnetized in this case.

Starting with the susceptibilities for the ions [Porkolab, 1974] given by

χi =
1

k2λ2
di

{1 + ζi0
∞∑

n=−∞
Λn(bi)Z(ζin)} (A.1)

where Z is the plasma dispersion function or the Fried Conte function, bi = (k2
⊥ρ

2
i )/2,

ζin = (ω − nΩi)/(k‖vti), ζi0 = (ω)/(k‖vti), vte =
√

(2Te)/(me) and vti =
√

(2Ti)/(mi).
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Thus, vti/vte =
√
meTi/miTe. This yields to bi = (k2

⊥ρ
2
e)/2(miTi)/(meTe). Substitut-

ing with all the previous in (A.1) yields

χi = (kdi/k)2
{
1 +

ω

Ωe

Ωe

vtik‖

∞∑
n=−∞

Λn

(k⊥2ρ2
i

2

)
Z
((w/Ωe)− n(Ωi/Ωe)

k‖(vti/Ωe)

)}
(A.2)

Now, let us define the variables ω̄ = ω/Ωe, ω̄pe = ωpe/Ωe. Note also that λ = k2ρ2
e =

k2(v2
te/Ω

2
e). Substituting in (A.2) gives

χi = (kdi/k)2
{

1+
ω̄

ρek‖
√
meTi/miTe

∞∑
n=−∞

Λn

(k⊥2ρ2
i

2
(miTi)/(meTe)

)
Z
( ω̄ − n(me/mi)

k‖ρe(meTi)/(miTe)

)}
(A.3)

from appendix A.2 we have

∞∑
n=−∞

Λn(bi)Z(ζin) =
8∑

m=1

rmk‖ρibi
Y 2

[
R(Y, bi) + Y/bi

]
(A.4)

where the form of the function R of Rönnmark [1982] is given by

R(ω̄, λ) =
∞∑

n=−∞

n2

λ

λn(λ)

ω̄ − n (A.5)

In our case, Y = ω̄(mi/me) − Cmk‖ρe
√

(miTi)/(meTe), where Cm’s are the poles of
the Padé approximant. The subroutine RYLA in Rönnmark’s WHAMP code solves
this function numerically for all ω̄, λ space. Substituting with these results into (A.3)
yields

χi = (
kdi
k

)
2{

1 +
ω̄

ρek‖
(mi/me)

8∑
m=1

rmk‖ρe(bi/Y
2)
(
R(Y, bi) + Y/bi

)}
(A.6)

note that (kdi/k)2 = (1/(λdik))2 = (
√

2ωpi/(vtik))2 = 2
(
(ωpe/Ωe)/(kvte

√
Ti/Te)

)2
=

2
(
1/k(ω̄pe/ρe)

√
Te/Ti)2 = 2(Te/Ti)

(
ω̄pe/(ρek)

)2
. Substituting with the above expres-

sions into (A.4) we get the final expression for the ions susceptibility.
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χi = 2(
Te
Ti

)(
ω̄pe
ρek

)2
{
1 +

ω̄

ρek‖
(mi/me)

8∑
m=1

rmk‖ρe(bi/Y
2)
(
R(Y, bi) + Y/bi

)}
(A.7)

An expression for the electrons susceptibility can be obtained in the same manner.
As we mentioned earlier, these expressions for the susceptibilities are used to obtain
the dispersion relation for both the three-wave and four wave interaction processes.
These dispersion relations are solved numerically by using THREEWAVE.f fortran
code and FOURWAVE subroutine, using Newton’s method. As we mentioned earlier,
the derivatives of the susceptibilities are also needed to solve the dispersion relations
of both the three-wave and four-wave interaction processes. The expressions for the
derivatives of the susceptibilities with respect to ω̄ are found easily from (A.7) and
using the method of Rönnmark in the WHAMP code to find an expression for the
derivative of the function R of Rönnmark [1982] with respect to ω̄.

A.2

In this appendix it is required to show that

∞∑
n=−∞

Λn

(k2
⊥ρ

2
e

2

mi

me

)
Z
( ω̄ − n(me/mi)

k‖ρe
√
me/mi

)
=

8∑
m=1

rmk‖ρe
√
mi/mebi

Y 2

(
R(Y, bi) + Y/bi

)
(A.8)

Let bi = (mi/me)(k2
⊥ρ

2
e)/2. Note also that Z(z) =

∑8
m=1 rm/(z − cm), where rm and

cm are the residues and poles of the padé approximant, respectively. Substituting in
the left hand side of (A.8) we get

∞∑
n=−∞

Λn

(k2
⊥ρ

2
e

2

mi

me

)
Z
( ω̄ − n(me/mi)

k‖ρe
√
me/mi

)

=
∞∑

n=−∞
Λn

(
bi
) 8∑
m=1

rm

(ω̄ − n(me/mi))/(k‖ρe
√
me/mi)− cm

(A.9)

=
∞∑

n=−∞
Λn

(
bi
) 8∑
m=1

rmk‖ρe
√
me/mi

ω̄ − n(me/mi)− cmk‖ρe
√
me/mi
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=
8∑

m=1

rmk‖ρe
√
me/mi

∞∑
n=−∞

Λn

(
bi
)

ω̄ − n(me/mi)− cmk‖ρe
√
me/mi

=
8∑

m=1

rmk‖ρe
√
me/mi

∞∑
n=−∞

Λn

(
bi
)
(mi/me)

ω̄(mi/me)− n − cmk‖ρe
√
mi/me

=
8∑

m=1

rmk‖ρe
√
mi/me

∞∑
n=−∞

Λn

(
bi
)

ω̄(mi/me)− n − cmk‖ρe
√
mi/me

Let Y = ω̄(mi/me)− cmk‖ρe
√
mi/me, from appendix A.3,

∑∞
n=−∞ Λn(bi)/(Y − n) =

1/Y 2∑∞
n=−∞(n2Λn(bi))/(Y − n) + 1/Y thus,

∞∑
n=−∞

Λn

(k2
⊥ρ

2
e

2

mi

me

)
Z
(ω̄ − n(me/mi)

k‖ρe
√
me/mi

)
=

8∑
m=1

rmk‖ρe
√
mi/me

(
1/Y 2

∞∑
n=−∞

n2Λn(bi)

Y − n +1/Y
)

=
8∑

m=1

rmk‖ρe
√
mi/me

(
bi/Y

2
∞∑

n=−∞
1/bi

n2Λn(bi)

Y − n + 1/Y
)

=
8∑

m=1

rmk‖ρe
√
mi/mebi

Y 2

( ∞∑
n=−∞

1/bi
n2Λn(bi)

Y − n + Y/bi
)

=
8∑

m=1

rmk‖ρe
√
mi/mebi

Y 2

(
R(Y, bi) + Y/bi

)

Finally we prove that

∞∑
n=−∞

Λn

(k2
⊥ρ

2
e

2

mi

me

)
Z
( ω̄ − n(me/mi)

k‖ρe
√
me/mi

)
=

8∑
m=1

rmk‖ρe
√
mi/mebi

Y 2

(
R(Y, bi) + Y/bi

)
(A.10)
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A.3

In this appendix it is required to show that

∞∑
n=−∞

nΛn

Y − n = 1/Y
∞∑

n=−∞

n2Λn

Y − n

note that

∞∑
n=−∞

nΛn

Y − n + 1 =
∞∑

n=−∞
(
nΛn

Y − n + Λn) (since
∞∑

n=−∞
Λn = 1) (A.11)

so,
∞∑

n=−∞

nΛn

Y − n + 1 =
∞∑

n=−∞
(
nΛn

Y − n + Λn
Y − n
Y − n) (A.12)

therefore,
∞∑

n=−∞

nΛn

Y − n = Y
∞∑

n=−∞

nΛn

Y − n − 1 (A.13)

also,
∞∑

n=−∞

n2Λn

Y − n = −
∞∑

n=−∞

((Y 2 − n2)Λn

Y − n − Y 2 Λn

Y − n
)

(A.14)

= −
∞∑

n=−∞

[
(Y + n)Λn − Y 2 Λn

Y − n
]

= −Y + Y 2
∞∑

n=−∞

Λn

Y − n

(since
∑∞
n=−∞ nΛn = 0, Λn = Λ−n)

thus,

Y
∞∑

n=−∞

Λn

Y − n =
1

Y

∞∑
n=−∞

n2Λn

Y − n + 1 (A.15)

Substituting from (A.13) into (A.15) we get

∞∑
n=−∞

nΛn

Y − n = 1/Y
∞∑

n=−∞

n2Λn

Y − n (A.16)
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THREEWAVE.f program listing

This FORTRAN program listing Solves dispersion relation for parametric instabilities
(Aliev 1966, Porkalab 1972) perpendicular to a magnetic field numerically and exactly
for the three-wave decay process.

THREEWAVE.f program listing follows

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Solves dispersion relation for parametric instabilities
c (Aliev 1966, Porkalab 1972) perpendicular to a magnetic field
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

complex*16 w, dw, f, df, f1(1001), df1(1001)
complex*16 w1, w2, wl, wh, dwo
complex*16 fl, fh, dfl, dfh
complex ws, dws ,st(1001)
real kp(1001),kmag(1001),kz, kp2, kmax, kmin,step,kk,start
real wr(1001), gamma(1001), gammas(1001), wrs(1001),temp1,temp2
common /param/ wpe,w0,memi,vosc2, wpi, mime,TiTe,TeTi,etae,etai
common /tempe/ theta,vmagn
real memi, mime,number

open( UNIT = 20, FILE=’plotDDM.dat’ , STATUS=’NEW’)
open( UNIT = 18, FILE=’DMD.input’ , STATUS=’OLD’)

maxit = 20
nbisect=10
nkay =401
wacc = 1.e-9
gmax = 0.0

94
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c
c Calculate gamma for all kprho in the desired range
c typicall (0.0,1.0)

c open( UNIT = 20, FILE=’growthr.dat’ , STATUS=’NEW’)

read(18,*) w0, kmin,kmax,theta, start,step, range,mime,vosc,
.number, TiTe, etae,etai

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

TeTi=1/TiTe

wpe = sqrt(number**2-1)

kk=1

memi = 1./mime

wpi = wpe*sqrt(memi)

wlh = sqrt(memi)

vosc2 = vosc*vosc

ccccccccccccccccccccccc Initial guess for Newoton’s method cccccccccccccc

w1 = (10.0d-3,-2.8d-4)
w2 = (10.0d-2, 2.8d-2)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

555 do 1 i=1,nkay

kp(i) = (i-1)*(kmax-kmin)/(nkay-1) + kmin

kz = kp(i)*tan(theta*3.141592654/180)

kp2 = kp(i)*kp(i)

kmag(i) = sqrt(kp2+kz**2)



Ahmed A. Hussein Appendix B 96

vmagn = kmag(i)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
c Use bisection to get started off on the right foot, c
c then use Newton Raphson c
c c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

if (i.le.range) then

call disp(w1,kp2,kz,fl,dfl)
call disp(w2,kp2,kz,fh,dfh)
flr = dreal(fl)
fhr = dreal(fh)

if((flr.gt.0.0.and.fhr.gt.0.0).or.(flr.lt.0.0.and.fhr.lt.0.0))
.then
print *, ’No root is bracketed ! ’, ’k=’, kmag(i)

goto 1000

endif

if(flr.lt.0.0) then
wl=w1
wh=w2
else
wh=w1
wl=w2
endif

w=0.5d0*(w1+w2)
dwo=wh-wl
dw=dwo

endif

if (i.gt.range) w=ws

call disp(w,kp2,kz,f,df)

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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if(i.le.range) then

do 11 j=1,maxit

if(j.le.nbisect) then
dwo=dw
dw=0.5d0*(wh-wl)
w = wl + dw
else
dwo=dw
dw = f/df
w = w - dw
endif

ws=w
dws=dw

if(aimag(ws).gt.dimag(w2)) then
goto 1000
endif

if(cabs(dws).lt.1.e-6*cabs(ws)) go to 3
call disp(w,kp2,kz,f,df)

if(dreal(f).lt.0.0) then
wl=w
else
wh=w
endif

11 continue

endif

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(i.gt.range) then

do 511 j=1,maxit

dwo=dw
dw = f/df
w = w - dw

ws=w
dws=dw
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if(cabs(dws).lt.1.e-6*cabs(ws)) go to 3
call disp(w,kp2,kz,f,df)

511 continue

endif

print *, ’Exceeded Maximum Iterations !’
print *, ’magnitude of dws/ws is’, cabs(dws/ws)

3 wrmax= amax1(wrmax,real(ws))
gmax = amax1(gmax,aimag(ws))

wr(i) = real(ws)

1 gamma(i) = aimag(ws)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccc This is the initial guess estimation ccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

1000 if(i.lt.15) then

if(kmin.gt.kmax) then
kmin=kmin-step
kk=kk+1
goto 555
endif

if(kmin.lt.kmax) then

if(kk.eq.1) then
kmin=start
kk=2
endif

kmin=kmin+step
kk=kk+1

goto 555

endif

endif

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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print *, i, ’ points calculated’
print *, ’Maximum Growth Rate is = ’, gmax/wlh
print *, ’Maximum wr is = ’, wrmax

if(kmax.gt.kmin) then
xmax=kmax
xmin=kmin
else
xmax=kmin
xmin=kmax
endif

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

print *, ’kmin=’,xmin,’ kmax=’,xmax

i=i-1

do 155 i=1,nkay-1
gamma(i)=gamma(i)/wlh
wr(i)=wr(i)/wlh
wrs(i)=wr(i)

155 gammas(i)=gamma(i)

ccccccccccccccccccccccccccc Sort the frequency and the growth rate ccccccccc
cccccccccccccccccccccccccccccccccc approperiately cccccccccccccccccccccccccc

do 166 i=1,nkay-2

temp1=wrs(i)
temp2=gammas(i)

do 166 j=i+1,nkay-1

if(wrs(j).lt.temp1) then

temp1=wrs(j)
wrs(j)=wrs(i)
wrs(i)=temp1

temp2=gammas(j)
gammas(j)=gammas(i)
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gammas(i)=temp2

endif
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
166 continue

do 133 i=1,nkay-1
133 write(20,*) kmag(i),wr(i),gamma(i),wrs(i),gammas(i)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
c Plot results with NCAR graphics c
c c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

call OPNGKS

call agsetf(’X/MAXIMUM.’, xmax)
call agsetf(’X/MINIMUM.’, 0.0)
call agsetf(’Y/MAXIMUM.’, wrmax*1.4)
call agsetf(’Y/MINIMUM.’, 0.0)
call anotat(’kmag*rho$’,’wr$’,0,0,0,0)
call ezxy(kmag,wr,i,’Real Frequency$’)

call agsetf(’X/MAXIMUM.’, xmax)
call agsetf(’X/MINIMUM.’, 0.0)
call agsetf(’Y/MAXIMUM.’, gmax*1.4)
call agsetf(’Y/MINIMUM.’, 0.000)
call anotat(’kmag*rho$’,’gamma$’,0,0,0,0)
call ezxy(kmag,gamma,i,’Growth Rate$’)

call CLSGKS

stop
end

c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

subroutine disp(w,kp2,kz,f,df)
c
c Calculates the dispersion function (f) and its derivative (df)
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

complex*16 w, w1, w2
complex*16 eews, deews, eew1, deew1, eew2, deew2
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complex*16 ews, dews, xii, dxii
complex*16 fp, dfp
complex*16 f, df
real kp2,kz,kperp
common /param/ wpe, w0, memi, vosc2
common /tempe/ theta,vmagn
real memi

sth1 = sin(theta*3.14159/180)
cth2 = cos(theta*3.14159/180)**2
sth2 = sin(theta*3.14159/180)**2
kperp = sqrt(kp2)

fact1 = 0.25*vosc2/((w0**2-1)*w0)**2
fact2 = (sth1*kz*(w0**2-1)+cth2*kperp*w0**2)**2
fact3 = cth2*st2*w0**2*kp2
beta2 = fact1*(fact2+fact3)

w1 = w - w0
call epse(w ,kp2,kz,eews,deews)
call epse(w1,kp2,kz,eew1,deew1)
call eps (w,kp2,kz,ews,dews,xii,dxii)

fp = beta2*xii*((eews-eew1)/eew1)
f = ews + fp

cc dfp= beta2*(dxii*((eews-eew1)/eew1 + (eews-eew2)/eew2)
cc . +xii*((deews*eew1-eews*deew1)/eew1**2
cc . +(deews*eew2-eews*deew2)/eew2**2))

dfp= beta2*(dxii*((eews-eew1)/eew1)
. +xii*((deews*eew1-eews*deew1)/eew1**2))
df = dews + dfp

return
end

c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

subroutine eps(w,kp2,kz,e,de,xii,dxii)
c
c Calculates the full dielectric response (and its frequency derivative)
c from electron AND ion susceptibilities as ee = 1 + xie + xii.
c Also returns the ion susceptibility xii and its derivative.
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

complex*16 w,A1,B1,A2,B2,A21,A11,zetai,zetai1,B11,colis
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complex*16 e, de, xie, dxie, xii, dxii, xiip, dxiip
complex*16 rc(2,2),Yi,rc2(2,2),Yi2
real kp2,kz,km,bi,bi2
common /param/ wpe, w0, memi, vosc2, wpi,mime,TiTe,TeTi,etae,etai
real memi, mime

COMPLEX*16 B(8),C(8),Y(8),v(8),SUM,SUM2,Zm,Zder,Yc(8)
COMPLEX*16 Y2(8),v2(8),SUMi,SUMi2,Zmi,Zderi,jjj

C RESIDUES FOR PADE APPROXIMANT
DATA B/(-1.734012457471826d-2,-4.630639291680322d-2),

B (-1.734012457471826d-2, 4.630639291680322d-2),
B (-7.399169923225014d-1, 8.395179978099844d-1),
B (-7.399169923225014d-1,-8.395179978099844d-1),
B ( 5.840628642184073d0 , 9.536009057643667d-1),
B ( 5.840628642184073d0 ,-9.536009057643667d-1),
B (-5.583371525286853d0 ,-1.120854319126599 d1),
B (-5.583371525286853d0 , 1.120854319126599 d1)/,

C POLES FOR PADE APPROXIMANT
C C/ ( 2.237687789201900d0 , -1.625940856173727d0),
C (-2.237687789201900d0 , -1.625940856173727d0),
C ( 1.465234126106004d0 , -1.789620129162444d0),
C (-1.465234126106004d0 , -1.789620129162444d0),
C ( .8392539817232638d0 , -1.891995045765206d0),
C (-.8392539817232638d0 , -1.891995045765206d0),
C ( .2739362226285564d0 , -1.941786875844713d0),
C (-.2739362226285564d0 , -1.941786875844713d0)/

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

km = sqrt(kp2+kz**2)

bi = 0.5*kp2

bi2 = bi*mime*TiTe

Zm = (0.0d0,0.0d0)

Zder = (0.0d0,0.0d0)

Zmi = (0.0d0,0.0d0)

Zderi = (0.0d0,0.0d0)

jjj = (0.0d0,1.0d0)
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ccccccccccccccccccc The summation is done here for Xie and dXie ccccccc

zetai = (w+jjj*etai)*sqrt(mime*TeTi)/km

zetai1 = sqrt(mime*TeTi)/km

colis = jjj*etai*sqrt(mime*TeTi)/km

DO 1 I=1,8

cccccccccccccccccccccccccccccccc ELECTRONS ccccccccccccccccc

Y(I) = w + jjj*etae - (C(I)*kz)

v(I) = B(I)*kz*bi/Y(I)**2

Yi = Y(I)

call ryla(Yi,bi,rc)

SUM = v(I) * ( rc(1,1) + (Y(I)/bi) )

Zm = SUM + Zm

SUM2=v(I)*((rc(2,1)/Y(I)+1/bi)-2*(rc(1,1)/Y(I)+(1/bi)))

Zder = SUM2 + Zder

cccccccccccccccccccccccccccccccc IONS ccccccccccccccccccccccc

SUMi = B(I)/(zetai-C(I))

Zmi = SUMi + Zmi

SUMi2= -B(I)*zetai1/(zetai-C(I))**2

Zderi = SUMi2 + Zderi

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

1 CONTINUE

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

A1 = 1+zetai*Zmi
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B1 = 1+colis*Zmi
A11 = zetai1*Zmi+zetai*Zderi
B11 = colis*Zderi

xii = 2.0d0*TeTi*(wpe/km)**2*A1/B1

dxii=2.0d0*TeTi*(wpe/km)**2*(B1*A11-A1*B11)/B1**2

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

A2 = (1+(w+jjj*etae)/kz*Zm)
B2 = (1+(jjj*etae/kz)*Zm)
A21 = ((w+jjj*etae)*Zder+Zm)/kz

xie = 2.0d0*(wpe/km)**2*A2/B2

dxie = 2.0d0*(wpe/km)**2*(B2*A21-A2*(jjj*etae/kz*Zder))/B2**2

e = 1.0d0 + xie + xii

de = dxie + dxii

return

end
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

subroutine epse(w,kp2,kz,e,de)
c
c Calculates the dielectric response (and its frequency derivative) from
c ONLY the electron susceptibility as e = 1 + xie.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

complex*16 w
complex*16 e, de, xie, dxie
complex*16 rc(2,2),Yi
real kp2,kz,km,bi
common /param/ wpe, w0, memi, vosc2
real memi
COMPLEX*16 B(8),C(8),v(8),Y(8),SUM,SUM1,Zm,Zder

C RESIDUES FOR PADE APPROXIMANT
DATA B/(-1.734012457471826d-2,-4.630639291680322d-2),

B (-1.734012457471826d-2, 4.630639291680322d-2),
B (-7.399169923225014d-1, 8.395179978099844d-1),
B (-7.399169923225014d-1,-8.395179978099844d-1),
B ( 5.840628642184073d0 , 9.536009057643667d-1),
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B ( 5.840628642184073d0 ,-9.536009057643667d-1),
B (-5.583371525286853d0 ,-1.120854319126599 d1),
B (-5.583371525286853d0 , 1.120854319126599 d1)/,

C POLES FOR PADE APPROXIMANT
C C/ ( 2.237687789201900d0 , -1.625940856173727d0),
C (-2.237687789201900d0 , -1.625940856173727d0),
C ( 1.465234126106004d0 , -1.789620129162444d0),
C (-1.465234126106004d0 , -1.789620129162444d0),
C ( .8392539817232638d0 , -1.891995045765206d0),
C (-.8392539817232638d0 , -1.891995045765206d0),
C ( .2739362226285564d0 , -1.941786875844713d0),
C (-.2739362226285564d0 , -1.941786875844713d0)/

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

km = sqrt(kp2+kz**2)

bi = 0.5*kp2

Zm = (0.0d0,0.0d0)

Zder = (0.0d0,0.0d0)

ccccccccccccccccc The summation is done here for Xie and dXie cccccccccc

DO 1 I=1,8

Y(I)=w-(C(I)*kz)

v(I)=B(I)*kz*bi/Y(I)**2

Yi=Y(I)
call ryla(Yi,bi,rc)

SUM = v(I) * ( rc(1,1) + (Y(I)/bi) )

Zm = SUM + Zm

SUM1=v(I)*((rc(2,1)/Y(I)+1/bi)-2*(rc(1,1)/Y(I)+(1/bi)))

Zder= SUM1 + Zder

1 CONTINUE

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

xie = 2.0d0*(wpe/km)**2*(1+(w/kz)*Zm)
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dxie = 2.0d0*(wpe/km)**2*(w*Zder+Zm)/kz

e = 1.0d0 + xie

de = dxie

return

end

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

SUBROUTINE RYLA(Y,AL,RC)
C
C SUBROUTINE RYLA CALCULATES THE INFINITE BESSEL SUM TERMS IN HOT
C MAGNETIZED PLASMA DISPERSION RELATIONS. THE NUMERICAL CALCULATION
C TECHNIC DEPENDS ON THE KRHO REGIME.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

COMPLEX*16 Y,RC(2,2)
C
C **** CHOOSE METHOD OF EVALUATION ****
C

IF(AL.LT.4.) GOTO 1
AY=CDABS(Y)
IF(AY**2.GT.75.*AL) GOTO 1
IF(AY.GT.40.+AL/3) GOTO 1
IF(3.*(AL-10.).GT.AY.AND.AY**2.LT.15.*AL) GOTO 3

C
C ******** NUMERICAL INTEGRATION ********
C

CALL RINT(Y,AL,RC)
RETURN

C
C ******** TAYLOR SERIES ********
C

1 CALL RTAY(Y,AL,RC)
RETURN

C
C ******** ASYMPTOTIC SERIES ********
C

3 CALL RASY(Y,AL,RC)
RETURN
END

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
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SUBROUTINE RASY(Y,AL,RC)
C
C USE ASYMPTOTIC SERIES FOR SUFFICIENTLY LARGE KRHO
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

COMPLEX*16 Y,Y2,COT,P,PY,PP,PPY,PN,PYN,QN,QYN,RC(2,2)

PI=3.14159265358979
Y2=Y*Y
COT=COS(PI*Y)/SIN(PI*Y)

* 1.E99 IS TOO BIG FOR S/370 HARDWARE. SET TO LARGEST
* POSSIBLE FOR IBM MACHINES
* C=1.E99

C = 7.2E35
PN=-Y/AL
PYN=PN
A=1./(AL*SQRT(2.*PI*AL))
QN=PI*Y2*COT*A
QYN=QN*(2.-Y*PI*COT)-Y*PI**2*Y2*A

C
P=PN+QN
PY=PYN+QYN
PP=-PN-1.5*QN
PPY=-PYN-1.5*QYN
AY=CDABS(Y)+2.

C
DO 4 N=1,100
M=N-1
PYN=(PYN*(M*M-Y2)-2.*Y2*PN)/((2*M+1)*AL)
PN =PN*(M*M-Y2)/((2*M+1)*AL)
QYN=(QYN*((M+.5)**2-Y2)-2.*Y2*QN)/(2.*N*AL)
QN =QN*((M+.5)**2-Y2)/(2.*N*AL)
IF(M.LT.AY) GOTO 3
C=N*(CDABS(PN)+CDABS(QN))
IF(C.LE.1.E-7*ABS(PP)) GOTO 5
IF(C.GE.T) GOTO 5

3 P =P + PN + QN
PY =PY + PYN + QYN
PP =PP -(N + 1.)*PN -(N +1.5)*QN
PPY=PPY-(N + 1.)*PYN-(N +1.5)*QYN

4 T=C
C

5 RC(1,1)=P + PN + QN
RC(2,1)=PY+ PYN+ QYN
RC(1,2)=PP+P
RC(2,2)=PPY+PY
RETURN
END

C
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

SUBROUTINE RINT(YY,AL,RC)
C
C USE NUMERICAL INTEGRATION FOR KRHO ON THE ORDER OF 1
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

COMPLEX*16 RC(2,2),Y,YY,COT,D,EXF,F,H,O,P,R,RY,RP,RPY,S
REAL*8 A(16), W(16)

C ABSCISSAS FOR GAUSSIAN INTEGRATION
DATA A/ -.989400934991649d0,-.944575023073232d0,

D -.865631202387831d0, -.755404408355003d0,-.617876244402643d0,
D -.458016777657227d0, -.281603550779258d0,-.095012509837637d0,
D .989400934991649d0, .944575023073232d0,
D .865631202387831d0, .755404408355003d0, .617876244402643d0,
D .458016777657227d0, .281603550779258d0, .095012509837637d0/,
D W / .027152459411754d0, .062253523938647d0,
D .095158511682492d0, .124628971255533d0, .149595988816576d0,
D .169156519395002d0, .182603415044923d0, .189450610455068d0,
D .027152459411754d0, .062253523938647d0,
D .095158511682492d0, .124628971255533d0, .149595988816576d0,
D .169156519395002d0, .182603415044923d0, .189450610455068d0/,
D PI/3.14159265358979d0/

C
CALL ZEROC2( RC, 1, 2, 1, 2 )
IF(REAL(YY).LT.0.) THEN

Y=-YY
SIG=-1.

ELSE
Y=YY
SIG=1.

END IF
YA=DIMAG(Y)
YR=REAL(Y)
UL=PI-2.8*Y/(36.+Y)
COT=COS(PI*Y)/SIN(PI*Y)
D=PI*(1.+COT**2)
C=YR/AL
XO=LOG(C+SQRT(1.+C**2))

C
DO 10 I=1,16
X=UL/2.*(1.+A(I))
Z=SIN(X)
C=COS(X)
G=YR/AL*X/Z
T=SQRT(1.+G**2)
B=LOG(G+T)
G=(1./X-C/Z)*G/T
T=AL*(T*C-1.)
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Z=EXP(X*YA)
C=.5*(Z+1./Z)
S=(0.,.5)*(Z-1./Z)
F=COT+G
H=1.-G*COT
EXF=EXP(T-Y*B)
O=B*C+X*S
P=X*C-B*S
XY=X*YR
R=(F*C+H*S)*EXF
RY=(F*O-H*P+D*(C-G*S))*EXF
RP=((F*T-H*XY)*C+(H*T+F*XY)*S)*EXF
RPY=(F*(T*O-XY*P)-H*(T*P+XY*O)+((T+XY*G)*C-(G*T-XY)*S)*D)*EXF

C
X=XO/2.*(1.+A(I))
Z=EXP(X)
C=(Z+1./Z)/2.-1.
P=EXP(AL*C-Y*X)
RC(1,1)=RC(1,1)+W(I)*(UL*R+XO*P)
RC(2,1)=RC(2,1)-W(I)*(UL*RY+XO*X*P)
RC(1,2)=RC(1,2)+W(I)*(UL*RP+XO*AL*C*P)
RC(2,2)=RC(2,2)-W(I)*(UL*RPY+XO*AL*X*C*P)

10 CONTINUE
C

O=Y/AL
P=Y**2/2.
RC(1,1)=O*(Y*RC(1,1)/2.-1.)*SIG
RC(2,1)=2.*RC(1,1)+O*(P*RC(2,1)+1.)*SIG
RC(1,2)=Y*O*RC(1,2)/2.*SIG
RC(2,2)=2.*RC(1,2)+O*P*RC(2,2)*SIG
END

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

SUBROUTINE RTAY(Y,AL,RC)
C
C USE TAYLOR SERIES FOR SUFFICIENTLY SMALL KRHO
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

COMPLEX*16 Y,Y2,RC(2,2),PN,PYN,COT

Y2=Y*Y
10 PN=Y/(Y2-1.)

PYN=-Y*(Y2+1.)/(Y2-1.)**2
RC(1,1)=PN
RC(1,2)=PN
RC(2,1)=PYN
RC(2,2)=PYN

C
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DO 1 I=2,100
COT=(2*I-1)/(Y2-I**2)*AL
PYN=COT*(PYN-2.*Y2/(Y2-I**2)*PN)
PN=COT*PN
RC(1,1)=RC(1,1)+PN
RC(2,1)=RC(2,1)+PYN
RC(1,2)=RC(1,2)+I*PN
RC(2,2)=RC(2,2)+I*PYN
T=CDABS(PN)*1.E8
IF(T.LT.CDABS(RC(1,1))) GOTO 2

1 CONTINUE
2 CONTINUE

END
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

SUBROUTINE ZEROC2( ARRAY, LBD1, UBD1, LBD2, UBD2 )
C
C SIMPLE ROUTINE FOR ZEROING COMPLEX ARRAYS
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
* .... ARGUMENTS

INTEGER LBD1, UBD1, LBD2, UBD2
COMPLEX*16 ARRAY( LBD1 : UBD1, LBD2 : UBD2 )

* .... VARIABLES
INTEGER I1, I2
DO 20 I2 = LBD2, UBD2

DO 10 I1 = LBD1, UBD1
ARRAY( I1, I2 ) = ( 0.0D0, 0.0D0 )

10 CONTINUE
20 CONTINUE

END
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc



Appendix C

A description of the 1D numerical
electrostatic simulation model

C.1 Simulation model

In this section, we briefly discuss the Particle-In-Cell (PIC) electrostatic plasma sim-
ulation model used in this study [Birdsall and Langdon 1991].A one-dimensiona PIC
simulation model was used in our study. We will consider discussing the model
briefly. Note that the PIC simulation model was used in this study since it includes
kinetic modes such as Bernstein modes which are thought to play an important rule
in producing SEE. It also allows for detailed study of nonlinear evolution. The one-
dimensional model assumes one spatial dimension (x) and three velocities (vx, vy and
vz). The whole plasma length (l) is equally divided into a number of grid cells (ng)
which is required to be an integer power of two since FFT techniques are used. Thus,
there are ng+1 grid points. We generally use the index i to denote particles and
the index j to denote grid cells or grid points. Figure C.1 gives a view how the 1-D
geometry is divided. The parameter dx is the grid spacing and is equal to l/ng.

1 ng+1t
-�

dxjth grid cell
-� l

�
��
ith particle

@
@

jth grid point

Figure C.1: Discretization of the plasma length and naming of grids and particles.

The algorithm we used is straightforward. The computational cycle is shown in

111
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6

-

�

?

Poisson solver
Ej ←− (ρj, Jj)

Weighting
Ej −→ Fi

Weighting
(xi, vi) −→ (ρj, Jj)

Newton’s law
Lorentz force

Fi −→ vi −→ xi

Figure C.2: A typical computational cycle for the particle simulation model.

Figure C.2. The three equations that are used in the computational loop are

Newton’s second law

F = m
dv

dt
v =

dx

dt
(C.1)

The Lorentz force equation

F = q(E + v ×B) (C.2)

and Poisson’s equation

∇2φ = − ρ
εo

(C.3)

Note that for the one-dimensional simulation model the only dimension is the x-
direction. However, the velocities other than x-direction certainly have contribution
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to the force acting on particles through the Lorentz force equation. Therefore, we
have to keep more than one velocity when the background magnetic field is nonzero.
The first two equations are solved numerically using the center difference method,
while the Poisson’s equation is solved by Fast Fourier Transform (FFT). Note that
for the four-wave decay instability we have doubled the number of particles in the
simulation box, since this instability requires the simulation to run for a long number
of time steps, which increases the fluctuation level in the system, for the instability
to develop. Increasing the number of particles in the system would have an effect
when averaging over the particles in each grid cell, which will cause a decrease in the
fluctuation level in this case.

C.2 Approximations

C.2.1 The use of an artificial mass ratio in our simulations

In our 1-D electrostatic Particle In Cell simulation code an artificial electrons to
ions mass ratio me/mi was used. The main reason for that is to allow the simulations
to run at a reasonable amount of CPU time. Since a small mass ratio favors a
faster growth rate of the parametric instability. At the same time, this will allow
for a meaningful frequency separation between the plasma frequencies ωpe, ωpi, the
cyclotron frequencies Ωce,Ωci as well as a wide frequency separation between the pump
frequency and the sidebands. This will also allow for the existence of the usual low
frequency and high frequency plasma frequency wave modes.

C.2.2 The effect of electron-neutral collisions in the simula-
tion of Stimulated Electromagnetic Emission SEE

In our simulation model no collisions between the electrons and neutrals were
considered. There are two effects upon including collisions in our simulation model.
The first is the electric field threshold. Since having collisions between the electrons
and the neutrals will cause some energy to be dissipated due to this collision and thus a
larger electric field amplitude (threshold) will be required to drive the development of
the parametric instability responsible for the SEE. Note also that having a collisional
system will cause the growth rate of the instability to decrease and thus increases the
amount of CPU time resquired for the instability to develop. So, since no collision
effects were included in our simulations this will have the effect of having a threshold
field of zero. So, any applied electric field amplitude will cause the instability to
take place, neglecting numerical limitations. The second effect that collisions may
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add to the simulations is thermal nonlinearity due to the collisions between the two
species. This effect has been discussed by Huang and Kuo, [1994]; Dysthe et al.,
[1983]; Lee and Kuo [1983]. The effect of thermal nonlinearity is due to the thermal
forces taking place due to the velocity dependence on the collision frequency between
the electrons and the neutrals γen. The thermal nonlinearity was discussed by Huang
and Kuo, [1994] and Dysthe et al., [1983] when discussing the oscillating two stream
instability OTSI. They have suggested that the heater excited field aligned density
irregularities in the high latitude ionosphere are excited through thermal instability.
Therefore, a thermal oscillating two stream instability OTSI leading to parametric
excitation of electron Bernstein/upper hybrid waves together with purely growing
density irregularities by the HF heater wave was their suggested mechanism for the
process.
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TRANSFORM.m program listing

This program writen in MATLAB calculates the FFT of the time sequence obtained
from the ES1 simulation program and centers the pump frequency around zero fre-
quency. The listing for TRANSFORM.m follows:

*%**************************************************************************%%
*% This version has the length of the sequence specified by the %%
*% user, both the initial and final points of the sequence. %%
*% This volume has also the advantage of giving the file %%
*% name as an entry in our program %%
*% a second harmonic feature is added %%
*% Also, a log scale option is added %%
*%**************************************************************************%%

clear;
for l=1:2300
v=-10;
for m=1:10
v=v+1;
xI(l,m)=v;
end;
yI(l)=l;
end;

for l=1:80
v=-5;
for m=1:10
v=v+1;
xII(l,m)=v;
end;
yII(l)=l;
end;

115
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for l=1:40
v=-5;
for m=1:10
v=v+1;
xIII(l,m)=v;
end;
l1=l/40;
yIII(l)=l1;
end;

for l=1:400
v=0;
for m=1:10
v=v+1.0;
xIV(l,m)=v;
end;
yIV(l)=l/10;
end;

*%%%%%%%%%%%%%%%%%%%%%%%%% Input the pump frequency and w_lh in here %%%%%%%%%

fpump=input(’please enter the pump frequency: ’);
wlh =input(’please enter the lower hybrid frequency: ’);

counter=1;
N11=1;

input(’**********************************************************************’);
input(’* Please input the following parameters *’);
input(’* Press ENTER key after each entry *’);
input(’**********************************************************************’);

while ((fpump == 0 ) | (wlh == 0 )) | ((fpump == ’’ ) | (wlh == ’’ )),
counter=counter+1;
if(counter >2) input(’* Invalid parameter value, please re-enter your
parameters’);
end;
fpump=input(’* The pump frequency is = ’);
wlh =input(’* The lower hybrid frequency = ’);
end;

input(’**********************************************************************’);

input(’Which kind of filtering window you want to use..........!!’);
input(’a. Hanning window (default)’);
input(’b. Hamming window ’);
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input(’c. Triangular window ’);
input(’d. Rectangular window ’);
input(’e. No filtering ’);
select=input(’You choose..... ’,’s’);
W =input(’The window length = ’);

input(’*********************************************************************’);

dt = 0.03188;

if select==’a’
fil=hanning(W);
i=1;
end;

if select==’b’
fil=hamming(W);
i=2;
end;

if select==’c’
fil=triang(W);
i=3;
end;

if select==’d’
fil=boxcar(W);
i=4;
end;

if select==’e’
fil=hanning(1);
i=5;
end;

if (select ~=’a’) & (select ~=’b’) & (select ~=’c’) & (select ~=’d’) & (select
~=’e’)
fil=hanning(3);
i=6;
end;

*%%%%%%%%%%%%%%%%%%%%%%%% read the input file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

name=input(’Please enter the input file name (no extension): ’,’s’);
ext =input(’Now input the file extension: ’,’s’);
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input(’*********************************************************************’);
data=[name ’.’ ext];
datak=[name];
eval([’load ’ data]);
x=eval(datak);
N=length(x);

*%%%%%%%%%%%%%%%%%%%%%%%%% Specify the sequence length %%%%%%%%%%%%%%%%%%%%%%%

for i=1:6

N11=input(’The first point in the sequence is: ’);
N =input(’The end point of the sequence(the default is the vector length) : ’);

input(’*********************************************************************’);

if N==’’
N=length(x);

end;

if N11==’’
N11=0;

end;

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DO the FFT and Scaling %%%%%%%%%%%%%%%%%%%%

n=1:N-N11;

if (N11 == 0)
ve=x(N11+1:N);
vl=length(ve);
X=fft(ve(1:vl));
end;

if (N11 ~= 0)
ve=x(N11:N);
vl=length(ve);
X= fft(ve(1:vl-1));
end;

N=N-N11;
[maximum,index] = max(X(1:N/2));
X=(abs(X(1:N))).^2;
X1=conv(X,fil);

p=n/N*pi*2;
p1=index*2*pi/N;
scale=p/p1*fpump;
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scale1=(scale-fpump)/wlh;
maximum1=(abs(maximum))^2;

%%%%%%%%%%%%%%%%%%% Plot the High frequency portion %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% the first harmonic %%%%%%%%%%%%%%%%%%%%%%%%

N1=N;
subplot(2,2,2);
X1=(maximum1/max(X1))*X1;
plot(scale1,X1(1:N)/N1);
%axis([-3 3 0 1.1*max(X1(1:N)/N1)])
axis([-40 40 0 1.5])

axis(’square’);
grid;
title(’High frequency’);
xlabel(’(w-wo)/wlh’);
ylabel(’|E(w)|2’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Plot the First harmonic in log scale %%%%%%

subplot(2,2,3);
plot(scale1,10*log10(X1(1:N)/N1),xII,yII,’:’);
axis([-40 40 -40 0])

axis(’square’);
grid;
title(’HF Log Scale’);
xlabel(’(w-wo)/wlh’);
ylabel(’10*log |E(w)|2’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Plot the High frequency portion %%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% the second harmonic %%%%%%%%%%%

scale2=(scale-2*fpump)/wlh;
subplot(2,2,4);
plot(scale2,X1(1:N)/N1,xIII,yIII,’:’);
axis([-10 10 0 0.3])
axis(’square’);
grid;
title(’Second Harmonic’);
xlabel(’(w-2wo)/wlh’);
ylabel(’|E(w)|2’);

**%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Plot the low hybrid waves %%%%%%%%%%%%%%%%

scale3=((scale1*wlh)+fpump)/wlh;
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subplot(2,2,1);
plot(scale3,X1(1:N)/N1,xIV,yIV,’:’);
axis([0 5 0 2]);
axis(’square’);
grid;
%text(1.2,48,’Low frequency’);
title(’Low Frequency’);
xlabel(’w/wlh’);
ylabel(’|E(w)|2’);

**%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end;
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FOURWAVE subroutine

This FORTRAN subroutine solves the dispersion relation for the four-wave decay
process byHuang and Kuo [1994] responsible for the generation of the BUM. The
subroutine uses the same program listed in Appendix B by replacing the subroutine
”disp”.

FOURWAVE subroutine listing follows

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

subroutine FOURWAVE(w,kp2,kz,f,df)
c
c Calculates the dispersion function (f) and its derivative (df)
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

complex*16 w, w1, w2,w1c
complex*16 eews, deews, eew1, deew1, eew2, deew2
complex*16 xii, dxii,ews,dews,xie,dxie
complex*16 E11,E22,dE11,dE22,term1,term2,term3,term4,term5
complex*16 xie1,dxie1,xie11,dxie11,xie2,dxie2,term6,term7
complex*16 ew11,dew11,ew1,dew1,ew2,dew2,term8,term9
complex*16 fp, dfp
complex*16 f, df
real kp2,kz,kperp
common /param/ wpe, w0, memi, vosc2
common /tempe/ theta,vmagn
real memi

121
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beta2 = 4.0d0*kp2*vosc2/(w0 + 1)**2

w1 = w0-conjg(w)
w2 = w0+w
w1c = - conjg(w1)

call epse(w ,kp2,kz,eews,deews)
call epse(w1,kp2,kz,eew1,deew1)
call epse(w2,kp2,kz,eew2,deew2)

call eps (w,kp2,kz,ews,dews,xie,dxie)

call eps (w1c,kp2,kz,ew1,dew1,xie1,dxie1)

call eps (w1,kp2,kz,ew11,dew11,xie11,dxie11)
call eps (w2,kp2,kz,ew2,dew2,xie2,dxie2)

cccccccccccccccccccccccccccc BUM case ccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccc get f (x) cccccccccccccccccccccccccccccccc

E11 = eew1

E22 = eew2

term1 = (xie-xie1)*(xie-xie2)
term2 = (xie2-2*xie+xie1)

f = E22*conjg(E11)-beta2**2/16.0d0*
.(term1/ews+0.50d0*term2)**2

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccc Get the derivative ccccccccccccccccccccccc

term3 = (xie-xie1)*(dxie-dxie2)
term4 = (xie-xie2)*(dxie-dxie1)
term5 = 0.50d0*(dxie2-2.0d0*dxie+dxie1)

term6 = 2.0d0*(ews)*(xie-xie11)*(dxie-dxie11)
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term7 = (dews)*(xie-xie11)**2

term8 = 2.0d0*(ews)*(xie-xie2)*(dxie-dxie2)
term9 = (dews)*(xie-xie2)**2

dE22 = (dew2)

dE11 = conjg(dew11)

df = dE22*conjg(E11)+E22*dE11-
.beta2**2/8.0d0*(term1/ews+0.50d0*term2)*
.((ews*(term4+term3)-term1*dews)/ews**2+term5)

return
end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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INTERFEROGRAM.f program
listing

This INTERFEROIGRAM Program validates the wavenumber matching conditions
for the fourwave parametric instability processes, using the interferogram algorithm.

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccc PROGRAM TO check on WAVE NUMBER Matching ccccccc
cccccccccccccccc CONDITION IN PARAMETRIC INSTABILITIES ccccccc
cccccccccccccccc USING INTERFEROGRAM METHOD ccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

real interferog(2600000),x(5000,1024),CS(5000)
real ANS(7000),XAX(1024),TAX(5000),TEMP(5000),TAXX(2500)
real interferov(2000,100),TEMP2(5000),corr(5000),TEMP3(5000)
real TEMP4(5000),TEMP5(5000),TEMP6(5000),TEMP7(5000),

.TEMP8(5000),TEMP9(5000)
open( UNIT = 18, FILE=’interfero.dat’ , STATUS=’OLD’)
open( UNIT = 20, FILE=’COS.dat’ , STATUS=’NEW’)

c N=2048
c L=1024

N=2001
L=1024

LN=L*N

print *,LN

124
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N2=2*N

do ii=1,N2
TAX(ii)=ii
enddo

do ij=1,N
TAXX(ii)=ij
enddo

do it=1,L
XAX(it)=it
enddo

ccccccccccccccccccc READ THE DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%

DO ii=1,LN
read(18,*) interferog(ii)

ENDDO

do 10 i=1,L
do 10 j=1,N2

if(j.le.N) x(j,i)=0.0

if(j.gt.N) then
x(j,i)=interferog((j-(N+1))*L+i)
endif

10 continue

c dt =0.032

cccccccccccccccccccccccc Write the Sin Function for XCORR ccccccccc

do iii=1,N2

CS(iii)=sin(0.25*(350000+iii)*0.2)

enddo
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cccccccccccccccccccccccc Cross Correlation ccccccccccccccccccccc

do 9999 ix=1,L

do it=1,N2

TEMP(it)=x(it,ix)
ENDDO

do 9999 itau=1,N

do it1=1,N2-1

TEMP(it1)=TEMP(it1+1)
ENDDO

TEMP(N2)=0.0

corr(itau)=0.0

do it2=N+1,N2

corr(itau)=corr(itau)+CS(it2)*TEMP(it2)
ENDDO

interferov(itau,ix)=corr(itau)

9999 continue

c%%%%%%%%%%%%%%%%%%%%%%%%%%% PLOT %%%%%%%%%%%%%%%%%%%%%%%%%

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
c Plot results with NCAR graphics c
c c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

do 122 ij2=1,L

TEMP2(ij2)=interferov(1,ij2)
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TEMP4(ij2)=interferov(2,ij2)

TEMP5(ij2)=interferov(10,ij2)

TEMP6(ij2)=interferov(50,ij2)

TEMP7(ij2)=interferov(100,ij2)

TEMP8(ij2)=interferov(500,ij2)

122 TEMP9(ij2)=interferov(1000,ij2)

do 123 ij3=1,N2

123 TEMP3(ij3)=interferov(ij3,3)

do iv=1,L
write (20,*)interferov(500,iv)
enddo

call OPNGKS

call agsetf(’X/MAXIMUM.’, 2000.0)
call agsetf(’X/MINIMUM.’, 0.0)
call agsetf(’Y/MAXIMUM.’, 3.0)
call agsetf(’Y/MINIMUM.’, -3.0)
call anotat(’X$’,’E(x)$’,0,0,0,0)
call ezxy(TAX,CS,N2-1,’SINUSOID$’)

call agsetf(’X/MAXIMUM.’, 2000.0)
call agsetf(’X/MINIMUM.’, 0.0)
call agsetf(’Y/MAXIMUM.’, 150.0)
call agsetf(’Y/MINIMUM.’, -150.0)
call anotat(’T$’,’E(x)$’,0,0,0,0)
call ezxy(TAX,TEMP3,N2-1,’X-CORRELATION$’)

call agsetf(’X/MAXIMUM.’, 1024.0)
call agsetf(’X/MINIMUM.’, 0.0)
call agsetf(’Y/MAXIMUM.’, 150.0)
call agsetf(’Y/MINIMUM.’, -150.0)
call anotat(’X$’,’|E(x)|^2$’,0,0,0,0)
call ezxy(XAX,TEMP4,L-1,’INTERFEROGRAM 2$’)

call agsetf(’X/MAXIMUM.’, 1024.0)
call agsetf(’X/MINIMUM.’, 0.0)
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call agsetf(’Y/MAXIMUM.’, 150.0)
call agsetf(’Y/MINIMUM.’, -150.0)
call anotat(’X$’,’|E(x)|^2$’,0,0,0,0)
call ezxy(XAX,TEMP5,L-1,’INTERFEROGRAM 10$’)

call agsetf(’X/MAXIMUM.’, 1024.0)
call agsetf(’X/MINIMUM.’, 0.0)
call agsetf(’Y/MAXIMUM.’, 150.0)
call agsetf(’Y/MINIMUM.’, -150.0)
call anotat(’X$’,’|E(x)|^2$’,0,0,0,0)
call ezxy(XAX,TEMP6,L-1,’INTERFEROGRAM 50$’)

call agsetf(’X/MAXIMUM.’, 1024.0)
call agsetf(’X/MINIMUM.’, 0.0)
call agsetf(’Y/MAXIMUM.’, 250.0)
call agsetf(’Y/MINIMUM.’, -250.0)
call anotat(’X$’,’|E(x)|^2$’,0,0,0,0)
call ezxy(XAX,TEMP7,L-1,’INTERFEROGRAM 100$’)

call agsetf(’X/MAXIMUM.’, 1024.0)
call agsetf(’X/MINIMUM.’, 0.0)
call agsetf(’Y/MAXIMUM.’, 350.0)
call agsetf(’Y/MINIMUM.’, -350.0)
call anotat(’X$’,’|E(x)|^2$’,0,0,0,0)
call ezxy(XAX,TEMP8,L-1,’INTERFEROGRAM 500$’)

call agsetf(’X/MAXIMUM.’, 1024.0)
call agsetf(’X/MINIMUM.’, 0.0)
call agsetf(’Y/MAXIMUM.’, 450.0)
call agsetf(’Y/MINIMUM.’, -450.0)
call anotat(’X$’,’|E(x)|^2$’,0,0,0,0)
call ezxy(XAX,TEMP9,L-1,’INTERFEROGRAM 1000$’)

call CLSGKS
stop
end
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